xref: /freebsd/sys/netinet6/nd6.c (revision 0957b409)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. Neither the name of the project nor the names of its contributors
16  *    may be used to endorse or promote products derived from this software
17  *    without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  *
31  *	$KAME: nd6.c,v 1.144 2001/05/24 07:44:00 itojun Exp $
32  */
33 
34 #include <sys/cdefs.h>
35 __FBSDID("$FreeBSD$");
36 
37 #include "opt_inet.h"
38 #include "opt_inet6.h"
39 
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/callout.h>
43 #include <sys/lock.h>
44 #include <sys/malloc.h>
45 #include <sys/mbuf.h>
46 #include <sys/mutex.h>
47 #include <sys/socket.h>
48 #include <sys/sockio.h>
49 #include <sys/time.h>
50 #include <sys/kernel.h>
51 #include <sys/protosw.h>
52 #include <sys/errno.h>
53 #include <sys/syslog.h>
54 #include <sys/rwlock.h>
55 #include <sys/queue.h>
56 #include <sys/sdt.h>
57 #include <sys/sysctl.h>
58 
59 #include <net/if.h>
60 #include <net/if_var.h>
61 #include <net/if_dl.h>
62 #include <net/if_types.h>
63 #include <net/route.h>
64 #include <net/vnet.h>
65 
66 #include <netinet/in.h>
67 #include <netinet/in_kdtrace.h>
68 #include <net/if_llatbl.h>
69 #include <netinet/if_ether.h>
70 #include <netinet6/in6_var.h>
71 #include <netinet/ip6.h>
72 #include <netinet6/ip6_var.h>
73 #include <netinet6/scope6_var.h>
74 #include <netinet6/nd6.h>
75 #include <netinet6/in6_ifattach.h>
76 #include <netinet/icmp6.h>
77 #include <netinet6/send.h>
78 
79 #include <sys/limits.h>
80 
81 #include <security/mac/mac_framework.h>
82 
83 #define ND6_SLOWTIMER_INTERVAL (60 * 60) /* 1 hour */
84 #define ND6_RECALC_REACHTM_INTERVAL (60 * 120) /* 2 hours */
85 
86 #define SIN6(s) ((const struct sockaddr_in6 *)(s))
87 
88 MALLOC_DEFINE(M_IP6NDP, "ip6ndp", "IPv6 Neighbor Discovery");
89 
90 /* timer values */
91 VNET_DEFINE(int, nd6_prune)	= 1;	/* walk list every 1 seconds */
92 VNET_DEFINE(int, nd6_delay)	= 5;	/* delay first probe time 5 second */
93 VNET_DEFINE(int, nd6_umaxtries)	= 3;	/* maximum unicast query */
94 VNET_DEFINE(int, nd6_mmaxtries)	= 3;	/* maximum multicast query */
95 VNET_DEFINE(int, nd6_useloopback) = 1;	/* use loopback interface for
96 					 * local traffic */
97 VNET_DEFINE(int, nd6_gctimer)	= (60 * 60 * 24); /* 1 day: garbage
98 					 * collection timer */
99 
100 /* preventing too many loops in ND option parsing */
101 VNET_DEFINE_STATIC(int, nd6_maxndopt) = 10; /* max # of ND options allowed */
102 
103 VNET_DEFINE(int, nd6_maxnudhint) = 0;	/* max # of subsequent upper
104 					 * layer hints */
105 VNET_DEFINE_STATIC(int, nd6_maxqueuelen) = 1; /* max pkts cached in unresolved
106 					 * ND entries */
107 #define	V_nd6_maxndopt			VNET(nd6_maxndopt)
108 #define	V_nd6_maxqueuelen		VNET(nd6_maxqueuelen)
109 
110 #ifdef ND6_DEBUG
111 VNET_DEFINE(int, nd6_debug) = 1;
112 #else
113 VNET_DEFINE(int, nd6_debug) = 0;
114 #endif
115 
116 static eventhandler_tag lle_event_eh, iflladdr_event_eh;
117 
118 VNET_DEFINE(struct nd_drhead, nd_defrouter);
119 VNET_DEFINE(struct nd_prhead, nd_prefix);
120 VNET_DEFINE(struct rwlock, nd6_lock);
121 VNET_DEFINE(uint64_t, nd6_list_genid);
122 VNET_DEFINE(struct mtx, nd6_onlink_mtx);
123 
124 VNET_DEFINE(int, nd6_recalc_reachtm_interval) = ND6_RECALC_REACHTM_INTERVAL;
125 #define	V_nd6_recalc_reachtm_interval	VNET(nd6_recalc_reachtm_interval)
126 
127 int	(*send_sendso_input_hook)(struct mbuf *, struct ifnet *, int, int);
128 
129 static int nd6_is_new_addr_neighbor(const struct sockaddr_in6 *,
130 	struct ifnet *);
131 static void nd6_setmtu0(struct ifnet *, struct nd_ifinfo *);
132 static void nd6_slowtimo(void *);
133 static int regen_tmpaddr(struct in6_ifaddr *);
134 static void nd6_free(struct llentry **, int);
135 static void nd6_free_redirect(const struct llentry *);
136 static void nd6_llinfo_timer(void *);
137 static void nd6_llinfo_settimer_locked(struct llentry *, long);
138 static void clear_llinfo_pqueue(struct llentry *);
139 static void nd6_rtrequest(int, struct rtentry *, struct rt_addrinfo *);
140 static int nd6_resolve_slow(struct ifnet *, int, struct mbuf *,
141     const struct sockaddr_in6 *, u_char *, uint32_t *, struct llentry **);
142 static int nd6_need_cache(struct ifnet *);
143 
144 
145 VNET_DEFINE_STATIC(struct callout, nd6_slowtimo_ch);
146 #define	V_nd6_slowtimo_ch		VNET(nd6_slowtimo_ch)
147 
148 VNET_DEFINE(struct callout, nd6_timer_ch);
149 #define	V_nd6_timer_ch			VNET(nd6_timer_ch)
150 
151 static void
152 nd6_lle_event(void *arg __unused, struct llentry *lle, int evt)
153 {
154 	struct rt_addrinfo rtinfo;
155 	struct sockaddr_in6 dst;
156 	struct sockaddr_dl gw;
157 	struct ifnet *ifp;
158 	int type;
159 	int fibnum;
160 
161 	LLE_WLOCK_ASSERT(lle);
162 
163 	if (lltable_get_af(lle->lle_tbl) != AF_INET6)
164 		return;
165 
166 	switch (evt) {
167 	case LLENTRY_RESOLVED:
168 		type = RTM_ADD;
169 		KASSERT(lle->la_flags & LLE_VALID,
170 		    ("%s: %p resolved but not valid?", __func__, lle));
171 		break;
172 	case LLENTRY_EXPIRED:
173 		type = RTM_DELETE;
174 		break;
175 	default:
176 		return;
177 	}
178 
179 	ifp = lltable_get_ifp(lle->lle_tbl);
180 
181 	bzero(&dst, sizeof(dst));
182 	bzero(&gw, sizeof(gw));
183 	bzero(&rtinfo, sizeof(rtinfo));
184 	lltable_fill_sa_entry(lle, (struct sockaddr *)&dst);
185 	dst.sin6_scope_id = in6_getscopezone(ifp,
186 	    in6_addrscope(&dst.sin6_addr));
187 	gw.sdl_len = sizeof(struct sockaddr_dl);
188 	gw.sdl_family = AF_LINK;
189 	gw.sdl_alen = ifp->if_addrlen;
190 	gw.sdl_index = ifp->if_index;
191 	gw.sdl_type = ifp->if_type;
192 	if (evt == LLENTRY_RESOLVED)
193 		bcopy(lle->ll_addr, gw.sdl_data, ifp->if_addrlen);
194 	rtinfo.rti_info[RTAX_DST] = (struct sockaddr *)&dst;
195 	rtinfo.rti_info[RTAX_GATEWAY] = (struct sockaddr *)&gw;
196 	rtinfo.rti_addrs = RTA_DST | RTA_GATEWAY;
197 	fibnum = V_rt_add_addr_allfibs ? RT_ALL_FIBS : ifp->if_fib;
198 	rt_missmsg_fib(type, &rtinfo, RTF_HOST | RTF_LLDATA | (
199 	    type == RTM_ADD ? RTF_UP: 0), 0, fibnum);
200 }
201 
202 /*
203  * A handler for interface link layer address change event.
204  */
205 static void
206 nd6_iflladdr(void *arg __unused, struct ifnet *ifp)
207 {
208 
209 	lltable_update_ifaddr(LLTABLE6(ifp));
210 }
211 
212 void
213 nd6_init(void)
214 {
215 
216 	mtx_init(&V_nd6_onlink_mtx, "nd6 onlink", NULL, MTX_DEF);
217 	rw_init(&V_nd6_lock, "nd6 list");
218 
219 	LIST_INIT(&V_nd_prefix);
220 	TAILQ_INIT(&V_nd_defrouter);
221 
222 	/* Start timers. */
223 	callout_init(&V_nd6_slowtimo_ch, 0);
224 	callout_reset(&V_nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz,
225 	    nd6_slowtimo, curvnet);
226 
227 	callout_init(&V_nd6_timer_ch, 0);
228 	callout_reset(&V_nd6_timer_ch, hz, nd6_timer, curvnet);
229 
230 	nd6_dad_init();
231 	if (IS_DEFAULT_VNET(curvnet)) {
232 		lle_event_eh = EVENTHANDLER_REGISTER(lle_event, nd6_lle_event,
233 		    NULL, EVENTHANDLER_PRI_ANY);
234 		iflladdr_event_eh = EVENTHANDLER_REGISTER(iflladdr_event,
235 		    nd6_iflladdr, NULL, EVENTHANDLER_PRI_ANY);
236 	}
237 }
238 
239 #ifdef VIMAGE
240 void
241 nd6_destroy()
242 {
243 
244 	callout_drain(&V_nd6_slowtimo_ch);
245 	callout_drain(&V_nd6_timer_ch);
246 	if (IS_DEFAULT_VNET(curvnet)) {
247 		EVENTHANDLER_DEREGISTER(lle_event, lle_event_eh);
248 		EVENTHANDLER_DEREGISTER(iflladdr_event, iflladdr_event_eh);
249 	}
250 	rw_destroy(&V_nd6_lock);
251 	mtx_destroy(&V_nd6_onlink_mtx);
252 }
253 #endif
254 
255 struct nd_ifinfo *
256 nd6_ifattach(struct ifnet *ifp)
257 {
258 	struct nd_ifinfo *nd;
259 
260 	nd = malloc(sizeof(*nd), M_IP6NDP, M_WAITOK | M_ZERO);
261 	nd->initialized = 1;
262 
263 	nd->chlim = IPV6_DEFHLIM;
264 	nd->basereachable = REACHABLE_TIME;
265 	nd->reachable = ND_COMPUTE_RTIME(nd->basereachable);
266 	nd->retrans = RETRANS_TIMER;
267 
268 	nd->flags = ND6_IFF_PERFORMNUD;
269 
270 	/* A loopback interface always has ND6_IFF_AUTO_LINKLOCAL.
271 	 * XXXHRS: Clear ND6_IFF_AUTO_LINKLOCAL on an IFT_BRIDGE interface by
272 	 * default regardless of the V_ip6_auto_linklocal configuration to
273 	 * give a reasonable default behavior.
274 	 */
275 	if ((V_ip6_auto_linklocal && ifp->if_type != IFT_BRIDGE) ||
276 	    (ifp->if_flags & IFF_LOOPBACK))
277 		nd->flags |= ND6_IFF_AUTO_LINKLOCAL;
278 	/*
279 	 * A loopback interface does not need to accept RTADV.
280 	 * XXXHRS: Clear ND6_IFF_ACCEPT_RTADV on an IFT_BRIDGE interface by
281 	 * default regardless of the V_ip6_accept_rtadv configuration to
282 	 * prevent the interface from accepting RA messages arrived
283 	 * on one of the member interfaces with ND6_IFF_ACCEPT_RTADV.
284 	 */
285 	if (V_ip6_accept_rtadv &&
286 	    !(ifp->if_flags & IFF_LOOPBACK) &&
287 	    (ifp->if_type != IFT_BRIDGE))
288 			nd->flags |= ND6_IFF_ACCEPT_RTADV;
289 	if (V_ip6_no_radr && !(ifp->if_flags & IFF_LOOPBACK))
290 		nd->flags |= ND6_IFF_NO_RADR;
291 
292 	/* XXX: we cannot call nd6_setmtu since ifp is not fully initialized */
293 	nd6_setmtu0(ifp, nd);
294 
295 	return nd;
296 }
297 
298 void
299 nd6_ifdetach(struct ifnet *ifp, struct nd_ifinfo *nd)
300 {
301 	struct epoch_tracker et;
302 	struct ifaddr *ifa, *next;
303 
304 	NET_EPOCH_ENTER(et);
305 	CK_STAILQ_FOREACH_SAFE(ifa, &ifp->if_addrhead, ifa_link, next) {
306 		if (ifa->ifa_addr->sa_family != AF_INET6)
307 			continue;
308 
309 		/* stop DAD processing */
310 		nd6_dad_stop(ifa);
311 	}
312 	NET_EPOCH_EXIT(et);
313 
314 	free(nd, M_IP6NDP);
315 }
316 
317 /*
318  * Reset ND level link MTU. This function is called when the physical MTU
319  * changes, which means we might have to adjust the ND level MTU.
320  */
321 void
322 nd6_setmtu(struct ifnet *ifp)
323 {
324 	if (ifp->if_afdata[AF_INET6] == NULL)
325 		return;
326 
327 	nd6_setmtu0(ifp, ND_IFINFO(ifp));
328 }
329 
330 /* XXX todo: do not maintain copy of ifp->if_mtu in ndi->maxmtu */
331 void
332 nd6_setmtu0(struct ifnet *ifp, struct nd_ifinfo *ndi)
333 {
334 	u_int32_t omaxmtu;
335 
336 	omaxmtu = ndi->maxmtu;
337 	ndi->maxmtu = ifp->if_mtu;
338 
339 	/*
340 	 * Decreasing the interface MTU under IPV6 minimum MTU may cause
341 	 * undesirable situation.  We thus notify the operator of the change
342 	 * explicitly.  The check for omaxmtu is necessary to restrict the
343 	 * log to the case of changing the MTU, not initializing it.
