xref: /freebsd/sys/netinet6/nd6.c (revision 148a8da8)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. Neither the name of the project nor the names of its contributors
16  *    may be used to endorse or promote products derived from this software
17  *    without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  *
31  *	$KAME: nd6.c,v 1.144 2001/05/24 07:44:00 itojun Exp $
32  */
33 
34 #include <sys/cdefs.h>
35 __FBSDID("$FreeBSD$");
36 
37 #include "opt_inet.h"
38 #include "opt_inet6.h"
39 
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/callout.h>
43 #include <sys/lock.h>
44 #include <sys/malloc.h>
45 #include <sys/mbuf.h>
46 #include <sys/mutex.h>
47 #include <sys/socket.h>
48 #include <sys/sockio.h>
49 #include <sys/time.h>
50 #include <sys/kernel.h>
51 #include <sys/protosw.h>
52 #include <sys/errno.h>
53 #include <sys/syslog.h>
54 #include <sys/rwlock.h>
55 #include <sys/queue.h>
56 #include <sys/sdt.h>
57 #include <sys/sysctl.h>
58 
59 #include <net/if.h>
60 #include <net/if_var.h>
61 #include <net/if_dl.h>
62 #include <net/if_types.h>
63 #include <net/route.h>
64 #include <net/vnet.h>
65 
66 #include <netinet/in.h>
67 #include <netinet/in_kdtrace.h>
68 #include <net/if_llatbl.h>
69 #include <netinet/if_ether.h>
70 #include <netinet6/in6_var.h>
71 #include <netinet/ip6.h>
72 #include <netinet6/ip6_var.h>
73 #include <netinet6/scope6_var.h>
74 #include <netinet6/nd6.h>
75 #include <netinet6/in6_ifattach.h>
76 #include <netinet/icmp6.h>
77 #include <netinet6/send.h>
78 
79 #include <sys/limits.h>
80 
81 #include <security/mac/mac_framework.h>
82 
83 #define ND6_SLOWTIMER_INTERVAL (60 * 60) /* 1 hour */
84 #define ND6_RECALC_REACHTM_INTERVAL (60 * 120) /* 2 hours */
85 
86 #define SIN6(s) ((const struct sockaddr_in6 *)(s))
87 
88 MALLOC_DEFINE(M_IP6NDP, "ip6ndp", "IPv6 Neighbor Discovery");
89 
90 /* timer values */
91 VNET_DEFINE(int, nd6_prune)	= 1;	/* walk list every 1 seconds */
92 VNET_DEFINE(int, nd6_delay)	= 5;	/* delay first probe time 5 second */
93 VNET_DEFINE(int, nd6_umaxtries)	= 3;	/* maximum unicast query */
94 VNET_DEFINE(int, nd6_mmaxtries)	= 3;	/* maximum multicast query */
95 VNET_DEFINE(int, nd6_useloopback) = 1;	/* use loopback interface for
96 					 * local traffic */
97 VNET_DEFINE(int, nd6_gctimer)	= (60 * 60 * 24); /* 1 day: garbage
98 					 * collection timer */
99 
100 /* preventing too many loops in ND option parsing */
101 VNET_DEFINE_STATIC(int, nd6_maxndopt) = 10; /* max # of ND options allowed */
102 
103 VNET_DEFINE(int, nd6_maxnudhint) = 0;	/* max # of subsequent upper
104 					 * layer hints */
105 VNET_DEFINE_STATIC(int, nd6_maxqueuelen) = 1; /* max pkts cached in unresolved
106 					 * ND entries */
107 #define	V_nd6_maxndopt			VNET(nd6_maxndopt)
108 #define	V_nd6_maxqueuelen		VNET(nd6_maxqueuelen)
109 
110 #ifdef ND6_DEBUG
111 VNET_DEFINE(int, nd6_debug) = 1;
112 #else
113 VNET_DEFINE(int, nd6_debug) = 0;
114 #endif
115 
116 static eventhandler_tag lle_event_eh, iflladdr_event_eh, ifnet_link_event_eh;
117 
118 VNET_DEFINE(struct nd_drhead, nd_defrouter);
119 VNET_DEFINE(struct nd_prhead, nd_prefix);
120 VNET_DEFINE(struct rwlock, nd6_lock);
121 VNET_DEFINE(uint64_t, nd6_list_genid);
122 VNET_DEFINE(struct mtx, nd6_onlink_mtx);
123 
124 VNET_DEFINE(int, nd6_recalc_reachtm_interval) = ND6_RECALC_REACHTM_INTERVAL;
125 #define	V_nd6_recalc_reachtm_interval	VNET(nd6_recalc_reachtm_interval)
126 
127 int	(*send_sendso_input_hook)(struct mbuf *, struct ifnet *, int, int);
128 
129 static int nd6_is_new_addr_neighbor(const struct sockaddr_in6 *,
130 	struct ifnet *);
131 static void nd6_setmtu0(struct ifnet *, struct nd_ifinfo *);
132 static void nd6_slowtimo(void *);
133 static int regen_tmpaddr(struct in6_ifaddr *);
134 static void nd6_free(struct llentry **, int);
135 static void nd6_free_redirect(const struct llentry *);
136 static void nd6_llinfo_timer(void *);
137 static void nd6_llinfo_settimer_locked(struct llentry *, long);
138 static void clear_llinfo_pqueue(struct llentry *);
139 static void nd6_rtrequest(int, struct rtentry *, struct rt_addrinfo *);
140 static int nd6_resolve_slow(struct ifnet *, int, struct mbuf *,
141     const struct sockaddr_in6 *, u_char *, uint32_t *, struct llentry **);
142 static int nd6_need_cache(struct ifnet *);
143 
144 
145 VNET_DEFINE_STATIC(struct callout, nd6_slowtimo_ch);
146 #define	V_nd6_slowtimo_ch		VNET(nd6_slowtimo_ch)
147 
148 VNET_DEFINE(struct callout, nd6_timer_ch);
149 #define	V_nd6_timer_ch			VNET(nd6_timer_ch)
150 
151 static void
152 nd6_lle_event(void *arg __unused, struct llentry *lle, int evt)
153 {
154 	struct rt_addrinfo rtinfo;
155 	struct sockaddr_in6 dst;
156 	struct sockaddr_dl gw;
157 	struct ifnet *ifp;
158 	int type;
159 	int fibnum;
160 
161 	LLE_WLOCK_ASSERT(lle);
162 
163 	if (lltable_get_af(lle->lle_tbl) != AF_INET6)
164 		return;
165 
166 	switch (evt) {
167 	case LLENTRY_RESOLVED:
168 		type = RTM_ADD;
169 		KASSERT(lle->la_flags & LLE_VALID,
170 		    ("%s: %p resolved but not valid?", __func__, lle));
171 		break;
172 	case LLENTRY_EXPIRED:
173 		type = RTM_DELETE;
174 		break;
175 	default:
176 		return;
177 	}
178 
179 	ifp = lltable_get_ifp(lle->lle_tbl);
180 
181 	bzero(&dst, sizeof(dst));
182 	bzero(&gw, sizeof(gw));
183 	bzero(&rtinfo, sizeof(rtinfo));
184 	lltable_fill_sa_entry(lle, (struct sockaddr *)&dst);
185 	dst.sin6_scope_id = in6_getscopezone(ifp,
186 	    in6_addrscope(&dst.sin6_addr));
187 	gw.sdl_len = sizeof(struct sockaddr_dl);
188 	gw.sdl_family = AF_LINK;
189 	gw.sdl_alen = ifp->if_addrlen;
190 	gw.sdl_index = ifp->if_index;
191 	gw.sdl_type = ifp->if_type;
192 	if (evt == LLENTRY_RESOLVED)
193 		bcopy(lle->ll_addr, gw.sdl_data, ifp->if_addrlen);
194 	rtinfo.rti_info[RTAX_DST] = (struct sockaddr *)&dst;
195 	rtinfo.rti_info[RTAX_GATEWAY] = (struct sockaddr *)&gw;
196 	rtinfo.rti_addrs = RTA_DST | RTA_GATEWAY;
197 	fibnum = V_rt_add_addr_allfibs ? RT_ALL_FIBS : ifp->if_fib;
198 	rt_missmsg_fib(type, &rtinfo, RTF_HOST | RTF_LLDATA | (
199 	    type == RTM_ADD ? RTF_UP: 0), 0, fibnum);
200 }
201 
202 /*
203  * A handler for interface link layer address change event.
204  */
205 static void
206 nd6_iflladdr(void *arg __unused, struct ifnet *ifp)
207 {
208 
209 	lltable_update_ifaddr(LLTABLE6(ifp));
210 }
211 
212 void
213 nd6_init(void)
214 {
215 
216 	mtx_init(&V_nd6_onlink_mtx, "nd6 onlink", NULL, MTX_DEF);
217 	rw_init(&V_nd6_lock, "nd6 list");
218 
219 	LIST_INIT(&V_nd_prefix);
220 	TAILQ_INIT(&V_nd_defrouter);
221 
222 	/* Start timers. */
223 	callout_init(&V_nd6_slowtimo_ch, 0);
224 	callout_reset(&V_nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz,
225 	    nd6_slowtimo, curvnet);
226 
227 	callout_init(&V_nd6_timer_ch, 0);
228 	callout_reset(&V_nd6_timer_ch, hz, nd6_timer, curvnet);
229 
230 	nd6_dad_init();
231 	if (IS_DEFAULT_VNET(curvnet)) {
232 		lle_event_eh = EVENTHANDLER_REGISTER(lle_event, nd6_lle_event,
233 		    NULL, EVENTHANDLER_PRI_ANY);
234 		iflladdr_event_eh = EVENTHANDLER_REGISTER(iflladdr_event,
235 		    nd6_iflladdr, NULL, EVENTHANDLER_PRI_ANY);
236 		ifnet_link_event_eh = EVENTHANDLER_REGISTER(ifnet_link_event,
237 		    nd6_ifnet_link_event, NULL, EVENTHANDLER_PRI_ANY);
238 	}
239 }
240 
241 #ifdef VIMAGE
242 void
243 nd6_destroy()
244 {
245 
246 	callout_drain(&V_nd6_slowtimo_ch);
247 	callout_drain(&V_nd6_timer_ch);
248 	if (IS_DEFAULT_VNET(curvnet)) {
249 		EVENTHANDLER_DEREGISTER(ifnet_link_event, ifnet_link_event_eh);
250 		EVENTHANDLER_DEREGISTER(lle_event, lle_event_eh);
251 		EVENTHANDLER_DEREGISTER(iflladdr_event, iflladdr_event_eh);
252 	}
253 	rw_destroy(&V_nd6_lock);
254 	mtx_destroy(&V_nd6_onlink_mtx);
255 }
256 #endif
257 
258 struct nd_ifinfo *
259 nd6_ifattach(struct ifnet *ifp)
260 {
261 	struct nd_ifinfo *nd;
262 
263 	nd = malloc(sizeof(*nd), M_IP6NDP, M_WAITOK | M_ZERO);
264 	nd->initialized = 1;
265 
266 	nd->chlim = IPV6_DEFHLIM;
267 	nd->basereachable = REACHABLE_TIME;
268 	nd->reachable = ND_COMPUTE_RTIME(nd->basereachable);
269 	nd->retrans = RETRANS_TIMER;
270 
271 	nd->flags = ND6_IFF_PERFORMNUD;
272 
273 	/* A loopback interface always has ND6_IFF_AUTO_LINKLOCAL.
274 	 * XXXHRS: Clear ND6_IFF_AUTO_LINKLOCAL on an IFT_BRIDGE interface by
275 	 * default regardless of the V_ip6_auto_linklocal configuration to
276 	 * give a reasonable default behavior.
277 	 */
278 	if ((V_ip6_auto_linklocal && ifp->if_type != IFT_BRIDGE) ||
279 	    (ifp->if_flags & IFF_LOOPBACK))
280 		nd->flags |= ND6_IFF_AUTO_LINKLOCAL;
281 	/*
282 	 * A loopback interface does not need to accept RTADV.
283 	 * XXXHRS: Clear ND6_IFF_ACCEPT_RTADV on an IFT_BRIDGE interface by
284 	 * default regardless of the V_ip6_accept_rtadv configuration to
285 	 * prevent the interface from accepting RA messages arrived
286 	 * on one of the member interfaces with ND6_IFF_ACCEPT_RTADV.
287 	 */
288 	if (V_ip6_accept_rtadv &&
289 	    !(ifp->if_flags & IFF_LOOPBACK) &&
290 	    (ifp->if_type != IFT_BRIDGE))
291 			nd->flags |= ND6_IFF_ACCEPT_RTADV;
292 	if (V_ip6_no_radr && !(ifp->if_flags & IFF_LOOPBACK))
293 		nd->flags |= ND6_IFF_NO_RADR;
294 
295 	/* XXX: we cannot call nd6_setmtu since ifp is not fully initialized */
296 	nd6_setmtu0(ifp, nd);
297 
298 	return nd;
299 }
300 
301 void
302 nd6_ifdetach(struct ifnet *ifp, struct nd_ifinfo *nd)
303 {
304 	struct epoch_tracker et;
305 	struct ifaddr *ifa, *next;
306 
307 	NET_EPOCH_ENTER(et);
308 	CK_STAILQ_FOREACH_SAFE(ifa, &ifp->if_addrhead, ifa_link, next) {
309 		if (ifa->ifa_addr->sa_family != AF_INET6)
310 			continue;
311 
312 		/* stop DAD processing */
313 		nd6_dad_stop(ifa);
314 	}
315 	NET_EPOCH_EXIT(et);
316 
317 	free(nd, M_IP6NDP);
318 }
319 
320 /*
321  * Reset ND level link MTU. This function is called when the physical MTU
322  * changes, which means we might have to adjust the ND level MTU.
