xref: /freebsd/sys/netpfil/ipfw/ip_dn_io.c (revision f05cddf9)
1 /*-
2  * Copyright (c) 2010 Luigi Rizzo, Riccardo Panicucci, Universita` di Pisa
3  * All rights reserved
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  */
26 
27 /*
28  * Dummynet portions related to packet handling.
29  */
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 #include "opt_inet6.h"
34 
35 #include <sys/param.h>
36 #include <sys/systm.h>
37 #include <sys/malloc.h>
38 #include <sys/mbuf.h>
39 #include <sys/kernel.h>
40 #include <sys/lock.h>
41 #include <sys/module.h>
42 #include <sys/priv.h>
43 #include <sys/proc.h>
44 #include <sys/rwlock.h>
45 #include <sys/socket.h>
46 #include <sys/time.h>
47 #include <sys/sysctl.h>
48 
49 #include <net/if.h>	/* IFNAMSIZ, struct ifaddr, ifq head, lock.h mutex.h */
50 #include <net/netisr.h>
51 #include <net/vnet.h>
52 
53 #include <netinet/in.h>
54 #include <netinet/ip.h>		/* ip_len, ip_off */
55 #include <netinet/ip_var.h>	/* ip_output(), IP_FORWARDING */
56 #include <netinet/ip_fw.h>
57 #include <netinet/ip_dummynet.h>
58 #include <netinet/if_ether.h> /* various ether_* routines */
59 #include <netinet/ip6.h>       /* for ip6_input, ip6_output prototypes */
60 #include <netinet6/ip6_var.h>
61 
62 #include <netpfil/ipfw/ip_fw_private.h>
63 #include <netpfil/ipfw/dn_heap.h>
64 #include <netpfil/ipfw/ip_dn_private.h>
65 #include <netpfil/ipfw/dn_sched.h>
66 
67 /*
68  * We keep a private variable for the simulation time, but we could
69  * probably use an existing one ("softticks" in sys/kern/kern_timeout.c)
70  * instead of dn_cfg.curr_time
71  */
72 
73 struct dn_parms dn_cfg;
74 //VNET_DEFINE(struct dn_parms, _base_dn_cfg);
75 
76 static long tick_last;		/* Last tick duration (usec). */
77 static long tick_delta;		/* Last vs standard tick diff (usec). */
78 static long tick_delta_sum;	/* Accumulated tick difference (usec).*/
79 static long tick_adjustment;	/* Tick adjustments done. */
80 static long tick_lost;		/* Lost(coalesced) ticks number. */
81 /* Adjusted vs non-adjusted curr_time difference (ticks). */
82 static long tick_diff;
83 
84 static unsigned long	io_pkt;
85 static unsigned long	io_pkt_fast;
86 static unsigned long	io_pkt_drop;
87 
88 /*
89  * We use a heap to store entities for which we have pending timer events.
90  * The heap is checked at every tick and all entities with expired events
91  * are extracted.
92  */
93 
94 MALLOC_DEFINE(M_DUMMYNET, "dummynet", "dummynet heap");
95 
96 extern	void (*bridge_dn_p)(struct mbuf *, struct ifnet *);
97 
98 #ifdef SYSCTL_NODE
99 
100 /*
101  * Because of the way the SYSBEGIN/SYSEND macros work on other
102  * platforms, there should not be functions between them.
103  * So keep the handlers outside the block.