344 	 */
345 	if (omaxmtu >= IPV6_MMTU && ndi->maxmtu < IPV6_MMTU) {
346 		log(LOG_NOTICE, "nd6_setmtu0: "
347 		    "new link MTU on %s (%lu) is too small for IPv6\n",
348 		    if_name(ifp), (unsigned long)ndi->maxmtu);
349 	}
350 
351 	if (ndi->maxmtu > V_in6_maxmtu)
352 		in6_setmaxmtu(); /* check all interfaces just in case */
353 
354 }
355 
356 void
357 nd6_option_init(void *opt, int icmp6len, union nd_opts *ndopts)
358 {
359 
360 	bzero(ndopts, sizeof(*ndopts));
361 	ndopts->nd_opts_search = (struct nd_opt_hdr *)opt;
362 	ndopts->nd_opts_last
363 		= (struct nd_opt_hdr *)(((u_char *)opt) + icmp6len);
364 
365 	if (icmp6len == 0) {
366 		ndopts->nd_opts_done = 1;
367 		ndopts->nd_opts_search = NULL;
368 	}
369 }
370 
371 /*
372  * Take one ND option.
373  */
374 struct nd_opt_hdr *
375 nd6_option(union nd_opts *ndopts)
376 {
377 	struct nd_opt_hdr *nd_opt;
378 	int olen;
379 
380 	KASSERT(ndopts != NULL, ("%s: ndopts == NULL", __func__));
381 	KASSERT(ndopts->nd_opts_last != NULL, ("%s: uninitialized ndopts",
382 	    __func__));
383 	if (ndopts->nd_opts_search == NULL)
384 		return NULL;
385 	if (ndopts->nd_opts_done)
386 		return NULL;
387 
388 	nd_opt = ndopts->nd_opts_search;
389 
390 	/* make sure nd_opt_len is inside the buffer */
391 	if ((caddr_t)&nd_opt->nd_opt_len >= (caddr_t)ndopts->nd_opts_last) {
392 		bzero(ndopts, sizeof(*ndopts));
393 		return NULL;
394 	}
395 
396 	olen = nd_opt->nd_opt_len << 3;
397 	if (olen == 0) {
398 		/*
399 		 * Message validation requires that all included
400 		 * options have a length that is greater than zero.
401 		 */
402 		bzero(ndopts, sizeof(*ndopts));
403 		return NULL;
404 	}
405 
406 	ndopts->nd_opts_search = (struct nd_opt_hdr *)((caddr_t)nd_opt + olen);
407 	if (ndopts->nd_opts_search > ndopts->nd_opts_last) {
408 		/* option overruns the end of buffer, invalid */
409 		bzero(ndopts, sizeof(*ndopts));
410 		return NULL;
411 	} else if (ndopts->nd_opts_search == ndopts->nd_opts_last) {
412 		/* reached the end of options chain */
413 		ndopts->nd_opts_done = 1;
414 		ndopts->nd_opts_search = NULL;
415 	}
416 	return nd_opt;
417 }
418 
419 /*
420  * Parse multiple ND options.
421  * This function is much easier to use, for ND routines that do not need
422  * multiple options of the same type.
423  */
424 int
425 nd6_options(union nd_opts *ndopts)
426 {
427 	struct nd_opt_hdr *nd_opt;
428 	int i = 0;
429 
430 	KASSERT(ndopts != NULL, ("%s: ndopts == NULL", __func__));
431 	KASSERT(ndopts->nd_opts_last != NULL, ("%s: uninitialized ndopts",
432 	    __func__));
433 	if (ndopts->nd_opts_search == NULL)
434 		return 0;
435 
436 	while (1) {
437 		nd_opt = nd6_option(ndopts);
438 		if (nd_opt == NULL && ndopts->nd_opts_last == NULL) {
439 			/*
440 			 * Message validation requires that all included
441 			 * options have a length that is greater than zero.
442 			 */
443 			ICMP6STAT_INC(icp6s_nd_badopt);
444 			bzero(ndopts, sizeof(*ndopts));
445 			return -1;
446 		}
447 
448 		if (nd_opt == NULL)
449 			goto skip1;
450 
451 		switch (nd_opt->nd_opt_type) {
452 		case ND_OPT_SOURCE_LINKADDR:
453 		case ND_OPT_TARGET_LINKADDR:
454 		case ND_OPT_MTU:
455 		case ND_OPT_REDIRECTED_HEADER:
456 		case ND_OPT_NONCE:
457 			if (ndopts->nd_opt_array[nd_opt->nd_opt_type]) {
458 				nd6log((LOG_INFO,
459 				    "duplicated ND6 option found (type=%d)\n",
460 				    nd_opt->nd_opt_type));
461 				/* XXX bark? */
462 			} else {
463 				ndopts->nd_opt_array[nd_opt->nd_opt_type]
464 					= nd_opt;
465 			}
466 			break;
467 		case ND_OPT_PREFIX_INFORMATION:
468 			if (ndopts->nd_opt_array[nd_opt->nd_opt_type] == 0) {
469 				ndopts->nd_opt_array[nd_opt->nd_opt_type]
470 					= nd_opt;
471 			}
472 			ndopts->nd_opts_pi_end =
473 				(struct nd_opt_prefix_info *)nd_opt;
474 			break;
475 		/* What about ND_OPT_ROUTE_INFO? RFC 4191 */
476 		case ND_OPT_RDNSS:	/* RFC 6106 */
477 		case ND_OPT_DNSSL:	/* RFC 6106 */
478 			/*
479 			 * Silently ignore options we know and do not care about
480 			 * in the kernel.
481 			 */
482 			break;
483 		default:
484 			/*
485 			 * Unknown options must be silently ignored,
486 			 * to accommodate future extension to the protocol.
487 			 */
488 			nd6log((LOG_DEBUG,
489 			    "nd6_options: unsupported option %d - "
490 			    "option ignored\n", nd_opt->nd_opt_type));
491 		}
492 
493 skip1:
494 		i++;
495 		if (i > V_nd6_maxndopt) {
496 			ICMP6STAT_INC(icp6s_nd_toomanyopt);
497 			nd6log((LOG_INFO, "too many loop in nd opt\n"));
498 			break;
499 		}
500 
501 		if (ndopts->nd_opts_done)
502 			break;
503 	}
504 
505 	return 0;
506 }
507 
508 /*
509  * ND6 timer routine to handle ND6 entries
510  */
511 static void
512 nd6_llinfo_settimer_locked(struct llentry *ln, long tick)
513 {
514 	int canceled;
515 
516 	LLE_WLOCK_ASSERT(ln);
517 
518 	if (tick < 0) {
519 		ln->la_expire = 0;
520 		ln->ln_ntick = 0;
521 		canceled = callout_stop(&ln->lle_timer);
522 	} else {
523 		ln->la_expire = time_uptime + tick / hz;
524 		LLE_ADDREF(ln);
525 		if (tick > INT_MAX) {
526 			ln->ln_ntick = tick - INT_MAX;
527 			canceled = callout_reset(&ln->lle_timer, INT_MAX,
528 			    nd6_llinfo_timer, ln);
529 		} else {
530 			ln->ln_ntick = 0;
531 			canceled = callout_reset(&ln->lle_timer, tick,
532 			    nd6_llinfo_timer, ln);
533 		}
534 	}
535 	if (canceled > 0)
536 		LLE_REMREF(ln);
537 }
538 
539 /*
540  * Gets source address of the first packet in hold queue
541  * and stores it in @src.
542  * Returns pointer to @src (if hold queue is not empty) or NULL.
543  *
544  * Set noinline to be dtrace-friendly
545  */
546 static __noinline struct in6_addr *
547 nd6_llinfo_get_holdsrc(struct llentry *ln, struct in6_addr *src)
548 {
549 	struct ip6_hdr hdr;
550 	struct mbuf *m;
551 
552 	if (ln->la_hold == NULL)
553 		return (NULL);
554 
555 	/*
556 	 * assume every packet in la_hold has the same IP header
557 	 */
558 	m = ln->la_hold;
559 	if (sizeof(hdr) > m->m_len)
560 		return (NULL);
561 
562 	m_copydata(m, 0, sizeof(hdr), (caddr_t)&hdr);
563 	*src = hdr.ip6_src;
564 
565 	return (src);
566 }
567 
568 /*
569  * Checks if we need to switch from STALE state.
570  *
571  * RFC 4861 requires switching from STALE to DELAY state
572  * on first packet matching entry, waiting V_nd6_delay and
573  * transition to PROBE state (if upper layer confirmation was
574  * not received).
575  *
576  * This code performs a bit differently:
577  * On packet hit we don't change state (but desired state
578  * can be guessed by control plane). However, after V_nd6_delay
579  * seconds code will transition to PROBE state (so DELAY state
580  * is kinda skipped in most situations).
581  *
582  * Typically, V_nd6_gctimer is bigger than V_nd6_delay, so
583  * we perform the following upon entering STALE state:
584  *
585  * 1) Arm timer to run each V_nd6_delay seconds to make sure that
586  * if packet was transmitted at the start of given interval, we
587  * would be able to switch to PROBE state in V_nd6_delay seconds
588  * as user expects.
589  *
590  * 2) Reschedule timer until original V_nd6_gctimer expires keeping
591  * lle in STALE state (remaining timer value stored in lle_remtime).
592  *
593  * 3) Reschedule timer if packet was transmitted less that V_nd6_delay
594  * seconds ago.
595  *
596  * Returns non-zero value if the entry is still STALE (storing
597  * the next timer interval in @pdelay).
598  *
599  * Returns zero value if original timer expired or we need to switch to
600  * PROBE (store that in @do_switch variable).
601  */
602 static int
603 nd6_is_stale(struct llentry *lle, long *pdelay, int *do_switch)
604 {
605 	int nd_delay, nd_gctimer, r_skip_req;
606 	time_t lle_hittime;
607 	long delay;
608 
609 	*do_switch = 0;
610 	nd_gctimer = V_nd6_gctimer;
611 	nd_delay = V_nd6_delay;
612 
613 	LLE_REQ_LOCK(lle);
614 	r_skip_req = lle->r_skip_req;
615 	lle_hittime = lle->lle_hittime;
616 	LLE_REQ_UNLOCK(lle);
617 
618 	if (r_skip_req > 0) {
619 
620 		/*
621 		 * Nonzero r_skip_req value was set upon entering
622 		 * STALE state. Since value was not changed, no
623 		 * packets were passed using this lle. Ask for
624 		 * timer reschedule and keep STALE state.
625 		 */
626 		delay = (long)(MIN(nd_gctimer, nd_delay));
627 		delay *= hz;
628 		if (lle->lle_remtime > delay)
629 			lle->lle_remtime -= delay;
630 		else {
631 			delay = lle->lle_remtime;
632 			lle->lle_remtime = 0;
633 		}
634 
635 		if (delay == 0) {
636 
637 			/*
638 			 * The original ng6_gctime timeout ended,
639 			 * no more rescheduling.
640 			 */
641 			return (0);
642 		}
643 
644 		*pdelay = delay;
645 		return (1);
646 	}
647 
648 	/*
649 	 * Packet received. Verify timestamp
650 	 */
651 	delay = (long)(time_uptime - lle_hittime);
652 	if (delay < nd_delay) {
653 
654 		/*
655 		 * V_nd6_delay still not passed since the first
656 		 * hit in STALE state.
657 		 * Reshedule timer and return.
658 		 */
659 		*pdelay = (long)(nd_delay - delay) * hz;
660 		return (1);
661 	}
662 
663 	/* Request switching to probe */
664 	*do_switch = 1;
665 	return (0);
666 }
667 
668 
669 /*
670  * Switch @lle state to new state optionally arming timers.
671  *
672  * Set noinline to be dtrace-friendly
673  */
674 __noinline void
675 nd6_llinfo_setstate(struct llentry *lle, int newstate)
676 {
677 	struct ifnet *ifp;
678 	int nd_gctimer, nd_delay;
679 	long delay, remtime;
680 
681 	delay = 0;
682 	remtime = 0;
683 
684 	switch (newstate) {
685 	case ND6_LLINFO_INCOMPLETE:
686 		ifp = lle->lle_tbl->llt_ifp;
687 		delay = (long)ND_IFINFO(ifp)->retrans * hz / 1000;
688 		break;
689 	case ND6_LLINFO_REACHABLE:
690 		if (!ND6_LLINFO_PERMANENT(lle)) {
691 			ifp = lle->lle_tbl->llt_ifp;
692 			delay = (long)ND_IFINFO(ifp)->reachable * hz;
693 		}
694 		break;
695 	case ND6_LLINFO_STALE:
696 
697 		/*
698 		 * Notify fast path that we want to know if any packet
699 		 * is transmitted by setting r_skip_req.
700 		 */
701 		LLE_REQ_LOCK(lle);
702 		lle->r_skip_req = 1;
703 		LLE_REQ_UNLOCK(lle);
704 		nd_delay = V_nd6_delay;
705 		nd_gctimer = V_nd6_gctimer;
706 
707 		delay = (long)(MIN(nd_gctimer, nd_delay)) * hz;
708 		remtime = (long)nd_gctimer * hz - delay;
709 		break;
710 	case ND6_LLINFO_DELAY:
711 		lle->la_asked = 0;
712 		delay = (long)V_nd6_delay * hz;
713 		break;
714 	}
715 
716 	if (delay > 0)
717 		nd6_llinfo_settimer_locked(lle, delay);
718 
719 	lle->lle_remtime = remtime;
720 	lle->ln_state = newstate;
721 }
722 
723 /*
724  * Timer-dependent part of nd state machine.
