xref: /freebsd/sys/netpfil/ipfw/ip_dn_io.c (revision e17f5b1d)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2010 Luigi Rizzo, Riccardo Panicucci, Universita` di Pisa
5  * All rights reserved
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28 
29 /*
30  * Dummynet portions related to packet handling.
31  */
32 #include <sys/cdefs.h>
33 __FBSDID("$FreeBSD$");
34 
35 #include "opt_inet6.h"
36 
37 #include <sys/param.h>
38 #include <sys/systm.h>
39 #include <sys/malloc.h>
40 #include <sys/mbuf.h>
41 #include <sys/kernel.h>
42 #include <sys/lock.h>
43 #include <sys/module.h>
44 #include <sys/mutex.h>
45 #include <sys/priv.h>
46 #include <sys/proc.h>
47 #include <sys/rwlock.h>
48 #include <sys/socket.h>
49 #include <sys/time.h>
50 #include <sys/sysctl.h>
51 
52 #include <net/if.h>	/* IFNAMSIZ, struct ifaddr, ifq head, lock.h mutex.h */
53 #include <net/if_var.h>	/* NET_EPOCH_... */
54 #include <net/netisr.h>
55 #include <net/vnet.h>
56 
57 #include <netinet/in.h>
58 #include <netinet/ip.h>		/* ip_len, ip_off */
59 #include <netinet/ip_var.h>	/* ip_output(), IP_FORWARDING */
60 #include <netinet/ip_fw.h>
61 #include <netinet/ip_dummynet.h>
62 #include <netinet/if_ether.h> /* various ether_* routines */
63 #include <netinet/ip6.h>       /* for ip6_input, ip6_output prototypes */
64 #include <netinet6/ip6_var.h>
65 
66 #include <netpfil/ipfw/ip_fw_private.h>
67 #include <netpfil/ipfw/dn_heap.h>
68 #include <netpfil/ipfw/ip_dn_private.h>
69 #ifdef NEW_AQM
70 #include <netpfil/ipfw/dn_aqm.h>
71 #endif
72 #include <netpfil/ipfw/dn_sched.h>
73 
74 /*
75  * We keep a private variable for the simulation time, but we could
76  * probably use an existing one ("softticks" in sys/kern/kern_timeout.c)
77  * instead of dn_cfg.curr_time
78  */
79 
80 struct dn_parms dn_cfg;
81 //VNET_DEFINE(struct dn_parms, _base_dn_cfg);
82 
83 static long tick_last;		/* Last tick duration (usec). */
84 static long tick_delta;		/* Last vs standard tick diff (usec). */
85 static long tick_delta_sum;	/* Accumulated tick difference (usec).*/
86 static long tick_adjustment;	/* Tick adjustments done. */
87 static long tick_lost;		/* Lost(coalesced) ticks number. */
88 /* Adjusted vs non-adjusted curr_time difference (ticks). */
89 static long tick_diff;
90 
91 static unsigned long	io_pkt;
92 static unsigned long	io_pkt_fast;
93 
94 #ifdef NEW_AQM
95 unsigned long	io_pkt_drop;
96 #else
97 static unsigned long	io_pkt_drop;
98 #endif
99 /*
100  * We use a heap to store entities for which we have pending timer events.
101  * The heap is checked at every tick and all entities with expired events
102  * are extracted.
103  */
104 
105 MALLOC_DEFINE(M_DUMMYNET, "dummynet", "dummynet heap");
106 
107 extern	void (*bridge_dn_p)(struct mbuf *, struct ifnet *);
108 
109 #ifdef SYSCTL_NODE
110 
111 /*
112  * Because of the way the SYSBEGIN/SYSEND macros work on other
113  * platforms, there should not be functions between them.
114  * So keep the handlers outside the block.