104  */
105 static int
106 sysctl_hash_size(SYSCTL_HANDLER_ARGS)
107 {
108 	int error, value;
109 
110 	value = dn_cfg.hash_size;
111 	error = sysctl_handle_int(oidp, &value, 0, req);
112 	if (error != 0 || req->newptr == NULL)
113 		return (error);
114 	if (value < 16 || value > 65536)
115 		return (EINVAL);
116 	dn_cfg.hash_size = value;
117 	return (0);
118 }
119 
120 static int
121 sysctl_limits(SYSCTL_HANDLER_ARGS)
122 {
123 	int error;
124 	long value;
125 
126 	if (arg2 != 0)
127 		value = dn_cfg.slot_limit;
128 	else
129 		value = dn_cfg.byte_limit;
130 	error = sysctl_handle_long(oidp, &value, 0, req);
131 
132 	if (error != 0 || req->newptr == NULL)
133 		return (error);
134 	if (arg2 != 0) {
135 		if (value < 1)
136 			return (EINVAL);
137 		dn_cfg.slot_limit = value;
138 	} else {
139 		if (value < 1500)
140 			return (EINVAL);
141 		dn_cfg.byte_limit = value;
142 	}
143 	return (0);
144 }
145 
146 SYSBEGIN(f4)
147 
148 SYSCTL_DECL(_net_inet);
149 SYSCTL_DECL(_net_inet_ip);
150 static SYSCTL_NODE(_net_inet_ip, OID_AUTO, dummynet, CTLFLAG_RW, 0, "Dummynet");
151 
152 /* wrapper to pass dn_cfg fields to SYSCTL_* */
153 //#define DC(x)	(&(VNET_NAME(_base_dn_cfg).x))
154 #define DC(x)	(&(dn_cfg.x))
155 /* parameters */
156 
157 
158 SYSCTL_PROC(_net_inet_ip_dummynet, OID_AUTO, hash_size,
159     CTLTYPE_INT | CTLFLAG_RW, 0, 0, sysctl_hash_size,
160     "I", "Default hash table size");
161 
162 
163 SYSCTL_PROC(_net_inet_ip_dummynet, OID_AUTO, pipe_slot_limit,
164     CTLTYPE_LONG | CTLFLAG_RW, 0, 1, sysctl_limits,
165     "L", "Upper limit in slots for pipe queue.");
166 SYSCTL_PROC(_net_inet_ip_dummynet, OID_AUTO, pipe_byte_limit,
167     CTLTYPE_LONG | CTLFLAG_RW, 0, 0, sysctl_limits,
168     "L", "Upper limit in bytes for pipe queue.");
169 SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, io_fast,
170     CTLFLAG_RW, DC(io_fast), 0, "Enable fast dummynet io.");
171 SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, debug,
172     CTLFLAG_RW, DC(debug), 0, "Dummynet debug level");
173 
174 /* RED parameters */
175 SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, red_lookup_depth,
176     CTLFLAG_RD, DC(red_lookup_depth), 0, "Depth of RED lookup table");
177 SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, red_avg_pkt_size,
178     CTLFLAG_RD, DC(red_avg_pkt_size), 0, "RED Medium packet size");
179 SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, red_max_pkt_size,
180     CTLFLAG_RD, DC(red_max_pkt_size), 0, "RED Max packet size");
181 
182 /* time adjustment */
183 SYSCTL_LONG(_net_inet_ip_dummynet, OID_AUTO, tick_delta,
184     CTLFLAG_RD, &tick_delta, 0, "Last vs standard tick difference (usec).");
185 SYSCTL_LONG(_net_inet_ip_dummynet, OID_AUTO, tick_delta_sum,
186     CTLFLAG_RD, &tick_delta_sum, 0, "Accumulated tick difference (usec).");
187 SYSCTL_LONG(_net_inet_ip_dummynet, OID_AUTO, tick_adjustment,
188     CTLFLAG_RD, &tick_adjustment, 0, "Tick adjustments done.");
189 SYSCTL_LONG(_net_inet_ip_dummynet, OID_AUTO, tick_diff,
190     CTLFLAG_RD, &tick_diff, 0,
191     "Adjusted vs non-adjusted curr_time difference (ticks).");
192 SYSCTL_LONG(_net_inet_ip_dummynet, OID_AUTO, tick_lost,
193     CTLFLAG_RD, &tick_lost, 0,
194     "Number of ticks coalesced by dummynet taskqueue.");
195 
196 /* Drain parameters */
197 SYSCTL_UINT(_net_inet_ip_dummynet, OID_AUTO, expire,
198     CTLFLAG_RW, DC(expire), 0, "Expire empty queues/pipes");
199 SYSCTL_UINT(_net_inet_ip_dummynet, OID_AUTO, expire_cycle,
200     CTLFLAG_RD, DC(expire_cycle), 0, "Expire cycle for queues/pipes");
201 
202 /* statistics */
203 SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, schk_count,
204     CTLFLAG_RD, DC(schk_count), 0, "Number of schedulers");
205 SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, si_count,
206     CTLFLAG_RD, DC(si_count), 0, "Number of scheduler instances");
207 SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, fsk_count,
208     CTLFLAG_RD, DC(fsk_count), 0, "Number of flowsets");
209 SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, queue_count,
210     CTLFLAG_RD, DC(queue_count), 0, "Number of queues");
211 SYSCTL_ULONG(_net_inet_ip_dummynet, OID_AUTO, io_pkt,
212     CTLFLAG_RD, &io_pkt, 0,
213     "Number of packets passed to dummynet.");
214 SYSCTL_ULONG(_net_inet_ip_dummynet, OID_AUTO, io_pkt_fast,
215     CTLFLAG_RD, &io_pkt_fast, 0,
216     "Number of packets bypassed dummynet scheduler.");
217 SYSCTL_ULONG(_net_inet_ip_dummynet, OID_AUTO, io_pkt_drop,
218     CTLFLAG_RD, &io_pkt_drop, 0,
219     "Number of packets dropped by dummynet.");
220 #undef DC
221 SYSEND
222 
223 #endif
224 
225 static void	dummynet_send(struct mbuf *);
226 
227 /*
228  * Packets processed by dummynet have an mbuf tag associated with
229  * them that carries their dummynet state.