725  *
726  * Set noinline to be dtrace-friendly
727  */
728 static __noinline void
729 nd6_llinfo_timer(void *arg)
730 {
731 	struct llentry *ln;
732 	struct in6_addr *dst, *pdst, *psrc, src;
733 	struct ifnet *ifp;
734 	struct nd_ifinfo *ndi;
735 	int do_switch, send_ns;
736 	long delay;
737 
738 	KASSERT(arg != NULL, ("%s: arg NULL", __func__));
739 	ln = (struct llentry *)arg;
740 	ifp = lltable_get_ifp(ln->lle_tbl);
741 	CURVNET_SET(ifp->if_vnet);
742 
743 	ND6_RLOCK();
744 	LLE_WLOCK(ln);
745 	if (callout_pending(&ln->lle_timer)) {
746 		/*
747 		 * Here we are a bit odd here in the treatment of
748 		 * active/pending. If the pending bit is set, it got
749 		 * rescheduled before I ran. The active
750 		 * bit we ignore, since if it was stopped
751 		 * in ll_tablefree() and was currently running
752 		 * it would have return 0 so the code would
753 		 * not have deleted it since the callout could
754 		 * not be stopped so we want to go through
755 		 * with the delete here now. If the callout
756 		 * was restarted, the pending bit will be back on and
757 		 * we just want to bail since the callout_reset would
758 		 * return 1 and our reference would have been removed
759 		 * by nd6_llinfo_settimer_locked above since canceled
760 		 * would have been 1.
761 		 */
762 		LLE_WUNLOCK(ln);
763 		ND6_RUNLOCK();
764 		CURVNET_RESTORE();
765 		return;
766 	}
767 	ndi = ND_IFINFO(ifp);
768 	send_ns = 0;
769 	dst = &ln->r_l3addr.addr6;
770 	pdst = dst;
771 
772 	if (ln->ln_ntick > 0) {
773 		if (ln->ln_ntick > INT_MAX) {
774 			ln->ln_ntick -= INT_MAX;
775 			nd6_llinfo_settimer_locked(ln, INT_MAX);
776 		} else {
777 			ln->ln_ntick = 0;
778 			nd6_llinfo_settimer_locked(ln, ln->ln_ntick);
779 		}
780 		goto done;
781 	}
782 
783 	if (ln->la_flags & LLE_STATIC) {
784 		goto done;
785 	}
786 
787 	if (ln->la_flags & LLE_DELETED) {
788 		nd6_free(&ln, 0);
789 		goto done;
790 	}
791 
792 	switch (ln->ln_state) {
793 	case ND6_LLINFO_INCOMPLETE:
794 		if (ln->la_asked < V_nd6_mmaxtries) {
795 			ln->la_asked++;
796 			send_ns = 1;
797 			/* Send NS to multicast address */
798 			pdst = NULL;
799 		} else {
800 			struct mbuf *m = ln->la_hold;
801 			if (m) {
802 				struct mbuf *m0;
803 
804 				/*
805 				 * assuming every packet in la_hold has the
806 				 * same IP header.  Send error after unlock.
807 				 */
808 				m0 = m->m_nextpkt;
809 				m->m_nextpkt = NULL;
810 				ln->la_hold = m0;
811 				clear_llinfo_pqueue(ln);
812 			}
813 			nd6_free(&ln, 0);
814 			if (m != NULL)
815 				icmp6_error2(m, ICMP6_DST_UNREACH,
816 				    ICMP6_DST_UNREACH_ADDR, 0, ifp);
817 		}
818 		break;
819 	case ND6_LLINFO_REACHABLE:
820 		if (!ND6_LLINFO_PERMANENT(ln))
821 			nd6_llinfo_setstate(ln, ND6_LLINFO_STALE);
822 		break;
823 
824 	case ND6_LLINFO_STALE:
825 		if (nd6_is_stale(ln, &delay, &do_switch) != 0) {
826 
827 			/*
828 			 * No packet has used this entry and GC timeout
829 			 * has not been passed. Reshedule timer and
830 			 * return.
831 			 */
832 			nd6_llinfo_settimer_locked(ln, delay);
833 			break;
834 		}
835 
836 		if (do_switch == 0) {
837 
838 			/*
839 			 * GC timer has ended and entry hasn't been used.
840 			 * Run Garbage collector (RFC 4861, 5.3)
841 			 */
842 			if (!ND6_LLINFO_PERMANENT(ln))
843 				nd6_free(&ln, 1);
844 			break;
845 		}
846 
847 		/* Entry has been used AND delay timer has ended. */
848 
849 		/* FALLTHROUGH */
850 
851 	case ND6_LLINFO_DELAY:
852 		if (ndi && (ndi->flags & ND6_IFF_PERFORMNUD) != 0) {
853 			/* We need NUD */
854 			ln->la_asked = 1;
855 			nd6_llinfo_setstate(ln, ND6_LLINFO_PROBE);
856 			send_ns = 1;
857 		} else
858 			nd6_llinfo_setstate(ln, ND6_LLINFO_STALE); /* XXX */
859 		break;
860 	case ND6_LLINFO_PROBE:
861 		if (ln->la_asked < V_nd6_umaxtries) {
862 			ln->la_asked++;
863 			send_ns = 1;
864 		} else {
865 			nd6_free(&ln, 0);
866 		}
867 		break;
868 	default:
869 		panic("%s: paths in a dark night can be confusing: %d",
870 		    __func__, ln->ln_state);
871 	}
872 done:
873 	if (ln != NULL)
874 		ND6_RUNLOCK();
875 	if (send_ns != 0) {
876 		nd6_llinfo_settimer_locked(ln, (long)ndi->retrans * hz / 1000);
877 		psrc = nd6_llinfo_get_holdsrc(ln, &src);
878 		LLE_FREE_LOCKED(ln);
879 		ln = NULL;
880 		nd6_ns_output(ifp, psrc, pdst, dst, NULL);
881 	}
882 
883 	if (ln != NULL)
884 		LLE_FREE_LOCKED(ln);
885 	CURVNET_RESTORE();
886 }
887 
888 
889 /*
890  * ND6 timer routine to expire default route list and prefix list
891  */
892 void
893 nd6_timer(void *arg)
894 {
895 	CURVNET_SET((struct vnet *) arg);
896 	struct nd_drhead drq;
897 	struct nd_prhead prl;
898 	struct nd_defrouter *dr, *ndr;
899 	struct nd_prefix *pr, *npr;
900 	struct in6_ifaddr *ia6, *nia6;
901 	uint64_t genid;
902 
903 	TAILQ_INIT(&drq);
904 	LIST_INIT(&prl);
905 
906 	ND6_WLOCK();
907 	TAILQ_FOREACH_SAFE(dr, &V_nd_defrouter, dr_entry, ndr)
908 		if (dr->expire && dr->expire < time_uptime)
909 			defrouter_unlink(dr, &drq);
910 	ND6_WUNLOCK();
911 
912 	while ((dr = TAILQ_FIRST(&drq)) != NULL) {
913 		TAILQ_REMOVE(&drq, dr, dr_entry);
914 		defrouter_del(dr);
915 	}
916 
917 	/*
918 	 * expire interface addresses.
919 	 * in the past the loop was inside prefix expiry processing.
920 	 * However, from a stricter speci-confrmance standpoint, we should
921 	 * rather separate address lifetimes and prefix lifetimes.
922 	 *
923 	 * XXXRW: in6_ifaddrhead locking.
924 	 */
925   addrloop:
926 	CK_STAILQ_FOREACH_SAFE(ia6, &V_in6_ifaddrhead, ia_link, nia6) {
927 		/* check address lifetime */
928 		if (IFA6_IS_INVALID(ia6)) {
929 			int regen = 0;
930 
931 			/*
932 			 * If the expiring address is temporary, try
933 			 * regenerating a new one.  This would be useful when
934 			 * we suspended a laptop PC, then turned it on after a
935 			 * period that could invalidate all temporary
936 			 * addresses.  Although we may have to restart the
937 			 * loop (see below), it must be after purging the
938 			 * address.  Otherwise, we'd see an infinite loop of
939 			 * regeneration.
940 			 */
941 			if (V_ip6_use_tempaddr &&
942 			    (ia6->ia6_flags & IN6_IFF_TEMPORARY) != 0) {
943 				if (regen_tmpaddr(ia6) == 0)
944 					regen = 1;
945 			}
946 
947 			in6_purgeaddr(&ia6->ia_ifa);
948 
949 			if (regen)
950 				goto addrloop; /* XXX: see below */
951 		} else if (IFA6_IS_DEPRECATED(ia6)) {
952 			int oldflags = ia6->ia6_flags;
953 
954 			ia6->ia6_flags |= IN6_IFF_DEPRECATED;
955 
956 			/*
957 			 * If a temporary address has just become deprecated,
958 			 * regenerate a new one if possible.
959 			 */
960 			if (V_ip6_use_tempaddr &&
961 			    (ia6->ia6_flags & IN6_IFF_TEMPORARY) != 0 &&
962 			    (oldflags & IN6_IFF_DEPRECATED) == 0) {
963 
964 				if (regen_tmpaddr(ia6) == 0) {
965 					/*
966 					 * A new temporary address is
967 					 * generated.
968 					 * XXX: this means the address chain
969 					 * has changed while we are still in
970 					 * the loop.  Although the change
971 					 * would not cause disaster (because
972 					 * it's not a deletion, but an
973 					 * addition,) we'd rather restart the
974 					 * loop just for safety.  Or does this
975 					 * significantly reduce performance??
976 					 */
977 					goto addrloop;
978 				}
979 			}
980 		} else if ((ia6->ia6_flags & IN6_IFF_TENTATIVE) != 0) {
981 			/*
982 			 * Schedule DAD for a tentative address.  This happens
983 			 * if the interface was down or not running
984 			 * when the address was configured.
985 			 */
986 			int delay;
987 
988 			delay = arc4random() %
989 			    (MAX_RTR_SOLICITATION_DELAY * hz);
990 			nd6_dad_start((struct ifaddr *)ia6, delay);
991 		} else {
992 			/*
993 			 * Check status of the interface.  If it is down,
994 			 * mark the address as tentative for future DAD.
995 			 */
996 			if ((ia6->ia_ifp->if_flags & IFF_UP) == 0 ||
997 			    (ia6->ia_ifp->if_drv_flags & IFF_DRV_RUNNING)
998 				== 0 ||
999 			    (ND_IFINFO(ia6->ia_ifp)->flags &
1000 				ND6_IFF_IFDISABLED) != 0) {
1001 				ia6->ia6_flags &= ~IN6_IFF_DUPLICATED;
1002 				ia6->ia6_flags |= IN6_IFF_TENTATIVE;
1003 			}
1004 			/*
1005 			 * A new RA might have made a deprecated address
1006 			 * preferred.
1007 			 */
1008 			ia6->ia6_flags &= ~IN6_IFF_DEPRECATED;
1009 		}
1010 	}
1011 
1012 	ND6_WLOCK();
1013 restart:
1014 	LIST_FOREACH_SAFE(pr, &V_nd_prefix, ndpr_entry, npr) {
1015 		/*
1016 		 * Expire prefixes. Since the pltime is only used for
1017 		 * autoconfigured addresses, pltime processing for prefixes is
1018 		 * not necessary.
1019 		 *
1020 		 * Only unlink after all derived addresses have expired. This
1021 		 * may not occur until two hours after the prefix has expired
1022 		 * per RFC 4862. If the prefix expires before its derived
1023 		 * addresses, mark it off-link. This will be done automatically
1024 		 * after unlinking if no address references remain.
1025 		 */
1026 		if (pr->ndpr_vltime == ND6_INFINITE_LIFETIME ||
1027 		    time_uptime - pr->ndpr_lastupdate <= pr->ndpr_vltime)
1028 			continue;
1029 
1030 		if (pr->ndpr_addrcnt == 0) {
1031 			nd6_prefix_unlink(pr, &prl);
1032 			continue;
1033 		}
1034 		if ((pr->ndpr_stateflags & NDPRF_ONLINK) != 0) {
1035 			genid = V_nd6_list_genid;
1036 			nd6_prefix_ref(pr);
1037 			ND6_WUNLOCK();
1038 			ND6_ONLINK_LOCK();
1039 			(void)nd6_prefix_offlink(pr);
1040 			ND6_ONLINK_UNLOCK();
1041 			ND6_WLOCK();
1042 			nd6_prefix_rele(pr);
1043 			if (genid != V_nd6_list_genid)
1044 				goto restart;
1045 		}
1046 	}
1047 	ND6_WUNLOCK();
1048 
1049 	while ((pr = LIST_FIRST(&prl)) != NULL) {
1050 		LIST_REMOVE(pr, ndpr_entry);
1051 		nd6_prefix_del(pr);
1052 	}
1053 
1054 	callout_reset(&V_nd6_timer_ch, V_nd6_prune * hz,
1055 	    nd6_timer, curvnet);
1056 
1057 	CURVNET_RESTORE();
1058 }
1059 
1060 /*
1061  * ia6 - deprecated/invalidated temporary address
1062  */
1063 static int
1064 regen_tmpaddr(struct in6_ifaddr *ia6)
1065 {
1066 	struct epoch_tracker et;
1067 	struct ifaddr *ifa;
1068 	struct ifnet *ifp;
1069 	struct in6_ifaddr *public_ifa6 = NULL;
1070 
1071 	ifp = ia6->ia_ifa.ifa_ifp;
1072 	NET_EPOCH_ENTER(et);
1073 	CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
1074 		struct in6_ifaddr *it6;
1075 
1076 		if (ifa->ifa_addr->sa_family != AF_INET6)
1077 			continue;
1078 
1079 		it6 = (struct in6_ifaddr *)ifa;
1080 
1081 		/* ignore no autoconf addresses. */
1082 		if ((it6->ia6_flags & IN6_IFF_AUTOCONF) == 0)
1083 			continue;
1084 
1085 		/* ignore autoconf addresses with different prefixes. */
1086 		if (it6->ia6_ndpr == NULL || it6->ia6_ndpr != ia6->ia6_ndpr)
1087 			continue;
1088 
1089 		/*
1090 		 * Now we are looking at an autoconf address with the same
1091 		 * prefix as ours.  If the address is temporary and is still
1092 		 * preferred, do not create another one.  It would be rare, but
1093 		 * could happen, for example, when we resume a laptop PC after
1094 		 * a long period.
