xref: /freebsd/sys/netinet6/nd6.c (revision b00ab754)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. Neither the name of the project nor the names of its contributors
16  *    may be used to endorse or promote products derived from this software
17  *    without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  *
31  *	$KAME: nd6.c,v 1.144 2001/05/24 07:44:00 itojun Exp $
32  */
33 
34 #include <sys/cdefs.h>
35 __FBSDID("$FreeBSD$");
36 
37 #include "opt_inet.h"
38 #include "opt_inet6.h"
39 
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/callout.h>
43 #include <sys/lock.h>
44 #include <sys/malloc.h>
45 #include <sys/mbuf.h>
46 #include <sys/mutex.h>
47 #include <sys/socket.h>
48 #include <sys/sockio.h>
49 #include <sys/time.h>
50 #include <sys/kernel.h>
51 #include <sys/protosw.h>
52 #include <sys/errno.h>
53 #include <sys/syslog.h>
54 #include <sys/rwlock.h>
55 #include <sys/queue.h>
56 #include <sys/sdt.h>
57 #include <sys/sysctl.h>
58 
59 #include <net/if.h>
60 #include <net/if_var.h>
61 #include <net/if_dl.h>
62 #include <net/if_types.h>
63 #include <net/route.h>
64 #include <net/vnet.h>
65 
66 #include <netinet/in.h>
67 #include <netinet/in_kdtrace.h>
68 #include <net/if_llatbl.h>
69 #include <netinet/if_ether.h>
70 #include <netinet6/in6_var.h>
71 #include <netinet/ip6.h>
72 #include <netinet6/ip6_var.h>
73 #include <netinet6/scope6_var.h>
74 #include <netinet6/nd6.h>
75 #include <netinet6/in6_ifattach.h>
76 #include <netinet/icmp6.h>
77 #include <netinet6/send.h>
78 
79 #include <sys/limits.h>
80 
81 #include <security/mac/mac_framework.h>
82 
83 #define ND6_SLOWTIMER_INTERVAL (60 * 60) /* 1 hour */
84 #define ND6_RECALC_REACHTM_INTERVAL (60 * 120) /* 2 hours */
85 
86 #define SIN6(s) ((const struct sockaddr_in6 *)(s))
87 
88 MALLOC_DEFINE(M_IP6NDP, "ip6ndp", "IPv6 Neighbor Discovery");
89 
90 /* timer values */
91 VNET_DEFINE(int, nd6_prune)	= 1;	/* walk list every 1 seconds */
92 VNET_DEFINE(int, nd6_delay)	= 5;	/* delay first probe time 5 second */
93 VNET_DEFINE(int, nd6_umaxtries)	= 3;	/* maximum unicast query */
94 VNET_DEFINE(int, nd6_mmaxtries)	= 3;	/* maximum multicast query */
95 VNET_DEFINE(int, nd6_useloopback) = 1;	/* use loopback interface for
96 					 * local traffic */
97 VNET_DEFINE(int, nd6_gctimer)	= (60 * 60 * 24); /* 1 day: garbage
98 					 * collection timer */
99 
100 /* preventing too many loops in ND option parsing */
101 static VNET_DEFINE(int, nd6_maxndopt) = 10; /* max # of ND options allowed */
102 
103 VNET_DEFINE(int, nd6_maxnudhint) = 0;	/* max # of subsequent upper
104 					 * layer hints */
105 static VNET_DEFINE(int, nd6_maxqueuelen) = 1; /* max pkts cached in unresolved
106 					 * ND entries */
107 #define	V_nd6_maxndopt			VNET(nd6_maxndopt)
108 #define	V_nd6_maxqueuelen		VNET(nd6_maxqueuelen)
109 
110 #ifdef ND6_DEBUG
111 VNET_DEFINE(int, nd6_debug) = 1;
112 #else
113 VNET_DEFINE(int, nd6_debug) = 0;
114 #endif
115 
116 static eventhandler_tag lle_event_eh, iflladdr_event_eh;
117 
118 VNET_DEFINE(struct nd_drhead, nd_defrouter);
119 VNET_DEFINE(struct nd_prhead, nd_prefix);
120 VNET_DEFINE(struct rwlock, nd6_lock);
121 VNET_DEFINE(uint64_t, nd6_list_genid);
122 VNET_DEFINE(struct mtx, nd6_onlink_mtx);
123 
124 VNET_DEFINE(int, nd6_recalc_reachtm_interval) = ND6_RECALC_REACHTM_INTERVAL;
125 #define	V_nd6_recalc_reachtm_interval	VNET(nd6_recalc_reachtm_interval)
126 
127 int	(*send_sendso_input_hook)(struct mbuf *, struct ifnet *, int, int);
128 
129 static int nd6_is_new_addr_neighbor(const struct sockaddr_in6 *,
130 	struct ifnet *);
131 static void nd6_setmtu0(struct ifnet *, struct nd_ifinfo *);
132 static void nd6_slowtimo(void *);
133 static int regen_tmpaddr(struct in6_ifaddr *);
134 static void nd6_free(struct llentry **, int);
135 static void nd6_free_redirect(const struct llentry *);
136 static void nd6_llinfo_timer(void *);
137 static void nd6_llinfo_settimer_locked(struct llentry *, long);
138 static void clear_llinfo_pqueue(struct llentry *);
139 static void nd6_rtrequest(int, struct rtentry *, struct rt_addrinfo *);
140 static int nd6_resolve_slow(struct ifnet *, int, struct mbuf *,
141     const struct sockaddr_in6 *, u_char *, uint32_t *, struct llentry **);
142 static int nd6_need_cache(struct ifnet *);
143 
144 
145 static VNET_DEFINE(struct callout, nd6_slowtimo_ch);
146 #define	V_nd6_slowtimo_ch		VNET(nd6_slowtimo_ch)
147 
148 VNET_DEFINE(struct callout, nd6_timer_ch);
149 #define	V_nd6_timer_ch			VNET(nd6_timer_ch)
150 
151 static void
152 nd6_lle_event(void *arg __unused, struct llentry *lle, int evt)
153 {
154 	struct rt_addrinfo rtinfo;
155 	struct sockaddr_in6 dst;
156 	struct sockaddr_dl gw;
157 	struct ifnet *ifp;
158 	int type;
159 	int fibnum;
160 
161 	LLE_WLOCK_ASSERT(lle);
162 
163 	if (lltable_get_af(lle->lle_tbl) != AF_INET6)
164 		return;
165 
166 	switch (evt) {
167 	case LLENTRY_RESOLVED:
168 		type = RTM_ADD;
169 		KASSERT(lle->la_flags & LLE_VALID,
170 		    ("%s: %p resolved but not valid?", __func__, lle));
171 		break;
172 	case LLENTRY_EXPIRED:
173 		type = RTM_DELETE;
174 		break;
175 	default:
176 		return;
177 	}
178 
179 	ifp = lltable_get_ifp(lle->lle_tbl);
180 
181 	bzero(&dst, sizeof(dst));
182 	bzero(&gw, sizeof(gw));
183 	bzero(&rtinfo, sizeof(rtinfo));
184 	lltable_fill_sa_entry(lle, (struct sockaddr *)&dst);
185 	dst.sin6_scope_id = in6_getscopezone(ifp,
186 	    in6_addrscope(&dst.sin6_addr));
187 	gw.sdl_len = sizeof(struct sockaddr_dl);
188 	gw.sdl_family = AF_LINK;
189 	gw.sdl_alen = ifp->if_addrlen;
190 	gw.sdl_index = ifp->if_index;
191 	gw.sdl_type = ifp->if_type;
192 	if (evt == LLENTRY_RESOLVED)
193 		bcopy(lle->ll_addr, gw.sdl_data, ifp->if_addrlen);
194 	rtinfo.rti_info[RTAX_DST] = (struct sockaddr *)&dst;
195 	rtinfo.rti_info[RTAX_GATEWAY] = (struct sockaddr *)&gw;
196 	rtinfo.rti_addrs = RTA_DST | RTA_GATEWAY;
197 	fibnum = V_rt_add_addr_allfibs ? RT_ALL_FIBS : ifp->if_fib;
198 	rt_missmsg_fib(type, &rtinfo, RTF_HOST | RTF_LLDATA | (
199 	    type == RTM_ADD ? RTF_UP: 0), 0, fibnum);
200 }
201 
202 /*
203  * A handler for interface link layer address change event.
204  */
205 static void
206 nd6_iflladdr(void *arg __unused, struct ifnet *ifp)
207 {
208 
209 	lltable_update_ifaddr(LLTABLE6(ifp));
210 }
211 
212 void
213 nd6_init(void)
214 {
215 
216 	mtx_init(&V_nd6_onlink_mtx, "nd6 onlink", NULL, MTX_DEF);
217 	rw_init(&V_nd6_lock, "nd6 list");
218 
219 	LIST_INIT(&V_nd_prefix);
220 	TAILQ_INIT(&V_nd_defrouter);
221 
222 	/* Start timers. */
223 	callout_init(&V_nd6_slowtimo_ch, 0);
224 	callout_reset(&V_nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz,
225 	    nd6_slowtimo, curvnet);
226 
227 	callout_init(&V_nd6_timer_ch, 0);
228 	callout_reset(&V_nd6_timer_ch, hz, nd6_timer, curvnet);
229 
230 	nd6_dad_init();
231 	if (IS_DEFAULT_VNET(curvnet)) {
232 		lle_event_eh = EVENTHANDLER_REGISTER(lle_event, nd6_lle_event,
233 		    NULL, EVENTHANDLER_PRI_ANY);
234 		iflladdr_event_eh = EVENTHANDLER_REGISTER(iflladdr_event,
235 		    nd6_iflladdr, NULL, EVENTHANDLER_PRI_ANY);
236 	}
237 }
238 
239 #ifdef VIMAGE
240 void
241 nd6_destroy()
242 {
243 
244 	callout_drain(&V_nd6_slowtimo_ch);
245 	callout_drain(&V_nd6_timer_ch);
246 	if (IS_DEFAULT_VNET(curvnet)) {
247 		EVENTHANDLER_DEREGISTER(lle_event, lle_event_eh);
248 		EVENTHANDLER_DEREGISTER(iflladdr_event, iflladdr_event_eh);
249 	}
250 	rw_destroy(&V_nd6_lock);
251 	mtx_destroy(&V_nd6_onlink_mtx);
252 }
253 #endif
254 
255 struct nd_ifinfo *
256 nd6_ifattach(struct ifnet *ifp)
257 {
258 	struct nd_ifinfo *nd;
259 
260 	nd = malloc(sizeof(*nd), M_IP6NDP, M_WAITOK | M_ZERO);
261 	nd->initialized = 1;
262 
263 	nd->chlim = IPV6_DEFHLIM;
264 	nd->basereachable = REACHABLE_TIME;
265 	nd->reachable = ND_COMPUTE_RTIME(nd->basereachable);
266 	nd->retrans = RETRANS_TIMER;
267 
268 	nd->flags = ND6_IFF_PERFORMNUD;
269 
270 	/* A loopback interface always has ND6_IFF_AUTO_LINKLOCAL.
271 	 * XXXHRS: Clear ND6_IFF_AUTO_LINKLOCAL on an IFT_BRIDGE interface by
272 	 * default regardless of the V_ip6_auto_linklocal configuration to
273 	 * give a reasonable default behavior.
274 	 */
275 	if ((V_ip6_auto_linklocal && ifp->if_type != IFT_BRIDGE) ||
276 	    (ifp->if_flags & IFF_LOOPBACK))
277 		nd->flags |= ND6_IFF_AUTO_LINKLOCAL;
278 	/*
279 	 * A loopback interface does not need to accept RTADV.
280 	 * XXXHRS: Clear ND6_IFF_ACCEPT_RTADV on an IFT_BRIDGE interface by
281 	 * default regardless of the V_ip6_accept_rtadv configuration to
282 	 * prevent the interface from accepting RA messages arrived
283 	 * on one of the member interfaces with ND6_IFF_ACCEPT_RTADV.
284 	 */
285 	if (V_ip6_accept_rtadv &&
286 	    !(ifp->if_flags & IFF_LOOPBACK) &&
287 	    (ifp->if_type != IFT_BRIDGE))
288 			nd->flags |= ND6_IFF_ACCEPT_RTADV;
289 	if (V_ip6_no_radr && !(ifp->if_flags & IFF_LOOPBACK))
290 		nd->flags |= ND6_IFF_NO_RADR;
291 
292 	/* XXX: we cannot call nd6_setmtu since ifp is not fully initialized */
293 	nd6_setmtu0(ifp, nd);
294 
295 	return nd;
296 }
297 
298 void
299 nd6_ifdetach(struct ifnet *ifp, struct nd_ifinfo *nd)
300 {
301 	struct ifaddr *ifa, *next;
302 
303 	IF_ADDR_RLOCK(ifp);
304 	CK_STAILQ_FOREACH_SAFE(ifa, &ifp->if_addrhead, ifa_link, next) {
305 		if (ifa->ifa_addr->sa_family != AF_INET6)
306 			continue;
307 
308 		/* stop DAD processing */
309 		nd6_dad_stop(ifa);
310 	}
311 	IF_ADDR_RUNLOCK(ifp);
312 
313 	free(nd, M_IP6NDP);
314 }
315 
316 /*
317  * Reset ND level link MTU. This function is called when the physical MTU
318  * changes, which means we might have to adjust the ND level MTU.
319  */
320 void
321 nd6_setmtu(struct ifnet *ifp)
322 {
323 	if (ifp->if_afdata[AF_INET6] == NULL)
324 		return;
325 
326 	nd6_setmtu0(ifp, ND_IFINFO(ifp));
327 }
328 
329 /* XXX todo: do not maintain copy of ifp->if_mtu in ndi->maxmtu */
330 void
331 nd6_setmtu0(struct ifnet *ifp, struct nd_ifinfo *ndi)
332 {
333 	u_int32_t omaxmtu;
334 
335 	omaxmtu = ndi->maxmtu;
336 	ndi->maxmtu = ifp->if_mtu;
337 
338 	/*
339 	 * Decreasing the interface MTU under IPV6 minimum MTU may cause
340 	 * undesirable situation.  We thus notify the operator of the change
341 	 * explicitly.  The check for omaxmtu is necessary to restrict the
342 	 * log to the case of changing the MTU, not initializing it.