115  */
116 static int
117 sysctl_hash_size(SYSCTL_HANDLER_ARGS)
118 {
119 	int error, value;
120 
121 	value = dn_cfg.hash_size;
122 	error = sysctl_handle_int(oidp, &value, 0, req);
123 	if (error != 0 || req->newptr == NULL)
124 		return (error);
125 	if (value < 16 || value > 65536)
126 		return (EINVAL);
127 	dn_cfg.hash_size = value;
128 	return (0);
129 }
130 
131 static int
132 sysctl_limits(SYSCTL_HANDLER_ARGS)
133 {
134 	int error;
135 	long value;
136 
137 	if (arg2 != 0)
138 		value = dn_cfg.slot_limit;
139 	else
140 		value = dn_cfg.byte_limit;
141 	error = sysctl_handle_long(oidp, &value, 0, req);
142 
143 	if (error != 0 || req->newptr == NULL)
144 		return (error);
145 	if (arg2 != 0) {
146 		if (value < 1)
147 			return (EINVAL);
148 		dn_cfg.slot_limit = value;
149 	} else {
150 		if (value < 1500)
151 			return (EINVAL);
152 		dn_cfg.byte_limit = value;
153 	}
154 	return (0);
155 }
156 
157 SYSBEGIN(f4)
158 
159 SYSCTL_DECL(_net_inet);
160 SYSCTL_DECL(_net_inet_ip);
161 #ifdef NEW_AQM
162 SYSCTL_NODE(_net_inet_ip, OID_AUTO, dummynet, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
163     "Dummynet");
164 #else
165 static SYSCTL_NODE(_net_inet_ip, OID_AUTO, dummynet,
166     CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
167     "Dummynet");
168 #endif
169 
170 /* wrapper to pass dn_cfg fields to SYSCTL_* */
171 //#define DC(x)	(&(VNET_NAME(_base_dn_cfg).x))
172 #define DC(x)	(&(dn_cfg.x))
173 /* parameters */
174 
175 
176 SYSCTL_PROC(_net_inet_ip_dummynet, OID_AUTO, hash_size,
177     CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
178     0, 0, sysctl_hash_size, "I",
179     "Default hash table size");
180 
181 
182 SYSCTL_PROC(_net_inet_ip_dummynet, OID_AUTO, pipe_slot_limit,
183     CTLTYPE_LONG | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
184     0, 1, sysctl_limits, "L",
185     "Upper limit in slots for pipe queue.");
186 SYSCTL_PROC(_net_inet_ip_dummynet, OID_AUTO, pipe_byte_limit,
187     CTLTYPE_LONG | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
188     0, 0, sysctl_limits, "L",
189     "Upper limit in bytes for pipe queue.");
190 SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, io_fast,
191     CTLFLAG_RW, DC(io_fast), 0, "Enable fast dummynet io.");
192 SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, debug,
193     CTLFLAG_RW, DC(debug), 0, "Dummynet debug level");
194 
195 /* RED parameters */
196 SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, red_lookup_depth,
197     CTLFLAG_RD, DC(red_lookup_depth), 0, "Depth of RED lookup table");
198 SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, red_avg_pkt_size,
199     CTLFLAG_RD, DC(red_avg_pkt_size), 0, "RED Medium packet size");
200 SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, red_max_pkt_size,
201     CTLFLAG_RD, DC(red_max_pkt_size), 0, "RED Max packet size");
202 
203 /* time adjustment */
204 SYSCTL_LONG(_net_inet_ip_dummynet, OID_AUTO, tick_delta,
205     CTLFLAG_RD, &tick_delta, 0, "Last vs standard tick difference (usec).");
206 SYSCTL_LONG(_net_inet_ip_dummynet, OID_AUTO, tick_delta_sum,
207     CTLFLAG_RD, &tick_delta_sum, 0, "Accumulated tick difference (usec).");
208 SYSCTL_LONG(_net_inet_ip_dummynet, OID_AUTO, tick_adjustment,
209     CTLFLAG_RD, &tick_adjustment, 0, "Tick adjustments done.");
210 SYSCTL_LONG(_net_inet_ip_dummynet, OID_AUTO, tick_diff,
211     CTLFLAG_RD, &tick_diff, 0,
212     "Adjusted vs non-adjusted curr_time difference (ticks).");
213 SYSCTL_LONG(_net_inet_ip_dummynet, OID_AUTO, tick_lost,
214     CTLFLAG_RD, &tick_lost, 0,
215     "Number of ticks coalesced by dummynet taskqueue.");
216 
217 /* Drain parameters */
218 SYSCTL_UINT(_net_inet_ip_dummynet, OID_AUTO, expire,
219     CTLFLAG_RW, DC(expire), 0, "Expire empty queues/pipes");
220 SYSCTL_UINT(_net_inet_ip_dummynet, OID_AUTO, expire_cycle,
221     CTLFLAG_RD, DC(expire_cycle), 0, "Expire cycle for queues/pipes");
222 
223 /* statistics */
224 SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, schk_count,
225     CTLFLAG_RD, DC(schk_count), 0, "Number of schedulers");
226 SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, si_count,
227     CTLFLAG_RD, DC(si_count), 0, "Number of scheduler instances");
228 SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, fsk_count,
229     CTLFLAG_RD, DC(fsk_count), 0, "Number of flowsets");
230 SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, queue_count,
231     CTLFLAG_RD, DC(queue_count), 0, "Number of queues");
232 SYSCTL_ULONG(_net_inet_ip_dummynet, OID_AUTO, io_pkt,
233     CTLFLAG_RD, &io_pkt, 0,
234     "Number of packets passed to dummynet.");
235 SYSCTL_ULONG(_net_inet_ip_dummynet, OID_AUTO, io_pkt_fast,
236     CTLFLAG_RD, &io_pkt_fast, 0,
237     "Number of packets bypassed dummynet scheduler.");
238 SYSCTL_ULONG(_net_inet_ip_dummynet, OID_AUTO, io_pkt_drop,
239     CTLFLAG_RD, &io_pkt_drop, 0,
240     "Number of packets dropped by dummynet.");
241 #undef DC
242 SYSEND
243 
244 #endif
245 
246 static void	dummynet_send(struct mbuf *);
247 
248 /*
249  * Return the mbuf tag holding the dummynet state (it should
250  * be the first one on the list).