1095 		 */
1096 		if ((it6->ia6_flags & IN6_IFF_TEMPORARY) != 0 &&
1097 		    !IFA6_IS_DEPRECATED(it6)) {
1098 			public_ifa6 = NULL;
1099 			break;
1100 		}
1101 
1102 		/*
1103 		 * This is a public autoconf address that has the same prefix
1104 		 * as ours.  If it is preferred, keep it.  We can't break the
1105 		 * loop here, because there may be a still-preferred temporary
1106 		 * address with the prefix.
1107 		 */
1108 		if (!IFA6_IS_DEPRECATED(it6))
1109 			public_ifa6 = it6;
1110 	}
1111 	if (public_ifa6 != NULL)
1112 		ifa_ref(&public_ifa6->ia_ifa);
1113 	NET_EPOCH_EXIT(et);
1114 
1115 	if (public_ifa6 != NULL) {
1116 		int e;
1117 
1118 		if ((e = in6_tmpifadd(public_ifa6, 0, 0)) != 0) {
1119 			ifa_free(&public_ifa6->ia_ifa);
1120 			log(LOG_NOTICE, "regen_tmpaddr: failed to create a new"
1121 			    " tmp addr,errno=%d\n", e);
1122 			return (-1);
1123 		}
1124 		ifa_free(&public_ifa6->ia_ifa);
1125 		return (0);
1126 	}
1127 
1128 	return (-1);
1129 }
1130 
1131 /*
1132  * Remove prefix and default router list entries corresponding to ifp. Neighbor
1133  * cache entries are freed in in6_domifdetach().
1134  */
1135 void
1136 nd6_purge(struct ifnet *ifp)
1137 {
1138 	struct nd_drhead drq;
1139 	struct nd_prhead prl;
1140 	struct nd_defrouter *dr, *ndr;
1141 	struct nd_prefix *pr, *npr;
1142 
1143 	TAILQ_INIT(&drq);
1144 	LIST_INIT(&prl);
1145 
1146 	/*
1147 	 * Nuke default router list entries toward ifp.
1148 	 * We defer removal of default router list entries that is installed
1149 	 * in the routing table, in order to keep additional side effects as
1150 	 * small as possible.
1151 	 */
1152 	ND6_WLOCK();
1153 	TAILQ_FOREACH_SAFE(dr, &V_nd_defrouter, dr_entry, ndr) {
1154 		if (dr->installed)
1155 			continue;
1156 		if (dr->ifp == ifp)
1157 			defrouter_unlink(dr, &drq);
1158 	}
1159 	TAILQ_FOREACH_SAFE(dr, &V_nd_defrouter, dr_entry, ndr) {
1160 		if (!dr->installed)
1161 			continue;
1162 		if (dr->ifp == ifp)
1163 			defrouter_unlink(dr, &drq);
1164 	}
1165 
1166 	/*
1167 	 * Remove prefixes on ifp. We should have already removed addresses on
1168 	 * this interface, so no addresses should be referencing these prefixes.
1169 	 */
1170 	LIST_FOREACH_SAFE(pr, &V_nd_prefix, ndpr_entry, npr) {
1171 		if (pr->ndpr_ifp == ifp)
1172 			nd6_prefix_unlink(pr, &prl);
1173 	}
1174 	ND6_WUNLOCK();
1175 
1176 	/* Delete the unlinked router and prefix objects. */
1177 	while ((dr = TAILQ_FIRST(&drq)) != NULL) {
1178 		TAILQ_REMOVE(&drq, dr, dr_entry);
1179 		defrouter_del(dr);
1180 	}
1181 	while ((pr = LIST_FIRST(&prl)) != NULL) {
1182 		LIST_REMOVE(pr, ndpr_entry);
1183 		nd6_prefix_del(pr);
1184 	}
1185 
1186 	/* cancel default outgoing interface setting */
1187 	if (V_nd6_defifindex == ifp->if_index)
1188 		nd6_setdefaultiface(0);
1189 
1190 	if (ND_IFINFO(ifp)->flags & ND6_IFF_ACCEPT_RTADV) {
1191 		/* Refresh default router list. */
1192 		defrouter_select_fib(ifp->if_fib);
1193 	}
1194 }
1195 
1196 /*
1197  * the caller acquires and releases the lock on the lltbls
1198  * Returns the llentry locked
1199  */
1200 struct llentry *
1201 nd6_lookup(const struct in6_addr *addr6, int flags, struct ifnet *ifp)
1202 {
1203 	struct sockaddr_in6 sin6;
1204 	struct llentry *ln;
1205 
1206 	bzero(&sin6, sizeof(sin6));
1207 	sin6.sin6_len = sizeof(struct sockaddr_in6);
1208 	sin6.sin6_family = AF_INET6;
1209 	sin6.sin6_addr = *addr6;
1210 
1211 	IF_AFDATA_LOCK_ASSERT(ifp);
1212 
1213 	ln = lla_lookup(LLTABLE6(ifp), flags, (struct sockaddr *)&sin6);
1214 
1215 	return (ln);
1216 }
1217 
1218 struct llentry *
1219 nd6_alloc(const struct in6_addr *addr6, int flags, struct ifnet *ifp)
1220 {
1221 	struct sockaddr_in6 sin6;
1222 	struct llentry *ln;
1223 
1224 	bzero(&sin6, sizeof(sin6));
1225 	sin6.sin6_len = sizeof(struct sockaddr_in6);
1226 	sin6.sin6_family = AF_INET6;
1227 	sin6.sin6_addr = *addr6;
1228 
1229 	ln = lltable_alloc_entry(LLTABLE6(ifp), 0, (struct sockaddr *)&sin6);
1230 	if (ln != NULL)
1231 		ln->ln_state = ND6_LLINFO_NOSTATE;
1232 
1233 	return (ln);
1234 }
1235 
1236 /*
1237  * Test whether a given IPv6 address is a neighbor or not, ignoring
1238  * the actual neighbor cache.  The neighbor cache is ignored in order
1239  * to not reenter the routing code from within itself.
1240  */
1241 static int
1242 nd6_is_new_addr_neighbor(const struct sockaddr_in6 *addr, struct ifnet *ifp)
1243 {
1244 	struct nd_prefix *pr;
1245 	struct ifaddr *ifa;
1246 	struct rt_addrinfo info;
1247 	struct sockaddr_in6 rt_key;
1248 	const struct sockaddr *dst6;
1249 	uint64_t genid;
1250 	int error, fibnum;
1251 
1252 	/*
1253 	 * A link-local address is always a neighbor.
1254 	 * XXX: a link does not necessarily specify a single interface.
1255 	 */
1256 	if (IN6_IS_ADDR_LINKLOCAL(&addr->sin6_addr)) {
1257 		struct sockaddr_in6 sin6_copy;
1258 		u_int32_t zone;
1259 
1260 		/*
1261 		 * We need sin6_copy since sa6_recoverscope() may modify the
1262 		 * content (XXX).
1263 		 */
1264 		sin6_copy = *addr;
1265 		if (sa6_recoverscope(&sin6_copy))
1266 			return (0); /* XXX: should be impossible */
1267 		if (in6_setscope(&sin6_copy.sin6_addr, ifp, &zone))
1268 			return (0);
1269 		if (sin6_copy.sin6_scope_id == zone)
1270 			return (1);
1271 		else
1272 			return (0);
1273 	}
1274 
1275 	bzero(&rt_key, sizeof(rt_key));
1276 	bzero(&info, sizeof(info));
1277 	info.rti_info[RTAX_DST] = (struct sockaddr *)&rt_key;
1278 
1279 	/*
1280 	 * If the address matches one of our addresses,
1281 	 * it should be a neighbor.
1282 	 * If the address matches one of our on-link prefixes, it should be a
1283 	 * neighbor.
1284 	 */
1285 	ND6_RLOCK();
1286 restart:
1287 	LIST_FOREACH(pr, &V_nd_prefix, ndpr_entry) {
1288 		if (pr->ndpr_ifp != ifp)
1289 			continue;
1290 
1291 		if ((pr->ndpr_stateflags & NDPRF_ONLINK) == 0) {
1292 			dst6 = (const struct sockaddr *)&pr->ndpr_prefix;
1293 
1294 			/*
1295 			 * We only need to check all FIBs if add_addr_allfibs
1296 			 * is unset. If set, checking any FIB will suffice.
1297 			 */
1298 			fibnum = V_rt_add_addr_allfibs ? rt_numfibs - 1 : 0;
1299 			for (; fibnum < rt_numfibs; fibnum++) {
1300 				genid = V_nd6_list_genid;
1301 				ND6_RUNLOCK();
1302 
1303 				/*
1304 				 * Restore length field before
1305 				 * retrying lookup
1306 				 */
1307 				rt_key.sin6_len = sizeof(rt_key);
1308 				error = rib_lookup_info(fibnum, dst6, 0, 0,
1309 						        &info);
1310 
1311 				ND6_RLOCK();
1312 				if (genid != V_nd6_list_genid)
1313 					goto restart;
1314 				if (error == 0)
1315 					break;
1316 			}
1317 			if (error != 0)
1318 				continue;
1319 
1320 			/*
1321 			 * This is the case where multiple interfaces
1322 			 * have the same prefix, but only one is installed
1323 			 * into the routing table and that prefix entry
1324 			 * is not the one being examined here. In the case
1325 			 * where RADIX_MPATH is enabled, multiple route
1326 			 * entries (of the same rt_key value) will be
1327 			 * installed because the interface addresses all
1328 			 * differ.
1329 			 */
1330 			if (!IN6_ARE_ADDR_EQUAL(&pr->ndpr_prefix.sin6_addr,
1331 			    &rt_key.sin6_addr))
1332 				continue;
1333 		}
1334 
1335 		if (IN6_ARE_MASKED_ADDR_EQUAL(&pr->ndpr_prefix.sin6_addr,
1336 		    &addr->sin6_addr, &pr->ndpr_mask)) {
1337 			ND6_RUNLOCK();
1338 			return (1);
1339 		}
1340 	}
1341 	ND6_RUNLOCK();
1342 
1343 	/*
1344 	 * If the address is assigned on the node of the other side of
1345 	 * a p2p interface, the address should be a neighbor.
1346 	 */
1347 	if (ifp->if_flags & IFF_POINTOPOINT) {
1348 		struct epoch_tracker et;
1349 
1350 		NET_EPOCH_ENTER(et);
1351 		CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
1352 			if (ifa->ifa_addr->sa_family != addr->sin6_family)
1353 				continue;
1354 			if (ifa->ifa_dstaddr != NULL &&
1355 			    sa_equal(addr, ifa->ifa_dstaddr)) {
1356 				NET_EPOCH_EXIT(et);
1357 				return 1;
1358 			}
1359 		}
1360 		NET_EPOCH_EXIT(et);
1361 	}
1362 
1363 	/*
1364 	 * If the default router list is empty, all addresses are regarded
1365 	 * as on-link, and thus, as a neighbor.
1366 	 */
1367 	if (ND_IFINFO(ifp)->flags & ND6_IFF_ACCEPT_RTADV &&
1368 	    TAILQ_EMPTY(&V_nd_defrouter) &&
1369 	    V_nd6_defifindex == ifp->if_index) {
1370 		return (1);
1371 	}
1372 
1373 	return (0);
1374 }
1375 
1376 
1377 /*
1378  * Detect if a given IPv6 address identifies a neighbor on a given link.
1379  * XXX: should take care of the destination of a p2p link?
1380  */
1381 int
1382 nd6_is_addr_neighbor(const struct sockaddr_in6 *addr, struct ifnet *ifp)
1383 {
1384 	struct epoch_tracker et;
1385 	struct llentry *lle;
1386 	int rc = 0;
1387 
1388 	IF_AFDATA_UNLOCK_ASSERT(ifp);
1389 	if (nd6_is_new_addr_neighbor(addr, ifp))
1390 		return (1);
1391 
1392 	/*
1393 	 * Even if the address matches none of our addresses, it might be
1394 	 * in the neighbor cache.
1395 	 */
1396 	NET_EPOCH_ENTER(et);
1397 	if ((lle = nd6_lookup(&addr->sin6_addr, 0, ifp)) != NULL) {
1398 		LLE_RUNLOCK(lle);
1399 		rc = 1;
1400 	}
1401 	NET_EPOCH_EXIT(et);
1402 	return (rc);
1403 }
1404 
1405 /*
1406  * Free an nd6 llinfo entry.
1407  * Since the function would cause significant changes in the kernel, DO NOT
1408  * make it global, unless you have a strong reason for the change, and are sure
1409  * that the change is safe.
1410  *
1411  * Set noinline to be dtrace-friendly
1412  */
1413 static __noinline void
1414 nd6_free(struct llentry **lnp, int gc)
1415 {
1416 	struct ifnet *ifp;
1417 	struct llentry *ln;
1418 	struct nd_defrouter *dr;
1419 
1420 	ln = *lnp;
1421 	*lnp = NULL;
1422 
1423 	LLE_WLOCK_ASSERT(ln);
1424 	ND6_RLOCK_ASSERT();
1425 
1426 	ifp = lltable_get_ifp(ln->lle_tbl);
1427 	if ((ND_IFINFO(ifp)->flags & ND6_IFF_ACCEPT_RTADV) != 0)
1428 		dr = defrouter_lookup_locked(&ln->r_l3addr.addr6, ifp);
1429 	else
1430 		dr = NULL;
1431 	ND6_RUNLOCK();
1432 
1433 	if ((ln->la_flags & LLE_DELETED) == 0)
1434 		EVENTHANDLER_INVOKE(lle_event, ln, LLENTRY_EXPIRED);
1435 
1436 	/*
1437 	 * we used to have pfctlinput(PRC_HOSTDEAD) here.
