xref: /freebsd/sys/netinet6/nd6.c (revision 3157ba21)
1 /*-
2  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. Neither the name of the project nor the names of its contributors
14  *    may be used to endorse or promote products derived from this software
15  *    without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  *	$KAME: nd6.c,v 1.144 2001/05/24 07:44:00 itojun Exp $
30  */
31 
32 #include <sys/cdefs.h>
33 __FBSDID("$FreeBSD$");
34 
35 #include "opt_inet.h"
36 #include "opt_inet6.h"
37 
38 #include <sys/param.h>
39 #include <sys/systm.h>
40 #include <sys/callout.h>
41 #include <sys/malloc.h>
42 #include <sys/mbuf.h>
43 #include <sys/socket.h>
44 #include <sys/sockio.h>
45 #include <sys/time.h>
46 #include <sys/kernel.h>
47 #include <sys/protosw.h>
48 #include <sys/errno.h>
49 #include <sys/syslog.h>
50 #include <sys/lock.h>
51 #include <sys/rwlock.h>
52 #include <sys/queue.h>
53 #include <sys/sysctl.h>
54 
55 #include <net/if.h>
56 #include <net/if_arc.h>
57 #include <net/if_dl.h>
58 #include <net/if_types.h>
59 #include <net/iso88025.h>
60 #include <net/fddi.h>
61 #include <net/route.h>
62 #include <net/vnet.h>
63 
64 #include <netinet/in.h>
65 #include <net/if_llatbl.h>
66 #define	L3_ADDR_SIN6(le)	((struct sockaddr_in6 *) L3_ADDR(le))
67 #include <netinet/if_ether.h>
68 #include <netinet6/in6_var.h>
69 #include <netinet/ip6.h>
70 #include <netinet6/ip6_var.h>
71 #include <netinet6/scope6_var.h>
72 #include <netinet6/nd6.h>
73 #include <netinet6/in6_ifattach.h>
74 #include <netinet/icmp6.h>
75 
76 #include <sys/limits.h>
77 
78 #include <security/mac/mac_framework.h>
79 
80 #define ND6_SLOWTIMER_INTERVAL (60 * 60) /* 1 hour */
81 #define ND6_RECALC_REACHTM_INTERVAL (60 * 120) /* 2 hours */
82 
83 #define SIN6(s) ((struct sockaddr_in6 *)s)
84 
85 /* timer values */
86 VNET_DEFINE(int, nd6_prune)	= 1;	/* walk list every 1 seconds */
87 VNET_DEFINE(int, nd6_delay)	= 5;	/* delay first probe time 5 second */
88 VNET_DEFINE(int, nd6_umaxtries)	= 3;	/* maximum unicast query */
89 VNET_DEFINE(int, nd6_mmaxtries)	= 3;	/* maximum multicast query */
90 VNET_DEFINE(int, nd6_useloopback) = 1;	/* use loopback interface for
91 					 * local traffic */
92 VNET_DEFINE(int, nd6_gctimer)	= (60 * 60 * 24); /* 1 day: garbage
93 					 * collection timer */
94 
95 /* preventing too many loops in ND option parsing */
96 static VNET_DEFINE(int, nd6_maxndopt) = 10; /* max # of ND options allowed */
97 
98 VNET_DEFINE(int, nd6_maxnudhint) = 0;	/* max # of subsequent upper
99 					 * layer hints */
100 static VNET_DEFINE(int, nd6_maxqueuelen) = 1; /* max pkts cached in unresolved
101 					 * ND entries */
102 #define	V_nd6_maxndopt			VNET(nd6_maxndopt)
103 #define	V_nd6_maxqueuelen		VNET(nd6_maxqueuelen)
104 
105 #ifdef ND6_DEBUG
106 VNET_DEFINE(int, nd6_debug) = 1;
107 #else
108 VNET_DEFINE(int, nd6_debug) = 0;
109 #endif
110 
111 /* for debugging? */
112 #if 0
113 static int nd6_inuse, nd6_allocated;
114 #endif
115 
116 VNET_DEFINE(struct nd_drhead, nd_defrouter);
117 VNET_DEFINE(struct nd_prhead, nd_prefix);
118 
119 VNET_DEFINE(int, nd6_recalc_reachtm_interval) = ND6_RECALC_REACHTM_INTERVAL;
120 #define	V_nd6_recalc_reachtm_interval	VNET(nd6_recalc_reachtm_interval)
121 
122 static struct sockaddr_in6 all1_sa;
123 
124 static int nd6_is_new_addr_neighbor __P((struct sockaddr_in6 *,
125 	struct ifnet *));
126 static void nd6_setmtu0(struct ifnet *, struct nd_ifinfo *);
127 static void nd6_slowtimo(void *);
128 static int regen_tmpaddr(struct in6_ifaddr *);
129 static struct llentry *nd6_free(struct llentry *, int);
130 static void nd6_llinfo_timer(void *);
131 static void clear_llinfo_pqueue(struct llentry *);
132 
133 static VNET_DEFINE(struct callout, nd6_slowtimo_ch);
134 #define	V_nd6_slowtimo_ch		VNET(nd6_slowtimo_ch)
135 
136 VNET_DEFINE(struct callout, nd6_timer_ch);
137 
138 void
139 nd6_init(void)
140 {
141 	int i;
142 
143 	LIST_INIT(&V_nd_prefix);
144 
145 	all1_sa.sin6_family = AF_INET6;
146 	all1_sa.sin6_len = sizeof(struct sockaddr_in6);
147 	for (i = 0; i < sizeof(all1_sa.sin6_addr); i++)
148 		all1_sa.sin6_addr.s6_addr[i] = 0xff;
149 
150 	/* initialization of the default router list */
151 	TAILQ_INIT(&V_nd_defrouter);
152 
153 	/* start timer */
154 	callout_init(&V_nd6_slowtimo_ch, 0);
155 	callout_reset(&V_nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz,
156 	    nd6_slowtimo, curvnet);
157 }
158 
159 #ifdef VIMAGE
160 void
161 nd6_destroy()
162 {
163 
164 	callout_drain(&V_nd6_slowtimo_ch);
165 	callout_drain(&V_nd6_timer_ch);
166 }
167 #endif
168 
169 struct nd_ifinfo *
170 nd6_ifattach(struct ifnet *ifp)
171 {
172 	struct nd_ifinfo *nd;
173 
174 	nd = (struct nd_ifinfo *)malloc(sizeof(*nd), M_IP6NDP, M_WAITOK);
175 	bzero(nd, sizeof(*nd));
176 
177 	nd->initialized = 1;
178 
179 	nd->chlim = IPV6_DEFHLIM;
180 	nd->basereachable = REACHABLE_TIME;
181 	nd->reachable = ND_COMPUTE_RTIME(nd->basereachable);
182 	nd->retrans = RETRANS_TIMER;
183 
184 	nd->flags = ND6_IFF_PERFORMNUD;
185 
186 	/* A loopback interface always has ND6_IFF_AUTO_LINKLOCAL. */
187 	if (V_ip6_auto_linklocal || (ifp->if_flags & IFF_LOOPBACK))
188 		nd->flags |= ND6_IFF_AUTO_LINKLOCAL;
189 
190 	/* A loopback interface does not need to accept RTADV. */
191 	if (V_ip6_accept_rtadv && !(ifp->if_flags & IFF_LOOPBACK))
192 		nd->flags |= ND6_IFF_ACCEPT_RTADV;
193 
194 	/* XXX: we cannot call nd6_setmtu since ifp is not fully initialized */
195 	nd6_setmtu0(ifp, nd);
196 
197 	return nd;
198 }
199 
200 void
201 nd6_ifdetach(struct nd_ifinfo *nd)
202 {
203 
204 	free(nd, M_IP6NDP);
205 }
206 
207 /*
208  * Reset ND level link MTU. This function is called when the physical MTU
209  * changes, which means we might have to adjust the ND level MTU.
210  */
211 void
212 nd6_setmtu(struct ifnet *ifp)
213 {
214 
215 	nd6_setmtu0(ifp, ND_IFINFO(ifp));
216 }
217 
218 /* XXX todo: do not maintain copy of ifp->if_mtu in ndi->maxmtu */
219 void
220 nd6_setmtu0(struct ifnet *ifp, struct nd_ifinfo *ndi)
221 {
222 	u_int32_t omaxmtu;
223 
224 	omaxmtu = ndi->maxmtu;
225 
226 	switch (ifp->if_type) {
227 	case IFT_ARCNET:
228 		ndi->maxmtu = MIN(ARC_PHDS_MAXMTU, ifp->if_mtu); /* RFC2497 */
229 		break;
230 	case IFT_FDDI:
231 		ndi->maxmtu = MIN(FDDIIPMTU, ifp->if_mtu); /* RFC2467 */
232 		break;
233 	case IFT_ISO88025:
234 		 ndi->maxmtu = MIN(ISO88025_MAX_MTU, ifp->if_mtu);
235 		 break;
236 	default:
237 		ndi->maxmtu = ifp->if_mtu;
238 		break;
239 	}
240 
241 	/*
242 	 * Decreasing the interface MTU under IPV6 minimum MTU may cause
243 	 * undesirable situation.  We thus notify the operator of the change
244 	 * explicitly.  The check for omaxmtu is necessary to restrict the
245 	 * log to the case of changing the MTU, not initializing it.
246 	 */
247 	if (omaxmtu >= IPV6_MMTU && ndi->maxmtu < IPV6_MMTU) {
248 		log(LOG_NOTICE, "nd6_setmtu0: "
249 		    "new link MTU on %s (%lu) is too small for IPv6\n",
250 		    if_name(ifp), (unsigned long)ndi->maxmtu);
251 	}
252 
253 	if (ndi->maxmtu > V_in6_maxmtu)
254 		in6_setmaxmtu(); /* check all interfaces just in case */
255 
256 }
257 
258 void
259 nd6_option_init(void *opt, int icmp6len, union nd_opts *ndopts)
260 {
261 
262 	bzero(ndopts, sizeof(*ndopts));
263 	ndopts->nd_opts_search = (struct nd_opt_hdr *)opt;
264 	ndopts->nd_opts_last
265 		= (struct nd_opt_hdr *)(((u_char *)opt) + icmp6len);
266 
267 	if (icmp6len == 0) {
268 		ndopts->nd_opts_done = 1;
269 		ndopts->nd_opts_search = NULL;
270 	}
271 }
272 
273 /*
274  * Take one ND option.
275  */
276 struct nd_opt_hdr *
277 nd6_option(union nd_opts *ndopts)
278 {
279 	struct nd_opt_hdr *nd_opt;
280 	int olen;
281 
282 	if (ndopts == NULL)
283 		panic("ndopts == NULL in nd6_option");
284 	if (ndopts->nd_opts_last == NULL)
285 		panic("uninitialized ndopts in nd6_option");
286 	if (ndopts->nd_opts_search == NULL)
287 		return NULL;
288 	if (ndopts->nd_opts_done)
289 		return NULL;
290 
291 	nd_opt = ndopts->nd_opts_search;
292 
293 	/* make sure nd_opt_len is inside the buffer */
294 	if ((caddr_t)&nd_opt->nd_opt_len >= (caddr_t)ndopts->nd_opts_last) {
295 		bzero(ndopts, sizeof(*ndopts));
296 		return NULL;
297 	}
298 
299 	olen = nd_opt->nd_opt_len << 3;
300 	if (olen == 0) {
301 		/*
302 		 * Message validation requires that all included
303 		 * options have a length that is greater than zero.