323  */
324 void
325 nd6_setmtu(struct ifnet *ifp)
326 {
327 	if (ifp->if_afdata[AF_INET6] == NULL)
328 		return;
329 
330 	nd6_setmtu0(ifp, ND_IFINFO(ifp));
331 }
332 
333 /* XXX todo: do not maintain copy of ifp->if_mtu in ndi->maxmtu */
334 void
335 nd6_setmtu0(struct ifnet *ifp, struct nd_ifinfo *ndi)
336 {
337 	u_int32_t omaxmtu;
338 
339 	omaxmtu = ndi->maxmtu;
340 	ndi->maxmtu = ifp->if_mtu;
341 
342 	/*
343 	 * Decreasing the interface MTU under IPV6 minimum MTU may cause
344 	 * undesirable situation.  We thus notify the operator of the change
345 	 * explicitly.  The check for omaxmtu is necessary to restrict the
346 	 * log to the case of changing the MTU, not initializing it.
347 	 */
348 	if (omaxmtu >= IPV6_MMTU && ndi->maxmtu < IPV6_MMTU) {
349 		log(LOG_NOTICE, "nd6_setmtu0: "
350 		    "new link MTU on %s (%lu) is too small for IPv6\n",
351 		    if_name(ifp), (unsigned long)ndi->maxmtu);
352 	}
353 
354 	if (ndi->maxmtu > V_in6_maxmtu)
355 		in6_setmaxmtu(); /* check all interfaces just in case */
356 
357 }
358 
359 void
360 nd6_option_init(void *opt, int icmp6len, union nd_opts *ndopts)
361 {
362 
363 	bzero(ndopts, sizeof(*ndopts));
364 	ndopts->nd_opts_search = (struct nd_opt_hdr *)opt;
365 	ndopts->nd_opts_last
366 		= (struct nd_opt_hdr *)(((u_char *)opt) + icmp6len);
367 
368 	if (icmp6len == 0) {
369 		ndopts->nd_opts_done = 1;
370 		ndopts->nd_opts_search = NULL;
371 	}
372 }
373 
374 /*
375  * Take one ND option.
376  */
377 struct nd_opt_hdr *
378 nd6_option(union nd_opts *ndopts)
379 {
380 	struct nd_opt_hdr *nd_opt;
381 	int olen;
382 
383 	KASSERT(ndopts != NULL, ("%s: ndopts == NULL", __func__));
384 	KASSERT(ndopts->nd_opts_last != NULL, ("%s: uninitialized ndopts",
385 	    __func__));
386 	if (ndopts->nd_opts_search == NULL)
387 		return NULL;
388 	if (ndopts->nd_opts_done)
389 		return NULL;
390 
391 	nd_opt = ndopts->nd_opts_search;
392 
393 	/* make sure nd_opt_len is inside the buffer */
394 	if ((caddr_t)&nd_opt->nd_opt_len >= (caddr_t)ndopts->nd_opts_last) {
395 		bzero(ndopts, sizeof(*ndopts));
396 		return NULL;
397 	}
398 
399 	olen = nd_opt->nd_opt_len << 3;
400 	if (olen == 0) {
401 		/*
402 		 * Message validation requires that all included
403 		 * options have a length that is greater than zero.
404 		 */
405 		bzero(ndopts, sizeof(*ndopts));
406 		return NULL;
407 	}
408 
409 	ndopts->nd_opts_search = (struct nd_opt_hdr *)((caddr_t)nd_opt + olen);
410 	if (ndopts->nd_opts_search > ndopts->nd_opts_last) {
411 		/* option overruns the end of buffer, invalid */
412 		bzero(ndopts, sizeof(*ndopts));
413 		return NULL;
414 	} else if (ndopts->nd_opts_search == ndopts->nd_opts_last) {
415 		/* reached the end of options chain */
416 		ndopts->nd_opts_done = 1;
417 		ndopts->nd_opts_search = NULL;
418 	}
419 	return nd_opt;
420 }
421 
422 /*
423  * Parse multiple ND options.
424  * This function is much easier to use, for ND routines that do not need
425  * multiple options of the same type.
426  */
427 int
428 nd6_options(union nd_opts *ndopts)
429 {
430 	struct nd_opt_hdr *nd_opt;
431 	int i = 0;
432 
433 	KASSERT(ndopts != NULL, ("%s: ndopts == NULL", __func__));
434 	KASSERT(ndopts->nd_opts_last != NULL, ("%s: uninitialized ndopts",
435 	    __func__));
436 	if (ndopts->nd_opts_search == NULL)
437 		return 0;
438 
439 	while (1) {
440 		nd_opt = nd6_option(ndopts);
441 		if (nd_opt == NULL && ndopts->nd_opts_last == NULL) {
442 			/*
443 			 * Message validation requires that all included
444 			 * options have a length that is greater than zero.
445 			 */
446 			ICMP6STAT_INC(icp6s_nd_badopt);
447 			bzero(ndopts, sizeof(*ndopts));
448 			return -1;
449 		}
450 
451 		if (nd_opt == NULL)
452 			goto skip1;
453 
454 		switch (nd_opt->nd_opt_type) {
455 		case ND_OPT_SOURCE_LINKADDR:
456 		case ND_OPT_TARGET_LINKADDR:
457 		case ND_OPT_MTU:
458 		case ND_OPT_REDIRECTED_HEADER:
459 		case ND_OPT_NONCE:
460 			if (ndopts->nd_opt_array[nd_opt->nd_opt_type]) {
461 				nd6log((LOG_INFO,
462 				    "duplicated ND6 option found (type=%d)\n",
463 				    nd_opt->nd_opt_type));
464 				/* XXX bark? */
465 			} else {
466 				ndopts->nd_opt_array[nd_opt->nd_opt_type]
467 					= nd_opt;
468 			}
469 			break;
470 		case ND_OPT_PREFIX_INFORMATION:
471 			if (ndopts->nd_opt_array[nd_opt->nd_opt_type] == 0) {
472 				ndopts->nd_opt_array[nd_opt->nd_opt_type]
473 					= nd_opt;
474 			}
475 			ndopts->nd_opts_pi_end =
476 				(struct nd_opt_prefix_info *)nd_opt;
477 			break;
478 		/* What about ND_OPT_ROUTE_INFO? RFC 4191 */
479 		case ND_OPT_RDNSS:	/* RFC 6106 */
480 		case ND_OPT_DNSSL:	/* RFC 6106 */
481 			/*
482 			 * Silently ignore options we know and do not care about
483 			 * in the kernel.
484 			 */
485 			break;
486 		default:
487 			/*
488 			 * Unknown options must be silently ignored,
489 			 * to accommodate future extension to the protocol.
490 			 */
491 			nd6log((LOG_DEBUG,
492 			    "nd6_options: unsupported option %d - "
493 			    "option ignored\n", nd_opt->nd_opt_type));
494 		}
495 
496 skip1:
497 		i++;
498 		if (i > V_nd6_maxndopt) {
499 			ICMP6STAT_INC(icp6s_nd_toomanyopt);
500 			nd6log((LOG_INFO, "too many loop in nd opt\n"));
501 			break;
502 		}
503 
504 		if (ndopts->nd_opts_done)
505 			break;
506 	}
507 
508 	return 0;
509 }
510 
511 /*
512  * ND6 timer routine to handle ND6 entries
513  */
514 static void
515 nd6_llinfo_settimer_locked(struct llentry *ln, long tick)
516 {
517 	int canceled;
518 
519 	LLE_WLOCK_ASSERT(ln);
520 
521 	if (tick < 0) {
522 		ln->la_expire = 0;
523 		ln->ln_ntick = 0;
524 		canceled = callout_stop(&ln->lle_timer);
525 	} else {
526 		ln->la_expire = time_uptime + tick / hz;
527 		LLE_ADDREF(ln);
528 		if (tick > INT_MAX) {
529 			ln->ln_ntick = tick - INT_MAX;
530 			canceled = callout_reset(&ln->lle_timer, INT_MAX,
531 			    nd6_llinfo_timer, ln);
532 		} else {
533 			ln->ln_ntick = 0;
534 			canceled = callout_reset(&ln->lle_timer, tick,
535 			    nd6_llinfo_timer, ln);
536 		}
537 	}
538 	if (canceled > 0)
539 		LLE_REMREF(ln);
540 }
541 
542 /*
543  * Gets source address of the first packet in hold queue
544  * and stores it in @src.
545  * Returns pointer to @src (if hold queue is not empty) or NULL.
546  *
547  * Set noinline to be dtrace-friendly
548  */
549 static __noinline struct in6_addr *
550 nd6_llinfo_get_holdsrc(struct llentry *ln, struct in6_addr *src)
551 {
552 	struct ip6_hdr hdr;
553 	struct mbuf *m;
554 
555 	if (ln->la_hold == NULL)
556 		return (NULL);
557 
558 	/*
559 	 * assume every packet in la_hold has the same IP header
560 	 */
561 	m = ln->la_hold;
562 	if (sizeof(hdr) > m->m_len)
563 		return (NULL);
564 
565 	m_copydata(m, 0, sizeof(hdr), (caddr_t)&hdr);
566 	*src = hdr.ip6_src;
567 
568 	return (src);
569 }
570 
571 /*
572  * Checks if we need to switch from STALE state.
573  *
574  * RFC 4861 requires switching from STALE to DELAY state
575  * on first packet matching entry, waiting V_nd6_delay and
576  * transition to PROBE state (if upper layer confirmation was
577  * not received).
578  *
579  * This code performs a bit differently:
580  * On packet hit we don't change state (but desired state
581  * can be guessed by control plane). However, after V_nd6_delay
582  * seconds code will transition to PROBE state (so DELAY state
583  * is kinda skipped in most situations).
584  *
585  * Typically, V_nd6_gctimer is bigger than V_nd6_delay, so
586  * we perform the following upon entering STALE state:
587  *
588  * 1) Arm timer to run each V_nd6_delay seconds to make sure that
589  * if packet was transmitted at the start of given interval, we
590  * would be able to switch to PROBE state in V_nd6_delay seconds
591  * as user expects.
592  *
593  * 2) Reschedule timer until original V_nd6_gctimer expires keeping
594  * lle in STALE state (remaining timer value stored in lle_remtime).
595  *
596  * 3) Reschedule timer if packet was transmitted less that V_nd6_delay
597  * seconds ago.
598  *
599  * Returns non-zero value if the entry is still STALE (storing
600  * the next timer interval in @pdelay).
601  *
602  * Returns zero value if original timer expired or we need to switch to
603  * PROBE (store that in @do_switch variable).
604  */
605 static int
606 nd6_is_stale(struct llentry *lle, long *pdelay, int *do_switch)
607 {
608 	int nd_delay, nd_gctimer, r_skip_req;
609 	time_t lle_hittime;
610 	long delay;
611 
612 	*do_switch = 0;
613 	nd_gctimer = V_nd6_gctimer;
614 	nd_delay = V_nd6_delay;
615 
616 	LLE_REQ_LOCK(lle);
617 	r_skip_req = lle->r_skip_req;
618 	lle_hittime = lle->lle_hittime;
619 	LLE_REQ_UNLOCK(lle);
620 
621 	if (r_skip_req > 0) {
622 
623 		/*
624 		 * Nonzero r_skip_req value was set upon entering
625 		 * STALE state. Since value was not changed, no
626 		 * packets were passed using this lle. Ask for
627 		 * timer reschedule and keep STALE state.
628 		 */
629 		delay = (long)(MIN(nd_gctimer, nd_delay));
630 		delay *= hz;
631 		if (lle->lle_remtime > delay)
632 			lle->lle_remtime -= delay;
633 		else {
634 			delay = lle->lle_remtime;
635 			lle->lle_remtime = 0;
636 		}
637 
638 		if (delay == 0) {
639 
640 			/*
641 			 * The original ng6_gctime timeout ended,
642 			 * no more rescheduling.
643 			 */
644 			return (0);
645 		}
646 
647 		*pdelay = delay;
648 		return (1);
649 	}
650 
651 	/*
652 	 * Packet received. Verify timestamp
653 	 */
654 	delay = (long)(time_uptime - lle_hittime);
655 	if (delay < nd_delay) {
656 
657 		/*
658 		 * V_nd6_delay still not passed since the first
659 		 * hit in STALE state.
660 		 * Reshedule timer and return.
661 		 */
662 		*pdelay = (long)(nd_delay - delay) * hz;
663 		return (1);
664 	}
665 
666 	/* Request switching to probe */
667 	*do_switch = 1;
668 	return (0);
669 }
670 
671 
672 /*
673  * Switch @lle state to new state optionally arming timers.
674  *
675  * Set noinline to be dtrace-friendly
676  */
677 __noinline void
678 nd6_llinfo_setstate(struct llentry *lle, int newstate)
679 {
680 	struct ifnet *ifp;
681 	int nd_gctimer, nd_delay;
682 	long delay, remtime;
683 
684 	delay = 0;
685 	remtime = 0;
686 
687 	switch (newstate) {
688 	case ND6_LLINFO_INCOMPLETE:
689 		ifp = lle->lle_tbl->llt_ifp;
690 		delay = (long)ND_IFINFO(ifp)->retrans * hz / 1000;
691 		break;
692 	case ND6_LLINFO_REACHABLE:
693 		if (!ND6_LLINFO_PERMANENT(lle)) {
694 			ifp = lle->lle_tbl->llt_ifp;
695 			delay = (long)ND_IFINFO(ifp)->reachable * hz;
696 		}
697 		break;
698 	case ND6_LLINFO_STALE:
699 
700 		/*
701 		 * Notify fast path that we want to know if any packet
702 		 * is transmitted by setting r_skip_req.
703 		 */
704 		LLE_REQ_LOCK(lle);
705 		lle->r_skip_req = 1;
706 		LLE_REQ_UNLOCK(lle);
707 		nd_delay = V_nd6_delay;
708 		nd_gctimer = V_nd6_gctimer;
709 
710 		delay = (long)(MIN(nd_gctimer, nd_delay)) * hz;
711 		remtime = (long)nd_gctimer * hz - delay;
712 		break;
713 	case ND6_LLINFO_DELAY:
714 		lle->la_asked = 0;
715 		delay = (long)V_nd6_delay * hz;
716 		break;
717 	}
718 
719 	if (delay > 0)
720 		nd6_llinfo_settimer_locked(lle, delay);
721 
722 	lle->lle_remtime = remtime;
723 	lle->ln_state = newstate;
724 }
725 
726 /*
727  * Timer-dependent part of nd state machine.