251  */
252 struct dn_pkt_tag *
253 dn_tag_get(struct mbuf *m)
254 {
255 	struct m_tag *mtag = m_tag_first(m);
256 #ifdef NEW_AQM
257 	/* XXX: to skip ts m_tag. For Debugging only*/
258 	if (mtag != NULL && mtag->m_tag_id == DN_AQM_MTAG_TS) {
259 		m_tag_delete(m,mtag);
260 		mtag = m_tag_first(m);
261 		D("skip TS tag");
262 	}
263 #endif
264 	KASSERT(mtag != NULL &&
265 	    mtag->m_tag_cookie == MTAG_ABI_COMPAT &&
266 	    mtag->m_tag_id == PACKET_TAG_DUMMYNET,
267 	    ("packet on dummynet queue w/o dummynet tag!"));
268 	return (struct dn_pkt_tag *)(mtag+1);
269 }
270 
271 #ifndef NEW_AQM
272 static inline void
273 mq_append(struct mq *q, struct mbuf *m)
274 {
275 #ifdef USERSPACE
276 	// buffers from netmap need to be copied
277 	// XXX note that the routine is not expected to fail
278 	ND("append %p to %p", m, q);
279 	if (m->m_flags & M_STACK) {
280 		struct mbuf *m_new;
281 		void *p;
282 		int l, ofs;
283 
284 		ofs = m->m_data - m->__m_extbuf;
285 		// XXX allocate
286 		MGETHDR(m_new, M_NOWAIT, MT_DATA);
287 		ND("*** WARNING, volatile buf %p ext %p %d dofs %d m_new %p",
288 			m, m->__m_extbuf, m->__m_extlen, ofs, m_new);
289 		p = m_new->__m_extbuf;	/* new pointer */
290 		l = m_new->__m_extlen;	/* new len */
291 		if (l <= m->__m_extlen) {
292 			panic("extlen too large");
293 		}
294 
295 		*m_new = *m;	// copy
296 		m_new->m_flags &= ~M_STACK;
297 		m_new->__m_extbuf = p; // point to new buffer
298 		_pkt_copy(m->__m_extbuf, p, m->__m_extlen);
299 		m_new->m_data = p + ofs;
300 		m = m_new;
301 	}
302 #endif /* USERSPACE */
303 	if (q->head == NULL)
304 		q->head = m;
305 	else
306 		q->tail->m_nextpkt = m;
307 	q->count++;
308 	q->tail = m;
309 	m->m_nextpkt = NULL;
310 }
311 #endif
312 
313 /*
314  * Dispose a list of packet. Use a functions so if we need to do
315  * more work, this is a central point to do it.
316  */
317 void dn_free_pkts(struct mbuf *mnext)
318 {
319         struct mbuf *m;
320 
321         while ((m = mnext) != NULL) {
322                 mnext = m->m_nextpkt;
323                 FREE_PKT(m);
324         }
325 }
326 
327 static int
328 red_drops (struct dn_queue *q, int len)
329 {
330 	/*
331 	 * RED algorithm
332 	 *
333 	 * RED calculates the average queue size (avg) using a low-pass filter
334 	 * with an exponential weighted (w_q) moving average:
335 	 * 	avg  <-  (1-w_q) * avg + w_q * q_size
336 	 * where q_size is the queue length (measured in bytes or * packets).
337 	 *
338 	 * If q_size == 0, we compute the idle time for the link, and set
339 	 *	avg = (1 - w_q)^(idle/s)
340 	 * where s is the time needed for transmitting a medium-sized packet.
341 	 *
342 	 * Now, if avg < min_th the packet is enqueued.
343 	 * If avg > max_th the packet is dropped. Otherwise, the packet is
344 	 * dropped with probability P function of avg.
345 	 */
346 
347 	struct dn_fsk *fs = q->fs;
348 	int64_t p_b = 0;
349 
350 	/* Queue in bytes or packets? */
351 	uint32_t q_size = (fs->fs.flags & DN_QSIZE_BYTES) ?
352 	    q->ni.len_bytes : q->ni.length;
353 
354 	/* Average queue size estimation. */
355 	if (q_size != 0) {
356 		/* Queue is not empty, avg <- avg + (q_size - avg) * w_q */
357 		int diff = SCALE(q_size) - q->avg;
358 		int64_t v = SCALE_MUL((int64_t)diff, (int64_t)fs->w_q);
359 
360 		q->avg += (int)v;
361 	} else {
362 		/*
363 		 * Queue is empty, find for how long the queue has been
364 		 * empty and use a lookup table for computing
365 		 * (1 - * w_q)^(idle_time/s) where s is the time to send a
366 		 * (small) packet.