230  * Outside dummynet, only the 'rule' field is relevant, and it must
231  * be at the beginning of the structure.
232  */
233 struct dn_pkt_tag {
234 	struct ipfw_rule_ref rule;	/* matching rule	*/
235 
236 	/* second part, dummynet specific */
237 	int dn_dir;		/* action when packet comes out.*/
238 				/* see ip_fw_private.h		*/
239 	uint64_t output_time;	/* when the pkt is due for delivery*/
240 	struct ifnet *ifp;	/* interface, for ip_output	*/
241 	struct _ip6dn_args ip6opt;	/* XXX ipv6 options	*/
242 };
243 
244 /*
245  * Return the mbuf tag holding the dummynet state (it should
246  * be the first one on the list).
247  */
248 static struct dn_pkt_tag *
249 dn_tag_get(struct mbuf *m)
250 {
251 	struct m_tag *mtag = m_tag_first(m);
252 	KASSERT(mtag != NULL &&
253 	    mtag->m_tag_cookie == MTAG_ABI_COMPAT &&
254 	    mtag->m_tag_id == PACKET_TAG_DUMMYNET,
255 	    ("packet on dummynet queue w/o dummynet tag!"));
256 	return (struct dn_pkt_tag *)(mtag+1);
257 }
258 
259 static inline void
260 mq_append(struct mq *q, struct mbuf *m)
261 {
262 	if (q->head == NULL)
263 		q->head = m;
264 	else
265 		q->tail->m_nextpkt = m;
266 	q->tail = m;
267 	m->m_nextpkt = NULL;
268 }
269 
270 /*
271  * Dispose a list of packet. Use a functions so if we need to do
272  * more work, this is a central point to do it.
273  */
274 void dn_free_pkts(struct mbuf *mnext)
275 {
276         struct mbuf *m;
277 
278         while ((m = mnext) != NULL) {
279                 mnext = m->m_nextpkt;
280                 FREE_PKT(m);
281         }
282 }
283 
284 static int
285 red_drops (struct dn_queue *q, int len)
286 {
287 	/*
288 	 * RED algorithm
289 	 *
290 	 * RED calculates the average queue size (avg) using a low-pass filter
291 	 * with an exponential weighted (w_q) moving average:
292 	 * 	avg  <-  (1-w_q) * avg + w_q * q_size
293 	 * where q_size is the queue length (measured in bytes or * packets).
294 	 *
295 	 * If q_size == 0, we compute the idle time for the link, and set
296 	 *	avg = (1 - w_q)^(idle/s)
297 	 * where s is the time needed for transmitting a medium-sized packet.
298 	 *
299 	 * Now, if avg < min_th the packet is enqueued.
300 	 * If avg > max_th the packet is dropped. Otherwise, the packet is
301 	 * dropped with probability P function of avg.
302 	 */
303 
304 	struct dn_fsk *fs = q->fs;
305 	int64_t p_b = 0;
306 
307 	/* Queue in bytes or packets? */
308 	uint32_t q_size = (fs->fs.flags & DN_QSIZE_BYTES) ?
