xref: /freebsd/sys/netpfil/ipfw/dn_sched_qfq.c (revision c1d255d3)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2010 Fabio Checconi, Luigi Rizzo, Paolo Valente
5  * All rights reserved
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28 
29 /*
30  * $FreeBSD$
31  */
32 
33 #ifdef _KERNEL
34 #include <sys/malloc.h>
35 #include <sys/socket.h>
36 #include <sys/socketvar.h>
37 #include <sys/kernel.h>
38 #include <sys/lock.h>
39 #include <sys/mbuf.h>
40 #include <sys/module.h>
41 #include <sys/rwlock.h>
42 #include <net/if.h>	/* IFNAMSIZ */
43 #include <netinet/in.h>
44 #include <netinet/ip_var.h>		/* ipfw_rule_ref */
45 #include <netinet/ip_fw.h>	/* flow_id */
46 #include <netinet/ip_dummynet.h>
47 #include <netpfil/ipfw/ip_fw_private.h>
48 #include <netpfil/ipfw/dn_heap.h>
49 #include <netpfil/ipfw/ip_dn_private.h>
50 #ifdef NEW_AQM
51 #include <netpfil/ipfw/dn_aqm.h>
52 #endif
53 #include <netpfil/ipfw/dn_sched.h>
54 #else
55 #include <dn_test.h>
56 #endif
57 
58 #ifdef QFQ_DEBUG
59 #define _P64	unsigned long long	/* cast for printing uint64_t */
60 struct qfq_sched;
61 static void dump_sched(struct qfq_sched *q, const char *msg);
62 #define	NO(x)	x
63 #else
64 #define NO(x)
65 #endif
66 #define DN_SCHED_QFQ	4 // XXX Where?
67 typedef	unsigned long	bitmap;
68 
69 /*
70  * bitmaps ops are critical. Some linux versions have __fls
71  * and the bitmap ops. Some machines have ffs
72  * NOTE: fls() returns 1 for the least significant bit,
73  *       __fls() returns 0 for the same case.
74  * We use the base-0 version __fls() to match the description in
75  * the ToN QFQ paper
76  */
77 #if defined(_WIN32) || (defined(__MIPSEL__) && defined(LINUX_24))
78 int fls(unsigned int n)
79 {
80 	int i = 0;
81 	for (i = 0; n > 0; n >>= 1, i++)
82 		;
83 	return i;
84 }
85 #endif
86 
87 #if !defined(_KERNEL) || defined( __FreeBSD__ ) || defined(_WIN32) || (defined(__MIPSEL__) && defined(LINUX_24))
88 static inline unsigned long __fls(unsigned long word)
89 {
90 	return fls(word) - 1;
91 }
92 #endif
93 
94 #if !defined(_KERNEL) || !defined(__linux__)
95 #ifdef QFQ_DEBUG
96 static int test_bit(int ix, bitmap *p)
97 {
98 	if (ix < 0 || ix > 31)
99 		D("bad index %d", ix);
100 	return *p & (1<<ix);
101 }
102 static void __set_bit(int ix, bitmap *p)
103 {
104 	if (ix < 0 || ix > 31)
105 		D("bad index %d", ix);
106 	*p |= (1<<ix);
107 }
108 static void __clear_bit(int ix, bitmap *p)
109 {
110 	if (ix < 0 || ix > 31)
111 		D("bad index %d", ix);
112 	*p &= ~(1<<ix);
113 }
114 #else /* !QFQ_DEBUG */
115 /* XXX do we have fast version, or leave it to the compiler ? */
116 #define test_bit(ix, pData)	((*pData) & (1<<(ix)))
117 #define __set_bit(ix, pData)	(*pData) |= (1<<(ix))
118 #define __clear_bit(ix, pData)	(*pData) &= ~(1<<(ix))
119 #endif /* !QFQ_DEBUG */
120 #endif /* !__linux__ */
121 
122 #ifdef __MIPSEL__
123 #define __clear_bit(ix, pData)	(*pData) &= ~(1<<(ix))
124 #endif
125 
126 /*-------------------------------------------*/
127 /*
128 
129 Virtual time computations.
130 
131 S, F and V are all computed in fixed point arithmetic with
132 FRAC_BITS decimal bits.
133 
134    QFQ_MAX_INDEX is the maximum index allowed for a group. We need
135   	one bit per index.