304 		 */
305 		bzero(ndopts, sizeof(*ndopts));
306 		return NULL;
307 	}
308 
309 	ndopts->nd_opts_search = (struct nd_opt_hdr *)((caddr_t)nd_opt + olen);
310 	if (ndopts->nd_opts_search > ndopts->nd_opts_last) {
311 		/* option overruns the end of buffer, invalid */
312 		bzero(ndopts, sizeof(*ndopts));
313 		return NULL;
314 	} else if (ndopts->nd_opts_search == ndopts->nd_opts_last) {
315 		/* reached the end of options chain */
316 		ndopts->nd_opts_done = 1;
317 		ndopts->nd_opts_search = NULL;
318 	}
319 	return nd_opt;
320 }
321 
322 /*
323  * Parse multiple ND options.
324  * This function is much easier to use, for ND routines that do not need
325  * multiple options of the same type.
326  */
327 int
328 nd6_options(union nd_opts *ndopts)
329 {
330 	struct nd_opt_hdr *nd_opt;
331 	int i = 0;
332 
333 	if (ndopts == NULL)
334 		panic("ndopts == NULL in nd6_options");
335 	if (ndopts->nd_opts_last == NULL)
336 		panic("uninitialized ndopts in nd6_options");
337 	if (ndopts->nd_opts_search == NULL)
338 		return 0;
339 
340 	while (1) {
341 		nd_opt = nd6_option(ndopts);
342 		if (nd_opt == NULL && ndopts->nd_opts_last == NULL) {
343 			/*
344 			 * Message validation requires that all included
345 			 * options have a length that is greater than zero.
346 			 */
347 			ICMP6STAT_INC(icp6s_nd_badopt);
348 			bzero(ndopts, sizeof(*ndopts));
349 			return -1;
350 		}
351 
352 		if (nd_opt == NULL)
353 			goto skip1;
354 
355 		switch (nd_opt->nd_opt_type) {
356 		case ND_OPT_SOURCE_LINKADDR:
357 		case ND_OPT_TARGET_LINKADDR:
358 		case ND_OPT_MTU:
359 		case ND_OPT_REDIRECTED_HEADER:
360 			if (ndopts->nd_opt_array[nd_opt->nd_opt_type]) {
361 				nd6log((LOG_INFO,
362 				    "duplicated ND6 option found (type=%d)\n",
363 				    nd_opt->nd_opt_type));
364 				/* XXX bark? */
365 			} else {
366 				ndopts->nd_opt_array[nd_opt->nd_opt_type]
367 					= nd_opt;
368 			}
369 			break;
370 		case ND_OPT_PREFIX_INFORMATION:
371 			if (ndopts->nd_opt_array[nd_opt->nd_opt_type] == 0) {
372 				ndopts->nd_opt_array[nd_opt->nd_opt_type]
373 					= nd_opt;
374 			}
375 			ndopts->nd_opts_pi_end =
376 				(struct nd_opt_prefix_info *)nd_opt;
377 			break;
378 		default:
379 			/*
380 			 * Unknown options must be silently ignored,
381 			 * to accomodate future extension to the protocol.
382 			 */
383 			nd6log((LOG_DEBUG,
384 			    "nd6_options: unsupported option %d - "
385 			    "option ignored\n", nd_opt->nd_opt_type));
386 		}
387 
388 skip1:
389 		i++;
390 		if (i > V_nd6_maxndopt) {
391 			ICMP6STAT_INC(icp6s_nd_toomanyopt);
392 			nd6log((LOG_INFO, "too many loop in nd opt\n"));
393 			break;
394 		}
395 
396 		if (ndopts->nd_opts_done)
397 			break;
398 	}
399 
400 	return 0;
401 }
402 
403 /*
404  * ND6 timer routine to handle ND6 entries
405  */
406 void
407 nd6_llinfo_settimer_locked(struct llentry *ln, long tick)
408 {
409 	int canceled;
410 
411 	if (tick < 0) {
412 		ln->la_expire = 0;
413 		ln->ln_ntick = 0;
414 		canceled = callout_stop(&ln->ln_timer_ch);
415 	} else {
416 		ln->la_expire = time_second + tick / hz;
417 		LLE_ADDREF(ln);
418 		if (tick > INT_MAX) {
419 			ln->ln_ntick = tick - INT_MAX;
420 			canceled = callout_reset(&ln->ln_timer_ch, INT_MAX,
421 			    nd6_llinfo_timer, ln);
422 		} else {
423 			ln->ln_ntick = 0;
424 			canceled = callout_reset(&ln->ln_timer_ch, tick,
425 			    nd6_llinfo_timer, ln);
426 		}
427 	}
428 	if (canceled)
429 		LLE_REMREF(ln);
430 }
431 
432 void
433 nd6_llinfo_settimer(struct llentry *ln, long tick)
434 {
435 
436 	LLE_WLOCK(ln);
437 	nd6_llinfo_settimer_locked(ln, tick);
438 	LLE_WUNLOCK(ln);
439 }
440 
441 static void
442 nd6_llinfo_timer(void *arg)
443 {
444 	struct llentry *ln;
445 	struct in6_addr *dst;
446 	struct ifnet *ifp;
447 	struct nd_ifinfo *ndi = NULL;
448 
449 	ln = (struct llentry *)arg;
450 	if (ln == NULL) {
451 		panic("%s: NULL entry!\n", __func__);
452 		return;
453 	}
454 
455 	if ((ifp = ((ln->lle_tbl != NULL) ? ln->lle_tbl->llt_ifp : NULL)) == NULL)
456 		panic("ln ifp == NULL");
457 
458 	CURVNET_SET(ifp->if_vnet);
459 
460 	if (ln->ln_ntick > 0) {
461 		if (ln->ln_ntick > INT_MAX) {
462 			ln->ln_ntick -= INT_MAX;
463 			nd6_llinfo_settimer(ln, INT_MAX);
464 		} else {
465 			ln->ln_ntick = 0;
466 			nd6_llinfo_settimer(ln, ln->ln_ntick);
467 		}
468 		goto done;
469 	}
470 
471 	ndi = ND_IFINFO(ifp);
472 	dst = &L3_ADDR_SIN6(ln)->sin6_addr;
473 	if (ln->la_flags & LLE_STATIC) {
474 		goto done;
475 	}
476 
477 	if (ln->la_flags & LLE_DELETED) {
478 		(void)nd6_free(ln, 0);
479 		ln = NULL;
480 		goto done;
481 	}
482 
483 	switch (ln->ln_state) {
484 	case ND6_LLINFO_INCOMPLETE:
485 		if (ln->la_asked < V_nd6_mmaxtries) {
486 			ln->la_asked++;
487 			nd6_llinfo_settimer(ln, (long)ndi->retrans * hz / 1000);
488 			nd6_ns_output(ifp, NULL, dst, ln, 0);
489 		} else {
490 			struct mbuf *m = ln->la_hold;
491 			if (m) {
492 				struct mbuf *m0;
493 
494 				/*
495 				 * assuming every packet in la_hold has the
496 				 * same IP header
497 				 */
498 				m0 = m->m_nextpkt;
499 				m->m_nextpkt = NULL;
500 				icmp6_error2(m, ICMP6_DST_UNREACH,
501 				    ICMP6_DST_UNREACH_ADDR, 0, ifp);
502 
503 				ln->la_hold = m0;
504 				clear_llinfo_pqueue(ln);
505 			}
506 			(void)nd6_free(ln, 0);
507 			ln = NULL;
508 		}
509 		break;
510 	case ND6_LLINFO_REACHABLE:
511 		if (!ND6_LLINFO_PERMANENT(ln)) {
512 			ln->ln_state = ND6_LLINFO_STALE;
513 			nd6_llinfo_settimer(ln, (long)V_nd6_gctimer * hz);
514 		}
515 		break;
516 
517 	case ND6_LLINFO_STALE:
518 		/* Garbage Collection(RFC 2461 5.3) */
519 		if (!ND6_LLINFO_PERMANENT(ln)) {
520 			(void)nd6_free(ln, 1);
521 			ln = NULL;
522 		}
523 		break;
524 
525 	case ND6_LLINFO_DELAY:
526 		if (ndi && (ndi->flags & ND6_IFF_PERFORMNUD) != 0) {
527 			/* We need NUD */
528 			ln->la_asked = 1;
529 			ln->ln_state = ND6_LLINFO_PROBE;
530 			nd6_llinfo_settimer(ln, (long)ndi->retrans * hz / 1000);
531 			nd6_ns_output(ifp, dst, dst, ln, 0);
532 		} else {
533 			ln->ln_state = ND6_LLINFO_STALE; /* XXX */
534 			nd6_llinfo_settimer(ln, (long)V_nd6_gctimer * hz);
535 		}
536 		break;
537 	case ND6_LLINFO_PROBE:
538 		if (ln->la_asked < V_nd6_umaxtries) {
539 			ln->la_asked++;
540 			nd6_llinfo_settimer(ln, (long)ndi->retrans * hz / 1000);
541 			nd6_ns_output(ifp, dst, dst, ln, 0);
542 		} else {
543 			(void)nd6_free(ln, 0);
544 			ln = NULL;
545 		}
546 		break;
547 	}
548 done:
549 	if (ln != NULL)
550 		LLE_FREE(ln);
551 	CURVNET_RESTORE();
552 }
553 
554 
555 /*
556  * ND6 timer routine to expire default route list and prefix list
557  */
558 void
559 nd6_timer(void *arg)
560 {
561 	CURVNET_SET((struct vnet *) arg);
562 	int s;
563 	struct nd_defrouter *dr;
564 	struct nd_prefix *pr;
565 	struct in6_ifaddr *ia6, *nia6;
566 	struct in6_addrlifetime *lt6;
567 
568 	callout_reset(&V_nd6_timer_ch, V_nd6_prune * hz,
569 	    nd6_timer, curvnet);
570 
571 	/* expire default router list */
572 	s = splnet();
573 	dr = TAILQ_FIRST(&V_nd_defrouter);
574 	while (dr) {
575 		if (dr->expire && dr->expire < time_second) {
576 			struct nd_defrouter *t;
577 			t = TAILQ_NEXT(dr, dr_entry);
578 			defrtrlist_del(dr);
579 			dr = t;
580 		} else {
581 			dr = TAILQ_NEXT(dr, dr_entry);
582 		}
583 	}
584 
585 	/*
586 	 * expire interface addresses.
587 	 * in the past the loop was inside prefix expiry processing.
588 	 * However, from a stricter speci-confrmance standpoint, we should
589 	 * rather separate address lifetimes and prefix lifetimes.
590 	 *
591 	 * XXXRW: in6_ifaddrhead locking.
592 	 */
593   addrloop:
594 	TAILQ_FOREACH_SAFE(ia6, &V_in6_ifaddrhead, ia_link, nia6) {
595 		/* check address lifetime */
596 		lt6 = &ia6->ia6_lifetime;
597 		if (IFA6_IS_INVALID(ia6)) {
598 			int regen = 0;
599 
600 			/*
601 			 * If the expiring address is temporary, try
602 			 * regenerating a new one.  This would be useful when
603 			 * we suspended a laptop PC, then turned it on after a
604 			 * period that could invalidate all temporary
605 			 * addresses.  Although we may have to restart the
606 			 * loop (see below), it must be after purging the
607 			 * address.  Otherwise, we'd see an infinite loop of
608 			 * regeneration.