309 	    q->ni.len_bytes : q->ni.length;
310 
311 	/* Average queue size estimation. */
312 	if (q_size != 0) {
313 		/* Queue is not empty, avg <- avg + (q_size - avg) * w_q */
314 		int diff = SCALE(q_size) - q->avg;
315 		int64_t v = SCALE_MUL((int64_t)diff, (int64_t)fs->w_q);
316 
317 		q->avg += (int)v;
318 	} else {
319 		/*
320 		 * Queue is empty, find for how long the queue has been
321 		 * empty and use a lookup table for computing
322 		 * (1 - * w_q)^(idle_time/s) where s is the time to send a
323 		 * (small) packet.
324 		 * XXX check wraps...
325 		 */
326 		if (q->avg) {
327 			u_int t = div64((dn_cfg.curr_time - q->q_time), fs->lookup_step);
328 
329 			q->avg = (t < fs->lookup_depth) ?
330 			    SCALE_MUL(q->avg, fs->w_q_lookup[t]) : 0;
331 		}
332 	}
333 
334 	/* Should i drop? */
335 	if (q->avg < fs->min_th) {
336 		q->count = -1;
337 		return (0);	/* accept packet */
338 	}
339 	if (q->avg >= fs->max_th) {	/* average queue >=  max threshold */
340 		if (fs->fs.flags & DN_IS_GENTLE_RED) {
341 			/*
342 			 * According to Gentle-RED, if avg is greater than
343 			 * max_th the packet is dropped with a probability
344 			 *	 p_b = c_3 * avg - c_4
345 			 * where c_3 = (1 - max_p) / max_th
346 			 *       c_4 = 1 - 2 * max_p
347 			 */
348 			p_b = SCALE_MUL((int64_t)fs->c_3, (int64_t)q->avg) -
349 			    fs->c_4;
350 		} else {
351 			q->count = -1;
352 			return (1);
353 		}
354 	} else if (q->avg > fs->min_th) {
355 		/*
356 		 * We compute p_b using the linear dropping function
357 		 *	 p_b = c_1 * avg - c_2
358 		 * where c_1 = max_p / (max_th - min_th)
359 		 * 	 c_2 = max_p * min_th / (max_th - min_th)
360 		 */
361 		p_b = SCALE_MUL((int64_t)fs->c_1, (int64_t)q->avg) - fs->c_2;
362 	}
363 
364 	if (fs->fs.flags & DN_QSIZE_BYTES)
365 		p_b = div64((p_b * len) , fs->max_pkt_size);
366 	if (++q->count == 0)
367 		q->random = random() & 0xffff;
368 	else {
369 		/*
370 		 * q->count counts packets arrived since last drop, so a greater
371 		 * value of q->count means a greater packet drop probability.
372 		 */
373 		if (SCALE_MUL(p_b, SCALE((int64_t)q->count)) > q->random) {
374 			q->count = 0;
375 			/* After a drop we calculate a new random value. */
376 			q->random = random() & 0xffff;
377 			return (1);	/* drop */
378 		}
379 	}
380 	/* End of RED algorithm. */
381 
382 	return (0);	/* accept */
383 
384 }
385 
386 /*
387  * Enqueue a packet in q, subject to space and queue management policy
388  * (whose parameters are in q->fs).
389  * Update stats for the queue and the scheduler.
390  * Return 0 on success, 1 on drop. The packet is consumed anyways.
391  */
392 int
393 dn_enqueue(struct dn_queue *q, struct mbuf* m, int drop)
394 {
395 	struct dn_fs *f;
396 	struct dn_flow *ni;	/* stats for scheduler instance */
397 	uint64_t len;
398 
399 	if (q->fs == NULL || q->_si == NULL) {
400 		printf("%s fs %p si %p, dropping\n",
401 			__FUNCTION__, q->fs, q->_si);
402 		FREE_PKT(m);
403 		return 1;
404 	}
405 	f = &(q->fs->fs);
406 	ni = &q->_si->ni;
407 	len = m->m_pkthdr.len;
408 	/* Update statistics, then check reasons to drop pkt. */
409 	q->ni.tot_bytes += len;
410 	q->ni.tot_pkts++;
411 	ni->tot_bytes += len;
412 	ni->tot_pkts++;
413 	if (drop)
414 		goto drop;
415 	if (f->plr && random() < f->plr)
416 		goto drop;
417 	if (f->flags & DN_IS_RED && red_drops(q, m->m_pkthdr.len))
418 		goto drop;
419 	if (f->flags & DN_QSIZE_BYTES) {
420 		if (q->ni.len_bytes > f->qsize)
421 			goto drop;
422 	} else if (q->ni.length >= f->qsize) {
423 		goto drop;
424 	}
425 	mq_append(&q->mq, m);
426 	q->ni.length++;
427 	q->ni.len_bytes += len;
428 	ni->length++;
429 	ni->len_bytes += len;
430 	return 0;
431 
432 drop:
433 	io_pkt_drop++;
434 	q->ni.drops++;
435 	ni->drops++;
436 	FREE_PKT(m);
437 	return 1;
438 }
439 
440 /*
441  * Fetch packets from the delay line which are due now. If there are
442  * leftover packets, reinsert the delay line in the heap.