367 		 * XXX check wraps...
368 		 */
369 		if (q->avg) {
370 			u_int t = div64((dn_cfg.curr_time - q->q_time), fs->lookup_step);
371 
372 			q->avg = (t < fs->lookup_depth) ?
373 			    SCALE_MUL(q->avg, fs->w_q_lookup[t]) : 0;
374 		}
375 	}
376 
377 	/* Should i drop? */
378 	if (q->avg < fs->min_th) {
379 		q->count = -1;
380 		return (0);	/* accept packet */
381 	}
382 	if (q->avg >= fs->max_th) {	/* average queue >=  max threshold */
383 		if (fs->fs.flags & DN_IS_ECN)
384 			return (1);
385 		if (fs->fs.flags & DN_IS_GENTLE_RED) {
386 			/*
387 			 * According to Gentle-RED, if avg is greater than
388 			 * max_th the packet is dropped with a probability
389 			 *	 p_b = c_3 * avg - c_4
390 			 * where c_3 = (1 - max_p) / max_th
391 			 *       c_4 = 1 - 2 * max_p
392 			 */
393 			p_b = SCALE_MUL((int64_t)fs->c_3, (int64_t)q->avg) -
394 			    fs->c_4;
395 		} else {
396 			q->count = -1;
397 			return (1);
398 		}
399 	} else if (q->avg > fs->min_th) {
400 		if (fs->fs.flags & DN_IS_ECN)
401 			return (1);
402 		/*
403 		 * We compute p_b using the linear dropping function
404 		 *	 p_b = c_1 * avg - c_2
405 		 * where c_1 = max_p / (max_th - min_th)
406 		 * 	 c_2 = max_p * min_th / (max_th - min_th)
407 		 */
408 		p_b = SCALE_MUL((int64_t)fs->c_1, (int64_t)q->avg) - fs->c_2;
409 	}
410 
411 	if (fs->fs.flags & DN_QSIZE_BYTES)
412 		p_b = div64((p_b * len) , fs->max_pkt_size);
413 	if (++q->count == 0)
414 		q->random = random() & 0xffff;
415 	else {
416 		/*
417 		 * q->count counts packets arrived since last drop, so a greater
418 		 * value of q->count means a greater packet drop probability.
419 		 */
420 		if (SCALE_MUL(p_b, SCALE((int64_t)q->count)) > q->random) {
421 			q->count = 0;
422 			/* After a drop we calculate a new random value. */
423 			q->random = random() & 0xffff;
424 			return (1);	/* drop */
425 		}
426 	}
427 	/* End of RED algorithm. */
428 
429 	return (0);	/* accept */
430 
431 }
432 
433 /*
434  * ECN/ECT Processing (partially adopted from altq)
435  */
436 #ifndef NEW_AQM
437 static
438 #endif
439 int
440 ecn_mark(struct mbuf* m)
441 {
442 	struct ip *ip;
443 	ip = (struct ip *)mtodo(m, dn_tag_get(m)->iphdr_off);
444 
445 	switch (ip->ip_v) {
446 	case IPVERSION:
447 	{
448 		uint16_t old;
449 
450 		if ((ip->ip_tos & IPTOS_ECN_MASK) == IPTOS_ECN_NOTECT)
451 			return (0);	/* not-ECT */
452 		if ((ip->ip_tos & IPTOS_ECN_MASK) == IPTOS_ECN_CE)
453 			return (1);	/* already marked */
454 
455 		/*
456 		 * ecn-capable but not marked,
457 		 * mark CE and update checksum
458 		 */
459 		old = *(uint16_t *)ip;
460 		ip->ip_tos |= IPTOS_ECN_CE;
461 		ip->ip_sum = cksum_adjust(ip->ip_sum, old, *(uint16_t *)ip);
462 		return (1);
463 	}
464 #ifdef INET6
465 	case (IPV6_VERSION >> 4):
466 	{
467 		struct ip6_hdr *ip6 = (struct ip6_hdr *)ip;
468 		u_int32_t flowlabel;
469 
470 		flowlabel = ntohl(ip6->ip6_flow);
471 		if ((flowlabel >> 28) != 6)
472 			return (0);	/* version mismatch! */
473 		if ((flowlabel & (IPTOS_ECN_MASK << 20)) ==
474 		    (IPTOS_ECN_NOTECT << 20))
475 			return (0);	/* not-ECT */
476 		if ((flowlabel & (IPTOS_ECN_MASK << 20)) ==
477 		    (IPTOS_ECN_CE << 20))
478 			return (1);	/* already marked */
479 		/*
480 		 * ecn-capable but not marked, mark CE
481 		 */
482 		flowlabel |= (IPTOS_ECN_CE << 20);
483 		ip6->ip6_flow = htonl(flowlabel);
484 		return (1);
485 	}
486 #endif
487 	}
488 	return (0);
489 }
490 
491 /*
492  * Enqueue a packet in q, subject to space and queue management policy
493  * (whose parameters are in q->fs).