609 			 */
610 			if (V_ip6_use_tempaddr &&
611 			    (ia6->ia6_flags & IN6_IFF_TEMPORARY) != 0) {
612 				if (regen_tmpaddr(ia6) == 0)
613 					regen = 1;
614 			}
615 
616 			in6_purgeaddr(&ia6->ia_ifa);
617 
618 			if (regen)
619 				goto addrloop; /* XXX: see below */
620 		} else if (IFA6_IS_DEPRECATED(ia6)) {
621 			int oldflags = ia6->ia6_flags;
622 
623 			ia6->ia6_flags |= IN6_IFF_DEPRECATED;
624 
625 			/*
626 			 * If a temporary address has just become deprecated,
627 			 * regenerate a new one if possible.
628 			 */
629 			if (V_ip6_use_tempaddr &&
630 			    (ia6->ia6_flags & IN6_IFF_TEMPORARY) != 0 &&
631 			    (oldflags & IN6_IFF_DEPRECATED) == 0) {
632 
633 				if (regen_tmpaddr(ia6) == 0) {
634 					/*
635 					 * A new temporary address is
636 					 * generated.
637 					 * XXX: this means the address chain
638 					 * has changed while we are still in
639 					 * the loop.  Although the change
640 					 * would not cause disaster (because
641 					 * it's not a deletion, but an
642 					 * addition,) we'd rather restart the
643 					 * loop just for safety.  Or does this
644 					 * significantly reduce performance??
645 					 */
646 					goto addrloop;
647 				}
648 			}
649 		} else {
650 			/*
651 			 * A new RA might have made a deprecated address
652 			 * preferred.
653 			 */
654 			ia6->ia6_flags &= ~IN6_IFF_DEPRECATED;
655 		}
656 	}
657 
658 	/* expire prefix list */
659 	pr = V_nd_prefix.lh_first;
660 	while (pr) {
661 		/*
662 		 * check prefix lifetime.
663 		 * since pltime is just for autoconf, pltime processing for
664 		 * prefix is not necessary.
665 		 */
666 		if (pr->ndpr_vltime != ND6_INFINITE_LIFETIME &&
667 		    time_second - pr->ndpr_lastupdate > pr->ndpr_vltime) {
668 			struct nd_prefix *t;
669 			t = pr->ndpr_next;
670 
671 			/*
672 			 * address expiration and prefix expiration are
673 			 * separate.  NEVER perform in6_purgeaddr here.
674 			 */
675 
676 			prelist_remove(pr);
677 			pr = t;
678 		} else
679 			pr = pr->ndpr_next;
680 	}
681 	splx(s);
682 	CURVNET_RESTORE();
683 }
684 
685 /*
686  * ia6 - deprecated/invalidated temporary address
687  */
688 static int
689 regen_tmpaddr(struct in6_ifaddr *ia6)
690 {
691 	struct ifaddr *ifa;
692 	struct ifnet *ifp;
693 	struct in6_ifaddr *public_ifa6 = NULL;
694 
695 	ifp = ia6->ia_ifa.ifa_ifp;
696 	IF_ADDR_LOCK(ifp);
697 	TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
698 		struct in6_ifaddr *it6;
699 
700 		if (ifa->ifa_addr->sa_family != AF_INET6)
701 			continue;
702 
703 		it6 = (struct in6_ifaddr *)ifa;
704 
705 		/* ignore no autoconf addresses. */
706 		if ((it6->ia6_flags & IN6_IFF_AUTOCONF) == 0)
707 			continue;
708 
709 		/* ignore autoconf addresses with different prefixes. */
710 		if (it6->ia6_ndpr == NULL || it6->ia6_ndpr != ia6->ia6_ndpr)
711 			continue;
712 
713 		/*
714 		 * Now we are looking at an autoconf address with the same
715 		 * prefix as ours.  If the address is temporary and is still
716 		 * preferred, do not create another one.  It would be rare, but
717 		 * could happen, for example, when we resume a laptop PC after
718 		 * a long period.
719 		 */
720 		if ((it6->ia6_flags & IN6_IFF_TEMPORARY) != 0 &&
721 		    !IFA6_IS_DEPRECATED(it6)) {
722 			public_ifa6 = NULL;
723 			break;
724 		}
725 
726 		/*
727 		 * This is a public autoconf address that has the same prefix
728 		 * as ours.  If it is preferred, keep it.  We can't break the
729 		 * loop here, because there may be a still-preferred temporary
730 		 * address with the prefix.
731 		 */
732 		if (!IFA6_IS_DEPRECATED(it6))
733 		    public_ifa6 = it6;
734 
735 		if (public_ifa6 != NULL)
736 			ifa_ref(&public_ifa6->ia_ifa);
737 	}
738 	IF_ADDR_UNLOCK(ifp);
739 
740 	if (public_ifa6 != NULL) {
741 		int e;
742 
743 		if ((e = in6_tmpifadd(public_ifa6, 0, 0)) != 0) {
744 			ifa_free(&public_ifa6->ia_ifa);
745 			log(LOG_NOTICE, "regen_tmpaddr: failed to create a new"
746 			    " tmp addr,errno=%d\n", e);
747 			return (-1);
748 		}
749 		ifa_free(&public_ifa6->ia_ifa);
750 		return (0);
751 	}
752 
753 	return (-1);
754 }
755 
756 /*
757  * Nuke neighbor cache/prefix/default router management table, right before
758  * ifp goes away.
759  */
760 void
761 nd6_purge(struct ifnet *ifp)
762 {
763 	struct nd_defrouter *dr, *ndr;
764 	struct nd_prefix *pr, *npr;
765 
766 	/*
767 	 * Nuke default router list entries toward ifp.
768 	 * We defer removal of default router list entries that is installed
769 	 * in the routing table, in order to keep additional side effects as
770 	 * small as possible.
771 	 */
772 	for (dr = TAILQ_FIRST(&V_nd_defrouter); dr; dr = ndr) {
773 		ndr = TAILQ_NEXT(dr, dr_entry);
774 		if (dr->installed)
775 			continue;
776 
777 		if (dr->ifp == ifp)
778 			defrtrlist_del(dr);
779 	}
780 
781 	for (dr = TAILQ_FIRST(&V_nd_defrouter); dr; dr = ndr) {
782 		ndr = TAILQ_NEXT(dr, dr_entry);
783 		if (!dr->installed)
784 			continue;
785 
786 		if (dr->ifp == ifp)
787 			defrtrlist_del(dr);
788 	}
789 
790 	/* Nuke prefix list entries toward ifp */
791 	for (pr = V_nd_prefix.lh_first; pr; pr = npr) {
792 		npr = pr->ndpr_next;
793 		if (pr->ndpr_ifp == ifp) {
794 			/*
795 			 * Because if_detach() does *not* release prefixes
796 			 * while purging addresses the reference count will
797 			 * still be above zero. We therefore reset it to
798 			 * make sure that the prefix really gets purged.
799 			 */
800 			pr->ndpr_refcnt = 0;
801 
802 			/*
803 			 * Previously, pr->ndpr_addr is removed as well,
804 			 * but I strongly believe we don't have to do it.
805 			 * nd6_purge() is only called from in6_ifdetach(),
806 			 * which removes all the associated interface addresses
807 			 * by itself.
808 			 * (jinmei@kame.net 20010129)
809 			 */
810 			prelist_remove(pr);
811 		}
812 	}
813 
814 	/* cancel default outgoing interface setting */
815 	if (V_nd6_defifindex == ifp->if_index)
816 		nd6_setdefaultiface(0);
817 
818 	if (!V_ip6_forwarding && ND_IFINFO(ifp)->flags & ND6_IFF_ACCEPT_RTADV) {
819 		/* Refresh default router list. */
820 		defrouter_select();
821 	}
822 
823 	/* XXXXX
824 	 * We do not nuke the neighbor cache entries here any more
825 	 * because the neighbor cache is kept in if_afdata[AF_INET6].
826 	 * nd6_purge() is invoked by in6_ifdetach() which is called
827 	 * from if_detach() where everything gets purged. So let
828 	 * in6_domifdetach() do the actual L2 table purging work.
829 	 */
830 }
831 
832 /*
833  * the caller acquires and releases the lock on the lltbls
834  * Returns the llentry locked
835  */
836 struct llentry *
837 nd6_lookup(struct in6_addr *addr6, int flags, struct ifnet *ifp)
838 {
839 	struct sockaddr_in6 sin6;
840 	struct llentry *ln;
841 	int llflags = 0;
842 
843 	bzero(&sin6, sizeof(sin6));
844 	sin6.sin6_len = sizeof(struct sockaddr_in6);
845 	sin6.sin6_family = AF_INET6;
846 	sin6.sin6_addr = *addr6;
847 
848 	IF_AFDATA_LOCK_ASSERT(ifp);
849 
850 	if (flags & ND6_CREATE)
851 	    llflags |= LLE_CREATE;
852 	if (flags & ND6_EXCLUSIVE)
853 	    llflags |= LLE_EXCLUSIVE;
854 
855 	ln = lla_lookup(LLTABLE6(ifp), llflags, (struct sockaddr *)&sin6);
856 	if ((ln != NULL) && (flags & LLE_CREATE)) {
857 		ln->ln_state = ND6_LLINFO_NOSTATE;
858 		callout_init(&ln->ln_timer_ch, 0);
859 	}
860 
861 	return (ln);
862 }
863 
864 /*
865  * Test whether a given IPv6 address is a neighbor or not, ignoring
866  * the actual neighbor cache.  The neighbor cache is ignored in order
867  * to not reenter the routing code from within itself.
868  */
869 static int
870 nd6_is_new_addr_neighbor(struct sockaddr_in6 *addr, struct ifnet *ifp)
871 {
872 	struct nd_prefix *pr;
873 	struct ifaddr *dstaddr;
874 
875 	/*
876 	 * A link-local address is always a neighbor.
877 	 * XXX: a link does not necessarily specify a single interface.
878 	 */
879 	if (IN6_IS_ADDR_LINKLOCAL(&addr->sin6_addr)) {
880 		struct sockaddr_in6 sin6_copy;
881 		u_int32_t zone;
882 
883 		/*
884 		 * We need sin6_copy since sa6_recoverscope() may modify the
885 		 * content (XXX).
886 		 */
887 		sin6_copy = *addr;
888 		if (sa6_recoverscope(&sin6_copy))
889 			return (0); /* XXX: should be impossible */
890 		if (in6_setscope(&sin6_copy.sin6_addr, ifp, &zone))
891 			return (0);
892 		if (sin6_copy.sin6_scope_id == zone)
893 			return (1);
894 		else
895 			return (0);
896 	}
897 
898 	/*
899 	 * If the address matches one of our addresses,
900 	 * it should be a neighbor.
901 	 * If the address matches one of our on-link prefixes, it should be a
902 	 * neighbor.