136    QFQ_MAX_WSHIFT is the maximum power of two supported as a weight.
137    The layout of the bits is as below:
138 
139                    [ MTU_SHIFT ][      FRAC_BITS    ]
140                    [ MAX_INDEX    ][ MIN_SLOT_SHIFT ]
141   				 ^.__grp->index = 0
142   				 *.__grp->slot_shift
143 
144    where MIN_SLOT_SHIFT is derived by difference from the others.
145 
146 The max group index corresponds to Lmax/w_min, where
147 Lmax=1<<MTU_SHIFT, w_min = 1 .
148 From this, and knowing how many groups (MAX_INDEX) we want,
149 we can derive the shift corresponding to each group.
150 
151 Because we often need to compute
152 	F = S + len/w_i  and V = V + len/wsum
153 instead of storing w_i store the value
154 	inv_w = (1<<FRAC_BITS)/w_i
155 so we can do F = S + len * inv_w * wsum.
156 We use W_TOT in the formulas so we can easily move between
157 static and adaptive weight sum.
158 
159 The per-scheduler-instance data contain all the data structures
160 for the scheduler: bitmaps and bucket lists.
161 
162  */
163 /*
164  * Maximum number of consecutive slots occupied by backlogged classes
165  * inside a group. This is approx lmax/lmin + 5.
166  * XXX check because it poses constraints on MAX_INDEX
167  */
168 #define QFQ_MAX_SLOTS	32
169 /*
170  * Shifts used for class<->group mapping. Class weights are
171  * in the range [1, QFQ_MAX_WEIGHT], we to map each class i to the
172  * group with the smallest index that can support the L_i / r_i
173  * configured for the class.
174  *
175  * grp->index is the index of the group; and grp->slot_shift
176  * is the shift for the corresponding (scaled) sigma_i.
177  *
178  * When computing the group index, we do (len<<FP_SHIFT)/weight,
179  * then compute an FLS (which is like a log2()), and if the result
180  * is below the MAX_INDEX region we use 0 (which is the same as
181  * using a larger len).
182  */
183 #define QFQ_MAX_INDEX		19
184 #define QFQ_MAX_WSHIFT		16	/* log2(max_weight) */
185 
186 #define	QFQ_MAX_WEIGHT		(1<<QFQ_MAX_WSHIFT)
187 #define QFQ_MAX_WSUM		(2*QFQ_MAX_WEIGHT)
188 
189 #define FRAC_BITS		30	/* fixed point arithmetic */
190 #define ONE_FP			(1UL << FRAC_BITS)
191 
192 #define QFQ_MTU_SHIFT		11	/* log2(max_len) */
193 #define QFQ_MIN_SLOT_SHIFT	(FRAC_BITS + QFQ_MTU_SHIFT - QFQ_MAX_INDEX)
194 
195 /*
196  * Possible group states, also indexes for the bitmaps array in
197  * struct qfq_queue. We rely on ER, IR, EB, IB being numbered 0..3
198  */
199 enum qfq_state { ER, IR, EB, IB, QFQ_MAX_STATE };
200 
201 struct qfq_group;
202 /*
203  * additional queue info. Some of this info should come from
204  * the flowset, we copy them here for faster processing.
205  * This is an overlay of the struct dn_queue
206  */
207 struct qfq_class {
208 	struct dn_queue _q;
209 	uint64_t S, F;		/* flow timestamps (exact) */
210 	struct qfq_class *next; /* Link for the slot list. */
211 
212 	/* group we belong to. In principle we would need the index,
213 	 * which is log_2(lmax/weight), but we never reference it
214 	 * directly, only the group.
215 	 */
216 	struct qfq_group *grp;
217 
218 	/* these are copied from the flowset. */
219 	uint32_t	inv_w;	/* ONE_FP/weight */
220 	uint32_t 	lmax;	/* Max packet size for this flow. */
221 };
222 
223 /* Group descriptor, see the paper for details.