494  * Update stats for the queue and the scheduler.
495  * Return 0 on success, 1 on drop. The packet is consumed anyways.
496  */
497 int
498 dn_enqueue(struct dn_queue *q, struct mbuf* m, int drop)
499 {
500 	struct dn_fs *f;
501 	struct dn_flow *ni;	/* stats for scheduler instance */
502 	uint64_t len;
503 
504 	if (q->fs == NULL || q->_si == NULL) {
505 		printf("%s fs %p si %p, dropping\n",
506 			__FUNCTION__, q->fs, q->_si);
507 		FREE_PKT(m);
508 		return 1;
509 	}
510 	f = &(q->fs->fs);
511 	ni = &q->_si->ni;
512 	len = m->m_pkthdr.len;
513 	/* Update statistics, then check reasons to drop pkt. */
514 	q->ni.tot_bytes += len;
515 	q->ni.tot_pkts++;
516 	ni->tot_bytes += len;
517 	ni->tot_pkts++;
518 	if (drop)
519 		goto drop;
520 	if (f->plr && random() < f->plr)
521 		goto drop;
522 #ifdef NEW_AQM
523 	/* Call AQM enqueue function */
524 	if (q->fs->aqmfp)
525 		return q->fs->aqmfp->enqueue(q ,m);
526 #endif
527 	if (f->flags & DN_IS_RED && red_drops(q, m->m_pkthdr.len)) {
528 		if (!(f->flags & DN_IS_ECN) || !ecn_mark(m))
529 			goto drop;
530 	}
531 	if (f->flags & DN_QSIZE_BYTES) {
532 		if (q->ni.len_bytes > f->qsize)
533 			goto drop;
534 	} else if (q->ni.length >= f->qsize) {
535 		goto drop;
536 	}
537 	mq_append(&q->mq, m);
538 	q->ni.length++;
539 	q->ni.len_bytes += len;
540 	ni->length++;
541 	ni->len_bytes += len;
542 	return (0);
543 
544 drop:
545 	io_pkt_drop++;
546 	q->ni.drops++;
547 	ni->drops++;
548 	FREE_PKT(m);
549 	return (1);
550 }
551 
552 /*
553  * Fetch packets from the delay line which are due now. If there are
554  * leftover packets, reinsert the delay line in the heap.
555  * Runs under scheduler lock.
556  */
557 static void
558 transmit_event(struct mq *q, struct delay_line *dline, uint64_t now)
559 {
560 	struct mbuf *m;
561 	struct dn_pkt_tag *pkt = NULL;
562 
563 	dline->oid.subtype = 0; /* not in heap */
564 	while ((m = dline->mq.head) != NULL) {
565 		pkt = dn_tag_get(m);
566 		if (!DN_KEY_LEQ(pkt->output_time, now))
567 			break;
568 		dline->mq.head = m->m_nextpkt;
569 		dline->mq.count--;
570 		mq_append(q, m);
571 	}
572 	if (m != NULL) {
573 		dline->oid.subtype = 1; /* in heap */
574 		heap_insert(&dn_cfg.evheap, pkt->output_time, dline);
575 	}
576 }
577 
578 /*
579  * Convert the additional MAC overheads/delays into an equivalent
580  * number of bits for the given data rate. The samples are
581  * in milliseconds so we need to divide by 1000.
582  */
583 static uint64_t
584 extra_bits(struct mbuf *m, struct dn_schk *s)
585 {
586 	int index;
587 	uint64_t bits;
588 	struct dn_profile *pf = s->profile;
589 
590 	if (!pf || pf->samples_no == 0)
591 		return 0;
592 	index  = random() % pf->samples_no;
593 	bits = div64((uint64_t)pf->samples[index] * s->link.bandwidth, 1000);
594 	if (index >= pf->loss_level) {
595 		struct dn_pkt_tag *dt = dn_tag_get(m);
596 		if (dt)
597 			dt->dn_dir = DIR_DROP;
598 	}
599 	return bits;
600 }
601 
602 /*
603  * Send traffic from a scheduler instance due by 'now'.
604  * Return a pointer to the head of the queue.