343 	 */
344 	if (omaxmtu >= IPV6_MMTU && ndi->maxmtu < IPV6_MMTU) {
345 		log(LOG_NOTICE, "nd6_setmtu0: "
346 		    "new link MTU on %s (%lu) is too small for IPv6\n",
347 		    if_name(ifp), (unsigned long)ndi->maxmtu);
348 	}
349 
350 	if (ndi->maxmtu > V_in6_maxmtu)
351 		in6_setmaxmtu(); /* check all interfaces just in case */
352 
353 }
354 
355 void
356 nd6_option_init(void *opt, int icmp6len, union nd_opts *ndopts)
357 {
358 
359 	bzero(ndopts, sizeof(*ndopts));
360 	ndopts->nd_opts_search = (struct nd_opt_hdr *)opt;
361 	ndopts->nd_opts_last
362 		= (struct nd_opt_hdr *)(((u_char *)opt) + icmp6len);
363 
364 	if (icmp6len == 0) {
365 		ndopts->nd_opts_done = 1;
366 		ndopts->nd_opts_search = NULL;
367 	}
368 }
369 
370 /*
371  * Take one ND option.
372  */
373 struct nd_opt_hdr *
374 nd6_option(union nd_opts *ndopts)
375 {
376 	struct nd_opt_hdr *nd_opt;
377 	int olen;
378 
379 	KASSERT(ndopts != NULL, ("%s: ndopts == NULL", __func__));
380 	KASSERT(ndopts->nd_opts_last != NULL, ("%s: uninitialized ndopts",
381 	    __func__));
382 	if (ndopts->nd_opts_search == NULL)
383 		return NULL;
384 	if (ndopts->nd_opts_done)
385 		return NULL;
386 
387 	nd_opt = ndopts->nd_opts_search;
388 
389 	/* make sure nd_opt_len is inside the buffer */
390 	if ((caddr_t)&nd_opt->nd_opt_len >= (caddr_t)ndopts->nd_opts_last) {
391 		bzero(ndopts, sizeof(*ndopts));
392 		return NULL;
393 	}
394 
395 	olen = nd_opt->nd_opt_len << 3;
396 	if (olen == 0) {
397 		/*
398 		 * Message validation requires that all included
399 		 * options have a length that is greater than zero.
400 		 */
401 		bzero(ndopts, sizeof(*ndopts));
402 		return NULL;
403 	}
404 
405 	ndopts->nd_opts_search = (struct nd_opt_hdr *)((caddr_t)nd_opt + olen);
406 	if (ndopts->nd_opts_search > ndopts->nd_opts_last) {
407 		/* option overruns the end of buffer, invalid */
408 		bzero(ndopts, sizeof(*ndopts));
409 		return NULL;
410 	} else if (ndopts->nd_opts_search == ndopts->nd_opts_last) {
411 		/* reached the end of options chain */
412 		ndopts->nd_opts_done = 1;
413 		ndopts->nd_opts_search = NULL;
414 	}
415 	return nd_opt;
416 }
417 
418 /*
419  * Parse multiple ND options.
420  * This function is much easier to use, for ND routines that do not need
421  * multiple options of the same type.
422  */
423 int
424 nd6_options(union nd_opts *ndopts)
425 {
426 	struct nd_opt_hdr *nd_opt;
427 	int i = 0;
428 
429 	KASSERT(ndopts != NULL, ("%s: ndopts == NULL", __func__));
430 	KASSERT(ndopts->nd_opts_last != NULL, ("%s: uninitialized ndopts",
431 	    __func__));
432 	if (ndopts->nd_opts_search == NULL)
433 		return 0;
434 
435 	while (1) {
436 		nd_opt = nd6_option(ndopts);
437 		if (nd_opt == NULL && ndopts->nd_opts_last == NULL) {
438 			/*
439 			 * Message validation requires that all included
440 			 * options have a length that is greater than zero.
441 			 */
442 			ICMP6STAT_INC(icp6s_nd_badopt);
443 			bzero(ndopts, sizeof(*ndopts));
444 			return -1;
445 		}
446 
447 		if (nd_opt == NULL)
448 			goto skip1;
449 
450 		switch (nd_opt->nd_opt_type) {
451 		case ND_OPT_SOURCE_LINKADDR:
452 		case ND_OPT_TARGET_LINKADDR:
453 		case ND_OPT_MTU:
454 		case ND_OPT_REDIRECTED_HEADER:
455 		case ND_OPT_NONCE:
456 			if (ndopts->nd_opt_array[nd_opt->nd_opt_type]) {
457 				nd6log((LOG_INFO,
458 				    "duplicated ND6 option found (type=%d)\n",
459 				    nd_opt->nd_opt_type));
460 				/* XXX bark? */
461 			} else {
462 				ndopts->nd_opt_array[nd_opt->nd_opt_type]
463 					= nd_opt;
464 			}
465 			break;
466 		case ND_OPT_PREFIX_INFORMATION:
467 			if (ndopts->nd_opt_array[nd_opt->nd_opt_type] == 0) {
468 				ndopts->nd_opt_array[nd_opt->nd_opt_type]
469 					= nd_opt;
470 			}
471 			ndopts->nd_opts_pi_end =
472 				(struct nd_opt_prefix_info *)nd_opt;
473 			break;
474 		/* What about ND_OPT_ROUTE_INFO? RFC 4191 */
475 		case ND_OPT_RDNSS:	/* RFC 6106 */
476 		case ND_OPT_DNSSL:	/* RFC 6106 */
477 			/*
478 			 * Silently ignore options we know and do not care about
479 			 * in the kernel.
480 			 */
481 			break;
482 		default:
483 			/*
484 			 * Unknown options must be silently ignored,
485 			 * to accommodate future extension to the protocol.
486 			 */
487 			nd6log((LOG_DEBUG,
488 			    "nd6_options: unsupported option %d - "
489 			    "option ignored\n", nd_opt->nd_opt_type));
490 		}
491 
492 skip1:
493 		i++;
494 		if (i > V_nd6_maxndopt) {
495 			ICMP6STAT_INC(icp6s_nd_toomanyopt);
496 			nd6log((LOG_INFO, "too many loop in nd opt\n"));
497 			break;
498 		}
499 
500 		if (ndopts->nd_opts_done)
501 			break;
502 	}
503 
504 	return 0;
505 }
506 
507 /*
508  * ND6 timer routine to handle ND6 entries
509  */
510 static void
511 nd6_llinfo_settimer_locked(struct llentry *ln, long tick)
512 {
513 	int canceled;
514 
515 	LLE_WLOCK_ASSERT(ln);
516 
517 	if (tick < 0) {
518 		ln->la_expire = 0;
519 		ln->ln_ntick = 0;
520 		canceled = callout_stop(&ln->lle_timer);
521 	} else {
522 		ln->la_expire = time_uptime + tick / hz;
523 		LLE_ADDREF(ln);
524 		if (tick > INT_MAX) {
525 			ln->ln_ntick = tick - INT_MAX;
526 			canceled = callout_reset(&ln->lle_timer, INT_MAX,
527 			    nd6_llinfo_timer, ln);
528 		} else {
529 			ln->ln_ntick = 0;
530 			canceled = callout_reset(&ln->lle_timer, tick,
531 			    nd6_llinfo_timer, ln);
532 		}
533 	}
534 	if (canceled > 0)
535 		LLE_REMREF(ln);
536 }
537 
538 /*
539  * Gets source address of the first packet in hold queue
540  * and stores it in @src.
541  * Returns pointer to @src (if hold queue is not empty) or NULL.
542  *
543  * Set noinline to be dtrace-friendly
544  */
545 static __noinline struct in6_addr *
546 nd6_llinfo_get_holdsrc(struct llentry *ln, struct in6_addr *src)
547 {
548 	struct ip6_hdr hdr;
549 	struct mbuf *m;
550 
551 	if (ln->la_hold == NULL)
552 		return (NULL);
553 
554 	/*
555 	 * assume every packet in la_hold has the same IP header
556 	 */
557 	m = ln->la_hold;
558 	if (sizeof(hdr) > m->m_len)
559 		return (NULL);
560 
561 	m_copydata(m, 0, sizeof(hdr), (caddr_t)&hdr);
562 	*src = hdr.ip6_src;
563 
564 	return (src);
565 }
566 
567 /*
568  * Checks if we need to switch from STALE state.
569  *
570  * RFC 4861 requires switching from STALE to DELAY state
571  * on first packet matching entry, waiting V_nd6_delay and
572  * transition to PROBE state (if upper layer confirmation was
573  * not received).
574  *
575  * This code performs a bit differently:
576  * On packet hit we don't change state (but desired state
577  * can be guessed by control plane). However, after V_nd6_delay
578  * seconds code will transition to PROBE state (so DELAY state
579  * is kinda skipped in most situations).
580  *
581  * Typically, V_nd6_gctimer is bigger than V_nd6_delay, so
582  * we perform the following upon entering STALE state:
583  *
584  * 1) Arm timer to run each V_nd6_delay seconds to make sure that
585  * if packet was transmitted at the start of given interval, we
586  * would be able to switch to PROBE state in V_nd6_delay seconds
587  * as user expects.
588  *
589  * 2) Reschedule timer until original V_nd6_gctimer expires keeping
590  * lle in STALE state (remaining timer value stored in lle_remtime).
591  *
592  * 3) Reschedule timer if packet was transmitted less that V_nd6_delay
593  * seconds ago.
594  *
595  * Returns non-zero value if the entry is still STALE (storing
596  * the next timer interval in @pdelay).
597  *
598  * Returns zero value if original timer expired or we need to switch to
599  * PROBE (store that in @do_switch variable).
600  */
601 static int
602 nd6_is_stale(struct llentry *lle, long *pdelay, int *do_switch)
603 {
604 	int nd_delay, nd_gctimer, r_skip_req;
605 	time_t lle_hittime;
606 	long delay;
607 
608 	*do_switch = 0;
609 	nd_gctimer = V_nd6_gctimer;
610 	nd_delay = V_nd6_delay;
611 
612 	LLE_REQ_LOCK(lle);
613 	r_skip_req = lle->r_skip_req;
614 	lle_hittime = lle->lle_hittime;
615 	LLE_REQ_UNLOCK(lle);
616 
617 	if (r_skip_req > 0) {
618 
619 		/*
620 		 * Nonzero r_skip_req value was set upon entering
621 		 * STALE state. Since value was not changed, no
622 		 * packets were passed using this lle. Ask for
623 		 * timer reschedule and keep STALE state.
624 		 */
625 		delay = (long)(MIN(nd_gctimer, nd_delay));
626 		delay *= hz;
627 		if (lle->lle_remtime > delay)
628 			lle->lle_remtime -= delay;
629 		else {
630 			delay = lle->lle_remtime;
631 			lle->lle_remtime = 0;
632 		}
633 
634 		if (delay == 0) {
635 
636 			/*
637 			 * The original ng6_gctime timeout ended,
638 			 * no more rescheduling.
639 			 */
640 			return (0);
641 		}
642 
643 		*pdelay = delay;
644 		return (1);
645 	}
646 
647 	/*
648 	 * Packet received. Verify timestamp
649 	 */
650 	delay = (long)(time_uptime - lle_hittime);
651 	if (delay < nd_delay) {
652 
653 		/*
654 		 * V_nd6_delay still not passed since the first
655 		 * hit in STALE state.
656 		 * Reshedule timer and return.
657 		 */
658 		*pdelay = (long)(nd_delay - delay) * hz;
659 		return (1);
660 	}
661 
662 	/* Request switching to probe */
663 	*do_switch = 1;
664 	return (0);
665 }
666 
667 
668 /*
669  * Switch @lle state to new state optionally arming timers.
670  *
671  * Set noinline to be dtrace-friendly
672  */
673 __noinline void
674 nd6_llinfo_setstate(struct llentry *lle, int newstate)
675 {
676 	struct ifnet *ifp;
677 	int nd_gctimer, nd_delay;
678 	long delay, remtime;
679 
680 	delay = 0;
681 	remtime = 0;
682 
683 	switch (newstate) {
684 	case ND6_LLINFO_INCOMPLETE:
685 		ifp = lle->lle_tbl->llt_ifp;
686 		delay = (long)ND_IFINFO(ifp)->retrans * hz / 1000;
687 		break;
688 	case ND6_LLINFO_REACHABLE:
689 		if (!ND6_LLINFO_PERMANENT(lle)) {
690 			ifp = lle->lle_tbl->llt_ifp;
691 			delay = (long)ND_IFINFO(ifp)->reachable * hz;
692 		}
693 		break;
694 	case ND6_LLINFO_STALE:
695 
696 		/*
697 		 * Notify fast path that we want to know if any packet
698 		 * is transmitted by setting r_skip_req.
699 		 */
700 		LLE_REQ_LOCK(lle);
701 		lle->r_skip_req = 1;
702 		LLE_REQ_UNLOCK(lle);
703 		nd_delay = V_nd6_delay;
704 		nd_gctimer = V_nd6_gctimer;
705 
706 		delay = (long)(MIN(nd_gctimer, nd_delay)) * hz;
707 		remtime = (long)nd_gctimer * hz - delay;
708 		break;
709 	case ND6_LLINFO_DELAY:
710 		lle->la_asked = 0;
711 		delay = (long)V_nd6_delay * hz;
712 		break;
713 	}
714 
715 	if (delay > 0)
716 		nd6_llinfo_settimer_locked(lle, delay);
717 
718 	lle->lle_remtime = remtime;
719 	lle->ln_state = newstate;
720 }
721 
722 /*
723  * Timer-dependent part of nd state machine.