1438 	 * even though it is not harmful, it was not really necessary.
1439 	 */
1440 
1441 	/* cancel timer */
1442 	nd6_llinfo_settimer_locked(ln, -1);
1443 
1444 	if (ND_IFINFO(ifp)->flags & ND6_IFF_ACCEPT_RTADV) {
1445 		if (dr != NULL && dr->expire &&
1446 		    ln->ln_state == ND6_LLINFO_STALE && gc) {
1447 			/*
1448 			 * If the reason for the deletion is just garbage
1449 			 * collection, and the neighbor is an active default
1450 			 * router, do not delete it.  Instead, reset the GC
1451 			 * timer using the router's lifetime.
1452 			 * Simply deleting the entry would affect default
1453 			 * router selection, which is not necessarily a good
1454 			 * thing, especially when we're using router preference
1455 			 * values.
1456 			 * XXX: the check for ln_state would be redundant,
1457 			 *      but we intentionally keep it just in case.
1458 			 */
1459 			if (dr->expire > time_uptime)
1460 				nd6_llinfo_settimer_locked(ln,
1461 				    (dr->expire - time_uptime) * hz);
1462 			else
1463 				nd6_llinfo_settimer_locked(ln,
1464 				    (long)V_nd6_gctimer * hz);
1465 
1466 			LLE_REMREF(ln);
1467 			LLE_WUNLOCK(ln);
1468 			defrouter_rele(dr);
1469 			return;
1470 		}
1471 
1472 		if (dr) {
1473 			/*
1474 			 * Unreachablity of a router might affect the default
1475 			 * router selection and on-link detection of advertised
1476 			 * prefixes.
1477 			 */
1478 
1479 			/*
1480 			 * Temporarily fake the state to choose a new default
1481 			 * router and to perform on-link determination of
1482 			 * prefixes correctly.
1483 			 * Below the state will be set correctly,
1484 			 * or the entry itself will be deleted.
1485 			 */
1486 			ln->ln_state = ND6_LLINFO_INCOMPLETE;
1487 		}
1488 
1489 		if (ln->ln_router || dr) {
1490 
1491 			/*
1492 			 * We need to unlock to avoid a LOR with rt6_flush() with the
1493 			 * rnh and for the calls to pfxlist_onlink_check() and
1494 			 * defrouter_select_fib() in the block further down for calls
1495 			 * into nd6_lookup().  We still hold a ref.
1496 			 */
1497 			LLE_WUNLOCK(ln);
1498 
1499 			/*
1500 			 * rt6_flush must be called whether or not the neighbor
1501 			 * is in the Default Router List.
1502 			 * See a corresponding comment in nd6_na_input().
1503 			 */
1504 			rt6_flush(&ln->r_l3addr.addr6, ifp);
1505 		}
1506 
1507 		if (dr) {
1508 			/*
1509 			 * Since defrouter_select_fib() does not affect the
1510 			 * on-link determination and MIP6 needs the check
1511 			 * before the default router selection, we perform
1512 			 * the check now.
1513 			 */
1514 			pfxlist_onlink_check();
1515 
1516 			/*
1517 			 * Refresh default router list.
1518 			 */
1519 			defrouter_select_fib(dr->ifp->if_fib);
1520 		}
1521 
1522 		/*
1523 		 * If this entry was added by an on-link redirect, remove the
1524 		 * corresponding host route.
1525 		 */
1526 		if (ln->la_flags & LLE_REDIRECT)
1527 			nd6_free_redirect(ln);
1528 
1529 		if (ln->ln_router || dr)
1530 			LLE_WLOCK(ln);
1531 	}
1532 
1533 	/*
1534 	 * Save to unlock. We still hold an extra reference and will not
1535 	 * free(9) in llentry_free() if someone else holds one as well.
1536 	 */
1537 	LLE_WUNLOCK(ln);
1538 	IF_AFDATA_LOCK(ifp);
1539 	LLE_WLOCK(ln);
1540 	/* Guard against race with other llentry_free(). */
1541 	if (ln->la_flags & LLE_LINKED) {
1542 		/* Remove callout reference */
1543 		LLE_REMREF(ln);
1544 		lltable_unlink_entry(ln->lle_tbl, ln);
1545 	}
1546 	IF_AFDATA_UNLOCK(ifp);
1547 
1548 	llentry_free(ln);
1549 	if (dr != NULL)
1550 		defrouter_rele(dr);
1551 }
1552 
1553 static int
1554 nd6_isdynrte(const struct rtentry *rt, void *xap)
1555 {
1556 
1557 	if (rt->rt_flags == (RTF_UP | RTF_HOST | RTF_DYNAMIC))
1558 		return (1);
1559 
1560 	return (0);
1561 }
1562 /*
1563  * Remove the rtentry for the given llentry,
1564  * both of which were installed by a redirect.
1565  */
1566 static void
1567 nd6_free_redirect(const struct llentry *ln)
1568 {
1569 	int fibnum;
1570 	struct sockaddr_in6 sin6;
1571 	struct rt_addrinfo info;
1572 
1573 	lltable_fill_sa_entry(ln, (struct sockaddr *)&sin6);
1574 	memset(&info, 0, sizeof(info));
1575 	info.rti_info[RTAX_DST] = (struct sockaddr *)&sin6;
1576 	info.rti_filter = nd6_isdynrte;
1577 
1578 	for (fibnum = 0; fibnum < rt_numfibs; fibnum++)
1579 		rtrequest1_fib(RTM_DELETE, &info, NULL, fibnum);
1580 }
1581 
1582 /*
1583  * Rejuvenate this function for routing operations related
1584  * processing.
1585  */
1586 void
1587 nd6_rtrequest(int req, struct rtentry *rt, struct rt_addrinfo *info)
1588 {
1589 	struct sockaddr_in6 *gateway;
1590 	struct nd_defrouter *dr;
1591 	struct ifnet *ifp;
1592 
1593 	gateway = (struct sockaddr_in6 *)rt->rt_gateway;
1594 	ifp = rt->rt_ifp;
1595 
1596 	switch (req) {
1597 	case RTM_ADD:
1598 		break;
1599 
1600 	case RTM_DELETE:
1601 		if (!ifp)
1602 			return;
1603 		/*
1604 		 * Only indirect routes are interesting.
1605 		 */
1606 		if ((rt->rt_flags & RTF_GATEWAY) == 0)
1607 			return;
1608 		/*
1609 		 * check for default route
1610 		 */
1611 		if (IN6_ARE_ADDR_EQUAL(&in6addr_any,
1612 		    &SIN6(rt_key(rt))->sin6_addr)) {
1613 			dr = defrouter_lookup(&gateway->sin6_addr, ifp);
1614 			if (dr != NULL) {
1615 				dr->installed = 0;
1616 				defrouter_rele(dr);
1617 			}
1618 		}
1619 		break;
1620 	}
1621 }
1622 
1623 
1624 int
1625 nd6_ioctl(u_long cmd, caddr_t data, struct ifnet *ifp)
1626 {
1627 	struct in6_ndireq *ndi = (struct in6_ndireq *)data;
1628 	struct in6_nbrinfo *nbi = (struct in6_nbrinfo *)data;
1629 	struct in6_ndifreq *ndif = (struct in6_ndifreq *)data;
1630 	struct epoch_tracker et;
1631 	int error = 0;
1632 
1633 	if (ifp->if_afdata[AF_INET6] == NULL)
1634 		return (EPFNOSUPPORT);
1635 	switch (cmd) {
1636 	case OSIOCGIFINFO_IN6:
1637 #define ND	ndi->ndi
1638 		/* XXX: old ndp(8) assumes a positive value for linkmtu. */
1639 		bzero(&ND, sizeof(ND));
1640 		ND.linkmtu = IN6_LINKMTU(ifp);
1641 		ND.maxmtu = ND_IFINFO(ifp)->maxmtu;
1642 		ND.basereachable = ND_IFINFO(ifp)->basereachable;
1643 		ND.reachable = ND_IFINFO(ifp)->reachable;
1644 		ND.retrans = ND_IFINFO(ifp)->retrans;
1645 		ND.flags = ND_IFINFO(ifp)->flags;
1646 		ND.recalctm = ND_IFINFO(ifp)->recalctm;
1647 		ND.chlim = ND_IFINFO(ifp)->chlim;
1648 		break;
1649 	case SIOCGIFINFO_IN6:
1650 		ND = *ND_IFINFO(ifp);
1651 		break;
1652 	case SIOCSIFINFO_IN6:
1653 		/*
1654 		 * used to change host variables from userland.
1655 		 * intended for a use on router to reflect RA configurations.
1656 		 */
1657 		/* 0 means 'unspecified' */
1658 		if (ND.linkmtu != 0) {
1659 			if (ND.linkmtu < IPV6_MMTU ||
1660 			    ND.linkmtu > IN6_LINKMTU(ifp)) {
1661 				error = EINVAL;
1662 				break;
1663 			}
1664 			ND_IFINFO(ifp)->linkmtu = ND.linkmtu;
1665 		}
1666 
1667 		if (ND.basereachable != 0) {
1668 			int obasereachable = ND_IFINFO(ifp)->basereachable;
1669 
1670 			ND_IFINFO(ifp)->basereachable = ND.basereachable;
1671 			if (ND.basereachable != obasereachable)
1672 				ND_IFINFO(ifp)->reachable =
1673 				    ND_COMPUTE_RTIME(ND.basereachable);
1674 		}
1675 		if (ND.retrans != 0)
1676 			ND_IFINFO(ifp)->retrans = ND.retrans;
1677 		if (ND.chlim != 0)
1678 			ND_IFINFO(ifp)->chlim = ND.chlim;
1679 		/* FALLTHROUGH */
1680 	case SIOCSIFINFO_FLAGS:
1681 	{
1682 		struct ifaddr *ifa;
1683 		struct in6_ifaddr *ia;
1684 
1685 		if ((ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED) &&
1686 		    !(ND.flags & ND6_IFF_IFDISABLED)) {
1687 			/* ifdisabled 1->0 transision */
1688 
1689 			/*
1690 			 * If the interface is marked as ND6_IFF_IFDISABLED and
1691 			 * has an link-local address with IN6_IFF_DUPLICATED,
1692 			 * do not clear ND6_IFF_IFDISABLED.
1693 			 * See RFC 4862, Section 5.4.5.
1694 			 */
1695 			NET_EPOCH_ENTER(et);
1696 			CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
1697 				if (ifa->ifa_addr->sa_family != AF_INET6)
1698 					continue;
1699 				ia = (struct in6_ifaddr *)ifa;
1700 				if ((ia->ia6_flags & IN6_IFF_DUPLICATED) &&
1701 				    IN6_IS_ADDR_LINKLOCAL(IA6_IN6(ia)))
1702 					break;
1703 			}
1704 			NET_EPOCH_EXIT(et);
1705 
1706 			if (ifa != NULL) {
1707 				/* LLA is duplicated. */
1708 				ND.flags |= ND6_IFF_IFDISABLED;
1709 				log(LOG_ERR, "Cannot enable an interface"
1710 				    " with a link-local address marked"
1711 				    " duplicate.\n");
1712 			} else {
1713 				ND_IFINFO(ifp)->flags &= ~ND6_IFF_IFDISABLED;
1714 				if (ifp->if_flags & IFF_UP)
1715 					in6_if_up(ifp);
1716 			}
1717 		} else if (!(ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED) &&
1718 			    (ND.flags & ND6_IFF_IFDISABLED)) {
1719 			/* ifdisabled 0->1 transision */
1720 			/* Mark all IPv6 address as tentative. */
1721 
1722 			ND_IFINFO(ifp)->flags |= ND6_IFF_IFDISABLED;
1723 			if (V_ip6_dad_count > 0 &&
1724 			    (ND_IFINFO(ifp)->flags & ND6_IFF_NO_DAD) == 0) {
1725 				NET_EPOCH_ENTER(et);
1726 				CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead,
1727 				    ifa_link) {
1728 					if (ifa->ifa_addr->sa_family !=
1729 					    AF_INET6)
1730 						continue;
1731 					ia = (struct in6_ifaddr *)ifa;
1732 					ia->ia6_flags |= IN6_IFF_TENTATIVE;
1733 				}
1734 				NET_EPOCH_EXIT(et);
1735 			}
1736 		}
1737 
1738 		if (ND.flags & ND6_IFF_AUTO_LINKLOCAL) {
1739 			if (!(ND_IFINFO(ifp)->flags & ND6_IFF_AUTO_LINKLOCAL)) {
1740 				/* auto_linklocal 0->1 transision */
1741 
1742 				/* If no link-local address on ifp, configure */
1743 				ND_IFINFO(ifp)->flags |= ND6_IFF_AUTO_LINKLOCAL;
1744 				in6_ifattach(ifp, NULL);
1745 			} else if (!(ND.flags & ND6_IFF_IFDISABLED) &&
1746 			    ifp->if_flags & IFF_UP) {
1747 				/*
1748 				 * When the IF already has
1749 				 * ND6_IFF_AUTO_LINKLOCAL, no link-local
1750 				 * address is assigned, and IFF_UP, try to
1751 				 * assign one.