605  */
606 static struct mbuf *
607 serve_sched(struct mq *q, struct dn_sch_inst *si, uint64_t now)
608 {
609 	struct mq def_q;
610 	struct dn_schk *s = si->sched;
611 	struct mbuf *m = NULL;
612 	int delay_line_idle = (si->dline.mq.head == NULL);
613 	int done, bw;
614 
615 	if (q == NULL) {
616 		q = &def_q;
617 		q->head = NULL;
618 	}
619 
620 	bw = s->link.bandwidth;
621 	si->kflags &= ~DN_ACTIVE;
622 
623 	if (bw > 0)
624 		si->credit += (now - si->sched_time) * bw;
625 	else
626 		si->credit = 0;
627 	si->sched_time = now;
628 	done = 0;
629 	while (si->credit >= 0 && (m = s->fp->dequeue(si)) != NULL) {
630 		uint64_t len_scaled;
631 
632 		done++;
633 		len_scaled = (bw == 0) ? 0 : hz *
634 			(m->m_pkthdr.len * 8 + extra_bits(m, s));
635 		si->credit -= len_scaled;
636 		/* Move packet in the delay line */
637 		dn_tag_get(m)->output_time = dn_cfg.curr_time + s->link.delay ;
638 		mq_append(&si->dline.mq, m);
639 	}
640 
641 	/*
642 	 * If credit >= 0 the instance is idle, mark time.
643 	 * Otherwise put back in the heap, and adjust the output
644 	 * time of the last inserted packet, m, which was too early.
645 	 */
646 	if (si->credit >= 0) {
647 		si->idle_time = now;
648 	} else {
649 		uint64_t t;
650 		KASSERT (bw > 0, ("bw=0 and credit<0 ?"));
651 		t = div64(bw - 1 - si->credit, bw);
652 		if (m)
653 			dn_tag_get(m)->output_time += t;
654 		si->kflags |= DN_ACTIVE;
655 		heap_insert(&dn_cfg.evheap, now + t, si);
656 	}
657 	if (delay_line_idle && done)
658 		transmit_event(q, &si->dline, now);
659 	return q->head;
660 }
661 
662 /*
663  * The timer handler for dummynet. Time is computed in ticks, but
664  * but the code is tolerant to the actual rate at which this is called.
665  * Once complete, the function reschedules itself for the next tick.
666  */
667 void
668 dummynet_task(void *context, int pending)
669 {
670 	struct timeval t;
671 	struct mq q = { NULL, NULL }; /* queue to accumulate results */
672 
673 	CURVNET_SET((struct vnet *)context);
674 
675 	DN_BH_WLOCK();
676 
677 	/* Update number of lost(coalesced) ticks. */
678 	tick_lost += pending - 1;
679 
680 	getmicrouptime(&t);
681 	/* Last tick duration (usec). */
682 	tick_last = (t.tv_sec - dn_cfg.prev_t.tv_sec) * 1000000 +
683 	(t.tv_usec - dn_cfg.prev_t.tv_usec);
684 	/* Last tick vs standard tick difference (usec). */
685 	tick_delta = (tick_last * hz - 1000000) / hz;
686 	/* Accumulated tick difference (usec). */
687 	tick_delta_sum += tick_delta;
688 
689 	dn_cfg.prev_t = t;
690 
691 	/*
692 	* Adjust curr_time if the accumulated tick difference is
693 	* greater than the 'standard' tick. Since curr_time should
694 	* be monotonically increasing, we do positive adjustments
695 	* as required, and throttle curr_time in case of negative
696 	* adjustment.
697 	*/
698 	dn_cfg.curr_time++;
699 	if (tick_delta_sum - tick >= 0) {
700 		int diff = tick_delta_sum / tick;
701 
702 		dn_cfg.curr_time += diff;
703 		tick_diff += diff;
704 		tick_delta_sum %= tick;
705 		tick_adjustment++;
706 	} else if (tick_delta_sum + tick <= 0) {
707 		dn_cfg.curr_time--;
708 		tick_diff--;
709 		tick_delta_sum += tick;
710 		tick_adjustment++;
711 	}
712 
713 	/* serve pending events, accumulate in q */
714 	for (;;) {
715 		struct dn_id *p;    /* generic parameter to handler */
716 
717 		if (dn_cfg.evheap.elements == 0 ||
718 		    DN_KEY_LT(dn_cfg.curr_time, HEAP_TOP(&dn_cfg.evheap)->key))
719 			break;
720 		p = HEAP_TOP(&dn_cfg.evheap)->object;
721 		heap_extract(&dn_cfg.evheap, NULL);
722 
723 		if (p->type == DN_SCH_I) {
724 			serve_sched(&q, (struct dn_sch_inst *)p, dn_cfg.curr_time);
725 		} else { /* extracted a delay line */
726 			transmit_event(&q, (struct delay_line *)p, dn_cfg.curr_time);
727 		}
728 	}
729 	if (dn_cfg.expire && ++dn_cfg.expire_cycle >= dn_cfg.expire) {
730 		dn_cfg.expire_cycle = 0;
731 		dn_drain_scheduler();
732 		dn_drain_queue();
733 	}
734 
735 	dn_reschedule();
736 	DN_BH_WUNLOCK();
737 	if (q.head != NULL)
738 		dummynet_send(q.head);
739 	CURVNET_RESTORE();
740 }
741 
742 /*
743  * forward a chain of packets to the proper destination.
