xref: /freebsd/sys/netinet6/nd6.c (revision 7bd6fde3)
1 /*	$FreeBSD$	*/
2 /*	$KAME: nd6.c,v 1.144 2001/05/24 07:44:00 itojun Exp $	*/
3 
4 /*-
5  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of the project nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  */
32 
33 #include "opt_inet.h"
34 #include "opt_inet6.h"
35 #include "opt_mac.h"
36 
37 #include <sys/param.h>
38 #include <sys/systm.h>
39 #include <sys/callout.h>
40 #include <sys/malloc.h>
41 #include <sys/mbuf.h>
42 #include <sys/socket.h>
43 #include <sys/sockio.h>
44 #include <sys/time.h>
45 #include <sys/kernel.h>
46 #include <sys/protosw.h>
47 #include <sys/errno.h>
48 #include <sys/syslog.h>
49 #include <sys/queue.h>
50 #include <sys/sysctl.h>
51 
52 #include <net/if.h>
53 #include <net/if_arc.h>
54 #include <net/if_dl.h>
55 #include <net/if_types.h>
56 #include <net/iso88025.h>
57 #include <net/fddi.h>
58 #include <net/route.h>
59 
60 #include <netinet/in.h>
61 #include <netinet/if_ether.h>
62 #include <netinet6/in6_var.h>
63 #include <netinet/ip6.h>
64 #include <netinet6/ip6_var.h>
65 #include <netinet6/scope6_var.h>
66 #include <netinet6/nd6.h>
67 #include <netinet/icmp6.h>
68 
69 #include <sys/limits.h>
70 
71 #include <security/mac/mac_framework.h>
72 
73 #define ND6_SLOWTIMER_INTERVAL (60 * 60) /* 1 hour */
74 #define ND6_RECALC_REACHTM_INTERVAL (60 * 120) /* 2 hours */
75 
76 #define SIN6(s) ((struct sockaddr_in6 *)s)
77 #define SDL(s) ((struct sockaddr_dl *)s)
78 
79 /* timer values */
80 int	nd6_prune	= 1;	/* walk list every 1 seconds */
81 int	nd6_delay	= 5;	/* delay first probe time 5 second */
82 int	nd6_umaxtries	= 3;	/* maximum unicast query */
83 int	nd6_mmaxtries	= 3;	/* maximum multicast query */
84 int	nd6_useloopback = 1;	/* use loopback interface for local traffic */
85 int	nd6_gctimer	= (60 * 60 * 24); /* 1 day: garbage collection timer */
86 
87 /* preventing too many loops in ND option parsing */
88 int nd6_maxndopt = 10;	/* max # of ND options allowed */
89 
90 int nd6_maxnudhint = 0;	/* max # of subsequent upper layer hints */
91 int nd6_maxqueuelen = 1; /* max # of packets cached in unresolved ND entries */
92 
93 #ifdef ND6_DEBUG
94 int nd6_debug = 1;
95 #else
96 int nd6_debug = 0;
97 #endif
98 
99 /* for debugging? */
100 static int nd6_inuse, nd6_allocated;
101 
102 struct llinfo_nd6 llinfo_nd6 = {&llinfo_nd6, &llinfo_nd6};
103 struct nd_drhead nd_defrouter;
104 struct nd_prhead nd_prefix = { 0 };
105 
106 int nd6_recalc_reachtm_interval = ND6_RECALC_REACHTM_INTERVAL;
107 static struct sockaddr_in6 all1_sa;
108 
109 static int nd6_is_new_addr_neighbor __P((struct sockaddr_in6 *,
110 	struct ifnet *));
111 static void nd6_setmtu0 __P((struct ifnet *, struct nd_ifinfo *));
112 static void nd6_slowtimo __P((void *));
113 static int regen_tmpaddr __P((struct in6_ifaddr *));
114 static struct llinfo_nd6 *nd6_free __P((struct rtentry *, int));
115 static void nd6_llinfo_timer __P((void *));
116 static void clear_llinfo_pqueue __P((struct llinfo_nd6 *));
117 
118 struct callout nd6_slowtimo_ch;
119 struct callout nd6_timer_ch;
120 extern struct callout in6_tmpaddrtimer_ch;
121 
122 void
123 nd6_init()
124 {
125 	static int nd6_init_done = 0;
126 	int i;
127 
128 	if (nd6_init_done) {
129 		log(LOG_NOTICE, "nd6_init called more than once(ignored)\n");
130 		return;
131 	}
132 
133 	all1_sa.sin6_family = AF_INET6;
134 	all1_sa.sin6_len = sizeof(struct sockaddr_in6);
135 	for (i = 0; i < sizeof(all1_sa.sin6_addr); i++)
136 		all1_sa.sin6_addr.s6_addr[i] = 0xff;
137 
138 	/* initialization of the default router list */
139 	TAILQ_INIT(&nd_defrouter);
140 
141 	nd6_init_done = 1;
142 
143 	/* start timer */
144 	callout_init(&nd6_slowtimo_ch, 0);
145 	callout_reset(&nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz,
146 	    nd6_slowtimo, NULL);
147 }
148 
149 struct nd_ifinfo *
150 nd6_ifattach(ifp)
151 	struct ifnet *ifp;
152 {
153 	struct nd_ifinfo *nd;
154 
155 	nd = (struct nd_ifinfo *)malloc(sizeof(*nd), M_IP6NDP, M_WAITOK);
156 	bzero(nd, sizeof(*nd));
157 
158 	nd->initialized = 1;
159 
160 	nd->chlim = IPV6_DEFHLIM;
161 	nd->basereachable = REACHABLE_TIME;
162 	nd->reachable = ND_COMPUTE_RTIME(nd->basereachable);
163 	nd->retrans = RETRANS_TIMER;
164 	/*
165 	 * Note that the default value of ip6_accept_rtadv is 0, which means
166 	 * we won't accept RAs by default even if we set ND6_IFF_ACCEPT_RTADV
167 	 * here.
168 	 */
169 	nd->flags = (ND6_IFF_PERFORMNUD | ND6_IFF_ACCEPT_RTADV);
170 
171 	/* XXX: we cannot call nd6_setmtu since ifp is not fully initialized */
172 	nd6_setmtu0(ifp, nd);
173 
174 	return nd;
175 }
176 
177 void
178 nd6_ifdetach(nd)
179 	struct nd_ifinfo *nd;
180 {
181 
182 	free(nd, M_IP6NDP);
183 }
184 
185 /*
186  * Reset ND level link MTU. This function is called when the physical MTU
187  * changes, which means we might have to adjust the ND level MTU.
188  */
189 void
190 nd6_setmtu(ifp)
191 	struct ifnet *ifp;
192 {
193 
194 	nd6_setmtu0(ifp, ND_IFINFO(ifp));
195 }
196 
197 /* XXX todo: do not maintain copy of ifp->if_mtu in ndi->maxmtu */
198 void
199 nd6_setmtu0(ifp, ndi)
200 	struct ifnet *ifp;
201 	struct nd_ifinfo *ndi;
202 {
203 	u_int32_t omaxmtu;
204 
205 	omaxmtu = ndi->maxmtu;
206 
207 	switch (ifp->if_type) {
208 	case IFT_ARCNET:
209 		ndi->maxmtu = MIN(ARC_PHDS_MAXMTU, ifp->if_mtu); /* RFC2497 */
210 		break;
211 	case IFT_FDDI:
212 		ndi->maxmtu = MIN(FDDIIPMTU, ifp->if_mtu); /* RFC2467 */
213 		break;
214 	case IFT_ISO88025:
215 		 ndi->maxmtu = MIN(ISO88025_MAX_MTU, ifp->if_mtu);
216 		 break;
217 	default:
218 		ndi->maxmtu = ifp->if_mtu;
219 		break;
220 	}
221 
222 	/*
223 	 * Decreasing the interface MTU under IPV6 minimum MTU may cause
224 	 * undesirable situation.  We thus notify the operator of the change
225 	 * explicitly.  The check for omaxmtu is necessary to restrict the
226 	 * log to the case of changing the MTU, not initializing it.
227 	 */
228 	if (omaxmtu >= IPV6_MMTU && ndi->maxmtu < IPV6_MMTU) {
229 		log(LOG_NOTICE, "nd6_setmtu0: "
230 		    "new link MTU on %s (%lu) is too small for IPv6\n",
231 		    if_name(ifp), (unsigned long)ndi->maxmtu);
232 	}
233 
234 	if (ndi->maxmtu > in6_maxmtu)
235 		in6_setmaxmtu(); /* check all interfaces just in case */
236 
237 #undef MIN
238 }
239 
240 void
241 nd6_option_init(opt, icmp6len, ndopts)
242 	void *opt;
243 	int icmp6len;
244 	union nd_opts *ndopts;
245 {
246 
247 	bzero(ndopts, sizeof(*ndopts));
248 	ndopts->nd_opts_search = (struct nd_opt_hdr *)opt;
249 	ndopts->nd_opts_last
250 		= (struct nd_opt_hdr *)(((u_char *)opt) + icmp6len);
251 
252 	if (icmp6len == 0) {
253 		ndopts->nd_opts_done = 1;
254 		ndopts->nd_opts_search = NULL;
255 	}
256 }
257 
258 /*
259  * Take one ND option.
260  */
261 struct nd_opt_hdr *
262 nd6_option(ndopts)
263 	union nd_opts *ndopts;
264 {
265 	struct nd_opt_hdr *nd_opt;
266 	int olen;
267 
268 	if (ndopts == NULL)
269 		panic("ndopts == NULL in nd6_option");
270 	if (ndopts->nd_opts_last == NULL)
271 		panic("uninitialized ndopts in nd6_option");
272 	if (ndopts->nd_opts_search == NULL)
273 		return NULL;
274 	if (ndopts->nd_opts_done)
275 		return NULL;
276 
277 	nd_opt = ndopts->nd_opts_search;
278 
279 	/* make sure nd_opt_len is inside the buffer */
280 	if ((caddr_t)&nd_opt->nd_opt_len >= (caddr_t)ndopts->nd_opts_last) {
281 		bzero(ndopts, sizeof(*ndopts));
282 		return NULL;
283 	}
284 
285 	olen = nd_opt->nd_opt_len << 3;
286 	if (olen == 0) {
287 		/*
288 		 * Message validation requires that all included
289 		 * options have a length that is greater than zero.
290 		 */
291 		bzero(ndopts, sizeof(*ndopts));
292 		return NULL;
293 	}
294 
295 	ndopts->nd_opts_search = (struct nd_opt_hdr *)((caddr_t)nd_opt + olen);
296 	if (ndopts->nd_opts_search > ndopts->nd_opts_last) {
297 		/* option overruns the end of buffer, invalid */
298 		bzero(ndopts, sizeof(*ndopts));
299 		return NULL;
300 	} else if (ndopts->nd_opts_search == ndopts->nd_opts_last) {
301 		/* reached the end of options chain */
302 		ndopts->nd_opts_done = 1;
303 		ndopts->nd_opts_search = NULL;
304 	}
305 	return nd_opt;
306 }
307 
308 /*
309  * Parse multiple ND options.
310  * This function is much easier to use, for ND routines that do not need
311  * multiple options of the same type.
312  */
313 int
314 nd6_options(ndopts)
315 	union nd_opts *ndopts;
316 {
317 	struct nd_opt_hdr *nd_opt;
318 	int i = 0;
319 
320 	if (ndopts == NULL)
321 		panic("ndopts == NULL in nd6_options");
322 	if (ndopts->nd_opts_last == NULL)
323 		panic("uninitialized ndopts in nd6_options");
324 	if (ndopts->nd_opts_search == NULL)
325 		return 0;
326 
327 	while (1) {
328 		nd_opt = nd6_option(ndopts);
329 		if (nd_opt == NULL && ndopts->nd_opts_last == NULL) {
330 			/*
331 			 * Message validation requires that all included
332 			 * options have a length that is greater than zero.