224  * Basically this contains the bucket lists
225  */
226 struct qfq_group {
227 	uint64_t S, F;			/* group timestamps (approx). */
228 	unsigned int slot_shift;	/* Slot shift. */
229 	unsigned int index;		/* Group index. */
230 	unsigned int front;		/* Index of the front slot. */
231 	bitmap full_slots;		/* non-empty slots */
232 
233 	/* Array of lists of active classes. */
234 	struct qfq_class *slots[QFQ_MAX_SLOTS];
235 };
236 
237 /* scheduler instance descriptor. */
238 struct qfq_sched {
239 	uint64_t	V;		/* Precise virtual time. */
240 	uint32_t	wsum;		/* weight sum */
241 	uint32_t	iwsum;		/* inverse weight sum */
242 	NO(uint32_t	i_wsum;)	/* ONE_FP/w_sum */
243 	NO(uint32_t	queued;)	/* debugging */
244 	NO(uint32_t	loops;)		/* debugging */
245 	bitmap bitmaps[QFQ_MAX_STATE];	/* Group bitmaps. */
246 	struct qfq_group groups[QFQ_MAX_INDEX + 1]; /* The groups. */
247 };
248 
249 /*---- support functions ----------------------------*/
250 
251 /* Generic comparison function, handling wraparound. */
252 static inline int qfq_gt(uint64_t a, uint64_t b)
253 {
254 	return (int64_t)(a - b) > 0;
255 }
256 
257 /* Round a precise timestamp to its slotted value. */
258 static inline uint64_t qfq_round_down(uint64_t ts, unsigned int shift)
259 {
260 	return ts & ~((1ULL << shift) - 1);
261 }
262 
263 /* return the pointer to the group with lowest index in the bitmap */
264 static inline struct qfq_group *qfq_ffs(struct qfq_sched *q,
265 					unsigned long bitmap)
266 {
267 	int index = ffs(bitmap) - 1; // zero-based
268 	return &q->groups[index];
269 }
270 
271 /*
272  * Calculate a flow index, given its weight and maximum packet length.
273  * index = log_2(maxlen/weight) but we need to apply the scaling.
274  * This is used only once at flow creation.
275  */
276 static int qfq_calc_index(uint32_t inv_w, unsigned int maxlen)
277 {
278 	uint64_t slot_size = (uint64_t)maxlen *inv_w;
279 	unsigned long size_map;
280 	int index = 0;
281 
282 	size_map = (unsigned long)(slot_size >> QFQ_MIN_SLOT_SHIFT);
283 	if (!size_map)
284 		goto out;
285 
286 	index = __fls(size_map) + 1;	// basically a log_2()
287 	index -= !(slot_size - (1ULL << (index + QFQ_MIN_SLOT_SHIFT - 1)));
288 
289 	if (index < 0)
290 		index = 0;
291 
292 out:
293 	ND("W = %d, L = %d, I = %d\n", ONE_FP/inv_w, maxlen, index);
294 	return index;
295 }
296 /*---- end support functions ----*/
297 
298 /*-------- API calls --------------------------------*/
299 /*
300  * Validate and copy parameters from flowset.
301  */
302 static int
303 qfq_new_queue(struct dn_queue *_q)
304 {
305 	struct qfq_sched *q = (struct qfq_sched *)(_q->_si + 1);
306 	struct qfq_class *cl = (struct qfq_class *)_q;
307 	int i;
308 	uint32_t w;	/* approximated weight */
309 
310 	/* import parameters from the flowset. They should be correct
311 	 * already.
312 	 */
313 	w = _q->fs->fs.par[0];
314 	cl->lmax = _q->fs->fs.par[1];
315 	if (!w || w > QFQ_MAX_WEIGHT) {
316 		w = 1;
317 		D("rounding weight to 1");
318 	}
319 	cl->inv_w = ONE_FP/w;
320 	w = ONE_FP/cl->inv_w;
321 	if (q->wsum + w > QFQ_MAX_WSUM)
322 		return EINVAL;
323 
324 	i = qfq_calc_index(cl->inv_w, cl->lmax);
325 	cl->grp = &q->groups[i];
326 	q->wsum += w;
327 	q->iwsum = ONE_FP / q->wsum; /* XXX note theory */
328 	// XXX cl->S = q->V; ?