728  *
729  * Set noinline to be dtrace-friendly
730  */
731 static __noinline void
732 nd6_llinfo_timer(void *arg)
733 {
734 	struct llentry *ln;
735 	struct in6_addr *dst, *pdst, *psrc, src;
736 	struct ifnet *ifp;
737 	struct nd_ifinfo *ndi;
738 	int do_switch, send_ns;
739 	long delay;
740 
741 	KASSERT(arg != NULL, ("%s: arg NULL", __func__));
742 	ln = (struct llentry *)arg;
743 	ifp = lltable_get_ifp(ln->lle_tbl);
744 	CURVNET_SET(ifp->if_vnet);
745 
746 	ND6_RLOCK();
747 	LLE_WLOCK(ln);
748 	if (callout_pending(&ln->lle_timer)) {
749 		/*
750 		 * Here we are a bit odd here in the treatment of
751 		 * active/pending. If the pending bit is set, it got
752 		 * rescheduled before I ran. The active
753 		 * bit we ignore, since if it was stopped
754 		 * in ll_tablefree() and was currently running
755 		 * it would have return 0 so the code would
756 		 * not have deleted it since the callout could
757 		 * not be stopped so we want to go through
758 		 * with the delete here now. If the callout
759 		 * was restarted, the pending bit will be back on and
760 		 * we just want to bail since the callout_reset would
761 		 * return 1 and our reference would have been removed
762 		 * by nd6_llinfo_settimer_locked above since canceled
763 		 * would have been 1.
764 		 */
765 		LLE_WUNLOCK(ln);
766 		ND6_RUNLOCK();
767 		CURVNET_RESTORE();
768 		return;
769 	}
770 	ndi = ND_IFINFO(ifp);
771 	send_ns = 0;
772 	dst = &ln->r_l3addr.addr6;
773 	pdst = dst;
774 
775 	if (ln->ln_ntick > 0) {
776 		if (ln->ln_ntick > INT_MAX) {
777 			ln->ln_ntick -= INT_MAX;
778 			nd6_llinfo_settimer_locked(ln, INT_MAX);
779 		} else {
780 			ln->ln_ntick = 0;
781 			nd6_llinfo_settimer_locked(ln, ln->ln_ntick);
782 		}
783 		goto done;
784 	}
785 
786 	if (ln->la_flags & LLE_STATIC) {
787 		goto done;
788 	}
789 
790 	if (ln->la_flags & LLE_DELETED) {
791 		nd6_free(&ln, 0);
792 		goto done;
793 	}
794 
795 	switch (ln->ln_state) {
796 	case ND6_LLINFO_INCOMPLETE:
797 		if (ln->la_asked < V_nd6_mmaxtries) {
798 			ln->la_asked++;
799 			send_ns = 1;
800 			/* Send NS to multicast address */
801 			pdst = NULL;
802 		} else {
803 			struct mbuf *m = ln->la_hold;
804 			if (m) {
805 				struct mbuf *m0;
806 
807 				/*
808 				 * assuming every packet in la_hold has the
809 				 * same IP header.  Send error after unlock.
810 				 */
811 				m0 = m->m_nextpkt;
812 				m->m_nextpkt = NULL;
813 				ln->la_hold = m0;
814 				clear_llinfo_pqueue(ln);
815 			}
816 			nd6_free(&ln, 0);
817 			if (m != NULL)
818 				icmp6_error2(m, ICMP6_DST_UNREACH,
819 				    ICMP6_DST_UNREACH_ADDR, 0, ifp);
820 		}
821 		break;
822 	case ND6_LLINFO_REACHABLE:
823 		if (!ND6_LLINFO_PERMANENT(ln))
824 			nd6_llinfo_setstate(ln, ND6_LLINFO_STALE);
825 		break;
826 
827 	case ND6_LLINFO_STALE:
828 		if (nd6_is_stale(ln, &delay, &do_switch) != 0) {
829 
830 			/*
831 			 * No packet has used this entry and GC timeout
832 			 * has not been passed. Reshedule timer and
833 			 * return.
834 			 */
835 			nd6_llinfo_settimer_locked(ln, delay);
836 			break;
837 		}
838 
839 		if (do_switch == 0) {
840 
841 			/*
842 			 * GC timer has ended and entry hasn't been used.
843 			 * Run Garbage collector (RFC 4861, 5.3)
844 			 */
845 			if (!ND6_LLINFO_PERMANENT(ln))
846 				nd6_free(&ln, 1);
847 			break;
848 		}
849 
850 		/* Entry has been used AND delay timer has ended. */
851 
852 		/* FALLTHROUGH */
853 
854 	case ND6_LLINFO_DELAY:
855 		if (ndi && (ndi->flags & ND6_IFF_PERFORMNUD) != 0) {
856 			/* We need NUD */
857 			ln->la_asked = 1;
858 			nd6_llinfo_setstate(ln, ND6_LLINFO_PROBE);
859 			send_ns = 1;
860 		} else
861 			nd6_llinfo_setstate(ln, ND6_LLINFO_STALE); /* XXX */
862 		break;
863 	case ND6_LLINFO_PROBE:
864 		if (ln->la_asked < V_nd6_umaxtries) {
865 			ln->la_asked++;
866 			send_ns = 1;
867 		} else {
868 			nd6_free(&ln, 0);
869 		}
870 		break;
871 	default:
872 		panic("%s: paths in a dark night can be confusing: %d",
873 		    __func__, ln->ln_state);
874 	}
875 done:
876 	if (ln != NULL)
877 		ND6_RUNLOCK();
878 	if (send_ns != 0) {
879 		nd6_llinfo_settimer_locked(ln, (long)ndi->retrans * hz / 1000);
880 		psrc = nd6_llinfo_get_holdsrc(ln, &src);
881 		LLE_FREE_LOCKED(ln);
882 		ln = NULL;
883 		nd6_ns_output(ifp, psrc, pdst, dst, NULL);
884 	}
885 
886 	if (ln != NULL)
887 		LLE_FREE_LOCKED(ln);
888 	CURVNET_RESTORE();
889 }
890 
891 
892 /*
893  * ND6 timer routine to expire default route list and prefix list
894  */
895 void
896 nd6_timer(void *arg)
897 {
898 	CURVNET_SET((struct vnet *) arg);
899 	struct nd_drhead drq;
900 	struct nd_prhead prl;
901 	struct nd_defrouter *dr, *ndr;
902 	struct nd_prefix *pr, *npr;
903 	struct ifnet *ifp;
904 	struct in6_ifaddr *ia6, *nia6;
905 	uint64_t genid;
906 
907 	TAILQ_INIT(&drq);
908 	LIST_INIT(&prl);
909 
910 	ND6_WLOCK();
911 	TAILQ_FOREACH_SAFE(dr, &V_nd_defrouter, dr_entry, ndr)
912 		if (dr->expire && dr->expire < time_uptime)
913 			defrouter_unlink(dr, &drq);
914 	ND6_WUNLOCK();
915 
916 	while ((dr = TAILQ_FIRST(&drq)) != NULL) {
917 		TAILQ_REMOVE(&drq, dr, dr_entry);
918 		defrouter_del(dr);
919 	}
920 
921 	/*
922 	 * expire interface addresses.
923 	 * in the past the loop was inside prefix expiry processing.
924 	 * However, from a stricter speci-confrmance standpoint, we should
925 	 * rather separate address lifetimes and prefix lifetimes.
926 	 *
927 	 * XXXRW: in6_ifaddrhead locking.
928 	 */
929   addrloop:
930 	CK_STAILQ_FOREACH_SAFE(ia6, &V_in6_ifaddrhead, ia_link, nia6) {
931 		/* check address lifetime */
932 		if (IFA6_IS_INVALID(ia6)) {
933 			int regen = 0;
934 
935 			/*
936 			 * If the expiring address is temporary, try
937 			 * regenerating a new one.  This would be useful when
938 			 * we suspended a laptop PC, then turned it on after a
939 			 * period that could invalidate all temporary
940 			 * addresses.  Although we may have to restart the
941 			 * loop (see below), it must be after purging the
942 			 * address.  Otherwise, we'd see an infinite loop of
943 			 * regeneration.
944 			 */
945 			if (V_ip6_use_tempaddr &&
946 			    (ia6->ia6_flags & IN6_IFF_TEMPORARY) != 0) {
947 				if (regen_tmpaddr(ia6) == 0)
948 					regen = 1;
949 			}
950 
951 			in6_purgeaddr(&ia6->ia_ifa);
952 
953 			if (regen)
954 				goto addrloop; /* XXX: see below */
955 		} else if (IFA6_IS_DEPRECATED(ia6)) {
956 			int oldflags = ia6->ia6_flags;
957 
958 			ia6->ia6_flags |= IN6_IFF_DEPRECATED;
959 
960 			/*
961 			 * If a temporary address has just become deprecated,
962 			 * regenerate a new one if possible.
963 			 */
964 			if (V_ip6_use_tempaddr &&
965 			    (ia6->ia6_flags & IN6_IFF_TEMPORARY) != 0 &&
966 			    (oldflags & IN6_IFF_DEPRECATED) == 0) {
967 
968 				if (regen_tmpaddr(ia6) == 0) {
969 					/*
970 					 * A new temporary address is
971 					 * generated.
972 					 * XXX: this means the address chain
973 					 * has changed while we are still in
974 					 * the loop.  Although the change
975 					 * would not cause disaster (because
976 					 * it's not a deletion, but an
977 					 * addition,) we'd rather restart the
978 					 * loop just for safety.  Or does this
979 					 * significantly reduce performance??
980 					 */
981 					goto addrloop;
982 				}
983 			}
984 		} else if ((ia6->ia6_flags & IN6_IFF_TENTATIVE) != 0) {
985 			/*
986 			 * Schedule DAD for a tentative address.  This happens
987 			 * if the interface was down or not running
988 			 * when the address was configured.
989 			 */
990 			int delay;
991 
992 			delay = arc4random() %
993 			    (MAX_RTR_SOLICITATION_DELAY * hz);
994 			nd6_dad_start((struct ifaddr *)ia6, delay);
995 		} else {
996 			/*
997 			 * Check status of the interface.  If it is down,
998 			 * mark the address as tentative for future DAD.
999 			 */
1000 			ifp = ia6->ia_ifp;
1001 			if ((ND_IFINFO(ifp)->flags & ND6_IFF_NO_DAD) == 0 &&
1002 			    ((ifp->if_flags & IFF_UP) == 0 ||
1003 			    (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 ||
1004 			    (ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED) != 0)){
1005 				ia6->ia6_flags &= ~IN6_IFF_DUPLICATED;
1006 				ia6->ia6_flags |= IN6_IFF_TENTATIVE;
1007 			}
1008 
1009 			/*
1010 			 * A new RA might have made a deprecated address
1011 			 * preferred.
1012 			 */
1013 			ia6->ia6_flags &= ~IN6_IFF_DEPRECATED;
1014 		}
1015 	}
1016 
1017 	ND6_WLOCK();
1018 restart:
1019 	LIST_FOREACH_SAFE(pr, &V_nd_prefix, ndpr_entry, npr) {
1020 		/*
1021 		 * Expire prefixes. Since the pltime is only used for
1022 		 * autoconfigured addresses, pltime processing for prefixes is
1023 		 * not necessary.
1024 		 *
1025 		 * Only unlink after all derived addresses have expired. This
1026 		 * may not occur until two hours after the prefix has expired
1027 		 * per RFC 4862. If the prefix expires before its derived
1028 		 * addresses, mark it off-link. This will be done automatically
1029 		 * after unlinking if no address references remain.
1030 		 */
1031 		if (pr->ndpr_vltime == ND6_INFINITE_LIFETIME ||
1032 		    time_uptime - pr->ndpr_lastupdate <= pr->ndpr_vltime)
1033 			continue;
1034 
1035 		if (pr->ndpr_addrcnt == 0) {
1036 			nd6_prefix_unlink(pr, &prl);
1037 			continue;
1038 		}
1039 		if ((pr->ndpr_stateflags & NDPRF_ONLINK) != 0) {
1040 			genid = V_nd6_list_genid;
1041 			nd6_prefix_ref(pr);
1042 			ND6_WUNLOCK();
1043 			ND6_ONLINK_LOCK();
1044 			(void)nd6_prefix_offlink(pr);
1045 			ND6_ONLINK_UNLOCK();
1046 			ND6_WLOCK();
1047 			nd6_prefix_rele(pr);
1048 			if (genid != V_nd6_list_genid)
1049 				goto restart;
1050 		}
1051 	}
1052 	ND6_WUNLOCK();
1053 
1054 	while ((pr = LIST_FIRST(&prl)) != NULL) {
1055 		LIST_REMOVE(pr, ndpr_entry);
1056 		nd6_prefix_del(pr);
1057 	}
1058 
1059 	callout_reset(&V_nd6_timer_ch, V_nd6_prune * hz,
1060 	    nd6_timer, curvnet);
1061 
1062 	CURVNET_RESTORE();
1063 }
1064 
1065 /*
1066  * ia6 - deprecated/invalidated temporary address
1067  */
1068 static int
1069 regen_tmpaddr(struct in6_ifaddr *ia6)
1070 {
1071 	struct epoch_tracker et;
1072 	struct ifaddr *ifa;
1073 	struct ifnet *ifp;
1074 	struct in6_ifaddr *public_ifa6 = NULL;
1075 
1076 	ifp = ia6->ia_ifa.ifa_ifp;
1077 	NET_EPOCH_ENTER(et);
1078 	CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
1079 		struct in6_ifaddr *it6;
1080 
1081 		if (ifa->ifa_addr->sa_family != AF_INET6)
1082 			continue;
1083 
1084 		it6 = (struct in6_ifaddr *)ifa;
1085 
1086 		/* ignore no autoconf addresses. */
1087 		if ((it6->ia6_flags & IN6_IFF_AUTOCONF) == 0)
1088 			continue;
1089 
1090 		/* ignore autoconf addresses with different prefixes. */
1091 		if (it6->ia6_ndpr == NULL || it6->ia6_ndpr != ia6->ia6_ndpr)
1092 			continue;
1093 
1094 		/*
1095 		 * Now we are looking at an autoconf address with the same
1096 		 * prefix as ours.  If the address is temporary and is still
1097 		 * preferred, do not create another one.  It would be rare, but
1098 		 * could happen, for example, when we resume a laptop PC after
1099 		 * a long period.