724  *
725  * Set noinline to be dtrace-friendly
726  */
727 static __noinline void
728 nd6_llinfo_timer(void *arg)
729 {
730 	struct llentry *ln;
731 	struct in6_addr *dst, *pdst, *psrc, src;
732 	struct ifnet *ifp;
733 	struct nd_ifinfo *ndi;
734 	int do_switch, send_ns;
735 	long delay;
736 
737 	KASSERT(arg != NULL, ("%s: arg NULL", __func__));
738 	ln = (struct llentry *)arg;
739 	ifp = lltable_get_ifp(ln->lle_tbl);
740 	CURVNET_SET(ifp->if_vnet);
741 
742 	ND6_RLOCK();
743 	LLE_WLOCK(ln);
744 	if (callout_pending(&ln->lle_timer)) {
745 		/*
746 		 * Here we are a bit odd here in the treatment of
747 		 * active/pending. If the pending bit is set, it got
748 		 * rescheduled before I ran. The active
749 		 * bit we ignore, since if it was stopped
750 		 * in ll_tablefree() and was currently running
751 		 * it would have return 0 so the code would
752 		 * not have deleted it since the callout could
753 		 * not be stopped so we want to go through
754 		 * with the delete here now. If the callout
755 		 * was restarted, the pending bit will be back on and
756 		 * we just want to bail since the callout_reset would
757 		 * return 1 and our reference would have been removed
758 		 * by nd6_llinfo_settimer_locked above since canceled
759 		 * would have been 1.
760 		 */
761 		LLE_WUNLOCK(ln);
762 		ND6_RUNLOCK();
763 		CURVNET_RESTORE();
764 		return;
765 	}
766 	ndi = ND_IFINFO(ifp);
767 	send_ns = 0;
768 	dst = &ln->r_l3addr.addr6;
769 	pdst = dst;
770 
771 	if (ln->ln_ntick > 0) {
772 		if (ln->ln_ntick > INT_MAX) {
773 			ln->ln_ntick -= INT_MAX;
774 			nd6_llinfo_settimer_locked(ln, INT_MAX);
775 		} else {
776 			ln->ln_ntick = 0;
777 			nd6_llinfo_settimer_locked(ln, ln->ln_ntick);
778 		}
779 		goto done;
780 	}
781 
782 	if (ln->la_flags & LLE_STATIC) {
783 		goto done;
784 	}
785 
786 	if (ln->la_flags & LLE_DELETED) {
787 		nd6_free(&ln, 0);
788 		goto done;
789 	}
790 
791 	switch (ln->ln_state) {
792 	case ND6_LLINFO_INCOMPLETE:
793 		if (ln->la_asked < V_nd6_mmaxtries) {
794 			ln->la_asked++;
795 			send_ns = 1;
796 			/* Send NS to multicast address */
797 			pdst = NULL;
798 		} else {
799 			struct mbuf *m = ln->la_hold;
800 			if (m) {
801 				struct mbuf *m0;
802 
803 				/*
804 				 * assuming every packet in la_hold has the
805 				 * same IP header.  Send error after unlock.
806 				 */
807 				m0 = m->m_nextpkt;
808 				m->m_nextpkt = NULL;
809 				ln->la_hold = m0;
810 				clear_llinfo_pqueue(ln);
811 			}
812 			nd6_free(&ln, 0);
813 			if (m != NULL)
814 				icmp6_error2(m, ICMP6_DST_UNREACH,
815 				    ICMP6_DST_UNREACH_ADDR, 0, ifp);
816 		}
817 		break;
818 	case ND6_LLINFO_REACHABLE:
819 		if (!ND6_LLINFO_PERMANENT(ln))
820 			nd6_llinfo_setstate(ln, ND6_LLINFO_STALE);
821 		break;
822 
823 	case ND6_LLINFO_STALE:
824 		if (nd6_is_stale(ln, &delay, &do_switch) != 0) {
825 
826 			/*
827 			 * No packet has used this entry and GC timeout
828 			 * has not been passed. Reshedule timer and
829 			 * return.
830 			 */
831 			nd6_llinfo_settimer_locked(ln, delay);
832 			break;
833 		}
834 
835 		if (do_switch == 0) {
836 
837 			/*
838 			 * GC timer has ended and entry hasn't been used.
839 			 * Run Garbage collector (RFC 4861, 5.3)
840 			 */
841 			if (!ND6_LLINFO_PERMANENT(ln))
842 				nd6_free(&ln, 1);
843 			break;
844 		}
845 
846 		/* Entry has been used AND delay timer has ended. */
847 
848 		/* FALLTHROUGH */
849 
850 	case ND6_LLINFO_DELAY:
851 		if (ndi && (ndi->flags & ND6_IFF_PERFORMNUD) != 0) {
852 			/* We need NUD */
853 			ln->la_asked = 1;
854 			nd6_llinfo_setstate(ln, ND6_LLINFO_PROBE);
855 			send_ns = 1;
856 		} else
857 			nd6_llinfo_setstate(ln, ND6_LLINFO_STALE); /* XXX */
858 		break;
859 	case ND6_LLINFO_PROBE:
860 		if (ln->la_asked < V_nd6_umaxtries) {
861 			ln->la_asked++;
862 			send_ns = 1;
863 		} else {
864 			nd6_free(&ln, 0);
865 		}
866 		break;
867 	default:
868 		panic("%s: paths in a dark night can be confusing: %d",
869 		    __func__, ln->ln_state);
870 	}
871 done:
872 	if (ln != NULL)
873 		ND6_RUNLOCK();
874 	if (send_ns != 0) {
875 		nd6_llinfo_settimer_locked(ln, (long)ndi->retrans * hz / 1000);
876 		psrc = nd6_llinfo_get_holdsrc(ln, &src);
877 		LLE_FREE_LOCKED(ln);
878 		ln = NULL;
879 		nd6_ns_output(ifp, psrc, pdst, dst, NULL);
880 	}
881 
882 	if (ln != NULL)
883 		LLE_FREE_LOCKED(ln);
884 	CURVNET_RESTORE();
885 }
886 
887 
888 /*
889  * ND6 timer routine to expire default route list and prefix list
890  */
891 void
892 nd6_timer(void *arg)
893 {
894 	CURVNET_SET((struct vnet *) arg);
895 	struct nd_drhead drq;
896 	struct nd_prhead prl;
897 	struct nd_defrouter *dr, *ndr;
898 	struct nd_prefix *pr, *npr;
899 	struct in6_ifaddr *ia6, *nia6;
900 	uint64_t genid;
901 
902 	TAILQ_INIT(&drq);
903 	LIST_INIT(&prl);
904 
905 	ND6_WLOCK();
906 	TAILQ_FOREACH_SAFE(dr, &V_nd_defrouter, dr_entry, ndr)
907 		if (dr->expire && dr->expire < time_uptime)
908 			defrouter_unlink(dr, &drq);
909 	ND6_WUNLOCK();
910 
911 	while ((dr = TAILQ_FIRST(&drq)) != NULL) {
912 		TAILQ_REMOVE(&drq, dr, dr_entry);
913 		defrouter_del(dr);
914 	}
915 
916 	/*
917 	 * expire interface addresses.
918 	 * in the past the loop was inside prefix expiry processing.
919 	 * However, from a stricter speci-confrmance standpoint, we should
920 	 * rather separate address lifetimes and prefix lifetimes.
921 	 *
922 	 * XXXRW: in6_ifaddrhead locking.
923 	 */
924   addrloop:
925 	CK_STAILQ_FOREACH_SAFE(ia6, &V_in6_ifaddrhead, ia_link, nia6) {
926 		/* check address lifetime */
927 		if (IFA6_IS_INVALID(ia6)) {
928 			int regen = 0;
929 
930 			/*
931 			 * If the expiring address is temporary, try
932 			 * regenerating a new one.  This would be useful when
933 			 * we suspended a laptop PC, then turned it on after a
934 			 * period that could invalidate all temporary
935 			 * addresses.  Although we may have to restart the
936 			 * loop (see below), it must be after purging the
937 			 * address.  Otherwise, we'd see an infinite loop of
938 			 * regeneration.
939 			 */
940 			if (V_ip6_use_tempaddr &&
941 			    (ia6->ia6_flags & IN6_IFF_TEMPORARY) != 0) {
942 				if (regen_tmpaddr(ia6) == 0)
943 					regen = 1;
944 			}
945 
946 			in6_purgeaddr(&ia6->ia_ifa);
947 
948 			if (regen)
949 				goto addrloop; /* XXX: see below */
950 		} else if (IFA6_IS_DEPRECATED(ia6)) {
951 			int oldflags = ia6->ia6_flags;
952 
953 			ia6->ia6_flags |= IN6_IFF_DEPRECATED;
954 
955 			/*
956 			 * If a temporary address has just become deprecated,
957 			 * regenerate a new one if possible.
958 			 */
959 			if (V_ip6_use_tempaddr &&
960 			    (ia6->ia6_flags & IN6_IFF_TEMPORARY) != 0 &&
961 			    (oldflags & IN6_IFF_DEPRECATED) == 0) {
962 
963 				if (regen_tmpaddr(ia6) == 0) {
964 					/*
965 					 * A new temporary address is
966 					 * generated.
967 					 * XXX: this means the address chain
968 					 * has changed while we are still in
969 					 * the loop.  Although the change
970 					 * would not cause disaster (because
971 					 * it's not a deletion, but an
972 					 * addition,) we'd rather restart the
973 					 * loop just for safety.  Or does this
974 					 * significantly reduce performance??
975 					 */
976 					goto addrloop;
977 				}
978 			}
979 		} else if ((ia6->ia6_flags & IN6_IFF_TENTATIVE) != 0) {
980 			/*
981 			 * Schedule DAD for a tentative address.  This happens
982 			 * if the interface was down or not running
983 			 * when the address was configured.
984 			 */
985 			int delay;
986 
987 			delay = arc4random() %
988 			    (MAX_RTR_SOLICITATION_DELAY * hz);
989 			nd6_dad_start((struct ifaddr *)ia6, delay);
990 		} else {
991 			/*
992 			 * Check status of the interface.  If it is down,
993 			 * mark the address as tentative for future DAD.
994 			 */
995 			if ((ia6->ia_ifp->if_flags & IFF_UP) == 0 ||
996 			    (ia6->ia_ifp->if_drv_flags & IFF_DRV_RUNNING)
997 				== 0 ||
998 			    (ND_IFINFO(ia6->ia_ifp)->flags &
999 				ND6_IFF_IFDISABLED) != 0) {
1000 				ia6->ia6_flags &= ~IN6_IFF_DUPLICATED;
1001 				ia6->ia6_flags |= IN6_IFF_TENTATIVE;
1002 			}
1003 			/*
1004 			 * A new RA might have made a deprecated address
1005 			 * preferred.
1006 			 */
1007 			ia6->ia6_flags &= ~IN6_IFF_DEPRECATED;
1008 		}
1009 	}
1010 
1011 	ND6_WLOCK();
1012 restart:
1013 	LIST_FOREACH_SAFE(pr, &V_nd_prefix, ndpr_entry, npr) {
1014 		/*
1015 		 * Expire prefixes. Since the pltime is only used for
1016 		 * autoconfigured addresses, pltime processing for prefixes is
1017 		 * not necessary.
1018 		 *
1019 		 * Only unlink after all derived addresses have expired. This
1020 		 * may not occur until two hours after the prefix has expired
1021 		 * per RFC 4862. If the prefix expires before its derived
1022 		 * addresses, mark it off-link. This will be done automatically
1023 		 * after unlinking if no address references remain.
1024 		 */
1025 		if (pr->ndpr_vltime == ND6_INFINITE_LIFETIME ||
1026 		    time_uptime - pr->ndpr_lastupdate <= pr->ndpr_vltime)
1027 			continue;
1028 
1029 		if (pr->ndpr_addrcnt == 0) {
1030 			nd6_prefix_unlink(pr, &prl);
1031 			continue;
1032 		}
1033 		if ((pr->ndpr_stateflags & NDPRF_ONLINK) != 0) {
1034 			genid = V_nd6_list_genid;
1035 			nd6_prefix_ref(pr);
1036 			ND6_WUNLOCK();
1037 			ND6_ONLINK_LOCK();
1038 			(void)nd6_prefix_offlink(pr);
1039 			ND6_ONLINK_UNLOCK();
1040 			ND6_WLOCK();
1041 			nd6_prefix_rele(pr);
1042 			if (genid != V_nd6_list_genid)
1043 				goto restart;
1044 		}
1045 	}
1046 	ND6_WUNLOCK();
1047 
1048 	while ((pr = LIST_FIRST(&prl)) != NULL) {
1049 		LIST_REMOVE(pr, ndpr_entry);
1050 		nd6_prefix_del(pr);
1051 	}
1052 
1053 	callout_reset(&V_nd6_timer_ch, V_nd6_prune * hz,
1054 	    nd6_timer, curvnet);
1055 
1056 	CURVNET_RESTORE();
1057 }
1058 
1059 /*
1060  * ia6 - deprecated/invalidated temporary address
1061  */
1062 static int
1063 regen_tmpaddr(struct in6_ifaddr *ia6)
1064 {
1065 	struct ifaddr *ifa;
1066 	struct ifnet *ifp;
1067 	struct in6_ifaddr *public_ifa6 = NULL;
1068 
1069 	ifp = ia6->ia_ifa.ifa_ifp;
1070 	IF_ADDR_RLOCK(ifp);
1071 	CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
1072 		struct in6_ifaddr *it6;
1073 
1074 		if (ifa->ifa_addr->sa_family != AF_INET6)
1075 			continue;
1076 
1077 		it6 = (struct in6_ifaddr *)ifa;
1078 
1079 		/* ignore no autoconf addresses. */
1080 		if ((it6->ia6_flags & IN6_IFF_AUTOCONF) == 0)
1081 			continue;
1082 
1083 		/* ignore autoconf addresses with different prefixes. */
1084 		if (it6->ia6_ndpr == NULL || it6->ia6_ndpr != ia6->ia6_ndpr)
1085 			continue;
1086 
1087 		/*
1088 		 * Now we are looking at an autoconf address with the same
1089 		 * prefix as ours.  If the address is temporary and is still
1090 		 * preferred, do not create another one.  It would be rare, but
1091 		 * could happen, for example, when we resume a laptop PC after
1092 		 * a long period.