443  * Runs under scheduler lock.
444  */
445 static void
446 transmit_event(struct mq *q, struct delay_line *dline, uint64_t now)
447 {
448 	struct mbuf *m;
449 	struct dn_pkt_tag *pkt = NULL;
450 
451 	dline->oid.subtype = 0; /* not in heap */
452 	while ((m = dline->mq.head) != NULL) {
453 		pkt = dn_tag_get(m);
454 		if (!DN_KEY_LEQ(pkt->output_time, now))
455 			break;
456 		dline->mq.head = m->m_nextpkt;
457 		mq_append(q, m);
458 	}
459 	if (m != NULL) {
460 		dline->oid.subtype = 1; /* in heap */
461 		heap_insert(&dn_cfg.evheap, pkt->output_time, dline);
462 	}
463 }
464 
465 /*
466  * Convert the additional MAC overheads/delays into an equivalent
467  * number of bits for the given data rate. The samples are
468  * in milliseconds so we need to divide by 1000.
469  */
470 static uint64_t
471 extra_bits(struct mbuf *m, struct dn_schk *s)
472 {
473 	int index;
474 	uint64_t bits;
475 	struct dn_profile *pf = s->profile;
476 
477 	if (!pf || pf->samples_no == 0)
478 		return 0;
479 	index  = random() % pf->samples_no;
480 	bits = div64((uint64_t)pf->samples[index] * s->link.bandwidth, 1000);
481 	if (index >= pf->loss_level) {
482 		struct dn_pkt_tag *dt = dn_tag_get(m);
483 		if (dt)
484 			dt->dn_dir = DIR_DROP;
485 	}
486 	return bits;
487 }
488 
489 /*
490  * Send traffic from a scheduler instance due by 'now'.
491  * Return a pointer to the head of the queue.
492  */
493 static struct mbuf *
494 serve_sched(struct mq *q, struct dn_sch_inst *si, uint64_t now)
495 {
496 	struct mq def_q;
497 	struct dn_schk *s = si->sched;
498 	struct mbuf *m = NULL;
499 	int delay_line_idle = (si->dline.mq.head == NULL);
500 	int done, bw;
501 
502 	if (q == NULL) {
503 		q = &def_q;
504 		q->head = NULL;
505 	}
506 
507 	bw = s->link.bandwidth;
508 	si->kflags &= ~DN_ACTIVE;
509 
510 	if (bw > 0)
511 		si->credit += (now - si->sched_time) * bw;
512 	else
513 		si->credit = 0;
514 	si->sched_time = now;
515 	done = 0;
516 	while (si->credit >= 0 && (m = s->fp->dequeue(si)) != NULL) {
517 		uint64_t len_scaled;
518 
519 		done++;
520 		len_scaled = (bw == 0) ? 0 : hz *
521 			(m->m_pkthdr.len * 8 + extra_bits(m, s));
522 		si->credit -= len_scaled;
523 		/* Move packet in the delay line */
524 		dn_tag_get(m)->output_time = dn_cfg.curr_time + s->link.delay ;
525 		mq_append(&si->dline.mq, m);
526 	}
527 
528 	/*
529 	 * If credit >= 0 the instance is idle, mark time.
530 	 * Otherwise put back in the heap, and adjust the output
531 	 * time of the last inserted packet, m, which was too early.
