xref: /freebsd/sys/netpfil/ipfw/ip_fw_table.c (revision 7cc42f6d)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2004 Ruslan Ermilov and Vsevolod Lobko.
5  * Copyright (c) 2014 Yandex LLC
6  * Copyright (c) 2014 Alexander V. Chernikov
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 /*
34  * Lookup table support for ipfw.
35  *
36  * This file contains handlers for all generic tables' operations:
37  * add/del/flush entries, list/dump tables etc..
38  *
39  * Table data modification is protected by both UH and runtime lock
40  * while reading configuration/data is protected by UH lock.
41  *
42  * Lookup algorithms for all table types are located in ip_fw_table_algo.c
43  */
44 
45 #include "opt_ipfw.h"
46 
47 #include <sys/param.h>
48 #include <sys/systm.h>
49 #include <sys/malloc.h>
50 #include <sys/kernel.h>
51 #include <sys/lock.h>
52 #include <sys/rwlock.h>
53 #include <sys/rmlock.h>
54 #include <sys/socket.h>
55 #include <sys/socketvar.h>
56 #include <sys/queue.h>
57 #include <net/if.h>	/* ip_fw.h requires IFNAMSIZ */
58 
59 #include <netinet/in.h>
60 #include <netinet/ip_var.h>	/* struct ipfw_rule_ref */
61 #include <netinet/ip_fw.h>
62 
63 #include <netpfil/ipfw/ip_fw_private.h>
64 #include <netpfil/ipfw/ip_fw_table.h>
65 
66  /*
67  * Table has the following `type` concepts:
68  *
69  * `no.type` represents lookup key type (addr, ifp, uid, etc..)
70  * vmask represents bitmask of table values which are present at the moment.
71  * Special IPFW_VTYPE_LEGACY ( (uint32_t)-1 ) represents old
72  * single-value-for-all approach.
73  */
74 struct table_config {
75 	struct named_object	no;
76 	uint8_t		tflags;		/* type flags */
77 	uint8_t		locked;		/* 1 if locked from changes */
78 	uint8_t		linked;		/* 1 if already linked */
79 	uint8_t		ochanged;	/* used by set swapping */
80 	uint8_t		vshared;	/* 1 if using shared value array */
81 	uint8_t		spare[3];
82 	uint32_t	count;		/* Number of records */
83 	uint32_t	limit;		/* Max number of records */
84 	uint32_t	vmask;		/* bitmask with supported values */
85 	uint32_t	ocount;		/* used by set swapping */
86 	uint64_t	gencnt;		/* generation count */
87 	char		tablename[64];	/* table name */
88 	struct table_algo	*ta;	/* Callbacks for given algo */
89 	void		*astate;	/* algorithm state */
90 	struct table_info	ti_copy;	/* data to put to table_info */
91 	struct namedobj_instance	*vi;
92 };
93 
94 static int find_table_err(struct namedobj_instance *ni, struct tid_info *ti,
95     struct table_config **tc);
96 static struct table_config *find_table(struct namedobj_instance *ni,
97     struct tid_info *ti);
98 static struct table_config *alloc_table_config(struct ip_fw_chain *ch,
99     struct tid_info *ti, struct table_algo *ta, char *adata, uint8_t tflags);
100 static void free_table_config(struct namedobj_instance *ni,
101     struct table_config *tc);
102 static int create_table_internal(struct ip_fw_chain *ch, struct tid_info *ti,
103     char *aname, ipfw_xtable_info *i, uint16_t *pkidx, int ref);
104 static void link_table(struct ip_fw_chain *ch, struct table_config *tc);
105 static void unlink_table(struct ip_fw_chain *ch, struct table_config *tc);
106 static int find_ref_table(struct ip_fw_chain *ch, struct tid_info *ti,
107     struct tentry_info *tei, uint32_t count, int op, struct table_config **ptc);
108 #define	OP_ADD	1
109 #define	OP_DEL	0
110 static int export_tables(struct ip_fw_chain *ch, ipfw_obj_lheader *olh,
111     struct sockopt_data *sd);
112 static void export_table_info(struct ip_fw_chain *ch, struct table_config *tc,
113     ipfw_xtable_info *i);
114 static int dump_table_tentry(void *e, void *arg);
115 static int dump_table_xentry(void *e, void *arg);
116 
117 static int swap_tables(struct ip_fw_chain *ch, struct tid_info *a,
118     struct tid_info *b);
119 
120 static int check_table_name(const char *name);
121 static int check_table_space(struct ip_fw_chain *ch, struct tableop_state *ts,
122     struct table_config *tc, struct table_info *ti, uint32_t count);
123 static int destroy_table(struct ip_fw_chain *ch, struct tid_info *ti);
124 
125 static struct table_algo *find_table_algo(struct tables_config *tableconf,
126     struct tid_info *ti, char *name);
127 
128 static void objheader_to_ti(struct _ipfw_obj_header *oh, struct tid_info *ti);
129 static void ntlv_to_ti(struct _ipfw_obj_ntlv *ntlv, struct tid_info *ti);
130 
131 #define	CHAIN_TO_NI(chain)	(CHAIN_TO_TCFG(chain)->namehash)
132 #define	KIDX_TO_TI(ch, k)	(&(((struct table_info *)(ch)->tablestate)[k]))
133 
134 #define	TA_BUF_SZ	128	/* On-stack buffer for add/delete state */
135 
136 void
137 rollback_toperation_state(struct ip_fw_chain *ch, void *object)
138 {
139 	struct tables_config *tcfg;
140 	struct op_state *os;
141 
142 	tcfg = CHAIN_TO_TCFG(ch);
143 	TAILQ_FOREACH(os, &tcfg->state_list, next)
144 		os->func(object, os);
145 }
146 
147 void
148 add_toperation_state(struct ip_fw_chain *ch, struct tableop_state *ts)
149 {
150 	struct tables_config *tcfg;
151 
152 	tcfg = CHAIN_TO_TCFG(ch);
153 	TAILQ_INSERT_HEAD(&tcfg->state_list, &ts->opstate, next);
154 }
155 
156 void
157 del_toperation_state(struct ip_fw_chain *ch, struct tableop_state *ts)
158 {
159 	struct tables_config *tcfg;
160 
161 	tcfg = CHAIN_TO_TCFG(ch);
162 	TAILQ_REMOVE(&tcfg->state_list, &ts->opstate, next);
163 }
164 
165 void
166 tc_ref(struct table_config *tc)
167 {
168 
169 	tc->no.refcnt++;
170 }
171 
172 void
173 tc_unref(struct table_config *tc)
174 {
175 
176 	tc->no.refcnt--;
177 }
178 
179 static struct table_value *
180 get_table_value(struct ip_fw_chain *ch, struct table_config *tc, uint32_t kidx)
181 {
182 	struct table_value *pval;
183 
184 	pval = (struct table_value *)ch->valuestate;
185 
186 	return (&pval[kidx]);
187 }
188 
189 /*
190  * Checks if we're able to insert/update entry @tei into table
191  * w.r.t @tc limits.
192  * May alter @tei to indicate insertion error / insert
193  * options.
194  *
195  * Returns 0 if operation can be performed/
196  */
197 static int
198 check_table_limit(struct table_config *tc, struct tentry_info *tei)
199 {
200 
201 	if (tc->limit == 0 || tc->count < tc->limit)
202 		return (0);
203 
204 	if ((tei->flags & TEI_FLAGS_UPDATE) == 0) {
205 		/* Notify userland on error cause */
206 		tei->flags |= TEI_FLAGS_LIMIT;
207 		return (EFBIG);
208 	}
209 
210 	/*
211 	 * We have UPDATE flag set.
212 	 * Permit updating record (if found),
213 	 * but restrict adding new one since we've
214 	 * already hit the limit.
215 	 */
216 	tei->flags |= TEI_FLAGS_DONTADD;
217 
218 	return (0);
219 }
220 
221 /*
222  * Convert algorithm callback return code into
223  * one of pre-defined states known by userland.
224  */
225 static void
226 store_tei_result(struct tentry_info *tei, int op, int error, uint32_t num)
227 {
228 	int flag;
229 
230 	flag = 0;
231 
232 	switch (error) {
233 	case 0:
234 		if (op == OP_ADD && num != 0)
235 			flag = TEI_FLAGS_ADDED;
236 		if (op == OP_DEL)
237 			flag = TEI_FLAGS_DELETED;
238 		break;
239 	case ENOENT:
240 		flag = TEI_FLAGS_NOTFOUND;
241 		break;
242 	case EEXIST:
243 		flag = TEI_FLAGS_EXISTS;
244 		break;
245 	default:
246 		flag = TEI_FLAGS_ERROR;
247 	}
248 
249 	tei->flags |= flag;
250 }
251 
252 /*
253  * Creates and references table with default parameters.
254  * Saves table config, algo and allocated kidx info @ptc, @pta and
255  * @pkidx if non-zero.
256  * Used for table auto-creation to support old binaries.
257  *
258  * Returns 0 on success.
259  */
260 static int
261 create_table_compat(struct ip_fw_chain *ch, struct tid_info *ti,
262     uint16_t *pkidx)
263 {
264 	ipfw_xtable_info xi;
265 	int error;
266 
267 	memset(&xi, 0, sizeof(xi));
268 	/* Set default value mask for legacy clients */
269 	xi.vmask = IPFW_VTYPE_LEGACY;
270 
271 	error = create_table_internal(ch, ti, NULL, &xi, pkidx, 1);
272 	if (error != 0)
273 		return (error);
274 
275 	return (0);
276 }
277 
278 /*
279  * Find and reference existing table optionally
280  * creating new one.
281  *
282  * Saves found table config into @ptc.
283  * Note function may drop/acquire UH_WLOCK.
284  * Returns 0 if table was found/created and referenced
285  * or non-zero return code.
286  */
287 static int
288 find_ref_table(struct ip_fw_chain *ch, struct tid_info *ti,
289     struct tentry_info *tei, uint32_t count, int op,
290     struct table_config **ptc)
291 {
292 	struct namedobj_instance *ni;
293 	struct table_config *tc;
294 	uint16_t kidx;
295 	int error;
296 
297 	IPFW_UH_WLOCK_ASSERT(ch);
298 
299 	ni = CHAIN_TO_NI(ch);
300 	tc = NULL;
301 	if ((tc = find_table(ni, ti)) != NULL) {
302 		/* check table type */
303 		if (tc->no.subtype != ti->type)
304 			return (EINVAL);
305 
306 		if (tc->locked != 0)
307 			return (EACCES);
308 
309 		/* Try to exit early on limit hit */
310 		if (op == OP_ADD && count == 1 &&
311 		    check_table_limit(tc, tei) != 0)
312 			return (EFBIG);
313 
314 		/* Reference and return */
315 		tc->no.refcnt++;
316 		*ptc = tc;
317 		return (0);
318 	}
319 
320 	if (op == OP_DEL)
321 		return (ESRCH);
322 
323 	/* Compatibility mode: create new table for old clients */
324 	if ((tei->flags & TEI_FLAGS_COMPAT) == 0)
325 		return (ESRCH);
326 
327 	IPFW_UH_WUNLOCK(ch);
328 	error = create_table_compat(ch, ti, &kidx);
329 	IPFW_UH_WLOCK(ch);
330 
331 	if (error != 0)
332 		return (error);
333 
334 	tc = (struct table_config *)ipfw_objhash_lookup_kidx(ni, kidx);
335 	KASSERT(tc != NULL, ("create_table_compat returned bad idx %d", kidx));
336 
337 	/* OK, now we've got referenced table. */
338 	*ptc = tc;
339 	return (0);
340 }
341 
342 /*
343  * Rolls back already @added to @tc entries using state array @ta_buf_m.
344  * Assume the following layout:
345  * 1) ADD state (ta_buf_m[0] ... t_buf_m[added - 1]) for handling update cases
346  * 2) DEL state (ta_buf_m[count[ ... t_buf_m[count + added - 1])
347  *   for storing deleted state
348  */
349 static void
350 rollback_added_entries(struct ip_fw_chain *ch, struct table_config *tc,
351     struct table_info *tinfo, struct tentry_info *tei, caddr_t ta_buf_m,
352     uint32_t count, uint32_t added)
353 {
354 	struct table_algo *ta;
355 	struct tentry_info *ptei;
356 	caddr_t v, vv;
357 	size_t ta_buf_sz;
358 	int error, i;
359 	uint32_t num;
360 
361 	IPFW_UH_WLOCK_ASSERT(ch);
362 
363 	ta = tc->ta;
364 	ta_buf_sz = ta->ta_buf_size;
365 	v = ta_buf_m;
366 	vv = v + count * ta_buf_sz;
367 	for (i = 0; i < added; i++, v += ta_buf_sz, vv += ta_buf_sz) {
368 		ptei = &tei[i];
369 		if ((ptei->flags & TEI_FLAGS_UPDATED) != 0) {
370 			/*
371 			 * We have old value stored by previous
372 			 * call in @ptei->value. Do add once again
373 			 * to restore it.
374 			 */
375 			error = ta->add(tc->astate, tinfo, ptei, v, &num);
376 			KASSERT(error == 0, ("rollback UPDATE fail"));
377 			KASSERT(num == 0, ("rollback UPDATE fail2"));
378 			continue;
379 		}
380 
381 		error = ta->prepare_del(ch, ptei, vv);
382 		KASSERT(error == 0, ("pre-rollback INSERT failed"));
383 		error = ta->del(tc->astate, tinfo, ptei, vv, &num);
384 		KASSERT(error == 0, ("rollback INSERT failed"));
385 		tc->count -= num;
386 	}
387 }
388 
389 /*
390  * Prepares add/del state for all @count entries in @tei.
391  * Uses either stack buffer (@ta_buf) or allocates a new one.
392  * Stores pointer to allocated buffer back to @ta_buf.
393  *
394  * Returns 0 on success.
395  */
396 static int
397 prepare_batch_buffer(struct ip_fw_chain *ch, struct table_algo *ta,
398     struct tentry_info *tei, uint32_t count, int op, caddr_t *ta_buf)
399 {
400 	caddr_t ta_buf_m, v;
401 	size_t ta_buf_sz, sz;
402 	struct tentry_info *ptei;
403 	int error, i;
404 
405 	error = 0;
406 	ta_buf_sz = ta->ta_buf_size;
407 	if (count == 1) {
408 		/* Single add/delete, use on-stack buffer */
409 		memset(*ta_buf, 0, TA_BUF_SZ);
410 		ta_buf_m = *ta_buf;
411 	} else {
412 		/*
413 		 * Multiple adds/deletes, allocate larger buffer
414 		 *
415 		 * Note we need 2xcount buffer for add case:
416 		 * we have hold both ADD state
417 		 * and DELETE state (this may be needed
418 		 * if we need to rollback all changes)
419 		 */
420 		sz = count * ta_buf_sz;
421 		ta_buf_m = malloc((op == OP_ADD) ? sz * 2 : sz, M_TEMP,
422 		    M_WAITOK | M_ZERO);
423 	}
424 
425 	v = ta_buf_m;
426 	for (i = 0; i < count; i++, v += ta_buf_sz) {
427 		ptei = &tei[i];
428 		error = (op == OP_ADD) ?
429 		    ta->prepare_add(ch, ptei, v) : ta->prepare_del(ch, ptei, v);
430 
431 		/*
432 		 * Some syntax error (incorrect mask, or address, or
433 		 * anything). Return error regardless of atomicity
434 		 * settings.