333 			 */
334 			icmp6stat.icp6s_nd_badopt++;
335 			bzero(ndopts, sizeof(*ndopts));
336 			return -1;
337 		}
338 
339 		if (nd_opt == NULL)
340 			goto skip1;
341 
342 		switch (nd_opt->nd_opt_type) {
343 		case ND_OPT_SOURCE_LINKADDR:
344 		case ND_OPT_TARGET_LINKADDR:
345 		case ND_OPT_MTU:
346 		case ND_OPT_REDIRECTED_HEADER:
347 			if (ndopts->nd_opt_array[nd_opt->nd_opt_type]) {
348 				nd6log((LOG_INFO,
349 				    "duplicated ND6 option found (type=%d)\n",
350 				    nd_opt->nd_opt_type));
351 				/* XXX bark? */
352 			} else {
353 				ndopts->nd_opt_array[nd_opt->nd_opt_type]
354 					= nd_opt;
355 			}
356 			break;
357 		case ND_OPT_PREFIX_INFORMATION:
358 			if (ndopts->nd_opt_array[nd_opt->nd_opt_type] == 0) {
359 				ndopts->nd_opt_array[nd_opt->nd_opt_type]
360 					= nd_opt;
361 			}
362 			ndopts->nd_opts_pi_end =
363 				(struct nd_opt_prefix_info *)nd_opt;
364 			break;
365 		default:
366 			/*
367 			 * Unknown options must be silently ignored,
368 			 * to accomodate future extension to the protocol.
369 			 */
370 			nd6log((LOG_DEBUG,
371 			    "nd6_options: unsupported option %d - "
372 			    "option ignored\n", nd_opt->nd_opt_type));
373 		}
374 
375 skip1:
376 		i++;
377 		if (i > nd6_maxndopt) {
378 			icmp6stat.icp6s_nd_toomanyopt++;
379 			nd6log((LOG_INFO, "too many loop in nd opt\n"));
380 			break;
381 		}
382 
383 		if (ndopts->nd_opts_done)
384 			break;
385 	}
386 
387 	return 0;
388 }
389 
390 /*
391  * ND6 timer routine to handle ND6 entries
392  */
393 void
394 nd6_llinfo_settimer(ln, tick)
395 	struct llinfo_nd6 *ln;
396 	long tick;
397 {
398 	if (tick < 0) {
399 		ln->ln_expire = 0;
400 		ln->ln_ntick = 0;
401 		callout_stop(&ln->ln_timer_ch);
402 	} else {
403 		ln->ln_expire = time_second + tick / hz;
404 		if (tick > INT_MAX) {
405 			ln->ln_ntick = tick - INT_MAX;
406 			callout_reset(&ln->ln_timer_ch, INT_MAX,
407 			    nd6_llinfo_timer, ln);
408 		} else {
409 			ln->ln_ntick = 0;
410 			callout_reset(&ln->ln_timer_ch, tick,
411 			    nd6_llinfo_timer, ln);
412 		}
413 	}
414 }
415 
416 static void
417 nd6_llinfo_timer(arg)
418 	void *arg;
419 {
420 	struct llinfo_nd6 *ln;
421 	struct rtentry *rt;
422 	struct in6_addr *dst;
423 	struct ifnet *ifp;
424 	struct nd_ifinfo *ndi = NULL;
425 
426 	ln = (struct llinfo_nd6 *)arg;
427 
428 	if (ln->ln_ntick > 0) {
429 		if (ln->ln_ntick > INT_MAX) {
430 			ln->ln_ntick -= INT_MAX;
431 			nd6_llinfo_settimer(ln, INT_MAX);
432 		} else {
433 			ln->ln_ntick = 0;
434 			nd6_llinfo_settimer(ln, ln->ln_ntick);
435 		}
436 		return;
437 	}
438 
439 	if ((rt = ln->ln_rt) == NULL)
440 		panic("ln->ln_rt == NULL");
441 	if ((ifp = rt->rt_ifp) == NULL)
442 		panic("ln->ln_rt->rt_ifp == NULL");
443 	ndi = ND_IFINFO(ifp);
444 
445 	/* sanity check */
446 	if (rt->rt_llinfo && (struct llinfo_nd6 *)rt->rt_llinfo != ln)
447 		panic("rt_llinfo(%p) is not equal to ln(%p)",
448 		      rt->rt_llinfo, ln);
449 	if (rt_key(rt) == NULL)
450 		panic("rt key is NULL in nd6_timer(ln=%p)", ln);
451 
452 	dst = &((struct sockaddr_in6 *)rt_key(rt))->sin6_addr;
453 
454 	switch (ln->ln_state) {
455 	case ND6_LLINFO_INCOMPLETE:
456 		if (ln->ln_asked < nd6_mmaxtries) {
457 			ln->ln_asked++;
458 			nd6_llinfo_settimer(ln, (long)ndi->retrans * hz / 1000);
459 			nd6_ns_output(ifp, NULL, dst, ln, 0);
460 		} else {
461 			struct mbuf *m = ln->ln_hold;
462 			if (m) {
463 				struct mbuf *m0;
464 
465 				/*
466 				 * assuming every packet in ln_hold has the
467 				 * same IP header
468 				 */
469 				m0 = m->m_nextpkt;
470 				m->m_nextpkt = NULL;
471 				icmp6_error2(m, ICMP6_DST_UNREACH,
472 				    ICMP6_DST_UNREACH_ADDR, 0, rt->rt_ifp);
473 
474 				ln->ln_hold = m0;
475 				clear_llinfo_pqueue(ln);
476 			}
477 			if (rt)
478 				(void)nd6_free(rt, 0);
479 			ln = NULL;
480 		}
481 		break;
482 	case ND6_LLINFO_REACHABLE:
483 		if (!ND6_LLINFO_PERMANENT(ln)) {
484 			ln->ln_state = ND6_LLINFO_STALE;
485 			nd6_llinfo_settimer(ln, (long)nd6_gctimer * hz);
486 		}
487 		break;
488 
489 	case ND6_LLINFO_STALE:
490 		/* Garbage Collection(RFC 2461 5.3) */
491 		if (!ND6_LLINFO_PERMANENT(ln)) {
492 			(void)nd6_free(rt, 1);
493 			ln = NULL;
494 		}
495 		break;
496 
497 	case ND6_LLINFO_DELAY:
498 		if (ndi && (ndi->flags & ND6_IFF_PERFORMNUD) != 0) {
499 			/* We need NUD */
500 			ln->ln_asked = 1;
501 			ln->ln_state = ND6_LLINFO_PROBE;
502 			nd6_llinfo_settimer(ln, (long)ndi->retrans * hz / 1000);
503 			nd6_ns_output(ifp, dst, dst, ln, 0);
504 		} else {
505 			ln->ln_state = ND6_LLINFO_STALE; /* XXX */
506 			nd6_llinfo_settimer(ln, (long)nd6_gctimer * hz);
507 		}
508 		break;
509 	case ND6_LLINFO_PROBE:
510 		if (ln->ln_asked < nd6_umaxtries) {
511 			ln->ln_asked++;
512 			nd6_llinfo_settimer(ln, (long)ndi->retrans * hz / 1000);
513 			nd6_ns_output(ifp, dst, dst, ln, 0);
514 		} else if (rt->rt_ifa != NULL &&
515 		    rt->rt_ifa->ifa_addr->sa_family == AF_INET6 &&
516 		    (((struct in6_ifaddr *)rt->rt_ifa)->ia_flags & IFA_ROUTE)) {
517 			/*
518 			 * This is an unreachable neighbor whose address is
519 			 * specified as the destination of a p2p interface
520 			 * (see in6_ifinit()).  We should not free the entry
521 			 * since this is sort of a "static" entry generated
522 			 * via interface address configuration.
523 			 */
524 			ln->ln_asked = 0;
525 			ln->ln_expire = 0; /* make it permanent */
526 			ln->ln_state = ND6_LLINFO_STALE;
527 		} else {
528 			(void)nd6_free(rt, 0);
529 			ln = NULL;
530 		}
531 		break;
532 	}
533 }
534 
535 
536 /*
537  * ND6 timer routine to expire default route list and prefix list
538  */
539 void
540 nd6_timer(ignored_arg)
541 	void	*ignored_arg;
542 {
543 	int s;
544 	struct nd_defrouter *dr;
545 	struct nd_prefix *pr;
546 	struct in6_ifaddr *ia6, *nia6;
547 	struct in6_addrlifetime *lt6;
548 
549 	callout_reset(&nd6_timer_ch, nd6_prune * hz,
550 	    nd6_timer, NULL);
551 
552 	/* expire default router list */
553 	s = splnet();
554 	dr = TAILQ_FIRST(&nd_defrouter);
555 	while (dr) {
556 		if (dr->expire && dr->expire < time_second) {
557 			struct nd_defrouter *t;
558 			t = TAILQ_NEXT(dr, dr_entry);
559 			defrtrlist_del(dr);
560 			dr = t;
561 		} else {
562 			dr = TAILQ_NEXT(dr, dr_entry);
563 		}
564 	}
565 
566 	/*
567 	 * expire interface addresses.
568 	 * in the past the loop was inside prefix expiry processing.
569 	 * However, from a stricter speci-confrmance standpoint, we should
570 	 * rather separate address lifetimes and prefix lifetimes.
571 	 */
572   addrloop:
573 	for (ia6 = in6_ifaddr; ia6; ia6 = nia6) {
574 		nia6 = ia6->ia_next;
575 		/* check address lifetime */
576 		lt6 = &ia6->ia6_lifetime;
577 		if (IFA6_IS_INVALID(ia6)) {
578 			int regen = 0;
579 
580 			/*
581 			 * If the expiring address is temporary, try
582 			 * regenerating a new one.  This would be useful when
583 			 * we suspended a laptop PC, then turned it on after a
584 			 * period that could invalidate all temporary
585 			 * addresses.  Although we may have to restart the
586 			 * loop (see below), it must be after purging the
587 			 * address.  Otherwise, we'd see an infinite loop of
588 			 * regeneration.
589 			 */
590 			if (ip6_use_tempaddr &&
591 			    (ia6->ia6_flags & IN6_IFF_TEMPORARY) != 0) {
592 				if (regen_tmpaddr(ia6) == 0)
593 					regen = 1;
594 			}
595 
596 			in6_purgeaddr(&ia6->ia_ifa);
597 
598 			if (regen)
599 				goto addrloop; /* XXX: see below */
600 		} else if (IFA6_IS_DEPRECATED(ia6)) {
601 			int oldflags = ia6->ia6_flags;
602 
603 			ia6->ia6_flags |= IN6_IFF_DEPRECATED;
604 
605 			/*
606 			 * If a temporary address has just become deprecated,
607 			 * regenerate a new one if possible.
608 			 */
609 			if (ip6_use_tempaddr &&
610 			    (ia6->ia6_flags & IN6_IFF_TEMPORARY) != 0 &&
611 			    (oldflags & IN6_IFF_DEPRECATED) == 0) {
612 
613 				if (regen_tmpaddr(ia6) == 0) {
614 					/*
615 					 * A new temporary address is
616 					 * generated.
617 					 * XXX: this means the address chain
618 					 * has changed while we are still in
619 					 * the loop.  Although the change
620 					 * would not cause disaster (because
621 					 * it's not a deletion, but an
622 					 * addition,) we'd rather restart the
623 					 * loop just for safety.  Or does this
624 					 * significantly reduce performance??
625 					 */
626 					goto addrloop;
627 				}
628 			}
629 		} else {
630 			/*
631 			 * A new RA might have made a deprecated address
632 			 * preferred.
633 			 */
634 			ia6->ia6_flags &= ~IN6_IFF_DEPRECATED;
635 		}
636 	}
637 
638 	/* expire prefix list */
639 	pr = nd_prefix.lh_first;
640 	while (pr) {
641 		/*
642 		 * check prefix lifetime.
643 		 * since pltime is just for autoconf, pltime processing for
644 		 * prefix is not necessary.
645 		 */
646 		if (pr->ndpr_vltime != ND6_INFINITE_LIFETIME &&
647 		    time_second - pr->ndpr_lastupdate > pr->ndpr_vltime) {
648 			struct nd_prefix *t;
649 			t = pr->ndpr_next;
650 
651 			/*
652 			 * address expiration and prefix expiration are
653 			 * separate.  NEVER perform in6_purgeaddr here.