903 	 */
904 	for (pr = V_nd_prefix.lh_first; pr; pr = pr->ndpr_next) {
905 		if (pr->ndpr_ifp != ifp)
906 			continue;
907 
908 		if (!(pr->ndpr_stateflags & NDPRF_ONLINK)) {
909 			struct rtentry *rt;
910 			rt = rtalloc1((struct sockaddr *)&pr->ndpr_prefix, 0, 0);
911 			if (rt == NULL)
912 				continue;
913 			/*
914 			 * This is the case where multiple interfaces
915 			 * have the same prefix, but only one is installed
916 			 * into the routing table and that prefix entry
917 			 * is not the one being examined here. In the case
918 			 * where RADIX_MPATH is enabled, multiple route
919 			 * entries (of the same rt_key value) will be
920 			 * installed because the interface addresses all
921 			 * differ.
922 			 */
923 			if (!IN6_ARE_ADDR_EQUAL(&pr->ndpr_prefix.sin6_addr,
924 			       &((struct sockaddr_in6 *)rt_key(rt))->sin6_addr)) {
925 				RTFREE_LOCKED(rt);
926 				continue;
927 			}
928 			RTFREE_LOCKED(rt);
929 		}
930 
931 		if (IN6_ARE_MASKED_ADDR_EQUAL(&pr->ndpr_prefix.sin6_addr,
932 		    &addr->sin6_addr, &pr->ndpr_mask))
933 			return (1);
934 	}
935 
936 	/*
937 	 * If the address is assigned on the node of the other side of
938 	 * a p2p interface, the address should be a neighbor.
939 	 */
940 	dstaddr = ifa_ifwithdstaddr((struct sockaddr *)addr);
941 	if (dstaddr != NULL) {
942 		if (dstaddr->ifa_ifp == ifp) {
943 			ifa_free(dstaddr);
944 			return (1);
945 		}
946 		ifa_free(dstaddr);
947 	}
948 
949 	/*
950 	 * If the default router list is empty, all addresses are regarded
951 	 * as on-link, and thus, as a neighbor.
952 	 * XXX: we restrict the condition to hosts, because routers usually do
953 	 * not have the "default router list".
954 	 */
955 	if (!V_ip6_forwarding && TAILQ_FIRST(&V_nd_defrouter) == NULL &&
956 	    V_nd6_defifindex == ifp->if_index) {
957 		return (1);
958 	}
959 
960 	return (0);
961 }
962 
963 
964 /*
965  * Detect if a given IPv6 address identifies a neighbor on a given link.
966  * XXX: should take care of the destination of a p2p link?
967  */
968 int
969 nd6_is_addr_neighbor(struct sockaddr_in6 *addr, struct ifnet *ifp)
970 {
971 	struct llentry *lle;
972 	int rc = 0;
973 
974 	IF_AFDATA_UNLOCK_ASSERT(ifp);
975 	if (nd6_is_new_addr_neighbor(addr, ifp))
976 		return (1);
977 
978 	/*
979 	 * Even if the address matches none of our addresses, it might be
980 	 * in the neighbor cache.
981 	 */
982 	IF_AFDATA_LOCK(ifp);
983 	if ((lle = nd6_lookup(&addr->sin6_addr, 0, ifp)) != NULL) {
984 		LLE_RUNLOCK(lle);
985 		rc = 1;
986 	}
987 	IF_AFDATA_UNLOCK(ifp);
988 	return (rc);
989 }
990 
991 /*
992  * Free an nd6 llinfo entry.
993  * Since the function would cause significant changes in the kernel, DO NOT
994  * make it global, unless you have a strong reason for the change, and are sure
995  * that the change is safe.
996  */
997 static struct llentry *
998 nd6_free(struct llentry *ln, int gc)
999 {
1000         struct llentry *next;
1001 	struct nd_defrouter *dr;
1002 	struct ifnet *ifp=NULL;
1003 
1004 	/*
1005 	 * we used to have pfctlinput(PRC_HOSTDEAD) here.
1006 	 * even though it is not harmful, it was not really necessary.
1007 	 */
1008 
1009 	/* cancel timer */
1010 	nd6_llinfo_settimer(ln, -1);
1011 
1012 	if (!V_ip6_forwarding) {
1013 		int s;
1014 		s = splnet();
1015 		dr = defrouter_lookup(&L3_ADDR_SIN6(ln)->sin6_addr, ln->lle_tbl->llt_ifp);
1016 
1017 		if (dr != NULL && dr->expire &&
1018 		    ln->ln_state == ND6_LLINFO_STALE && gc) {
1019 			/*
1020 			 * If the reason for the deletion is just garbage
1021 			 * collection, and the neighbor is an active default
1022 			 * router, do not delete it.  Instead, reset the GC
1023 			 * timer using the router's lifetime.
1024 			 * Simply deleting the entry would affect default
1025 			 * router selection, which is not necessarily a good
1026 			 * thing, especially when we're using router preference
1027 			 * values.
1028 			 * XXX: the check for ln_state would be redundant,
1029 			 *      but we intentionally keep it just in case.
1030 			 */
1031 			if (dr->expire > time_second)
1032 				nd6_llinfo_settimer(ln,
1033 				    (dr->expire - time_second) * hz);
1034 			else
1035 				nd6_llinfo_settimer(ln, (long)V_nd6_gctimer * hz);
1036 			splx(s);
1037 			LLE_WLOCK(ln);
1038 			LLE_REMREF(ln);
1039 			LLE_WUNLOCK(ln);
1040 			return (LIST_NEXT(ln, lle_next));
1041 		}
1042 
1043 		if (ln->ln_router || dr) {
1044 			/*
1045 			 * rt6_flush must be called whether or not the neighbor
1046 			 * is in the Default Router List.
1047 			 * See a corresponding comment in nd6_na_input().
1048 			 */
1049 			rt6_flush(&L3_ADDR_SIN6(ln)->sin6_addr, ln->lle_tbl->llt_ifp);
1050 		}
1051 
1052 		if (dr) {
1053 			/*
1054 			 * Unreachablity of a router might affect the default
1055 			 * router selection and on-link detection of advertised
1056 			 * prefixes.
1057 			 */
1058 
1059 			/*
1060 			 * Temporarily fake the state to choose a new default
1061 			 * router and to perform on-link determination of
1062 			 * prefixes correctly.
1063 			 * Below the state will be set correctly,
1064 			 * or the entry itself will be deleted.
1065 			 */
1066 			ln->ln_state = ND6_LLINFO_INCOMPLETE;
1067 
1068 			/*
1069 			 * Since defrouter_select() does not affect the
1070 			 * on-link determination and MIP6 needs the check
1071 			 * before the default router selection, we perform
1072 			 * the check now.
1073 			 */
1074 			pfxlist_onlink_check();
1075 
1076 			/*
1077 			 * refresh default router list
1078 			 */
1079 			defrouter_select();
1080 		}
1081 		splx(s);
1082 	}
1083 
1084 	/*
1085 	 * Before deleting the entry, remember the next entry as the
1086 	 * return value.  We need this because pfxlist_onlink_check() above
1087 	 * might have freed other entries (particularly the old next entry) as
1088 	 * a side effect (XXX).
1089 	 */
1090 	next = LIST_NEXT(ln, lle_next);
1091 
1092 	ifp = ln->lle_tbl->llt_ifp;
1093 	IF_AFDATA_LOCK(ifp);
1094 	LLE_WLOCK(ln);
1095 	LLE_REMREF(ln);
1096 	llentry_free(ln);
1097 	IF_AFDATA_UNLOCK(ifp);
1098 
1099 	return (next);
1100 }
1101 
1102 /*
1103  * Upper-layer reachability hint for Neighbor Unreachability Detection.
1104  *
1105  * XXX cost-effective methods?
1106  */
1107 void
1108 nd6_nud_hint(struct rtentry *rt, struct in6_addr *dst6, int force)
1109 {
1110 	struct llentry *ln;
1111 	struct ifnet *ifp;
1112 
1113 	if ((dst6 == NULL) || (rt == NULL))
1114 		return;
1115 
1116 	ifp = rt->rt_ifp;
1117 	IF_AFDATA_LOCK(ifp);
1118 	ln = nd6_lookup(dst6, ND6_EXCLUSIVE, NULL);
1119 	IF_AFDATA_UNLOCK(ifp);
1120 	if (ln == NULL)
1121 		return;
1122 
1123 	if (ln->ln_state < ND6_LLINFO_REACHABLE)
1124 		goto done;
1125 
1126 	/*
1127 	 * if we get upper-layer reachability confirmation many times,
1128 	 * it is possible we have false information.
1129 	 */
1130 	if (!force) {
1131 		ln->ln_byhint++;
1132 		if (ln->ln_byhint > V_nd6_maxnudhint) {
1133 			goto done;
1134 		}
1135 	}
1136 
1137  	ln->ln_state = ND6_LLINFO_REACHABLE;
1138 	if (!ND6_LLINFO_PERMANENT(ln)) {
1139 		nd6_llinfo_settimer_locked(ln,
1140 		    (long)ND_IFINFO(rt->rt_ifp)->reachable * hz);
1141 	}
1142 done:
1143 	LLE_WUNLOCK(ln);
1144 }
1145 
1146 
1147 int
1148 nd6_ioctl(u_long cmd, caddr_t data, struct ifnet *ifp)
1149 {
1150 	struct in6_drlist *drl = (struct in6_drlist *)data;
1151 	struct in6_oprlist *oprl = (struct in6_oprlist *)data;
1152 	struct in6_ndireq *ndi = (struct in6_ndireq *)data;
1153 	struct in6_nbrinfo *nbi = (struct in6_nbrinfo *)data;
1154 	struct in6_ndifreq *ndif = (struct in6_ndifreq *)data;
1155 	struct nd_defrouter *dr;
1156 	struct nd_prefix *pr;
1157 	int i = 0, error = 0;
1158 	int s;
1159 
1160 	switch (cmd) {
1161 	case SIOCGDRLST_IN6:
1162 		/*
1163 		 * obsolete API, use sysctl under net.inet6.icmp6
1164 		 */
1165 		bzero(drl, sizeof(*drl));
1166 		s = splnet();
1167 		dr = TAILQ_FIRST(&V_nd_defrouter);
1168 		while (dr && i < DRLSTSIZ) {
1169 			drl->defrouter[i].rtaddr = dr->rtaddr;
1170 			in6_clearscope(&drl->defrouter[i].rtaddr);
1171 
1172 			drl->defrouter[i].flags = dr->flags;
1173 			drl->defrouter[i].rtlifetime = dr->rtlifetime;
1174 			drl->defrouter[i].expire = dr->expire;
1175 			drl->defrouter[i].if_index = dr->ifp->if_index;
1176 			i++;
1177 			dr = TAILQ_NEXT(dr, dr_entry);
1178 		}
1179 		splx(s);
1180 		break;
1181 	case SIOCGPRLST_IN6:
1182 		/*
1183 		 * obsolete API, use sysctl under net.inet6.icmp6
1184 		 *
1185 		 * XXX the structure in6_prlist was changed in backward-
1186 		 * incompatible manner.  in6_oprlist is used for SIOCGPRLST_IN6,
1187 		 * in6_prlist is used for nd6_sysctl() - fill_prlist().
1188 		 */
1189 		/*
1190 		 * XXX meaning of fields, especialy "raflags", is very
1191 		 * differnet between RA prefix list and RR/static prefix list.
1192 		 * how about separating ioctls into two?