435 		 */
436 		if (error != 0)
437 			break;
438 	}
439 
440 	*ta_buf = ta_buf_m;
441 	return (error);
442 }
443 
444 /*
445  * Flushes allocated state for each @count entries in @tei.
446  * Frees @ta_buf_m if differs from stack buffer @ta_buf.
447  */
448 static void
449 flush_batch_buffer(struct ip_fw_chain *ch, struct table_algo *ta,
450     struct tentry_info *tei, uint32_t count, int rollback,
451     caddr_t ta_buf_m, caddr_t ta_buf)
452 {
453 	caddr_t v;
454 	struct tentry_info *ptei;
455 	size_t ta_buf_sz;
456 	int i;
457 
458 	ta_buf_sz = ta->ta_buf_size;
459 
460 	/* Run cleaning callback anyway */
461 	v = ta_buf_m;
462 	for (i = 0; i < count; i++, v += ta_buf_sz) {
463 		ptei = &tei[i];
464 		ta->flush_entry(ch, ptei, v);
465 		if (ptei->ptv != NULL) {
466 			free(ptei->ptv, M_IPFW);
467 			ptei->ptv = NULL;
468 		}
469 	}
470 
471 	/* Clean up "deleted" state in case of rollback */
472 	if (rollback != 0) {
473 		v = ta_buf_m + count * ta_buf_sz;
474 		for (i = 0; i < count; i++, v += ta_buf_sz)
475 			ta->flush_entry(ch, &tei[i], v);
476 	}
477 
478 	if (ta_buf_m != ta_buf)
479 		free(ta_buf_m, M_TEMP);
480 }
481 
482 static void
483 rollback_add_entry(void *object, struct op_state *_state)
484 {
485 	struct ip_fw_chain *ch;
486 	struct tableop_state *ts;
487 
488 	ts = (struct tableop_state *)_state;
489 
490 	if (ts->tc != object && ts->ch != object)
491 		return;
492 
493 	ch = ts->ch;
494 
495 	IPFW_UH_WLOCK_ASSERT(ch);
496 
497 	/* Call specifid unlockers */
498 	rollback_table_values(ts);
499 
500 	/* Indicate we've called */
501 	ts->modified = 1;
502 }
503 
504 /*
505  * Adds/updates one or more entries in table @ti.
506  *
507  * Function may drop/reacquire UH wlock multiple times due to
508  * items alloc, algorithm callbacks (check_space), value linkage
509  * (new values, value storage realloc), etc..
510  * Other processes like other adds (which may involve storage resize),
511  * table swaps (which changes table data and may change algo type),
512  * table modify (which may change value mask) may be executed
513  * simultaneously so we need to deal with it.
514  *
515  * The following approach was implemented:
516  * we have per-chain linked list, protected with UH lock.
517  * add_table_entry prepares special on-stack structure wthich is passed
518  * to its descendants. Users add this structure to this list before unlock.
519  * After performing needed operations and acquiring UH lock back, each user
520  * checks if structure has changed. If true, it rolls local state back and
521  * returns without error to the caller.
522  * add_table_entry() on its own checks if structure has changed and restarts
523  * its operation from the beginning (goto restart).
524  *
525  * Functions which are modifying fields of interest (currently
526  *   resize_shared_value_storage() and swap_tables() )
527  * traverses given list while holding UH lock immediately before
528  * performing their operations calling function provided be list entry
529  * ( currently rollback_add_entry  ) which performs rollback for all necessary
530  * state and sets appropriate values in structure indicating rollback
531  * has happened.
532  *
533  * Algo interaction:
534  * Function references @ti first to ensure table won't
535  * disappear or change its type.
536  * After that, prepare_add callback is called for each @tei entry.
537  * Next, we try to add each entry under UH+WHLOCK
538  * using add() callback.
539  * Finally, we free all state by calling flush_entry callback
540  * for each @tei.
541  *
542  * Returns 0 on success.
543  */
544 int
545 add_table_entry(struct ip_fw_chain *ch, struct tid_info *ti,
546     struct tentry_info *tei, uint8_t flags, uint32_t count)
547 {
548 	struct table_config *tc;
549 	struct table_algo *ta;
550 	uint16_t kidx;
551 	int error, first_error, i, rollback;
552 	uint32_t num, numadd;
553 	struct tentry_info *ptei;
554 	struct tableop_state ts;
555 	char ta_buf[TA_BUF_SZ];
556 	caddr_t ta_buf_m, v;
557 
558 	memset(&ts, 0, sizeof(ts));
559 	ta = NULL;
560 	IPFW_UH_WLOCK(ch);
561 
562 	/*
563 	 * Find and reference existing table.
564 	 */
565 restart:
566 	if (ts.modified != 0) {
567 		IPFW_UH_WUNLOCK(ch);
568 		flush_batch_buffer(ch, ta, tei, count, rollback,
569 		    ta_buf_m, ta_buf);
570 		memset(&ts, 0, sizeof(ts));
571 		ta = NULL;
572 		IPFW_UH_WLOCK(ch);
573 	}
574 
575 	error = find_ref_table(ch, ti, tei, count, OP_ADD, &tc);
576 	if (error != 0) {
577 		IPFW_UH_WUNLOCK(ch);
578 		return (error);
579 	}
580 	ta = tc->ta;
581 
582 	/* Fill in tablestate */
583 	ts.ch = ch;
584 	ts.opstate.func = rollback_add_entry;
585 	ts.tc = tc;
586 	ts.vshared = tc->vshared;
587 	ts.vmask = tc->vmask;
588 	ts.ta = ta;
589 	ts.tei = tei;
590 	ts.count = count;
591 	rollback = 0;
592 	add_toperation_state(ch, &ts);
593 	IPFW_UH_WUNLOCK(ch);
594 
595 	/* Allocate memory and prepare record(s) */
596 	/* Pass stack buffer by default */
597 	ta_buf_m = ta_buf;
598 	error = prepare_batch_buffer(ch, ta, tei, count, OP_ADD, &ta_buf_m);
599 
600 	IPFW_UH_WLOCK(ch);
601 	del_toperation_state(ch, &ts);
602 	/* Drop reference we've used in first search */
603 	tc->no.refcnt--;
604 
605 	/* Check prepare_batch_buffer() error */
606 	if (error != 0)
607 		goto cleanup;
608 
609 	/*
610 	 * Check if table swap has happened.
611 	 * (so table algo might be changed).
612 	 * Restart operation to achieve consistent behavior.
613 	 */
614 	if (ts.modified != 0)
615 		goto restart;
616 
617 	/*
618 	 * Link all values values to shared/per-table value array.
619 	 *
620 	 * May release/reacquire UH_WLOCK.
621 	 */
622 	error = ipfw_link_table_values(ch, &ts, flags);
623 	if (error != 0)
624 		goto cleanup;
625 	if (ts.modified != 0)
626 		goto restart;
627 
628 	/*
629 	 * Ensure we are able to add all entries without additional
630 	 * memory allocations. May release/reacquire UH_WLOCK.
631 	 */
632 	kidx = tc->no.kidx;
633 	error = check_table_space(ch, &ts, tc, KIDX_TO_TI(ch, kidx), count);
634 	if (error != 0)
635 		goto cleanup;
636 	if (ts.modified != 0)
637 		goto restart;
638 
639 	/* We've got valid table in @tc. Let's try to add data */
640 	kidx = tc->no.kidx;
641 	ta = tc->ta;
642 	numadd = 0;
643 	first_error = 0;
644 
645 	IPFW_WLOCK(ch);
646 
647 	v = ta_buf_m;
648 	for (i = 0; i < count; i++, v += ta->ta_buf_size) {
649 		ptei = &tei[i];
650 		num = 0;
651 		/* check limit before adding */
652 		if ((error = check_table_limit(tc, ptei)) == 0) {
653 			/*
654 			 * It should be safe to insert a record w/o
655 			 * a properly-linked value if atomicity is
656 			 * not required.
657 			 *
658 			 * If the added item does not have a valid value
659 			 * index, it would get rejected by ta->add().
660 			 * */
661 			error = ta->add(tc->astate, KIDX_TO_TI(ch, kidx),
662 			    ptei, v, &num);
663 			/* Set status flag to inform userland */
664 			store_tei_result(ptei, OP_ADD, error, num);
665 		}
666 		if (error == 0) {
667 			/* Update number of records to ease limit checking */
668 			tc->count += num;
669 			numadd += num;
670 			continue;
671 		}
672 
673 		if (first_error == 0)
674 			first_error = error;
675 
676 		/*
677 		 * Some error have happened. Check our atomicity
678 		 * settings: continue if atomicity is not required,
679 		 * rollback changes otherwise.
680 		 */
681 		if ((flags & IPFW_CTF_ATOMIC) == 0)
682 			continue;
683 
684 		rollback_added_entries(ch, tc, KIDX_TO_TI(ch, kidx),
685 		    tei, ta_buf_m, count, i);
686 
687 		rollback = 1;
688 		break;
689 	}
690 
691 	IPFW_WUNLOCK(ch);
692 
693 	ipfw_garbage_table_values(ch, tc, tei, count, rollback);
694 
695 	/* Permit post-add algorithm grow/rehash. */
696 	if (numadd != 0)
697 		check_table_space(ch, NULL, tc, KIDX_TO_TI(ch, kidx), 0);
698 
699 	/* Return first error to user, if any */
700 	error = first_error;
701 
702 cleanup:
703 	IPFW_UH_WUNLOCK(ch);
704 
705 	flush_batch_buffer(ch, ta, tei, count, rollback, ta_buf_m, ta_buf);
706 
707 	return (error);
708 }
709 
710 /*
711  * Deletes one or more entries in table @ti.
712  *
713  * Returns 0 on success.
714  */
715 int
716 del_table_entry(struct ip_fw_chain *ch, struct tid_info *ti,
717     struct tentry_info *tei, uint8_t flags, uint32_t count)
718 {
719 	struct table_config *tc;
720 	struct table_algo *ta;
721 	struct tentry_info *ptei;
722 	uint16_t kidx;
723 	int error, first_error, i;
724 	uint32_t num, numdel;
725 	char ta_buf[TA_BUF_SZ];
726 	caddr_t ta_buf_m, v;
727 
728 	/*
729 	 * Find and reference existing table.
730 	 */
731 	IPFW_UH_WLOCK(ch);
732 	error = find_ref_table(ch, ti, tei, count, OP_DEL, &tc);
733 	if (error != 0) {
734 		IPFW_UH_WUNLOCK(ch);
735 		return (error);
736 	}
737 	ta = tc->ta;
738 	IPFW_UH_WUNLOCK(ch);
739 
740 	/* Allocate memory and prepare record(s) */
741 	/* Pass stack buffer by default */
742 	ta_buf_m = ta_buf;
743 	error = prepare_batch_buffer(ch, ta, tei, count, OP_DEL, &ta_buf_m);
744 	if (error != 0)
745 		goto cleanup;
746 
747 	IPFW_UH_WLOCK(ch);
748 
749 	/* Drop reference we've used in first search */
750 	tc->no.refcnt--;
751 
752 	/*
753 	 * Check if table algo is still the same.
754 	 * (changed ta may be the result of table swap).
755 	 */
756 	if (ta != tc->ta) {
757 		IPFW_UH_WUNLOCK(ch);
758 		error = EINVAL;
759 		goto cleanup;
760 	}
761 
762 	kidx = tc->no.kidx;
763 	numdel = 0;
764 	first_error = 0;
765 
766 	IPFW_WLOCK(ch);
767 	v = ta_buf_m;
768 	for (i = 0; i < count; i++, v += ta->ta_buf_size) {
769 		ptei = &tei[i];
770 		num = 0;
771 		error = ta->del(tc->astate, KIDX_TO_TI(ch, kidx), ptei, v,
772 		    &num);
773 		/* Save state for userland */
774 		store_tei_result(ptei, OP_DEL, error, num);
775 		if (error != 0 && first_error == 0)
776 			first_error = error;
777 		tc->count -= num;
778 		numdel += num;
779 	}
780 	IPFW_WUNLOCK(ch);
781 
782 	/* Unlink non-used values */
783 	ipfw_garbage_table_values(ch, tc, tei, count, 0);
784 
785 	if (numdel != 0) {
786 		/* Run post-del hook to permit shrinking */
787 		check_table_space(ch, NULL, tc, KIDX_TO_TI(ch, kidx), 0);
788 	}
789 
790 	IPFW_UH_WUNLOCK(ch);
791 
792 	/* Return first error to user, if any */
793 	error = first_error;
794 
795 cleanup:
796 	flush_batch_buffer(ch, ta, tei, count, 0, ta_buf_m, ta_buf);
797 
798 	return (error);
799 }
800 
801 /*
802  * Ensure that table @tc has enough space to add @count entries without
803  * need for reallocation.
804  *
805  * Callbacks order:
806  * 0) need_modify() (UH_WLOCK) - checks if @count items can be added w/o resize.
807  *
808  * 1) alloc_modify (no locks, M_WAITOK) - alloc new state based on @pflags.
809  * 2) prepare_modifyt (UH_WLOCK) - copy old data into new storage
810  * 3) modify (UH_WLOCK + WLOCK) - switch pointers
811  * 4) flush_modify (UH_WLOCK) - free state, if needed
812  *
813  * Returns 0 on success.
814  */
815 static int
816 check_table_space(struct ip_fw_chain *ch, struct tableop_state *ts,
817     struct table_config *tc, struct table_info *ti, uint32_t count)
818 {
819 	struct table_algo *ta;
820 	uint64_t pflags;
821 	char ta_buf[TA_BUF_SZ];
822 	int error;
823 
824 	IPFW_UH_WLOCK_ASSERT(ch);
825 
826 	error = 0;
827 	ta = tc->ta;
828 	if (ta->need_modify == NULL)
829 		return (0);
830 
831 	/* Acquire reference not to loose @tc between locks/unlocks */
832 	tc->no.refcnt++;
833 
834 	/*
835 	 * TODO: think about avoiding race between large add/large delete
836 	 * operation on algorithm which implements shrinking along with
837 	 * growing.
838 	 */
839 	while (true) {
840 		pflags = 0;
841 		if (ta->need_modify(tc->astate, ti, count, &pflags) == 0) {
842 			error = 0;
843 			break;
844 		}
845 
846 		/* We have to shrink/grow table */
847 		if (ts != NULL)
848 			add_toperation_state(ch, ts);
849 		IPFW_UH_WUNLOCK(ch);
850 
851 		memset(&ta_buf, 0, sizeof(ta_buf));
852 		error = ta->prepare_mod(ta_buf, &pflags);
853 
854 		IPFW_UH_WLOCK(ch);
855 		if (ts != NULL)
856 			del_toperation_state(ch, ts);
857 
858 		if (error != 0)
859 			break;
860 
861 		if (ts != NULL && ts->modified != 0) {
862 			/*
863 			 * Swap operation has happened
864 			 * so we're currently operating on other
865 			 * table data. Stop doing this.
866 			 */
867 			ta->flush_mod(ta_buf);
868 			break;
869 		}
870 
871 		/* Check if we still need to alter table */
872 		ti = KIDX_TO_TI(ch, tc->no.kidx);
873 		if (ta->need_modify(tc->astate, ti, count, &pflags) == 0) {
874 			IPFW_UH_WUNLOCK(ch);
875 
876 			/*
877 			 * Other thread has already performed resize.
878 			 * Flush our state and return.