654 			 */
655 
656 			prelist_remove(pr);
657 			pr = t;
658 		} else
659 			pr = pr->ndpr_next;
660 	}
661 	splx(s);
662 }
663 
664 static int
665 regen_tmpaddr(ia6)
666 	struct in6_ifaddr *ia6; /* deprecated/invalidated temporary address */
667 {
668 	struct ifaddr *ifa;
669 	struct ifnet *ifp;
670 	struct in6_ifaddr *public_ifa6 = NULL;
671 
672 	ifp = ia6->ia_ifa.ifa_ifp;
673 	for (ifa = ifp->if_addrlist.tqh_first; ifa;
674 	     ifa = ifa->ifa_list.tqe_next) {
675 		struct in6_ifaddr *it6;
676 
677 		if (ifa->ifa_addr->sa_family != AF_INET6)
678 			continue;
679 
680 		it6 = (struct in6_ifaddr *)ifa;
681 
682 		/* ignore no autoconf addresses. */
683 		if ((it6->ia6_flags & IN6_IFF_AUTOCONF) == 0)
684 			continue;
685 
686 		/* ignore autoconf addresses with different prefixes. */
687 		if (it6->ia6_ndpr == NULL || it6->ia6_ndpr != ia6->ia6_ndpr)
688 			continue;
689 
690 		/*
691 		 * Now we are looking at an autoconf address with the same
692 		 * prefix as ours.  If the address is temporary and is still
693 		 * preferred, do not create another one.  It would be rare, but
694 		 * could happen, for example, when we resume a laptop PC after
695 		 * a long period.
696 		 */
697 		if ((it6->ia6_flags & IN6_IFF_TEMPORARY) != 0 &&
698 		    !IFA6_IS_DEPRECATED(it6)) {
699 			public_ifa6 = NULL;
700 			break;
701 		}
702 
703 		/*
704 		 * This is a public autoconf address that has the same prefix
705 		 * as ours.  If it is preferred, keep it.  We can't break the
706 		 * loop here, because there may be a still-preferred temporary
707 		 * address with the prefix.
708 		 */
709 		if (!IFA6_IS_DEPRECATED(it6))
710 		    public_ifa6 = it6;
711 	}
712 
713 	if (public_ifa6 != NULL) {
714 		int e;
715 
716 		if ((e = in6_tmpifadd(public_ifa6, 0, 0)) != 0) {
717 			log(LOG_NOTICE, "regen_tmpaddr: failed to create a new"
718 			    " tmp addr,errno=%d\n", e);
719 			return (-1);
720 		}
721 		return (0);
722 	}
723 
724 	return (-1);
725 }
726 
727 /*
728  * Nuke neighbor cache/prefix/default router management table, right before
729  * ifp goes away.
730  */
731 void
732 nd6_purge(ifp)
733 	struct ifnet *ifp;
734 {
735 	struct llinfo_nd6 *ln, *nln;
736 	struct nd_defrouter *dr, *ndr;
737 	struct nd_prefix *pr, *npr;
738 
739 	/*
740 	 * Nuke default router list entries toward ifp.
741 	 * We defer removal of default router list entries that is installed
742 	 * in the routing table, in order to keep additional side effects as
743 	 * small as possible.
744 	 */
745 	for (dr = TAILQ_FIRST(&nd_defrouter); dr; dr = ndr) {
746 		ndr = TAILQ_NEXT(dr, dr_entry);
747 		if (dr->installed)
748 			continue;
749 
750 		if (dr->ifp == ifp)
751 			defrtrlist_del(dr);
752 	}
753 
754 	for (dr = TAILQ_FIRST(&nd_defrouter); dr; dr = ndr) {
755 		ndr = TAILQ_NEXT(dr, dr_entry);
756 		if (!dr->installed)
757 			continue;
758 
759 		if (dr->ifp == ifp)
760 			defrtrlist_del(dr);
761 	}
762 
763 	/* Nuke prefix list entries toward ifp */
764 	for (pr = nd_prefix.lh_first; pr; pr = npr) {
765 		npr = pr->ndpr_next;
766 		if (pr->ndpr_ifp == ifp) {
767 			/*
768 			 * Because if_detach() does *not* release prefixes
769 			 * while purging addresses the reference count will
770 			 * still be above zero. We therefore reset it to
771 			 * make sure that the prefix really gets purged.
772 			 */
773 			pr->ndpr_refcnt = 0;
774 
775 			/*
776 			 * Previously, pr->ndpr_addr is removed as well,
777 			 * but I strongly believe we don't have to do it.
778 			 * nd6_purge() is only called from in6_ifdetach(),
779 			 * which removes all the associated interface addresses
780 			 * by itself.
781 			 * (jinmei@kame.net 20010129)
782 			 */
783 			prelist_remove(pr);
784 		}
785 	}
786 
787 	/* cancel default outgoing interface setting */
788 	if (nd6_defifindex == ifp->if_index)
789 		nd6_setdefaultiface(0);
790 
791 	if (!ip6_forwarding && ip6_accept_rtadv) { /* XXX: too restrictive? */
792 		/* refresh default router list */
793 		defrouter_select();
794 	}
795 
796 	/*
797 	 * Nuke neighbor cache entries for the ifp.
798 	 * Note that rt->rt_ifp may not be the same as ifp,
799 	 * due to KAME goto ours hack.  See RTM_RESOLVE case in
800 	 * nd6_rtrequest(), and ip6_input().
801 	 */
802 	ln = llinfo_nd6.ln_next;
803 	while (ln && ln != &llinfo_nd6) {
804 		struct rtentry *rt;
805 		struct sockaddr_dl *sdl;
806 
807 		nln = ln->ln_next;
808 		rt = ln->ln_rt;
809 		if (rt && rt->rt_gateway &&
810 		    rt->rt_gateway->sa_family == AF_LINK) {
811 			sdl = (struct sockaddr_dl *)rt->rt_gateway;
812 			if (sdl->sdl_index == ifp->if_index)
813 				nln = nd6_free(rt, 0);
814 		}
815 		ln = nln;
816 	}
817 }
818 
819 struct rtentry *
820 nd6_lookup(addr6, create, ifp)
821 	struct in6_addr *addr6;
822 	int create;
823 	struct ifnet *ifp;
824 {
825 	struct rtentry *rt;
826 	struct sockaddr_in6 sin6;
827 	char ip6buf[INET6_ADDRSTRLEN];
828 
829 	bzero(&sin6, sizeof(sin6));
830 	sin6.sin6_len = sizeof(struct sockaddr_in6);
831 	sin6.sin6_family = AF_INET6;
832 	sin6.sin6_addr = *addr6;
833 	rt = rtalloc1((struct sockaddr *)&sin6, create, 0UL);
834 	if (rt) {
835 		if ((rt->rt_flags & RTF_LLINFO) == 0 && create) {
836 			/*
837 			 * This is the case for the default route.
838 			 * If we want to create a neighbor cache for the
839 			 * address, we should free the route for the
840 			 * destination and allocate an interface route.
841 			 */
842 			RTFREE_LOCKED(rt);
843 			rt = NULL;
844 		}
845 	}
846 	if (rt == NULL) {
847 		if (create && ifp) {
848 			int e;
849 
850 			/*
851 			 * If no route is available and create is set,
852 			 * we allocate a host route for the destination
853 			 * and treat it like an interface route.
854 			 * This hack is necessary for a neighbor which can't
855 			 * be covered by our own prefix.
856 			 */
857 			struct ifaddr *ifa =
858 			    ifaof_ifpforaddr((struct sockaddr *)&sin6, ifp);
859 			if (ifa == NULL)
860 				return (NULL);
861 
862 			/*
863 			 * Create a new route.  RTF_LLINFO is necessary
864 			 * to create a Neighbor Cache entry for the
865 			 * destination in nd6_rtrequest which will be
866 			 * called in rtrequest via ifa->ifa_rtrequest.
867 			 */
868 			if ((e = rtrequest(RTM_ADD, (struct sockaddr *)&sin6,
869 			    ifa->ifa_addr, (struct sockaddr *)&all1_sa,
870 			    (ifa->ifa_flags | RTF_HOST | RTF_LLINFO) &
871 			    ~RTF_CLONING, &rt)) != 0) {
872 				log(LOG_ERR,
873 				    "nd6_lookup: failed to add route for a "
874 				    "neighbor(%s), errno=%d\n",
875 				    ip6_sprintf(ip6buf, addr6), e);
876 			}
877 			if (rt == NULL)
878 				return (NULL);
879 			RT_LOCK(rt);
880 			if (rt->rt_llinfo) {
881 				struct llinfo_nd6 *ln =
882 				    (struct llinfo_nd6 *)rt->rt_llinfo;
883 				ln->ln_state = ND6_LLINFO_NOSTATE;
884 			}
885 		} else
886 			return (NULL);
887 	}
888 	RT_LOCK_ASSERT(rt);
889 	RT_REMREF(rt);
890 	/*
891 	 * Validation for the entry.
892 	 * Note that the check for rt_llinfo is necessary because a cloned
893 	 * route from a parent route that has the L flag (e.g. the default
894 	 * route to a p2p interface) may have the flag, too, while the
895 	 * destination is not actually a neighbor.
896 	 * XXX: we can't use rt->rt_ifp to check for the interface, since
897 	 *      it might be the loopback interface if the entry is for our
898 	 *      own address on a non-loopback interface. Instead, we should
899 	 *      use rt->rt_ifa->ifa_ifp, which would specify the REAL
900 	 *	interface.
901 	 * Note also that ifa_ifp and ifp may differ when we connect two
902 	 * interfaces to a same link, install a link prefix to an interface,
903 	 * and try to install a neighbor cache on an interface that does not
904 	 * have a route to the prefix.
905 	 */
906 	if ((rt->rt_flags & RTF_GATEWAY) || (rt->rt_flags & RTF_LLINFO) == 0 ||
907 	    rt->rt_gateway->sa_family != AF_LINK || rt->rt_llinfo == NULL ||
908 	    (ifp && rt->rt_ifa->ifa_ifp != ifp)) {
909 		if (create) {
910 			nd6log((LOG_DEBUG,
911 			    "nd6_lookup: failed to lookup %s (if = %s)\n",
912 			    ip6_sprintf(ip6buf, addr6),
913 			    ifp ? if_name(ifp) : "unspec"));
914 		}
915 		RT_UNLOCK(rt);
916 		return (NULL);
917 	}
918 	RT_UNLOCK(rt);		/* XXX not ready to return rt locked */
919 	return (rt);
920 }
921 
922 /*
923  * Test whether a given IPv6 address is a neighbor or not, ignoring
924  * the actual neighbor cache.  The neighbor cache is ignored in order
925  * to not reenter the routing code from within itself.
926  */
927 static int
928 nd6_is_new_addr_neighbor(addr, ifp)
929 	struct sockaddr_in6 *addr;
930 	struct ifnet *ifp;
931 {
932 	struct nd_prefix *pr;
933 	struct ifaddr *dstaddr;
934 
935 	/*
936 	 * A link-local address is always a neighbor.
937 	 * XXX: a link does not necessarily specify a single interface.
938 	 */
939 	if (IN6_IS_ADDR_LINKLOCAL(&addr->sin6_addr)) {
940 		struct sockaddr_in6 sin6_copy;
941 		u_int32_t zone;
942 
943 		/*
944 		 * We need sin6_copy since sa6_recoverscope() may modify the
945 		 * content (XXX).
946 		 */
947 		sin6_copy = *addr;
948 		if (sa6_recoverscope(&sin6_copy))
949 			return (0); /* XXX: should be impossible */
950 		if (in6_setscope(&sin6_copy.sin6_addr, ifp, &zone))
951 			return (0);
952 		if (sin6_copy.sin6_scope_id == zone)
953 			return (1);
954 		else
955 			return (0);
956 	}
957 
958 	/*
959 	 * If the address matches one of our addresses,
960 	 * it should be a neighbor.
961 	 * If the address matches one of our on-link prefixes, it should be a
962 	 * neighbor.
963 	 */
964 	for (pr = nd_prefix.lh_first; pr; pr = pr->ndpr_next) {
965 		if (pr->ndpr_ifp != ifp)
966 			continue;
967 
968 		if (!(pr->ndpr_stateflags & NDPRF_ONLINK))
969 			continue;
970 
971 		if (IN6_ARE_MASKED_ADDR_EQUAL(&pr->ndpr_prefix.sin6_addr,
972 		    &addr->sin6_addr, &pr->ndpr_mask))
973 			return (1);
974 	}
975 
976 	/*
977 	 * If the address is assigned on the node of the other side of
978 	 * a p2p interface, the address should be a neighbor.