329 	return 0;
330 }
331 
332 /* remove an empty queue */
333 static int
334 qfq_free_queue(struct dn_queue *_q)
335 {
336 	struct qfq_sched *q = (struct qfq_sched *)(_q->_si + 1);
337 	struct qfq_class *cl = (struct qfq_class *)_q;
338 	if (cl->inv_w) {
339 		q->wsum -= ONE_FP/cl->inv_w;
340 		if (q->wsum != 0)
341 			q->iwsum = ONE_FP / q->wsum;
342 		cl->inv_w = 0; /* reset weight to avoid run twice */
343 	}
344 	return 0;
345 }
346 
347 /* Calculate a mask to mimic what would be ffs_from(). */
348 static inline unsigned long
349 mask_from(unsigned long bitmap, int from)
350 {
351 	return bitmap & ~((1UL << from) - 1);
352 }
353 
354 /*
355  * The state computation relies on ER=0, IR=1, EB=2, IB=3
356  * First compute eligibility comparing grp->S, q->V,
357  * then check if someone is blocking us and possibly add EB
358  */
359 static inline unsigned int
360 qfq_calc_state(struct qfq_sched *q, struct qfq_group *grp)
361 {
362 	/* if S > V we are not eligible */
363 	unsigned int state = qfq_gt(grp->S, q->V);
364 	unsigned long mask = mask_from(q->bitmaps[ER], grp->index);
365 	struct qfq_group *next;
366 
367 	if (mask) {
368 		next = qfq_ffs(q, mask);
369 		if (qfq_gt(grp->F, next->F))
370 			state |= EB;
371 	}
372 
373 	return state;
374 }
375 
376 /*
377  * In principle
378  *	q->bitmaps[dst] |= q->bitmaps[src] & mask;
379  *	q->bitmaps[src] &= ~mask;
380  * but we should make sure that src != dst
381  */
382 static inline void
383 qfq_move_groups(struct qfq_sched *q, unsigned long mask, int src, int dst)
384 {
385 	q->bitmaps[dst] |= q->bitmaps[src] & mask;
386 	q->bitmaps[src] &= ~mask;
387 }
388 
389 static inline void
390 qfq_unblock_groups(struct qfq_sched *q, int index, uint64_t old_finish)
391 {
392 	unsigned long mask = mask_from(q->bitmaps[ER], index + 1);
393 	struct qfq_group *next;
394 
395 	if (mask) {
396 		next = qfq_ffs(q, mask);
397 		if (!qfq_gt(next->F, old_finish))
398 			return;
399 	}
400 
401 	mask = (1UL << index) - 1;
402 	qfq_move_groups(q, mask, EB, ER);
403 	qfq_move_groups(q, mask, IB, IR);
404 }
405 
406 /*
407  * perhaps
408  *
409 	old_V ^= q->V;
410 	old_V >>= QFQ_MIN_SLOT_SHIFT;
411 	if (old_V) {
412 		...
413 	}
414  *
415  */
416 static inline void
417 qfq_make_eligible(struct qfq_sched *q, uint64_t old_V)
418 {
419 	unsigned long mask, vslot, old_vslot;
420 
421 	vslot = q->V >> QFQ_MIN_SLOT_SHIFT;
422 	old_vslot = old_V >> QFQ_MIN_SLOT_SHIFT;
423 
424 	if (vslot != old_vslot) {
425 		/* must be 2ULL, see ToN QFQ article fig.5, we use base-0 fls */
426 		mask = (2ULL << (__fls(vslot ^ old_vslot))) - 1;
427 		qfq_move_groups(q, mask, IR, ER);
428 		qfq_move_groups(q, mask, IB, EB);
429 	}
430 }
431 
432 /*
433  * XXX we should make sure that slot becomes less than 32.
434  * This is guaranteed by the input values.
435  * roundedS is always cl->S rounded on grp->slot_shift bits.
436  */
437 static inline void
438 qfq_slot_insert(struct qfq_group *grp, struct qfq_class *cl, uint64_t roundedS)
439 {
440 	uint64_t slot = (roundedS - grp->S) >> grp->slot_shift;
441 	unsigned int i = (grp->front + slot) % QFQ_MAX_SLOTS;
442 
443 	cl->next = grp->slots[i];
444 	grp->slots[i] = cl;
445 	__set_bit(slot, &grp->full_slots);
446 }
447 
448 /*
449  * remove the entry from the slot
450  */
451 static inline void
452 qfq_front_slot_remove(struct qfq_group *grp)
453 {
454 	struct qfq_class **h = &grp->slots[grp->front];
455 
456 	*h = (*h)->next;
457 	if (!*h)
458 		__clear_bit(0, &grp->full_slots);
459 }
460 
461 /*
462  * Returns the first full queue in a group. As a side effect,
463  * adjust the bucket list so the first non-empty bucket is at
464  * position 0 in full_slots.