879 			 */
880 			ta->flush_mod(ta_buf);
881 			break;
882 		}
883 
884 		error = ta->fill_mod(tc->astate, ti, ta_buf, &pflags);
885 		if (error == 0) {
886 			/* Do actual modification */
887 			IPFW_WLOCK(ch);
888 			ta->modify(tc->astate, ti, ta_buf, pflags);
889 			IPFW_WUNLOCK(ch);
890 		}
891 
892 		/* Anyway, flush data and retry */
893 		ta->flush_mod(ta_buf);
894 	}
895 
896 	tc->no.refcnt--;
897 	return (error);
898 }
899 
900 /*
901  * Adds or deletes record in table.
902  * Data layout (v0):
903  * Request: [ ip_fw3_opheader ipfw_table_xentry ]
904  *
905  * Returns 0 on success
906  */
907 static int
908 manage_table_ent_v0(struct ip_fw_chain *ch, ip_fw3_opheader *op3,
909     struct sockopt_data *sd)
910 {
911 	ipfw_table_xentry *xent;
912 	struct tentry_info tei;
913 	struct tid_info ti;
914 	struct table_value v;
915 	int error, hdrlen, read;
916 
917 	hdrlen = offsetof(ipfw_table_xentry, k);
918 
919 	/* Check minimum header size */
920 	if (sd->valsize < (sizeof(*op3) + hdrlen))
921 		return (EINVAL);
922 
923 	read = sizeof(ip_fw3_opheader);
924 
925 	/* Check if xentry len field is valid */
926 	xent = (ipfw_table_xentry *)(op3 + 1);
927 	if (xent->len < hdrlen || xent->len + read > sd->valsize)
928 		return (EINVAL);
929 
930 	memset(&tei, 0, sizeof(tei));
931 	tei.paddr = &xent->k;
932 	tei.masklen = xent->masklen;
933 	ipfw_import_table_value_legacy(xent->value, &v);
934 	tei.pvalue = &v;
935 	/* Old requests compatibility */
936 	tei.flags = TEI_FLAGS_COMPAT;
937 	if (xent->type == IPFW_TABLE_ADDR) {
938 		if (xent->len - hdrlen == sizeof(in_addr_t))
939 			tei.subtype = AF_INET;
940 		else
941 			tei.subtype = AF_INET6;
942 	}
943 
944 	memset(&ti, 0, sizeof(ti));
945 	ti.uidx = xent->tbl;
946 	ti.type = xent->type;
947 
948 	error = (op3->opcode == IP_FW_TABLE_XADD) ?
949 	    add_table_entry(ch, &ti, &tei, 0, 1) :
950 	    del_table_entry(ch, &ti, &tei, 0, 1);
951 
952 	return (error);
953 }
954 
955 /*
956  * Adds or deletes record in table.
957  * Data layout (v1)(current):
958  * Request: [ ipfw_obj_header
959  *   ipfw_obj_ctlv(IPFW_TLV_TBLENT_LIST) [ ipfw_obj_tentry x N ]
960  * ]
961  *
962  * Returns 0 on success
963  */
964 static int
965 manage_table_ent_v1(struct ip_fw_chain *ch, ip_fw3_opheader *op3,
966     struct sockopt_data *sd)
967 {
968 	ipfw_obj_tentry *tent, *ptent;
969 	ipfw_obj_ctlv *ctlv;
970 	ipfw_obj_header *oh;
971 	struct tentry_info *ptei, tei, *tei_buf;
972 	struct tid_info ti;
973 	int error, i, kidx, read;
974 
975 	/* Check minimum header size */
976 	if (sd->valsize < (sizeof(*oh) + sizeof(*ctlv)))
977 		return (EINVAL);
978 
979 	/* Check if passed data is too long */
980 	if (sd->valsize != sd->kavail)
981 		return (EINVAL);
982 
983 	oh = (ipfw_obj_header *)sd->kbuf;
984 
985 	/* Basic length checks for TLVs */
986 	if (oh->ntlv.head.length != sizeof(oh->ntlv))
987 		return (EINVAL);
988 
989 	read = sizeof(*oh);
990 
991 	ctlv = (ipfw_obj_ctlv *)(oh + 1);
992 	if (ctlv->head.length + read != sd->valsize)
993 		return (EINVAL);
994 
995 	read += sizeof(*ctlv);
996 	tent = (ipfw_obj_tentry *)(ctlv + 1);
997 	if (ctlv->count * sizeof(*tent) + read != sd->valsize)
998 		return (EINVAL);
999 
1000 	if (ctlv->count == 0)
1001 		return (0);
1002 
1003 	/*
1004 	 * Mark entire buffer as "read".
1005 	 * This instructs sopt api write it back
1006 	 * after function return.
1007 	 */
1008 	ipfw_get_sopt_header(sd, sd->valsize);
1009 
1010 	/* Perform basic checks for each entry */
1011 	ptent = tent;
1012 	kidx = tent->idx;
1013 	for (i = 0; i < ctlv->count; i++, ptent++) {
1014 		if (ptent->head.length != sizeof(*ptent))
1015 			return (EINVAL);
1016 		if (ptent->idx != kidx)
1017 			return (ENOTSUP);
1018 	}
1019 
1020 	/* Convert data into kernel request objects */
1021 	objheader_to_ti(oh, &ti);
1022 	ti.type = oh->ntlv.type;
1023 	ti.uidx = kidx;
1024 
1025 	/* Use on-stack buffer for single add/del */
1026 	if (ctlv->count == 1) {
1027 		memset(&tei, 0, sizeof(tei));
1028 		tei_buf = &tei;
1029 	} else
1030 		tei_buf = malloc(ctlv->count * sizeof(tei), M_TEMP,
1031 		    M_WAITOK | M_ZERO);
1032 
1033 	ptei = tei_buf;
1034 	ptent = tent;
1035 	for (i = 0; i < ctlv->count; i++, ptent++, ptei++) {
1036 		ptei->paddr = &ptent->k;
1037 		ptei->subtype = ptent->subtype;
1038 		ptei->masklen = ptent->masklen;
1039 		if (ptent->head.flags & IPFW_TF_UPDATE)
1040 			ptei->flags |= TEI_FLAGS_UPDATE;
1041 
1042 		ipfw_import_table_value_v1(&ptent->v.value);
1043 		ptei->pvalue = (struct table_value *)&ptent->v.value;
1044 	}
1045 
1046 	error = (oh->opheader.opcode == IP_FW_TABLE_XADD) ?
1047 	    add_table_entry(ch, &ti, tei_buf, ctlv->flags, ctlv->count) :
1048 	    del_table_entry(ch, &ti, tei_buf, ctlv->flags, ctlv->count);
1049 
1050 	/* Translate result back to userland */
1051 	ptei = tei_buf;
1052 	ptent = tent;
1053 	for (i = 0; i < ctlv->count; i++, ptent++, ptei++) {
1054 		if (ptei->flags & TEI_FLAGS_ADDED)
1055 			ptent->result = IPFW_TR_ADDED;
1056 		else if (ptei->flags & TEI_FLAGS_DELETED)
1057 			ptent->result = IPFW_TR_DELETED;
1058 		else if (ptei->flags & TEI_FLAGS_UPDATED)
1059 			ptent->result = IPFW_TR_UPDATED;
1060 		else if (ptei->flags & TEI_FLAGS_LIMIT)
1061 			ptent->result = IPFW_TR_LIMIT;
1062 		else if (ptei->flags & TEI_FLAGS_ERROR)
1063 			ptent->result = IPFW_TR_ERROR;
1064 		else if (ptei->flags & TEI_FLAGS_NOTFOUND)
1065 			ptent->result = IPFW_TR_NOTFOUND;
1066 		else if (ptei->flags & TEI_FLAGS_EXISTS)
1067 			ptent->result = IPFW_TR_EXISTS;
1068 		ipfw_export_table_value_v1(ptei->pvalue, &ptent->v.value);
1069 	}
1070 
1071 	if (tei_buf != &tei)
1072 		free(tei_buf, M_TEMP);
1073 
1074 	return (error);
1075 }
1076 
1077 /*
1078  * Looks up an entry in given table.
1079  * Data layout (v0)(current):
1080  * Request: [ ipfw_obj_header ipfw_obj_tentry ]
1081  * Reply: [ ipfw_obj_header ipfw_obj_tentry ]
1082  *
1083  * Returns 0 on success
1084  */
1085 static int
1086 find_table_entry(struct ip_fw_chain *ch, ip_fw3_opheader *op3,
1087     struct sockopt_data *sd)
1088 {
1089 	ipfw_obj_tentry *tent;
1090 	ipfw_obj_header *oh;
1091 	struct tid_info ti;
1092 	struct table_config *tc;
1093 	struct table_algo *ta;
1094 	struct table_info *kti;
1095 	struct table_value *pval;
1096 	struct namedobj_instance *ni;
1097 	int error;
1098 	size_t sz;
1099 
1100 	/* Check minimum header size */
1101 	sz = sizeof(*oh) + sizeof(*tent);
1102 	if (sd->valsize != sz)
1103 		return (EINVAL);
1104 
1105 	oh = (struct _ipfw_obj_header *)ipfw_get_sopt_header(sd, sz);
1106 	tent = (ipfw_obj_tentry *)(oh + 1);
1107 
1108 	/* Basic length checks for TLVs */
1109 	if (oh->ntlv.head.length != sizeof(oh->ntlv))
1110 		return (EINVAL);
1111 
1112 	objheader_to_ti(oh, &ti);
1113 	ti.type = oh->ntlv.type;
1114 	ti.uidx = tent->idx;
1115 
1116 	IPFW_UH_RLOCK(ch);
1117 	ni = CHAIN_TO_NI(ch);
1118 
1119 	/*
1120 	 * Find existing table and check its type .
1121 	 */
1122 	ta = NULL;
1123 	if ((tc = find_table(ni, &ti)) == NULL) {
1124 		IPFW_UH_RUNLOCK(ch);
1125 		return (ESRCH);
1126 	}
1127 
1128 	/* check table type */
1129 	if (tc->no.subtype != ti.type) {
1130 		IPFW_UH_RUNLOCK(ch);
1131 		return (EINVAL);
1132 	}
1133 
1134 	kti = KIDX_TO_TI(ch, tc->no.kidx);
1135 	ta = tc->ta;
1136 
1137 	if (ta->find_tentry == NULL)
1138 		return (ENOTSUP);
1139 
1140 	error = ta->find_tentry(tc->astate, kti, tent);
1141 	if (error == 0) {
1142 		pval = get_table_value(ch, tc, tent->v.kidx);
1143 		ipfw_export_table_value_v1(pval, &tent->v.value);
1144 	}
1145 	IPFW_UH_RUNLOCK(ch);
1146 
1147 	return (error);
1148 }
1149 
1150 /*
1151  * Flushes all entries or destroys given table.
1152  * Data layout (v0)(current):
1153  * Request: [ ipfw_obj_header ]
1154  *
1155  * Returns 0 on success
1156  */
1157 static int
1158 flush_table_v0(struct ip_fw_chain *ch, ip_fw3_opheader *op3,
1159     struct sockopt_data *sd)
1160 {
1161 	int error;
1162 	struct _ipfw_obj_header *oh;
1163 	struct tid_info ti;
1164 
1165 	if (sd->valsize != sizeof(*oh))
1166 		return (EINVAL);
1167 
1168 	oh = (struct _ipfw_obj_header *)op3;
1169 	objheader_to_ti(oh, &ti);
1170 
1171 	if (op3->opcode == IP_FW_TABLE_XDESTROY)
1172 		error = destroy_table(ch, &ti);
1173 	else if (op3->opcode == IP_FW_TABLE_XFLUSH)
1174 		error = flush_table(ch, &ti);
1175 	else
1176 		return (ENOTSUP);
1177 
1178 	return (error);
1179 }
1180 
1181 static void
1182 restart_flush(void *object, struct op_state *_state)
1183 {
1184 	struct tableop_state *ts;
1185 
1186 	ts = (struct tableop_state *)_state;
1187 
1188 	if (ts->tc != object)
1189 		return;
1190 
1191 	/* Indicate we've called */
1192 	ts->modified = 1;
1193 }
1194 
1195 /*
1196  * Flushes given table.
1197  *
1198  * Function create new table instance with the same
1199  * parameters, swaps it with old one and
1200  * flushes state without holding runtime WLOCK.
1201  *
1202  * Returns 0 on success.
1203  */
1204 int
1205 flush_table(struct ip_fw_chain *ch, struct tid_info *ti)
1206 {
1207 	struct namedobj_instance *ni;
1208 	struct table_config *tc;
1209 	struct table_algo *ta;
1210 	struct table_info ti_old, ti_new, *tablestate;
1211 	void *astate_old, *astate_new;
1212 	char algostate[64], *pstate;
1213 	struct tableop_state ts;
1214 	int error, need_gc;
1215 	uint16_t kidx;
1216 	uint8_t tflags;
1217 
1218 	/*
1219 	 * Stage 1: save table algorithm.
1220 	 * Reference found table to ensure it won't disappear.
1221 	 */
1222 	IPFW_UH_WLOCK(ch);
1223 	ni = CHAIN_TO_NI(ch);
1224 	if ((tc = find_table(ni, ti)) == NULL) {
1225 		IPFW_UH_WUNLOCK(ch);
1226 		return (ESRCH);
1227 	}
1228 	need_gc = 0;
1229 	astate_new = NULL;
1230 	memset(&ti_new, 0, sizeof(ti_new));
1231 restart:
1232 	/* Set up swap handler */
1233 	memset(&ts, 0, sizeof(ts));
1234 	ts.opstate.func = restart_flush;
1235 	ts.tc = tc;
1236 
1237 	ta = tc->ta;
1238 	/* Do not flush readonly tables */
1239 	if ((ta->flags & TA_FLAG_READONLY) != 0) {
1240 		IPFW_UH_WUNLOCK(ch);
1241 		return (EACCES);
1242 	}
1243 	/* Save startup algo parameters */
1244 	if (ta->print_config != NULL) {
1245 		ta->print_config(tc->astate, KIDX_TO_TI(ch, tc->no.kidx),
1246 		    algostate, sizeof(algostate));
1247 		pstate = algostate;
1248 	} else
1249 		pstate = NULL;
1250 	tflags = tc->tflags;
1251 	tc->no.refcnt++;
1252 	add_toperation_state(ch, &ts);
1253 	IPFW_UH_WUNLOCK(ch);
1254 
1255 	/*
1256 	 * Stage 1.5: if this is not the first attempt, destroy previous state
1257 	 */
1258 	if (need_gc != 0) {
1259 		ta->destroy(astate_new, &ti_new);
1260 		need_gc = 0;
1261 	}
1262 
1263 	/*
1264 	 * Stage 2: allocate new table instance using same algo.
1265 	 */
1266 	memset(&ti_new, 0, sizeof(struct table_info));
1267 	error = ta->init(ch, &astate_new, &ti_new, pstate, tflags);
1268 
1269 	/*
1270 	 * Stage 3: swap old state pointers with newly-allocated ones.
1271 	 * Decrease refcount.
1272 	 */
1273 	IPFW_UH_WLOCK(ch);
1274 	tc->no.refcnt--;
1275 	del_toperation_state(ch, &ts);
1276 
1277 	if (error != 0) {
1278 		IPFW_UH_WUNLOCK(ch);
1279 		return (error);
1280 	}
1281 
1282 	/*
1283 	 * Restart operation if table swap has happened:
1284 	 * even if algo may be the same, algo init parameters
1285 	 * may change. Restart operation instead of doing
1286 	 * complex checks.
