xref: /freebsd/sys/netpfil/ipfw/ip_fw_table_algo.c (revision d0b2dbfa)
1 /*-
2  * Copyright (c) 2014 Yandex LLC
3  * Copyright (c) 2014 Alexander V. Chernikov
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  */
26 
27 #include <sys/cdefs.h>
28 /*
29  * Lookup table algorithms.
30  *
31  */
32 
33 #include "opt_ipfw.h"
34 #include "opt_inet.h"
35 #ifndef INET
36 #error IPFIREWALL requires INET.
37 #endif /* INET */
38 #include "opt_inet6.h"
39 
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/malloc.h>
43 #include <sys/kernel.h>
44 #include <sys/lock.h>
45 #include <sys/rwlock.h>
46 #include <sys/rmlock.h>
47 #include <sys/socket.h>
48 #include <sys/queue.h>
49 #include <net/ethernet.h>
50 #include <net/if.h>	/* ip_fw.h requires IFNAMSIZ */
51 #include <net/radix.h>
52 #include <net/route.h>
53 #include <net/route/nhop.h>
54 #include <net/route/route_ctl.h>
55 
56 #include <netinet/in.h>
57 #include <netinet/in_fib.h>
58 #include <netinet/ip_var.h>	/* struct ipfw_rule_ref */
59 #include <netinet/ip_fw.h>
60 #include <netinet6/in6_fib.h>
61 
62 #include <netpfil/ipfw/ip_fw_private.h>
63 #include <netpfil/ipfw/ip_fw_table.h>
64 
65 /*
66  * IPFW table lookup algorithms.
67  *
68  * What is needed to add another table algo?
69  *
70  * Algo init:
71  * * struct table_algo has to be filled with:
72  *   name: "type:algoname" format, e.g. "addr:radix". Currently
73  *     there are the following types: "addr", "iface", "number" and "flow".
74  *   type: one of IPFW_TABLE_* types
75  *   flags: one or more TA_FLAGS_*
76  *   ta_buf_size: size of structure used to store add/del item state.
77  *     Needs to be less than TA_BUF_SZ.
78  *   callbacks: see below for description.
79  * * ipfw_add_table_algo / ipfw_del_table_algo has to be called
80  *
81  * Callbacks description:
82  *
83  * -init: request to initialize new table instance.
84  * typedef int (ta_init)(struct ip_fw_chain *ch, void **ta_state,
85  *     struct table_info *ti, char *data, uint8_t tflags);
86  * MANDATORY, unlocked. (M_WAITOK). Returns 0 on success.
87  *
88  *  Allocate all structures needed for normal operations.
89  *  * Caller may want to parse @data for some algo-specific
90  *    options provided by userland.
91  *  * Caller may want to save configuration state pointer to @ta_state
92  *  * Caller needs to save desired runtime structure pointer(s)
93  *    inside @ti fields. Note that it is not correct to save
94  *    @ti pointer at this moment. Use -change_ti hook for that.
95  *  * Caller has to fill in ti->lookup to appropriate function
96  *    pointer.
97  *
98  *
99  *
100  * -destroy: request to destroy table instance.
101  * typedef void (ta_destroy)(void *ta_state, struct table_info *ti);
102  * MANDATORY, unlocked. (M_WAITOK).
103  *
104  * Frees all table entries and all tables structures allocated by -init.
105  *
106  *
107  *
108  * -prepare_add: request to allocate state for adding new entry.
109  * typedef int (ta_prepare_add)(struct ip_fw_chain *ch, struct tentry_info *tei,
110  *     void *ta_buf);
111  * MANDATORY, unlocked. (M_WAITOK). Returns 0 on success.
112  *
113  * Allocates state and fills it in with all necessary data (EXCEPT value)
114  * from @tei to minimize operations needed to be done under WLOCK.
115  * "value" field has to be copied to new entry in @add callback.
116  * Buffer ta_buf of size ta->ta_buf_sz may be used to store
117  * allocated state.
118  *
119  *
120  *
121  * -prepare_del: request to set state for deleting existing entry.
122  * typedef int (ta_prepare_del)(struct ip_fw_chain *ch, struct tentry_info *tei,
123  *     void *ta_buf);
124  * MANDATORY, locked, UH. (M_NOWAIT). Returns 0 on success.
125  *
126  * Buffer ta_buf of size ta->ta_buf_sz may be used to store
127  * allocated state. Caller should use on-stack ta_buf allocation
128  * instead of doing malloc().
129  *
130  *
131  *
132  * -add: request to insert new entry into runtime/config structures.
133  *  typedef int (ta_add)(void *ta_state, struct table_info *ti,
134  *     struct tentry_info *tei, void *ta_buf, uint32_t *pnum);
135  * MANDATORY, UH+WLOCK. (M_NOWAIT). Returns 0 on success.
136  *
137  * Insert new entry using previously-allocated state in @ta_buf.
138  * * @tei may have the following flags:
139  *   TEI_FLAGS_UPDATE: request to add or update entry.
140  *   TEI_FLAGS_DONTADD: request to update (but not add) entry.