1193 		 */
1194 		bzero(oprl, sizeof(*oprl));
1195 		s = splnet();
1196 		pr = V_nd_prefix.lh_first;
1197 		while (pr && i < PRLSTSIZ) {
1198 			struct nd_pfxrouter *pfr;
1199 			int j;
1200 
1201 			oprl->prefix[i].prefix = pr->ndpr_prefix.sin6_addr;
1202 			oprl->prefix[i].raflags = pr->ndpr_raf;
1203 			oprl->prefix[i].prefixlen = pr->ndpr_plen;
1204 			oprl->prefix[i].vltime = pr->ndpr_vltime;
1205 			oprl->prefix[i].pltime = pr->ndpr_pltime;
1206 			oprl->prefix[i].if_index = pr->ndpr_ifp->if_index;
1207 			if (pr->ndpr_vltime == ND6_INFINITE_LIFETIME)
1208 				oprl->prefix[i].expire = 0;
1209 			else {
1210 				time_t maxexpire;
1211 
1212 				/* XXX: we assume time_t is signed. */
1213 				maxexpire = (-1) &
1214 				    ~((time_t)1 <<
1215 				    ((sizeof(maxexpire) * 8) - 1));
1216 				if (pr->ndpr_vltime <
1217 				    maxexpire - pr->ndpr_lastupdate) {
1218 					oprl->prefix[i].expire =
1219 					    pr->ndpr_lastupdate +
1220 					    pr->ndpr_vltime;
1221 				} else
1222 					oprl->prefix[i].expire = maxexpire;
1223 			}
1224 
1225 			pfr = pr->ndpr_advrtrs.lh_first;
1226 			j = 0;
1227 			while (pfr) {
1228 				if (j < DRLSTSIZ) {
1229 #define RTRADDR oprl->prefix[i].advrtr[j]
1230 					RTRADDR = pfr->router->rtaddr;
1231 					in6_clearscope(&RTRADDR);
1232 #undef RTRADDR
1233 				}
1234 				j++;
1235 				pfr = pfr->pfr_next;
1236 			}
1237 			oprl->prefix[i].advrtrs = j;
1238 			oprl->prefix[i].origin = PR_ORIG_RA;
1239 
1240 			i++;
1241 			pr = pr->ndpr_next;
1242 		}
1243 		splx(s);
1244 
1245 		break;
1246 	case OSIOCGIFINFO_IN6:
1247 #define ND	ndi->ndi
1248 		/* XXX: old ndp(8) assumes a positive value for linkmtu. */
1249 		bzero(&ND, sizeof(ND));
1250 		ND.linkmtu = IN6_LINKMTU(ifp);
1251 		ND.maxmtu = ND_IFINFO(ifp)->maxmtu;
1252 		ND.basereachable = ND_IFINFO(ifp)->basereachable;
1253 		ND.reachable = ND_IFINFO(ifp)->reachable;
1254 		ND.retrans = ND_IFINFO(ifp)->retrans;
1255 		ND.flags = ND_IFINFO(ifp)->flags;
1256 		ND.recalctm = ND_IFINFO(ifp)->recalctm;
1257 		ND.chlim = ND_IFINFO(ifp)->chlim;
1258 		break;
1259 	case SIOCGIFINFO_IN6:
1260 		ND = *ND_IFINFO(ifp);
1261 		break;
1262 	case SIOCSIFINFO_IN6:
1263 		/*
1264 		 * used to change host variables from userland.
1265 		 * intented for a use on router to reflect RA configurations.
1266 		 */
1267 		/* 0 means 'unspecified' */
1268 		if (ND.linkmtu != 0) {
1269 			if (ND.linkmtu < IPV6_MMTU ||
1270 			    ND.linkmtu > IN6_LINKMTU(ifp)) {
1271 				error = EINVAL;
1272 				break;
1273 			}
1274 			ND_IFINFO(ifp)->linkmtu = ND.linkmtu;
1275 		}
1276 
1277 		if (ND.basereachable != 0) {
1278 			int obasereachable = ND_IFINFO(ifp)->basereachable;
1279 
1280 			ND_IFINFO(ifp)->basereachable = ND.basereachable;
1281 			if (ND.basereachable != obasereachable)
1282 				ND_IFINFO(ifp)->reachable =
1283 				    ND_COMPUTE_RTIME(ND.basereachable);
1284 		}
1285 		if (ND.retrans != 0)
1286 			ND_IFINFO(ifp)->retrans = ND.retrans;
1287 		if (ND.chlim != 0)
1288 			ND_IFINFO(ifp)->chlim = ND.chlim;
1289 		/* FALLTHROUGH */
1290 	case SIOCSIFINFO_FLAGS:
1291 	{
1292 		struct ifaddr *ifa;
1293 		struct in6_ifaddr *ia;
1294 
1295 		if ((ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED) &&
1296 		    !(ND.flags & ND6_IFF_IFDISABLED)) {
1297 			/* ifdisabled 1->0 transision */
1298 
1299 			/*
1300 			 * If the interface is marked as ND6_IFF_IFDISABLED and
1301 			 * has an link-local address with IN6_IFF_DUPLICATED,
1302 			 * do not clear ND6_IFF_IFDISABLED.
1303 			 * See RFC 4862, Section 5.4.5.
1304 			 */
1305 			int duplicated_linklocal = 0;
1306 
1307 			IF_ADDR_LOCK(ifp);
1308 			TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
1309 				if (ifa->ifa_addr->sa_family != AF_INET6)
1310 					continue;
1311 				ia = (struct in6_ifaddr *)ifa;
1312 				if ((ia->ia6_flags & IN6_IFF_DUPLICATED) &&
1313 				    IN6_IS_ADDR_LINKLOCAL(&ia->ia_addr.sin6_addr)) {
1314 					duplicated_linklocal = 1;
1315 					break;
1316 				}
1317 			}
1318 			IF_ADDR_UNLOCK(ifp);
1319 
1320 			if (duplicated_linklocal) {
1321 				ND.flags |= ND6_IFF_IFDISABLED;
1322 				log(LOG_ERR, "Cannot enable an interface"
1323 				    " with a link-local address marked"
1324 				    " duplicate.\n");
1325 			} else {
1326 				ND_IFINFO(ifp)->flags &= ~ND6_IFF_IFDISABLED;
1327 				in6_if_up(ifp);
1328 			}
1329 		} else if (!(ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED) &&
1330 			    (ND.flags & ND6_IFF_IFDISABLED)) {
1331 			/* ifdisabled 0->1 transision */
1332 			/* Mark all IPv6 address as tentative. */
1333 
1334 			ND_IFINFO(ifp)->flags |= ND6_IFF_IFDISABLED;
1335 			IF_ADDR_LOCK(ifp);
1336 			TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
1337 				if (ifa->ifa_addr->sa_family != AF_INET6)
1338 					continue;
1339 				ia = (struct in6_ifaddr *)ifa;
1340 				ia->ia6_flags |= IN6_IFF_TENTATIVE;
1341 			}
1342 			IF_ADDR_UNLOCK(ifp);
1343 		}
1344 
1345 		if (!(ND_IFINFO(ifp)->flags & ND6_IFF_AUTO_LINKLOCAL) &&
1346 		    (ND.flags & ND6_IFF_AUTO_LINKLOCAL)) {
1347 			/* auto_linklocal 0->1 transision */
1348 
1349 			/* If no link-local address on ifp, configure */
1350 			ND_IFINFO(ifp)->flags |= ND6_IFF_AUTO_LINKLOCAL;
1351 			in6_ifattach(ifp, NULL);
1352 		}
1353 	}
1354 		ND_IFINFO(ifp)->flags = ND.flags;
1355 		break;
1356 #undef ND
1357 	case SIOCSNDFLUSH_IN6:	/* XXX: the ioctl name is confusing... */
1358 		/* sync kernel routing table with the default router list */
1359 		defrouter_reset();
1360 		defrouter_select();
1361 		break;
1362 	case SIOCSPFXFLUSH_IN6:
1363 	{
1364 		/* flush all the prefix advertised by routers */
1365 		struct nd_prefix *pr, *next;
1366 
1367 		s = splnet();
1368 		for (pr = V_nd_prefix.lh_first; pr; pr = next) {
1369 			struct in6_ifaddr *ia, *ia_next;
1370 
1371 			next = pr->ndpr_next;
1372 
1373 			if (IN6_IS_ADDR_LINKLOCAL(&pr->ndpr_prefix.sin6_addr))
1374 				continue; /* XXX */
1375 
1376 			/* do we really have to remove addresses as well? */
1377 			/* XXXRW: in6_ifaddrhead locking. */
1378 			TAILQ_FOREACH_SAFE(ia, &V_in6_ifaddrhead, ia_link,
1379 			    ia_next) {
1380 				if ((ia->ia6_flags & IN6_IFF_AUTOCONF) == 0)
1381 					continue;
1382 
1383 				if (ia->ia6_ndpr == pr)
1384 					in6_purgeaddr(&ia->ia_ifa);
1385 			}
1386 			prelist_remove(pr);
1387 		}
1388 		splx(s);
1389 		break;
1390 	}
1391 	case SIOCSRTRFLUSH_IN6:
1392 	{
1393 		/* flush all the default routers */
1394 		struct nd_defrouter *dr, *next;
1395 
1396 		s = splnet();
1397 		defrouter_reset();
1398 		for (dr = TAILQ_FIRST(&V_nd_defrouter); dr; dr = next) {
1399 			next = TAILQ_NEXT(dr, dr_entry);
1400 			defrtrlist_del(dr);
1401 		}
1402 		defrouter_select();
1403 		splx(s);
1404 		break;
1405 	}
1406 	case SIOCGNBRINFO_IN6:
1407 	{
1408 		struct llentry *ln;
1409 		struct in6_addr nb_addr = nbi->addr; /* make local for safety */
1410 
1411 		if ((error = in6_setscope(&nb_addr, ifp, NULL)) != 0)
1412 			return (error);
1413 
1414 		IF_AFDATA_LOCK(ifp);
1415 		ln = nd6_lookup(&nb_addr, 0, ifp);
1416 		IF_AFDATA_UNLOCK(ifp);
1417 
1418 		if (ln == NULL) {
1419 			error = EINVAL;
1420 			break;
1421 		}
1422 		nbi->state = ln->ln_state;
1423 		nbi->asked = ln->la_asked;
1424 		nbi->isrouter = ln->ln_router;
1425 		nbi->expire = ln->la_expire;
1426 		LLE_RUNLOCK(ln);
1427 		break;
1428 	}
1429 	case SIOCGDEFIFACE_IN6:	/* XXX: should be implemented as a sysctl? */
1430 		ndif->ifindex = V_nd6_defifindex;
1431 		break;
1432 	case SIOCSDEFIFACE_IN6:	/* XXX: should be implemented as a sysctl? */
1433 		return (nd6_setdefaultiface(ndif->ifindex));
1434 	}
1435 	return (error);
1436 }
1437 
1438 /*
1439  * Create neighbor cache entry and cache link-layer address,
1440  * on reception of inbound ND6 packets.  (RS/RA/NS/redirect)
1441  *
1442  * type - ICMP6 type
1443  * code - type dependent information
1444  *
1445  * XXXXX
1446  *  The caller of this function already acquired the ndp
1447  *  cache table lock because the cache entry is returned.