1752 				 */
1753 				NET_EPOCH_ENTER(et);
1754 				CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead,
1755 				    ifa_link) {
1756 					if (ifa->ifa_addr->sa_family !=
1757 					    AF_INET6)
1758 						continue;
1759 					ia = (struct in6_ifaddr *)ifa;
1760 					if (IN6_IS_ADDR_LINKLOCAL(IA6_IN6(ia)))
1761 						break;
1762 				}
1763 				NET_EPOCH_EXIT(et);
1764 				if (ifa != NULL)
1765 					/* No LLA is configured. */
1766 					in6_ifattach(ifp, NULL);
1767 			}
1768 		}
1769 	}
1770 		ND_IFINFO(ifp)->flags = ND.flags;
1771 		break;
1772 #undef ND
1773 	case SIOCSNDFLUSH_IN6:	/* XXX: the ioctl name is confusing... */
1774 		/* sync kernel routing table with the default router list */
1775 		defrouter_reset();
1776 		defrouter_select();
1777 		break;
1778 	case SIOCSPFXFLUSH_IN6:
1779 	{
1780 		/* flush all the prefix advertised by routers */
1781 		struct in6_ifaddr *ia, *ia_next;
1782 		struct nd_prefix *pr, *next;
1783 		struct nd_prhead prl;
1784 
1785 		LIST_INIT(&prl);
1786 
1787 		ND6_WLOCK();
1788 		LIST_FOREACH_SAFE(pr, &V_nd_prefix, ndpr_entry, next) {
1789 			if (IN6_IS_ADDR_LINKLOCAL(&pr->ndpr_prefix.sin6_addr))
1790 				continue; /* XXX */
1791 			nd6_prefix_unlink(pr, &prl);
1792 		}
1793 		ND6_WUNLOCK();
1794 
1795 		while ((pr = LIST_FIRST(&prl)) != NULL) {
1796 			LIST_REMOVE(pr, ndpr_entry);
1797 			/* XXXRW: in6_ifaddrhead locking. */
1798 			CK_STAILQ_FOREACH_SAFE(ia, &V_in6_ifaddrhead, ia_link,
1799 			    ia_next) {
1800 				if ((ia->ia6_flags & IN6_IFF_AUTOCONF) == 0)
1801 					continue;
1802 
1803 				if (ia->ia6_ndpr == pr)
1804 					in6_purgeaddr(&ia->ia_ifa);
1805 			}
1806 			nd6_prefix_del(pr);
1807 		}
1808 		break;
1809 	}
1810 	case SIOCSRTRFLUSH_IN6:
1811 	{
1812 		/* flush all the default routers */
1813 		struct nd_drhead drq;
1814 		struct nd_defrouter *dr;
1815 
1816 		TAILQ_INIT(&drq);
1817 
1818 		defrouter_reset();
1819 
1820 		ND6_WLOCK();
1821 		while ((dr = TAILQ_FIRST(&V_nd_defrouter)) != NULL)
1822 			defrouter_unlink(dr, &drq);
1823 		ND6_WUNLOCK();
1824 		while ((dr = TAILQ_FIRST(&drq)) != NULL) {
1825 			TAILQ_REMOVE(&drq, dr, dr_entry);
1826 			defrouter_del(dr);
1827 		}
1828 
1829 		defrouter_select();
1830 		break;
1831 	}
1832 	case SIOCGNBRINFO_IN6:
1833 	{
1834 		struct llentry *ln;
1835 		struct in6_addr nb_addr = nbi->addr; /* make local for safety */
1836 
1837 		if ((error = in6_setscope(&nb_addr, ifp, NULL)) != 0)
1838 			return (error);
1839 
1840 		NET_EPOCH_ENTER(et);
1841 		ln = nd6_lookup(&nb_addr, 0, ifp);
1842 		NET_EPOCH_EXIT(et);
1843 
1844 		if (ln == NULL) {
1845 			error = EINVAL;
1846 			break;
1847 		}
1848 		nbi->state = ln->ln_state;
1849 		nbi->asked = ln->la_asked;
1850 		nbi->isrouter = ln->ln_router;
1851 		if (ln->la_expire == 0)
1852 			nbi->expire = 0;
1853 		else
1854 			nbi->expire = ln->la_expire + ln->lle_remtime / hz +
1855 			    (time_second - time_uptime);
1856 		LLE_RUNLOCK(ln);
1857 		break;
1858 	}
1859 	case SIOCGDEFIFACE_IN6:	/* XXX: should be implemented as a sysctl? */
1860 		ndif->ifindex = V_nd6_defifindex;
1861 		break;
1862 	case SIOCSDEFIFACE_IN6:	/* XXX: should be implemented as a sysctl? */
1863 		return (nd6_setdefaultiface(ndif->ifindex));
1864 	}
1865 	return (error);
1866 }
1867 
1868 /*
1869  * Calculates new isRouter value based on provided parameters and
1870  * returns it.
1871  */
1872 static int
1873 nd6_is_router(int type, int code, int is_new, int old_addr, int new_addr,
1874     int ln_router)
1875 {
1876 
1877 	/*
1878 	 * ICMP6 type dependent behavior.
1879 	 *
1880 	 * NS: clear IsRouter if new entry
1881 	 * RS: clear IsRouter
1882 	 * RA: set IsRouter if there's lladdr
1883 	 * redir: clear IsRouter if new entry
1884 	 *
1885 	 * RA case, (1):
1886 	 * The spec says that we must set IsRouter in the following cases:
1887 	 * - If lladdr exist, set IsRouter.  This means (1-5).
1888 	 * - If it is old entry (!newentry), set IsRouter.  This means (7).
1889 	 * So, based on the spec, in (1-5) and (7) cases we must set IsRouter.
1890 	 * A quetion arises for (1) case.  (1) case has no lladdr in the
1891 	 * neighbor cache, this is similar to (6).
1892 	 * This case is rare but we figured that we MUST NOT set IsRouter.
1893 	 *
1894 	 *   is_new  old_addr new_addr 	    NS  RS  RA	redir
1895 	 *							D R
1896 	 *	0	n	n	(1)	c   ?     s
1897 	 *	0	y	n	(2)	c   s     s
1898 	 *	0	n	y	(3)	c   s     s
1899 	 *	0	y	y	(4)	c   s     s
1900 	 *	0	y	y	(5)	c   s     s
1901 	 *	1	--	n	(6) c	c	c s
1902 	 *	1	--	y	(7) c	c   s	c s
1903 	 *
1904 	 *					(c=clear s=set)
1905 	 */
1906 	switch (type & 0xff) {
1907 	case ND_NEIGHBOR_SOLICIT:
1908 		/*
1909 		 * New entry must have is_router flag cleared.
1910 		 */
1911 		if (is_new)					/* (6-7) */
1912 			ln_router = 0;
1913 		break;
1914 	case ND_REDIRECT:
1915 		/*
1916 		 * If the icmp is a redirect to a better router, always set the
1917 		 * is_router flag.  Otherwise, if the entry is newly created,
1918 		 * clear the flag.  [RFC 2461, sec 8.3]
1919 		 */
1920 		if (code == ND_REDIRECT_ROUTER)
1921 			ln_router = 1;
1922 		else {
1923 			if (is_new)				/* (6-7) */
1924 				ln_router = 0;
1925 		}
1926 		break;
1927 	case ND_ROUTER_SOLICIT:
1928 		/*
1929 		 * is_router flag must always be cleared.
1930 		 */
1931 		ln_router = 0;
1932 		break;
1933 	case ND_ROUTER_ADVERT:
1934 		/*
1935 		 * Mark an entry with lladdr as a router.
1936 		 */
1937 		if ((!is_new && (old_addr || new_addr)) ||	/* (2-5) */
1938 		    (is_new && new_addr)) {			/* (7) */
1939 			ln_router = 1;
1940 		}
1941 		break;
1942 	}
1943 
1944 	return (ln_router);
1945 }
1946 
1947 /*
1948  * Create neighbor cache entry and cache link-layer address,
1949  * on reception of inbound ND6 packets.  (RS/RA/NS/redirect)
1950  *
1951  * type - ICMP6 type
1952  * code - type dependent information
1953  *
1954  */
1955 void
1956 nd6_cache_lladdr(struct ifnet *ifp, struct in6_addr *from, char *lladdr,
1957     int lladdrlen, int type, int code)
1958 {
1959 	struct llentry *ln = NULL, *ln_tmp;
1960 	int is_newentry;
1961 	int do_update;
1962 	int olladdr;
1963 	int llchange;
1964 	int flags;
1965 	uint16_t router = 0;
1966 	struct sockaddr_in6 sin6;
1967 	struct epoch_tracker et;
1968 	struct mbuf *chain = NULL;
1969 	u_char linkhdr[LLE_MAX_LINKHDR];
1970 	size_t linkhdrsize;
1971 	int lladdr_off;
1972 
1973 	IF_AFDATA_UNLOCK_ASSERT(ifp);
1974 
1975 	KASSERT(ifp != NULL, ("%s: ifp == NULL", __func__));
1976 	KASSERT(from != NULL, ("%s: from == NULL", __func__));
1977 
1978 	/* nothing must be updated for unspecified address */
1979 	if (IN6_IS_ADDR_UNSPECIFIED(from))
1980 		return;
1981 
1982 	/*
1983 	 * Validation about ifp->if_addrlen and lladdrlen must be done in
1984 	 * the caller.
1985 	 *
1986 	 * XXX If the link does not have link-layer adderss, what should
1987 	 * we do? (ifp->if_addrlen == 0)
1988 	 * Spec says nothing in sections for RA, RS and NA.  There's small
1989 	 * description on it in NS section (RFC 2461 7.2.3).
1990 	 */
1991 	flags = lladdr ? LLE_EXCLUSIVE : 0;
1992 	NET_EPOCH_ENTER(et);
1993 	ln = nd6_lookup(from, flags, ifp);
1994 	NET_EPOCH_EXIT(et);
1995 	is_newentry = 0;
1996 	if (ln == NULL) {
1997 		flags |= LLE_EXCLUSIVE;
1998 		ln = nd6_alloc(from, 0, ifp);
1999 		if (ln == NULL)
2000 			return;
2001 
2002 		/*
2003 		 * Since we already know all the data for the new entry,
2004 		 * fill it before insertion.
2005 		 */
2006 		if (lladdr != NULL) {
2007 			linkhdrsize = sizeof(linkhdr);
2008 			if (lltable_calc_llheader(ifp, AF_INET6, lladdr,
2009 			    linkhdr, &linkhdrsize, &lladdr_off) != 0)
2010 				return;
2011 			lltable_set_entry_addr(ifp, ln, linkhdr, linkhdrsize,
2012 			    lladdr_off);
2013 		}
2014 
2015 		IF_AFDATA_WLOCK(ifp);
2016 		LLE_WLOCK(ln);
2017 		/* Prefer any existing lle over newly-created one */
2018 		ln_tmp = nd6_lookup(from, LLE_EXCLUSIVE, ifp);
2019 		if (ln_tmp == NULL)
2020 			lltable_link_entry(LLTABLE6(ifp), ln);
2021 		IF_AFDATA_WUNLOCK(ifp);
2022 		if (ln_tmp == NULL) {
2023 			/* No existing lle, mark as new entry (6,7) */
2024 			is_newentry = 1;
2025 			if (lladdr != NULL) {	/* (7) */
2026 				nd6_llinfo_setstate(ln, ND6_LLINFO_STALE);
2027 				EVENTHANDLER_INVOKE(lle_event, ln,
2028 				    LLENTRY_RESOLVED);
2029 			}
2030 		} else {
2031 			lltable_free_entry(LLTABLE6(ifp), ln);
2032 			ln = ln_tmp;
2033 			ln_tmp = NULL;
2034 		}
2035 	}
2036 	/* do nothing if static ndp is set */
2037 	if ((ln->la_flags & LLE_STATIC)) {
2038 		if (flags & LLE_EXCLUSIVE)
2039 			LLE_WUNLOCK(ln);
2040 		else
2041 			LLE_RUNLOCK(ln);
2042 		return;
2043 	}
2044 
2045 	olladdr = (ln->la_flags & LLE_VALID) ? 1 : 0;
2046 	if (olladdr && lladdr) {
2047 		llchange = bcmp(lladdr, ln->ll_addr,
2048 		    ifp->if_addrlen);
2049 	} else if (!olladdr && lladdr)
2050 		llchange = 1;
2051 	else
2052 		llchange = 0;
2053 
2054 	/*
2055 	 * newentry olladdr  lladdr  llchange	(*=record)
2056 	 *	0	n	n	--	(1)
2057 	 *	0	y	n	--	(2)
2058 	 *	0	n	y	y	(3) * STALE
2059 	 *	0	y	y	n	(4) *
2060 	 *	0	y	y	y	(5) * STALE
2061 	 *	1	--	n	--	(6)   NOSTATE(= PASSIVE)
2062 	 *	1	--	y	--	(7) * STALE
2063 	 */
2064 
2065 	do_update = 0;
2066 	if (is_newentry == 0 && llchange != 0) {
2067 		do_update = 1;	/* (3,5) */
2068 
2069 		/*
2070 		 * Record source link-layer address
2071 		 * XXX is it dependent to ifp->if_type?
2072 		 */
2073 		linkhdrsize = sizeof(linkhdr);
2074 		if (lltable_calc_llheader(ifp, AF_INET6, lladdr,
2075 		    linkhdr, &linkhdrsize, &lladdr_off) != 0)
2076 			return;
2077 
2078 		if (lltable_try_set_entry_addr(ifp, ln, linkhdr, linkhdrsize,
2079 		    lladdr_off) == 0) {
2080 			/* Entry was deleted */
2081 			return;
2082 		}
2083 
2084 		nd6_llinfo_setstate(ln, ND6_LLINFO_STALE);
2085 
2086 		EVENTHANDLER_INVOKE(lle_event, ln, LLENTRY_RESOLVED);
2087 
2088 		if (ln->la_hold != NULL)
2089 			nd6_grab_holdchain(ln, &chain, &sin6);
2090 	}
2091 
2092 	/* Calculates new router status */
2093 	router = nd6_is_router(type, code, is_newentry, olladdr,
2094 	    lladdr != NULL ? 1 : 0, ln->ln_router);
2095 
2096 	ln->ln_router = router;
2097 	/* Mark non-router redirects with special flag */
2098 	if ((type & 0xFF) == ND_REDIRECT && code != ND_REDIRECT_ROUTER)
2099 		ln->la_flags |= LLE_REDIRECT;
2100 
2101 	if (flags & LLE_EXCLUSIVE)
2102 		LLE_WUNLOCK(ln);
2103 	else
2104 		LLE_RUNLOCK(ln);
2105 
2106 	if (chain != NULL)
2107 		nd6_flush_holdchain(ifp, chain, &sin6);
2108 
2109 	/*
2110 	 * When the link-layer address of a router changes, select the
2111 	 * best router again.  In particular, when the neighbor entry is newly
2112 	 * created, it might affect the selection policy.