1093 		 */
1094 		if ((it6->ia6_flags & IN6_IFF_TEMPORARY) != 0 &&
1095 		    !IFA6_IS_DEPRECATED(it6)) {
1096 			public_ifa6 = NULL;
1097 			break;
1098 		}
1099 
1100 		/*
1101 		 * This is a public autoconf address that has the same prefix
1102 		 * as ours.  If it is preferred, keep it.  We can't break the
1103 		 * loop here, because there may be a still-preferred temporary
1104 		 * address with the prefix.
1105 		 */
1106 		if (!IFA6_IS_DEPRECATED(it6))
1107 			public_ifa6 = it6;
1108 	}
1109 	if (public_ifa6 != NULL)
1110 		ifa_ref(&public_ifa6->ia_ifa);
1111 	IF_ADDR_RUNLOCK(ifp);
1112 
1113 	if (public_ifa6 != NULL) {
1114 		int e;
1115 
1116 		if ((e = in6_tmpifadd(public_ifa6, 0, 0)) != 0) {
1117 			ifa_free(&public_ifa6->ia_ifa);
1118 			log(LOG_NOTICE, "regen_tmpaddr: failed to create a new"
1119 			    " tmp addr,errno=%d\n", e);
1120 			return (-1);
1121 		}
1122 		ifa_free(&public_ifa6->ia_ifa);
1123 		return (0);
1124 	}
1125 
1126 	return (-1);
1127 }
1128 
1129 /*
1130  * Remove prefix and default router list entries corresponding to ifp. Neighbor
1131  * cache entries are freed in in6_domifdetach().
1132  */
1133 void
1134 nd6_purge(struct ifnet *ifp)
1135 {
1136 	struct nd_drhead drq;
1137 	struct nd_prhead prl;
1138 	struct nd_defrouter *dr, *ndr;
1139 	struct nd_prefix *pr, *npr;
1140 
1141 	TAILQ_INIT(&drq);
1142 	LIST_INIT(&prl);
1143 
1144 	/*
1145 	 * Nuke default router list entries toward ifp.
1146 	 * We defer removal of default router list entries that is installed
1147 	 * in the routing table, in order to keep additional side effects as
1148 	 * small as possible.
1149 	 */
1150 	ND6_WLOCK();
1151 	TAILQ_FOREACH_SAFE(dr, &V_nd_defrouter, dr_entry, ndr) {
1152 		if (dr->installed)
1153 			continue;
1154 		if (dr->ifp == ifp)
1155 			defrouter_unlink(dr, &drq);
1156 	}
1157 	TAILQ_FOREACH_SAFE(dr, &V_nd_defrouter, dr_entry, ndr) {
1158 		if (!dr->installed)
1159 			continue;
1160 		if (dr->ifp == ifp)
1161 			defrouter_unlink(dr, &drq);
1162 	}
1163 
1164 	/*
1165 	 * Remove prefixes on ifp. We should have already removed addresses on
1166 	 * this interface, so no addresses should be referencing these prefixes.
1167 	 */
1168 	LIST_FOREACH_SAFE(pr, &V_nd_prefix, ndpr_entry, npr) {
1169 		if (pr->ndpr_ifp == ifp)
1170 			nd6_prefix_unlink(pr, &prl);
1171 	}
1172 	ND6_WUNLOCK();
1173 
1174 	/* Delete the unlinked router and prefix objects. */
1175 	while ((dr = TAILQ_FIRST(&drq)) != NULL) {
1176 		TAILQ_REMOVE(&drq, dr, dr_entry);
1177 		defrouter_del(dr);
1178 	}
1179 	while ((pr = LIST_FIRST(&prl)) != NULL) {
1180 		LIST_REMOVE(pr, ndpr_entry);
1181 		nd6_prefix_del(pr);
1182 	}
1183 
1184 	/* cancel default outgoing interface setting */
1185 	if (V_nd6_defifindex == ifp->if_index)
1186 		nd6_setdefaultiface(0);
1187 
1188 	if (ND_IFINFO(ifp)->flags & ND6_IFF_ACCEPT_RTADV) {
1189 		/* Refresh default router list. */
1190 		defrouter_select_fib(ifp->if_fib);
1191 	}
1192 }
1193 
1194 /*
1195  * the caller acquires and releases the lock on the lltbls
1196  * Returns the llentry locked
1197  */
1198 struct llentry *
1199 nd6_lookup(const struct in6_addr *addr6, int flags, struct ifnet *ifp)
1200 {
1201 	struct sockaddr_in6 sin6;
1202 	struct llentry *ln;
1203 
1204 	bzero(&sin6, sizeof(sin6));
1205 	sin6.sin6_len = sizeof(struct sockaddr_in6);
1206 	sin6.sin6_family = AF_INET6;
1207 	sin6.sin6_addr = *addr6;
1208 
1209 	IF_AFDATA_LOCK_ASSERT(ifp);
1210 
1211 	ln = lla_lookup(LLTABLE6(ifp), flags, (struct sockaddr *)&sin6);
1212 
1213 	return (ln);
1214 }
1215 
1216 struct llentry *
1217 nd6_alloc(const struct in6_addr *addr6, int flags, struct ifnet *ifp)
1218 {
1219 	struct sockaddr_in6 sin6;
1220 	struct llentry *ln;
1221 
1222 	bzero(&sin6, sizeof(sin6));
1223 	sin6.sin6_len = sizeof(struct sockaddr_in6);
1224 	sin6.sin6_family = AF_INET6;
1225 	sin6.sin6_addr = *addr6;
1226 
1227 	ln = lltable_alloc_entry(LLTABLE6(ifp), 0, (struct sockaddr *)&sin6);
1228 	if (ln != NULL)
1229 		ln->ln_state = ND6_LLINFO_NOSTATE;
1230 
1231 	return (ln);
1232 }
1233 
1234 /*
1235  * Test whether a given IPv6 address is a neighbor or not, ignoring
1236  * the actual neighbor cache.  The neighbor cache is ignored in order
1237  * to not reenter the routing code from within itself.
1238  */
1239 static int
1240 nd6_is_new_addr_neighbor(const struct sockaddr_in6 *addr, struct ifnet *ifp)
1241 {
1242 	struct nd_prefix *pr;
1243 	struct ifaddr *ifa;
1244 	struct rt_addrinfo info;
1245 	struct sockaddr_in6 rt_key;
1246 	const struct sockaddr *dst6;
1247 	uint64_t genid;
1248 	int error, fibnum;
1249 
1250 	/*
1251 	 * A link-local address is always a neighbor.
1252 	 * XXX: a link does not necessarily specify a single interface.
1253 	 */
1254 	if (IN6_IS_ADDR_LINKLOCAL(&addr->sin6_addr)) {
1255 		struct sockaddr_in6 sin6_copy;
1256 		u_int32_t zone;
1257 
1258 		/*
1259 		 * We need sin6_copy since sa6_recoverscope() may modify the
1260 		 * content (XXX).
1261 		 */
1262 		sin6_copy = *addr;
1263 		if (sa6_recoverscope(&sin6_copy))
1264 			return (0); /* XXX: should be impossible */
1265 		if (in6_setscope(&sin6_copy.sin6_addr, ifp, &zone))
1266 			return (0);
1267 		if (sin6_copy.sin6_scope_id == zone)
1268 			return (1);
1269 		else
1270 			return (0);
1271 	}
1272 
1273 	bzero(&rt_key, sizeof(rt_key));
1274 	bzero(&info, sizeof(info));
1275 	info.rti_info[RTAX_DST] = (struct sockaddr *)&rt_key;
1276 
1277 	/*
1278 	 * If the address matches one of our addresses,
1279 	 * it should be a neighbor.
1280 	 * If the address matches one of our on-link prefixes, it should be a
1281 	 * neighbor.
1282 	 */
1283 	ND6_RLOCK();
1284 restart:
1285 	LIST_FOREACH(pr, &V_nd_prefix, ndpr_entry) {
1286 		if (pr->ndpr_ifp != ifp)
1287 			continue;
1288 
1289 		if ((pr->ndpr_stateflags & NDPRF_ONLINK) == 0) {
1290 			dst6 = (const struct sockaddr *)&pr->ndpr_prefix;
1291 
1292 			/*
1293 			 * We only need to check all FIBs if add_addr_allfibs
1294 			 * is unset. If set, checking any FIB will suffice.
1295 			 */
1296 			fibnum = V_rt_add_addr_allfibs ? rt_numfibs - 1 : 0;
1297 			for (; fibnum < rt_numfibs; fibnum++) {
1298 				genid = V_nd6_list_genid;
1299 				ND6_RUNLOCK();
1300 
1301 				/*
1302 				 * Restore length field before
1303 				 * retrying lookup
1304 				 */
1305 				rt_key.sin6_len = sizeof(rt_key);
1306 				error = rib_lookup_info(fibnum, dst6, 0, 0,
1307 						        &info);
1308 
1309 				ND6_RLOCK();
1310 				if (genid != V_nd6_list_genid)
1311 					goto restart;
1312 				if (error == 0)
1313 					break;
1314 			}
1315 			if (error != 0)
1316 				continue;
1317 
1318 			/*
1319 			 * This is the case where multiple interfaces
1320 			 * have the same prefix, but only one is installed
1321 			 * into the routing table and that prefix entry
1322 			 * is not the one being examined here. In the case
1323 			 * where RADIX_MPATH is enabled, multiple route
1324 			 * entries (of the same rt_key value) will be
1325 			 * installed because the interface addresses all
1326 			 * differ.
1327 			 */
1328 			if (!IN6_ARE_ADDR_EQUAL(&pr->ndpr_prefix.sin6_addr,
1329 			    &rt_key.sin6_addr))
1330 				continue;
1331 		}
1332 
1333 		if (IN6_ARE_MASKED_ADDR_EQUAL(&pr->ndpr_prefix.sin6_addr,
1334 		    &addr->sin6_addr, &pr->ndpr_mask)) {
1335 			ND6_RUNLOCK();
1336 			return (1);
1337 		}
1338 	}
1339 	ND6_RUNLOCK();
1340 
1341 	/*
1342 	 * If the address is assigned on the node of the other side of
1343 	 * a p2p interface, the address should be a neighbor.
1344 	 */
1345 	if (ifp->if_flags & IFF_POINTOPOINT) {
1346 		IF_ADDR_RLOCK(ifp);
1347 		CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
1348 			if (ifa->ifa_addr->sa_family != addr->sin6_family)
1349 				continue;
1350 			if (ifa->ifa_dstaddr != NULL &&
1351 			    sa_equal(addr, ifa->ifa_dstaddr)) {
1352 				IF_ADDR_RUNLOCK(ifp);
1353 				return 1;
1354 			}
1355 		}
1356 		IF_ADDR_RUNLOCK(ifp);
1357 	}
1358 
1359 	/*
1360 	 * If the default router list is empty, all addresses are regarded
1361 	 * as on-link, and thus, as a neighbor.
1362 	 */
1363 	if (ND_IFINFO(ifp)->flags & ND6_IFF_ACCEPT_RTADV &&
1364 	    TAILQ_EMPTY(&V_nd_defrouter) &&
1365 	    V_nd6_defifindex == ifp->if_index) {
1366 		return (1);
1367 	}
1368 
1369 	return (0);
1370 }
1371 
1372 
1373 /*
1374  * Detect if a given IPv6 address identifies a neighbor on a given link.
1375  * XXX: should take care of the destination of a p2p link?
1376  */
1377 int
1378 nd6_is_addr_neighbor(const struct sockaddr_in6 *addr, struct ifnet *ifp)
1379 {
1380 	struct llentry *lle;
1381 	int rc = 0;
1382 
1383 	IF_AFDATA_UNLOCK_ASSERT(ifp);
1384 	if (nd6_is_new_addr_neighbor(addr, ifp))
1385 		return (1);
1386 
1387 	/*
1388 	 * Even if the address matches none of our addresses, it might be
1389 	 * in the neighbor cache.
1390 	 */
1391 	IF_AFDATA_RLOCK(ifp);
1392 	if ((lle = nd6_lookup(&addr->sin6_addr, 0, ifp)) != NULL) {
1393 		LLE_RUNLOCK(lle);
1394 		rc = 1;
1395 	}
1396 	IF_AFDATA_RUNLOCK(ifp);
1397 	return (rc);
1398 }
1399 
1400 /*
1401  * Free an nd6 llinfo entry.
1402  * Since the function would cause significant changes in the kernel, DO NOT
1403  * make it global, unless you have a strong reason for the change, and are sure
1404  * that the change is safe.
1405  *
1406  * Set noinline to be dtrace-friendly
1407  */
1408 static __noinline void
1409 nd6_free(struct llentry **lnp, int gc)
1410 {
1411 	struct ifnet *ifp;
1412 	struct llentry *ln;
1413 	struct nd_defrouter *dr;
1414 
1415 	ln = *lnp;
1416 	*lnp = NULL;
1417 
1418 	LLE_WLOCK_ASSERT(ln);
1419 	ND6_RLOCK_ASSERT();
1420 
1421 	ifp = lltable_get_ifp(ln->lle_tbl);
1422 	if ((ND_IFINFO(ifp)->flags & ND6_IFF_ACCEPT_RTADV) != 0)
1423 		dr = defrouter_lookup_locked(&ln->r_l3addr.addr6, ifp);
1424 	else
1425 		dr = NULL;
1426 	ND6_RUNLOCK();
1427 
1428 	if ((ln->la_flags & LLE_DELETED) == 0)
1429 		EVENTHANDLER_INVOKE(lle_event, ln, LLENTRY_EXPIRED);
1430 
1431 	/*
1432 	 * we used to have pfctlinput(PRC_HOSTDEAD) here.