979 	 */
980 	dstaddr = ifa_ifwithdstaddr((struct sockaddr *)addr);
981 	if ((dstaddr != NULL) && (dstaddr->ifa_ifp == ifp))
982 		return (1);
983 
984 	/*
985 	 * If the default router list is empty, all addresses are regarded
986 	 * as on-link, and thus, as a neighbor.
987 	 * XXX: we restrict the condition to hosts, because routers usually do
988 	 * not have the "default router list".
989 	 */
990 	if (!ip6_forwarding && TAILQ_FIRST(&nd_defrouter) == NULL &&
991 	    nd6_defifindex == ifp->if_index) {
992 		return (1);
993 	}
994 
995 	return (0);
996 }
997 
998 
999 /*
1000  * Detect if a given IPv6 address identifies a neighbor on a given link.
1001  * XXX: should take care of the destination of a p2p link?
1002  */
1003 int
1004 nd6_is_addr_neighbor(addr, ifp)
1005 	struct sockaddr_in6 *addr;
1006 	struct ifnet *ifp;
1007 {
1008 
1009 	if (nd6_is_new_addr_neighbor(addr, ifp))
1010 		return (1);
1011 
1012 	/*
1013 	 * Even if the address matches none of our addresses, it might be
1014 	 * in the neighbor cache.
1015 	 */
1016 	if (nd6_lookup(&addr->sin6_addr, 0, ifp) != NULL)
1017 		return (1);
1018 
1019 	return (0);
1020 }
1021 
1022 /*
1023  * Free an nd6 llinfo entry.
1024  * Since the function would cause significant changes in the kernel, DO NOT
1025  * make it global, unless you have a strong reason for the change, and are sure
1026  * that the change is safe.
1027  */
1028 static struct llinfo_nd6 *
1029 nd6_free(rt, gc)
1030 	struct rtentry *rt;
1031 	int gc;
1032 {
1033 	struct llinfo_nd6 *ln = (struct llinfo_nd6 *)rt->rt_llinfo, *next;
1034 	struct in6_addr in6 = ((struct sockaddr_in6 *)rt_key(rt))->sin6_addr;
1035 	struct nd_defrouter *dr;
1036 
1037 	/*
1038 	 * we used to have pfctlinput(PRC_HOSTDEAD) here.
1039 	 * even though it is not harmful, it was not really necessary.
1040 	 */
1041 
1042 	/* cancel timer */
1043 	nd6_llinfo_settimer(ln, -1);
1044 
1045 	if (!ip6_forwarding) {
1046 		int s;
1047 		s = splnet();
1048 		dr = defrouter_lookup(&((struct sockaddr_in6 *)rt_key(rt))->sin6_addr,
1049 		    rt->rt_ifp);
1050 
1051 		if (dr != NULL && dr->expire &&
1052 		    ln->ln_state == ND6_LLINFO_STALE && gc) {
1053 			/*
1054 			 * If the reason for the deletion is just garbage
1055 			 * collection, and the neighbor is an active default
1056 			 * router, do not delete it.  Instead, reset the GC
1057 			 * timer using the router's lifetime.
1058 			 * Simply deleting the entry would affect default
1059 			 * router selection, which is not necessarily a good
1060 			 * thing, especially when we're using router preference
1061 			 * values.
1062 			 * XXX: the check for ln_state would be redundant,
1063 			 *      but we intentionally keep it just in case.
1064 			 */
1065 			if (dr->expire > time_second)
1066 				nd6_llinfo_settimer(ln,
1067 				    (dr->expire - time_second) * hz);
1068 			else
1069 				nd6_llinfo_settimer(ln, (long)nd6_gctimer * hz);
1070 			splx(s);
1071 			return (ln->ln_next);
1072 		}
1073 
1074 		if (ln->ln_router || dr) {
1075 			/*
1076 			 * rt6_flush must be called whether or not the neighbor
1077 			 * is in the Default Router List.
1078 			 * See a corresponding comment in nd6_na_input().
1079 			 */
1080 			rt6_flush(&in6, rt->rt_ifp);
1081 		}
1082 
1083 		if (dr) {
1084 			/*
1085 			 * Unreachablity of a router might affect the default
1086 			 * router selection and on-link detection of advertised
1087 			 * prefixes.
1088 			 */
1089 
1090 			/*
1091 			 * Temporarily fake the state to choose a new default
1092 			 * router and to perform on-link determination of
1093 			 * prefixes correctly.
1094 			 * Below the state will be set correctly,
1095 			 * or the entry itself will be deleted.
1096 			 */
1097 			ln->ln_state = ND6_LLINFO_INCOMPLETE;
1098 
1099 			/*
1100 			 * Since defrouter_select() does not affect the
1101 			 * on-link determination and MIP6 needs the check
1102 			 * before the default router selection, we perform
1103 			 * the check now.
1104 			 */
1105 			pfxlist_onlink_check();
1106 
1107 			/*
1108 			 * refresh default router list
1109 			 */
1110 			defrouter_select();
1111 		}
1112 		splx(s);
1113 	}
1114 
1115 	/*
1116 	 * Before deleting the entry, remember the next entry as the
1117 	 * return value.  We need this because pfxlist_onlink_check() above
1118 	 * might have freed other entries (particularly the old next entry) as
1119 	 * a side effect (XXX).
1120 	 */
1121 	next = ln->ln_next;
1122 
1123 	/*
1124 	 * Detach the route from the routing tree and the list of neighbor
1125 	 * caches, and disable the route entry not to be used in already
1126 	 * cached routes.
1127 	 */
1128 	rtrequest(RTM_DELETE, rt_key(rt), (struct sockaddr *)0,
1129 	    rt_mask(rt), 0, (struct rtentry **)0);
1130 
1131 	return (next);
1132 }
1133 
1134 /*
1135  * Upper-layer reachability hint for Neighbor Unreachability Detection.
1136  *
1137  * XXX cost-effective methods?
1138  */
1139 void
1140 nd6_nud_hint(rt, dst6, force)
1141 	struct rtentry *rt;
1142 	struct in6_addr *dst6;
1143 	int force;
1144 {
1145 	struct llinfo_nd6 *ln;
1146 
1147 	/*
1148 	 * If the caller specified "rt", use that.  Otherwise, resolve the
1149 	 * routing table by supplied "dst6".
1150 	 */
1151 	if (rt == NULL) {
1152 		if (dst6 == NULL)
1153 			return;
1154 		if ((rt = nd6_lookup(dst6, 0, NULL)) == NULL)
1155 			return;
1156 	}
1157 
1158 	if ((rt->rt_flags & RTF_GATEWAY) != 0 ||
1159 	    (rt->rt_flags & RTF_LLINFO) == 0 ||
1160 	    rt->rt_llinfo == NULL || rt->rt_gateway == NULL ||
1161 	    rt->rt_gateway->sa_family != AF_LINK) {
1162 		/* This is not a host route. */
1163 		return;
1164 	}
1165 
1166 	ln = (struct llinfo_nd6 *)rt->rt_llinfo;
1167 	if (ln->ln_state < ND6_LLINFO_REACHABLE)
1168 		return;
1169 
1170 	/*
1171 	 * if we get upper-layer reachability confirmation many times,
1172 	 * it is possible we have false information.
1173 	 */
1174 	if (!force) {
1175 		ln->ln_byhint++;
1176 		if (ln->ln_byhint > nd6_maxnudhint)
1177 			return;
1178 	}
1179 
1180 	ln->ln_state = ND6_LLINFO_REACHABLE;
1181 	if (!ND6_LLINFO_PERMANENT(ln)) {
1182 		nd6_llinfo_settimer(ln,
1183 		    (long)ND_IFINFO(rt->rt_ifp)->reachable * hz);
1184 	}
1185 }
1186 
1187 void
1188 nd6_rtrequest(req, rt, info)
1189 	int	req;
1190 	struct rtentry *rt;
1191 	struct rt_addrinfo *info; /* xxx unused */
1192 {
1193 	struct sockaddr *gate = rt->rt_gateway;
1194 	struct llinfo_nd6 *ln = (struct llinfo_nd6 *)rt->rt_llinfo;
1195 	static struct sockaddr_dl null_sdl = {sizeof(null_sdl), AF_LINK};
1196 	struct ifnet *ifp = rt->rt_ifp;
1197 	struct ifaddr *ifa;
1198 
1199 	RT_LOCK_ASSERT(rt);
1200 
1201 	if ((rt->rt_flags & RTF_GATEWAY) != 0)
1202 		return;
1203 
1204 	if (nd6_need_cache(ifp) == 0 && (rt->rt_flags & RTF_HOST) == 0) {
1205 		/*
1206 		 * This is probably an interface direct route for a link
1207 		 * which does not need neighbor caches (e.g. fe80::%lo0/64).
1208 		 * We do not need special treatment below for such a route.
1209 		 * Moreover, the RTF_LLINFO flag which would be set below
1210 		 * would annoy the ndp(8) command.
1211 		 */
1212 		return;
1213 	}
1214 
1215 	if (req == RTM_RESOLVE &&
1216 	    (nd6_need_cache(ifp) == 0 || /* stf case */
1217 	     !nd6_is_new_addr_neighbor((struct sockaddr_in6 *)rt_key(rt),
1218 	     ifp))) {
1219 		/*
1220 		 * FreeBSD and BSD/OS often make a cloned host route based
1221 		 * on a less-specific route (e.g. the default route).
1222 		 * If the less specific route does not have a "gateway"
1223 		 * (this is the case when the route just goes to a p2p or an
1224 		 * stf interface), we'll mistakenly make a neighbor cache for
1225 		 * the host route, and will see strange neighbor solicitation
1226 		 * for the corresponding destination.  In order to avoid the
1227 		 * confusion, we check if the destination of the route is
1228 		 * a neighbor in terms of neighbor discovery, and stop the
1229 		 * process if not.  Additionally, we remove the LLINFO flag
1230 		 * so that ndp(8) will not try to get the neighbor information
1231 		 * of the destination.
1232 		 */
1233 		rt->rt_flags &= ~RTF_LLINFO;
1234 		return;
1235 	}
1236 
1237 	switch (req) {
1238 	case RTM_ADD:
1239 		/*
1240 		 * There is no backward compatibility :)
1241 		 *
1242 		 * if ((rt->rt_flags & RTF_HOST) == 0 &&
1243 		 *     SIN(rt_mask(rt))->sin_addr.s_addr != 0xffffffff)
1244 		 *	   rt->rt_flags |= RTF_CLONING;
1245 		 */
1246 		if ((rt->rt_flags & RTF_CLONING) ||
1247 		    ((rt->rt_flags & RTF_LLINFO) && ln == NULL)) {
1248 			/*
1249 			 * Case 1: This route should come from a route to
1250 			 * interface (RTF_CLONING case) or the route should be
1251 			 * treated as on-link but is currently not
1252 			 * (RTF_LLINFO && ln == NULL case).
1253 			 */
1254 			rt_setgate(rt, rt_key(rt),
1255 				   (struct sockaddr *)&null_sdl);
1256 			gate = rt->rt_gateway;
1257 			SDL(gate)->sdl_type = ifp->if_type;
1258 			SDL(gate)->sdl_index = ifp->if_index;
1259 			if (ln)
1260 				nd6_llinfo_settimer(ln, 0);
1261 			if ((rt->rt_flags & RTF_CLONING) != 0)
1262 				break;
1263 		}
1264 		/*
1265 		 * In IPv4 code, we try to annonuce new RTF_ANNOUNCE entry here.
1266 		 * We don't do that here since llinfo is not ready yet.
1267 		 *
1268 		 * There are also couple of other things to be discussed:
1269 		 * - unsolicited NA code needs improvement beforehand
1270 		 * - RFC2461 says we MAY send multicast unsolicited NA
1271 		 *   (7.2.6 paragraph 4), however, it also says that we
1272 		 *   SHOULD provide a mechanism to prevent multicast NA storm.
1273 		 *   we don't have anything like it right now.
1274 		 *   note that the mechanism needs a mutual agreement
1275 		 *   between proxies, which means that we need to implement
1276 		 *   a new protocol, or a new kludge.
1277 		 * - from RFC2461 6.2.4, host MUST NOT send an unsolicited NA.
1278 		 *   we need to check ip6forwarding before sending it.