744  * This runs outside the dummynet lock.
745  */
746 static void
747 dummynet_send(struct mbuf *m)
748 {
749 	struct mbuf *n;
750 
751 	NET_EPOCH_ASSERT();
752 
753 	for (; m != NULL; m = n) {
754 		struct ifnet *ifp = NULL;	/* gcc 3.4.6 complains */
755         	struct m_tag *tag;
756 		int dst;
757 
758 		n = m->m_nextpkt;
759 		m->m_nextpkt = NULL;
760 		tag = m_tag_first(m);
761 		if (tag == NULL) { /* should not happen */
762 			dst = DIR_DROP;
763 		} else {
764 			struct dn_pkt_tag *pkt = dn_tag_get(m);
765 			/* extract the dummynet info, rename the tag
766 			 * to carry reinject info.
767 			 */
768 			if (pkt->dn_dir == (DIR_OUT | PROTO_LAYER2) &&
769 				pkt->ifp == NULL) {
770 				dst = DIR_DROP;
771 			} else {
772 				dst = pkt->dn_dir;
773 				ifp = pkt->ifp;
774 				tag->m_tag_cookie = MTAG_IPFW_RULE;
775 				tag->m_tag_id = 0;
776 			}
777 		}
778 
779 		switch (dst) {
780 		case DIR_OUT:
781 			ip_output(m, NULL, NULL, IP_FORWARDING, NULL, NULL);
782 			break ;
783 
784 		case DIR_IN :
785 			netisr_dispatch(NETISR_IP, m);
786 			break;
787 
788 #ifdef INET6
789 		case DIR_IN | PROTO_IPV6:
790 			netisr_dispatch(NETISR_IPV6, m);
791 			break;
792 
793 		case DIR_OUT | PROTO_IPV6:
794 			ip6_output(m, NULL, NULL, IPV6_FORWARDING, NULL, NULL, NULL);
795 			break;
796 #endif
797 
798 		case DIR_FWD | PROTO_IFB: /* DN_TO_IFB_FWD: */
799 			if (bridge_dn_p != NULL)
800 				((*bridge_dn_p)(m, ifp));
801 			else
802 				printf("dummynet: if_bridge not loaded\n");
803 
804 			break;
805 
806 		case DIR_IN | PROTO_LAYER2: /* DN_TO_ETH_DEMUX: */
807 			/*
808 			 * The Ethernet code assumes the Ethernet header is
809 			 * contiguous in the first mbuf header.
810 			 * Insure this is true.
811 			 */
812 			if (m->m_len < ETHER_HDR_LEN &&
813 			    (m = m_pullup(m, ETHER_HDR_LEN)) == NULL) {
814 				printf("dummynet/ether: pullup failed, "
815 				    "dropping packet\n");
816 				break;
817 			}
818 			ether_demux(m->m_pkthdr.rcvif, m);
819 			break;
820 
821 		case DIR_OUT | PROTO_LAYER2: /* DN_TO_ETH_OUT: */
822 			ether_output_frame(ifp, m);
823 			break;
824 
825 		case DIR_DROP:
826 			/* drop the packet after some time */
827 			FREE_PKT(m);
828 			break;
829 
830 		default:
831 			printf("dummynet: bad switch %d!\n", dst);
832 			FREE_PKT(m);
833 			break;
834 		}
835 	}
836 }
837 
838 static inline int
839 tag_mbuf(struct mbuf *m, int dir, struct ip_fw_args *fwa)
840 {
841 	struct dn_pkt_tag *dt;
842 	struct m_tag *mtag;
843 
844 	mtag = m_tag_get(PACKET_TAG_DUMMYNET,
845 		    sizeof(*dt), M_NOWAIT | M_ZERO);
846 	if (mtag == NULL)
847 		return 1;		/* Cannot allocate packet header. */
848 	m_tag_prepend(m, mtag);		/* Attach to mbuf chain. */
849 	dt = (struct dn_pkt_tag *)(mtag + 1);
850 	dt->rule = fwa->rule;
851 	dt->rule.info &= IPFW_ONEPASS;	/* only keep this info */
852 	dt->dn_dir = dir;
853 	dt->ifp = fwa->flags & IPFW_ARGS_OUT ? fwa->ifp : NULL;
854 	/* dt->output tame is updated as we move through */
855 	dt->output_time = dn_cfg.curr_time;
856 	dt->iphdr_off = (dir & PROTO_LAYER2) ? ETHER_HDR_LEN : 0;
857 	return 0;
858 }
859 
860 
861 /*
862  * dummynet hook for packets.
863  * We use the argument to locate the flowset fs and the sched_set sch
864  * associated to it. The we apply flow_mask and sched_mask to
865  * determine the queue and scheduler instances.