1433 	 * even though it is not harmful, it was not really necessary.
1434 	 */
1435 
1436 	/* cancel timer */
1437 	nd6_llinfo_settimer_locked(ln, -1);
1438 
1439 	if (ND_IFINFO(ifp)->flags & ND6_IFF_ACCEPT_RTADV) {
1440 		if (dr != NULL && dr->expire &&
1441 		    ln->ln_state == ND6_LLINFO_STALE && gc) {
1442 			/*
1443 			 * If the reason for the deletion is just garbage
1444 			 * collection, and the neighbor is an active default
1445 			 * router, do not delete it.  Instead, reset the GC
1446 			 * timer using the router's lifetime.
1447 			 * Simply deleting the entry would affect default
1448 			 * router selection, which is not necessarily a good
1449 			 * thing, especially when we're using router preference
1450 			 * values.
1451 			 * XXX: the check for ln_state would be redundant,
1452 			 *      but we intentionally keep it just in case.
1453 			 */
1454 			if (dr->expire > time_uptime)
1455 				nd6_llinfo_settimer_locked(ln,
1456 				    (dr->expire - time_uptime) * hz);
1457 			else
1458 				nd6_llinfo_settimer_locked(ln,
1459 				    (long)V_nd6_gctimer * hz);
1460 
1461 			LLE_REMREF(ln);
1462 			LLE_WUNLOCK(ln);
1463 			defrouter_rele(dr);
1464 			return;
1465 		}
1466 
1467 		if (dr) {
1468 			/*
1469 			 * Unreachablity of a router might affect the default
1470 			 * router selection and on-link detection of advertised
1471 			 * prefixes.
1472 			 */
1473 
1474 			/*
1475 			 * Temporarily fake the state to choose a new default
1476 			 * router and to perform on-link determination of
1477 			 * prefixes correctly.
1478 			 * Below the state will be set correctly,
1479 			 * or the entry itself will be deleted.
1480 			 */
1481 			ln->ln_state = ND6_LLINFO_INCOMPLETE;
1482 		}
1483 
1484 		if (ln->ln_router || dr) {
1485 
1486 			/*
1487 			 * We need to unlock to avoid a LOR with rt6_flush() with the
1488 			 * rnh and for the calls to pfxlist_onlink_check() and
1489 			 * defrouter_select_fib() in the block further down for calls
1490 			 * into nd6_lookup().  We still hold a ref.
1491 			 */
1492 			LLE_WUNLOCK(ln);
1493 
1494 			/*
1495 			 * rt6_flush must be called whether or not the neighbor
1496 			 * is in the Default Router List.
1497 			 * See a corresponding comment in nd6_na_input().
1498 			 */
1499 			rt6_flush(&ln->r_l3addr.addr6, ifp);
1500 		}
1501 
1502 		if (dr) {
1503 			/*
1504 			 * Since defrouter_select_fib() does not affect the
1505 			 * on-link determination and MIP6 needs the check
1506 			 * before the default router selection, we perform
1507 			 * the check now.
1508 			 */
1509 			pfxlist_onlink_check();
1510 
1511 			/*
1512 			 * Refresh default router list.
1513 			 */
1514 			defrouter_select_fib(dr->ifp->if_fib);
1515 		}
1516 
1517 		/*
1518 		 * If this entry was added by an on-link redirect, remove the
1519 		 * corresponding host route.
1520 		 */
1521 		if (ln->la_flags & LLE_REDIRECT)
1522 			nd6_free_redirect(ln);
1523 
1524 		if (ln->ln_router || dr)
1525 			LLE_WLOCK(ln);
1526 	}
1527 
1528 	/*
1529 	 * Save to unlock. We still hold an extra reference and will not
1530 	 * free(9) in llentry_free() if someone else holds one as well.
1531 	 */
1532 	LLE_WUNLOCK(ln);
1533 	IF_AFDATA_LOCK(ifp);
1534 	LLE_WLOCK(ln);
1535 	/* Guard against race with other llentry_free(). */
1536 	if (ln->la_flags & LLE_LINKED) {
1537 		/* Remove callout reference */
1538 		LLE_REMREF(ln);
1539 		lltable_unlink_entry(ln->lle_tbl, ln);
1540 	}
1541 	IF_AFDATA_UNLOCK(ifp);
1542 
1543 	llentry_free(ln);
1544 	if (dr != NULL)
1545 		defrouter_rele(dr);
1546 }
1547 
1548 static int
1549 nd6_isdynrte(const struct rtentry *rt, void *xap)
1550 {
1551 
1552 	if (rt->rt_flags == (RTF_UP | RTF_HOST | RTF_DYNAMIC))
1553 		return (1);
1554 
1555 	return (0);
1556 }
1557 /*
1558  * Remove the rtentry for the given llentry,
1559  * both of which were installed by a redirect.
1560  */
1561 static void
1562 nd6_free_redirect(const struct llentry *ln)
1563 {
1564 	int fibnum;
1565 	struct sockaddr_in6 sin6;
1566 	struct rt_addrinfo info;
1567 
1568 	lltable_fill_sa_entry(ln, (struct sockaddr *)&sin6);
1569 	memset(&info, 0, sizeof(info));
1570 	info.rti_info[RTAX_DST] = (struct sockaddr *)&sin6;
1571 	info.rti_filter = nd6_isdynrte;
1572 
1573 	for (fibnum = 0; fibnum < rt_numfibs; fibnum++)
1574 		rtrequest1_fib(RTM_DELETE, &info, NULL, fibnum);
1575 }
1576 
1577 /*
1578  * Rejuvenate this function for routing operations related
1579  * processing.
1580  */
1581 void
1582 nd6_rtrequest(int req, struct rtentry *rt, struct rt_addrinfo *info)
1583 {
1584 	struct sockaddr_in6 *gateway;
1585 	struct nd_defrouter *dr;
1586 	struct ifnet *ifp;
1587 
1588 	gateway = (struct sockaddr_in6 *)rt->rt_gateway;
1589 	ifp = rt->rt_ifp;
1590 
1591 	switch (req) {
1592 	case RTM_ADD:
1593 		break;
1594 
1595 	case RTM_DELETE:
1596 		if (!ifp)
1597 			return;
1598 		/*
1599 		 * Only indirect routes are interesting.
1600 		 */
1601 		if ((rt->rt_flags & RTF_GATEWAY) == 0)
1602 			return;
1603 		/*
1604 		 * check for default route
1605 		 */
1606 		if (IN6_ARE_ADDR_EQUAL(&in6addr_any,
1607 		    &SIN6(rt_key(rt))->sin6_addr)) {
1608 			dr = defrouter_lookup(&gateway->sin6_addr, ifp);
1609 			if (dr != NULL) {
1610 				dr->installed = 0;
1611 				defrouter_rele(dr);
1612 			}
1613 		}
1614 		break;
1615 	}
1616 }
1617 
1618 
1619 int
1620 nd6_ioctl(u_long cmd, caddr_t data, struct ifnet *ifp)
1621 {
1622 	struct in6_ndireq *ndi = (struct in6_ndireq *)data;
1623 	struct in6_nbrinfo *nbi = (struct in6_nbrinfo *)data;
1624 	struct in6_ndifreq *ndif = (struct in6_ndifreq *)data;
1625 	int error = 0;
1626 
1627 	if (ifp->if_afdata[AF_INET6] == NULL)
1628 		return (EPFNOSUPPORT);
1629 	switch (cmd) {
1630 	case OSIOCGIFINFO_IN6:
1631 #define ND	ndi->ndi
1632 		/* XXX: old ndp(8) assumes a positive value for linkmtu. */
1633 		bzero(&ND, sizeof(ND));
1634 		ND.linkmtu = IN6_LINKMTU(ifp);
1635 		ND.maxmtu = ND_IFINFO(ifp)->maxmtu;
1636 		ND.basereachable = ND_IFINFO(ifp)->basereachable;
1637 		ND.reachable = ND_IFINFO(ifp)->reachable;
1638 		ND.retrans = ND_IFINFO(ifp)->retrans;
1639 		ND.flags = ND_IFINFO(ifp)->flags;
1640 		ND.recalctm = ND_IFINFO(ifp)->recalctm;
1641 		ND.chlim = ND_IFINFO(ifp)->chlim;
1642 		break;
1643 	case SIOCGIFINFO_IN6:
1644 		ND = *ND_IFINFO(ifp);
1645 		break;
1646 	case SIOCSIFINFO_IN6:
1647 		/*
1648 		 * used to change host variables from userland.
1649 		 * intended for a use on router to reflect RA configurations.
1650 		 */
1651 		/* 0 means 'unspecified' */
1652 		if (ND.linkmtu != 0) {
1653 			if (ND.linkmtu < IPV6_MMTU ||
1654 			    ND.linkmtu > IN6_LINKMTU(ifp)) {
1655 				error = EINVAL;
1656 				break;
1657 			}
1658 			ND_IFINFO(ifp)->linkmtu = ND.linkmtu;
1659 		}
1660 
1661 		if (ND.basereachable != 0) {
1662 			int obasereachable = ND_IFINFO(ifp)->basereachable;
1663 
1664 			ND_IFINFO(ifp)->basereachable = ND.basereachable;
1665 			if (ND.basereachable != obasereachable)
1666 				ND_IFINFO(ifp)->reachable =
1667 				    ND_COMPUTE_RTIME(ND.basereachable);
1668 		}
1669 		if (ND.retrans != 0)
1670 			ND_IFINFO(ifp)->retrans = ND.retrans;
1671 		if (ND.chlim != 0)
1672 			ND_IFINFO(ifp)->chlim = ND.chlim;
1673 		/* FALLTHROUGH */
1674 	case SIOCSIFINFO_FLAGS:
1675 	{
1676 		struct ifaddr *ifa;
1677 		struct in6_ifaddr *ia;
1678 
1679 		if ((ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED) &&
1680 		    !(ND.flags & ND6_IFF_IFDISABLED)) {
1681 			/* ifdisabled 1->0 transision */
1682 
1683 			/*
1684 			 * If the interface is marked as ND6_IFF_IFDISABLED and
1685 			 * has an link-local address with IN6_IFF_DUPLICATED,
1686 			 * do not clear ND6_IFF_IFDISABLED.
1687 			 * See RFC 4862, Section 5.4.5.
1688 			 */
1689 			IF_ADDR_RLOCK(ifp);
1690 			CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
1691 				if (ifa->ifa_addr->sa_family != AF_INET6)
1692 					continue;
1693 				ia = (struct in6_ifaddr *)ifa;
1694 				if ((ia->ia6_flags & IN6_IFF_DUPLICATED) &&
1695 				    IN6_IS_ADDR_LINKLOCAL(IA6_IN6(ia)))
1696 					break;
1697 			}
1698 			IF_ADDR_RUNLOCK(ifp);
1699 
1700 			if (ifa != NULL) {
1701 				/* LLA is duplicated. */
1702 				ND.flags |= ND6_IFF_IFDISABLED;
1703 				log(LOG_ERR, "Cannot enable an interface"
1704 				    " with a link-local address marked"
1705 				    " duplicate.\n");
1706 			} else {
1707 				ND_IFINFO(ifp)->flags &= ~ND6_IFF_IFDISABLED;
1708 				if (ifp->if_flags & IFF_UP)
1709 					in6_if_up(ifp);
1710 			}
1711 		} else if (!(ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED) &&
1712 			    (ND.flags & ND6_IFF_IFDISABLED)) {
1713 			/* ifdisabled 0->1 transision */
1714 			/* Mark all IPv6 address as tentative. */
1715 
1716 			ND_IFINFO(ifp)->flags |= ND6_IFF_IFDISABLED;
1717 			if (V_ip6_dad_count > 0 &&
1718 			    (ND_IFINFO(ifp)->flags & ND6_IFF_NO_DAD) == 0) {
1719 				IF_ADDR_RLOCK(ifp);
1720 				CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead,
1721 				    ifa_link) {
1722 					if (ifa->ifa_addr->sa_family !=
1723 					    AF_INET6)
1724 						continue;
1725 					ia = (struct in6_ifaddr *)ifa;
1726 					ia->ia6_flags |= IN6_IFF_TENTATIVE;
1727 				}
1728 				IF_ADDR_RUNLOCK(ifp);
1729 			}
1730 		}
1731 
1732 		if (ND.flags & ND6_IFF_AUTO_LINKLOCAL) {
1733 			if (!(ND_IFINFO(ifp)->flags & ND6_IFF_AUTO_LINKLOCAL)) {
1734 				/* auto_linklocal 0->1 transision */
1735 
1736 				/* If no link-local address on ifp, configure */
1737 				ND_IFINFO(ifp)->flags |= ND6_IFF_AUTO_LINKLOCAL;
1738 				in6_ifattach(ifp, NULL);
1739 			} else if (!(ND.flags & ND6_IFF_IFDISABLED) &&
1740 			    ifp->if_flags & IFF_UP) {
1741 				/*
1742 				 * When the IF already has
1743 				 * ND6_IFF_AUTO_LINKLOCAL, no link-local
1744 				 * address is assigned, and IFF_UP, try to
1745 				 * assign one.