1100 		 */
1101 		if ((it6->ia6_flags & IN6_IFF_TEMPORARY) != 0 &&
1102 		    !IFA6_IS_DEPRECATED(it6)) {
1103 			public_ifa6 = NULL;
1104 			break;
1105 		}
1106 
1107 		/*
1108 		 * This is a public autoconf address that has the same prefix
1109 		 * as ours.  If it is preferred, keep it.  We can't break the
1110 		 * loop here, because there may be a still-preferred temporary
1111 		 * address with the prefix.
1112 		 */
1113 		if (!IFA6_IS_DEPRECATED(it6))
1114 			public_ifa6 = it6;
1115 	}
1116 	if (public_ifa6 != NULL)
1117 		ifa_ref(&public_ifa6->ia_ifa);
1118 	NET_EPOCH_EXIT(et);
1119 
1120 	if (public_ifa6 != NULL) {
1121 		int e;
1122 
1123 		if ((e = in6_tmpifadd(public_ifa6, 0, 0)) != 0) {
1124 			ifa_free(&public_ifa6->ia_ifa);
1125 			log(LOG_NOTICE, "regen_tmpaddr: failed to create a new"
1126 			    " tmp addr,errno=%d\n", e);
1127 			return (-1);
1128 		}
1129 		ifa_free(&public_ifa6->ia_ifa);
1130 		return (0);
1131 	}
1132 
1133 	return (-1);
1134 }
1135 
1136 /*
1137  * Remove prefix and default router list entries corresponding to ifp. Neighbor
1138  * cache entries are freed in in6_domifdetach().
1139  */
1140 void
1141 nd6_purge(struct ifnet *ifp)
1142 {
1143 	struct nd_drhead drq;
1144 	struct nd_prhead prl;
1145 	struct nd_defrouter *dr, *ndr;
1146 	struct nd_prefix *pr, *npr;
1147 
1148 	TAILQ_INIT(&drq);
1149 	LIST_INIT(&prl);
1150 
1151 	/*
1152 	 * Nuke default router list entries toward ifp.
1153 	 * We defer removal of default router list entries that is installed
1154 	 * in the routing table, in order to keep additional side effects as
1155 	 * small as possible.
1156 	 */
1157 	ND6_WLOCK();
1158 	TAILQ_FOREACH_SAFE(dr, &V_nd_defrouter, dr_entry, ndr) {
1159 		if (dr->installed)
1160 			continue;
1161 		if (dr->ifp == ifp)
1162 			defrouter_unlink(dr, &drq);
1163 	}
1164 	TAILQ_FOREACH_SAFE(dr, &V_nd_defrouter, dr_entry, ndr) {
1165 		if (!dr->installed)
1166 			continue;
1167 		if (dr->ifp == ifp)
1168 			defrouter_unlink(dr, &drq);
1169 	}
1170 
1171 	/*
1172 	 * Remove prefixes on ifp. We should have already removed addresses on
1173 	 * this interface, so no addresses should be referencing these prefixes.
1174 	 */
1175 	LIST_FOREACH_SAFE(pr, &V_nd_prefix, ndpr_entry, npr) {
1176 		if (pr->ndpr_ifp == ifp)
1177 			nd6_prefix_unlink(pr, &prl);
1178 	}
1179 	ND6_WUNLOCK();
1180 
1181 	/* Delete the unlinked router and prefix objects. */
1182 	while ((dr = TAILQ_FIRST(&drq)) != NULL) {
1183 		TAILQ_REMOVE(&drq, dr, dr_entry);
1184 		defrouter_del(dr);
1185 	}
1186 	while ((pr = LIST_FIRST(&prl)) != NULL) {
1187 		LIST_REMOVE(pr, ndpr_entry);
1188 		nd6_prefix_del(pr);
1189 	}
1190 
1191 	/* cancel default outgoing interface setting */
1192 	if (V_nd6_defifindex == ifp->if_index)
1193 		nd6_setdefaultiface(0);
1194 
1195 	if (ND_IFINFO(ifp)->flags & ND6_IFF_ACCEPT_RTADV) {
1196 		/* Refresh default router list. */
1197 		defrouter_select_fib(ifp->if_fib);
1198 	}
1199 }
1200 
1201 /*
1202  * the caller acquires and releases the lock on the lltbls
1203  * Returns the llentry locked
1204  */
1205 struct llentry *
1206 nd6_lookup(const struct in6_addr *addr6, int flags, struct ifnet *ifp)
1207 {
1208 	struct sockaddr_in6 sin6;
1209 	struct llentry *ln;
1210 
1211 	bzero(&sin6, sizeof(sin6));
1212 	sin6.sin6_len = sizeof(struct sockaddr_in6);
1213 	sin6.sin6_family = AF_INET6;
1214 	sin6.sin6_addr = *addr6;
1215 
1216 	IF_AFDATA_LOCK_ASSERT(ifp);
1217 
1218 	ln = lla_lookup(LLTABLE6(ifp), flags, (struct sockaddr *)&sin6);
1219 
1220 	return (ln);
1221 }
1222 
1223 struct llentry *
1224 nd6_alloc(const struct in6_addr *addr6, int flags, struct ifnet *ifp)
1225 {
1226 	struct sockaddr_in6 sin6;
1227 	struct llentry *ln;
1228 
1229 	bzero(&sin6, sizeof(sin6));
1230 	sin6.sin6_len = sizeof(struct sockaddr_in6);
1231 	sin6.sin6_family = AF_INET6;
1232 	sin6.sin6_addr = *addr6;
1233 
1234 	ln = lltable_alloc_entry(LLTABLE6(ifp), 0, (struct sockaddr *)&sin6);
1235 	if (ln != NULL)
1236 		ln->ln_state = ND6_LLINFO_NOSTATE;
1237 
1238 	return (ln);
1239 }
1240 
1241 /*
1242  * Test whether a given IPv6 address is a neighbor or not, ignoring
1243  * the actual neighbor cache.  The neighbor cache is ignored in order
1244  * to not reenter the routing code from within itself.
1245  */
1246 static int
1247 nd6_is_new_addr_neighbor(const struct sockaddr_in6 *addr, struct ifnet *ifp)
1248 {
1249 	struct nd_prefix *pr;
1250 	struct ifaddr *ifa;
1251 	struct rt_addrinfo info;
1252 	struct sockaddr_in6 rt_key;
1253 	const struct sockaddr *dst6;
1254 	uint64_t genid;
1255 	int error, fibnum;
1256 
1257 	/*
1258 	 * A link-local address is always a neighbor.
1259 	 * XXX: a link does not necessarily specify a single interface.
1260 	 */
1261 	if (IN6_IS_ADDR_LINKLOCAL(&addr->sin6_addr)) {
1262 		struct sockaddr_in6 sin6_copy;
1263 		u_int32_t zone;
1264 
1265 		/*
1266 		 * We need sin6_copy since sa6_recoverscope() may modify the
1267 		 * content (XXX).
1268 		 */
1269 		sin6_copy = *addr;
1270 		if (sa6_recoverscope(&sin6_copy))
1271 			return (0); /* XXX: should be impossible */
1272 		if (in6_setscope(&sin6_copy.sin6_addr, ifp, &zone))
1273 			return (0);
1274 		if (sin6_copy.sin6_scope_id == zone)
1275 			return (1);
1276 		else
1277 			return (0);
1278 	}
1279 
1280 	bzero(&rt_key, sizeof(rt_key));
1281 	bzero(&info, sizeof(info));
1282 	info.rti_info[RTAX_DST] = (struct sockaddr *)&rt_key;
1283 
1284 	/*
1285 	 * If the address matches one of our addresses,
1286 	 * it should be a neighbor.
1287 	 * If the address matches one of our on-link prefixes, it should be a
1288 	 * neighbor.
1289 	 */
1290 	ND6_RLOCK();
1291 restart:
1292 	LIST_FOREACH(pr, &V_nd_prefix, ndpr_entry) {
1293 		if (pr->ndpr_ifp != ifp)
1294 			continue;
1295 
1296 		if ((pr->ndpr_stateflags & NDPRF_ONLINK) == 0) {
1297 			dst6 = (const struct sockaddr *)&pr->ndpr_prefix;
1298 
1299 			/*
1300 			 * We only need to check all FIBs if add_addr_allfibs
1301 			 * is unset. If set, checking any FIB will suffice.
1302 			 */
1303 			fibnum = V_rt_add_addr_allfibs ? rt_numfibs - 1 : 0;
1304 			for (; fibnum < rt_numfibs; fibnum++) {
1305 				genid = V_nd6_list_genid;
1306 				ND6_RUNLOCK();
1307 
1308 				/*
1309 				 * Restore length field before
1310 				 * retrying lookup
1311 				 */
1312 				rt_key.sin6_len = sizeof(rt_key);
1313 				error = rib_lookup_info(fibnum, dst6, 0, 0,
1314 						        &info);
1315 
1316 				ND6_RLOCK();
1317 				if (genid != V_nd6_list_genid)
1318 					goto restart;
1319 				if (error == 0)
1320 					break;
1321 			}
1322 			if (error != 0)
1323 				continue;
1324 
1325 			/*
1326 			 * This is the case where multiple interfaces
1327 			 * have the same prefix, but only one is installed
1328 			 * into the routing table and that prefix entry
1329 			 * is not the one being examined here. In the case
1330 			 * where RADIX_MPATH is enabled, multiple route
1331 			 * entries (of the same rt_key value) will be
1332 			 * installed because the interface addresses all
1333 			 * differ.
1334 			 */
1335 			if (!IN6_ARE_ADDR_EQUAL(&pr->ndpr_prefix.sin6_addr,
1336 			    &rt_key.sin6_addr))
1337 				continue;
1338 		}
1339 
1340 		if (IN6_ARE_MASKED_ADDR_EQUAL(&pr->ndpr_prefix.sin6_addr,
1341 		    &addr->sin6_addr, &pr->ndpr_mask)) {
1342 			ND6_RUNLOCK();
1343 			return (1);
1344 		}
1345 	}
1346 	ND6_RUNLOCK();
1347 
1348 	/*
1349 	 * If the address is assigned on the node of the other side of
1350 	 * a p2p interface, the address should be a neighbor.
1351 	 */
1352 	if (ifp->if_flags & IFF_POINTOPOINT) {
1353 		struct epoch_tracker et;
1354 
1355 		NET_EPOCH_ENTER(et);
1356 		CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
1357 			if (ifa->ifa_addr->sa_family != addr->sin6_family)
1358 				continue;
1359 			if (ifa->ifa_dstaddr != NULL &&
1360 			    sa_equal(addr, ifa->ifa_dstaddr)) {
1361 				NET_EPOCH_EXIT(et);
1362 				return 1;
1363 			}
1364 		}
1365 		NET_EPOCH_EXIT(et);
1366 	}
1367 
1368 	/*
1369 	 * If the default router list is empty, all addresses are regarded
1370 	 * as on-link, and thus, as a neighbor.
1371 	 */
1372 	if (ND_IFINFO(ifp)->flags & ND6_IFF_ACCEPT_RTADV &&
1373 	    TAILQ_EMPTY(&V_nd_defrouter) &&
1374 	    V_nd6_defifindex == ifp->if_index) {
1375 		return (1);
1376 	}
1377 
1378 	return (0);
1379 }
1380 
1381 
1382 /*
1383  * Detect if a given IPv6 address identifies a neighbor on a given link.
1384  * XXX: should take care of the destination of a p2p link?
1385  */
1386 int
1387 nd6_is_addr_neighbor(const struct sockaddr_in6 *addr, struct ifnet *ifp)
1388 {
1389 	struct epoch_tracker et;
1390 	struct llentry *lle;
1391 	int rc = 0;
1392 
1393 	IF_AFDATA_UNLOCK_ASSERT(ifp);
1394 	if (nd6_is_new_addr_neighbor(addr, ifp))
1395 		return (1);
1396 
1397 	/*
1398 	 * Even if the address matches none of our addresses, it might be
1399 	 * in the neighbor cache.
1400 	 */
1401 	NET_EPOCH_ENTER(et);
1402 	if ((lle = nd6_lookup(&addr->sin6_addr, 0, ifp)) != NULL) {
1403 		LLE_RUNLOCK(lle);
1404 		rc = 1;
1405 	}
1406 	NET_EPOCH_EXIT(et);
1407 	return (rc);
1408 }
1409 
1410 /*
1411  * Free an nd6 llinfo entry.
1412  * Since the function would cause significant changes in the kernel, DO NOT
1413  * make it global, unless you have a strong reason for the change, and are sure
1414  * that the change is safe.
1415  *
1416  * Set noinline to be dtrace-friendly
1417  */
1418 static __noinline void
1419 nd6_free(struct llentry **lnp, int gc)
1420 {
1421 	struct ifnet *ifp;
1422 	struct llentry *ln;
1423 	struct nd_defrouter *dr;
1424 
1425 	ln = *lnp;
1426 	*lnp = NULL;
1427 
1428 	LLE_WLOCK_ASSERT(ln);
1429 	ND6_RLOCK_ASSERT();
1430 
1431 	ifp = lltable_get_ifp(ln->lle_tbl);
1432 	if ((ND_IFINFO(ifp)->flags & ND6_IFF_ACCEPT_RTADV) != 0)
1433 		dr = defrouter_lookup_locked(&ln->r_l3addr.addr6, ifp);
1434 	else
1435 		dr = NULL;
1436 	ND6_RUNLOCK();
1437 
1438 	if ((ln->la_flags & LLE_DELETED) == 0)
1439 		EVENTHANDLER_INVOKE(lle_event, ln, LLENTRY_EXPIRED);
1440 
1441 	/*
1442 	 * we used to have pfctlinput(PRC_HOSTDEAD) here.