1287 	 */
1288 	if (ts.modified != 0) {
1289 		/* Delay destroying data since we're holding UH lock */
1290 		need_gc = 1;
1291 		goto restart;
1292 	}
1293 
1294 	ni = CHAIN_TO_NI(ch);
1295 	kidx = tc->no.kidx;
1296 	tablestate = (struct table_info *)ch->tablestate;
1297 
1298 	IPFW_WLOCK(ch);
1299 	ti_old = tablestate[kidx];
1300 	tablestate[kidx] = ti_new;
1301 	IPFW_WUNLOCK(ch);
1302 
1303 	astate_old = tc->astate;
1304 	tc->astate = astate_new;
1305 	tc->ti_copy = ti_new;
1306 	tc->count = 0;
1307 
1308 	/* Notify algo on real @ti address */
1309 	if (ta->change_ti != NULL)
1310 		ta->change_ti(tc->astate, &tablestate[kidx]);
1311 
1312 	/*
1313 	 * Stage 4: unref values.
1314 	 */
1315 	ipfw_unref_table_values(ch, tc, ta, astate_old, &ti_old);
1316 	IPFW_UH_WUNLOCK(ch);
1317 
1318 	/*
1319 	 * Stage 5: perform real flush/destroy.
1320 	 */
1321 	ta->destroy(astate_old, &ti_old);
1322 
1323 	return (0);
1324 }
1325 
1326 /*
1327  * Swaps two tables.
1328  * Data layout (v0)(current):
1329  * Request: [ ipfw_obj_header ipfw_obj_ntlv ]
1330  *
1331  * Returns 0 on success
1332  */
1333 static int
1334 swap_table(struct ip_fw_chain *ch, ip_fw3_opheader *op3,
1335     struct sockopt_data *sd)
1336 {
1337 	int error;
1338 	struct _ipfw_obj_header *oh;
1339 	struct tid_info ti_a, ti_b;
1340 
1341 	if (sd->valsize != sizeof(*oh) + sizeof(ipfw_obj_ntlv))
1342 		return (EINVAL);
1343 
1344 	oh = (struct _ipfw_obj_header *)op3;
1345 	ntlv_to_ti(&oh->ntlv, &ti_a);
1346 	ntlv_to_ti((ipfw_obj_ntlv *)(oh + 1), &ti_b);
1347 
1348 	error = swap_tables(ch, &ti_a, &ti_b);
1349 
1350 	return (error);
1351 }
1352 
1353 /*
1354  * Swaps two tables of the same type/valtype.
1355  *
1356  * Checks if tables are compatible and limits
1357  * permits swap, than actually perform swap.
1358  *
1359  * Each table consists of 2 different parts:
1360  * config:
1361  *   @tc (with name, set, kidx) and rule bindings, which is "stable".
1362  *   number of items
1363  *   table algo
1364  * runtime:
1365  *   runtime data @ti (ch->tablestate)
1366  *   runtime cache in @tc
1367  *   algo-specific data (@tc->astate)
1368  *
1369  * So we switch:
1370  *  all runtime data
1371  *   number of items
1372  *   table algo
1373  *
1374  * After that we call @ti change handler for each table.
1375  *
1376  * Note that referencing @tc won't protect tc->ta from change.
1377  * XXX: Do we need to restrict swap between locked tables?
1378  * XXX: Do we need to exchange ftype?
1379  *
1380  * Returns 0 on success.
1381  */
1382 static int
1383 swap_tables(struct ip_fw_chain *ch, struct tid_info *a,
1384     struct tid_info *b)
1385 {
1386 	struct namedobj_instance *ni;
1387 	struct table_config *tc_a, *tc_b;
1388 	struct table_algo *ta;
1389 	struct table_info ti, *tablestate;
1390 	void *astate;
1391 	uint32_t count;
1392 
1393 	/*
1394 	 * Stage 1: find both tables and ensure they are of
1395 	 * the same type.
1396 	 */
1397 	IPFW_UH_WLOCK(ch);
1398 	ni = CHAIN_TO_NI(ch);
1399 	if ((tc_a = find_table(ni, a)) == NULL) {
1400 		IPFW_UH_WUNLOCK(ch);
1401 		return (ESRCH);
1402 	}
1403 	if ((tc_b = find_table(ni, b)) == NULL) {
1404 		IPFW_UH_WUNLOCK(ch);
1405 		return (ESRCH);
1406 	}
1407 
1408 	/* It is very easy to swap between the same table */
1409 	if (tc_a == tc_b) {
1410 		IPFW_UH_WUNLOCK(ch);
1411 		return (0);
1412 	}
1413 
1414 	/* Check type and value are the same */
1415 	if (tc_a->no.subtype!=tc_b->no.subtype || tc_a->tflags!=tc_b->tflags) {
1416 		IPFW_UH_WUNLOCK(ch);
1417 		return (EINVAL);
1418 	}
1419 
1420 	/* Check limits before swap */
1421 	if ((tc_a->limit != 0 && tc_b->count > tc_a->limit) ||
1422 	    (tc_b->limit != 0 && tc_a->count > tc_b->limit)) {
1423 		IPFW_UH_WUNLOCK(ch);
1424 		return (EFBIG);
1425 	}
1426 
1427 	/* Check if one of the tables is readonly */
1428 	if (((tc_a->ta->flags | tc_b->ta->flags) & TA_FLAG_READONLY) != 0) {
1429 		IPFW_UH_WUNLOCK(ch);
1430 		return (EACCES);
1431 	}
1432 
1433 	/* Notify we're going to swap */
1434 	rollback_toperation_state(ch, tc_a);
1435 	rollback_toperation_state(ch, tc_b);
1436 
1437 	/* Everything is fine, prepare to swap */
1438 	tablestate = (struct table_info *)ch->tablestate;
1439 	ti = tablestate[tc_a->no.kidx];
1440 	ta = tc_a->ta;
1441 	astate = tc_a->astate;
1442 	count = tc_a->count;
1443 
1444 	IPFW_WLOCK(ch);
1445 	/* a <- b */
1446 	tablestate[tc_a->no.kidx] = tablestate[tc_b->no.kidx];
1447 	tc_a->ta = tc_b->ta;
1448 	tc_a->astate = tc_b->astate;
1449 	tc_a->count = tc_b->count;
1450 	/* b <- a */
1451 	tablestate[tc_b->no.kidx] = ti;
1452 	tc_b->ta = ta;
1453 	tc_b->astate = astate;
1454 	tc_b->count = count;
1455 	IPFW_WUNLOCK(ch);
1456 
1457 	/* Ensure tc.ti copies are in sync */
1458 	tc_a->ti_copy = tablestate[tc_a->no.kidx];
1459 	tc_b->ti_copy = tablestate[tc_b->no.kidx];
1460 
1461 	/* Notify both tables on @ti change */
1462 	if (tc_a->ta->change_ti != NULL)
1463 		tc_a->ta->change_ti(tc_a->astate, &tablestate[tc_a->no.kidx]);
1464 	if (tc_b->ta->change_ti != NULL)
1465 		tc_b->ta->change_ti(tc_b->astate, &tablestate[tc_b->no.kidx]);
1466 
1467 	IPFW_UH_WUNLOCK(ch);
1468 
1469 	return (0);
1470 }
1471 
1472 /*
1473  * Destroys table specified by @ti.
1474  * Data layout (v0)(current):
1475  * Request: [ ip_fw3_opheader ]
1476  *
1477  * Returns 0 on success
1478  */
1479 static int
1480 destroy_table(struct ip_fw_chain *ch, struct tid_info *ti)
1481 {
1482 	struct namedobj_instance *ni;
1483 	struct table_config *tc;
1484 
1485 	IPFW_UH_WLOCK(ch);
1486 
1487 	ni = CHAIN_TO_NI(ch);
1488 	if ((tc = find_table(ni, ti)) == NULL) {
1489 		IPFW_UH_WUNLOCK(ch);
1490 		return (ESRCH);
1491 	}
1492 
1493 	/* Do not permit destroying referenced tables */
1494 	if (tc->no.refcnt > 0) {
1495 		IPFW_UH_WUNLOCK(ch);
1496 		return (EBUSY);
1497 	}
1498 
1499 	IPFW_WLOCK(ch);
1500 	unlink_table(ch, tc);
1501 	IPFW_WUNLOCK(ch);
1502 
1503 	/* Free obj index */
1504 	if (ipfw_objhash_free_idx(ni, tc->no.kidx) != 0)
1505 		printf("Error unlinking kidx %d from table %s\n",
1506 		    tc->no.kidx, tc->tablename);
1507 
1508 	/* Unref values used in tables while holding UH lock */
1509 	ipfw_unref_table_values(ch, tc, tc->ta, tc->astate, &tc->ti_copy);
1510 	IPFW_UH_WUNLOCK(ch);
1511 
1512 	free_table_config(ni, tc);
1513 
1514 	return (0);
1515 }
1516 
1517 static uint32_t
1518 roundup2p(uint32_t v)
1519 {
1520 
1521 	v--;
1522 	v |= v >> 1;
1523 	v |= v >> 2;
1524 	v |= v >> 4;
1525 	v |= v >> 8;
1526 	v |= v >> 16;
1527 	v++;
1528 
1529 	return (v);
1530 }
1531 
1532 /*
1533  * Grow tables index.
1534  *
1535  * Returns 0 on success.
1536  */
1537 int
1538 ipfw_resize_tables(struct ip_fw_chain *ch, unsigned int ntables)
1539 {
1540 	unsigned int ntables_old, tbl;
1541 	struct namedobj_instance *ni;
1542 	void *new_idx, *old_tablestate, *tablestate;
1543 	struct table_info *ti;
1544 	struct table_config *tc;
1545 	int i, new_blocks;
1546 
1547 	/* Check new value for validity */
1548 	if (ntables == 0)
1549 		return (EINVAL);
1550 	if (ntables > IPFW_TABLES_MAX)
1551 		ntables = IPFW_TABLES_MAX;
1552 	/* Alight to nearest power of 2 */
1553 	ntables = (unsigned int)roundup2p(ntables);
1554 
1555 	/* Allocate new pointers */
1556 	tablestate = malloc(ntables * sizeof(struct table_info),
1557 	    M_IPFW, M_WAITOK | M_ZERO);
1558 
1559 	ipfw_objhash_bitmap_alloc(ntables, (void *)&new_idx, &new_blocks);
1560 
1561 	IPFW_UH_WLOCK(ch);
1562 
1563 	tbl = (ntables >= V_fw_tables_max) ? V_fw_tables_max : ntables;
1564 	ni = CHAIN_TO_NI(ch);
1565 
1566 	/* Temporary restrict decreasing max_tables */
1567 	if (ntables < V_fw_tables_max) {
1568 		/*
1569 		 * FIXME: Check if we really can shrink
1570 		 */
1571 		IPFW_UH_WUNLOCK(ch);
1572 		return (EINVAL);
1573 	}
1574 
1575 	/* Copy table info/indices */
1576 	memcpy(tablestate, ch->tablestate, sizeof(struct table_info) * tbl);
1577 	ipfw_objhash_bitmap_merge(ni, &new_idx, &new_blocks);
1578 
1579 	IPFW_WLOCK(ch);
1580 
1581 	/* Change pointers */
1582 	old_tablestate = ch->tablestate;
1583 	ch->tablestate = tablestate;
1584 	ipfw_objhash_bitmap_swap(ni, &new_idx, &new_blocks);
1585 
1586 	ntables_old = V_fw_tables_max;
1587 	V_fw_tables_max = ntables;
1588 
1589 	IPFW_WUNLOCK(ch);
1590 
1591 	/* Notify all consumers that their @ti pointer has changed */
1592 	ti = (struct table_info *)ch->tablestate;
1593 	for (i = 0; i < tbl; i++, ti++) {
1594 		if (ti->lookup == NULL)
1595 			continue;
1596 		tc = (struct table_config *)ipfw_objhash_lookup_kidx(ni, i);
1597 		if (tc == NULL || tc->ta->change_ti == NULL)
1598 			continue;
1599 
1600 		tc->ta->change_ti(tc->astate, ti);
1601 	}
1602 
1603 	IPFW_UH_WUNLOCK(ch);
1604 
1605 	/* Free old pointers */
1606 	free(old_tablestate, M_IPFW);
1607 	ipfw_objhash_bitmap_free(new_idx, new_blocks);
1608 
1609 	return (0);
1610 }
1611 
1612 /*
1613  * Lookup table's named object by its @kidx.
1614  */
1615 struct named_object *
1616 ipfw_objhash_lookup_table_kidx(struct ip_fw_chain *ch, uint16_t kidx)
1617 {
1618 
1619 	return (ipfw_objhash_lookup_kidx(CHAIN_TO_NI(ch), kidx));
1620 }
1621 
1622 /*
1623  * Take reference to table specified in @ntlv.
1624  * On success return its @kidx.
1625  */
1626 int
1627 ipfw_ref_table(struct ip_fw_chain *ch, ipfw_obj_ntlv *ntlv, uint16_t *kidx)
1628 {
1629 	struct tid_info ti;
1630 	struct table_config *tc;
1631 	int error;
1632 
1633 	IPFW_UH_WLOCK_ASSERT(ch);
1634 
1635 	ntlv_to_ti(ntlv, &ti);
1636 	error = find_table_err(CHAIN_TO_NI(ch), &ti, &tc);
1637 	if (error != 0)
1638 		return (error);
1639 
1640 	if (tc == NULL)
1641 		return (ESRCH);
1642 
1643 	tc_ref(tc);
1644 	*kidx = tc->no.kidx;
1645 
1646 	return (0);
1647 }
1648 
1649 void
1650 ipfw_unref_table(struct ip_fw_chain *ch, uint16_t kidx)
1651 {
1652 
1653 	struct namedobj_instance *ni;
1654 	struct named_object *no;
1655 
1656 	IPFW_UH_WLOCK_ASSERT(ch);
1657 	ni = CHAIN_TO_NI(ch);
1658 	no = ipfw_objhash_lookup_kidx(ni, kidx);
1659 	KASSERT(no != NULL, ("Table with index %d not found", kidx));
1660 	no->refcnt--;
1661 }
1662 
1663 /*
1664  * Lookup an arbitrary key @paddr of length @plen in table @tbl.
1665  * Stores found value in @val.
1666  *
1667  * Returns 1 if key was found.
1668  */
1669 int
1670 ipfw_lookup_table(struct ip_fw_chain *ch, uint16_t tbl, uint16_t plen,
1671     void *paddr, uint32_t *val)
1672 {
1673 	struct table_info *ti;
1674 
1675 	ti = KIDX_TO_TI(ch, tbl);
1676 
1677 	return (ti->lookup(ti, paddr, plen, val));
1678 }
1679 
1680 /*
1681  * Info/List/dump support for tables.
1682  *
1683  */
1684 
1685 /*
1686  * High-level 'get' cmds sysctl handlers
1687  */
1688 
1689 /*
1690  * Lists all tables currently available in kernel.
1691  * Data layout (v0)(current):
1692  * Request: [ ipfw_obj_lheader ], size = ipfw_obj_lheader.size
1693  * Reply: [ ipfw_obj_lheader ipfw_xtable_info x N ]
1694  *
1695  * Returns 0 on success
1696  */
1697 static int
1698 list_tables(struct ip_fw_chain *ch, ip_fw3_opheader *op3,
1699     struct sockopt_data *sd)
1700 {
1701 	struct _ipfw_obj_lheader *olh;
1702 	int error;
1703 
1704 	olh = (struct _ipfw_obj_lheader *)ipfw_get_sopt_header(sd,sizeof(*olh));
1705 	if (olh == NULL)
1706 		return (EINVAL);
1707 	if (sd->valsize < olh->size)
1708 		return (EINVAL);
1709 
1710 	IPFW_UH_RLOCK(ch);
1711 	error = export_tables(ch, olh, sd);
1712 	IPFW_UH_RUNLOCK(ch);
1713 
1714 	return (error);
1715 }
1716 
1717 /*
1718  * Store table info to buffer provided by @sd.