1746 				 */
1747 				IF_ADDR_RLOCK(ifp);
1748 				CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead,
1749 				    ifa_link) {
1750 					if (ifa->ifa_addr->sa_family !=
1751 					    AF_INET6)
1752 						continue;
1753 					ia = (struct in6_ifaddr *)ifa;
1754 					if (IN6_IS_ADDR_LINKLOCAL(IA6_IN6(ia)))
1755 						break;
1756 				}
1757 				IF_ADDR_RUNLOCK(ifp);
1758 				if (ifa != NULL)
1759 					/* No LLA is configured. */
1760 					in6_ifattach(ifp, NULL);
1761 			}
1762 		}
1763 	}
1764 		ND_IFINFO(ifp)->flags = ND.flags;
1765 		break;
1766 #undef ND
1767 	case SIOCSNDFLUSH_IN6:	/* XXX: the ioctl name is confusing... */
1768 		/* sync kernel routing table with the default router list */
1769 		defrouter_reset();
1770 		defrouter_select();
1771 		break;
1772 	case SIOCSPFXFLUSH_IN6:
1773 	{
1774 		/* flush all the prefix advertised by routers */
1775 		struct in6_ifaddr *ia, *ia_next;
1776 		struct nd_prefix *pr, *next;
1777 		struct nd_prhead prl;
1778 
1779 		LIST_INIT(&prl);
1780 
1781 		ND6_WLOCK();
1782 		LIST_FOREACH_SAFE(pr, &V_nd_prefix, ndpr_entry, next) {
1783 			if (IN6_IS_ADDR_LINKLOCAL(&pr->ndpr_prefix.sin6_addr))
1784 				continue; /* XXX */
1785 			nd6_prefix_unlink(pr, &prl);
1786 		}
1787 		ND6_WUNLOCK();
1788 
1789 		while ((pr = LIST_FIRST(&prl)) != NULL) {
1790 			LIST_REMOVE(pr, ndpr_entry);
1791 			/* XXXRW: in6_ifaddrhead locking. */
1792 			CK_STAILQ_FOREACH_SAFE(ia, &V_in6_ifaddrhead, ia_link,
1793 			    ia_next) {
1794 				if ((ia->ia6_flags & IN6_IFF_AUTOCONF) == 0)
1795 					continue;
1796 
1797 				if (ia->ia6_ndpr == pr)
1798 					in6_purgeaddr(&ia->ia_ifa);
1799 			}
1800 			nd6_prefix_del(pr);
1801 		}
1802 		break;
1803 	}
1804 	case SIOCSRTRFLUSH_IN6:
1805 	{
1806 		/* flush all the default routers */
1807 		struct nd_drhead drq;
1808 		struct nd_defrouter *dr;
1809 
1810 		TAILQ_INIT(&drq);
1811 
1812 		defrouter_reset();
1813 
1814 		ND6_WLOCK();
1815 		while ((dr = TAILQ_FIRST(&V_nd_defrouter)) != NULL)
1816 			defrouter_unlink(dr, &drq);
1817 		ND6_WUNLOCK();
1818 		while ((dr = TAILQ_FIRST(&drq)) != NULL) {
1819 			TAILQ_REMOVE(&drq, dr, dr_entry);
1820 			defrouter_del(dr);
1821 		}
1822 
1823 		defrouter_select();
1824 		break;
1825 	}
1826 	case SIOCGNBRINFO_IN6:
1827 	{
1828 		struct llentry *ln;
1829 		struct in6_addr nb_addr = nbi->addr; /* make local for safety */
1830 
1831 		if ((error = in6_setscope(&nb_addr, ifp, NULL)) != 0)
1832 			return (error);
1833 
1834 		IF_AFDATA_RLOCK(ifp);
1835 		ln = nd6_lookup(&nb_addr, 0, ifp);
1836 		IF_AFDATA_RUNLOCK(ifp);
1837 
1838 		if (ln == NULL) {
1839 			error = EINVAL;
1840 			break;
1841 		}
1842 		nbi->state = ln->ln_state;
1843 		nbi->asked = ln->la_asked;
1844 		nbi->isrouter = ln->ln_router;
1845 		if (ln->la_expire == 0)
1846 			nbi->expire = 0;
1847 		else
1848 			nbi->expire = ln->la_expire + ln->lle_remtime / hz +
1849 			    (time_second - time_uptime);
1850 		LLE_RUNLOCK(ln);
1851 		break;
1852 	}
1853 	case SIOCGDEFIFACE_IN6:	/* XXX: should be implemented as a sysctl? */
1854 		ndif->ifindex = V_nd6_defifindex;
1855 		break;
1856 	case SIOCSDEFIFACE_IN6:	/* XXX: should be implemented as a sysctl? */
1857 		return (nd6_setdefaultiface(ndif->ifindex));
1858 	}
1859 	return (error);
1860 }
1861 
1862 /*
1863  * Calculates new isRouter value based on provided parameters and
1864  * returns it.
1865  */
1866 static int
1867 nd6_is_router(int type, int code, int is_new, int old_addr, int new_addr,
1868     int ln_router)
1869 {
1870 
1871 	/*
1872 	 * ICMP6 type dependent behavior.
1873 	 *
1874 	 * NS: clear IsRouter if new entry
1875 	 * RS: clear IsRouter
1876 	 * RA: set IsRouter if there's lladdr
1877 	 * redir: clear IsRouter if new entry
1878 	 *
1879 	 * RA case, (1):
1880 	 * The spec says that we must set IsRouter in the following cases:
1881 	 * - If lladdr exist, set IsRouter.  This means (1-5).
1882 	 * - If it is old entry (!newentry), set IsRouter.  This means (7).
1883 	 * So, based on the spec, in (1-5) and (7) cases we must set IsRouter.
1884 	 * A quetion arises for (1) case.  (1) case has no lladdr in the
1885 	 * neighbor cache, this is similar to (6).
1886 	 * This case is rare but we figured that we MUST NOT set IsRouter.
1887 	 *
1888 	 *   is_new  old_addr new_addr 	    NS  RS  RA	redir
1889 	 *							D R
1890 	 *	0	n	n	(1)	c   ?     s
1891 	 *	0	y	n	(2)	c   s     s
1892 	 *	0	n	y	(3)	c   s     s
1893 	 *	0	y	y	(4)	c   s     s
1894 	 *	0	y	y	(5)	c   s     s
1895 	 *	1	--	n	(6) c	c	c s
1896 	 *	1	--	y	(7) c	c   s	c s
1897 	 *
1898 	 *					(c=clear s=set)
1899 	 */
1900 	switch (type & 0xff) {
1901 	case ND_NEIGHBOR_SOLICIT:
1902 		/*
1903 		 * New entry must have is_router flag cleared.
1904 		 */
1905 		if (is_new)					/* (6-7) */
1906 			ln_router = 0;
1907 		break;
1908 	case ND_REDIRECT:
1909 		/*
1910 		 * If the icmp is a redirect to a better router, always set the
1911 		 * is_router flag.  Otherwise, if the entry is newly created,
1912 		 * clear the flag.  [RFC 2461, sec 8.3]
1913 		 */
1914 		if (code == ND_REDIRECT_ROUTER)
1915 			ln_router = 1;
1916 		else {
1917 			if (is_new)				/* (6-7) */
1918 				ln_router = 0;
1919 		}
1920 		break;
1921 	case ND_ROUTER_SOLICIT:
1922 		/*
1923 		 * is_router flag must always be cleared.
1924 		 */
1925 		ln_router = 0;
1926 		break;
1927 	case ND_ROUTER_ADVERT:
1928 		/*
1929 		 * Mark an entry with lladdr as a router.
1930 		 */
1931 		if ((!is_new && (old_addr || new_addr)) ||	/* (2-5) */
1932 		    (is_new && new_addr)) {			/* (7) */
1933 			ln_router = 1;
1934 		}
1935 		break;
1936 	}
1937 
1938 	return (ln_router);
1939 }
1940 
1941 /*
1942  * Create neighbor cache entry and cache link-layer address,
1943  * on reception of inbound ND6 packets.  (RS/RA/NS/redirect)
1944  *
1945  * type - ICMP6 type
1946  * code - type dependent information
1947  *
1948  */
1949 void
1950 nd6_cache_lladdr(struct ifnet *ifp, struct in6_addr *from, char *lladdr,
1951     int lladdrlen, int type, int code)
1952 {
1953 	struct llentry *ln = NULL, *ln_tmp;
1954 	int is_newentry;
1955 	int do_update;
1956 	int olladdr;
1957 	int llchange;
1958 	int flags;
1959 	uint16_t router = 0;
1960 	struct sockaddr_in6 sin6;
1961 	struct mbuf *chain = NULL;
1962 	u_char linkhdr[LLE_MAX_LINKHDR];
1963 	size_t linkhdrsize;
1964 	int lladdr_off;
1965 
1966 	IF_AFDATA_UNLOCK_ASSERT(ifp);
1967 
1968 	KASSERT(ifp != NULL, ("%s: ifp == NULL", __func__));
1969 	KASSERT(from != NULL, ("%s: from == NULL", __func__));
1970 
1971 	/* nothing must be updated for unspecified address */
1972 	if (IN6_IS_ADDR_UNSPECIFIED(from))
1973 		return;
1974 
1975 	/*
1976 	 * Validation about ifp->if_addrlen and lladdrlen must be done in
1977 	 * the caller.
1978 	 *
1979 	 * XXX If the link does not have link-layer adderss, what should
1980 	 * we do? (ifp->if_addrlen == 0)
1981 	 * Spec says nothing in sections for RA, RS and NA.  There's small
1982 	 * description on it in NS section (RFC 2461 7.2.3).
1983 	 */
1984 	flags = lladdr ? LLE_EXCLUSIVE : 0;
1985 	IF_AFDATA_RLOCK(ifp);
1986 	ln = nd6_lookup(from, flags, ifp);
1987 	IF_AFDATA_RUNLOCK(ifp);
1988 	is_newentry = 0;
1989 	if (ln == NULL) {
1990 		flags |= LLE_EXCLUSIVE;
1991 		ln = nd6_alloc(from, 0, ifp);
1992 		if (ln == NULL)
1993 			return;
1994 
1995 		/*
1996 		 * Since we already know all the data for the new entry,
1997 		 * fill it before insertion.
1998 		 */
1999 		if (lladdr != NULL) {
2000 			linkhdrsize = sizeof(linkhdr);
2001 			if (lltable_calc_llheader(ifp, AF_INET6, lladdr,
2002 			    linkhdr, &linkhdrsize, &lladdr_off) != 0)
2003 				return;
2004 			lltable_set_entry_addr(ifp, ln, linkhdr, linkhdrsize,
2005 			    lladdr_off);
2006 		}
2007 
2008 		IF_AFDATA_WLOCK(ifp);
2009 		LLE_WLOCK(ln);
2010 		/* Prefer any existing lle over newly-created one */
2011 		ln_tmp = nd6_lookup(from, LLE_EXCLUSIVE, ifp);
2012 		if (ln_tmp == NULL)
2013 			lltable_link_entry(LLTABLE6(ifp), ln);
2014 		IF_AFDATA_WUNLOCK(ifp);
2015 		if (ln_tmp == NULL) {
2016 			/* No existing lle, mark as new entry (6,7) */
2017 			is_newentry = 1;
2018 			if (lladdr != NULL) {	/* (7) */
2019 				nd6_llinfo_setstate(ln, ND6_LLINFO_STALE);
2020 				EVENTHANDLER_INVOKE(lle_event, ln,
2021 				    LLENTRY_RESOLVED);
2022 			}
2023 		} else {
2024 			lltable_free_entry(LLTABLE6(ifp), ln);
2025 			ln = ln_tmp;
2026 			ln_tmp = NULL;
2027 		}
2028 	}
2029 	/* do nothing if static ndp is set */
2030 	if ((ln->la_flags & LLE_STATIC)) {
2031 		if (flags & LLE_EXCLUSIVE)
2032 			LLE_WUNLOCK(ln);
2033 		else
2034 			LLE_RUNLOCK(ln);
2035 		return;
2036 	}
2037 
2038 	olladdr = (ln->la_flags & LLE_VALID) ? 1 : 0;
2039 	if (olladdr && lladdr) {
2040 		llchange = bcmp(lladdr, ln->ll_addr,
2041 		    ifp->if_addrlen);
2042 	} else if (!olladdr && lladdr)
2043 		llchange = 1;
2044 	else
2045 		llchange = 0;
2046 
2047 	/*
2048 	 * newentry olladdr  lladdr  llchange	(*=record)
2049 	 *	0	n	n	--	(1)
2050 	 *	0	y	n	--	(2)
2051 	 *	0	n	y	y	(3) * STALE
2052 	 *	0	y	y	n	(4) *
2053 	 *	0	y	y	y	(5) * STALE
2054 	 *	1	--	n	--	(6)   NOSTATE(= PASSIVE)
2055 	 *	1	--	y	--	(7) * STALE
2056 	 */
2057 
2058 	do_update = 0;
2059 	if (is_newentry == 0 && llchange != 0) {
2060 		do_update = 1;	/* (3,5) */
2061 
2062 		/*
2063 		 * Record source link-layer address
2064 		 * XXX is it dependent to ifp->if_type?
2065 		 */
2066 		linkhdrsize = sizeof(linkhdr);
2067 		if (lltable_calc_llheader(ifp, AF_INET6, lladdr,
2068 		    linkhdr, &linkhdrsize, &lladdr_off) != 0)
2069 			return;
2070 
2071 		if (lltable_try_set_entry_addr(ifp, ln, linkhdr, linkhdrsize,
2072 		    lladdr_off) == 0) {
2073 			/* Entry was deleted */
2074 			return;
2075 		}
2076 
2077 		nd6_llinfo_setstate(ln, ND6_LLINFO_STALE);
2078 
2079 		EVENTHANDLER_INVOKE(lle_event, ln, LLENTRY_RESOLVED);
2080 
2081 		if (ln->la_hold != NULL)
2082 			nd6_grab_holdchain(ln, &chain, &sin6);
2083 	}
2084 
2085 	/* Calculates new router status */
2086 	router = nd6_is_router(type, code, is_newentry, olladdr,
2087 	    lladdr != NULL ? 1 : 0, ln->ln_router);
2088 
2089 	ln->ln_router = router;
2090 	/* Mark non-router redirects with special flag */
2091 	if ((type & 0xFF) == ND_REDIRECT && code != ND_REDIRECT_ROUTER)
2092 		ln->la_flags |= LLE_REDIRECT;
2093 
2094 	if (flags & LLE_EXCLUSIVE)
2095 		LLE_WUNLOCK(ln);
2096 	else
2097 		LLE_RUNLOCK(ln);
2098 
2099 	if (chain != NULL)
2100 		nd6_flush_holdchain(ifp, chain, &sin6);
2101 
2102 	/*
2103 	 * When the link-layer address of a router changes, select the
2104 	 * best router again.  In particular, when the neighbor entry is newly
2105 	 * created, it might affect the selection policy.