1443 	 * even though it is not harmful, it was not really necessary.
1444 	 */
1445 
1446 	/* cancel timer */
1447 	nd6_llinfo_settimer_locked(ln, -1);
1448 
1449 	if (ND_IFINFO(ifp)->flags & ND6_IFF_ACCEPT_RTADV) {
1450 		if (dr != NULL && dr->expire &&
1451 		    ln->ln_state == ND6_LLINFO_STALE && gc) {
1452 			/*
1453 			 * If the reason for the deletion is just garbage
1454 			 * collection, and the neighbor is an active default
1455 			 * router, do not delete it.  Instead, reset the GC
1456 			 * timer using the router's lifetime.
1457 			 * Simply deleting the entry would affect default
1458 			 * router selection, which is not necessarily a good
1459 			 * thing, especially when we're using router preference
1460 			 * values.
1461 			 * XXX: the check for ln_state would be redundant,
1462 			 *      but we intentionally keep it just in case.
1463 			 */
1464 			if (dr->expire > time_uptime)
1465 				nd6_llinfo_settimer_locked(ln,
1466 				    (dr->expire - time_uptime) * hz);
1467 			else
1468 				nd6_llinfo_settimer_locked(ln,
1469 				    (long)V_nd6_gctimer * hz);
1470 
1471 			LLE_REMREF(ln);
1472 			LLE_WUNLOCK(ln);
1473 			defrouter_rele(dr);
1474 			return;
1475 		}
1476 
1477 		if (dr) {
1478 			/*
1479 			 * Unreachablity of a router might affect the default
1480 			 * router selection and on-link detection of advertised
1481 			 * prefixes.
1482 			 */
1483 
1484 			/*
1485 			 * Temporarily fake the state to choose a new default
1486 			 * router and to perform on-link determination of
1487 			 * prefixes correctly.
1488 			 * Below the state will be set correctly,
1489 			 * or the entry itself will be deleted.
1490 			 */
1491 			ln->ln_state = ND6_LLINFO_INCOMPLETE;
1492 		}
1493 
1494 		if (ln->ln_router || dr) {
1495 
1496 			/*
1497 			 * We need to unlock to avoid a LOR with rt6_flush() with the
1498 			 * rnh and for the calls to pfxlist_onlink_check() and
1499 			 * defrouter_select_fib() in the block further down for calls
1500 			 * into nd6_lookup().  We still hold a ref.
1501 			 */
1502 			LLE_WUNLOCK(ln);
1503 
1504 			/*
1505 			 * rt6_flush must be called whether or not the neighbor
1506 			 * is in the Default Router List.
1507 			 * See a corresponding comment in nd6_na_input().
1508 			 */
1509 			rt6_flush(&ln->r_l3addr.addr6, ifp);
1510 		}
1511 
1512 		if (dr) {
1513 			/*
1514 			 * Since defrouter_select_fib() does not affect the
1515 			 * on-link determination and MIP6 needs the check
1516 			 * before the default router selection, we perform
1517 			 * the check now.
1518 			 */
1519 			pfxlist_onlink_check();
1520 
1521 			/*
1522 			 * Refresh default router list.
1523 			 */
1524 			defrouter_select_fib(dr->ifp->if_fib);
1525 		}
1526 
1527 		/*
1528 		 * If this entry was added by an on-link redirect, remove the
1529 		 * corresponding host route.
1530 		 */
1531 		if (ln->la_flags & LLE_REDIRECT)
1532 			nd6_free_redirect(ln);
1533 
1534 		if (ln->ln_router || dr)
1535 			LLE_WLOCK(ln);
1536 	}
1537 
1538 	/*
1539 	 * Save to unlock. We still hold an extra reference and will not
1540 	 * free(9) in llentry_free() if someone else holds one as well.
1541 	 */
1542 	LLE_WUNLOCK(ln);
1543 	IF_AFDATA_LOCK(ifp);
1544 	LLE_WLOCK(ln);
1545 	/* Guard against race with other llentry_free(). */
1546 	if (ln->la_flags & LLE_LINKED) {
1547 		/* Remove callout reference */
1548 		LLE_REMREF(ln);
1549 		lltable_unlink_entry(ln->lle_tbl, ln);
1550 	}
1551 	IF_AFDATA_UNLOCK(ifp);
1552 
1553 	llentry_free(ln);
1554 	if (dr != NULL)
1555 		defrouter_rele(dr);
1556 }
1557 
1558 static int
1559 nd6_isdynrte(const struct rtentry *rt, void *xap)
1560 {
1561 
1562 	if (rt->rt_flags == (RTF_UP | RTF_HOST | RTF_DYNAMIC))
1563 		return (1);
1564 
1565 	return (0);
1566 }
1567 /*
1568  * Remove the rtentry for the given llentry,
1569  * both of which were installed by a redirect.
1570  */
1571 static void
1572 nd6_free_redirect(const struct llentry *ln)
1573 {
1574 	int fibnum;
1575 	struct sockaddr_in6 sin6;
1576 	struct rt_addrinfo info;
1577 
1578 	lltable_fill_sa_entry(ln, (struct sockaddr *)&sin6);
1579 	memset(&info, 0, sizeof(info));
1580 	info.rti_info[RTAX_DST] = (struct sockaddr *)&sin6;
1581 	info.rti_filter = nd6_isdynrte;
1582 
1583 	for (fibnum = 0; fibnum < rt_numfibs; fibnum++)
1584 		rtrequest1_fib(RTM_DELETE, &info, NULL, fibnum);
1585 }
1586 
1587 /*
1588  * Rejuvenate this function for routing operations related
1589  * processing.
1590  */
1591 void
1592 nd6_rtrequest(int req, struct rtentry *rt, struct rt_addrinfo *info)
1593 {
1594 	struct sockaddr_in6 *gateway;
1595 	struct nd_defrouter *dr;
1596 	struct ifnet *ifp;
1597 
1598 	gateway = (struct sockaddr_in6 *)rt->rt_gateway;
1599 	ifp = rt->rt_ifp;
1600 
1601 	switch (req) {
1602 	case RTM_ADD:
1603 		break;
1604 
1605 	case RTM_DELETE:
1606 		if (!ifp)
1607 			return;
1608 		/*
1609 		 * Only indirect routes are interesting.
1610 		 */
1611 		if ((rt->rt_flags & RTF_GATEWAY) == 0)
1612 			return;
1613 		/*
1614 		 * check for default route
1615 		 */
1616 		if (IN6_ARE_ADDR_EQUAL(&in6addr_any,
1617 		    &SIN6(rt_key(rt))->sin6_addr)) {
1618 			dr = defrouter_lookup(&gateway->sin6_addr, ifp);
1619 			if (dr != NULL) {
1620 				dr->installed = 0;
1621 				defrouter_rele(dr);
1622 			}
1623 		}
1624 		break;
1625 	}
1626 }
1627 
1628 
1629 int
1630 nd6_ioctl(u_long cmd, caddr_t data, struct ifnet *ifp)
1631 {
1632 	struct in6_ndireq *ndi = (struct in6_ndireq *)data;
1633 	struct in6_nbrinfo *nbi = (struct in6_nbrinfo *)data;
1634 	struct in6_ndifreq *ndif = (struct in6_ndifreq *)data;
1635 	struct epoch_tracker et;
1636 	int error = 0;
1637 
1638 	if (ifp->if_afdata[AF_INET6] == NULL)
1639 		return (EPFNOSUPPORT);
1640 	switch (cmd) {
1641 	case OSIOCGIFINFO_IN6:
1642 #define ND	ndi->ndi
1643 		/* XXX: old ndp(8) assumes a positive value for linkmtu. */
1644 		bzero(&ND, sizeof(ND));
1645 		ND.linkmtu = IN6_LINKMTU(ifp);
1646 		ND.maxmtu = ND_IFINFO(ifp)->maxmtu;
1647 		ND.basereachable = ND_IFINFO(ifp)->basereachable;
1648 		ND.reachable = ND_IFINFO(ifp)->reachable;
1649 		ND.retrans = ND_IFINFO(ifp)->retrans;
1650 		ND.flags = ND_IFINFO(ifp)->flags;
1651 		ND.recalctm = ND_IFINFO(ifp)->recalctm;
1652 		ND.chlim = ND_IFINFO(ifp)->chlim;
1653 		break;
1654 	case SIOCGIFINFO_IN6:
1655 		ND = *ND_IFINFO(ifp);
1656 		break;
1657 	case SIOCSIFINFO_IN6:
1658 		/*
1659 		 * used to change host variables from userland.
1660 		 * intended for a use on router to reflect RA configurations.
1661 		 */
1662 		/* 0 means 'unspecified' */
1663 		if (ND.linkmtu != 0) {
1664 			if (ND.linkmtu < IPV6_MMTU ||
1665 			    ND.linkmtu > IN6_LINKMTU(ifp)) {
1666 				error = EINVAL;
1667 				break;
1668 			}
1669 			ND_IFINFO(ifp)->linkmtu = ND.linkmtu;
1670 		}
1671 
1672 		if (ND.basereachable != 0) {
1673 			int obasereachable = ND_IFINFO(ifp)->basereachable;
1674 
1675 			ND_IFINFO(ifp)->basereachable = ND.basereachable;
1676 			if (ND.basereachable != obasereachable)
1677 				ND_IFINFO(ifp)->reachable =
1678 				    ND_COMPUTE_RTIME(ND.basereachable);
1679 		}
1680 		if (ND.retrans != 0)
1681 			ND_IFINFO(ifp)->retrans = ND.retrans;
1682 		if (ND.chlim != 0)
1683 			ND_IFINFO(ifp)->chlim = ND.chlim;
1684 		/* FALLTHROUGH */
1685 	case SIOCSIFINFO_FLAGS:
1686 	{
1687 		struct ifaddr *ifa;
1688 		struct in6_ifaddr *ia;
1689 
1690 		if ((ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED) &&
1691 		    !(ND.flags & ND6_IFF_IFDISABLED)) {
1692 			/* ifdisabled 1->0 transision */
1693 
1694 			/*
1695 			 * If the interface is marked as ND6_IFF_IFDISABLED and
1696 			 * has an link-local address with IN6_IFF_DUPLICATED,
1697 			 * do not clear ND6_IFF_IFDISABLED.
1698 			 * See RFC 4862, Section 5.4.5.
1699 			 */
1700 			NET_EPOCH_ENTER(et);
1701 			CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
1702 				if (ifa->ifa_addr->sa_family != AF_INET6)
1703 					continue;
1704 				ia = (struct in6_ifaddr *)ifa;
1705 				if ((ia->ia6_flags & IN6_IFF_DUPLICATED) &&
1706 				    IN6_IS_ADDR_LINKLOCAL(IA6_IN6(ia)))
1707 					break;
1708 			}
1709 			NET_EPOCH_EXIT(et);
1710 
1711 			if (ifa != NULL) {
1712 				/* LLA is duplicated. */
1713 				ND.flags |= ND6_IFF_IFDISABLED;
1714 				log(LOG_ERR, "Cannot enable an interface"
1715 				    " with a link-local address marked"
1716 				    " duplicate.\n");
1717 			} else {
1718 				ND_IFINFO(ifp)->flags &= ~ND6_IFF_IFDISABLED;
1719 				if (ifp->if_flags & IFF_UP)
1720 					in6_if_up(ifp);
1721 			}
1722 		} else if (!(ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED) &&
1723 			    (ND.flags & ND6_IFF_IFDISABLED)) {
1724 			/* ifdisabled 0->1 transision */
1725 			/* Mark all IPv6 address as tentative. */
1726 
1727 			ND_IFINFO(ifp)->flags |= ND6_IFF_IFDISABLED;
1728 			if (V_ip6_dad_count > 0 &&
1729 			    (ND_IFINFO(ifp)->flags & ND6_IFF_NO_DAD) == 0) {
1730 				NET_EPOCH_ENTER(et);
1731 				CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead,
1732 				    ifa_link) {
1733 					if (ifa->ifa_addr->sa_family !=
1734 					    AF_INET6)
1735 						continue;
1736 					ia = (struct in6_ifaddr *)ifa;
1737 					ia->ia6_flags |= IN6_IFF_TENTATIVE;
1738 				}
1739 				NET_EPOCH_EXIT(et);
1740 			}
1741 		}
1742 
1743 		if (ND.flags & ND6_IFF_AUTO_LINKLOCAL) {
1744 			if (!(ND_IFINFO(ifp)->flags & ND6_IFF_AUTO_LINKLOCAL)) {
1745 				/* auto_linklocal 0->1 transision */
1746 
1747 				/* If no link-local address on ifp, configure */
1748 				ND_IFINFO(ifp)->flags |= ND6_IFF_AUTO_LINKLOCAL;
1749 				in6_ifattach(ifp, NULL);
1750 			} else if (!(ND.flags & ND6_IFF_IFDISABLED) &&
1751 			    ifp->if_flags & IFF_UP) {
1752 				/*
1753 				 * When the IF already has
1754 				 * ND6_IFF_AUTO_LINKLOCAL, no link-local
1755 				 * address is assigned, and IFF_UP, try to
1756 				 * assign one.