465  */
466 static inline struct qfq_class *
467 qfq_slot_scan(struct qfq_group *grp)
468 {
469 	int i;
470 
471 	ND("grp %d full %x", grp->index, grp->full_slots);
472 	if (!grp->full_slots)
473 		return NULL;
474 
475 	i = ffs(grp->full_slots) - 1; // zero-based
476 	if (i > 0) {
477 		grp->front = (grp->front + i) % QFQ_MAX_SLOTS;
478 		grp->full_slots >>= i;
479 	}
480 
481 	return grp->slots[grp->front];
482 }
483 
484 /*
485  * adjust the bucket list. When the start time of a group decreases,
486  * we move the index down (modulo QFQ_MAX_SLOTS) so we don't need to
487  * move the objects. The mask of occupied slots must be shifted
488  * because we use ffs() to find the first non-empty slot.
489  * This covers decreases in the group's start time, but what about
490  * increases of the start time ?
491  * Here too we should make sure that i is less than 32
492  */
493 static inline void
494 qfq_slot_rotate(struct qfq_sched *q, struct qfq_group *grp, uint64_t roundedS)
495 {
496 	unsigned int i = (grp->S - roundedS) >> grp->slot_shift;
497 
498 	(void)q;
499 	grp->full_slots <<= i;
500 	grp->front = (grp->front - i) % QFQ_MAX_SLOTS;
501 }
502 
503 static inline void
504 qfq_update_eligible(struct qfq_sched *q, uint64_t old_V)
505 {
506 	bitmap ineligible;
507 
508 	ineligible = q->bitmaps[IR] | q->bitmaps[IB];
509 	if (ineligible) {
510 		if (!q->bitmaps[ER]) {
511 			struct qfq_group *grp;
512 			grp = qfq_ffs(q, ineligible);
513 			if (qfq_gt(grp->S, q->V))
514 				q->V = grp->S;
515 		}
516 		qfq_make_eligible(q, old_V);
517 	}
518 }
519 
520 /*
521  * Updates the class, returns true if also the group needs to be updated.
522  */
523 static inline int
524 qfq_update_class(struct qfq_sched *q, struct qfq_group *grp,
525 	    struct qfq_class *cl)
526 {
527 
528 	(void)q;
529 	cl->S = cl->F;
530 	if (cl->_q.mq.head == NULL)  {
531 		qfq_front_slot_remove(grp);
532 	} else {
533 		unsigned int len;
534 		uint64_t roundedS;
535 
536 		len = cl->_q.mq.head->m_pkthdr.len;
537 		cl->F = cl->S + (uint64_t)len * cl->inv_w;
538 		roundedS = qfq_round_down(cl->S, grp->slot_shift);
539 		if (roundedS == grp->S)
540 			return 0;
541 
542 		qfq_front_slot_remove(grp);
543 		qfq_slot_insert(grp, cl, roundedS);
544 	}
545 	return 1;
546 }
547 
548 static struct mbuf *
549 qfq_dequeue(struct dn_sch_inst *si)
550 {
551 	struct qfq_sched *q = (struct qfq_sched *)(si + 1);
552 	struct qfq_group *grp;
553 	struct qfq_class *cl;
554 	struct mbuf *m;
555 	uint64_t old_V;
556 
557 	NO(q->loops++;)
558 	if (!q->bitmaps[ER]) {
559 		NO(if (q->queued)
560 			dump_sched(q, "start dequeue");)
561 		return NULL;
562 	}
563 
564 	grp = qfq_ffs(q, q->bitmaps[ER]);
565 
566 	cl = grp->slots[grp->front];
567 	/* extract from the first bucket in the bucket list */
568 	m = dn_dequeue(&cl->_q);
569 
570 	if (!m) {
571 		D("BUG/* non-workconserving leaf */");
572 		return NULL;
573 	}
574 	NO(q->queued--;)
575 	old_V = q->V;
576 	q->V += (uint64_t)m->m_pkthdr.len * q->iwsum;
577 	ND("m is %p F 0x%llx V now 0x%llx", m, cl->F, q->V);
578 
579 	if (qfq_update_class(q, grp, cl)) {
580 		uint64_t old_F = grp->F;
581 		cl = qfq_slot_scan(grp);
582 		if (!cl) { /* group gone, remove from ER */
583 			__clear_bit(grp->index, &q->bitmaps[ER]);
584 			// grp->S = grp->F + 1; // XXX debugging only
585 		} else {
586 			uint64_t roundedS = qfq_round_down(cl->S, grp->slot_shift);
587 			unsigned int s;
588 
589 			if (grp->S == roundedS)
590 				goto skip_unblock;
591 			grp->S = roundedS;
592 			grp->F = roundedS + (2ULL << grp->slot_shift);
593 			/* remove from ER and put in the new set */
594 			__clear_bit(grp->index, &q->bitmaps[ER]);
595 			s = qfq_calc_state(q, grp);
596 			__set_bit(grp->index, &q->bitmaps[s]);
597 		}
598 		/* we need to unblock even if the group has gone away */
599 		qfq_unblock_groups(q, grp->index, old_F);
600 	}
601 
602 skip_unblock:
603 	qfq_update_eligible(q, old_V);
604 	NO(if (!q->bitmaps[ER] && q->queued)
605 		dump_sched(q, "end dequeue");)
606 
607 	return m;
608 }
609 
610 /*
611  * Assign a reasonable start time for a new flow k in group i.