532 	 */
533 	if (si->credit >= 0) {
534 		si->idle_time = now;
535 	} else {
536 		uint64_t t;
537 		KASSERT (bw > 0, ("bw=0 and credit<0 ?"));
538 		t = div64(bw - 1 - si->credit, bw);
539 		if (m)
540 			dn_tag_get(m)->output_time += t;
541 		si->kflags |= DN_ACTIVE;
542 		heap_insert(&dn_cfg.evheap, now + t, si);
543 	}
544 	if (delay_line_idle && done)
545 		transmit_event(q, &si->dline, now);
546 	return q->head;
547 }
548 
549 /*
550  * The timer handler for dummynet. Time is computed in ticks, but
551  * but the code is tolerant to the actual rate at which this is called.
552  * Once complete, the function reschedules itself for the next tick.
553  */
554 void
555 dummynet_task(void *context, int pending)
556 {
557 	struct timeval t;
558 	struct mq q = { NULL, NULL }; /* queue to accumulate results */
559 
560 	CURVNET_SET((struct vnet *)context);
561 
562 	DN_BH_WLOCK();
563 
564 	/* Update number of lost(coalesced) ticks. */
565 	tick_lost += pending - 1;
566 
567 	getmicrouptime(&t);
568 	/* Last tick duration (usec). */
569 	tick_last = (t.tv_sec - dn_cfg.prev_t.tv_sec) * 1000000 +
570 	(t.tv_usec - dn_cfg.prev_t.tv_usec);
571 	/* Last tick vs standard tick difference (usec). */
572 	tick_delta = (tick_last * hz - 1000000) / hz;
573 	/* Accumulated tick difference (usec). */
574 	tick_delta_sum += tick_delta;
575 
576 	dn_cfg.prev_t = t;
577 
578 	/*
579 	* Adjust curr_time if the accumulated tick difference is
580 	* greater than the 'standard' tick. Since curr_time should
581 	* be monotonically increasing, we do positive adjustments
582 	* as required, and throttle curr_time in case of negative
583 	* adjustment.
584 	*/
585 	dn_cfg.curr_time++;
586 	if (tick_delta_sum - tick >= 0) {
587 		int diff = tick_delta_sum / tick;
588 
589 		dn_cfg.curr_time += diff;
590 		tick_diff += diff;
591 		tick_delta_sum %= tick;
592 		tick_adjustment++;
593 	} else if (tick_delta_sum + tick <= 0) {
594 		dn_cfg.curr_time--;
595 		tick_diff--;
596 		tick_delta_sum += tick;
597 		tick_adjustment++;
598 	}
599 
600 	/* serve pending events, accumulate in q */
601 	for (;;) {
602 		struct dn_id *p;    /* generic parameter to handler */
603 
604 		if (dn_cfg.evheap.elements == 0 ||
605 		    DN_KEY_LT(dn_cfg.curr_time, HEAP_TOP(&dn_cfg.evheap)->key))
606 			break;
607 		p = HEAP_TOP(&dn_cfg.evheap)->object;
608 		heap_extract(&dn_cfg.evheap, NULL);
609 
610 		if (p->type == DN_SCH_I) {
611 			serve_sched(&q, (struct dn_sch_inst *)p, dn_cfg.curr_time);
612 		} else { /* extracted a delay line */
613 			transmit_event(&q, (struct delay_line *)p, dn_cfg.curr_time);
614 		}
615 	}
616 	if (dn_cfg.expire && ++dn_cfg.expire_cycle >= dn_cfg.expire) {
617 		dn_cfg.expire_cycle = 0;
618 		dn_drain_scheduler();
619 		dn_drain_queue();
620 	}
621 
622 	DN_BH_WUNLOCK();
623 	dn_reschedule();
624 	if (q.head != NULL)
625 		dummynet_send(q.head);
626 	CURVNET_RESTORE();
627 }
628 
629 /*
630  * forward a chain of packets to the proper destination.
631  * This runs outside the dummynet lock.
632  */
633 static void
634 dummynet_send(struct mbuf *m)
635 {
636 	struct mbuf *n;
637 
638 	for (; m != NULL; m = n) {
639 		struct ifnet *ifp = NULL;	/* gcc 3.4.6 complains */
640         	struct m_tag *tag;
641 		int dst;
642 
643 		n = m->m_nextpkt;
644 		m->m_nextpkt = NULL;
645 		tag = m_tag_first(m);
646 		if (tag == NULL) { /* should not happen */
647 			dst = DIR_DROP;
648 		} else {
649 			struct dn_pkt_tag *pkt = dn_tag_get(m);
650 			/* extract the dummynet info, rename the tag
651 			 * to carry reinject info.