2106 	 * Question: can we restrict the first condition to the "is_newentry"
2107 	 * case?
2108 	 * XXX: when we hear an RA from a new router with the link-layer
2109 	 * address option, defrouter_select_fib() is called twice, since
2110 	 * defrtrlist_update called the function as well.  However, I believe
2111 	 * we can compromise the overhead, since it only happens the first
2112 	 * time.
2113 	 * XXX: although defrouter_select_fib() should not have a bad effect
2114 	 * for those are not autoconfigured hosts, we explicitly avoid such
2115 	 * cases for safety.
2116 	 */
2117 	if ((do_update || is_newentry) && router &&
2118 	    ND_IFINFO(ifp)->flags & ND6_IFF_ACCEPT_RTADV) {
2119 		/*
2120 		 * guaranteed recursion
2121 		 */
2122 		defrouter_select_fib(ifp->if_fib);
2123 	}
2124 }
2125 
2126 static void
2127 nd6_slowtimo(void *arg)
2128 {
2129 	CURVNET_SET((struct vnet *) arg);
2130 	struct nd_ifinfo *nd6if;
2131 	struct ifnet *ifp;
2132 
2133 	callout_reset(&V_nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz,
2134 	    nd6_slowtimo, curvnet);
2135 	IFNET_RLOCK_NOSLEEP();
2136 	CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) {
2137 		if (ifp->if_afdata[AF_INET6] == NULL)
2138 			continue;
2139 		nd6if = ND_IFINFO(ifp);
2140 		if (nd6if->basereachable && /* already initialized */
2141 		    (nd6if->recalctm -= ND6_SLOWTIMER_INTERVAL) <= 0) {
2142 			/*
2143 			 * Since reachable time rarely changes by router
2144 			 * advertisements, we SHOULD insure that a new random
2145 			 * value gets recomputed at least once every few hours.
2146 			 * (RFC 2461, 6.3.4)
2147 			 */
2148 			nd6if->recalctm = V_nd6_recalc_reachtm_interval;
2149 			nd6if->reachable = ND_COMPUTE_RTIME(nd6if->basereachable);
2150 		}
2151 	}
2152 	IFNET_RUNLOCK_NOSLEEP();
2153 	CURVNET_RESTORE();
2154 }
2155 
2156 void
2157 nd6_grab_holdchain(struct llentry *ln, struct mbuf **chain,
2158     struct sockaddr_in6 *sin6)
2159 {
2160 
2161 	LLE_WLOCK_ASSERT(ln);
2162 
2163 	*chain = ln->la_hold;
2164 	ln->la_hold = NULL;
2165 	lltable_fill_sa_entry(ln, (struct sockaddr *)sin6);
2166 
2167 	if (ln->ln_state == ND6_LLINFO_STALE) {
2168 
2169 		/*
2170 		 * The first time we send a packet to a
2171 		 * neighbor whose entry is STALE, we have
2172 		 * to change the state to DELAY and a sets
2173 		 * a timer to expire in DELAY_FIRST_PROBE_TIME
2174 		 * seconds to ensure do neighbor unreachability
2175 		 * detection on expiration.
2176 		 * (RFC 2461 7.3.3)
2177 		 */
2178 		nd6_llinfo_setstate(ln, ND6_LLINFO_DELAY);
2179 	}
2180 }
2181 
2182 int
2183 nd6_output_ifp(struct ifnet *ifp, struct ifnet *origifp, struct mbuf *m,
2184     struct sockaddr_in6 *dst, struct route *ro)
2185 {
2186 	int error;
2187 	int ip6len;
2188 	struct ip6_hdr *ip6;
2189 	struct m_tag *mtag;
2190 
2191 #ifdef MAC
2192 	mac_netinet6_nd6_send(ifp, m);
2193 #endif
2194 
2195 	/*
2196 	 * If called from nd6_ns_output() (NS), nd6_na_output() (NA),
2197 	 * icmp6_redirect_output() (REDIRECT) or from rip6_output() (RS, RA
2198 	 * as handled by rtsol and rtadvd), mbufs will be tagged for SeND
2199 	 * to be diverted to user space.  When re-injected into the kernel,
2200 	 * send_output() will directly dispatch them to the outgoing interface.
2201 	 */
2202 	if (send_sendso_input_hook != NULL) {
2203 		mtag = m_tag_find(m, PACKET_TAG_ND_OUTGOING, NULL);
2204 		if (mtag != NULL) {
2205 			ip6 = mtod(m, struct ip6_hdr *);
2206 			ip6len = sizeof(struct ip6_hdr) + ntohs(ip6->ip6_plen);
2207 			/* Use the SEND socket */
2208 			error = send_sendso_input_hook(m, ifp, SND_OUT,
2209 			    ip6len);
2210 			/* -1 == no app on SEND socket */
2211 			if (error == 0 || error != -1)
2212 			    return (error);
2213 		}
2214 	}
2215 
2216 	m_clrprotoflags(m);	/* Avoid confusing lower layers. */
2217 	IP_PROBE(send, NULL, NULL, mtod(m, struct ip6_hdr *), ifp, NULL,
2218 	    mtod(m, struct ip6_hdr *));
2219 
2220 	if ((ifp->if_flags & IFF_LOOPBACK) == 0)
2221 		origifp = ifp;
2222 
2223 	error = (*ifp->if_output)(origifp, m, (struct sockaddr *)dst, ro);
2224 	return (error);
2225 }
2226 
2227 /*
2228  * Lookup link headerfor @sa_dst address. Stores found
2229  * data in @desten buffer. Copy of lle ln_flags can be also
2230  * saved in @pflags if @pflags is non-NULL.
2231  *
2232  * If destination LLE does not exists or lle state modification
2233  * is required, call "slow" version.
2234  *
2235  * Return values:
2236  * - 0 on success (address copied to buffer).
2237  * - EWOULDBLOCK (no local error, but address is still unresolved)
2238  * - other errors (alloc failure, etc)
2239  */
2240 int
2241 nd6_resolve(struct ifnet *ifp, int is_gw, struct mbuf *m,
2242     const struct sockaddr *sa_dst, u_char *desten, uint32_t *pflags,
2243     struct llentry **plle)
2244 {
2245 	struct llentry *ln = NULL;
2246 	const struct sockaddr_in6 *dst6;
2247 
2248 	if (pflags != NULL)
2249 		*pflags = 0;
2250 
2251 	dst6 = (const struct sockaddr_in6 *)sa_dst;
2252 
2253 	/* discard the packet if IPv6 operation is disabled on the interface */
2254 	if ((ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED)) {
2255 		m_freem(m);
2256 		return (ENETDOWN); /* better error? */
2257 	}
2258 
2259 	if (m != NULL && m->m_flags & M_MCAST) {
2260 		switch (ifp->if_type) {
2261 		case IFT_ETHER:
2262 		case IFT_L2VLAN:
2263 		case IFT_BRIDGE:
2264 			ETHER_MAP_IPV6_MULTICAST(&dst6->sin6_addr,
2265 						 desten);
2266 			return (0);
2267 		default:
2268 			m_freem(m);
2269 			return (EAFNOSUPPORT);
2270 		}
2271 	}
2272 
2273 	IF_AFDATA_RLOCK(ifp);
2274 	ln = nd6_lookup(&dst6->sin6_addr, plle ? LLE_EXCLUSIVE : LLE_UNLOCKED,
2275 	    ifp);
2276 	if (ln != NULL && (ln->r_flags & RLLE_VALID) != 0) {
2277 		/* Entry found, let's copy lle info */
2278 		bcopy(ln->r_linkdata, desten, ln->r_hdrlen);
2279 		if (pflags != NULL)
2280 			*pflags = LLE_VALID | (ln->r_flags & RLLE_IFADDR);
2281 		/* Check if we have feedback request from nd6 timer */
2282 		if (ln->r_skip_req != 0) {
2283 			LLE_REQ_LOCK(ln);
2284 			ln->r_skip_req = 0; /* Notify that entry was used */
2285 			ln->lle_hittime = time_uptime;
2286 			LLE_REQ_UNLOCK(ln);
2287 		}
2288 		if (plle) {
2289 			LLE_ADDREF(ln);
2290 			*plle = ln;
2291 			LLE_WUNLOCK(ln);
2292 		}
2293 		IF_AFDATA_RUNLOCK(ifp);
2294 		return (0);
2295 	} else if (plle && ln)
2296 		LLE_WUNLOCK(ln);
2297 	IF_AFDATA_RUNLOCK(ifp);
2298 
2299 	return (nd6_resolve_slow(ifp, 0, m, dst6, desten, pflags, plle));
2300 }
2301 
2302 
2303 /*
2304  * Do L2 address resolution for @sa_dst address. Stores found
2305  * address in @desten buffer. Copy of lle ln_flags can be also
2306  * saved in @pflags if @pflags is non-NULL.
2307  *
2308  * Heavy version.
2309  * Function assume that destination LLE does not exist,
2310  * is invalid or stale, so LLE_EXCLUSIVE lock needs to be acquired.
2311  *
2312  * Set noinline to be dtrace-friendly
2313  */
2314 static __noinline int
2315 nd6_resolve_slow(struct ifnet *ifp, int flags, struct mbuf *m,
2316     const struct sockaddr_in6 *dst, u_char *desten, uint32_t *pflags,
2317     struct llentry **plle)
2318 {
2319 	struct llentry *lle = NULL, *lle_tmp;
2320 	struct in6_addr *psrc, src;
2321 	int send_ns, ll_len;
2322 	char *lladdr;
2323 
2324 	/*
2325 	 * Address resolution or Neighbor Unreachability Detection
2326 	 * for the next hop.
2327 	 * At this point, the destination of the packet must be a unicast
2328 	 * or an anycast address(i.e. not a multicast).
2329 	 */
2330 	if (lle == NULL) {
2331 		IF_AFDATA_RLOCK(ifp);
2332 		lle = nd6_lookup(&dst->sin6_addr, LLE_EXCLUSIVE, ifp);
2333 		IF_AFDATA_RUNLOCK(ifp);
2334 		if ((lle == NULL) && nd6_is_addr_neighbor(dst, ifp))  {
2335 			/*
2336 			 * Since nd6_is_addr_neighbor() internally calls nd6_lookup(),
2337 			 * the condition below is not very efficient.  But we believe
2338 			 * it is tolerable, because this should be a rare case.
2339 			 */
2340 			lle = nd6_alloc(&dst->sin6_addr, 0, ifp);
2341 			if (lle == NULL) {
2342 				char ip6buf[INET6_ADDRSTRLEN];
2343 				log(LOG_DEBUG,
2344 				    "nd6_output: can't allocate llinfo for %s "
2345 				    "(ln=%p)\n",
2346 				    ip6_sprintf(ip6buf, &dst->sin6_addr), lle);
2347 				m_freem(m);
2348 				return (ENOBUFS);
2349 			}
2350 
2351 			IF_AFDATA_WLOCK(ifp);
2352 			LLE_WLOCK(lle);
2353 			/* Prefer any existing entry over newly-created one */
2354 			lle_tmp = nd6_lookup(&dst->sin6_addr, LLE_EXCLUSIVE, ifp);
2355 			if (lle_tmp == NULL)
2356 				lltable_link_entry(LLTABLE6(ifp), lle);
2357 			IF_AFDATA_WUNLOCK(ifp);
2358 			if (lle_tmp != NULL) {
2359 				lltable_free_entry(LLTABLE6(ifp), lle);
2360 				lle = lle_tmp;
2361 				lle_tmp = NULL;
2362 			}
2363 		}
2364 	}
2365 	if (lle == NULL) {
2366 		if (!(ND_IFINFO(ifp)->flags & ND6_IFF_PERFORMNUD)) {
2367 			m_freem(m);
2368 			return (ENOBUFS);
2369 		}
2370 
2371 		if (m != NULL)
2372 			m_freem(m);
2373 		return (ENOBUFS);
2374 	}
2375 
2376 	LLE_WLOCK_ASSERT(lle);
2377 
2378 	/*
2379 	 * The first time we send a packet to a neighbor whose entry is
2380 	 * STALE, we have to change the state to DELAY and a sets a timer to
2381 	 * expire in DELAY_FIRST_PROBE_TIME seconds to ensure do
2382 	 * neighbor unreachability detection on expiration.
2383 	 * (RFC 2461 7.3.3)
2384 	 */
2385 	if (lle->ln_state == ND6_LLINFO_STALE)
2386 		nd6_llinfo_setstate(lle, ND6_LLINFO_DELAY);
2387 
2388 	/*
2389 	 * If the neighbor cache entry has a state other than INCOMPLETE
2390 	 * (i.e. its link-layer address is already resolved), just
2391 	 * send the packet.
2392 	 */
2393 	if (lle->ln_state > ND6_LLINFO_INCOMPLETE) {
2394 		if (flags & LLE_ADDRONLY) {
2395 			lladdr = lle->ll_addr;
2396 			ll_len = ifp->if_addrlen;
2397 		} else {
2398 			lladdr = lle->r_linkdata;
2399 			ll_len = lle->r_hdrlen;
2400 		}
2401 		bcopy(lladdr, desten, ll_len);
2402 		if (pflags != NULL)
2403 			*pflags = lle->la_flags;
2404 		if (plle) {
2405 			LLE_ADDREF(lle);
2406 			*plle = lle;
2407 		}
2408 		LLE_WUNLOCK(lle);
2409 		return (0);
2410 	}
2411 
2412 	/*
2413 	 * There is a neighbor cache entry, but no ethernet address
2414 	 * response yet.  Append this latest packet to the end of the
2415 	 * packet queue in the mbuf.  When it exceeds nd6_maxqueuelen,
2416 	 * the oldest packet in the queue will be removed.