1719  * Data layout (v0)(current):
1720  * Request: [ ipfw_obj_header ipfw_xtable_info(empty)]
1721  * Reply: [ ipfw_obj_header ipfw_xtable_info ]
1722  *
1723  * Returns 0 on success.
1724  */
1725 static int
1726 describe_table(struct ip_fw_chain *ch, ip_fw3_opheader *op3,
1727     struct sockopt_data *sd)
1728 {
1729 	struct _ipfw_obj_header *oh;
1730 	struct table_config *tc;
1731 	struct tid_info ti;
1732 	size_t sz;
1733 
1734 	sz = sizeof(*oh) + sizeof(ipfw_xtable_info);
1735 	oh = (struct _ipfw_obj_header *)ipfw_get_sopt_header(sd, sz);
1736 	if (oh == NULL)
1737 		return (EINVAL);
1738 
1739 	objheader_to_ti(oh, &ti);
1740 
1741 	IPFW_UH_RLOCK(ch);
1742 	if ((tc = find_table(CHAIN_TO_NI(ch), &ti)) == NULL) {
1743 		IPFW_UH_RUNLOCK(ch);
1744 		return (ESRCH);
1745 	}
1746 
1747 	export_table_info(ch, tc, (ipfw_xtable_info *)(oh + 1));
1748 	IPFW_UH_RUNLOCK(ch);
1749 
1750 	return (0);
1751 }
1752 
1753 /*
1754  * Modifies existing table.
1755  * Data layout (v0)(current):
1756  * Request: [ ipfw_obj_header ipfw_xtable_info ]
1757  *
1758  * Returns 0 on success
1759  */
1760 static int
1761 modify_table(struct ip_fw_chain *ch, ip_fw3_opheader *op3,
1762     struct sockopt_data *sd)
1763 {
1764 	struct _ipfw_obj_header *oh;
1765 	ipfw_xtable_info *i;
1766 	char *tname;
1767 	struct tid_info ti;
1768 	struct namedobj_instance *ni;
1769 	struct table_config *tc;
1770 
1771 	if (sd->valsize != sizeof(*oh) + sizeof(ipfw_xtable_info))
1772 		return (EINVAL);
1773 
1774 	oh = (struct _ipfw_obj_header *)sd->kbuf;
1775 	i = (ipfw_xtable_info *)(oh + 1);
1776 
1777 	/*
1778 	 * Verify user-supplied strings.
1779 	 * Check for null-terminated/zero-length strings/
1780 	 */
1781 	tname = oh->ntlv.name;
1782 	if (check_table_name(tname) != 0)
1783 		return (EINVAL);
1784 
1785 	objheader_to_ti(oh, &ti);
1786 	ti.type = i->type;
1787 
1788 	IPFW_UH_WLOCK(ch);
1789 	ni = CHAIN_TO_NI(ch);
1790 	if ((tc = find_table(ni, &ti)) == NULL) {
1791 		IPFW_UH_WUNLOCK(ch);
1792 		return (ESRCH);
1793 	}
1794 
1795 	/* Do not support any modifications for readonly tables */
1796 	if ((tc->ta->flags & TA_FLAG_READONLY) != 0) {
1797 		IPFW_UH_WUNLOCK(ch);
1798 		return (EACCES);
1799 	}
1800 
1801 	if ((i->mflags & IPFW_TMFLAGS_LIMIT) != 0)
1802 		tc->limit = i->limit;
1803 	if ((i->mflags & IPFW_TMFLAGS_LOCK) != 0)
1804 		tc->locked = ((i->flags & IPFW_TGFLAGS_LOCKED) != 0);
1805 	IPFW_UH_WUNLOCK(ch);
1806 
1807 	return (0);
1808 }
1809 
1810 /*
1811  * Creates new table.
1812  * Data layout (v0)(current):
1813  * Request: [ ipfw_obj_header ipfw_xtable_info ]
1814  *
1815  * Returns 0 on success
1816  */
1817 static int
1818 create_table(struct ip_fw_chain *ch, ip_fw3_opheader *op3,
1819     struct sockopt_data *sd)
1820 {
1821 	struct _ipfw_obj_header *oh;
1822 	ipfw_xtable_info *i;
1823 	char *tname, *aname;
1824 	struct tid_info ti;
1825 	struct namedobj_instance *ni;
1826 
1827 	if (sd->valsize != sizeof(*oh) + sizeof(ipfw_xtable_info))
1828 		return (EINVAL);
1829 
1830 	oh = (struct _ipfw_obj_header *)sd->kbuf;
1831 	i = (ipfw_xtable_info *)(oh + 1);
1832 
1833 	/*
1834 	 * Verify user-supplied strings.
1835 	 * Check for null-terminated/zero-length strings/
1836 	 */
1837 	tname = oh->ntlv.name;
1838 	aname = i->algoname;
1839 	if (check_table_name(tname) != 0 ||
1840 	    strnlen(aname, sizeof(i->algoname)) == sizeof(i->algoname))
1841 		return (EINVAL);
1842 
1843 	if (aname[0] == '\0') {
1844 		/* Use default algorithm */
1845 		aname = NULL;
1846 	}
1847 
1848 	objheader_to_ti(oh, &ti);
1849 	ti.type = i->type;
1850 
1851 	ni = CHAIN_TO_NI(ch);
1852 
1853 	IPFW_UH_RLOCK(ch);
1854 	if (find_table(ni, &ti) != NULL) {
1855 		IPFW_UH_RUNLOCK(ch);
1856 		return (EEXIST);
1857 	}
1858 	IPFW_UH_RUNLOCK(ch);
1859 
1860 	return (create_table_internal(ch, &ti, aname, i, NULL, 0));
1861 }
1862 
1863 /*
1864  * Creates new table based on @ti and @aname.
1865  *
1866  * Assume @aname to be checked and valid.
1867  * Stores allocated table kidx inside @pkidx (if non-NULL).
1868  * Reference created table if @compat is non-zero.
1869  *
1870  * Returns 0 on success.
1871  */
1872 static int
1873 create_table_internal(struct ip_fw_chain *ch, struct tid_info *ti,
1874     char *aname, ipfw_xtable_info *i, uint16_t *pkidx, int compat)
1875 {
1876 	struct namedobj_instance *ni;
1877 	struct table_config *tc, *tc_new, *tmp;
1878 	struct table_algo *ta;
1879 	uint16_t kidx;
1880 
1881 	ni = CHAIN_TO_NI(ch);
1882 
1883 	ta = find_table_algo(CHAIN_TO_TCFG(ch), ti, aname);
1884 	if (ta == NULL)
1885 		return (ENOTSUP);
1886 
1887 	tc = alloc_table_config(ch, ti, ta, aname, i->tflags);
1888 	if (tc == NULL)
1889 		return (ENOMEM);
1890 
1891 	tc->vmask = i->vmask;
1892 	tc->limit = i->limit;
1893 	if (ta->flags & TA_FLAG_READONLY)
1894 		tc->locked = 1;
1895 	else
1896 		tc->locked = (i->flags & IPFW_TGFLAGS_LOCKED) != 0;
1897 
1898 	IPFW_UH_WLOCK(ch);
1899 
1900 	/* Check if table has been already created */
1901 	tc_new = find_table(ni, ti);
1902 	if (tc_new != NULL) {
1903 		/*
1904 		 * Compat: do not fail if we're
1905 		 * requesting to create existing table
1906 		 * which has the same type
1907 		 */
1908 		if (compat == 0 || tc_new->no.subtype != tc->no.subtype) {
1909 			IPFW_UH_WUNLOCK(ch);
1910 			free_table_config(ni, tc);
1911 			return (EEXIST);
1912 		}
1913 
1914 		/* Exchange tc and tc_new for proper refcounting & freeing */
1915 		tmp = tc;
1916 		tc = tc_new;
1917 		tc_new = tmp;
1918 	} else {
1919 		/* New table */
1920 		if (ipfw_objhash_alloc_idx(ni, &kidx) != 0) {
1921 			IPFW_UH_WUNLOCK(ch);
1922 			printf("Unable to allocate table index."
1923 			    " Consider increasing net.inet.ip.fw.tables_max");
1924 			free_table_config(ni, tc);
1925 			return (EBUSY);
1926 		}
1927 		tc->no.kidx = kidx;
1928 		tc->no.etlv = IPFW_TLV_TBL_NAME;
1929 
1930 		link_table(ch, tc);
1931 	}
1932 
1933 	if (compat != 0)
1934 		tc->no.refcnt++;
1935 	if (pkidx != NULL)
1936 		*pkidx = tc->no.kidx;
1937 
1938 	IPFW_UH_WUNLOCK(ch);
1939 
1940 	if (tc_new != NULL)
1941 		free_table_config(ni, tc_new);
1942 
1943 	return (0);
1944 }
1945 
1946 static void
1947 ntlv_to_ti(ipfw_obj_ntlv *ntlv, struct tid_info *ti)
1948 {
1949 
1950 	memset(ti, 0, sizeof(struct tid_info));
1951 	ti->set = ntlv->set;
1952 	ti->uidx = ntlv->idx;
1953 	ti->tlvs = ntlv;
1954 	ti->tlen = ntlv->head.length;
1955 }
1956 
1957 static void
1958 objheader_to_ti(struct _ipfw_obj_header *oh, struct tid_info *ti)
1959 {
1960 
1961 	ntlv_to_ti(&oh->ntlv, ti);
1962 }
1963 
1964 struct namedobj_instance *
1965 ipfw_get_table_objhash(struct ip_fw_chain *ch)
1966 {
1967 
1968 	return (CHAIN_TO_NI(ch));
1969 }
1970 
1971 /*
1972  * Exports basic table info as name TLV.
1973  * Used inside dump_static_rules() to provide info
1974  * about all tables referenced by current ruleset.
1975  *
1976  * Returns 0 on success.
1977  */
1978 int
1979 ipfw_export_table_ntlv(struct ip_fw_chain *ch, uint16_t kidx,
1980     struct sockopt_data *sd)
1981 {
1982 	struct namedobj_instance *ni;
1983 	struct named_object *no;
1984 	ipfw_obj_ntlv *ntlv;
1985 
1986 	ni = CHAIN_TO_NI(ch);
1987 
1988 	no = ipfw_objhash_lookup_kidx(ni, kidx);
1989 	KASSERT(no != NULL, ("invalid table kidx passed"));
1990 
1991 	ntlv = (ipfw_obj_ntlv *)ipfw_get_sopt_space(sd, sizeof(*ntlv));
1992 	if (ntlv == NULL)
1993 		return (ENOMEM);
1994 
1995 	ntlv->head.type = IPFW_TLV_TBL_NAME;
1996 	ntlv->head.length = sizeof(*ntlv);
1997 	ntlv->idx = no->kidx;
1998 	strlcpy(ntlv->name, no->name, sizeof(ntlv->name));
1999 
2000 	return (0);
2001 }
2002 
2003 struct dump_args {
2004 	struct ip_fw_chain *ch;
2005 	struct table_info *ti;
2006 	struct table_config *tc;
2007 	struct sockopt_data *sd;
2008 	uint32_t cnt;
2009 	uint16_t uidx;
2010 	int error;
2011 	uint32_t size;
2012 	ipfw_table_entry *ent;
2013 	ta_foreach_f *f;
2014 	void *farg;
2015 	ipfw_obj_tentry tent;
2016 };
2017 
2018 static int
2019 count_ext_entries(void *e, void *arg)
2020 {
2021 	struct dump_args *da;
2022 
2023 	da = (struct dump_args *)arg;
2024 	da->cnt++;
2025 
2026 	return (0);
2027 }
2028 
2029 /*
2030  * Gets number of items from table either using
2031  * internal counter or calling algo callback for
2032  * externally-managed tables.
2033  *
2034  * Returns number of records.
2035  */
2036 static uint32_t
2037 table_get_count(struct ip_fw_chain *ch, struct table_config *tc)
2038 {
2039 	struct table_info *ti;
2040 	struct table_algo *ta;
2041 	struct dump_args da;
2042 
2043 	ti = KIDX_TO_TI(ch, tc->no.kidx);
2044 	ta = tc->ta;
2045 
2046 	/* Use internal counter for self-managed tables */
2047 	if ((ta->flags & TA_FLAG_READONLY) == 0)
2048 		return (tc->count);
2049 
2050 	/* Use callback to quickly get number of items */
2051 	if ((ta->flags & TA_FLAG_EXTCOUNTER) != 0)
2052 		return (ta->get_count(tc->astate, ti));
2053 
2054 	/* Count number of iterms ourselves */
2055 	memset(&da, 0, sizeof(da));
2056 	ta->foreach(tc->astate, ti, count_ext_entries, &da);
2057 
2058 	return (da.cnt);
2059 }
2060 
2061 /*
2062  * Exports table @tc info into standard ipfw_xtable_info format.
2063  */
2064 static void
2065 export_table_info(struct ip_fw_chain *ch, struct table_config *tc,
2066     ipfw_xtable_info *i)
2067 {
2068 	struct table_info *ti;
2069 	struct table_algo *ta;
2070 
2071 	i->type = tc->no.subtype;
2072 	i->tflags = tc->tflags;
2073 	i->vmask = tc->vmask;
2074 	i->set = tc->no.set;
2075 	i->kidx = tc->no.kidx;
2076 	i->refcnt = tc->no.refcnt;
2077 	i->count = table_get_count(ch, tc);
2078 	i->limit = tc->limit;
2079 	i->flags |= (tc->locked != 0) ? IPFW_TGFLAGS_LOCKED : 0;
2080 	i->size = i->count * sizeof(ipfw_obj_tentry);
2081 	i->size += sizeof(ipfw_obj_header) + sizeof(ipfw_xtable_info);
2082 	strlcpy(i->tablename, tc->tablename, sizeof(i->tablename));
2083 	ti = KIDX_TO_TI(ch, tc->no.kidx);
2084 	ta = tc->ta;
2085 	if (ta->print_config != NULL) {
2086 		/* Use algo function to print table config to string */
2087 		ta->print_config(tc->astate, ti, i->algoname,
2088 		    sizeof(i->algoname));
2089 	} else
2090 		strlcpy(i->algoname, ta->name, sizeof(i->algoname));
2091 	/* Dump algo-specific data, if possible */
2092 	if (ta->dump_tinfo != NULL) {
2093 		ta->dump_tinfo(tc->astate, ti, &i->ta_info);
2094 		i->ta_info.flags |= IPFW_TATFLAGS_DATA;
2095 	}
2096 }
2097 
2098 struct dump_table_args {
2099 	struct ip_fw_chain *ch;
2100 	struct sockopt_data *sd;
2101 };
2102 
2103 static int
2104 export_table_internal(struct namedobj_instance *ni, struct named_object *no,
2105     void *arg)
2106 {
2107 	ipfw_xtable_info *i;
2108 	struct dump_table_args *dta;
2109 
2110 	dta = (struct dump_table_args *)arg;
2111 
2112 	i = (ipfw_xtable_info *)ipfw_get_sopt_space(dta->sd, sizeof(*i));
2113 	KASSERT(i != NULL, ("previously checked buffer is not enough"));
2114 
2115 	export_table_info(dta->ch, (struct table_config *)no, i);
2116 	return (0);
2117 }
2118 
2119 /*
2120  * Export all tables as ipfw_xtable_info structures to
2121  * storage provided by @sd.