612  * Admissible values for \hat(F) are multiples of \sigma_i
613  * no greater than V+\sigma_i . Larger values mean that
614  * we had a wraparound so we consider the timestamp to be stale.
615  *
616  * If F is not stale and F >= V then we set S = F.
617  * Otherwise we should assign S = V, but this may violate
618  * the ordering in ER. So, if we have groups in ER, set S to
619  * the F_j of the first group j which would be blocking us.
620  * We are guaranteed not to move S backward because
621  * otherwise our group i would still be blocked.
622  */
623 static inline void
624 qfq_update_start(struct qfq_sched *q, struct qfq_class *cl)
625 {
626 	unsigned long mask;
627 	uint64_t limit, roundedF;
628 	int slot_shift = cl->grp->slot_shift;
629 
630 	roundedF = qfq_round_down(cl->F, slot_shift);
631 	limit = qfq_round_down(q->V, slot_shift) + (1ULL << slot_shift);
632 
633 	if (!qfq_gt(cl->F, q->V) || qfq_gt(roundedF, limit)) {
634 		/* timestamp was stale */
635 		mask = mask_from(q->bitmaps[ER], cl->grp->index);
636 		if (mask) {
637 			struct qfq_group *next = qfq_ffs(q, mask);
638 			if (qfq_gt(roundedF, next->F)) {
639 				/* from pv 71261956973ba9e0637848a5adb4a5819b4bae83 */
640 				if (qfq_gt(limit, next->F))
641 					cl->S = next->F;
642 				else /* preserve timestamp correctness */
643 					cl->S = limit;
644 				return;
645 			}
646 		}
647 		cl->S = q->V;
648 	} else { /* timestamp is not stale */
649 		cl->S = cl->F;
650 	}
651 }
652 
653 static int
654 qfq_enqueue(struct dn_sch_inst *si, struct dn_queue *_q, struct mbuf *m)
655 {
656 	struct qfq_sched *q = (struct qfq_sched *)(si + 1);
657 	struct qfq_group *grp;
658 	struct qfq_class *cl = (struct qfq_class *)_q;
659 	uint64_t roundedS;
660 	int s;
661 
662 	NO(q->loops++;)
663 	DX(4, "len %d flow %p inv_w 0x%x grp %d", m->m_pkthdr.len,
664 		_q, cl->inv_w, cl->grp->index);
665 	/* XXX verify that the packet obeys the parameters */
666 	if (m != _q->mq.head) {
667 		if (dn_enqueue(_q, m, 0)) /* packet was dropped */
668 			return 1;
669 		NO(q->queued++;)
670 		if (m != _q->mq.head)
671 			return 0;
672 	}
673 	/* If reach this point, queue q was idle */
674 	grp = cl->grp;
675 	qfq_update_start(q, cl); /* adjust start time */
676 	/* compute new finish time and rounded start. */
677 	cl->F = cl->S + (uint64_t)(m->m_pkthdr.len) * cl->inv_w;
678 	roundedS = qfq_round_down(cl->S, grp->slot_shift);
679 
680 	/*
681 	 * insert cl in the correct bucket.
682 	 * If cl->S >= grp->S we don't need to adjust the
683 	 * bucket list and simply go to the insertion phase.
684 	 * Otherwise grp->S is decreasing, we must make room
685 	 * in the bucket list, and also recompute the group state.