1279 		 *   (or should we allow proxy ND configuration only for
1280 		 *   routers?  there's no mention about proxy ND from hosts)
1281 		 */
1282 		/* FALLTHROUGH */
1283 	case RTM_RESOLVE:
1284 		if ((ifp->if_flags & (IFF_POINTOPOINT | IFF_LOOPBACK)) == 0) {
1285 			/*
1286 			 * Address resolution isn't necessary for a point to
1287 			 * point link, so we can skip this test for a p2p link.
1288 			 */
1289 			if (gate->sa_family != AF_LINK ||
1290 			    gate->sa_len < sizeof(null_sdl)) {
1291 				log(LOG_DEBUG,
1292 				    "nd6_rtrequest: bad gateway value: %s\n",
1293 				    if_name(ifp));
1294 				break;
1295 			}
1296 			SDL(gate)->sdl_type = ifp->if_type;
1297 			SDL(gate)->sdl_index = ifp->if_index;
1298 		}
1299 		if (ln != NULL)
1300 			break;	/* This happens on a route change */
1301 		/*
1302 		 * Case 2: This route may come from cloning, or a manual route
1303 		 * add with a LL address.
1304 		 */
1305 		R_Malloc(ln, struct llinfo_nd6 *, sizeof(*ln));
1306 		rt->rt_llinfo = (caddr_t)ln;
1307 		if (ln == NULL) {
1308 			log(LOG_DEBUG, "nd6_rtrequest: malloc failed\n");
1309 			break;
1310 		}
1311 		nd6_inuse++;
1312 		nd6_allocated++;
1313 		bzero(ln, sizeof(*ln));
1314 		RT_ADDREF(rt);
1315 		ln->ln_rt = rt;
1316 		callout_init(&ln->ln_timer_ch, 0);
1317 
1318 		/* this is required for "ndp" command. - shin */
1319 		if (req == RTM_ADD) {
1320 		        /*
1321 			 * gate should have some valid AF_LINK entry,
1322 			 * and ln->ln_expire should have some lifetime
1323 			 * which is specified by ndp command.
1324 			 */
1325 			ln->ln_state = ND6_LLINFO_REACHABLE;
1326 			ln->ln_byhint = 0;
1327 		} else {
1328 		        /*
1329 			 * When req == RTM_RESOLVE, rt is created and
1330 			 * initialized in rtrequest(), so rt_expire is 0.
1331 			 */
1332 			ln->ln_state = ND6_LLINFO_NOSTATE;
1333 			nd6_llinfo_settimer(ln, 0);
1334 		}
1335 		rt->rt_flags |= RTF_LLINFO;
1336 		ln->ln_next = llinfo_nd6.ln_next;
1337 		llinfo_nd6.ln_next = ln;
1338 		ln->ln_prev = &llinfo_nd6;
1339 		ln->ln_next->ln_prev = ln;
1340 
1341 		/*
1342 		 * check if rt_key(rt) is one of my address assigned
1343 		 * to the interface.
1344 		 */
1345 		ifa = (struct ifaddr *)in6ifa_ifpwithaddr(rt->rt_ifp,
1346 		    &SIN6(rt_key(rt))->sin6_addr);
1347 		if (ifa) {
1348 			caddr_t macp = nd6_ifptomac(ifp);
1349 			nd6_llinfo_settimer(ln, -1);
1350 			ln->ln_state = ND6_LLINFO_REACHABLE;
1351 			ln->ln_byhint = 0;
1352 			if (macp) {
1353 				bcopy(macp, LLADDR(SDL(gate)), ifp->if_addrlen);
1354 				SDL(gate)->sdl_alen = ifp->if_addrlen;
1355 			}
1356 			if (nd6_useloopback) {
1357 				rt->rt_ifp = &loif[0];	/* XXX */
1358 				/*
1359 				 * Make sure rt_ifa be equal to the ifaddr
1360 				 * corresponding to the address.
1361 				 * We need this because when we refer
1362 				 * rt_ifa->ia6_flags in ip6_input, we assume
1363 				 * that the rt_ifa points to the address instead
1364 				 * of the loopback address.
1365 				 */
1366 				if (ifa != rt->rt_ifa) {
1367 					IFAFREE(rt->rt_ifa);
1368 					IFAREF(ifa);
1369 					rt->rt_ifa = ifa;
1370 				}
1371 			}
1372 		} else if (rt->rt_flags & RTF_ANNOUNCE) {
1373 			nd6_llinfo_settimer(ln, -1);
1374 			ln->ln_state = ND6_LLINFO_REACHABLE;
1375 			ln->ln_byhint = 0;
1376 
1377 			/* join solicited node multicast for proxy ND */
1378 			if (ifp->if_flags & IFF_MULTICAST) {
1379 				struct in6_addr llsol;
1380 				int error;
1381 
1382 				llsol = SIN6(rt_key(rt))->sin6_addr;
1383 				llsol.s6_addr32[0] = IPV6_ADDR_INT32_MLL;
1384 				llsol.s6_addr32[1] = 0;
1385 				llsol.s6_addr32[2] = htonl(1);
1386 				llsol.s6_addr8[12] = 0xff;
1387 				if (in6_setscope(&llsol, ifp, NULL))
1388 					break;
1389 				if (in6_addmulti(&llsol, ifp,
1390 				    &error, 0) == NULL) {
1391 					char ip6buf[INET6_ADDRSTRLEN];
1392 					nd6log((LOG_ERR, "%s: failed to join "
1393 					    "%s (errno=%d)\n", if_name(ifp),
1394 					    ip6_sprintf(ip6buf, &llsol),
1395 					    error));
1396 				}
1397 			}
1398 		}
1399 		break;
1400 
1401 	case RTM_DELETE:
1402 		if (ln == NULL)
1403 			break;
1404 		/* leave from solicited node multicast for proxy ND */
1405 		if ((rt->rt_flags & RTF_ANNOUNCE) != 0 &&
1406 		    (ifp->if_flags & IFF_MULTICAST) != 0) {
1407 			struct in6_addr llsol;
1408 			struct in6_multi *in6m;
1409 
1410 			llsol = SIN6(rt_key(rt))->sin6_addr;
1411 			llsol.s6_addr32[0] = IPV6_ADDR_INT32_MLL;
1412 			llsol.s6_addr32[1] = 0;
1413 			llsol.s6_addr32[2] = htonl(1);
1414 			llsol.s6_addr8[12] = 0xff;
1415 			if (in6_setscope(&llsol, ifp, NULL) == 0) {
1416 				IN6_LOOKUP_MULTI(llsol, ifp, in6m);
1417 				if (in6m)
1418 					in6_delmulti(in6m);
1419 			} else
1420 				; /* XXX: should not happen. bark here? */
1421 		}
1422 		nd6_inuse--;
1423 		ln->ln_next->ln_prev = ln->ln_prev;
1424 		ln->ln_prev->ln_next = ln->ln_next;
1425 		ln->ln_prev = NULL;
1426 		nd6_llinfo_settimer(ln, -1);
1427 		RT_REMREF(rt);
1428 		rt->rt_llinfo = 0;
1429 		rt->rt_flags &= ~RTF_LLINFO;
1430 		clear_llinfo_pqueue(ln);
1431 		Free((caddr_t)ln);
1432 	}
1433 }
1434 
1435 int
1436 nd6_ioctl(cmd, data, ifp)
1437 	u_long cmd;
1438 	caddr_t	data;
1439 	struct ifnet *ifp;
1440 {
1441 	struct in6_drlist *drl = (struct in6_drlist *)data;
1442 	struct in6_oprlist *oprl = (struct in6_oprlist *)data;
1443 	struct in6_ndireq *ndi = (struct in6_ndireq *)data;
1444 	struct in6_nbrinfo *nbi = (struct in6_nbrinfo *)data;
1445 	struct in6_ndifreq *ndif = (struct in6_ndifreq *)data;
1446 	struct nd_defrouter *dr;
1447 	struct nd_prefix *pr;
1448 	struct rtentry *rt;
1449 	int i = 0, error = 0;
1450 	int s;
1451 
1452 	switch (cmd) {
1453 	case SIOCGDRLST_IN6:
1454 		/*
1455 		 * obsolete API, use sysctl under net.inet6.icmp6
1456 		 */
1457 		bzero(drl, sizeof(*drl));
1458 		s = splnet();
1459 		dr = TAILQ_FIRST(&nd_defrouter);
1460 		while (dr && i < DRLSTSIZ) {
1461 			drl->defrouter[i].rtaddr = dr->rtaddr;
1462 			in6_clearscope(&drl->defrouter[i].rtaddr);
1463 
1464 			drl->defrouter[i].flags = dr->flags;
1465 			drl->defrouter[i].rtlifetime = dr->rtlifetime;
1466 			drl->defrouter[i].expire = dr->expire;
1467 			drl->defrouter[i].if_index = dr->ifp->if_index;
1468 			i++;
1469 			dr = TAILQ_NEXT(dr, dr_entry);
1470 		}
1471 		splx(s);
1472 		break;
1473 	case SIOCGPRLST_IN6:
1474 		/*
1475 		 * obsolete API, use sysctl under net.inet6.icmp6
1476 		 *
1477 		 * XXX the structure in6_prlist was changed in backward-
1478 		 * incompatible manner.  in6_oprlist is used for SIOCGPRLST_IN6,
1479 		 * in6_prlist is used for nd6_sysctl() - fill_prlist().
1480 		 */
1481 		/*
1482 		 * XXX meaning of fields, especialy "raflags", is very
1483 		 * differnet between RA prefix list and RR/static prefix list.
1484 		 * how about separating ioctls into two?
1485 		 */
1486 		bzero(oprl, sizeof(*oprl));
1487 		s = splnet();
1488 		pr = nd_prefix.lh_first;
1489 		while (pr && i < PRLSTSIZ) {
1490 			struct nd_pfxrouter *pfr;
1491 			int j;
1492 
1493 			oprl->prefix[i].prefix = pr->ndpr_prefix.sin6_addr;
1494 			oprl->prefix[i].raflags = pr->ndpr_raf;
1495 			oprl->prefix[i].prefixlen = pr->ndpr_plen;
1496 			oprl->prefix[i].vltime = pr->ndpr_vltime;
1497 			oprl->prefix[i].pltime = pr->ndpr_pltime;
1498 			oprl->prefix[i].if_index = pr->ndpr_ifp->if_index;
1499 			if (pr->ndpr_vltime == ND6_INFINITE_LIFETIME)
1500 				oprl->prefix[i].expire = 0;
1501 			else {
1502 				time_t maxexpire;
1503 
1504 				/* XXX: we assume time_t is signed. */
1505 				maxexpire = (-1) &
1506 				    ~((time_t)1 <<
1507 				    ((sizeof(maxexpire) * 8) - 1));
1508 				if (pr->ndpr_vltime <
1509 				    maxexpire - pr->ndpr_lastupdate) {
1510 					oprl->prefix[i].expire =
1511 					    pr->ndpr_lastupdate +
1512 					    pr->ndpr_vltime;
1513 				} else
1514 					oprl->prefix[i].expire = maxexpire;
1515 			}
1516 
1517 			pfr = pr->ndpr_advrtrs.lh_first;
1518 			j = 0;
1519 			while (pfr) {
1520 				if (j < DRLSTSIZ) {
1521 #define RTRADDR oprl->prefix[i].advrtr[j]
1522 					RTRADDR = pfr->router->rtaddr;
1523 					in6_clearscope(&RTRADDR);
1524 #undef RTRADDR
1525 				}
1526 				j++;
1527 				pfr = pfr->pfr_next;
1528 			}
1529 			oprl->prefix[i].advrtrs = j;
1530 			oprl->prefix[i].origin = PR_ORIG_RA;
1531 
1532 			i++;
1533 			pr = pr->ndpr_next;
1534 		}
1535 		splx(s);
1536 
1537 		break;
1538 	case OSIOCGIFINFO_IN6:
1539 #define ND	ndi->ndi
1540 		/* XXX: old ndp(8) assumes a positive value for linkmtu. */
1541 		bzero(&ND, sizeof(ND));
1542 		ND.linkmtu = IN6_LINKMTU(ifp);
1543 		ND.maxmtu = ND_IFINFO(ifp)->maxmtu;
1544 		ND.basereachable = ND_IFINFO(ifp)->basereachable;
1545 		ND.reachable = ND_IFINFO(ifp)->reachable;
1546 		ND.retrans = ND_IFINFO(ifp)->retrans;
1547 		ND.flags = ND_IFINFO(ifp)->flags;
1548 		ND.recalctm = ND_IFINFO(ifp)->recalctm;
1549 		ND.chlim = ND_IFINFO(ifp)->chlim;
1550 		break;
1551 	case SIOCGIFINFO_IN6:
1552 		ND = *ND_IFINFO(ifp);
1553 		break;
1554 	case SIOCSIFINFO_IN6:
1555 		/*
1556 		 * used to change host variables from userland.