2122  *
2123  * If supplied buffer is too small, fills in required size
2124  * and returns ENOMEM.
2125  * Returns 0 on success.
2126  */
2127 static int
2128 export_tables(struct ip_fw_chain *ch, ipfw_obj_lheader *olh,
2129     struct sockopt_data *sd)
2130 {
2131 	uint32_t size;
2132 	uint32_t count;
2133 	struct dump_table_args dta;
2134 
2135 	count = ipfw_objhash_count(CHAIN_TO_NI(ch));
2136 	size = count * sizeof(ipfw_xtable_info) + sizeof(ipfw_obj_lheader);
2137 
2138 	/* Fill in header regadless of buffer size */
2139 	olh->count = count;
2140 	olh->objsize = sizeof(ipfw_xtable_info);
2141 
2142 	if (size > olh->size) {
2143 		olh->size = size;
2144 		return (ENOMEM);
2145 	}
2146 
2147 	olh->size = size;
2148 
2149 	dta.ch = ch;
2150 	dta.sd = sd;
2151 
2152 	ipfw_objhash_foreach(CHAIN_TO_NI(ch), export_table_internal, &dta);
2153 
2154 	return (0);
2155 }
2156 
2157 /*
2158  * Dumps all table data
2159  * Data layout (v1)(current):
2160  * Request: [ ipfw_obj_header ], size = ipfw_xtable_info.size
2161  * Reply: [ ipfw_obj_header ipfw_xtable_info ipfw_obj_tentry x N ]
2162  *
2163  * Returns 0 on success
2164  */
2165 static int
2166 dump_table_v1(struct ip_fw_chain *ch, ip_fw3_opheader *op3,
2167     struct sockopt_data *sd)
2168 {
2169 	struct _ipfw_obj_header *oh;
2170 	ipfw_xtable_info *i;
2171 	struct tid_info ti;
2172 	struct table_config *tc;
2173 	struct table_algo *ta;
2174 	struct dump_args da;
2175 	uint32_t sz;
2176 
2177 	sz = sizeof(ipfw_obj_header) + sizeof(ipfw_xtable_info);
2178 	oh = (struct _ipfw_obj_header *)ipfw_get_sopt_header(sd, sz);
2179 	if (oh == NULL)
2180 		return (EINVAL);
2181 
2182 	i = (ipfw_xtable_info *)(oh + 1);
2183 	objheader_to_ti(oh, &ti);
2184 
2185 	IPFW_UH_RLOCK(ch);
2186 	if ((tc = find_table(CHAIN_TO_NI(ch), &ti)) == NULL) {
2187 		IPFW_UH_RUNLOCK(ch);
2188 		return (ESRCH);
2189 	}
2190 	export_table_info(ch, tc, i);
2191 
2192 	if (sd->valsize < i->size) {
2193 		/*
2194 		 * Submitted buffer size is not enough.
2195 		 * WE've already filled in @i structure with
2196 		 * relevant table info including size, so we
2197 		 * can return. Buffer will be flushed automatically.
2198 		 */
2199 		IPFW_UH_RUNLOCK(ch);
2200 		return (ENOMEM);
2201 	}
2202 
2203 	/*
2204 	 * Do the actual dump in eXtended format
2205 	 */
2206 	memset(&da, 0, sizeof(da));
2207 	da.ch = ch;
2208 	da.ti = KIDX_TO_TI(ch, tc->no.kidx);
2209 	da.tc = tc;
2210 	da.sd = sd;
2211 
2212 	ta = tc->ta;
2213 
2214 	ta->foreach(tc->astate, da.ti, dump_table_tentry, &da);
2215 	IPFW_UH_RUNLOCK(ch);
2216 
2217 	return (da.error);
2218 }
2219 
2220 /*
2221  * Dumps all table data
2222  * Data layout (version 0)(legacy):
2223  * Request: [ ipfw_xtable ], size = IP_FW_TABLE_XGETSIZE()
2224  * Reply: [ ipfw_xtable ipfw_table_xentry x N ]
2225  *
2226  * Returns 0 on success
2227  */
2228 static int
2229 dump_table_v0(struct ip_fw_chain *ch, ip_fw3_opheader *op3,
2230     struct sockopt_data *sd)
2231 {
2232 	ipfw_xtable *xtbl;
2233 	struct tid_info ti;
2234 	struct table_config *tc;
2235 	struct table_algo *ta;
2236 	struct dump_args da;
2237 	size_t sz, count;
2238 
2239 	xtbl = (ipfw_xtable *)ipfw_get_sopt_header(sd, sizeof(ipfw_xtable));
2240 	if (xtbl == NULL)
2241 		return (EINVAL);
2242 
2243 	memset(&ti, 0, sizeof(ti));
2244 	ti.uidx = xtbl->tbl;
2245 
2246 	IPFW_UH_RLOCK(ch);
2247 	if ((tc = find_table(CHAIN_TO_NI(ch), &ti)) == NULL) {
2248 		IPFW_UH_RUNLOCK(ch);
2249 		return (0);
2250 	}
2251 	count = table_get_count(ch, tc);
2252 	sz = count * sizeof(ipfw_table_xentry) + sizeof(ipfw_xtable);
2253 
2254 	xtbl->cnt = count;
2255 	xtbl->size = sz;
2256 	xtbl->type = tc->no.subtype;
2257 	xtbl->tbl = ti.uidx;
2258 
2259 	if (sd->valsize < sz) {
2260 		/*
2261 		 * Submitted buffer size is not enough.
2262 		 * WE've already filled in @i structure with
2263 		 * relevant table info including size, so we
2264 		 * can return. Buffer will be flushed automatically.
2265 		 */
2266 		IPFW_UH_RUNLOCK(ch);
2267 		return (ENOMEM);
2268 	}
2269 
2270 	/* Do the actual dump in eXtended format */
2271 	memset(&da, 0, sizeof(da));
2272 	da.ch = ch;
2273 	da.ti = KIDX_TO_TI(ch, tc->no.kidx);
2274 	da.tc = tc;
2275 	da.sd = sd;
2276 
2277 	ta = tc->ta;
2278 
2279 	ta->foreach(tc->astate, da.ti, dump_table_xentry, &da);
2280 	IPFW_UH_RUNLOCK(ch);
2281 
2282 	return (0);
2283 }
2284 
2285 /*
2286  * Legacy function to retrieve number of items in table.
2287  */
2288 static int
2289 get_table_size(struct ip_fw_chain *ch, ip_fw3_opheader *op3,
2290     struct sockopt_data *sd)
2291 {
2292 	uint32_t *tbl;
2293 	struct tid_info ti;
2294 	size_t sz;
2295 	int error;
2296 
2297 	sz = sizeof(*op3) + sizeof(uint32_t);
2298 	op3 = (ip_fw3_opheader *)ipfw_get_sopt_header(sd, sz);
2299 	if (op3 == NULL)
2300 		return (EINVAL);
2301 
2302 	tbl = (uint32_t *)(op3 + 1);
2303 	memset(&ti, 0, sizeof(ti));
2304 	ti.uidx = *tbl;
2305 	IPFW_UH_RLOCK(ch);
2306 	error = ipfw_count_xtable(ch, &ti, tbl);
2307 	IPFW_UH_RUNLOCK(ch);
2308 	return (error);
2309 }
2310 
2311 /*
2312  * Legacy IP_FW_TABLE_GETSIZE handler
2313  */
2314 int
2315 ipfw_count_table(struct ip_fw_chain *ch, struct tid_info *ti, uint32_t *cnt)
2316 {
2317 	struct table_config *tc;
2318 
2319 	if ((tc = find_table(CHAIN_TO_NI(ch), ti)) == NULL)
2320 		return (ESRCH);
2321 	*cnt = table_get_count(ch, tc);
2322 	return (0);
2323 }
2324 
2325 /*
2326  * Legacy IP_FW_TABLE_XGETSIZE handler
2327  */
2328 int
2329 ipfw_count_xtable(struct ip_fw_chain *ch, struct tid_info *ti, uint32_t *cnt)
2330 {
2331 	struct table_config *tc;
2332 	uint32_t count;
2333 
2334 	if ((tc = find_table(CHAIN_TO_NI(ch), ti)) == NULL) {
2335 		*cnt = 0;
2336 		return (0); /* 'table all list' requires success */
2337 	}
2338 
2339 	count = table_get_count(ch, tc);
2340 	*cnt = count * sizeof(ipfw_table_xentry);
2341 	if (count > 0)
2342 		*cnt += sizeof(ipfw_xtable);
2343 	return (0);
2344 }
2345 
2346 static int
2347 dump_table_entry(void *e, void *arg)
2348 {
2349 	struct dump_args *da;
2350 	struct table_config *tc;
2351 	struct table_algo *ta;
2352 	ipfw_table_entry *ent;
2353 	struct table_value *pval;
2354 	int error;
2355 
2356 	da = (struct dump_args *)arg;
2357 
2358 	tc = da->tc;
2359 	ta = tc->ta;
2360 
2361 	/* Out of memory, returning */
2362 	if (da->cnt == da->size)
2363 		return (1);
2364 	ent = da->ent++;
2365 	ent->tbl = da->uidx;
2366 	da->cnt++;
2367 
2368 	error = ta->dump_tentry(tc->astate, da->ti, e, &da->tent);
2369 	if (error != 0)
2370 		return (error);
2371 
2372 	ent->addr = da->tent.k.addr.s_addr;
2373 	ent->masklen = da->tent.masklen;
2374 	pval = get_table_value(da->ch, da->tc, da->tent.v.kidx);
2375 	ent->value = ipfw_export_table_value_legacy(pval);
2376 
2377 	return (0);
2378 }
2379 
2380 /*
2381  * Dumps table in pre-8.1 legacy format.
2382  */
2383 int
2384 ipfw_dump_table_legacy(struct ip_fw_chain *ch, struct tid_info *ti,
2385     ipfw_table *tbl)
2386 {
2387 	struct table_config *tc;
2388 	struct table_algo *ta;
2389 	struct dump_args da;
2390 
2391 	tbl->cnt = 0;
2392 
2393 	if ((tc = find_table(CHAIN_TO_NI(ch), ti)) == NULL)
2394 		return (0);	/* XXX: We should return ESRCH */
2395 
2396 	ta = tc->ta;
2397 
2398 	/* This dump format supports IPv4 only */
2399 	if (tc->no.subtype != IPFW_TABLE_ADDR)
2400 		return (0);
2401 
2402 	memset(&da, 0, sizeof(da));
2403 	da.ch = ch;
2404 	da.ti = KIDX_TO_TI(ch, tc->no.kidx);
2405 	da.tc = tc;
2406 	da.ent = &tbl->ent[0];
2407 	da.size = tbl->size;
2408 
2409 	tbl->cnt = 0;
2410 	ta->foreach(tc->astate, da.ti, dump_table_entry, &da);
2411 	tbl->cnt = da.cnt;
2412 
2413 	return (0);
2414 }
2415 
2416 /*
2417  * Dumps table entry in eXtended format (v1)(current).
2418  */
2419 static int
2420 dump_table_tentry(void *e, void *arg)
2421 {
2422 	struct dump_args *da;
2423 	struct table_config *tc;
2424 	struct table_algo *ta;
2425 	struct table_value *pval;
2426 	ipfw_obj_tentry *tent;
2427 	int error;
2428 
2429 	da = (struct dump_args *)arg;
2430 
2431 	tc = da->tc;
2432 	ta = tc->ta;
2433 
2434 	tent = (ipfw_obj_tentry *)ipfw_get_sopt_space(da->sd, sizeof(*tent));
2435 	/* Out of memory, returning */
2436 	if (tent == NULL) {
2437 		da->error = ENOMEM;
2438 		return (1);
2439 	}
2440 	tent->head.length = sizeof(ipfw_obj_tentry);
2441 	tent->idx = da->uidx;
2442 
2443 	error = ta->dump_tentry(tc->astate, da->ti, e, tent);
2444 	if (error != 0)
2445 		return (error);
2446 
2447 	pval = get_table_value(da->ch, da->tc, tent->v.kidx);
2448 	ipfw_export_table_value_v1(pval, &tent->v.value);
2449 
2450 	return (0);
2451 }
2452 
2453 /*
2454  * Dumps table entry in eXtended format (v0).
2455  */
2456 static int
2457 dump_table_xentry(void *e, void *arg)
2458 {
2459 	struct dump_args *da;
2460 	struct table_config *tc;
2461 	struct table_algo *ta;
2462 	ipfw_table_xentry *xent;
2463 	ipfw_obj_tentry *tent;
2464 	struct table_value *pval;
2465 	int error;
2466 
2467 	da = (struct dump_args *)arg;
2468 
2469 	tc = da->tc;
2470 	ta = tc->ta;
2471 
2472 	xent = (ipfw_table_xentry *)ipfw_get_sopt_space(da->sd, sizeof(*xent));
2473 	/* Out of memory, returning */
2474 	if (xent == NULL)
2475 		return (1);
2476 	xent->len = sizeof(ipfw_table_xentry);
2477 	xent->tbl = da->uidx;
2478 
2479 	memset(&da->tent, 0, sizeof(da->tent));
2480 	tent = &da->tent;
2481 	error = ta->dump_tentry(tc->astate, da->ti, e, tent);
2482 	if (error != 0)
2483 		return (error);
2484 
2485 	/* Convert current format to previous one */
2486 	xent->masklen = tent->masklen;
2487 	pval = get_table_value(da->ch, da->tc, da->tent.v.kidx);
2488 	xent->value = ipfw_export_table_value_legacy(pval);
2489 	/* Apply some hacks */
2490 	if (tc->no.subtype == IPFW_TABLE_ADDR && tent->subtype == AF_INET) {
2491 		xent->k.addr6.s6_addr32[3] = tent->k.addr.s_addr;
2492 		xent->flags = IPFW_TCF_INET;
2493 	} else
2494 		memcpy(&xent->k, &tent->k, sizeof(xent->k));
2495 
2496 	return (0);
2497 }
2498 
2499 /*
2500  * Helper function to export table algo data
2501  * to tentry format before calling user function.
2502  *
2503  * Returns 0 on success.
2504  */
2505 static int
2506 prepare_table_tentry(void *e, void *arg)
2507 {
2508 	struct dump_args *da;
2509 	struct table_config *tc;
2510 	struct table_algo *ta;
2511 	int error;
2512 
2513 	da = (struct dump_args *)arg;
2514 
2515 	tc = da->tc;
2516 	ta = tc->ta;
2517 
2518 	error = ta->dump_tentry(tc->astate, da->ti, e, &da->tent);
2519 	if (error != 0)
2520 		return (error);
2521 
2522 	da->f(&da->tent, da->farg);
2523 
2524 	return (0);
2525 }
2526 
2527 /*
2528  * Allow external consumers to read table entries in standard format.
2529  */
2530 int
2531 ipfw_foreach_table_tentry(struct ip_fw_chain *ch, uint16_t kidx,
2532     ta_foreach_f *f, void *arg)
2533 {
2534 	struct namedobj_instance *ni;
2535 	struct table_config *tc;
2536 	struct table_algo *ta;
2537 	struct dump_args da;
2538 
2539 	ni = CHAIN_TO_NI(ch);
2540 
2541 	tc = (struct table_config *)ipfw_objhash_lookup_kidx(ni, kidx);
2542 	if (tc == NULL)
2543 		return (ESRCH);
2544 
2545 	ta = tc->ta;
2546 
2547 	memset(&da, 0, sizeof(da));
2548 	da.ch = ch;
2549 	da.ti = KIDX_TO_TI(ch, tc->no.kidx);
2550 	da.tc = tc;
2551 	da.f = f;
2552 	da.farg = arg;
2553 
2554 	ta->foreach(tc->astate, da.ti, prepare_table_tentry, &da);
2555 
2556 	return (0);
2557 }
2558 
2559 /*
2560  * Table algorithms
2561  */
2562 
2563 /*
2564  * Finds algorithm by index, table type or supplied name.