1757 				 */
1758 				NET_EPOCH_ENTER(et);
1759 				CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead,
1760 				    ifa_link) {
1761 					if (ifa->ifa_addr->sa_family !=
1762 					    AF_INET6)
1763 						continue;
1764 					ia = (struct in6_ifaddr *)ifa;
1765 					if (IN6_IS_ADDR_LINKLOCAL(IA6_IN6(ia)))
1766 						break;
1767 				}
1768 				NET_EPOCH_EXIT(et);
1769 				if (ifa != NULL)
1770 					/* No LLA is configured. */
1771 					in6_ifattach(ifp, NULL);
1772 			}
1773 		}
1774 	}
1775 		ND_IFINFO(ifp)->flags = ND.flags;
1776 		break;
1777 #undef ND
1778 	case SIOCSNDFLUSH_IN6:	/* XXX: the ioctl name is confusing... */
1779 		/* sync kernel routing table with the default router list */
1780 		defrouter_reset();
1781 		defrouter_select();
1782 		break;
1783 	case SIOCSPFXFLUSH_IN6:
1784 	{
1785 		/* flush all the prefix advertised by routers */
1786 		struct in6_ifaddr *ia, *ia_next;
1787 		struct nd_prefix *pr, *next;
1788 		struct nd_prhead prl;
1789 
1790 		LIST_INIT(&prl);
1791 
1792 		ND6_WLOCK();
1793 		LIST_FOREACH_SAFE(pr, &V_nd_prefix, ndpr_entry, next) {
1794 			if (IN6_IS_ADDR_LINKLOCAL(&pr->ndpr_prefix.sin6_addr))
1795 				continue; /* XXX */
1796 			nd6_prefix_unlink(pr, &prl);
1797 		}
1798 		ND6_WUNLOCK();
1799 
1800 		while ((pr = LIST_FIRST(&prl)) != NULL) {
1801 			LIST_REMOVE(pr, ndpr_entry);
1802 			/* XXXRW: in6_ifaddrhead locking. */
1803 			CK_STAILQ_FOREACH_SAFE(ia, &V_in6_ifaddrhead, ia_link,
1804 			    ia_next) {
1805 				if ((ia->ia6_flags & IN6_IFF_AUTOCONF) == 0)
1806 					continue;
1807 
1808 				if (ia->ia6_ndpr == pr)
1809 					in6_purgeaddr(&ia->ia_ifa);
1810 			}
1811 			nd6_prefix_del(pr);
1812 		}
1813 		break;
1814 	}
1815 	case SIOCSRTRFLUSH_IN6:
1816 	{
1817 		/* flush all the default routers */
1818 		struct nd_drhead drq;
1819 		struct nd_defrouter *dr;
1820 
1821 		TAILQ_INIT(&drq);
1822 
1823 		defrouter_reset();
1824 
1825 		ND6_WLOCK();
1826 		while ((dr = TAILQ_FIRST(&V_nd_defrouter)) != NULL)
1827 			defrouter_unlink(dr, &drq);
1828 		ND6_WUNLOCK();
1829 		while ((dr = TAILQ_FIRST(&drq)) != NULL) {
1830 			TAILQ_REMOVE(&drq, dr, dr_entry);
1831 			defrouter_del(dr);
1832 		}
1833 
1834 		defrouter_select();
1835 		break;
1836 	}
1837 	case SIOCGNBRINFO_IN6:
1838 	{
1839 		struct llentry *ln;
1840 		struct in6_addr nb_addr = nbi->addr; /* make local for safety */
1841 
1842 		if ((error = in6_setscope(&nb_addr, ifp, NULL)) != 0)
1843 			return (error);
1844 
1845 		NET_EPOCH_ENTER(et);
1846 		ln = nd6_lookup(&nb_addr, 0, ifp);
1847 		NET_EPOCH_EXIT(et);
1848 
1849 		if (ln == NULL) {
1850 			error = EINVAL;
1851 			break;
1852 		}
1853 		nbi->state = ln->ln_state;
1854 		nbi->asked = ln->la_asked;
1855 		nbi->isrouter = ln->ln_router;
1856 		if (ln->la_expire == 0)
1857 			nbi->expire = 0;
1858 		else
1859 			nbi->expire = ln->la_expire + ln->lle_remtime / hz +
1860 			    (time_second - time_uptime);
1861 		LLE_RUNLOCK(ln);
1862 		break;
1863 	}
1864 	case SIOCGDEFIFACE_IN6:	/* XXX: should be implemented as a sysctl? */
1865 		ndif->ifindex = V_nd6_defifindex;
1866 		break;
1867 	case SIOCSDEFIFACE_IN6:	/* XXX: should be implemented as a sysctl? */
1868 		return (nd6_setdefaultiface(ndif->ifindex));
1869 	}
1870 	return (error);
1871 }
1872 
1873 /*
1874  * Calculates new isRouter value based on provided parameters and
1875  * returns it.
1876  */
1877 static int
1878 nd6_is_router(int type, int code, int is_new, int old_addr, int new_addr,
1879     int ln_router)
1880 {
1881 
1882 	/*
1883 	 * ICMP6 type dependent behavior.
1884 	 *
1885 	 * NS: clear IsRouter if new entry
1886 	 * RS: clear IsRouter
1887 	 * RA: set IsRouter if there's lladdr
1888 	 * redir: clear IsRouter if new entry
1889 	 *
1890 	 * RA case, (1):
1891 	 * The spec says that we must set IsRouter in the following cases:
1892 	 * - If lladdr exist, set IsRouter.  This means (1-5).
1893 	 * - If it is old entry (!newentry), set IsRouter.  This means (7).
1894 	 * So, based on the spec, in (1-5) and (7) cases we must set IsRouter.
1895 	 * A quetion arises for (1) case.  (1) case has no lladdr in the
1896 	 * neighbor cache, this is similar to (6).
1897 	 * This case is rare but we figured that we MUST NOT set IsRouter.
1898 	 *
1899 	 *   is_new  old_addr new_addr 	    NS  RS  RA	redir
1900 	 *							D R
1901 	 *	0	n	n	(1)	c   ?     s
1902 	 *	0	y	n	(2)	c   s     s
1903 	 *	0	n	y	(3)	c   s     s
1904 	 *	0	y	y	(4)	c   s     s
1905 	 *	0	y	y	(5)	c   s     s
1906 	 *	1	--	n	(6) c	c	c s
1907 	 *	1	--	y	(7) c	c   s	c s
1908 	 *
1909 	 *					(c=clear s=set)
1910 	 */
1911 	switch (type & 0xff) {
1912 	case ND_NEIGHBOR_SOLICIT:
1913 		/*
1914 		 * New entry must have is_router flag cleared.
1915 		 */
1916 		if (is_new)					/* (6-7) */
1917 			ln_router = 0;
1918 		break;
1919 	case ND_REDIRECT:
1920 		/*
1921 		 * If the icmp is a redirect to a better router, always set the
1922 		 * is_router flag.  Otherwise, if the entry is newly created,
1923 		 * clear the flag.  [RFC 2461, sec 8.3]
1924 		 */
1925 		if (code == ND_REDIRECT_ROUTER)
1926 			ln_router = 1;
1927 		else {
1928 			if (is_new)				/* (6-7) */
1929 				ln_router = 0;
1930 		}
1931 		break;
1932 	case ND_ROUTER_SOLICIT:
1933 		/*
1934 		 * is_router flag must always be cleared.
1935 		 */
1936 		ln_router = 0;
1937 		break;
1938 	case ND_ROUTER_ADVERT:
1939 		/*
1940 		 * Mark an entry with lladdr as a router.
1941 		 */
1942 		if ((!is_new && (old_addr || new_addr)) ||	/* (2-5) */
1943 		    (is_new && new_addr)) {			/* (7) */
1944 			ln_router = 1;
1945 		}
1946 		break;
1947 	}
1948 
1949 	return (ln_router);
1950 }
1951 
1952 /*
1953  * Create neighbor cache entry and cache link-layer address,
1954  * on reception of inbound ND6 packets.  (RS/RA/NS/redirect)
1955  *
1956  * type - ICMP6 type
1957  * code - type dependent information
1958  *
1959  */
1960 void
1961 nd6_cache_lladdr(struct ifnet *ifp, struct in6_addr *from, char *lladdr,
1962     int lladdrlen, int type, int code)
1963 {
1964 	struct llentry *ln = NULL, *ln_tmp;
1965 	int is_newentry;
1966 	int do_update;
1967 	int olladdr;
1968 	int llchange;
1969 	int flags;
1970 	uint16_t router = 0;
1971 	struct sockaddr_in6 sin6;
1972 	struct epoch_tracker et;
1973 	struct mbuf *chain = NULL;
1974 	u_char linkhdr[LLE_MAX_LINKHDR];
1975 	size_t linkhdrsize;
1976 	int lladdr_off;
1977 
1978 	IF_AFDATA_UNLOCK_ASSERT(ifp);
1979 
1980 	KASSERT(ifp != NULL, ("%s: ifp == NULL", __func__));
1981 	KASSERT(from != NULL, ("%s: from == NULL", __func__));
1982 
1983 	/* nothing must be updated for unspecified address */
1984 	if (IN6_IS_ADDR_UNSPECIFIED(from))
1985 		return;
1986 
1987 	/*
1988 	 * Validation about ifp->if_addrlen and lladdrlen must be done in
1989 	 * the caller.
1990 	 *
1991 	 * XXX If the link does not have link-layer adderss, what should
1992 	 * we do? (ifp->if_addrlen == 0)
1993 	 * Spec says nothing in sections for RA, RS and NA.  There's small
1994 	 * description on it in NS section (RFC 2461 7.2.3).
1995 	 */
1996 	flags = lladdr ? LLE_EXCLUSIVE : 0;
1997 	NET_EPOCH_ENTER(et);
1998 	ln = nd6_lookup(from, flags, ifp);
1999 	NET_EPOCH_EXIT(et);
2000 	is_newentry = 0;
2001 	if (ln == NULL) {
2002 		flags |= LLE_EXCLUSIVE;
2003 		ln = nd6_alloc(from, 0, ifp);
2004 		if (ln == NULL)
2005 			return;
2006 
2007 		/*
2008 		 * Since we already know all the data for the new entry,
2009 		 * fill it before insertion.
2010 		 */
2011 		if (lladdr != NULL) {
2012 			linkhdrsize = sizeof(linkhdr);
2013 			if (lltable_calc_llheader(ifp, AF_INET6, lladdr,
2014 			    linkhdr, &linkhdrsize, &lladdr_off) != 0)
2015 				return;
2016 			lltable_set_entry_addr(ifp, ln, linkhdr, linkhdrsize,
2017 			    lladdr_off);
2018 		}
2019 
2020 		IF_AFDATA_WLOCK(ifp);
2021 		LLE_WLOCK(ln);
2022 		/* Prefer any existing lle over newly-created one */
2023 		ln_tmp = nd6_lookup(from, LLE_EXCLUSIVE, ifp);
2024 		if (ln_tmp == NULL)
2025 			lltable_link_entry(LLTABLE6(ifp), ln);
2026 		IF_AFDATA_WUNLOCK(ifp);
2027 		if (ln_tmp == NULL) {
2028 			/* No existing lle, mark as new entry (6,7) */
2029 			is_newentry = 1;
2030 			if (lladdr != NULL) {	/* (7) */
2031 				nd6_llinfo_setstate(ln, ND6_LLINFO_STALE);
2032 				EVENTHANDLER_INVOKE(lle_event, ln,
2033 				    LLENTRY_RESOLVED);
2034 			}
2035 		} else {
2036 			lltable_free_entry(LLTABLE6(ifp), ln);
2037 			ln = ln_tmp;
2038 			ln_tmp = NULL;
2039 		}
2040 	}
2041 	/* do nothing if static ndp is set */
2042 	if ((ln->la_flags & LLE_STATIC)) {
2043 		if (flags & LLE_EXCLUSIVE)
2044 			LLE_WUNLOCK(ln);
2045 		else
2046 			LLE_RUNLOCK(ln);
2047 		return;
2048 	}
2049 
2050 	olladdr = (ln->la_flags & LLE_VALID) ? 1 : 0;
2051 	if (olladdr && lladdr) {
2052 		llchange = bcmp(lladdr, ln->ll_addr,
2053 		    ifp->if_addrlen);
2054 	} else if (!olladdr && lladdr)
2055 		llchange = 1;
2056 	else
2057 		llchange = 0;
2058 
2059 	/*
2060 	 * newentry olladdr  lladdr  llchange	(*=record)
2061 	 *	0	n	n	--	(1)
2062 	 *	0	y	n	--	(2)
2063 	 *	0	n	y	y	(3) * STALE
2064 	 *	0	y	y	n	(4) *
2065 	 *	0	y	y	y	(5) * STALE
2066 	 *	1	--	n	--	(6)   NOSTATE(= PASSIVE)
2067 	 *	1	--	y	--	(7) * STALE
2068 	 */
2069 
2070 	do_update = 0;
2071 	if (is_newentry == 0 && llchange != 0) {
2072 		do_update = 1;	/* (3,5) */
2073 
2074 		/*
2075 		 * Record source link-layer address
2076 		 * XXX is it dependent to ifp->if_type?
2077 		 */
2078 		linkhdrsize = sizeof(linkhdr);
2079 		if (lltable_calc_llheader(ifp, AF_INET6, lladdr,
2080 		    linkhdr, &linkhdrsize, &lladdr_off) != 0)
2081 			return;
2082 
2083 		if (lltable_try_set_entry_addr(ifp, ln, linkhdr, linkhdrsize,
2084 		    lladdr_off) == 0) {
2085 			/* Entry was deleted */
2086 			return;
2087 		}
2088 
2089 		nd6_llinfo_setstate(ln, ND6_LLINFO_STALE);
2090 
2091 		EVENTHANDLER_INVOKE(lle_event, ln, LLENTRY_RESOLVED);
2092 
2093 		if (ln->la_hold != NULL)
2094 			nd6_grab_holdchain(ln, &chain, &sin6);
2095 	}
2096 
2097 	/* Calculates new router status */
2098 	router = nd6_is_router(type, code, is_newentry, olladdr,
2099 	    lladdr != NULL ? 1 : 0, ln->ln_router);
2100 
2101 	ln->ln_router = router;
2102 	/* Mark non-router redirects with special flag */
2103 	if ((type & 0xFF) == ND_REDIRECT && code != ND_REDIRECT_ROUTER)
2104 		ln->la_flags |= LLE_REDIRECT;
2105 
2106 	if (flags & LLE_EXCLUSIVE)
2107 		LLE_WUNLOCK(ln);
2108 	else
2109 		LLE_RUNLOCK(ln);
2110 
2111 	if (chain != NULL)
2112 		nd6_flush_holdchain(ifp, chain, &sin6);
2113 
2114 	/*
2115 	 * When the link-layer address of a router changes, select the
2116 	 * best router again.  In particular, when the neighbor entry is newly
2117 	 * created, it might affect the selection policy.