1557 		 * intented for a use on router to reflect RA configurations.
1558 		 */
1559 		/* 0 means 'unspecified' */
1560 		if (ND.linkmtu != 0) {
1561 			if (ND.linkmtu < IPV6_MMTU ||
1562 			    ND.linkmtu > IN6_LINKMTU(ifp)) {
1563 				error = EINVAL;
1564 				break;
1565 			}
1566 			ND_IFINFO(ifp)->linkmtu = ND.linkmtu;
1567 		}
1568 
1569 		if (ND.basereachable != 0) {
1570 			int obasereachable = ND_IFINFO(ifp)->basereachable;
1571 
1572 			ND_IFINFO(ifp)->basereachable = ND.basereachable;
1573 			if (ND.basereachable != obasereachable)
1574 				ND_IFINFO(ifp)->reachable =
1575 				    ND_COMPUTE_RTIME(ND.basereachable);
1576 		}
1577 		if (ND.retrans != 0)
1578 			ND_IFINFO(ifp)->retrans = ND.retrans;
1579 		if (ND.chlim != 0)
1580 			ND_IFINFO(ifp)->chlim = ND.chlim;
1581 		/* FALLTHROUGH */
1582 	case SIOCSIFINFO_FLAGS:
1583 		ND_IFINFO(ifp)->flags = ND.flags;
1584 		break;
1585 #undef ND
1586 	case SIOCSNDFLUSH_IN6:	/* XXX: the ioctl name is confusing... */
1587 		/* sync kernel routing table with the default router list */
1588 		defrouter_reset();
1589 		defrouter_select();
1590 		break;
1591 	case SIOCSPFXFLUSH_IN6:
1592 	{
1593 		/* flush all the prefix advertised by routers */
1594 		struct nd_prefix *pr, *next;
1595 
1596 		s = splnet();
1597 		for (pr = nd_prefix.lh_first; pr; pr = next) {
1598 			struct in6_ifaddr *ia, *ia_next;
1599 
1600 			next = pr->ndpr_next;
1601 
1602 			if (IN6_IS_ADDR_LINKLOCAL(&pr->ndpr_prefix.sin6_addr))
1603 				continue; /* XXX */
1604 
1605 			/* do we really have to remove addresses as well? */
1606 			for (ia = in6_ifaddr; ia; ia = ia_next) {
1607 				/* ia might be removed.  keep the next ptr. */
1608 				ia_next = ia->ia_next;
1609 
1610 				if ((ia->ia6_flags & IN6_IFF_AUTOCONF) == 0)
1611 					continue;
1612 
1613 				if (ia->ia6_ndpr == pr)
1614 					in6_purgeaddr(&ia->ia_ifa);
1615 			}
1616 			prelist_remove(pr);
1617 		}
1618 		splx(s);
1619 		break;
1620 	}
1621 	case SIOCSRTRFLUSH_IN6:
1622 	{
1623 		/* flush all the default routers */
1624 		struct nd_defrouter *dr, *next;
1625 
1626 		s = splnet();
1627 		defrouter_reset();
1628 		for (dr = TAILQ_FIRST(&nd_defrouter); dr; dr = next) {
1629 			next = TAILQ_NEXT(dr, dr_entry);
1630 			defrtrlist_del(dr);
1631 		}
1632 		defrouter_select();
1633 		splx(s);
1634 		break;
1635 	}
1636 	case SIOCGNBRINFO_IN6:
1637 	{
1638 		struct llinfo_nd6 *ln;
1639 		struct in6_addr nb_addr = nbi->addr; /* make local for safety */
1640 
1641 		if ((error = in6_setscope(&nb_addr, ifp, NULL)) != 0)
1642 			return (error);
1643 
1644 		s = splnet();
1645 		if ((rt = nd6_lookup(&nb_addr, 0, ifp)) == NULL) {
1646 			error = EINVAL;
1647 			splx(s);
1648 			break;
1649 		}
1650 		ln = (struct llinfo_nd6 *)rt->rt_llinfo;
1651 		nbi->state = ln->ln_state;
1652 		nbi->asked = ln->ln_asked;
1653 		nbi->isrouter = ln->ln_router;
1654 		nbi->expire = ln->ln_expire;
1655 		splx(s);
1656 
1657 		break;
1658 	}
1659 	case SIOCGDEFIFACE_IN6:	/* XXX: should be implemented as a sysctl? */
1660 		ndif->ifindex = nd6_defifindex;
1661 		break;
1662 	case SIOCSDEFIFACE_IN6:	/* XXX: should be implemented as a sysctl? */
1663 		return (nd6_setdefaultiface(ndif->ifindex));
1664 	}
1665 	return (error);
1666 }
1667 
1668 /*
1669  * Create neighbor cache entry and cache link-layer address,
1670  * on reception of inbound ND6 packets.  (RS/RA/NS/redirect)
1671  */
1672 struct rtentry *
1673 nd6_cache_lladdr(ifp, from, lladdr, lladdrlen, type, code)
1674 	struct ifnet *ifp;
1675 	struct in6_addr *from;
1676 	char *lladdr;
1677 	int lladdrlen;
1678 	int type;	/* ICMP6 type */
1679 	int code;	/* type dependent information */
1680 {
1681 	struct rtentry *rt = NULL;
1682 	struct llinfo_nd6 *ln = NULL;
1683 	int is_newentry;
1684 	struct sockaddr_dl *sdl = NULL;
1685 	int do_update;
1686 	int olladdr;
1687 	int llchange;
1688 	int newstate = 0;
1689 
1690 	if (ifp == NULL)
1691 		panic("ifp == NULL in nd6_cache_lladdr");
1692 	if (from == NULL)
1693 		panic("from == NULL in nd6_cache_lladdr");
1694 
1695 	/* nothing must be updated for unspecified address */
1696 	if (IN6_IS_ADDR_UNSPECIFIED(from))
1697 		return NULL;
1698 
1699 	/*
1700 	 * Validation about ifp->if_addrlen and lladdrlen must be done in
1701 	 * the caller.
1702 	 *
1703 	 * XXX If the link does not have link-layer adderss, what should
1704 	 * we do? (ifp->if_addrlen == 0)
1705 	 * Spec says nothing in sections for RA, RS and NA.  There's small
1706 	 * description on it in NS section (RFC 2461 7.2.3).
1707 	 */
1708 
1709 	rt = nd6_lookup(from, 0, ifp);
1710 	if (rt == NULL) {
1711 		rt = nd6_lookup(from, 1, ifp);
1712 		is_newentry = 1;
1713 	} else {
1714 		/* do nothing if static ndp is set */
1715 		if (rt->rt_flags & RTF_STATIC)
1716 			return NULL;
1717 		is_newentry = 0;
1718 	}
1719 
1720 	if (rt == NULL)
1721 		return NULL;
1722 	if ((rt->rt_flags & (RTF_GATEWAY | RTF_LLINFO)) != RTF_LLINFO) {
1723 fail:
1724 		(void)nd6_free(rt, 0);
1725 		return NULL;
1726 	}
1727 	ln = (struct llinfo_nd6 *)rt->rt_llinfo;
1728 	if (ln == NULL)
1729 		goto fail;
1730 	if (rt->rt_gateway == NULL)
1731 		goto fail;
1732 	if (rt->rt_gateway->sa_family != AF_LINK)
1733 		goto fail;
1734 	sdl = SDL(rt->rt_gateway);
1735 
1736 	olladdr = (sdl->sdl_alen) ? 1 : 0;
1737 	if (olladdr && lladdr) {
1738 		if (bcmp(lladdr, LLADDR(sdl), ifp->if_addrlen))
1739 			llchange = 1;
1740 		else
1741 			llchange = 0;
1742 	} else
1743 		llchange = 0;
1744 
1745 	/*
1746 	 * newentry olladdr  lladdr  llchange	(*=record)
1747 	 *	0	n	n	--	(1)
1748 	 *	0	y	n	--	(2)
1749 	 *	0	n	y	--	(3) * STALE
1750 	 *	0	y	y	n	(4) *
1751 	 *	0	y	y	y	(5) * STALE
1752 	 *	1	--	n	--	(6)   NOSTATE(= PASSIVE)
1753 	 *	1	--	y	--	(7) * STALE
1754 	 */
1755 
1756 	if (lladdr) {		/* (3-5) and (7) */
1757 		/*
1758 		 * Record source link-layer address
1759 		 * XXX is it dependent to ifp->if_type?
1760 		 */
1761 		sdl->sdl_alen = ifp->if_addrlen;
1762 		bcopy(lladdr, LLADDR(sdl), ifp->if_addrlen);
1763 	}
1764 
1765 	if (!is_newentry) {
1766 		if ((!olladdr && lladdr != NULL) ||	/* (3) */
1767 		    (olladdr && lladdr != NULL && llchange)) {	/* (5) */
1768 			do_update = 1;
1769 			newstate = ND6_LLINFO_STALE;
1770 		} else					/* (1-2,4) */
1771 			do_update = 0;
1772 	} else {
1773 		do_update = 1;
1774 		if (lladdr == NULL)			/* (6) */
1775 			newstate = ND6_LLINFO_NOSTATE;
1776 		else					/* (7) */
1777 			newstate = ND6_LLINFO_STALE;
1778 	}
1779 
1780 	if (do_update) {
1781 		/*
1782 		 * Update the state of the neighbor cache.
1783 		 */
1784 		ln->ln_state = newstate;
1785 
1786 		if (ln->ln_state == ND6_LLINFO_STALE) {
1787 			/*
1788 			 * XXX: since nd6_output() below will cause
1789 			 * state tansition to DELAY and reset the timer,
1790 			 * we must set the timer now, although it is actually
1791 			 * meaningless.
1792 			 */
1793 			nd6_llinfo_settimer(ln, (long)nd6_gctimer * hz);
1794 
1795 			if (ln->ln_hold) {
1796 				struct mbuf *m_hold, *m_hold_next;
1797 				for (m_hold = ln->ln_hold; m_hold;
1798 				     m_hold = m_hold_next) {
1799 					struct mbuf *mpkt = NULL;
1800 
1801 					m_hold_next = m_hold->m_nextpkt;
1802 					mpkt = m_copym(m_hold, 0, M_COPYALL, M_DONTWAIT);
1803 					if (mpkt == NULL) {
1804 						m_freem(m_hold);
1805 						break;
1806 					}
1807 					mpkt->m_nextpkt = NULL;
1808 
1809 					/*
1810 					 * we assume ifp is not a p2p here, so
1811 					 * just set the 2nd argument as the
1812 					 * 1st one.
1813 					 */
1814 					nd6_output(ifp, ifp, mpkt,
1815 					     (struct sockaddr_in6 *)rt_key(rt),
1816 					     rt);
1817 				}
1818 				ln->ln_hold = NULL;
1819 			}
1820 		} else if (ln->ln_state == ND6_LLINFO_INCOMPLETE) {
1821 			/* probe right away */
1822 			nd6_llinfo_settimer((void *)ln, 0);
1823 		}
1824 	}
1825 
1826 	/*
1827 	 * ICMP6 type dependent behavior.
1828 	 *
1829 	 * NS: clear IsRouter if new entry
1830 	 * RS: clear IsRouter
1831 	 * RA: set IsRouter if there's lladdr
1832 	 * redir: clear IsRouter if new entry
1833 	 *
1834 	 * RA case, (1):
1835 	 * The spec says that we must set IsRouter in the following cases:
1836 	 * - If lladdr exist, set IsRouter.  This means (1-5).
1837 	 * - If it is old entry (!newentry), set IsRouter.  This means (7).
1838 	 * So, based on the spec, in (1-5) and (7) cases we must set IsRouter.
1839 	 * A quetion arises for (1) case.  (1) case has no lladdr in the
1840 	 * neighbor cache, this is similar to (6).
1841 	 * This case is rare but we figured that we MUST NOT set IsRouter.