652 			 */
653 			dst = pkt->dn_dir;
654 			ifp = pkt->ifp;
655 			tag->m_tag_cookie = MTAG_IPFW_RULE;
656 			tag->m_tag_id = 0;
657 		}
658 
659 		switch (dst) {
660 		case DIR_OUT:
661 			ip_output(m, NULL, NULL, IP_FORWARDING, NULL, NULL);
662 			break ;
663 
664 		case DIR_IN :
665 			netisr_dispatch(NETISR_IP, m);
666 			break;
667 
668 #ifdef INET6
669 		case DIR_IN | PROTO_IPV6:
670 			netisr_dispatch(NETISR_IPV6, m);
671 			break;
672 
673 		case DIR_OUT | PROTO_IPV6:
674 			ip6_output(m, NULL, NULL, IPV6_FORWARDING, NULL, NULL, NULL);
675 			break;
676 #endif
677 
678 		case DIR_FWD | PROTO_IFB: /* DN_TO_IFB_FWD: */
679 			if (bridge_dn_p != NULL)
680 				((*bridge_dn_p)(m, ifp));
681 			else
682 				printf("dummynet: if_bridge not loaded\n");
683 
684 			break;
685 
686 		case DIR_IN | PROTO_LAYER2: /* DN_TO_ETH_DEMUX: */
687 			/*
688 			 * The Ethernet code assumes the Ethernet header is
689 			 * contiguous in the first mbuf header.
690 			 * Insure this is true.
691 			 */
692 			if (m->m_len < ETHER_HDR_LEN &&
693 			    (m = m_pullup(m, ETHER_HDR_LEN)) == NULL) {
694 				printf("dummynet/ether: pullup failed, "
695 				    "dropping packet\n");
696 				break;
697 			}
698 			ether_demux(m->m_pkthdr.rcvif, m);
699 			break;
700 
701 		case DIR_OUT | PROTO_LAYER2: /* N_TO_ETH_OUT: */
702 			ether_output_frame(ifp, m);
703 			break;
704 
705 		case DIR_DROP:
706 			/* drop the packet after some time */
707 			FREE_PKT(m);
708 			break;
709 
710 		default:
711 			printf("dummynet: bad switch %d!\n", dst);
712 			FREE_PKT(m);
713 			break;
714 		}
715 	}
716 }
717 
718 static inline int
719 tag_mbuf(struct mbuf *m, int dir, struct ip_fw_args *fwa)
720 {
721 	struct dn_pkt_tag *dt;
722 	struct m_tag *mtag;
723 
724 	mtag = m_tag_get(PACKET_TAG_DUMMYNET,
725 		    sizeof(*dt), M_NOWAIT | M_ZERO);
726 	if (mtag == NULL)
727 		return 1;		/* Cannot allocate packet header. */
728 	m_tag_prepend(m, mtag);		/* Attach to mbuf chain. */
729 	dt = (struct dn_pkt_tag *)(mtag + 1);
730 	dt->rule = fwa->rule;
731 	dt->rule.info &= IPFW_ONEPASS;	/* only keep this info */
732 	dt->dn_dir = dir;
733 	dt->ifp = fwa->oif;
734 	/* dt->output tame is updated as we move through */
735 	dt->output_time = dn_cfg.curr_time;
736 	return 0;
737 }
738 
739 
740 /*
741  * dummynet hook for packets.
742  * We use the argument to locate the flowset fs and the sched_set sch
743  * associated to it. The we apply flow_mask and sched_mask to
744  * determine the queue and scheduler instances.
745  *
746  * dir		where shall we send the packet after dummynet.
747  * *m0		the mbuf with the packet
748  * ifp		the 'ifp' parameter from the caller.