1448  */
1449 struct llentry *
1450 nd6_cache_lladdr(struct ifnet *ifp, struct in6_addr *from, char *lladdr,
1451     int lladdrlen, int type, int code)
1452 {
1453 	struct llentry *ln = NULL;
1454 	int is_newentry;
1455 	int do_update;
1456 	int olladdr;
1457 	int llchange;
1458 	int flags = 0;
1459 	int newstate = 0;
1460 	uint16_t router = 0;
1461 	struct sockaddr_in6 sin6;
1462 	struct mbuf *chain = NULL;
1463 	int static_route = 0;
1464 
1465 	IF_AFDATA_UNLOCK_ASSERT(ifp);
1466 
1467 	if (ifp == NULL)
1468 		panic("ifp == NULL in nd6_cache_lladdr");
1469 	if (from == NULL)
1470 		panic("from == NULL in nd6_cache_lladdr");
1471 
1472 	/* nothing must be updated for unspecified address */
1473 	if (IN6_IS_ADDR_UNSPECIFIED(from))
1474 		return NULL;
1475 
1476 	/*
1477 	 * Validation about ifp->if_addrlen and lladdrlen must be done in
1478 	 * the caller.
1479 	 *
1480 	 * XXX If the link does not have link-layer adderss, what should
1481 	 * we do? (ifp->if_addrlen == 0)
1482 	 * Spec says nothing in sections for RA, RS and NA.  There's small
1483 	 * description on it in NS section (RFC 2461 7.2.3).
1484 	 */
1485 	flags |= lladdr ? ND6_EXCLUSIVE : 0;
1486 	IF_AFDATA_LOCK(ifp);
1487 	ln = nd6_lookup(from, flags, ifp);
1488 
1489 	if (ln == NULL) {
1490 		flags |= LLE_EXCLUSIVE;
1491 		ln = nd6_lookup(from, flags |ND6_CREATE, ifp);
1492 		IF_AFDATA_UNLOCK(ifp);
1493 		is_newentry = 1;
1494 	} else {
1495 		IF_AFDATA_UNLOCK(ifp);
1496 		/* do nothing if static ndp is set */
1497 		if (ln->la_flags & LLE_STATIC) {
1498 			static_route = 1;
1499 			goto done;
1500 		}
1501 		is_newentry = 0;
1502 	}
1503 	if (ln == NULL)
1504 		return (NULL);
1505 
1506 	olladdr = (ln->la_flags & LLE_VALID) ? 1 : 0;
1507 	if (olladdr && lladdr) {
1508 		llchange = bcmp(lladdr, &ln->ll_addr,
1509 		    ifp->if_addrlen);
1510 	} else
1511 		llchange = 0;
1512 
1513 	/*
1514 	 * newentry olladdr  lladdr  llchange	(*=record)
1515 	 *	0	n	n	--	(1)
1516 	 *	0	y	n	--	(2)
1517 	 *	0	n	y	--	(3) * STALE
1518 	 *	0	y	y	n	(4) *
1519 	 *	0	y	y	y	(5) * STALE
1520 	 *	1	--	n	--	(6)   NOSTATE(= PASSIVE)
1521 	 *	1	--	y	--	(7) * STALE
1522 	 */
1523 
1524 	if (lladdr) {		/* (3-5) and (7) */
1525 		/*
1526 		 * Record source link-layer address
1527 		 * XXX is it dependent to ifp->if_type?
1528 		 */
1529 		bcopy(lladdr, &ln->ll_addr, ifp->if_addrlen);
1530 		ln->la_flags |= LLE_VALID;
1531 	}
1532 
1533 	if (!is_newentry) {
1534 		if ((!olladdr && lladdr != NULL) ||	/* (3) */
1535 		    (olladdr && lladdr != NULL && llchange)) {	/* (5) */
1536 			do_update = 1;
1537 			newstate = ND6_LLINFO_STALE;
1538 		} else					/* (1-2,4) */
1539 			do_update = 0;
1540 	} else {
1541 		do_update = 1;
1542 		if (lladdr == NULL)			/* (6) */
1543 			newstate = ND6_LLINFO_NOSTATE;
1544 		else					/* (7) */
1545 			newstate = ND6_LLINFO_STALE;
1546 	}
1547 
1548 	if (do_update) {
1549 		/*
1550 		 * Update the state of the neighbor cache.
1551 		 */
1552 		ln->ln_state = newstate;
1553 
1554 		if (ln->ln_state == ND6_LLINFO_STALE) {
1555 			/*
1556 			 * XXX: since nd6_output() below will cause
1557 			 * state tansition to DELAY and reset the timer,
1558 			 * we must set the timer now, although it is actually
1559 			 * meaningless.
1560 			 */
1561 			nd6_llinfo_settimer_locked(ln, (long)V_nd6_gctimer * hz);
1562 
1563 			if (ln->la_hold) {
1564 				struct mbuf *m_hold, *m_hold_next;
1565 
1566 				/*
1567 				 * reset the la_hold in advance, to explicitly
1568 				 * prevent a la_hold lookup in nd6_output()
1569 				 * (wouldn't happen, though...)
1570 				 */
1571 				for (m_hold = ln->la_hold, ln->la_hold = NULL;
1572 				    m_hold; m_hold = m_hold_next) {
1573 					m_hold_next = m_hold->m_nextpkt;
1574 					m_hold->m_nextpkt = NULL;
1575 
1576 					/*
1577 					 * we assume ifp is not a p2p here, so
1578 					 * just set the 2nd argument as the
1579 					 * 1st one.
1580 					 */
1581 					nd6_output_lle(ifp, ifp, m_hold, L3_ADDR_SIN6(ln), NULL, ln, &chain);
1582 				}
1583 				/*
1584 				 * If we have mbufs in the chain we need to do
1585 				 * deferred transmit. Copy the address from the
1586 				 * llentry before dropping the lock down below.
1587 				 */
1588 				if (chain != NULL)
1589 					memcpy(&sin6, L3_ADDR_SIN6(ln), sizeof(sin6));
1590 			}
1591 		} else if (ln->ln_state == ND6_LLINFO_INCOMPLETE) {
1592 			/* probe right away */
1593 			nd6_llinfo_settimer_locked((void *)ln, 0);
1594 		}
1595 	}
1596 
1597 	/*
1598 	 * ICMP6 type dependent behavior.
1599 	 *
1600 	 * NS: clear IsRouter if new entry
1601 	 * RS: clear IsRouter
1602 	 * RA: set IsRouter if there's lladdr
1603 	 * redir: clear IsRouter if new entry
1604 	 *
1605 	 * RA case, (1):
1606 	 * The spec says that we must set IsRouter in the following cases:
1607 	 * - If lladdr exist, set IsRouter.  This means (1-5).
1608 	 * - If it is old entry (!newentry), set IsRouter.  This means (7).
1609 	 * So, based on the spec, in (1-5) and (7) cases we must set IsRouter.
1610 	 * A quetion arises for (1) case.  (1) case has no lladdr in the
1611 	 * neighbor cache, this is similar to (6).
1612 	 * This case is rare but we figured that we MUST NOT set IsRouter.
1613 	 *
1614 	 * newentry olladdr  lladdr  llchange	    NS  RS  RA	redir
1615 	 *							D R
1616 	 *	0	n	n	--	(1)	c   ?     s
1617 	 *	0	y	n	--	(2)	c   s     s
1618 	 *	0	n	y	--	(3)	c   s     s
1619 	 *	0	y	y	n	(4)	c   s     s
1620 	 *	0	y	y	y	(5)	c   s     s
1621 	 *	1	--	n	--	(6) c	c	c s
1622 	 *	1	--	y	--	(7) c	c   s	c s
1623 	 *
1624 	 *					(c=clear s=set)
1625 	 */
1626 	switch (type & 0xff) {
1627 	case ND_NEIGHBOR_SOLICIT:
1628 		/*
1629 		 * New entry must have is_router flag cleared.
1630 		 */
1631 		if (is_newentry)	/* (6-7) */
1632 			ln->ln_router = 0;
1633 		break;
1634 	case ND_REDIRECT:
1635 		/*
1636 		 * If the icmp is a redirect to a better router, always set the
1637 		 * is_router flag.  Otherwise, if the entry is newly created,
1638 		 * clear the flag.  [RFC 2461, sec 8.3]
1639 		 */
1640 		if (code == ND_REDIRECT_ROUTER)
1641 			ln->ln_router = 1;
1642 		else if (is_newentry) /* (6-7) */
1643 			ln->ln_router = 0;
1644 		break;
1645 	case ND_ROUTER_SOLICIT:
1646 		/*
1647 		 * is_router flag must always be cleared.
1648 		 */
1649 		ln->ln_router = 0;
1650 		break;
1651 	case ND_ROUTER_ADVERT:
1652 		/*
1653 		 * Mark an entry with lladdr as a router.
1654 		 */
1655 		if ((!is_newentry && (olladdr || lladdr)) ||	/* (2-5) */
1656 		    (is_newentry && lladdr)) {			/* (7) */
1657 			ln->ln_router = 1;
1658 		}
1659 		break;
1660 	}
1661 
1662 	if (ln != NULL) {
1663 		static_route = (ln->la_flags & LLE_STATIC);
1664 		router = ln->ln_router;
1665 
1666 		if (flags & ND6_EXCLUSIVE)
1667 			LLE_WUNLOCK(ln);
1668 		else
1669 			LLE_RUNLOCK(ln);
1670 		if (static_route)
1671 			ln = NULL;
1672 	}
1673 	if (chain)
1674 		nd6_output_flush(ifp, ifp, chain, &sin6, NULL);
1675 
1676 	/*
1677 	 * When the link-layer address of a router changes, select the
1678 	 * best router again.  In particular, when the neighbor entry is newly
1679 	 * created, it might affect the selection policy.
1680 	 * Question: can we restrict the first condition to the "is_newentry"
1681 	 * case?
1682 	 * XXX: when we hear an RA from a new router with the link-layer
1683 	 * address option, defrouter_select() is called twice, since
1684 	 * defrtrlist_update called the function as well.  However, I believe
1685 	 * we can compromise the overhead, since it only happens the first
1686 	 * time.
1687 	 * XXX: although defrouter_select() should not have a bad effect
1688 	 * for those are not autoconfigured hosts, we explicitly avoid such
1689 	 * cases for safety.
1690 	 */
1691 	if (do_update && router && !V_ip6_forwarding &&
1692 	    ND_IFINFO(ifp)->flags & ND6_IFF_ACCEPT_RTADV) {
1693 		/*
1694 		 * guaranteed recursion
1695 		 */
1696 		defrouter_select();
1697 	}
1698 
1699 	return (ln);
1700 done:
1701 	if (ln != NULL) {
1702 		if (flags & ND6_EXCLUSIVE)
1703 			LLE_WUNLOCK(ln);
1704 		else
1705 			LLE_RUNLOCK(ln);
1706 		if (static_route)
1707 			ln = NULL;
1708 	}
1709 	return (ln);
1710 }
1711 
1712 static void
1713 nd6_slowtimo(void *arg)
1714 {
1715 	CURVNET_SET((struct vnet *) arg);
1716 	struct nd_ifinfo *nd6if;
1717 	struct ifnet *ifp;
1718 
1719 	callout_reset(&V_nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz,
1720 	    nd6_slowtimo, curvnet);
1721 	IFNET_RLOCK_NOSLEEP();
1722 	for (ifp = TAILQ_FIRST(&V_ifnet); ifp;
1723 	    ifp = TAILQ_NEXT(ifp, if_list)) {
1724 		nd6if = ND_IFINFO(ifp);
1725 		if (nd6if->basereachable && /* already initialized */
1726 		    (nd6if->recalctm -= ND6_SLOWTIMER_INTERVAL) <= 0) {
1727 			/*
1728 			 * Since reachable time rarely changes by router
1729 			 * advertisements, we SHOULD insure that a new random
1730 			 * value gets recomputed at least once every few hours.