686 	 * Finally, if there were no flows in this group and nobody
687 	 * was in ER make sure to adjust V.
688 	 */
689 	if (grp->full_slots) {
690 		if (!qfq_gt(grp->S, cl->S))
691 			goto skip_update;
692 		/* create a slot for this cl->S */
693 		qfq_slot_rotate(q, grp, roundedS);
694 		/* group was surely ineligible, remove */
695 		__clear_bit(grp->index, &q->bitmaps[IR]);
696 		__clear_bit(grp->index, &q->bitmaps[IB]);
697 	} else if (!q->bitmaps[ER] && qfq_gt(roundedS, q->V))
698 		q->V = roundedS;
699 
700 	grp->S = roundedS;
701 	grp->F = roundedS + (2ULL << grp->slot_shift); // i.e. 2\sigma_i
702 	s = qfq_calc_state(q, grp);
703 	__set_bit(grp->index, &q->bitmaps[s]);
704 	ND("new state %d 0x%x", s, q->bitmaps[s]);
705 	ND("S %llx F %llx V %llx", cl->S, cl->F, q->V);
706 skip_update:
707 	qfq_slot_insert(grp, cl, roundedS);
708 
709 	return 0;
710 }
711 
712 #if 0
713 static inline void
714 qfq_slot_remove(struct qfq_sched *q, struct qfq_group *grp,
715 	struct qfq_class *cl, struct qfq_class **pprev)
716 {
717 	unsigned int i, offset;
718 	uint64_t roundedS;
719 
720 	roundedS = qfq_round_down(cl->S, grp->slot_shift);
721 	offset = (roundedS - grp->S) >> grp->slot_shift;
722 	i = (grp->front + offset) % QFQ_MAX_SLOTS;
723 
724 #ifdef notyet
725 	if (!pprev) {
726 		pprev = &grp->slots[i];
727 		while (*pprev && *pprev != cl)
728 			pprev = &(*pprev)->next;
729 	}
730 #endif
731 
732 	*pprev = cl->next;
733 	if (!grp->slots[i])
734 		__clear_bit(offset, &grp->full_slots);
735 }
736 
737 /*
738  * called to forcibly destroy a queue.
739  * If the queue is not in the front bucket, or if it has
740  * other queues in the front bucket, we can simply remove
741  * the queue with no other side effects.
742  * Otherwise we must propagate the event up.
743  * XXX description to be completed.
744  */
745 static void
746 qfq_deactivate_class(struct qfq_sched *q, struct qfq_class *cl,
747 				 struct qfq_class **pprev)
748 {
749 	struct qfq_group *grp = &q->groups[cl->index];
750 	unsigned long mask;
751 	uint64_t roundedS;
752 	int s;
753 
754 	cl->F = cl->S;	// not needed if the class goes away.
755 	qfq_slot_remove(q, grp, cl, pprev);
756 
757 	if (!grp->full_slots) {
758 		/* nothing left in the group, remove from all sets.
759 		 * Do ER last because if we were blocking other groups
760 		 * we must unblock them.
761 		 */
762 		__clear_bit(grp->index, &q->bitmaps[IR]);
763 		__clear_bit(grp->index, &q->bitmaps[EB]);
764 		__clear_bit(grp->index, &q->bitmaps[IB]);
765 
766 		if (test_bit(grp->index, &q->bitmaps[ER]) &&
767 		    !(q->bitmaps[ER] & ~((1UL << grp->index) - 1))) {
768 			mask = q->bitmaps[ER] & ((1UL << grp->index) - 1);
769 			if (mask)
770 				mask = ~((1UL << __fls(mask)) - 1);
771 			else
772 				mask = ~0UL;
773 			qfq_move_groups(q, mask, EB, ER);
774 			qfq_move_groups(q, mask, IB, IR);
775 		}
776 		__clear_bit(grp->index, &q->bitmaps[ER]);
777 	} else if (!grp->slots[grp->front]) {
778 		cl = qfq_slot_scan(grp);
779 		roundedS = qfq_round_down(cl->S, grp->slot_shift);