749  *		NULL in ip_input, destination interface in ip_output,
750  */
751 int
752 dummynet_io(struct mbuf **m0, int dir, struct ip_fw_args *fwa)
753 {
754 	struct mbuf *m = *m0;
755 	struct dn_fsk *fs = NULL;
756 	struct dn_sch_inst *si;
757 	struct dn_queue *q = NULL;	/* default */
758 
759 	int fs_id = (fwa->rule.info & IPFW_INFO_MASK) +
760 		((fwa->rule.info & IPFW_IS_PIPE) ? 2*DN_MAX_ID : 0);
761 	DN_BH_WLOCK();
762 	io_pkt++;
763 	/* we could actually tag outside the lock, but who cares... */
764 	if (tag_mbuf(m, dir, fwa))
765 		goto dropit;
766 	if (dn_cfg.busy) {
767 		/* if the upper half is busy doing something expensive,
768 		 * lets queue the packet and move forward
769 		 */
770 		mq_append(&dn_cfg.pending, m);
771 		m = *m0 = NULL; /* consumed */
772 		goto done; /* already active, nothing to do */
773 	}
774 	/* XXX locate_flowset could be optimised with a direct ref. */
775 	fs = dn_ht_find(dn_cfg.fshash, fs_id, 0, NULL);
776 	if (fs == NULL)
777 		goto dropit;	/* This queue/pipe does not exist! */
778 	if (fs->sched == NULL)	/* should not happen */
779 		goto dropit;
780 	/* find scheduler instance, possibly applying sched_mask */
781 	si = ipdn_si_find(fs->sched, &(fwa->f_id));
782 	if (si == NULL)
783 		goto dropit;
784 	/*
785 	 * If the scheduler supports multiple queues, find the right one
786 	 * (otherwise it will be ignored by enqueue).
787 	 */
788 	if (fs->sched->fp->flags & DN_MULTIQUEUE) {
789 		q = ipdn_q_find(fs, si, &(fwa->f_id));
790 		if (q == NULL)
791 			goto dropit;
792 	}
793 	if (fs->sched->fp->enqueue(si, q, m)) {
794 		/* packet was dropped by enqueue() */
795 		m = *m0 = NULL;
796 		goto dropit;
797 	}
798 
799 	if (si->kflags & DN_ACTIVE) {
800 		m = *m0 = NULL; /* consumed */
801 		goto done; /* already active, nothing to do */
802 	}
803 
804 	/* compute the initial allowance */
805 	if (si->idle_time < dn_cfg.curr_time) {
806 	    /* Do this only on the first packet on an idle pipe */
807 	    struct dn_link *p = &fs->sched->link;
808 
809 	    si->sched_time = dn_cfg.curr_time;
810 	    si->credit = dn_cfg.io_fast ? p->bandwidth : 0;
811 	    if (p->burst) {
812 		uint64_t burst = (dn_cfg.curr_time - si->idle_time) * p->bandwidth;
813 		if (burst > p->burst)
814 			burst = p->burst;
815 		si->credit += burst;
816 	    }
817 	}
818 	/* pass through scheduler and delay line */
819 	m = serve_sched(NULL, si, dn_cfg.curr_time);
820 
821 	/* optimization -- pass it back to ipfw for immediate send */
822 	/* XXX Don't call dummynet_send() if scheduler return the packet
823 	 *     just enqueued. This avoid a lock order reversal.
824 	 *
825 	 */
826 	if (/*dn_cfg.io_fast &&*/ m == *m0 && (dir & PROTO_LAYER2) == 0 ) {
827 		/* fast io, rename the tag * to carry reinject info. */
828 		struct m_tag *tag = m_tag_first(m);
829 
830 		tag->m_tag_cookie = MTAG_IPFW_RULE;
831 		tag->m_tag_id = 0;
832 		io_pkt_fast++;
833 		if (m->m_nextpkt != NULL) {
834 			printf("dummynet: fast io: pkt chain detected!\n");
835 			m->m_nextpkt = NULL;
836 		}
837 		m = NULL;
838 	} else {
839 		*m0 = NULL;
840 	}
841 done:
842 	DN_BH_WUNLOCK();
843 	if (m)
844 		dummynet_send(m);
845 	return 0;
846 
847 dropit:
848 	io_pkt_drop++;
849 	DN_BH_WUNLOCK();
850 	if (m)
851 		FREE_PKT(m);
852 	*m0 = NULL;
853 	return (fs && (fs->fs.flags & DN_NOERROR)) ? 0 : ENOBUFS;
854 }
855