1731 			 * (RFC 2461, 6.3.4)
1732 			 */
1733 			nd6if->recalctm = V_nd6_recalc_reachtm_interval;
1734 			nd6if->reachable = ND_COMPUTE_RTIME(nd6if->basereachable);
1735 		}
1736 	}
1737 	IFNET_RUNLOCK_NOSLEEP();
1738 	CURVNET_RESTORE();
1739 }
1740 
1741 int
1742 nd6_output(struct ifnet *ifp, struct ifnet *origifp, struct mbuf *m0,
1743     struct sockaddr_in6 *dst, struct rtentry *rt0)
1744 {
1745 
1746 	return (nd6_output_lle(ifp, origifp, m0, dst, rt0, NULL, NULL));
1747 }
1748 
1749 
1750 /*
1751  * Note that I'm not enforcing any global serialization
1752  * lle state or asked changes here as the logic is too
1753  * complicated to avoid having to always acquire an exclusive
1754  * lock
1755  * KMM
1756  *
1757  */
1758 #define senderr(e) { error = (e); goto bad;}
1759 
1760 int
1761 nd6_output_lle(struct ifnet *ifp, struct ifnet *origifp, struct mbuf *m0,
1762     struct sockaddr_in6 *dst, struct rtentry *rt0, struct llentry *lle,
1763 	struct mbuf **chain)
1764 {
1765 	struct mbuf *m = m0;
1766 	struct llentry *ln = lle;
1767 	int error = 0;
1768 	int flags = 0;
1769 
1770 #ifdef INVARIANTS
1771 	if (lle != NULL) {
1772 
1773 		LLE_WLOCK_ASSERT(lle);
1774 
1775 		KASSERT(chain != NULL, (" lle locked but no mbuf chain pointer passed"));
1776 	}
1777 #endif
1778 	if (IN6_IS_ADDR_MULTICAST(&dst->sin6_addr))
1779 		goto sendpkt;
1780 
1781 	if (nd6_need_cache(ifp) == 0)
1782 		goto sendpkt;
1783 
1784 	/*
1785 	 * next hop determination.  This routine is derived from ether_output.
1786 	 */
1787 
1788 	/*
1789 	 * Address resolution or Neighbor Unreachability Detection
1790 	 * for the next hop.
1791 	 * At this point, the destination of the packet must be a unicast
1792 	 * or an anycast address(i.e. not a multicast).
1793 	 */
1794 
1795 	flags = ((m != NULL) || (lle != NULL)) ? LLE_EXCLUSIVE : 0;
1796 	if (ln == NULL) {
1797 	retry:
1798 		IF_AFDATA_LOCK(ifp);
1799 		ln = lla_lookup(LLTABLE6(ifp), flags, (struct sockaddr *)dst);
1800 		IF_AFDATA_UNLOCK(ifp);
1801 		if ((ln == NULL) && nd6_is_addr_neighbor(dst, ifp))  {
1802 			/*
1803 			 * Since nd6_is_addr_neighbor() internally calls nd6_lookup(),
1804 			 * the condition below is not very efficient.  But we believe
1805 			 * it is tolerable, because this should be a rare case.
1806 			 */
1807 			flags = ND6_CREATE | (m ? ND6_EXCLUSIVE : 0);
1808 			IF_AFDATA_LOCK(ifp);
1809 			ln = nd6_lookup(&dst->sin6_addr, flags, ifp);
1810 			IF_AFDATA_UNLOCK(ifp);
1811 		}
1812 	}
1813 	if (ln == NULL) {
1814 		if ((ifp->if_flags & IFF_POINTOPOINT) == 0 &&
1815 		    !(ND_IFINFO(ifp)->flags & ND6_IFF_PERFORMNUD)) {
1816 			char ip6buf[INET6_ADDRSTRLEN];
1817 			log(LOG_DEBUG,
1818 			    "nd6_output: can't allocate llinfo for %s "
1819 			    "(ln=%p)\n",
1820 			    ip6_sprintf(ip6buf, &dst->sin6_addr), ln);
1821 			senderr(EIO);	/* XXX: good error? */
1822 		}
1823 		goto sendpkt;	/* send anyway */
1824 	}
1825 
1826 	/* We don't have to do link-layer address resolution on a p2p link. */
1827 	if ((ifp->if_flags & IFF_POINTOPOINT) != 0 &&
1828 	    ln->ln_state < ND6_LLINFO_REACHABLE) {
1829 		if ((flags & LLE_EXCLUSIVE) == 0) {
1830 			flags |= LLE_EXCLUSIVE;
1831 			goto retry;
1832 		}
1833 		ln->ln_state = ND6_LLINFO_STALE;
1834 		nd6_llinfo_settimer_locked(ln, (long)V_nd6_gctimer * hz);
1835 	}
1836 
1837 	/*
1838 	 * The first time we send a packet to a neighbor whose entry is
1839 	 * STALE, we have to change the state to DELAY and a sets a timer to
1840 	 * expire in DELAY_FIRST_PROBE_TIME seconds to ensure do
1841 	 * neighbor unreachability detection on expiration.
1842 	 * (RFC 2461 7.3.3)
1843 	 */
1844 	if (ln->ln_state == ND6_LLINFO_STALE) {
1845 		if ((flags & LLE_EXCLUSIVE) == 0) {
1846 			flags |= LLE_EXCLUSIVE;
1847 			LLE_RUNLOCK(ln);
1848 			goto retry;
1849 		}
1850 		ln->la_asked = 0;
1851 		ln->ln_state = ND6_LLINFO_DELAY;
1852 		nd6_llinfo_settimer_locked(ln, (long)V_nd6_delay * hz);
1853 	}
1854 
1855 	/*
1856 	 * If the neighbor cache entry has a state other than INCOMPLETE
1857 	 * (i.e. its link-layer address is already resolved), just
1858 	 * send the packet.
1859 	 */
1860 	if (ln->ln_state > ND6_LLINFO_INCOMPLETE)
1861 		goto sendpkt;
1862 
1863 	/*
1864 	 * There is a neighbor cache entry, but no ethernet address
1865 	 * response yet.  Append this latest packet to the end of the
1866 	 * packet queue in the mbuf, unless the number of the packet
1867 	 * does not exceed nd6_maxqueuelen.  When it exceeds nd6_maxqueuelen,
1868 	 * the oldest packet in the queue will be removed.
1869 	 */
1870 	if (ln->ln_state == ND6_LLINFO_NOSTATE)
1871 		ln->ln_state = ND6_LLINFO_INCOMPLETE;
1872 
1873 	if ((flags & LLE_EXCLUSIVE) == 0) {
1874 		flags |= LLE_EXCLUSIVE;
1875 		LLE_RUNLOCK(ln);
1876 		goto retry;
1877 	}
1878 	if (ln->la_hold) {
1879 		struct mbuf *m_hold;
1880 		int i;
1881 
1882 		i = 0;
1883 		for (m_hold = ln->la_hold; m_hold; m_hold = m_hold->m_nextpkt) {
1884 			i++;
1885 			if (m_hold->m_nextpkt == NULL) {
1886 				m_hold->m_nextpkt = m;
1887 				break;
1888 			}
1889 		}
1890 		while (i >= V_nd6_maxqueuelen) {
1891 			m_hold = ln->la_hold;
1892 			ln->la_hold = ln->la_hold->m_nextpkt;
1893 			m_freem(m_hold);
1894 			i--;
1895 		}
1896 	} else {
1897 		ln->la_hold = m;
1898 	}
1899 	/*
1900 	 * We did the lookup (no lle arg) so we
1901 	 * need to do the unlock here
1902 	 */
1903 	if (lle == NULL) {
1904 		if (flags & LLE_EXCLUSIVE)
1905 			LLE_WUNLOCK(ln);
1906 		else
1907 			LLE_RUNLOCK(ln);
1908 	}
1909 
1910 	/*
1911 	 * If there has been no NS for the neighbor after entering the
1912 	 * INCOMPLETE state, send the first solicitation.
1913 	 */
1914 	if (!ND6_LLINFO_PERMANENT(ln) && ln->la_asked == 0) {
1915 		ln->la_asked++;
1916 
1917 		nd6_llinfo_settimer(ln,
1918 		    (long)ND_IFINFO(ifp)->retrans * hz / 1000);
1919 		nd6_ns_output(ifp, NULL, &dst->sin6_addr, ln, 0);
1920 	}
1921 	return (0);
1922 
1923   sendpkt:
1924 	/* discard the packet if IPv6 operation is disabled on the interface */
1925 	if ((ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED)) {
1926 		error = ENETDOWN; /* better error? */
1927 		goto bad;
1928 	}
1929 	/*
1930 	 * ln is valid and the caller did not pass in
1931 	 * an llentry
1932 	 */
1933 	if ((ln != NULL) && (lle == NULL)) {
1934 		if (flags & LLE_EXCLUSIVE)
1935 			LLE_WUNLOCK(ln);
1936 		else
1937 			LLE_RUNLOCK(ln);
1938 	}
1939 
1940 #ifdef MAC
1941 	mac_netinet6_nd6_send(ifp, m);
1942 #endif
1943 	/*
1944 	 * We were passed in a pointer to an lle with the lock held
1945 	 * this means that we can't call if_output as we will
1946 	 * recurse on the lle lock - so what we do is we create
1947 	 * a list of mbufs to send and transmit them in the caller
1948 	 * after the lock is dropped
1949 	 */
1950 	if (lle != NULL) {
1951 		if (*chain == NULL)
1952 			*chain = m;
1953 		else {
1954 			struct mbuf *m = *chain;
1955 
1956 			/*
1957 			 * append mbuf to end of deferred chain
1958 			 */
1959 			while (m->m_nextpkt != NULL)
1960 				m = m->m_nextpkt;
1961 			m->m_nextpkt = m;
1962 		}
1963 		return (error);
1964 	}
1965 	if ((ifp->if_flags & IFF_LOOPBACK) != 0) {
1966 		return ((*ifp->if_output)(origifp, m, (struct sockaddr *)dst,
1967 		    NULL));
1968 	}
1969 	error = (*ifp->if_output)(ifp, m, (struct sockaddr *)dst, NULL);
1970 	return (error);
1971 
1972   bad:
1973 	/*
1974 	 * ln is valid and the caller did not pass in
1975 	 * an llentry
1976 	 */
1977 	if ((ln != NULL) && (lle == NULL)) {
1978 		if (flags & LLE_EXCLUSIVE)
1979 			LLE_WUNLOCK(ln);
1980 		else
1981 			LLE_RUNLOCK(ln);
1982 	}
1983 	if (m)
1984 		m_freem(m);
1985 	return (error);
1986 }
1987 #undef senderr
1988 
1989 
1990 int
1991 nd6_output_flush(struct ifnet *ifp, struct ifnet *origifp, struct mbuf *chain,
1992     struct sockaddr_in6 *dst, struct route *ro)
1993 {
1994 	struct mbuf *m, *m_head;
1995 	struct ifnet *outifp;
1996 	int error = 0;
1997 
1998 	m_head = chain;
1999 	if ((ifp->if_flags & IFF_LOOPBACK) != 0)
2000 		outifp = origifp;
2001 	else
2002 		outifp = ifp;
2003 
2004 	while (m_head) {
2005 		m = m_head;
2006 		m_head = m_head->m_nextpkt;
2007 		error = (*ifp->if_output)(ifp, m, (struct sockaddr *)dst, ro);
2008 	}
2009 
2010 	/*
2011 	 * XXX
2012 	 * note that intermediate errors are blindly ignored - but this is
2013 	 * the same convention as used with nd6_output when called by
2014 	 * nd6_cache_lladdr
2015 	 */
2016 	return (error);
2017 }
2018 
2019 
2020 int
2021 nd6_need_cache(struct ifnet *ifp)
2022 {
2023 	/*
2024 	 * XXX: we currently do not make neighbor cache on any interface
2025 	 * other than ARCnet, Ethernet, FDDI and GIF.