2118 	 * Question: can we restrict the first condition to the "is_newentry"
2119 	 * case?
2120 	 * XXX: when we hear an RA from a new router with the link-layer
2121 	 * address option, defrouter_select_fib() is called twice, since
2122 	 * defrtrlist_update called the function as well.  However, I believe
2123 	 * we can compromise the overhead, since it only happens the first
2124 	 * time.
2125 	 * XXX: although defrouter_select_fib() should not have a bad effect
2126 	 * for those are not autoconfigured hosts, we explicitly avoid such
2127 	 * cases for safety.
2128 	 */
2129 	if ((do_update || is_newentry) && router &&
2130 	    ND_IFINFO(ifp)->flags & ND6_IFF_ACCEPT_RTADV) {
2131 		/*
2132 		 * guaranteed recursion
2133 		 */
2134 		defrouter_select_fib(ifp->if_fib);
2135 	}
2136 }
2137 
2138 static void
2139 nd6_slowtimo(void *arg)
2140 {
2141 	struct epoch_tracker et;
2142 	CURVNET_SET((struct vnet *) arg);
2143 	struct nd_ifinfo *nd6if;
2144 	struct ifnet *ifp;
2145 
2146 	callout_reset(&V_nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz,
2147 	    nd6_slowtimo, curvnet);
2148 	NET_EPOCH_ENTER(et);
2149 	CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) {
2150 		if (ifp->if_afdata[AF_INET6] == NULL)
2151 			continue;
2152 		nd6if = ND_IFINFO(ifp);
2153 		if (nd6if->basereachable && /* already initialized */
2154 		    (nd6if->recalctm -= ND6_SLOWTIMER_INTERVAL) <= 0) {
2155 			/*
2156 			 * Since reachable time rarely changes by router
2157 			 * advertisements, we SHOULD insure that a new random
2158 			 * value gets recomputed at least once every few hours.
2159 			 * (RFC 2461, 6.3.4)
2160 			 */
2161 			nd6if->recalctm = V_nd6_recalc_reachtm_interval;
2162 			nd6if->reachable = ND_COMPUTE_RTIME(nd6if->basereachable);
2163 		}
2164 	}
2165 	NET_EPOCH_EXIT(et);
2166 	CURVNET_RESTORE();
2167 }
2168 
2169 void
2170 nd6_grab_holdchain(struct llentry *ln, struct mbuf **chain,
2171     struct sockaddr_in6 *sin6)
2172 {
2173 
2174 	LLE_WLOCK_ASSERT(ln);
2175 
2176 	*chain = ln->la_hold;
2177 	ln->la_hold = NULL;
2178 	lltable_fill_sa_entry(ln, (struct sockaddr *)sin6);
2179 
2180 	if (ln->ln_state == ND6_LLINFO_STALE) {
2181 
2182 		/*
2183 		 * The first time we send a packet to a
2184 		 * neighbor whose entry is STALE, we have
2185 		 * to change the state to DELAY and a sets
2186 		 * a timer to expire in DELAY_FIRST_PROBE_TIME
2187 		 * seconds to ensure do neighbor unreachability
2188 		 * detection on expiration.
2189 		 * (RFC 2461 7.3.3)
2190 		 */
2191 		nd6_llinfo_setstate(ln, ND6_LLINFO_DELAY);
2192 	}
2193 }
2194 
2195 int
2196 nd6_output_ifp(struct ifnet *ifp, struct ifnet *origifp, struct mbuf *m,
2197     struct sockaddr_in6 *dst, struct route *ro)
2198 {
2199 	int error;
2200 	int ip6len;
2201 	struct ip6_hdr *ip6;
2202 	struct m_tag *mtag;
2203 
2204 #ifdef MAC
2205 	mac_netinet6_nd6_send(ifp, m);
2206 #endif
2207 
2208 	/*
2209 	 * If called from nd6_ns_output() (NS), nd6_na_output() (NA),
2210 	 * icmp6_redirect_output() (REDIRECT) or from rip6_output() (RS, RA
2211 	 * as handled by rtsol and rtadvd), mbufs will be tagged for SeND
2212 	 * to be diverted to user space.  When re-injected into the kernel,
2213 	 * send_output() will directly dispatch them to the outgoing interface.
2214 	 */
2215 	if (send_sendso_input_hook != NULL) {
2216 		mtag = m_tag_find(m, PACKET_TAG_ND_OUTGOING, NULL);
2217 		if (mtag != NULL) {
2218 			ip6 = mtod(m, struct ip6_hdr *);
2219 			ip6len = sizeof(struct ip6_hdr) + ntohs(ip6->ip6_plen);
2220 			/* Use the SEND socket */
2221 			error = send_sendso_input_hook(m, ifp, SND_OUT,
2222 			    ip6len);
2223 			/* -1 == no app on SEND socket */
2224 			if (error == 0 || error != -1)
2225 			    return (error);
2226 		}
2227 	}
2228 
2229 	m_clrprotoflags(m);	/* Avoid confusing lower layers. */
2230 	IP_PROBE(send, NULL, NULL, mtod(m, struct ip6_hdr *), ifp, NULL,
2231 	    mtod(m, struct ip6_hdr *));
2232 
2233 	if ((ifp->if_flags & IFF_LOOPBACK) == 0)
2234 		origifp = ifp;
2235 
2236 	error = (*ifp->if_output)(origifp, m, (struct sockaddr *)dst, ro);
2237 	return (error);
2238 }
2239 
2240 /*
2241  * Lookup link headerfor @sa_dst address. Stores found
2242  * data in @desten buffer. Copy of lle ln_flags can be also
2243  * saved in @pflags if @pflags is non-NULL.
2244  *
2245  * If destination LLE does not exists or lle state modification
2246  * is required, call "slow" version.
2247  *
2248  * Return values:
2249  * - 0 on success (address copied to buffer).
2250  * - EWOULDBLOCK (no local error, but address is still unresolved)
2251  * - other errors (alloc failure, etc)
2252  */
2253 int
2254 nd6_resolve(struct ifnet *ifp, int is_gw, struct mbuf *m,
2255     const struct sockaddr *sa_dst, u_char *desten, uint32_t *pflags,
2256     struct llentry **plle)
2257 {
2258 	struct epoch_tracker et;
2259 	struct llentry *ln = NULL;
2260 	const struct sockaddr_in6 *dst6;
2261 
2262 	if (pflags != NULL)
2263 		*pflags = 0;
2264 
2265 	dst6 = (const struct sockaddr_in6 *)sa_dst;
2266 
2267 	/* discard the packet if IPv6 operation is disabled on the interface */
2268 	if ((ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED)) {
2269 		m_freem(m);
2270 		return (ENETDOWN); /* better error? */
2271 	}
2272 
2273 	if (m != NULL && m->m_flags & M_MCAST) {
2274 		switch (ifp->if_type) {
2275 		case IFT_ETHER:
2276 		case IFT_L2VLAN:
2277 		case IFT_BRIDGE:
2278 			ETHER_MAP_IPV6_MULTICAST(&dst6->sin6_addr,
2279 						 desten);
2280 			return (0);
2281 		default:
2282 			m_freem(m);
2283 			return (EAFNOSUPPORT);
2284 		}
2285 	}
2286 
2287 	NET_EPOCH_ENTER(et);
2288 	ln = nd6_lookup(&dst6->sin6_addr, plle ? LLE_EXCLUSIVE : LLE_UNLOCKED,
2289 	    ifp);
2290 	if (ln != NULL && (ln->r_flags & RLLE_VALID) != 0) {
2291 		/* Entry found, let's copy lle info */
2292 		bcopy(ln->r_linkdata, desten, ln->r_hdrlen);
2293 		if (pflags != NULL)
2294 			*pflags = LLE_VALID | (ln->r_flags & RLLE_IFADDR);
2295 		/* Check if we have feedback request from nd6 timer */
2296 		if (ln->r_skip_req != 0) {
2297 			LLE_REQ_LOCK(ln);
2298 			ln->r_skip_req = 0; /* Notify that entry was used */
2299 			ln->lle_hittime = time_uptime;
2300 			LLE_REQ_UNLOCK(ln);
2301 		}
2302 		if (plle) {
2303 			LLE_ADDREF(ln);
2304 			*plle = ln;
2305 			LLE_WUNLOCK(ln);
2306 		}
2307 		NET_EPOCH_EXIT(et);
2308 		return (0);
2309 	} else if (plle && ln)
2310 		LLE_WUNLOCK(ln);
2311 	NET_EPOCH_EXIT(et);
2312 
2313 	return (nd6_resolve_slow(ifp, 0, m, dst6, desten, pflags, plle));
2314 }
2315 
2316 
2317 /*
2318  * Do L2 address resolution for @sa_dst address. Stores found
2319  * address in @desten buffer. Copy of lle ln_flags can be also
2320  * saved in @pflags if @pflags is non-NULL.
2321  *
2322  * Heavy version.
2323  * Function assume that destination LLE does not exist,
2324  * is invalid or stale, so LLE_EXCLUSIVE lock needs to be acquired.
2325  *
2326  * Set noinline to be dtrace-friendly
2327  */
2328 static __noinline int
2329 nd6_resolve_slow(struct ifnet *ifp, int flags, struct mbuf *m,
2330     const struct sockaddr_in6 *dst, u_char *desten, uint32_t *pflags,
2331     struct llentry **plle)
2332 {
2333 	struct llentry *lle = NULL, *lle_tmp;
2334 	struct in6_addr *psrc, src;
2335 	int send_ns, ll_len;
2336 	char *lladdr;
2337 
2338 	/*
2339 	 * Address resolution or Neighbor Unreachability Detection
2340 	 * for the next hop.
2341 	 * At this point, the destination of the packet must be a unicast
2342 	 * or an anycast address(i.e. not a multicast).
2343 	 */
2344 	if (lle == NULL) {
2345 		struct epoch_tracker et;
2346 
2347 		NET_EPOCH_ENTER(et);
2348 		lle = nd6_lookup(&dst->sin6_addr, LLE_EXCLUSIVE, ifp);
2349 		NET_EPOCH_EXIT(et);
2350 		if ((lle == NULL) && nd6_is_addr_neighbor(dst, ifp))  {
2351 			/*
2352 			 * Since nd6_is_addr_neighbor() internally calls nd6_lookup(),
2353 			 * the condition below is not very efficient.  But we believe
2354 			 * it is tolerable, because this should be a rare case.
2355 			 */
2356 			lle = nd6_alloc(&dst->sin6_addr, 0, ifp);
2357 			if (lle == NULL) {
2358 				char ip6buf[INET6_ADDRSTRLEN];
2359 				log(LOG_DEBUG,
2360 				    "nd6_output: can't allocate llinfo for %s "
2361 				    "(ln=%p)\n",
2362 				    ip6_sprintf(ip6buf, &dst->sin6_addr), lle);
2363 				m_freem(m);
2364 				return (ENOBUFS);
2365 			}
2366 
2367 			IF_AFDATA_WLOCK(ifp);
2368 			LLE_WLOCK(lle);
2369 			/* Prefer any existing entry over newly-created one */
2370 			lle_tmp = nd6_lookup(&dst->sin6_addr, LLE_EXCLUSIVE, ifp);
2371 			if (lle_tmp == NULL)
2372 				lltable_link_entry(LLTABLE6(ifp), lle);
2373 			IF_AFDATA_WUNLOCK(ifp);
2374 			if (lle_tmp != NULL) {
2375 				lltable_free_entry(LLTABLE6(ifp), lle);
2376 				lle = lle_tmp;
2377 				lle_tmp = NULL;
2378 			}
2379 		}
2380 	}
2381 	if (lle == NULL) {
2382 		if (!(ND_IFINFO(ifp)->flags & ND6_IFF_PERFORMNUD)) {
2383 			m_freem(m);
2384 			return (ENOBUFS);
2385 		}
2386 
2387 		if (m != NULL)
2388 			m_freem(m);
2389 		return (ENOBUFS);
2390 	}
2391 
2392 	LLE_WLOCK_ASSERT(lle);
2393 
2394 	/*
2395 	 * The first time we send a packet to a neighbor whose entry is
2396 	 * STALE, we have to change the state to DELAY and a sets a timer to
2397 	 * expire in DELAY_FIRST_PROBE_TIME seconds to ensure do
2398 	 * neighbor unreachability detection on expiration.
2399 	 * (RFC 2461 7.3.3)
2400 	 */
2401 	if (lle->ln_state == ND6_LLINFO_STALE)
2402 		nd6_llinfo_setstate(lle, ND6_LLINFO_DELAY);
2403 
2404 	/*
2405 	 * If the neighbor cache entry has a state other than INCOMPLETE
2406 	 * (i.e. its link-layer address is already resolved), just
2407 	 * send the packet.
2408 	 */
2409 	if (lle->ln_state > ND6_LLINFO_INCOMPLETE) {
2410 		if (flags & LLE_ADDRONLY) {
2411 			lladdr = lle->ll_addr;
2412 			ll_len = ifp->if_addrlen;
2413 		} else {
2414 			lladdr = lle->r_linkdata;
2415 			ll_len = lle->r_hdrlen;
2416 		}
2417 		bcopy(lladdr, desten, ll_len);
2418 		if (pflags != NULL)
2419 			*pflags = lle->la_flags;
2420 		if (plle) {
2421 			LLE_ADDREF(lle);
2422 			*plle = lle;
2423 		}
2424 		LLE_WUNLOCK(lle);
2425 		return (0);
2426 	}
2427 
2428 	/*
2429 	 * There is a neighbor cache entry, but no ethernet address
2430 	 * response yet.  Append this latest packet to the end of the
2431 	 * packet queue in the mbuf.  When it exceeds nd6_maxqueuelen,
2432 	 * the oldest packet in the queue will be removed.