2417 	 */
2418 
2419 	if (lle->la_hold != NULL) {
2420 		struct mbuf *m_hold;
2421 		int i;
2422 
2423 		i = 0;
2424 		for (m_hold = lle->la_hold; m_hold; m_hold = m_hold->m_nextpkt){
2425 			i++;
2426 			if (m_hold->m_nextpkt == NULL) {
2427 				m_hold->m_nextpkt = m;
2428 				break;
2429 			}
2430 		}
2431 		while (i >= V_nd6_maxqueuelen) {
2432 			m_hold = lle->la_hold;
2433 			lle->la_hold = lle->la_hold->m_nextpkt;
2434 			m_freem(m_hold);
2435 			i--;
2436 		}
2437 	} else {
2438 		lle->la_hold = m;
2439 	}
2440 
2441 	/*
2442 	 * If there has been no NS for the neighbor after entering the
2443 	 * INCOMPLETE state, send the first solicitation.
2444 	 * Note that for newly-created lle la_asked will be 0,
2445 	 * so we will transition from ND6_LLINFO_NOSTATE to
2446 	 * ND6_LLINFO_INCOMPLETE state here.
2447 	 */
2448 	psrc = NULL;
2449 	send_ns = 0;
2450 	if (lle->la_asked == 0) {
2451 		lle->la_asked++;
2452 		send_ns = 1;
2453 		psrc = nd6_llinfo_get_holdsrc(lle, &src);
2454 
2455 		nd6_llinfo_setstate(lle, ND6_LLINFO_INCOMPLETE);
2456 	}
2457 	LLE_WUNLOCK(lle);
2458 	if (send_ns != 0)
2459 		nd6_ns_output(ifp, psrc, NULL, &dst->sin6_addr, NULL);
2460 
2461 	return (EWOULDBLOCK);
2462 }
2463 
2464 /*
2465  * Do L2 address resolution for @sa_dst address. Stores found
2466  * address in @desten buffer. Copy of lle ln_flags can be also
2467  * saved in @pflags if @pflags is non-NULL.
2468  *
2469  * Return values:
2470  * - 0 on success (address copied to buffer).
2471  * - EWOULDBLOCK (no local error, but address is still unresolved)
2472  * - other errors (alloc failure, etc)
2473  */
2474 int
2475 nd6_resolve_addr(struct ifnet *ifp, int flags, const struct sockaddr *dst,
2476     char *desten, uint32_t *pflags)
2477 {
2478 	int error;
2479 
2480 	flags |= LLE_ADDRONLY;
2481 	error = nd6_resolve_slow(ifp, flags, NULL,
2482 	    (const struct sockaddr_in6 *)dst, desten, pflags, NULL);
2483 	return (error);
2484 }
2485 
2486 int
2487 nd6_flush_holdchain(struct ifnet *ifp, struct mbuf *chain,
2488     struct sockaddr_in6 *dst)
2489 {
2490 	struct mbuf *m, *m_head;
2491 	int error = 0;
2492 
2493 	m_head = chain;
2494 
2495 	while (m_head) {
2496 		m = m_head;
2497 		m_head = m_head->m_nextpkt;
2498 		error = nd6_output_ifp(ifp, ifp, m, dst, NULL);
2499 	}
2500 
2501 	/*
2502 	 * XXX
2503 	 * note that intermediate errors are blindly ignored
2504 	 */
2505 	return (error);
2506 }
2507 
2508 static int
2509 nd6_need_cache(struct ifnet *ifp)
2510 {
2511 	/*
2512 	 * XXX: we currently do not make neighbor cache on any interface
2513 	 * other than Ethernet and GIF.
2514 	 *
2515 	 * RFC2893 says:
2516 	 * - unidirectional tunnels needs no ND
2517 	 */
2518 	switch (ifp->if_type) {
2519 	case IFT_ETHER:
2520 	case IFT_IEEE1394:
2521 	case IFT_L2VLAN:
2522 	case IFT_INFINIBAND:
2523 	case IFT_BRIDGE:
2524 	case IFT_PROPVIRTUAL:
2525 		return (1);
2526 	default:
2527 		return (0);
2528 	}
2529 }
2530 
2531 /*
2532  * Add pernament ND6 link-layer record for given
2533  * interface address.
2534  *
2535  * Very similar to IPv4 arp_ifinit(), but:
2536  * 1) IPv6 DAD is performed in different place
2537  * 2) It is called by IPv6 protocol stack in contrast to
2538  * arp_ifinit() which is typically called in SIOCSIFADDR
2539  * driver ioctl handler.
2540  *
2541  */
2542 int
2543 nd6_add_ifa_lle(struct in6_ifaddr *ia)
2544 {
2545 	struct ifnet *ifp;
2546 	struct llentry *ln, *ln_tmp;
2547 	struct sockaddr *dst;
2548 
2549 	ifp = ia->ia_ifa.ifa_ifp;
2550 	if (nd6_need_cache(ifp) == 0)
2551 		return (0);
2552 
2553 	ia->ia_ifa.ifa_rtrequest = nd6_rtrequest;
2554 	dst = (struct sockaddr *)&ia->ia_addr;
2555 	ln = lltable_alloc_entry(LLTABLE6(ifp), LLE_IFADDR, dst);
2556 	if (ln == NULL)
2557 		return (ENOBUFS);
2558 
2559 	IF_AFDATA_WLOCK(ifp);
2560 	LLE_WLOCK(ln);
2561 	/* Unlink any entry if exists */
2562 	ln_tmp = lla_lookup(LLTABLE6(ifp), LLE_EXCLUSIVE, dst);
2563 	if (ln_tmp != NULL)
2564 		lltable_unlink_entry(LLTABLE6(ifp), ln_tmp);
2565 	lltable_link_entry(LLTABLE6(ifp), ln);
2566 	IF_AFDATA_WUNLOCK(ifp);
2567 
2568 	if (ln_tmp != NULL)
2569 		EVENTHANDLER_INVOKE(lle_event, ln_tmp, LLENTRY_EXPIRED);
2570 	EVENTHANDLER_INVOKE(lle_event, ln, LLENTRY_RESOLVED);
2571 
2572 	LLE_WUNLOCK(ln);
2573 	if (ln_tmp != NULL)
2574 		llentry_free(ln_tmp);
2575 
2576 	return (0);
2577 }
2578 
2579 /*
2580  * Removes either all lle entries for given @ia, or lle
2581  * corresponding to @ia address.
2582  */
2583 void
2584 nd6_rem_ifa_lle(struct in6_ifaddr *ia, int all)
2585 {
2586 	struct sockaddr_in6 mask, addr;
2587 	struct sockaddr *saddr, *smask;
2588 	struct ifnet *ifp;
2589 
2590 	ifp = ia->ia_ifa.ifa_ifp;
2591 	memcpy(&addr, &ia->ia_addr, sizeof(ia->ia_addr));
2592 	memcpy(&mask, &ia->ia_prefixmask, sizeof(ia->ia_prefixmask));
2593 	saddr = (struct sockaddr *)&addr;
2594 	smask = (struct sockaddr *)&mask;
2595 
2596 	if (all != 0)
2597 		lltable_prefix_free(AF_INET6, saddr, smask, LLE_STATIC);
2598 	else
2599 		lltable_delete_addr(LLTABLE6(ifp), LLE_IFADDR, saddr);
2600 }
2601 
2602 static void
2603 clear_llinfo_pqueue(struct llentry *ln)
2604 {
2605 	struct mbuf *m_hold, *m_hold_next;
2606 
2607 	for (m_hold = ln->la_hold; m_hold; m_hold = m_hold_next) {
2608 		m_hold_next = m_hold->m_nextpkt;
2609 		m_freem(m_hold);
2610 	}
2611 
2612 	ln->la_hold = NULL;
2613 }
2614 
2615 static int nd6_sysctl_drlist(SYSCTL_HANDLER_ARGS);
2616 static int nd6_sysctl_prlist(SYSCTL_HANDLER_ARGS);
2617 
2618 SYSCTL_DECL(_net_inet6_icmp6);
2619 SYSCTL_PROC(_net_inet6_icmp6, ICMPV6CTL_ND6_DRLIST, nd6_drlist,
2620 	CTLTYPE_OPAQUE | CTLFLAG_RD | CTLFLAG_MPSAFE,
2621 	NULL, 0, nd6_sysctl_drlist, "S,in6_defrouter",
2622 	"NDP default router list");
2623 SYSCTL_PROC(_net_inet6_icmp6, ICMPV6CTL_ND6_PRLIST, nd6_prlist,
2624 	CTLTYPE_OPAQUE | CTLFLAG_RD | CTLFLAG_MPSAFE,
2625 	NULL, 0, nd6_sysctl_prlist, "S,in6_prefix",
2626 	"NDP prefix list");
2627 SYSCTL_INT(_net_inet6_icmp6, ICMPV6CTL_ND6_MAXQLEN, nd6_maxqueuelen,
2628 	CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(nd6_maxqueuelen), 1, "");
2629 SYSCTL_INT(_net_inet6_icmp6, OID_AUTO, nd6_gctimer,
2630 	CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(nd6_gctimer), (60 * 60 * 24), "");
2631 
2632 static int
2633 nd6_sysctl_drlist(SYSCTL_HANDLER_ARGS)
2634 {
2635 	struct in6_defrouter d;
2636 	struct nd_defrouter *dr;
2637 	int error;
2638 
2639 	if (req->newptr != NULL)
2640 		return (EPERM);
2641 
2642 	error = sysctl_wire_old_buffer(req, 0);
2643 	if (error != 0)
2644 		return (error);
2645 
2646 	bzero(&d, sizeof(d));
2647 	d.rtaddr.sin6_family = AF_INET6;
2648 	d.rtaddr.sin6_len = sizeof(d.rtaddr);
2649 
2650 	ND6_RLOCK();
2651 	TAILQ_FOREACH(dr, &V_nd_defrouter, dr_entry) {
2652 		d.rtaddr.sin6_addr = dr->rtaddr;
2653 		error = sa6_recoverscope(&d.rtaddr);
2654 		if (error != 0)
2655 			break;
2656 		d.flags = dr->raflags;
2657 		d.rtlifetime = dr->rtlifetime;
2658 		d.expire = dr->expire + (time_second - time_uptime);
2659 		d.if_index = dr->ifp->if_index;
2660 		error = SYSCTL_OUT(req, &d, sizeof(d));
2661 		if (error != 0)
2662 			break;
2663 	}
2664 	ND6_RUNLOCK();
2665 	return (error);
2666 }
2667 
2668 static int
2669 nd6_sysctl_prlist(SYSCTL_HANDLER_ARGS)
2670 {
2671 	struct in6_prefix p;
2672 	struct sockaddr_in6 s6;
2673 	struct nd_prefix *pr;
2674 	struct nd_pfxrouter *pfr;
2675 	time_t maxexpire;
2676 	int error;
2677 	char ip6buf[INET6_ADDRSTRLEN];
2678 
2679 	if (req->newptr)
2680 		return (EPERM);
2681 
2682 	error = sysctl_wire_old_buffer(req, 0);
2683 	if (error != 0)
2684 		return (error);
2685 
2686 	bzero(&p, sizeof(p));
2687 	p.origin = PR_ORIG_RA;
2688 	bzero(&s6, sizeof(s6));
2689 	s6.sin6_family = AF_INET6;
2690 	s6.sin6_len = sizeof(s6);
2691 
2692 	ND6_RLOCK();
2693 	LIST_FOREACH(pr, &V_nd_prefix, ndpr_entry) {
2694 		p.prefix = pr->ndpr_prefix;
2695 		if (sa6_recoverscope(&p.prefix)) {
2696 			log(LOG_ERR, "scope error in prefix list (%s)\n",
2697 			    ip6_sprintf(ip6buf, &p.prefix.sin6_addr));
2698 			/* XXX: press on... */
2699 		}
2700 		p.raflags = pr->ndpr_raf;
2701 		p.prefixlen = pr->ndpr_plen;
2702 		p.vltime = pr->ndpr_vltime;
2703 		p.pltime = pr->ndpr_pltime;
2704 		p.if_index = pr->ndpr_ifp->if_index;
2705 		if (pr->ndpr_vltime == ND6_INFINITE_LIFETIME)
2706 			p.expire = 0;
2707 		else {
2708 			/* XXX: we assume time_t is signed. */
2709 			maxexpire = (-1) &
2710 			    ~((time_t)1 << ((sizeof(maxexpire) * 8) - 1));
2711 			if (pr->ndpr_vltime < maxexpire - pr->ndpr_lastupdate)
2712 				p.expire = pr->ndpr_lastupdate +
2713 				    pr->ndpr_vltime +
2714 				    (time_second - time_uptime);
2715 			else
2716 				p.expire = maxexpire;
2717 		}
2718 		p.refcnt = pr->ndpr_addrcnt;
2719 		p.flags = pr->ndpr_stateflags;
2720 		p.advrtrs = 0;
2721 		LIST_FOREACH(pfr, &pr->ndpr_advrtrs, pfr_entry)
2722 			p.advrtrs++;
2723 		error = SYSCTL_OUT(req, &p, sizeof(p));
2724 		if (error != 0)
2725 			break;
2726 		LIST_FOREACH(pfr, &pr->ndpr_advrtrs, pfr_entry) {
2727 			s6.sin6_addr = pfr->router->rtaddr;
2728 			if (sa6_recoverscope(&s6))
2729 				log(LOG_ERR,
2730 				    "scope error in prefix list (%s)\n",
2731 				    ip6_sprintf(ip6buf, &pfr->router->rtaddr));
2732 			error = SYSCTL_OUT(req, &s6, sizeof(s6));
2733 			if (error != 0)
2734 				goto out;
2735 		}
2736 	}
2737 out:
2738 	ND6_RUNLOCK();
2739 	return (error);
2740 }
2741