2565  *
2566  * Returns pointer to algo or NULL.
2567  */
2568 static struct table_algo *
2569 find_table_algo(struct tables_config *tcfg, struct tid_info *ti, char *name)
2570 {
2571 	int i, l;
2572 	struct table_algo *ta;
2573 
2574 	if (ti->type > IPFW_TABLE_MAXTYPE)
2575 		return (NULL);
2576 
2577 	/* Search by index */
2578 	if (ti->atype != 0) {
2579 		if (ti->atype > tcfg->algo_count)
2580 			return (NULL);
2581 		return (tcfg->algo[ti->atype]);
2582 	}
2583 
2584 	if (name == NULL) {
2585 		/* Return default algorithm for given type if set */
2586 		return (tcfg->def_algo[ti->type]);
2587 	}
2588 
2589 	/* Search by name */
2590 	/* TODO: better search */
2591 	for (i = 1; i <= tcfg->algo_count; i++) {
2592 		ta = tcfg->algo[i];
2593 
2594 		/*
2595 		 * One can supply additional algorithm
2596 		 * parameters so we compare only the first word
2597 		 * of supplied name:
2598 		 * 'addr:chash hsize=32'
2599 		 * '^^^^^^^^^'
2600 		 *
2601 		 */
2602 		l = strlen(ta->name);
2603 		if (strncmp(name, ta->name, l) != 0)
2604 			continue;
2605 		if (name[l] != '\0' && name[l] != ' ')
2606 			continue;
2607 		/* Check if we're requesting proper table type */
2608 		if (ti->type != 0 && ti->type != ta->type)
2609 			return (NULL);
2610 		return (ta);
2611 	}
2612 
2613 	return (NULL);
2614 }
2615 
2616 /*
2617  * Register new table algo @ta.
2618  * Stores algo id inside @idx.
2619  *
2620  * Returns 0 on success.
2621  */
2622 int
2623 ipfw_add_table_algo(struct ip_fw_chain *ch, struct table_algo *ta, size_t size,
2624     int *idx)
2625 {
2626 	struct tables_config *tcfg;
2627 	struct table_algo *ta_new;
2628 	size_t sz;
2629 
2630 	if (size > sizeof(struct table_algo))
2631 		return (EINVAL);
2632 
2633 	/* Check for the required on-stack size for add/del */
2634 	sz = roundup2(ta->ta_buf_size, sizeof(void *));
2635 	if (sz > TA_BUF_SZ)
2636 		return (EINVAL);
2637 
2638 	KASSERT(ta->type <= IPFW_TABLE_MAXTYPE,("Increase IPFW_TABLE_MAXTYPE"));
2639 
2640 	/* Copy algorithm data to stable storage. */
2641 	ta_new = malloc(sizeof(struct table_algo), M_IPFW, M_WAITOK | M_ZERO);
2642 	memcpy(ta_new, ta, size);
2643 
2644 	tcfg = CHAIN_TO_TCFG(ch);
2645 
2646 	KASSERT(tcfg->algo_count < 255, ("Increase algo array size"));
2647 
2648 	tcfg->algo[++tcfg->algo_count] = ta_new;
2649 	ta_new->idx = tcfg->algo_count;
2650 
2651 	/* Set algorithm as default one for given type */
2652 	if ((ta_new->flags & TA_FLAG_DEFAULT) != 0 &&
2653 	    tcfg->def_algo[ta_new->type] == NULL)
2654 		tcfg->def_algo[ta_new->type] = ta_new;
2655 
2656 	*idx = ta_new->idx;
2657 
2658 	return (0);
2659 }
2660 
2661 /*
2662  * Unregisters table algo using @idx as id.
2663  * XXX: It is NOT safe to call this function in any place
2664  * other than ipfw instance destroy handler.
2665  */
2666 void
2667 ipfw_del_table_algo(struct ip_fw_chain *ch, int idx)
2668 {
2669 	struct tables_config *tcfg;
2670 	struct table_algo *ta;
2671 
2672 	tcfg = CHAIN_TO_TCFG(ch);
2673 
2674 	KASSERT(idx <= tcfg->algo_count, ("algo idx %d out of range 1..%d",
2675 	    idx, tcfg->algo_count));
2676 
2677 	ta = tcfg->algo[idx];
2678 	KASSERT(ta != NULL, ("algo idx %d is NULL", idx));
2679 
2680 	if (tcfg->def_algo[ta->type] == ta)
2681 		tcfg->def_algo[ta->type] = NULL;
2682 
2683 	free(ta, M_IPFW);
2684 }
2685 
2686 /*
2687  * Lists all table algorithms currently available.
2688  * Data layout (v0)(current):
2689  * Request: [ ipfw_obj_lheader ], size = ipfw_obj_lheader.size
2690  * Reply: [ ipfw_obj_lheader ipfw_ta_info x N ]
2691  *
2692  * Returns 0 on success
2693  */
2694 static int
2695 list_table_algo(struct ip_fw_chain *ch, ip_fw3_opheader *op3,
2696     struct sockopt_data *sd)
2697 {
2698 	struct _ipfw_obj_lheader *olh;
2699 	struct tables_config *tcfg;
2700 	ipfw_ta_info *i;
2701 	struct table_algo *ta;
2702 	uint32_t count, n, size;
2703 
2704 	olh = (struct _ipfw_obj_lheader *)ipfw_get_sopt_header(sd,sizeof(*olh));
2705 	if (olh == NULL)
2706 		return (EINVAL);
2707 	if (sd->valsize < olh->size)
2708 		return (EINVAL);
2709 
2710 	IPFW_UH_RLOCK(ch);
2711 	tcfg = CHAIN_TO_TCFG(ch);
2712 	count = tcfg->algo_count;
2713 	size = count * sizeof(ipfw_ta_info) + sizeof(ipfw_obj_lheader);
2714 
2715 	/* Fill in header regadless of buffer size */
2716 	olh->count = count;
2717 	olh->objsize = sizeof(ipfw_ta_info);
2718 
2719 	if (size > olh->size) {
2720 		olh->size = size;
2721 		IPFW_UH_RUNLOCK(ch);
2722 		return (ENOMEM);
2723 	}
2724 	olh->size = size;
2725 
2726 	for (n = 1; n <= count; n++) {
2727 		i = (ipfw_ta_info *)ipfw_get_sopt_space(sd, sizeof(*i));
2728 		KASSERT(i != NULL, ("previously checked buffer is not enough"));
2729 		ta = tcfg->algo[n];
2730 		strlcpy(i->algoname, ta->name, sizeof(i->algoname));
2731 		i->type = ta->type;
2732 		i->refcnt = ta->refcnt;
2733 	}
2734 
2735 	IPFW_UH_RUNLOCK(ch);
2736 
2737 	return (0);
2738 }
2739 
2740 static int
2741 classify_srcdst(ipfw_insn *cmd, uint16_t *puidx, uint8_t *ptype)
2742 {
2743 	/* Basic IPv4/IPv6 or u32 lookups */
2744 	*puidx = cmd->arg1;
2745 	/* Assume ADDR by default */
2746 	*ptype = IPFW_TABLE_ADDR;
2747 	int v;
2748 
2749 	if (F_LEN(cmd) > F_INSN_SIZE(ipfw_insn_u32)) {
2750 		/*
2751 		 * generic lookup. The key must be
2752 		 * in 32bit big-endian format.
2753 		 */
2754 		v = ((ipfw_insn_u32 *)cmd)->d[1];
2755 		switch (v) {
2756 		case 0:
2757 		case 1:
2758 			/* IPv4 src/dst */
2759 			break;
2760 		case 2:
2761 		case 3:
2762 			/* src/dst port */
2763 			*ptype = IPFW_TABLE_NUMBER;
2764 			break;
2765 		case 4:
2766 			/* uid/gid */
2767 			*ptype = IPFW_TABLE_NUMBER;
2768 			break;
2769 		case 5:
2770 			/* jid */
2771 			*ptype = IPFW_TABLE_NUMBER;
2772 			break;
2773 		case 6:
2774 			/* dscp */
2775 			*ptype = IPFW_TABLE_NUMBER;
2776 			break;
2777 		}
2778 	}
2779 
2780 	return (0);
2781 }
2782 
2783 static int
2784 classify_via(ipfw_insn *cmd, uint16_t *puidx, uint8_t *ptype)
2785 {
2786 	ipfw_insn_if *cmdif;
2787 
2788 	/* Interface table, possibly */
2789 	cmdif = (ipfw_insn_if *)cmd;
2790 	if (cmdif->name[0] != '\1')
2791 		return (1);
2792 
2793 	*ptype = IPFW_TABLE_INTERFACE;
2794 	*puidx = cmdif->p.kidx;
2795 
2796 	return (0);
2797 }
2798 
2799 static int
2800 classify_flow(ipfw_insn *cmd, uint16_t *puidx, uint8_t *ptype)
2801 {
2802 
2803 	*puidx = cmd->arg1;
2804 	*ptype = IPFW_TABLE_FLOW;
2805 
2806 	return (0);
2807 }
2808 
2809 static void
2810 update_arg1(ipfw_insn *cmd, uint16_t idx)
2811 {
2812 
2813 	cmd->arg1 = idx;
2814 }
2815 
2816 static void
2817 update_via(ipfw_insn *cmd, uint16_t idx)
2818 {
2819 	ipfw_insn_if *cmdif;
2820 
2821 	cmdif = (ipfw_insn_if *)cmd;
2822 	cmdif->p.kidx = idx;
2823 }
2824 
2825 static int
2826 table_findbyname(struct ip_fw_chain *ch, struct tid_info *ti,
2827     struct named_object **pno)
2828 {
2829 	struct table_config *tc;
2830 	int error;
2831 
2832 	IPFW_UH_WLOCK_ASSERT(ch);
2833 
2834 	error = find_table_err(CHAIN_TO_NI(ch), ti, &tc);
2835 	if (error != 0)
2836 		return (error);
2837 
2838 	*pno = &tc->no;
2839 	return (0);
2840 }
2841 
2842 /* XXX: sets-sets! */
2843 static struct named_object *
2844 table_findbykidx(struct ip_fw_chain *ch, uint16_t idx)
2845 {
2846 	struct namedobj_instance *ni;
2847 	struct table_config *tc;
2848 
2849 	IPFW_UH_WLOCK_ASSERT(ch);
2850 	ni = CHAIN_TO_NI(ch);
2851 	tc = (struct table_config *)ipfw_objhash_lookup_kidx(ni, idx);
2852 	KASSERT(tc != NULL, ("Table with index %d not found", idx));
2853 
2854 	return (&tc->no);
2855 }
2856 
2857 static int
2858 table_manage_sets(struct ip_fw_chain *ch, uint16_t set, uint8_t new_set,
2859     enum ipfw_sets_cmd cmd)
2860 {
2861 
2862 	switch (cmd) {
2863 	case SWAP_ALL:
2864 	case TEST_ALL:
2865 	case MOVE_ALL:
2866 		/*
2867 		 * Always return success, the real action and decision
2868 		 * should make table_manage_sets_all().
2869 		 */
2870 		return (0);
2871 	case TEST_ONE:
2872 	case MOVE_ONE:
2873 		/*
2874 		 * NOTE: we need to use ipfw_objhash_del/ipfw_objhash_add
2875 		 * if set number will be used in hash function. Currently
2876 		 * we can just use generic handler that replaces set value.
2877 		 */
2878 		if (V_fw_tables_sets == 0)
2879 			return (0);
2880 		break;
2881 	case COUNT_ONE:
2882 		/*
2883 		 * Return EOPNOTSUPP for COUNT_ONE when per-set sysctl is
2884 		 * disabled. This allow skip table's opcodes from additional
2885 		 * checks when specific rules moved to another set.
2886 		 */
2887 		if (V_fw_tables_sets == 0)
2888 			return (EOPNOTSUPP);
2889 	}
2890 	/* Use generic sets handler when per-set sysctl is enabled. */
2891 	return (ipfw_obj_manage_sets(CHAIN_TO_NI(ch), IPFW_TLV_TBL_NAME,
2892 	    set, new_set, cmd));
2893 }
2894 
2895 /*
2896  * We register several opcode rewriters for lookup tables.
2897  * All tables opcodes have the same ETLV type, but different subtype.
2898  * To avoid invoking sets handler several times for XXX_ALL commands,
2899  * we use separate manage_sets handler. O_RECV has the lowest value,
2900  * so it should be called first.
2901  */
2902 static int
2903 table_manage_sets_all(struct ip_fw_chain *ch, uint16_t set, uint8_t new_set,
2904     enum ipfw_sets_cmd cmd)
2905 {
2906 
2907 	switch (cmd) {
2908 	case SWAP_ALL:
2909 	case TEST_ALL:
2910 		/*
2911 		 * Return success for TEST_ALL, since nothing prevents
2912 		 * move rules from one set to another. All tables are
2913 		 * accessible from all sets when per-set tables sysctl
2914 		 * is disabled.
2915 		 */
2916 	case MOVE_ALL:
2917 		if (V_fw_tables_sets == 0)
2918 			return (0);
2919 		break;
2920 	default:
2921 		return (table_manage_sets(ch, set, new_set, cmd));
2922 	}
2923 	/* Use generic sets handler when per-set sysctl is enabled. */
2924 	return (ipfw_obj_manage_sets(CHAIN_TO_NI(ch), IPFW_TLV_TBL_NAME,
2925 	    set, new_set, cmd));
2926 }
2927 
2928 static struct opcode_obj_rewrite opcodes[] = {
2929 	{
2930 		.opcode = O_IP_SRC_LOOKUP,
2931 		.etlv = IPFW_TLV_TBL_NAME,
2932 		.classifier = classify_srcdst,
2933 		.update = update_arg1,
2934 		.find_byname = table_findbyname,
2935 		.find_bykidx = table_findbykidx,
2936 		.create_object = create_table_compat,
2937 		.manage_sets = table_manage_sets,
2938 	},
2939 	{
2940 		.opcode = O_IP_DST_LOOKUP,
2941 		.etlv = IPFW_TLV_TBL_NAME,
2942 		.classifier = classify_srcdst,
2943 		.update = update_arg1,
2944 		.find_byname = table_findbyname,
2945 		.find_bykidx = table_findbykidx,
2946 		.create_object = create_table_compat,
2947 		.manage_sets = table_manage_sets,
2948 	},
2949 	{
2950 		.opcode = O_IP_FLOW_LOOKUP,
2951 		.etlv = IPFW_TLV_TBL_NAME,
2952 		.classifier = classify_flow,
2953 		.update = update_arg1,
2954 		.find_byname = table_findbyname,
2955 		.find_bykidx = table_findbykidx,
2956 		.create_object = create_table_compat,
2957 		.manage_sets = table_manage_sets,
2958 	},
2959 	{
2960 		.opcode = O_XMIT,
2961 		.etlv = IPFW_TLV_TBL_NAME,
2962 		.classifier = classify_via,
2963 		.update = update_via,
2964 		.find_byname = table_findbyname,
2965 		.find_bykidx = table_findbykidx,
2966 		.create_object = create_table_compat,
2967 		.manage_sets = table_manage_sets,
2968 	},
2969 	{
2970 		.opcode = O_RECV,
2971 		.etlv = IPFW_TLV_TBL_NAME,
2972 		.classifier = classify_via,
2973 		.update = update_via,
2974 		.find_byname = table_findbyname,
2975 		.find_bykidx = table_findbykidx,
2976 		.create_object = create_table_compat,
2977 		.manage_sets = table_manage_sets_all,
2978 	},
2979 	{
2980 		.opcode = O_VIA,
2981 		.etlv = IPFW_TLV_TBL_NAME,
2982 		.classifier = classify_via,
2983 		.update = update_via,
2984 		.find_byname = table_findbyname,
2985 		.find_bykidx = table_findbykidx,
2986 		.create_object = create_table_compat,
2987 		.manage_sets = table_manage_sets,
2988 	},
2989 };
2990 
2991 static int
2992 test_sets_cb(struct namedobj_instance *ni __unused, struct named_object *no,
2993     void *arg __unused)
2994 {
2995 
2996 	/* Check that there aren't any tables in not default set */
2997 	if (no->set != 0)
2998 		return (EBUSY);
2999 	return (0);
3000 }
3001 
3002 /*
3003  * Switch between "set 0" and "rule's set" table binding,
3004  * Check all ruleset bindings and permits changing
3005  * IFF each binding has both rule AND table in default set (set 0).