2026 	 *
2027 	 * RFC2893 says:
2028 	 * - unidirectional tunnels needs no ND
2029 	 */
2030 	switch (ifp->if_type) {
2031 	case IFT_ARCNET:
2032 	case IFT_ETHER:
2033 	case IFT_FDDI:
2034 	case IFT_IEEE1394:
2035 #ifdef IFT_L2VLAN
2036 	case IFT_L2VLAN:
2037 #endif
2038 #ifdef IFT_IEEE80211
2039 	case IFT_IEEE80211:
2040 #endif
2041 #ifdef IFT_CARP
2042 	case IFT_CARP:
2043 #endif
2044 	case IFT_GIF:		/* XXX need more cases? */
2045 	case IFT_PPP:
2046 	case IFT_TUNNEL:
2047 	case IFT_BRIDGE:
2048 	case IFT_PROPVIRTUAL:
2049 		return (1);
2050 	default:
2051 		return (0);
2052 	}
2053 }
2054 
2055 /*
2056  * the callers of this function need to be re-worked to drop
2057  * the lle lock, drop here for now
2058  */
2059 int
2060 nd6_storelladdr(struct ifnet *ifp, struct mbuf *m,
2061     struct sockaddr *dst, u_char *desten, struct llentry **lle)
2062 {
2063 	struct llentry *ln;
2064 
2065 	*lle = NULL;
2066 	IF_AFDATA_UNLOCK_ASSERT(ifp);
2067 	if (m->m_flags & M_MCAST) {
2068 		int i;
2069 
2070 		switch (ifp->if_type) {
2071 		case IFT_ETHER:
2072 		case IFT_FDDI:
2073 #ifdef IFT_L2VLAN
2074 		case IFT_L2VLAN:
2075 #endif
2076 #ifdef IFT_IEEE80211
2077 		case IFT_IEEE80211:
2078 #endif
2079 		case IFT_BRIDGE:
2080 		case IFT_ISO88025:
2081 			ETHER_MAP_IPV6_MULTICAST(&SIN6(dst)->sin6_addr,
2082 						 desten);
2083 			return (0);
2084 		case IFT_IEEE1394:
2085 			/*
2086 			 * netbsd can use if_broadcastaddr, but we don't do so
2087 			 * to reduce # of ifdef.
2088 			 */
2089 			for (i = 0; i < ifp->if_addrlen; i++)
2090 				desten[i] = ~0;
2091 			return (0);
2092 		case IFT_ARCNET:
2093 			*desten = 0;
2094 			return (0);
2095 		default:
2096 			m_freem(m);
2097 			return (EAFNOSUPPORT);
2098 		}
2099 	}
2100 
2101 
2102 	/*
2103 	 * the entry should have been created in nd6_store_lladdr
2104 	 */
2105 	IF_AFDATA_LOCK(ifp);
2106 	ln = lla_lookup(LLTABLE6(ifp), 0, dst);
2107 	IF_AFDATA_UNLOCK(ifp);
2108 	if ((ln == NULL) || !(ln->la_flags & LLE_VALID)) {
2109 		if (ln != NULL)
2110 			LLE_RUNLOCK(ln);
2111 		/* this could happen, if we could not allocate memory */
2112 		m_freem(m);
2113 		return (1);
2114 	}
2115 
2116 	bcopy(&ln->ll_addr, desten, ifp->if_addrlen);
2117 	*lle = ln;
2118 	LLE_RUNLOCK(ln);
2119 	/*
2120 	 * A *small* use after free race exists here
2121 	 */
2122 	return (0);
2123 }
2124 
2125 static void
2126 clear_llinfo_pqueue(struct llentry *ln)
2127 {
2128 	struct mbuf *m_hold, *m_hold_next;
2129 
2130 	for (m_hold = ln->la_hold; m_hold; m_hold = m_hold_next) {
2131 		m_hold_next = m_hold->m_nextpkt;
2132 		m_hold->m_nextpkt = NULL;
2133 		m_freem(m_hold);
2134 	}
2135 
2136 	ln->la_hold = NULL;
2137 	return;
2138 }
2139 
2140 static int nd6_sysctl_drlist(SYSCTL_HANDLER_ARGS);
2141 static int nd6_sysctl_prlist(SYSCTL_HANDLER_ARGS);
2142 #ifdef SYSCTL_DECL
2143 SYSCTL_DECL(_net_inet6_icmp6);
2144 #endif
2145 SYSCTL_NODE(_net_inet6_icmp6, ICMPV6CTL_ND6_DRLIST, nd6_drlist,
2146 	CTLFLAG_RD, nd6_sysctl_drlist, "");
2147 SYSCTL_NODE(_net_inet6_icmp6, ICMPV6CTL_ND6_PRLIST, nd6_prlist,
2148 	CTLFLAG_RD, nd6_sysctl_prlist, "");
2149 SYSCTL_VNET_INT(_net_inet6_icmp6, ICMPV6CTL_ND6_MAXQLEN, nd6_maxqueuelen,
2150 	CTLFLAG_RW, &VNET_NAME(nd6_maxqueuelen), 1, "");
2151 
2152 static int
2153 nd6_sysctl_drlist(SYSCTL_HANDLER_ARGS)
2154 {
2155 	int error;
2156 	char buf[1024] __aligned(4);
2157 	struct in6_defrouter *d, *de;
2158 	struct nd_defrouter *dr;
2159 
2160 	if (req->newptr)
2161 		return EPERM;
2162 	error = 0;
2163 
2164 	for (dr = TAILQ_FIRST(&V_nd_defrouter); dr;
2165 	     dr = TAILQ_NEXT(dr, dr_entry)) {
2166 		d = (struct in6_defrouter *)buf;
2167 		de = (struct in6_defrouter *)(buf + sizeof(buf));
2168 
2169 		if (d + 1 <= de) {
2170 			bzero(d, sizeof(*d));
2171 			d->rtaddr.sin6_family = AF_INET6;
2172 			d->rtaddr.sin6_len = sizeof(d->rtaddr);
2173 			d->rtaddr.sin6_addr = dr->rtaddr;
2174 			error = sa6_recoverscope(&d->rtaddr);
2175 			if (error != 0)
2176 				return (error);
2177 			d->flags = dr->flags;
2178 			d->rtlifetime = dr->rtlifetime;
2179 			d->expire = dr->expire;
2180 			d->if_index = dr->ifp->if_index;
2181 		} else
2182 			panic("buffer too short");
2183 
2184 		error = SYSCTL_OUT(req, buf, sizeof(*d));
2185 		if (error)
2186 			break;
2187 	}
2188 
2189 	return (error);
2190 }
2191 
2192 static int
2193 nd6_sysctl_prlist(SYSCTL_HANDLER_ARGS)
2194 {
2195 	int error;
2196 	char buf[1024] __aligned(4);
2197 	struct in6_prefix *p, *pe;
2198 	struct nd_prefix *pr;
2199 	char ip6buf[INET6_ADDRSTRLEN];
2200 
2201 	if (req->newptr)
2202 		return EPERM;
2203 	error = 0;
2204 
2205 	for (pr = V_nd_prefix.lh_first; pr; pr = pr->ndpr_next) {
2206 		u_short advrtrs;
2207 		size_t advance;
2208 		struct sockaddr_in6 *sin6, *s6;
2209 		struct nd_pfxrouter *pfr;
2210 
2211 		p = (struct in6_prefix *)buf;
2212 		pe = (struct in6_prefix *)(buf + sizeof(buf));
2213 
2214 		if (p + 1 <= pe) {
2215 			bzero(p, sizeof(*p));
2216 			sin6 = (struct sockaddr_in6 *)(p + 1);
2217 
2218 			p->prefix = pr->ndpr_prefix;
2219 			if (sa6_recoverscope(&p->prefix)) {
2220 				log(LOG_ERR,
2221 				    "scope error in prefix list (%s)\n",
2222 				    ip6_sprintf(ip6buf, &p->prefix.sin6_addr));
2223 				/* XXX: press on... */
2224 			}
2225 			p->raflags = pr->ndpr_raf;
2226 			p->prefixlen = pr->ndpr_plen;
2227 			p->vltime = pr->ndpr_vltime;
2228 			p->pltime = pr->ndpr_pltime;
2229 			p->if_index = pr->ndpr_ifp->if_index;
2230 			if (pr->ndpr_vltime == ND6_INFINITE_LIFETIME)
2231 				p->expire = 0;
2232 			else {
2233 				time_t maxexpire;
2234 
2235 				/* XXX: we assume time_t is signed. */
2236 				maxexpire = (-1) &
2237 				    ~((time_t)1 <<
2238 				    ((sizeof(maxexpire) * 8) - 1));
2239 				if (pr->ndpr_vltime <
2240 				    maxexpire - pr->ndpr_lastupdate) {
2241 				    p->expire = pr->ndpr_lastupdate +
2242 				        pr->ndpr_vltime;
2243 				} else
2244 					p->expire = maxexpire;
2245 			}
2246 			p->refcnt = pr->ndpr_refcnt;
2247 			p->flags = pr->ndpr_stateflags;
2248 			p->origin = PR_ORIG_RA;
2249 			advrtrs = 0;
2250 			for (pfr = pr->ndpr_advrtrs.lh_first; pfr;
2251 			     pfr = pfr->pfr_next) {
2252 				if ((void *)&sin6[advrtrs + 1] > (void *)pe) {
2253 					advrtrs++;
2254 					continue;
2255 				}
2256 				s6 = &sin6[advrtrs];
2257 				bzero(s6, sizeof(*s6));
2258 				s6->sin6_family = AF_INET6;
2259 				s6->sin6_len = sizeof(*sin6);
2260 				s6->sin6_addr = pfr->router->rtaddr;
2261 				if (sa6_recoverscope(s6)) {
2262 					log(LOG_ERR,
2263 					    "scope error in "
2264 					    "prefix list (%s)\n",
2265 					    ip6_sprintf(ip6buf,
2266 						    &pfr->router->rtaddr));
2267 				}
2268 				advrtrs++;
2269 			}
2270 			p->advrtrs = advrtrs;
2271 		} else
2272 			panic("buffer too short");
2273 
2274 		advance = sizeof(*p) + sizeof(*sin6) * advrtrs;
2275 		error = SYSCTL_OUT(req, buf, advance);
2276 		if (error)
2277 			break;
2278 	}
2279 
2280 	return (error);
2281 }
2282