866  */
867 int
868 dummynet_io(struct mbuf **m0, struct ip_fw_args *fwa)
869 {
870 	struct mbuf *m = *m0;
871 	struct dn_fsk *fs = NULL;
872 	struct dn_sch_inst *si;
873 	struct dn_queue *q = NULL;	/* default */
874 	int fs_id, dir;
875 
876 	fs_id = (fwa->rule.info & IPFW_INFO_MASK) +
877 		((fwa->rule.info & IPFW_IS_PIPE) ? 2*DN_MAX_ID : 0);
878 	/* XXXGL: convert args to dir */
879 	if (fwa->flags & IPFW_ARGS_IN)
880 		dir = DIR_IN;
881 	else
882 		dir = DIR_OUT;
883 	if (fwa->flags & IPFW_ARGS_ETHER)
884 		dir |= PROTO_LAYER2;
885 	else if (fwa->flags & IPFW_ARGS_IP6)
886 		dir |= PROTO_IPV6;
887 	DN_BH_WLOCK();
888 	io_pkt++;
889 	/* we could actually tag outside the lock, but who cares... */
890 	if (tag_mbuf(m, dir, fwa))
891 		goto dropit;
892 	if (dn_cfg.busy) {
893 		/* if the upper half is busy doing something expensive,
894 		 * lets queue the packet and move forward
895 		 */
896 		mq_append(&dn_cfg.pending, m);
897 		m = *m0 = NULL; /* consumed */
898 		goto done; /* already active, nothing to do */
899 	}
900 	/* XXX locate_flowset could be optimised with a direct ref. */
901 	fs = dn_ht_find(dn_cfg.fshash, fs_id, 0, NULL);
902 	if (fs == NULL)
903 		goto dropit;	/* This queue/pipe does not exist! */
904 	if (fs->sched == NULL)	/* should not happen */
905 		goto dropit;
906 	/* find scheduler instance, possibly applying sched_mask */
907 	si = ipdn_si_find(fs->sched, &(fwa->f_id));
908 	if (si == NULL)
909 		goto dropit;
910 	/*
911 	 * If the scheduler supports multiple queues, find the right one
912 	 * (otherwise it will be ignored by enqueue).
913 	 */
914 	if (fs->sched->fp->flags & DN_MULTIQUEUE) {
915 		q = ipdn_q_find(fs, si, &(fwa->f_id));
916 		if (q == NULL)
917 			goto dropit;
918 	}
919 	if (fs->sched->fp->enqueue(si, q, m)) {
920 		/* packet was dropped by enqueue() */
921 		m = *m0 = NULL;
922 
923 		/* dn_enqueue already increases io_pkt_drop */
924 		io_pkt_drop--;
925 
926 		goto dropit;
927 	}
928 
929 	if (si->kflags & DN_ACTIVE) {
930 		m = *m0 = NULL; /* consumed */
931 		goto done; /* already active, nothing to do */
932 	}
933 
934 	/* compute the initial allowance */
935 	if (si->idle_time < dn_cfg.curr_time) {
936 	    /* Do this only on the first packet on an idle pipe */
937 	    struct dn_link *p = &fs->sched->link;
938 
939 	    si->sched_time = dn_cfg.curr_time;
940 	    si->credit = dn_cfg.io_fast ? p->bandwidth : 0;
941 	    if (p->burst) {
942 		uint64_t burst = (dn_cfg.curr_time - si->idle_time) * p->bandwidth;
943 		if (burst > p->burst)
944 			burst = p->burst;
945 		si->credit += burst;
946 	    }
947 	}
948 	/* pass through scheduler and delay line */
949 	m = serve_sched(NULL, si, dn_cfg.curr_time);
950 
951 	/* optimization -- pass it back to ipfw for immediate send */
952 	/* XXX Don't call dummynet_send() if scheduler return the packet
953 	 *     just enqueued. This avoid a lock order reversal.
954 	 *
955 	 */
956 	if (/*dn_cfg.io_fast &&*/ m == *m0 && (dir & PROTO_LAYER2) == 0 ) {
957 		/* fast io, rename the tag * to carry reinject info. */
958 		struct m_tag *tag = m_tag_first(m);
959 
960 		tag->m_tag_cookie = MTAG_IPFW_RULE;
961 		tag->m_tag_id = 0;
962 		io_pkt_fast++;
963 		if (m->m_nextpkt != NULL) {
964 			printf("dummynet: fast io: pkt chain detected!\n");
965 			m->m_nextpkt = NULL;
966 		}
967 		m = NULL;
968 	} else {
969 		*m0 = NULL;
970 	}
971 done:
972 	DN_BH_WUNLOCK();
973 	if (m)
974 		dummynet_send(m);
975 	return 0;
976 
977 dropit:
978 	io_pkt_drop++;
979 	DN_BH_WUNLOCK();
980 	if (m)
981 		FREE_PKT(m);
982 	*m0 = NULL;
983 	return (fs && (fs->fs.flags & DN_NOERROR)) ? 0 : ENOBUFS;
984 }
985