3006  *
3007  * Returns 0 on success.
3008  */
3009 int
3010 ipfw_switch_tables_namespace(struct ip_fw_chain *ch, unsigned int sets)
3011 {
3012 	struct opcode_obj_rewrite *rw;
3013 	struct namedobj_instance *ni;
3014 	struct named_object *no;
3015 	struct ip_fw *rule;
3016 	ipfw_insn *cmd;
3017 	int cmdlen, i, l;
3018 	uint16_t kidx;
3019 	uint8_t subtype;
3020 
3021 	IPFW_UH_WLOCK(ch);
3022 
3023 	if (V_fw_tables_sets == sets) {
3024 		IPFW_UH_WUNLOCK(ch);
3025 		return (0);
3026 	}
3027 	ni = CHAIN_TO_NI(ch);
3028 	if (sets == 0) {
3029 		/*
3030 		 * Prevent disabling sets support if we have some tables
3031 		 * in not default sets.
3032 		 */
3033 		if (ipfw_objhash_foreach_type(ni, test_sets_cb,
3034 		    NULL, IPFW_TLV_TBL_NAME) != 0) {
3035 			IPFW_UH_WUNLOCK(ch);
3036 			return (EBUSY);
3037 		}
3038 	}
3039 	/*
3040 	 * Scan all rules and examine tables opcodes.
3041 	 */
3042 	for (i = 0; i < ch->n_rules; i++) {
3043 		rule = ch->map[i];
3044 
3045 		l = rule->cmd_len;
3046 		cmd = rule->cmd;
3047 		cmdlen = 0;
3048 		for ( ;	l > 0 ; l -= cmdlen, cmd += cmdlen) {
3049 			cmdlen = F_LEN(cmd);
3050 			/* Check only tables opcodes */
3051 			for (kidx = 0, rw = opcodes;
3052 			    rw < opcodes + nitems(opcodes); rw++) {
3053 				if (rw->opcode != cmd->opcode)
3054 					continue;
3055 				if (rw->classifier(cmd, &kidx, &subtype) == 0)
3056 					break;
3057 			}
3058 			if (kidx == 0)
3059 				continue;
3060 			no = ipfw_objhash_lookup_kidx(ni, kidx);
3061 			/* Check if both table object and rule has the set 0 */
3062 			if (no->set != 0 || rule->set != 0) {
3063 				IPFW_UH_WUNLOCK(ch);
3064 				return (EBUSY);
3065 			}
3066 		}
3067 	}
3068 	V_fw_tables_sets = sets;
3069 	IPFW_UH_WUNLOCK(ch);
3070 	return (0);
3071 }
3072 
3073 /*
3074  * Checks table name for validity.
3075  * Enforce basic length checks, the rest
3076  * should be done in userland.
3077  *
3078  * Returns 0 if name is considered valid.
3079  */
3080 static int
3081 check_table_name(const char *name)
3082 {
3083 
3084 	/*
3085 	 * TODO: do some more complicated checks
3086 	 */
3087 	return (ipfw_check_object_name_generic(name));
3088 }
3089 
3090 /*
3091  * Finds table config based on either legacy index
3092  * or name in ntlv.
3093  * Note @ti structure contains unchecked data from userland.
3094  *
3095  * Returns 0 in success and fills in @tc with found config
3096  */
3097 static int
3098 find_table_err(struct namedobj_instance *ni, struct tid_info *ti,
3099     struct table_config **tc)
3100 {
3101 	char *name, bname[16];
3102 	struct named_object *no;
3103 	ipfw_obj_ntlv *ntlv;
3104 	uint32_t set;
3105 
3106 	if (ti->tlvs != NULL) {
3107 		ntlv = ipfw_find_name_tlv_type(ti->tlvs, ti->tlen, ti->uidx,
3108 		    IPFW_TLV_TBL_NAME);
3109 		if (ntlv == NULL)
3110 			return (EINVAL);
3111 		name = ntlv->name;
3112 
3113 		/*
3114 		 * Use set provided by @ti instead of @ntlv one.
3115 		 * This is needed due to different sets behavior
3116 		 * controlled by V_fw_tables_sets.
3117 		 */
3118 		set = (V_fw_tables_sets != 0) ? ti->set : 0;
3119 	} else {
3120 		snprintf(bname, sizeof(bname), "%d", ti->uidx);
3121 		name = bname;
3122 		set = 0;
3123 	}
3124 
3125 	no = ipfw_objhash_lookup_name(ni, set, name);
3126 	*tc = (struct table_config *)no;
3127 
3128 	return (0);
3129 }
3130 
3131 /*
3132  * Finds table config based on either legacy index
3133  * or name in ntlv.
3134  * Note @ti structure contains unchecked data from userland.
3135  *
3136  * Returns pointer to table_config or NULL.
3137  */
3138 static struct table_config *
3139 find_table(struct namedobj_instance *ni, struct tid_info *ti)
3140 {
3141 	struct table_config *tc;
3142 
3143 	if (find_table_err(ni, ti, &tc) != 0)
3144 		return (NULL);
3145 
3146 	return (tc);
3147 }
3148 
3149 /*
3150  * Allocate new table config structure using
3151  * specified @algo and @aname.
3152  *
3153  * Returns pointer to config or NULL.
3154  */
3155 static struct table_config *
3156 alloc_table_config(struct ip_fw_chain *ch, struct tid_info *ti,
3157     struct table_algo *ta, char *aname, uint8_t tflags)
3158 {
3159 	char *name, bname[16];
3160 	struct table_config *tc;
3161 	int error;
3162 	ipfw_obj_ntlv *ntlv;
3163 	uint32_t set;
3164 
3165 	if (ti->tlvs != NULL) {
3166 		ntlv = ipfw_find_name_tlv_type(ti->tlvs, ti->tlen, ti->uidx,
3167 		    IPFW_TLV_TBL_NAME);
3168 		if (ntlv == NULL)
3169 			return (NULL);
3170 		name = ntlv->name;
3171 		set = (V_fw_tables_sets == 0) ? 0 : ntlv->set;
3172 	} else {
3173 		/* Compat part: convert number to string representation */
3174 		snprintf(bname, sizeof(bname), "%d", ti->uidx);
3175 		name = bname;
3176 		set = 0;
3177 	}
3178 
3179 	tc = malloc(sizeof(struct table_config), M_IPFW, M_WAITOK | M_ZERO);
3180 	tc->no.name = tc->tablename;
3181 	tc->no.subtype = ta->type;
3182 	tc->no.set = set;
3183 	tc->tflags = tflags;
3184 	tc->ta = ta;
3185 	strlcpy(tc->tablename, name, sizeof(tc->tablename));
3186 	/* Set "shared" value type by default */
3187 	tc->vshared = 1;
3188 
3189 	/* Preallocate data structures for new tables */
3190 	error = ta->init(ch, &tc->astate, &tc->ti_copy, aname, tflags);
3191 	if (error != 0) {
3192 		free(tc, M_IPFW);
3193 		return (NULL);
3194 	}
3195 
3196 	return (tc);
3197 }
3198 
3199 /*
3200  * Destroys table state and config.
3201  */
3202 static void
3203 free_table_config(struct namedobj_instance *ni, struct table_config *tc)
3204 {
3205 
3206 	KASSERT(tc->linked == 0, ("free() on linked config"));
3207 	/* UH lock MUST NOT be held */
3208 
3209 	/*
3210 	 * We're using ta without any locking/referencing.
3211 	 * TODO: fix this if we're going to use unloadable algos.
3212 	 */
3213 	tc->ta->destroy(tc->astate, &tc->ti_copy);
3214 	free(tc, M_IPFW);
3215 }
3216 
3217 /*
3218  * Links @tc to @chain table named instance.
3219  * Sets appropriate type/states in @chain table info.
3220  */
3221 static void
3222 link_table(struct ip_fw_chain *ch, struct table_config *tc)
3223 {
3224 	struct namedobj_instance *ni;
3225 	struct table_info *ti;
3226 	uint16_t kidx;
3227 
3228 	IPFW_UH_WLOCK_ASSERT(ch);
3229 
3230 	ni = CHAIN_TO_NI(ch);
3231 	kidx = tc->no.kidx;
3232 
3233 	ipfw_objhash_add(ni, &tc->no);
3234 
3235 	ti = KIDX_TO_TI(ch, kidx);
3236 	*ti = tc->ti_copy;
3237 
3238 	/* Notify algo on real @ti address */
3239 	if (tc->ta->change_ti != NULL)
3240 		tc->ta->change_ti(tc->astate, ti);
3241 
3242 	tc->linked = 1;
3243 	tc->ta->refcnt++;
3244 }
3245 
3246 /*
3247  * Unlinks @tc from @chain table named instance.
3248  * Zeroes states in @chain and stores them in @tc.
3249  */
3250 static void
3251 unlink_table(struct ip_fw_chain *ch, struct table_config *tc)
3252 {
3253 	struct namedobj_instance *ni;
3254 	struct table_info *ti;
3255 	uint16_t kidx;
3256 
3257 	IPFW_UH_WLOCK_ASSERT(ch);
3258 	IPFW_WLOCK_ASSERT(ch);
3259 
3260 	ni = CHAIN_TO_NI(ch);
3261 	kidx = tc->no.kidx;
3262 
3263 	/* Clear state. @ti copy is already saved inside @tc */
3264 	ipfw_objhash_del(ni, &tc->no);
3265 	ti = KIDX_TO_TI(ch, kidx);
3266 	memset(ti, 0, sizeof(struct table_info));
3267 	tc->linked = 0;
3268 	tc->ta->refcnt--;
3269 
3270 	/* Notify algo on real @ti address */
3271 	if (tc->ta->change_ti != NULL)
3272 		tc->ta->change_ti(tc->astate, NULL);
3273 }
3274 
3275 static struct ipfw_sopt_handler	scodes[] = {
3276 	{ IP_FW_TABLE_XCREATE,	0,	HDIR_SET,	create_table },
3277 	{ IP_FW_TABLE_XDESTROY,	0,	HDIR_SET,	flush_table_v0 },
3278 	{ IP_FW_TABLE_XFLUSH,	0,	HDIR_SET,	flush_table_v0 },
3279 	{ IP_FW_TABLE_XMODIFY,	0,	HDIR_BOTH,	modify_table },
3280 	{ IP_FW_TABLE_XINFO,	0,	HDIR_GET,	describe_table },
3281 	{ IP_FW_TABLES_XLIST,	0,	HDIR_GET,	list_tables },
3282 	{ IP_FW_TABLE_XLIST,	0,	HDIR_GET,	dump_table_v0 },
3283 	{ IP_FW_TABLE_XLIST,	1,	HDIR_GET,	dump_table_v1 },
3284 	{ IP_FW_TABLE_XADD,	0,	HDIR_BOTH,	manage_table_ent_v0 },
3285 	{ IP_FW_TABLE_XADD,	1,	HDIR_BOTH,	manage_table_ent_v1 },
3286 	{ IP_FW_TABLE_XDEL,	0,	HDIR_BOTH,	manage_table_ent_v0 },
3287 	{ IP_FW_TABLE_XDEL,	1,	HDIR_BOTH,	manage_table_ent_v1 },
3288 	{ IP_FW_TABLE_XFIND,	0,	HDIR_GET,	find_table_entry },
3289 	{ IP_FW_TABLE_XSWAP,	0,	HDIR_SET,	swap_table },
3290 	{ IP_FW_TABLES_ALIST,	0,	HDIR_GET,	list_table_algo },
3291 	{ IP_FW_TABLE_XGETSIZE,	0,	HDIR_GET,	get_table_size },
3292 };
3293 
3294 static int
3295 destroy_table_locked(struct namedobj_instance *ni, struct named_object *no,
3296     void *arg)
3297 {
3298 
3299 	unlink_table((struct ip_fw_chain *)arg, (struct table_config *)no);
3300 	if (ipfw_objhash_free_idx(ni, no->kidx) != 0)
3301 		printf("Error unlinking kidx %d from table %s\n",
3302 		    no->kidx, no->name);
3303 	free_table_config(ni, (struct table_config *)no);
3304 	return (0);
3305 }
3306 
3307 /*
3308  * Shuts tables module down.
3309  */
3310 void
3311 ipfw_destroy_tables(struct ip_fw_chain *ch, int last)
3312 {
3313 
3314 	IPFW_DEL_SOPT_HANDLER(last, scodes);
3315 	IPFW_DEL_OBJ_REWRITER(last, opcodes);
3316 
3317 	/* Remove all tables from working set */
3318 	IPFW_UH_WLOCK(ch);
3319 	IPFW_WLOCK(ch);
3320 	ipfw_objhash_foreach(CHAIN_TO_NI(ch), destroy_table_locked, ch);
3321 	IPFW_WUNLOCK(ch);
3322 	IPFW_UH_WUNLOCK(ch);
3323 
3324 	/* Free pointers itself */
3325 	free(ch->tablestate, M_IPFW);
3326 
3327 	ipfw_table_value_destroy(ch, last);
3328 	ipfw_table_algo_destroy(ch);
3329 
3330 	ipfw_objhash_destroy(CHAIN_TO_NI(ch));
3331 	free(CHAIN_TO_TCFG(ch), M_IPFW);
3332 }
3333 
3334 /*
3335  * Starts tables module.
3336  */
3337 int
3338 ipfw_init_tables(struct ip_fw_chain *ch, int first)
3339 {
3340 	struct tables_config *tcfg;
3341 
3342 	/* Allocate pointers */
3343 	ch->tablestate = malloc(V_fw_tables_max * sizeof(struct table_info),
3344 	    M_IPFW, M_WAITOK | M_ZERO);
3345 
3346 	tcfg = malloc(sizeof(struct tables_config), M_IPFW, M_WAITOK | M_ZERO);
3347 	tcfg->namehash = ipfw_objhash_create(V_fw_tables_max);
3348 	ch->tblcfg = tcfg;
3349 
3350 	ipfw_table_value_init(ch, first);
3351 	ipfw_table_algo_init(ch);
3352 
3353 	IPFW_ADD_OBJ_REWRITER(first, opcodes);
3354 	IPFW_ADD_SOPT_HANDLER(first, scodes);
3355 	return (0);
3356 }
3357