1842 	 *
1843 	 * newentry olladdr  lladdr  llchange	    NS  RS  RA	redir
1844 	 *							D R
1845 	 *	0	n	n	--	(1)	c   ?     s
1846 	 *	0	y	n	--	(2)	c   s     s
1847 	 *	0	n	y	--	(3)	c   s     s
1848 	 *	0	y	y	n	(4)	c   s     s
1849 	 *	0	y	y	y	(5)	c   s     s
1850 	 *	1	--	n	--	(6) c	c 	c s
1851 	 *	1	--	y	--	(7) c	c   s	c s
1852 	 *
1853 	 *					(c=clear s=set)
1854 	 */
1855 	switch (type & 0xff) {
1856 	case ND_NEIGHBOR_SOLICIT:
1857 		/*
1858 		 * New entry must have is_router flag cleared.
1859 		 */
1860 		if (is_newentry)	/* (6-7) */
1861 			ln->ln_router = 0;
1862 		break;
1863 	case ND_REDIRECT:
1864 		/*
1865 		 * If the icmp is a redirect to a better router, always set the
1866 		 * is_router flag.  Otherwise, if the entry is newly created,
1867 		 * clear the flag.  [RFC 2461, sec 8.3]
1868 		 */
1869 		if (code == ND_REDIRECT_ROUTER)
1870 			ln->ln_router = 1;
1871 		else if (is_newentry) /* (6-7) */
1872 			ln->ln_router = 0;
1873 		break;
1874 	case ND_ROUTER_SOLICIT:
1875 		/*
1876 		 * is_router flag must always be cleared.
1877 		 */
1878 		ln->ln_router = 0;
1879 		break;
1880 	case ND_ROUTER_ADVERT:
1881 		/*
1882 		 * Mark an entry with lladdr as a router.
1883 		 */
1884 		if ((!is_newentry && (olladdr || lladdr)) ||	/* (2-5) */
1885 		    (is_newentry && lladdr)) {			/* (7) */
1886 			ln->ln_router = 1;
1887 		}
1888 		break;
1889 	}
1890 
1891 	/*
1892 	 * When the link-layer address of a router changes, select the
1893 	 * best router again.  In particular, when the neighbor entry is newly
1894 	 * created, it might affect the selection policy.
1895 	 * Question: can we restrict the first condition to the "is_newentry"
1896 	 * case?
1897 	 * XXX: when we hear an RA from a new router with the link-layer
1898 	 * address option, defrouter_select() is called twice, since
1899 	 * defrtrlist_update called the function as well.  However, I believe
1900 	 * we can compromise the overhead, since it only happens the first
1901 	 * time.
1902 	 * XXX: although defrouter_select() should not have a bad effect
1903 	 * for those are not autoconfigured hosts, we explicitly avoid such
1904 	 * cases for safety.
1905 	 */
1906 	if (do_update && ln->ln_router && !ip6_forwarding && ip6_accept_rtadv)
1907 		defrouter_select();
1908 
1909 	return rt;
1910 }
1911 
1912 static void
1913 nd6_slowtimo(ignored_arg)
1914     void *ignored_arg;
1915 {
1916 	struct nd_ifinfo *nd6if;
1917 	struct ifnet *ifp;
1918 
1919 	callout_reset(&nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz,
1920 	    nd6_slowtimo, NULL);
1921 	IFNET_RLOCK();
1922 	for (ifp = TAILQ_FIRST(&ifnet); ifp; ifp = TAILQ_NEXT(ifp, if_list)) {
1923 		nd6if = ND_IFINFO(ifp);
1924 		if (nd6if->basereachable && /* already initialized */
1925 		    (nd6if->recalctm -= ND6_SLOWTIMER_INTERVAL) <= 0) {
1926 			/*
1927 			 * Since reachable time rarely changes by router
1928 			 * advertisements, we SHOULD insure that a new random
1929 			 * value gets recomputed at least once every few hours.
1930 			 * (RFC 2461, 6.3.4)
1931 			 */
1932 			nd6if->recalctm = nd6_recalc_reachtm_interval;
1933 			nd6if->reachable = ND_COMPUTE_RTIME(nd6if->basereachable);
1934 		}
1935 	}
1936 	IFNET_RUNLOCK();
1937 }
1938 
1939 #define senderr(e) { error = (e); goto bad;}
1940 int
1941 nd6_output(ifp, origifp, m0, dst, rt0)
1942 	struct ifnet *ifp;
1943 	struct ifnet *origifp;
1944 	struct mbuf *m0;
1945 	struct sockaddr_in6 *dst;
1946 	struct rtentry *rt0;
1947 {
1948 	struct mbuf *m = m0;
1949 	struct rtentry *rt = rt0;
1950 	struct sockaddr_in6 *gw6 = NULL;
1951 	struct llinfo_nd6 *ln = NULL;
1952 	int error = 0;
1953 
1954 	if (IN6_IS_ADDR_MULTICAST(&dst->sin6_addr))
1955 		goto sendpkt;
1956 
1957 	if (nd6_need_cache(ifp) == 0)
1958 		goto sendpkt;
1959 
1960 	/*
1961 	 * next hop determination.  This routine is derived from ether_output.
1962 	 */
1963 	/* NB: the locking here is tortuous... */
1964 	if (rt != NULL)
1965 		RT_LOCK(rt);
1966 again:
1967 	if (rt != NULL) {
1968 		if ((rt->rt_flags & RTF_UP) == 0) {
1969 			RT_UNLOCK(rt);
1970 			rt0 = rt = rtalloc1((struct sockaddr *)dst, 1, 0UL);
1971 			if (rt != NULL) {
1972 				RT_REMREF(rt);
1973 				if (rt->rt_ifp != ifp)
1974 					/*
1975 					 * XXX maybe we should update ifp too,
1976 					 * but the original code didn't and I
1977 					 * don't know what is correct here.
1978 					 */
1979 					goto again;
1980 			} else
1981 				senderr(EHOSTUNREACH);
1982 		}
1983 
1984 		if (rt->rt_flags & RTF_GATEWAY) {
1985 			gw6 = (struct sockaddr_in6 *)rt->rt_gateway;
1986 
1987 			/*
1988 			 * We skip link-layer address resolution and NUD
1989 			 * if the gateway is not a neighbor from ND point
1990 			 * of view, regardless of the value of nd_ifinfo.flags.
1991 			 * The second condition is a bit tricky; we skip
1992 			 * if the gateway is our own address, which is
1993 			 * sometimes used to install a route to a p2p link.
1994 			 */
1995 			if (!nd6_is_addr_neighbor(gw6, ifp) ||
1996 			    in6ifa_ifpwithaddr(ifp, &gw6->sin6_addr)) {
1997 				RT_UNLOCK(rt);
1998 				/*
1999 				 * We allow this kind of tricky route only
2000 				 * when the outgoing interface is p2p.
2001 				 * XXX: we may need a more generic rule here.
2002 				 */
2003 				if ((ifp->if_flags & IFF_POINTOPOINT) == 0)
2004 					senderr(EHOSTUNREACH);
2005 
2006 				goto sendpkt;
2007 			}
2008 
2009 			if (rt->rt_gwroute == NULL)
2010 				goto lookup;
2011 			rt = rt->rt_gwroute;
2012 			RT_LOCK(rt);		/* NB: gwroute */
2013 			if ((rt->rt_flags & RTF_UP) == 0) {
2014 				rtfree(rt);	/* unlock gwroute */
2015 				rt = rt0;
2016 			lookup:
2017 				RT_UNLOCK(rt0);
2018 				rt = rtalloc1(rt->rt_gateway, 1, 0UL);
2019 				if (rt == rt0) {
2020 					rt0->rt_gwroute = NULL;
2021 					RT_REMREF(rt0);
2022 					RT_UNLOCK(rt0);
2023 					senderr(EHOSTUNREACH);
2024 				}
2025 				RT_LOCK(rt0);
2026 				rt0->rt_gwroute = rt;
2027 				if (rt == NULL) {
2028 					RT_UNLOCK(rt0);
2029 					senderr(EHOSTUNREACH);
2030 				}
2031 			}
2032 			RT_UNLOCK(rt0);
2033 		}
2034 		RT_UNLOCK(rt);
2035 	}
2036 
2037 	/*
2038 	 * Address resolution or Neighbor Unreachability Detection
2039 	 * for the next hop.
2040 	 * At this point, the destination of the packet must be a unicast
2041 	 * or an anycast address(i.e. not a multicast).
2042 	 */
2043 
2044 	/* Look up the neighbor cache for the nexthop */
2045 	if (rt && (rt->rt_flags & RTF_LLINFO) != 0)
2046 		ln = (struct llinfo_nd6 *)rt->rt_llinfo;
2047 	else {
2048 		/*
2049 		 * Since nd6_is_addr_neighbor() internally calls nd6_lookup(),
2050 		 * the condition below is not very efficient.  But we believe
2051 		 * it is tolerable, because this should be a rare case.
2052 		 */
2053 		if (nd6_is_addr_neighbor(dst, ifp) &&
2054 		    (rt = nd6_lookup(&dst->sin6_addr, 1, ifp)) != NULL)
2055 			ln = (struct llinfo_nd6 *)rt->rt_llinfo;
2056 	}
2057 	if (ln == NULL || rt == NULL) {
2058 		if ((ifp->if_flags & IFF_POINTOPOINT) == 0 &&
2059 		    !(ND_IFINFO(ifp)->flags & ND6_IFF_PERFORMNUD)) {
2060 			char ip6buf[INET6_ADDRSTRLEN];
2061 			log(LOG_DEBUG,
2062 			    "nd6_output: can't allocate llinfo for %s "
2063 			    "(ln=%p, rt=%p)\n",
2064 			    ip6_sprintf(ip6buf, &dst->sin6_addr), ln, rt);
2065 			senderr(EIO);	/* XXX: good error? */
2066 		}
2067 
2068 		goto sendpkt;	/* send anyway */
2069 	}
2070 
2071 	/* We don't have to do link-layer address resolution on a p2p link. */
2072 	if ((ifp->if_flags & IFF_POINTOPOINT) != 0 &&
2073 	    ln->ln_state < ND6_LLINFO_REACHABLE) {
2074 		ln->ln_state = ND6_LLINFO_STALE;
2075 		nd6_llinfo_settimer(ln, (long)nd6_gctimer * hz);
2076 	}
2077 
2078 	/*
2079 	 * The first time we send a packet to a neighbor whose entry is
2080 	 * STALE, we have to change the state to DELAY and a sets a timer to
2081 	 * expire in DELAY_FIRST_PROBE_TIME seconds to ensure do
2082 	 * neighbor unreachability detection on expiration.
2083 	 * (RFC 2461 7.3.3)
2084 	 */
2085 	if (ln->ln_state == ND6_LLINFO_STALE) {
2086 		ln->ln_asked = 0;
2087 		ln->ln_state = ND6_LLINFO_DELAY;
2088 		nd6_llinfo_settimer(ln, (long)nd6_delay * hz);
2089 	}
2090 
2091 	/*
2092 	 * If the neighbor cache entry has a state other than INCOMPLETE
2093 	 * (i.e. its link-layer address is already resolved), just
2094 	 * send the packet.
2095 	 */
2096 	if (ln->ln_state > ND6_LLINFO_INCOMPLETE)
2097 		goto sendpkt;
2098 
2099 	/*
2100 	 * There is a neighbor cache entry, but no ethernet address
2101 	 * response yet.  Append this latest packet to the end of the
2102 	 * packet queue in the mbuf, unless the number of the packet
2103 	 * does not exceed nd6_maxqueuelen.  When it exceeds nd6_maxqueuelen,
2104 	 * the oldest packet in the queue will be removed.
2105 	 */
2106 	if (ln->ln_state == ND6_LLINFO_NOSTATE)
2107 		ln->ln_state = ND6_LLINFO_INCOMPLETE;
2108 	if (ln->ln_hold) {
2109 		struct mbuf *m_hold;
2110 		int i;
2111 
2112 		i = 0;
2113 		for (m_hold = ln->ln_hold; m_hold; m_hold = m_hold->m_nextpkt) {
2114 			i++;
2115 			if (m_hold->m_nextpkt == NULL) {
2116 				m_hold->m_nextpkt = m;
2117 				break;
2118 			}
2119 		}
2120 		while (i >= nd6_maxqueuelen) {
2121 			m_hold = ln->ln_hold;
2122 			ln->ln_hold = ln->ln_hold->m_nextpkt;
2123 			m_freem(m_hold);
2124 			i--;
2125 		}
2126 	} else {
2127 		ln->ln_hold = m;
2128 	}
2129 
2130 	/*
2131 	 * If there has been no NS for the neighbor after entering the
2132 	 * INCOMPLETE state, send the first solicitation.