2113 	 * Question: can we restrict the first condition to the "is_newentry"
2114 	 * case?
2115 	 * XXX: when we hear an RA from a new router with the link-layer
2116 	 * address option, defrouter_select_fib() is called twice, since
2117 	 * defrtrlist_update called the function as well.  However, I believe
2118 	 * we can compromise the overhead, since it only happens the first
2119 	 * time.
2120 	 * XXX: although defrouter_select_fib() should not have a bad effect
2121 	 * for those are not autoconfigured hosts, we explicitly avoid such
2122 	 * cases for safety.
2123 	 */
2124 	if ((do_update || is_newentry) && router &&
2125 	    ND_IFINFO(ifp)->flags & ND6_IFF_ACCEPT_RTADV) {
2126 		/*
2127 		 * guaranteed recursion
2128 		 */
2129 		defrouter_select_fib(ifp->if_fib);
2130 	}
2131 }
2132 
2133 static void
2134 nd6_slowtimo(void *arg)
2135 {
2136 	struct epoch_tracker et;
2137 	CURVNET_SET((struct vnet *) arg);
2138 	struct nd_ifinfo *nd6if;
2139 	struct ifnet *ifp;
2140 
2141 	callout_reset(&V_nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz,
2142 	    nd6_slowtimo, curvnet);
2143 	NET_EPOCH_ENTER(et);
2144 	CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) {
2145 		if (ifp->if_afdata[AF_INET6] == NULL)
2146 			continue;
2147 		nd6if = ND_IFINFO(ifp);
2148 		if (nd6if->basereachable && /* already initialized */
2149 		    (nd6if->recalctm -= ND6_SLOWTIMER_INTERVAL) <= 0) {
2150 			/*
2151 			 * Since reachable time rarely changes by router
2152 			 * advertisements, we SHOULD insure that a new random
2153 			 * value gets recomputed at least once every few hours.
2154 			 * (RFC 2461, 6.3.4)
2155 			 */
2156 			nd6if->recalctm = V_nd6_recalc_reachtm_interval;
2157 			nd6if->reachable = ND_COMPUTE_RTIME(nd6if->basereachable);
2158 		}
2159 	}
2160 	NET_EPOCH_EXIT(et);
2161 	CURVNET_RESTORE();
2162 }
2163 
2164 void
2165 nd6_grab_holdchain(struct llentry *ln, struct mbuf **chain,
2166     struct sockaddr_in6 *sin6)
2167 {
2168 
2169 	LLE_WLOCK_ASSERT(ln);
2170 
2171 	*chain = ln->la_hold;
2172 	ln->la_hold = NULL;
2173 	lltable_fill_sa_entry(ln, (struct sockaddr *)sin6);
2174 
2175 	if (ln->ln_state == ND6_LLINFO_STALE) {
2176 
2177 		/*
2178 		 * The first time we send a packet to a
2179 		 * neighbor whose entry is STALE, we have
2180 		 * to change the state to DELAY and a sets
2181 		 * a timer to expire in DELAY_FIRST_PROBE_TIME
2182 		 * seconds to ensure do neighbor unreachability
2183 		 * detection on expiration.
2184 		 * (RFC 2461 7.3.3)
2185 		 */
2186 		nd6_llinfo_setstate(ln, ND6_LLINFO_DELAY);
2187 	}
2188 }
2189 
2190 int
2191 nd6_output_ifp(struct ifnet *ifp, struct ifnet *origifp, struct mbuf *m,
2192     struct sockaddr_in6 *dst, struct route *ro)
2193 {
2194 	int error;
2195 	int ip6len;
2196 	struct ip6_hdr *ip6;
2197 	struct m_tag *mtag;
2198 
2199 #ifdef MAC
2200 	mac_netinet6_nd6_send(ifp, m);
2201 #endif
2202 
2203 	/*
2204 	 * If called from nd6_ns_output() (NS), nd6_na_output() (NA),
2205 	 * icmp6_redirect_output() (REDIRECT) or from rip6_output() (RS, RA
2206 	 * as handled by rtsol and rtadvd), mbufs will be tagged for SeND
2207 	 * to be diverted to user space.  When re-injected into the kernel,
2208 	 * send_output() will directly dispatch them to the outgoing interface.
2209 	 */
2210 	if (send_sendso_input_hook != NULL) {
2211 		mtag = m_tag_find(m, PACKET_TAG_ND_OUTGOING, NULL);
2212 		if (mtag != NULL) {
2213 			ip6 = mtod(m, struct ip6_hdr *);
2214 			ip6len = sizeof(struct ip6_hdr) + ntohs(ip6->ip6_plen);
2215 			/* Use the SEND socket */
2216 			error = send_sendso_input_hook(m, ifp, SND_OUT,
2217 			    ip6len);
2218 			/* -1 == no app on SEND socket */
2219 			if (error == 0 || error != -1)
2220 			    return (error);
2221 		}
2222 	}
2223 
2224 	m_clrprotoflags(m);	/* Avoid confusing lower layers. */
2225 	IP_PROBE(send, NULL, NULL, mtod(m, struct ip6_hdr *), ifp, NULL,
2226 	    mtod(m, struct ip6_hdr *));
2227 
2228 	if ((ifp->if_flags & IFF_LOOPBACK) == 0)
2229 		origifp = ifp;
2230 
2231 	error = (*ifp->if_output)(origifp, m, (struct sockaddr *)dst, ro);
2232 	return (error);
2233 }
2234 
2235 /*
2236  * Lookup link headerfor @sa_dst address. Stores found
2237  * data in @desten buffer. Copy of lle ln_flags can be also
2238  * saved in @pflags if @pflags is non-NULL.
2239  *
2240  * If destination LLE does not exists or lle state modification
2241  * is required, call "slow" version.
2242  *
2243  * Return values:
2244  * - 0 on success (address copied to buffer).
2245  * - EWOULDBLOCK (no local error, but address is still unresolved)
2246  * - other errors (alloc failure, etc)
2247  */
2248 int
2249 nd6_resolve(struct ifnet *ifp, int is_gw, struct mbuf *m,
2250     const struct sockaddr *sa_dst, u_char *desten, uint32_t *pflags,
2251     struct llentry **plle)
2252 {
2253 	struct epoch_tracker et;
2254 	struct llentry *ln = NULL;
2255 	const struct sockaddr_in6 *dst6;
2256 
2257 	if (pflags != NULL)
2258 		*pflags = 0;
2259 
2260 	dst6 = (const struct sockaddr_in6 *)sa_dst;
2261 
2262 	/* discard the packet if IPv6 operation is disabled on the interface */
2263 	if ((ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED)) {
2264 		m_freem(m);
2265 		return (ENETDOWN); /* better error? */
2266 	}
2267 
2268 	if (m != NULL && m->m_flags & M_MCAST) {
2269 		switch (ifp->if_type) {
2270 		case IFT_ETHER:
2271 		case IFT_L2VLAN:
2272 		case IFT_BRIDGE:
2273 			ETHER_MAP_IPV6_MULTICAST(&dst6->sin6_addr,
2274 						 desten);
2275 			return (0);
2276 		default:
2277 			m_freem(m);
2278 			return (EAFNOSUPPORT);
2279 		}
2280 	}
2281 
2282 	NET_EPOCH_ENTER(et);
2283 	ln = nd6_lookup(&dst6->sin6_addr, plle ? LLE_EXCLUSIVE : LLE_UNLOCKED,
2284 	    ifp);
2285 	if (ln != NULL && (ln->r_flags & RLLE_VALID) != 0) {
2286 		/* Entry found, let's copy lle info */
2287 		bcopy(ln->r_linkdata, desten, ln->r_hdrlen);
2288 		if (pflags != NULL)
2289 			*pflags = LLE_VALID | (ln->r_flags & RLLE_IFADDR);
2290 		/* Check if we have feedback request from nd6 timer */
2291 		if (ln->r_skip_req != 0) {
2292 			LLE_REQ_LOCK(ln);
2293 			ln->r_skip_req = 0; /* Notify that entry was used */
2294 			ln->lle_hittime = time_uptime;
2295 			LLE_REQ_UNLOCK(ln);
2296 		}
2297 		if (plle) {
2298 			LLE_ADDREF(ln);
2299 			*plle = ln;
2300 			LLE_WUNLOCK(ln);
2301 		}
2302 		NET_EPOCH_EXIT(et);
2303 		return (0);
2304 	} else if (plle && ln)
2305 		LLE_WUNLOCK(ln);
2306 	NET_EPOCH_EXIT(et);
2307 
2308 	return (nd6_resolve_slow(ifp, 0, m, dst6, desten, pflags, plle));
2309 }
2310 
2311 
2312 /*
2313  * Do L2 address resolution for @sa_dst address. Stores found
2314  * address in @desten buffer. Copy of lle ln_flags can be also
2315  * saved in @pflags if @pflags is non-NULL.
2316  *
2317  * Heavy version.
2318  * Function assume that destination LLE does not exist,
2319  * is invalid or stale, so LLE_EXCLUSIVE lock needs to be acquired.
2320  *
2321  * Set noinline to be dtrace-friendly
2322  */
2323 static __noinline int
2324 nd6_resolve_slow(struct ifnet *ifp, int flags, struct mbuf *m,
2325     const struct sockaddr_in6 *dst, u_char *desten, uint32_t *pflags,
2326     struct llentry **plle)
2327 {
2328 	struct llentry *lle = NULL, *lle_tmp;
2329 	struct in6_addr *psrc, src;
2330 	int send_ns, ll_len;
2331 	char *lladdr;
2332 
2333 	/*
2334 	 * Address resolution or Neighbor Unreachability Detection
2335 	 * for the next hop.
2336 	 * At this point, the destination of the packet must be a unicast
2337 	 * or an anycast address(i.e. not a multicast).
2338 	 */
2339 	if (lle == NULL) {
2340 		struct epoch_tracker et;
2341 
2342 		NET_EPOCH_ENTER(et);
2343 		lle = nd6_lookup(&dst->sin6_addr, LLE_EXCLUSIVE, ifp);
2344 		NET_EPOCH_EXIT(et);
2345 		if ((lle == NULL) && nd6_is_addr_neighbor(dst, ifp))  {
2346 			/*
2347 			 * Since nd6_is_addr_neighbor() internally calls nd6_lookup(),
2348 			 * the condition below is not very efficient.  But we believe
2349 			 * it is tolerable, because this should be a rare case.
2350 			 */
2351 			lle = nd6_alloc(&dst->sin6_addr, 0, ifp);
2352 			if (lle == NULL) {
2353 				char ip6buf[INET6_ADDRSTRLEN];
2354 				log(LOG_DEBUG,
2355 				    "nd6_output: can't allocate llinfo for %s "
2356 				    "(ln=%p)\n",
2357 				    ip6_sprintf(ip6buf, &dst->sin6_addr), lle);
2358 				m_freem(m);
2359 				return (ENOBUFS);
2360 			}
2361 
2362 			IF_AFDATA_WLOCK(ifp);
2363 			LLE_WLOCK(lle);
2364 			/* Prefer any existing entry over newly-created one */
2365 			lle_tmp = nd6_lookup(&dst->sin6_addr, LLE_EXCLUSIVE, ifp);
2366 			if (lle_tmp == NULL)
2367 				lltable_link_entry(LLTABLE6(ifp), lle);
2368 			IF_AFDATA_WUNLOCK(ifp);
2369 			if (lle_tmp != NULL) {
2370 				lltable_free_entry(LLTABLE6(ifp), lle);
2371 				lle = lle_tmp;
2372 				lle_tmp = NULL;
2373 			}
2374 		}
2375 	}
2376 	if (lle == NULL) {
2377 		if (!(ND_IFINFO(ifp)->flags & ND6_IFF_PERFORMNUD)) {
2378 			m_freem(m);
2379 			return (ENOBUFS);
2380 		}
2381 
2382 		if (m != NULL)
2383 			m_freem(m);
2384 		return (ENOBUFS);
2385 	}
2386 
2387 	LLE_WLOCK_ASSERT(lle);
2388 
2389 	/*
2390 	 * The first time we send a packet to a neighbor whose entry is
2391 	 * STALE, we have to change the state to DELAY and a sets a timer to
2392 	 * expire in DELAY_FIRST_PROBE_TIME seconds to ensure do
2393 	 * neighbor unreachability detection on expiration.
2394 	 * (RFC 2461 7.3.3)
2395 	 */
2396 	if (lle->ln_state == ND6_LLINFO_STALE)
2397 		nd6_llinfo_setstate(lle, ND6_LLINFO_DELAY);
2398 
2399 	/*
2400 	 * If the neighbor cache entry has a state other than INCOMPLETE
2401 	 * (i.e. its link-layer address is already resolved), just
2402 	 * send the packet.
2403 	 */
2404 	if (lle->ln_state > ND6_LLINFO_INCOMPLETE) {
2405 		if (flags & LLE_ADDRONLY) {
2406 			lladdr = lle->ll_addr;
2407 			ll_len = ifp->if_addrlen;
2408 		} else {
2409 			lladdr = lle->r_linkdata;
2410 			ll_len = lle->r_hdrlen;
2411 		}
2412 		bcopy(lladdr, desten, ll_len);
2413 		if (pflags != NULL)
2414 			*pflags = lle->la_flags;
2415 		if (plle) {
2416 			LLE_ADDREF(lle);
2417 			*plle = lle;
2418 		}
2419 		LLE_WUNLOCK(lle);
2420 		return (0);
2421 	}
2422 
2423 	/*
2424 	 * There is a neighbor cache entry, but no ethernet address
2425 	 * response yet.  Append this latest packet to the end of the
2426 	 * packet queue in the mbuf.  When it exceeds nd6_maxqueuelen,
2427 	 * the oldest packet in the queue will be removed.