780 		if (grp->S != roundedS) {
781 			__clear_bit(grp->index, &q->bitmaps[ER]);
782 			__clear_bit(grp->index, &q->bitmaps[IR]);
783 			__clear_bit(grp->index, &q->bitmaps[EB]);
784 			__clear_bit(grp->index, &q->bitmaps[IB]);
785 			grp->S = roundedS;
786 			grp->F = roundedS + (2ULL << grp->slot_shift);
787 			s = qfq_calc_state(q, grp);
788 			__set_bit(grp->index, &q->bitmaps[s]);
789 		}
790 	}
791 	qfq_update_eligible(q, q->V);
792 }
793 #endif
794 
795 static int
796 qfq_new_fsk(struct dn_fsk *f)
797 {
798 	ipdn_bound_var(&f->fs.par[0], 1, 1, QFQ_MAX_WEIGHT, "qfq weight");
799 	ipdn_bound_var(&f->fs.par[1], 1500, 1, 2000, "qfq maxlen");
800 	ND("weight %d len %d\n", f->fs.par[0], f->fs.par[1]);
801 	return 0;
802 }
803 
804 /*
805  * initialize a new scheduler instance
806  */
807 static int
808 qfq_new_sched(struct dn_sch_inst *si)
809 {
810 	struct qfq_sched *q = (struct qfq_sched *)(si + 1);
811 	struct qfq_group *grp;
812 	int i;
813 
814 	for (i = 0; i <= QFQ_MAX_INDEX; i++) {
815 		grp = &q->groups[i];
816 		grp->index = i;
817 		grp->slot_shift = QFQ_MTU_SHIFT + FRAC_BITS -
818 					(QFQ_MAX_INDEX - i);
819 	}
820 	return 0;
821 }
822 
823 /*
824  * QFQ scheduler descriptor
825  */
826 static struct dn_alg qfq_desc = {
827 	_SI( .type = ) DN_SCHED_QFQ,
828 	_SI( .name = ) "QFQ",
829 	_SI( .flags = ) DN_MULTIQUEUE,
830 
831 	_SI( .schk_datalen = ) 0,
832 	_SI( .si_datalen = ) sizeof(struct qfq_sched),
833 	_SI( .q_datalen = ) sizeof(struct qfq_class) - sizeof(struct dn_queue),
834 
835 	_SI( .enqueue = ) qfq_enqueue,
836 	_SI( .dequeue = ) qfq_dequeue,
837 
838 	_SI( .config = )  NULL,
839 	_SI( .destroy = )  NULL,
840 	_SI( .new_sched = ) qfq_new_sched,
841 	_SI( .free_sched = )  NULL,
842 	_SI( .new_fsk = ) qfq_new_fsk,
843 	_SI( .free_fsk = )  NULL,
844 	_SI( .new_queue = ) qfq_new_queue,
845 	_SI( .free_queue = ) qfq_free_queue,
846 #ifdef NEW_AQM
847 	_SI( .getconfig = )  NULL,
848 #endif
849 };
850 
851 DECLARE_DNSCHED_MODULE(dn_qfq, &qfq_desc);
852 
853 #ifdef QFQ_DEBUG
854 static void
855 dump_groups(struct qfq_sched *q, uint32_t mask)
856 {
857 	int i, j;
858 
859 	for (i = 0; i < QFQ_MAX_INDEX + 1; i++) {
860 		struct qfq_group *g = &q->groups[i];
861 
862 		if (0 == (mask & (1<<i)))
863 			continue;
864 		for (j = 0; j < QFQ_MAX_SLOTS; j++) {
865 			if (g->slots[j])
866 				D("    bucket %d %p", j, g->slots[j]);
867 		}
868 		D("full_slots 0x%llx", (_P64)g->full_slots);
869 		D("        %2d S 0x%20llx F 0x%llx %c", i,
870 			(_P64)g->S, (_P64)g->F,
871 			mask & (1<<i) ? '1' : '0');
872 	}
873 }
874 
875 static void
876 dump_sched(struct qfq_sched *q, const char *msg)
877 {
878 	D("--- in %s: ---", msg);
879 	D("loops %d queued %d V 0x%llx", q->loops, q->queued, (_P64)q->V);
880 	D("    ER 0x%08x", (unsigned)q->bitmaps[ER]);
881 	D("    EB 0x%08x", (unsigned)q->bitmaps[EB]);
882 	D("    IR 0x%08x", (unsigned)q->bitmaps[IR]);
883 	D("    IB 0x%08x", (unsigned)q->bitmaps[IB]);
884 	dump_groups(q, 0xffffffff);
885 };
886 #endif /* QFQ_DEBUG */
887