2133 	 */
2134 	if (!ND6_LLINFO_PERMANENT(ln) && ln->ln_asked == 0) {
2135 		ln->ln_asked++;
2136 		nd6_llinfo_settimer(ln,
2137 		    (long)ND_IFINFO(ifp)->retrans * hz / 1000);
2138 		nd6_ns_output(ifp, NULL, &dst->sin6_addr, ln, 0);
2139 	}
2140 	return (0);
2141 
2142   sendpkt:
2143 	/* discard the packet if IPv6 operation is disabled on the interface */
2144 	if ((ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED)) {
2145 		error = ENETDOWN; /* better error? */
2146 		goto bad;
2147 	}
2148 
2149 #ifdef IPSEC
2150 	/* clean ipsec history once it goes out of the node */
2151 	ipsec_delaux(m);
2152 #endif
2153 
2154 #ifdef MAC
2155 	mac_create_mbuf_linklayer(ifp, m);
2156 #endif
2157 	if ((ifp->if_flags & IFF_LOOPBACK) != 0) {
2158 		return ((*ifp->if_output)(origifp, m, (struct sockaddr *)dst,
2159 		    rt));
2160 	}
2161 	return ((*ifp->if_output)(ifp, m, (struct sockaddr *)dst, rt));
2162 
2163   bad:
2164 	if (m)
2165 		m_freem(m);
2166 	return (error);
2167 }
2168 #undef senderr
2169 
2170 int
2171 nd6_need_cache(ifp)
2172 	struct ifnet *ifp;
2173 {
2174 	/*
2175 	 * XXX: we currently do not make neighbor cache on any interface
2176 	 * other than ARCnet, Ethernet, FDDI and GIF.
2177 	 *
2178 	 * RFC2893 says:
2179 	 * - unidirectional tunnels needs no ND
2180 	 */
2181 	switch (ifp->if_type) {
2182 	case IFT_ARCNET:
2183 	case IFT_ETHER:
2184 	case IFT_FDDI:
2185 	case IFT_IEEE1394:
2186 #ifdef IFT_L2VLAN
2187 	case IFT_L2VLAN:
2188 #endif
2189 #ifdef IFT_IEEE80211
2190 	case IFT_IEEE80211:
2191 #endif
2192 #ifdef IFT_CARP
2193 	case IFT_CARP:
2194 #endif
2195 	case IFT_GIF:		/* XXX need more cases? */
2196 	case IFT_PPP:
2197 	case IFT_TUNNEL:
2198 	case IFT_BRIDGE:
2199 	case IFT_PROPVIRTUAL:
2200 		return (1);
2201 	default:
2202 		return (0);
2203 	}
2204 }
2205 
2206 int
2207 nd6_storelladdr(ifp, rt0, m, dst, desten)
2208 	struct ifnet *ifp;
2209 	struct rtentry *rt0;
2210 	struct mbuf *m;
2211 	struct sockaddr *dst;
2212 	u_char *desten;
2213 {
2214 	struct sockaddr_dl *sdl;
2215 	struct rtentry *rt;
2216 	int error;
2217 
2218 	if (m->m_flags & M_MCAST) {
2219 		int i;
2220 
2221 		switch (ifp->if_type) {
2222 		case IFT_ETHER:
2223 		case IFT_FDDI:
2224 #ifdef IFT_L2VLAN
2225 		case IFT_L2VLAN:
2226 #endif
2227 #ifdef IFT_IEEE80211
2228 		case IFT_IEEE80211:
2229 #endif
2230 		case IFT_BRIDGE:
2231 		case IFT_ISO88025:
2232 			ETHER_MAP_IPV6_MULTICAST(&SIN6(dst)->sin6_addr,
2233 						 desten);
2234 			return (0);
2235 		case IFT_IEEE1394:
2236 			/*
2237 			 * netbsd can use if_broadcastaddr, but we don't do so
2238 			 * to reduce # of ifdef.
2239 			 */
2240 			for (i = 0; i < ifp->if_addrlen; i++)
2241 				desten[i] = ~0;
2242 			return (0);
2243 		case IFT_ARCNET:
2244 			*desten = 0;
2245 			return (0);
2246 		default:
2247 			m_freem(m);
2248 			return (EAFNOSUPPORT);
2249 		}
2250 	}
2251 
2252 	if (rt0 == NULL) {
2253 		/* this could happen, if we could not allocate memory */
2254 		m_freem(m);
2255 		return (ENOMEM);
2256 	}
2257 
2258 	error = rt_check(&rt, &rt0, dst);
2259 	if (error) {
2260 		m_freem(m);
2261 		return (error);
2262 	}
2263 	RT_UNLOCK(rt);
2264 
2265 	if (rt->rt_gateway->sa_family != AF_LINK) {
2266 		printf("nd6_storelladdr: something odd happens\n");
2267 		m_freem(m);
2268 		return (EINVAL);
2269 	}
2270 	sdl = SDL(rt->rt_gateway);
2271 	if (sdl->sdl_alen == 0) {
2272 		/* this should be impossible, but we bark here for debugging */
2273 		printf("nd6_storelladdr: sdl_alen == 0\n");
2274 		m_freem(m);
2275 		return (EINVAL);
2276 	}
2277 
2278 	bcopy(LLADDR(sdl), desten, sdl->sdl_alen);
2279 	return (0);
2280 }
2281 
2282 static void
2283 clear_llinfo_pqueue(ln)
2284 	struct llinfo_nd6 *ln;
2285 {
2286 	struct mbuf *m_hold, *m_hold_next;
2287 
2288 	for (m_hold = ln->ln_hold; m_hold; m_hold = m_hold_next) {
2289 		m_hold_next = m_hold->m_nextpkt;
2290 		m_hold->m_nextpkt = NULL;
2291 		m_freem(m_hold);
2292 	}
2293 
2294 	ln->ln_hold = NULL;
2295 	return;
2296 }
2297 
2298 static int nd6_sysctl_drlist(SYSCTL_HANDLER_ARGS);
2299 static int nd6_sysctl_prlist(SYSCTL_HANDLER_ARGS);
2300 #ifdef SYSCTL_DECL
2301 SYSCTL_DECL(_net_inet6_icmp6);
2302 #endif
2303 SYSCTL_NODE(_net_inet6_icmp6, ICMPV6CTL_ND6_DRLIST, nd6_drlist,
2304 	CTLFLAG_RD, nd6_sysctl_drlist, "");
2305 SYSCTL_NODE(_net_inet6_icmp6, ICMPV6CTL_ND6_PRLIST, nd6_prlist,
2306 	CTLFLAG_RD, nd6_sysctl_prlist, "");
2307 SYSCTL_INT(_net_inet6_icmp6, ICMPV6CTL_ND6_MAXQLEN, nd6_maxqueuelen,
2308 	CTLFLAG_RW, &nd6_maxqueuelen, 1, "");
2309 
2310 static int
2311 nd6_sysctl_drlist(SYSCTL_HANDLER_ARGS)
2312 {
2313 	int error;
2314 	char buf[1024];
2315 	struct in6_defrouter *d, *de;
2316 	struct nd_defrouter *dr;
2317 
2318 	if (req->newptr)
2319 		return EPERM;
2320 	error = 0;
2321 
2322 	for (dr = TAILQ_FIRST(&nd_defrouter); dr;
2323 	     dr = TAILQ_NEXT(dr, dr_entry)) {
2324 		d = (struct in6_defrouter *)buf;
2325 		de = (struct in6_defrouter *)(buf + sizeof(buf));
2326 
2327 		if (d + 1 <= de) {
2328 			bzero(d, sizeof(*d));
2329 			d->rtaddr.sin6_family = AF_INET6;
2330 			d->rtaddr.sin6_len = sizeof(d->rtaddr);
2331 			d->rtaddr.sin6_addr = dr->rtaddr;
2332 			sa6_recoverscope(&d->rtaddr);
2333 			d->flags = dr->flags;
2334 			d->rtlifetime = dr->rtlifetime;
2335 			d->expire = dr->expire;
2336 			d->if_index = dr->ifp->if_index;
2337 		} else
2338 			panic("buffer too short");
2339 
2340 		error = SYSCTL_OUT(req, buf, sizeof(*d));
2341 		if (error)
2342 			break;
2343 	}
2344 
2345 	return (error);
2346 }
2347 
2348 static int
2349 nd6_sysctl_prlist(SYSCTL_HANDLER_ARGS)
2350 {
2351 	int error;
2352 	char buf[1024];
2353 	struct in6_prefix *p, *pe;
2354 	struct nd_prefix *pr;
2355 	char ip6buf[INET6_ADDRSTRLEN];
2356 
2357 	if (req->newptr)
2358 		return EPERM;
2359 	error = 0;
2360 
2361 	for (pr = nd_prefix.lh_first; pr; pr = pr->ndpr_next) {
2362 		u_short advrtrs;
2363 		size_t advance;
2364 		struct sockaddr_in6 *sin6, *s6;
2365 		struct nd_pfxrouter *pfr;
2366 
2367 		p = (struct in6_prefix *)buf;
2368 		pe = (struct in6_prefix *)(buf + sizeof(buf));
2369 
2370 		if (p + 1 <= pe) {
2371 			bzero(p, sizeof(*p));
2372 			sin6 = (struct sockaddr_in6 *)(p + 1);
2373 
2374 			p->prefix = pr->ndpr_prefix;
2375 			if (sa6_recoverscope(&p->prefix)) {
2376 				log(LOG_ERR,
2377 				    "scope error in prefix list (%s)\n",
2378 				    ip6_sprintf(ip6buf, &p->prefix.sin6_addr));
2379 				/* XXX: press on... */
2380 			}
2381 			p->raflags = pr->ndpr_raf;
2382 			p->prefixlen = pr->ndpr_plen;
2383 			p->vltime = pr->ndpr_vltime;
2384 			p->pltime = pr->ndpr_pltime;
2385 			p->if_index = pr->ndpr_ifp->if_index;
2386 			if (pr->ndpr_vltime == ND6_INFINITE_LIFETIME)
2387 				p->expire = 0;
2388 			else {
2389 				time_t maxexpire;
2390 
2391 				/* XXX: we assume time_t is signed. */
2392 				maxexpire = (-1) &
2393 				    ~((time_t)1 <<
2394 				    ((sizeof(maxexpire) * 8) - 1));
2395 				if (pr->ndpr_vltime <
2396 				    maxexpire - pr->ndpr_lastupdate) {
2397 				    p->expire = pr->ndpr_lastupdate +
2398 				        pr->ndpr_vltime;
2399 				} else
2400 					p->expire = maxexpire;
2401 			}
2402 			p->refcnt = pr->ndpr_refcnt;
2403 			p->flags = pr->ndpr_stateflags;
2404 			p->origin = PR_ORIG_RA;
2405 			advrtrs = 0;
2406 			for (pfr = pr->ndpr_advrtrs.lh_first; pfr;
2407 			     pfr = pfr->pfr_next) {
2408 				if ((void *)&sin6[advrtrs + 1] > (void *)pe) {
2409 					advrtrs++;
2410 					continue;
2411 				}
2412 				s6 = &sin6[advrtrs];
2413 				bzero(s6, sizeof(*s6));
2414 				s6->sin6_family = AF_INET6;
2415 				s6->sin6_len = sizeof(*sin6);
2416 				s6->sin6_addr = pfr->router->rtaddr;
2417 				if (sa6_recoverscope(s6)) {
2418 					log(LOG_ERR,
2419 					    "scope error in "
2420 					    "prefix list (%s)\n",
2421 					    ip6_sprintf(ip6buf,
2422 						    &pfr->router->rtaddr));
2423 				}
2424 				advrtrs++;
2425 			}
2426 			p->advrtrs = advrtrs;
2427 		} else
2428 			panic("buffer too short");
2429 
2430 		advance = sizeof(*p) + sizeof(*sin6) * advrtrs;
2431 		error = SYSCTL_OUT(req, buf, advance);
2432 		if (error)
2433 			break;
2434 	}
2435 
2436 	return (error);
2437 }
2438