2428 	 */
2429 
2430 	if (lle->la_hold != NULL) {
2431 		struct mbuf *m_hold;
2432 		int i;
2433 
2434 		i = 0;
2435 		for (m_hold = lle->la_hold; m_hold; m_hold = m_hold->m_nextpkt){
2436 			i++;
2437 			if (m_hold->m_nextpkt == NULL) {
2438 				m_hold->m_nextpkt = m;
2439 				break;
2440 			}
2441 		}
2442 		while (i >= V_nd6_maxqueuelen) {
2443 			m_hold = lle->la_hold;
2444 			lle->la_hold = lle->la_hold->m_nextpkt;
2445 			m_freem(m_hold);
2446 			i--;
2447 		}
2448 	} else {
2449 		lle->la_hold = m;
2450 	}
2451 
2452 	/*
2453 	 * If there has been no NS for the neighbor after entering the
2454 	 * INCOMPLETE state, send the first solicitation.
2455 	 * Note that for newly-created lle la_asked will be 0,
2456 	 * so we will transition from ND6_LLINFO_NOSTATE to
2457 	 * ND6_LLINFO_INCOMPLETE state here.
2458 	 */
2459 	psrc = NULL;
2460 	send_ns = 0;
2461 	if (lle->la_asked == 0) {
2462 		lle->la_asked++;
2463 		send_ns = 1;
2464 		psrc = nd6_llinfo_get_holdsrc(lle, &src);
2465 
2466 		nd6_llinfo_setstate(lle, ND6_LLINFO_INCOMPLETE);
2467 	}
2468 	LLE_WUNLOCK(lle);
2469 	if (send_ns != 0)
2470 		nd6_ns_output(ifp, psrc, NULL, &dst->sin6_addr, NULL);
2471 
2472 	return (EWOULDBLOCK);
2473 }
2474 
2475 /*
2476  * Do L2 address resolution for @sa_dst address. Stores found
2477  * address in @desten buffer. Copy of lle ln_flags can be also
2478  * saved in @pflags if @pflags is non-NULL.
2479  *
2480  * Return values:
2481  * - 0 on success (address copied to buffer).
2482  * - EWOULDBLOCK (no local error, but address is still unresolved)
2483  * - other errors (alloc failure, etc)
2484  */
2485 int
2486 nd6_resolve_addr(struct ifnet *ifp, int flags, const struct sockaddr *dst,
2487     char *desten, uint32_t *pflags)
2488 {
2489 	int error;
2490 
2491 	flags |= LLE_ADDRONLY;
2492 	error = nd6_resolve_slow(ifp, flags, NULL,
2493 	    (const struct sockaddr_in6 *)dst, desten, pflags, NULL);
2494 	return (error);
2495 }
2496 
2497 int
2498 nd6_flush_holdchain(struct ifnet *ifp, struct mbuf *chain,
2499     struct sockaddr_in6 *dst)
2500 {
2501 	struct mbuf *m, *m_head;
2502 	int error = 0;
2503 
2504 	m_head = chain;
2505 
2506 	while (m_head) {
2507 		m = m_head;
2508 		m_head = m_head->m_nextpkt;
2509 		error = nd6_output_ifp(ifp, ifp, m, dst, NULL);
2510 	}
2511 
2512 	/*
2513 	 * XXX
2514 	 * note that intermediate errors are blindly ignored
2515 	 */
2516 	return (error);
2517 }
2518 
2519 static int
2520 nd6_need_cache(struct ifnet *ifp)
2521 {
2522 	/*
2523 	 * XXX: we currently do not make neighbor cache on any interface
2524 	 * other than Ethernet and GIF.
2525 	 *
2526 	 * RFC2893 says:
2527 	 * - unidirectional tunnels needs no ND
2528 	 */
2529 	switch (ifp->if_type) {
2530 	case IFT_ETHER:
2531 	case IFT_IEEE1394:
2532 	case IFT_L2VLAN:
2533 	case IFT_INFINIBAND:
2534 	case IFT_BRIDGE:
2535 	case IFT_PROPVIRTUAL:
2536 		return (1);
2537 	default:
2538 		return (0);
2539 	}
2540 }
2541 
2542 /*
2543  * Add pernament ND6 link-layer record for given
2544  * interface address.
2545  *
2546  * Very similar to IPv4 arp_ifinit(), but:
2547  * 1) IPv6 DAD is performed in different place
2548  * 2) It is called by IPv6 protocol stack in contrast to
2549  * arp_ifinit() which is typically called in SIOCSIFADDR
2550  * driver ioctl handler.
2551  *
2552  */
2553 int
2554 nd6_add_ifa_lle(struct in6_ifaddr *ia)
2555 {
2556 	struct ifnet *ifp;
2557 	struct llentry *ln, *ln_tmp;
2558 	struct sockaddr *dst;
2559 
2560 	ifp = ia->ia_ifa.ifa_ifp;
2561 	if (nd6_need_cache(ifp) == 0)
2562 		return (0);
2563 
2564 	ia->ia_ifa.ifa_rtrequest = nd6_rtrequest;
2565 	dst = (struct sockaddr *)&ia->ia_addr;
2566 	ln = lltable_alloc_entry(LLTABLE6(ifp), LLE_IFADDR, dst);
2567 	if (ln == NULL)
2568 		return (ENOBUFS);
2569 
2570 	IF_AFDATA_WLOCK(ifp);
2571 	LLE_WLOCK(ln);
2572 	/* Unlink any entry if exists */
2573 	ln_tmp = lla_lookup(LLTABLE6(ifp), LLE_EXCLUSIVE, dst);
2574 	if (ln_tmp != NULL)
2575 		lltable_unlink_entry(LLTABLE6(ifp), ln_tmp);
2576 	lltable_link_entry(LLTABLE6(ifp), ln);
2577 	IF_AFDATA_WUNLOCK(ifp);
2578 
2579 	if (ln_tmp != NULL)
2580 		EVENTHANDLER_INVOKE(lle_event, ln_tmp, LLENTRY_EXPIRED);
2581 	EVENTHANDLER_INVOKE(lle_event, ln, LLENTRY_RESOLVED);
2582 
2583 	LLE_WUNLOCK(ln);
2584 	if (ln_tmp != NULL)
2585 		llentry_free(ln_tmp);
2586 
2587 	return (0);
2588 }
2589 
2590 /*
2591  * Removes either all lle entries for given @ia, or lle
2592  * corresponding to @ia address.
2593  */
2594 void
2595 nd6_rem_ifa_lle(struct in6_ifaddr *ia, int all)
2596 {
2597 	struct sockaddr_in6 mask, addr;
2598 	struct sockaddr *saddr, *smask;
2599 	struct ifnet *ifp;
2600 
2601 	ifp = ia->ia_ifa.ifa_ifp;
2602 	memcpy(&addr, &ia->ia_addr, sizeof(ia->ia_addr));
2603 	memcpy(&mask, &ia->ia_prefixmask, sizeof(ia->ia_prefixmask));
2604 	saddr = (struct sockaddr *)&addr;
2605 	smask = (struct sockaddr *)&mask;
2606 
2607 	if (all != 0)
2608 		lltable_prefix_free(AF_INET6, saddr, smask, LLE_STATIC);
2609 	else
2610 		lltable_delete_addr(LLTABLE6(ifp), LLE_IFADDR, saddr);
2611 }
2612 
2613 static void
2614 clear_llinfo_pqueue(struct llentry *ln)
2615 {
2616 	struct mbuf *m_hold, *m_hold_next;
2617 
2618 	for (m_hold = ln->la_hold; m_hold; m_hold = m_hold_next) {
2619 		m_hold_next = m_hold->m_nextpkt;
2620 		m_freem(m_hold);
2621 	}
2622 
2623 	ln->la_hold = NULL;
2624 }
2625 
2626 static int nd6_sysctl_drlist(SYSCTL_HANDLER_ARGS);
2627 static int nd6_sysctl_prlist(SYSCTL_HANDLER_ARGS);
2628 
2629 SYSCTL_DECL(_net_inet6_icmp6);
2630 SYSCTL_PROC(_net_inet6_icmp6, ICMPV6CTL_ND6_DRLIST, nd6_drlist,
2631 	CTLTYPE_OPAQUE | CTLFLAG_RD | CTLFLAG_MPSAFE,
2632 	NULL, 0, nd6_sysctl_drlist, "S,in6_defrouter",
2633 	"NDP default router list");
2634 SYSCTL_PROC(_net_inet6_icmp6, ICMPV6CTL_ND6_PRLIST, nd6_prlist,
2635 	CTLTYPE_OPAQUE | CTLFLAG_RD | CTLFLAG_MPSAFE,
2636 	NULL, 0, nd6_sysctl_prlist, "S,in6_prefix",
2637 	"NDP prefix list");
2638 SYSCTL_INT(_net_inet6_icmp6, ICMPV6CTL_ND6_MAXQLEN, nd6_maxqueuelen,
2639 	CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(nd6_maxqueuelen), 1, "");
2640 SYSCTL_INT(_net_inet6_icmp6, OID_AUTO, nd6_gctimer,
2641 	CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(nd6_gctimer), (60 * 60 * 24), "");
2642 
2643 static int
2644 nd6_sysctl_drlist(SYSCTL_HANDLER_ARGS)
2645 {
2646 	struct in6_defrouter d;
2647 	struct nd_defrouter *dr;
2648 	int error;
2649 
2650 	if (req->newptr != NULL)
2651 		return (EPERM);
2652 
2653 	error = sysctl_wire_old_buffer(req, 0);
2654 	if (error != 0)
2655 		return (error);
2656 
2657 	bzero(&d, sizeof(d));
2658 	d.rtaddr.sin6_family = AF_INET6;
2659 	d.rtaddr.sin6_len = sizeof(d.rtaddr);
2660 
2661 	ND6_RLOCK();
2662 	TAILQ_FOREACH(dr, &V_nd_defrouter, dr_entry) {
2663 		d.rtaddr.sin6_addr = dr->rtaddr;
2664 		error = sa6_recoverscope(&d.rtaddr);
2665 		if (error != 0)
2666 			break;
2667 		d.flags = dr->raflags;
2668 		d.rtlifetime = dr->rtlifetime;
2669 		d.expire = dr->expire + (time_second - time_uptime);
2670 		d.if_index = dr->ifp->if_index;
2671 		error = SYSCTL_OUT(req, &d, sizeof(d));
2672 		if (error != 0)
2673 			break;
2674 	}
2675 	ND6_RUNLOCK();
2676 	return (error);
2677 }
2678 
2679 static int
2680 nd6_sysctl_prlist(SYSCTL_HANDLER_ARGS)
2681 {
2682 	struct in6_prefix p;
2683 	struct sockaddr_in6 s6;
2684 	struct nd_prefix *pr;
2685 	struct nd_pfxrouter *pfr;
2686 	time_t maxexpire;
2687 	int error;
2688 	char ip6buf[INET6_ADDRSTRLEN];
2689 
2690 	if (req->newptr)
2691 		return (EPERM);
2692 
2693 	error = sysctl_wire_old_buffer(req, 0);
2694 	if (error != 0)
2695 		return (error);
2696 
2697 	bzero(&p, sizeof(p));
2698 	p.origin = PR_ORIG_RA;
2699 	bzero(&s6, sizeof(s6));
2700 	s6.sin6_family = AF_INET6;
2701 	s6.sin6_len = sizeof(s6);
2702 
2703 	ND6_RLOCK();
2704 	LIST_FOREACH(pr, &V_nd_prefix, ndpr_entry) {
2705 		p.prefix = pr->ndpr_prefix;
2706 		if (sa6_recoverscope(&p.prefix)) {
2707 			log(LOG_ERR, "scope error in prefix list (%s)\n",
2708 			    ip6_sprintf(ip6buf, &p.prefix.sin6_addr));
2709 			/* XXX: press on... */
2710 		}
2711 		p.raflags = pr->ndpr_raf;
2712 		p.prefixlen = pr->ndpr_plen;
2713 		p.vltime = pr->ndpr_vltime;
2714 		p.pltime = pr->ndpr_pltime;
2715 		p.if_index = pr->ndpr_ifp->if_index;
2716 		if (pr->ndpr_vltime == ND6_INFINITE_LIFETIME)
2717 			p.expire = 0;
2718 		else {
2719 			/* XXX: we assume time_t is signed. */
2720 			maxexpire = (-1) &
2721 			    ~((time_t)1 << ((sizeof(maxexpire) * 8) - 1));
2722 			if (pr->ndpr_vltime < maxexpire - pr->ndpr_lastupdate)
2723 				p.expire = pr->ndpr_lastupdate +
2724 				    pr->ndpr_vltime +
2725 				    (time_second - time_uptime);
2726 			else
2727 				p.expire = maxexpire;
2728 		}
2729 		p.refcnt = pr->ndpr_addrcnt;
2730 		p.flags = pr->ndpr_stateflags;
2731 		p.advrtrs = 0;
2732 		LIST_FOREACH(pfr, &pr->ndpr_advrtrs, pfr_entry)
2733 			p.advrtrs++;
2734 		error = SYSCTL_OUT(req, &p, sizeof(p));
2735 		if (error != 0)
2736 			break;
2737 		LIST_FOREACH(pfr, &pr->ndpr_advrtrs, pfr_entry) {
2738 			s6.sin6_addr = pfr->router->rtaddr;
2739 			if (sa6_recoverscope(&s6))
2740 				log(LOG_ERR,
2741 				    "scope error in prefix list (%s)\n",
2742 				    ip6_sprintf(ip6buf, &pfr->router->rtaddr));
2743 			error = SYSCTL_OUT(req, &s6, sizeof(s6));
2744 			if (error != 0)
2745 				goto out;
2746 		}
2747 	}
2748 out:
2749 	ND6_RUNLOCK();
2750 	return (error);
2751 }
2752