2433 	 */
2434 
2435 	if (lle->la_hold != NULL) {
2436 		struct mbuf *m_hold;
2437 		int i;
2438 
2439 		i = 0;
2440 		for (m_hold = lle->la_hold; m_hold; m_hold = m_hold->m_nextpkt){
2441 			i++;
2442 			if (m_hold->m_nextpkt == NULL) {
2443 				m_hold->m_nextpkt = m;
2444 				break;
2445 			}
2446 		}
2447 		while (i >= V_nd6_maxqueuelen) {
2448 			m_hold = lle->la_hold;
2449 			lle->la_hold = lle->la_hold->m_nextpkt;
2450 			m_freem(m_hold);
2451 			i--;
2452 		}
2453 	} else {
2454 		lle->la_hold = m;
2455 	}
2456 
2457 	/*
2458 	 * If there has been no NS for the neighbor after entering the
2459 	 * INCOMPLETE state, send the first solicitation.
2460 	 * Note that for newly-created lle la_asked will be 0,
2461 	 * so we will transition from ND6_LLINFO_NOSTATE to
2462 	 * ND6_LLINFO_INCOMPLETE state here.
2463 	 */
2464 	psrc = NULL;
2465 	send_ns = 0;
2466 	if (lle->la_asked == 0) {
2467 		lle->la_asked++;
2468 		send_ns = 1;
2469 		psrc = nd6_llinfo_get_holdsrc(lle, &src);
2470 
2471 		nd6_llinfo_setstate(lle, ND6_LLINFO_INCOMPLETE);
2472 	}
2473 	LLE_WUNLOCK(lle);
2474 	if (send_ns != 0)
2475 		nd6_ns_output(ifp, psrc, NULL, &dst->sin6_addr, NULL);
2476 
2477 	return (EWOULDBLOCK);
2478 }
2479 
2480 /*
2481  * Do L2 address resolution for @sa_dst address. Stores found
2482  * address in @desten buffer. Copy of lle ln_flags can be also
2483  * saved in @pflags if @pflags is non-NULL.
2484  *
2485  * Return values:
2486  * - 0 on success (address copied to buffer).
2487  * - EWOULDBLOCK (no local error, but address is still unresolved)
2488  * - other errors (alloc failure, etc)
2489  */
2490 int
2491 nd6_resolve_addr(struct ifnet *ifp, int flags, const struct sockaddr *dst,
2492     char *desten, uint32_t *pflags)
2493 {
2494 	int error;
2495 
2496 	flags |= LLE_ADDRONLY;
2497 	error = nd6_resolve_slow(ifp, flags, NULL,
2498 	    (const struct sockaddr_in6 *)dst, desten, pflags, NULL);
2499 	return (error);
2500 }
2501 
2502 int
2503 nd6_flush_holdchain(struct ifnet *ifp, struct mbuf *chain,
2504     struct sockaddr_in6 *dst)
2505 {
2506 	struct mbuf *m, *m_head;
2507 	int error = 0;
2508 
2509 	m_head = chain;
2510 
2511 	while (m_head) {
2512 		m = m_head;
2513 		m_head = m_head->m_nextpkt;
2514 		error = nd6_output_ifp(ifp, ifp, m, dst, NULL);
2515 	}
2516 
2517 	/*
2518 	 * XXX
2519 	 * note that intermediate errors are blindly ignored
2520 	 */
2521 	return (error);
2522 }
2523 
2524 static int
2525 nd6_need_cache(struct ifnet *ifp)
2526 {
2527 	/*
2528 	 * XXX: we currently do not make neighbor cache on any interface
2529 	 * other than Ethernet and GIF.
2530 	 *
2531 	 * RFC2893 says:
2532 	 * - unidirectional tunnels needs no ND
2533 	 */
2534 	switch (ifp->if_type) {
2535 	case IFT_ETHER:
2536 	case IFT_IEEE1394:
2537 	case IFT_L2VLAN:
2538 	case IFT_INFINIBAND:
2539 	case IFT_BRIDGE:
2540 	case IFT_PROPVIRTUAL:
2541 		return (1);
2542 	default:
2543 		return (0);
2544 	}
2545 }
2546 
2547 /*
2548  * Add pernament ND6 link-layer record for given
2549  * interface address.
2550  *
2551  * Very similar to IPv4 arp_ifinit(), but:
2552  * 1) IPv6 DAD is performed in different place
2553  * 2) It is called by IPv6 protocol stack in contrast to
2554  * arp_ifinit() which is typically called in SIOCSIFADDR
2555  * driver ioctl handler.
2556  *
2557  */
2558 int
2559 nd6_add_ifa_lle(struct in6_ifaddr *ia)
2560 {
2561 	struct ifnet *ifp;
2562 	struct llentry *ln, *ln_tmp;
2563 	struct sockaddr *dst;
2564 
2565 	ifp = ia->ia_ifa.ifa_ifp;
2566 	if (nd6_need_cache(ifp) == 0)
2567 		return (0);
2568 
2569 	ia->ia_ifa.ifa_rtrequest = nd6_rtrequest;
2570 	dst = (struct sockaddr *)&ia->ia_addr;
2571 	ln = lltable_alloc_entry(LLTABLE6(ifp), LLE_IFADDR, dst);
2572 	if (ln == NULL)
2573 		return (ENOBUFS);
2574 
2575 	IF_AFDATA_WLOCK(ifp);
2576 	LLE_WLOCK(ln);
2577 	/* Unlink any entry if exists */
2578 	ln_tmp = lla_lookup(LLTABLE6(ifp), LLE_EXCLUSIVE, dst);
2579 	if (ln_tmp != NULL)
2580 		lltable_unlink_entry(LLTABLE6(ifp), ln_tmp);
2581 	lltable_link_entry(LLTABLE6(ifp), ln);
2582 	IF_AFDATA_WUNLOCK(ifp);
2583 
2584 	if (ln_tmp != NULL)
2585 		EVENTHANDLER_INVOKE(lle_event, ln_tmp, LLENTRY_EXPIRED);
2586 	EVENTHANDLER_INVOKE(lle_event, ln, LLENTRY_RESOLVED);
2587 
2588 	LLE_WUNLOCK(ln);
2589 	if (ln_tmp != NULL)
2590 		llentry_free(ln_tmp);
2591 
2592 	return (0);
2593 }
2594 
2595 /*
2596  * Removes either all lle entries for given @ia, or lle
2597  * corresponding to @ia address.
2598  */
2599 void
2600 nd6_rem_ifa_lle(struct in6_ifaddr *ia, int all)
2601 {
2602 	struct sockaddr_in6 mask, addr;
2603 	struct sockaddr *saddr, *smask;
2604 	struct ifnet *ifp;
2605 
2606 	ifp = ia->ia_ifa.ifa_ifp;
2607 	memcpy(&addr, &ia->ia_addr, sizeof(ia->ia_addr));
2608 	memcpy(&mask, &ia->ia_prefixmask, sizeof(ia->ia_prefixmask));
2609 	saddr = (struct sockaddr *)&addr;
2610 	smask = (struct sockaddr *)&mask;
2611 
2612 	if (all != 0)
2613 		lltable_prefix_free(AF_INET6, saddr, smask, LLE_STATIC);
2614 	else
2615 		lltable_delete_addr(LLTABLE6(ifp), LLE_IFADDR, saddr);
2616 }
2617 
2618 static void
2619 clear_llinfo_pqueue(struct llentry *ln)
2620 {
2621 	struct mbuf *m_hold, *m_hold_next;
2622 
2623 	for (m_hold = ln->la_hold; m_hold; m_hold = m_hold_next) {
2624 		m_hold_next = m_hold->m_nextpkt;
2625 		m_freem(m_hold);
2626 	}
2627 
2628 	ln->la_hold = NULL;
2629 }
2630 
2631 static int nd6_sysctl_drlist(SYSCTL_HANDLER_ARGS);
2632 static int nd6_sysctl_prlist(SYSCTL_HANDLER_ARGS);
2633 
2634 SYSCTL_DECL(_net_inet6_icmp6);
2635 SYSCTL_PROC(_net_inet6_icmp6, ICMPV6CTL_ND6_DRLIST, nd6_drlist,
2636 	CTLTYPE_OPAQUE | CTLFLAG_RD | CTLFLAG_MPSAFE,
2637 	NULL, 0, nd6_sysctl_drlist, "S,in6_defrouter",
2638 	"NDP default router list");
2639 SYSCTL_PROC(_net_inet6_icmp6, ICMPV6CTL_ND6_PRLIST, nd6_prlist,
2640 	CTLTYPE_OPAQUE | CTLFLAG_RD | CTLFLAG_MPSAFE,
2641 	NULL, 0, nd6_sysctl_prlist, "S,in6_prefix",
2642 	"NDP prefix list");
2643 SYSCTL_INT(_net_inet6_icmp6, ICMPV6CTL_ND6_MAXQLEN, nd6_maxqueuelen,
2644 	CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(nd6_maxqueuelen), 1, "");
2645 SYSCTL_INT(_net_inet6_icmp6, OID_AUTO, nd6_gctimer,
2646 	CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(nd6_gctimer), (60 * 60 * 24), "");
2647 
2648 static int
2649 nd6_sysctl_drlist(SYSCTL_HANDLER_ARGS)
2650 {
2651 	struct in6_defrouter d;
2652 	struct nd_defrouter *dr;
2653 	int error;
2654 
2655 	if (req->newptr != NULL)
2656 		return (EPERM);
2657 
2658 	error = sysctl_wire_old_buffer(req, 0);
2659 	if (error != 0)
2660 		return (error);
2661 
2662 	bzero(&d, sizeof(d));
2663 	d.rtaddr.sin6_family = AF_INET6;
2664 	d.rtaddr.sin6_len = sizeof(d.rtaddr);
2665 
2666 	ND6_RLOCK();
2667 	TAILQ_FOREACH(dr, &V_nd_defrouter, dr_entry) {
2668 		d.rtaddr.sin6_addr = dr->rtaddr;
2669 		error = sa6_recoverscope(&d.rtaddr);
2670 		if (error != 0)
2671 			break;
2672 		d.flags = dr->raflags;
2673 		d.rtlifetime = dr->rtlifetime;
2674 		d.expire = dr->expire + (time_second - time_uptime);
2675 		d.if_index = dr->ifp->if_index;
2676 		error = SYSCTL_OUT(req, &d, sizeof(d));
2677 		if (error != 0)
2678 			break;
2679 	}
2680 	ND6_RUNLOCK();
2681 	return (error);
2682 }
2683 
2684 static int
2685 nd6_sysctl_prlist(SYSCTL_HANDLER_ARGS)
2686 {
2687 	struct in6_prefix p;
2688 	struct sockaddr_in6 s6;
2689 	struct nd_prefix *pr;
2690 	struct nd_pfxrouter *pfr;
2691 	time_t maxexpire;
2692 	int error;
2693 	char ip6buf[INET6_ADDRSTRLEN];
2694 
2695 	if (req->newptr)
2696 		return (EPERM);
2697 
2698 	error = sysctl_wire_old_buffer(req, 0);
2699 	if (error != 0)
2700 		return (error);
2701 
2702 	bzero(&p, sizeof(p));
2703 	p.origin = PR_ORIG_RA;
2704 	bzero(&s6, sizeof(s6));
2705 	s6.sin6_family = AF_INET6;
2706 	s6.sin6_len = sizeof(s6);
2707 
2708 	ND6_RLOCK();
2709 	LIST_FOREACH(pr, &V_nd_prefix, ndpr_entry) {
2710 		p.prefix = pr->ndpr_prefix;
2711 		if (sa6_recoverscope(&p.prefix)) {
2712 			log(LOG_ERR, "scope error in prefix list (%s)\n",
2713 			    ip6_sprintf(ip6buf, &p.prefix.sin6_addr));
2714 			/* XXX: press on... */
2715 		}
2716 		p.raflags = pr->ndpr_raf;
2717 		p.prefixlen = pr->ndpr_plen;
2718 		p.vltime = pr->ndpr_vltime;
2719 		p.pltime = pr->ndpr_pltime;
2720 		p.if_index = pr->ndpr_ifp->if_index;
2721 		if (pr->ndpr_vltime == ND6_INFINITE_LIFETIME)
2722 			p.expire = 0;
2723 		else {
2724 			/* XXX: we assume time_t is signed. */
2725 			maxexpire = (-1) &
2726 			    ~((time_t)1 << ((sizeof(maxexpire) * 8) - 1));
2727 			if (pr->ndpr_vltime < maxexpire - pr->ndpr_lastupdate)
2728 				p.expire = pr->ndpr_lastupdate +
2729 				    pr->ndpr_vltime +
2730 				    (time_second - time_uptime);
2731 			else
2732 				p.expire = maxexpire;
2733 		}
2734 		p.refcnt = pr->ndpr_addrcnt;
2735 		p.flags = pr->ndpr_stateflags;
2736 		p.advrtrs = 0;
2737 		LIST_FOREACH(pfr, &pr->ndpr_advrtrs, pfr_entry)
2738 			p.advrtrs++;
2739 		error = SYSCTL_OUT(req, &p, sizeof(p));
2740 		if (error != 0)
2741 			break;
2742 		LIST_FOREACH(pfr, &pr->ndpr_advrtrs, pfr_entry) {
2743 			s6.sin6_addr = pfr->router->rtaddr;
2744 			if (sa6_recoverscope(&s6))
2745 				log(LOG_ERR,
2746 				    "scope error in prefix list (%s)\n",
2747 				    ip6_sprintf(ip6buf, &pfr->router->rtaddr));
2748 			error = SYSCTL_OUT(req, &s6, sizeof(s6));
2749 			if (error != 0)
2750 				goto out;
2751 		}
2752 	}
2753 out:
2754 	ND6_RUNLOCK();
2755 	return (error);
2756 }
2757