141  * * Caller is required to do the following:
142  *   copy real entry value from @tei
143  *   entry added: return 0, set 1 to @pnum
144  *   entry updated: return 0, store 0 to @pnum, store old value in @tei,
145  *     add TEI_FLAGS_UPDATED flag to @tei.
146  *   entry exists: return EEXIST
147  *   entry not found: return ENOENT
148  *   other error: return non-zero error code.
149  *
150  *
151  *
152  * -del: request to delete existing entry from runtime/config structures.
153  *  typedef int (ta_del)(void *ta_state, struct table_info *ti,
154  *     struct tentry_info *tei, void *ta_buf, uint32_t *pnum);
155  *  MANDATORY, UH+WLOCK. (M_NOWAIT). Returns 0 on success.
156  *
157  *  Delete entry using previously set up in @ta_buf.
158  * * Caller is required to do the following:
159  *   entry deleted: return 0, set 1 to @pnum, store old value in @tei.
160  *   entry not found: return ENOENT
161  *   other error: return non-zero error code.
162  *
163  *
164  *
165  * -flush_entry: flush entry state created by -prepare_add / -del / others
166  *  typedef void (ta_flush_entry)(struct ip_fw_chain *ch,
167  *      struct tentry_info *tei, void *ta_buf);
168  *  MANDATORY, may be locked. (M_NOWAIT).
169  *
170  *  Delete state allocated by:
171  *  -prepare_add (-add returned EEXIST|UPDATED)
172  *  -prepare_del (if any)
173  *  -del
174  *  * Caller is required to handle empty @ta_buf correctly.
175  *
176  *
177  * -find_tentry: finds entry specified by key @tei
178  *  typedef int ta_find_tentry(void *ta_state, struct table_info *ti,
179  *      ipfw_obj_tentry *tent);
180  *  OPTIONAL, locked (UH). (M_NOWAIT). Returns 0 on success.
181  *
182  *  Finds entry specified by given key.
183  *  * Caller is required to do the following:
184  *    entry found: returns 0, export entry to @tent
185  *    entry not found: returns ENOENT
186  *
187  *
188  * -need_modify: checks if @ti has enough space to hold another @count items.
189  *  typedef int (ta_need_modify)(void *ta_state, struct table_info *ti,
190  *      uint32_t count, uint64_t *pflags);
191  *  OPTIONAL, locked (UH). (M_NOWAIT). Returns 0 if has.
192  *
193  *  Checks if given table has enough space to add @count items without
194  *  resize. Caller may use @pflags to store desired modification data.
195  *
196  *
197  *
198  * -prepare_mod: allocate structures for table modification.
199  *  typedef int (ta_prepare_mod)(void *ta_buf, uint64_t *pflags);
200  * OPTIONAL(need_modify), unlocked. (M_WAITOK). Returns 0 on success.
201  *
202  * Allocate all needed state for table modification. Caller
203  * should use `struct mod_item` to store new state in @ta_buf.
204  * Up to TA_BUF_SZ (128 bytes) can be stored in @ta_buf.
205  *
206  *
207  *
208  * -fill_mod: copy some data to new state/
209  *  typedef int (ta_fill_mod)(void *ta_state, struct table_info *ti,
210  *      void *ta_buf, uint64_t *pflags);
211  * OPTIONAL(need_modify), locked (UH). (M_NOWAIT). Returns 0 on success.
212  *
213  * Copy as much data as we can to minimize changes under WLOCK.
214  * For example, array can be merged inside this callback.
215  *
216  *
217  *
218  * -modify: perform final modification.
219  *  typedef void (ta_modify)(void *ta_state, struct table_info *ti,
220  *      void *ta_buf, uint64_t pflags);
221  * OPTIONAL(need_modify), locked (UH+WLOCK). (M_NOWAIT).
222  *
223  * Performs all changes necessary to switch to new structures.
224  * * Caller should save old pointers to @ta_buf storage.
225  *
226  *
227  *
228  * -flush_mod: flush table modification state.
229  *  typedef void (ta_flush_mod)(void *ta_buf);
230  * OPTIONAL(need_modify), unlocked. (M_WAITOK).
231  *
232  * Performs flush for the following:
233  *   - prepare_mod (modification was not necessary)
234  *   - modify (for the old state)
235  *
236  *
237  *
238  * -change_gi: monitor table info pointer changes
239  * typedef void (ta_change_ti)(void *ta_state, struct table_info *ti);
240  * OPTIONAL, locked (UH). (M_NOWAIT).
241  *
242  * Called on @ti pointer changed. Called immediately after -init
243  * to set initial state.
244  *
245  *
246  *
247  * -foreach: calls @f for each table entry
248  *  typedef void ta_foreach(void *ta_state, struct table_info *ti,
249  *      ta_foreach_f *f, void *arg);
250  * MANDATORY, locked(UH). (M_NOWAIT).
251  *
252  * Runs callback with specified argument for each table entry,
253  * Typically used for dumping table entries.
254  *
255  *
256  *
257  * -dump_tentry: dump table entry in current @tentry format.
258  *  typedef int ta_dump_tentry(void *ta_state, struct table_info *ti, void *e,
259  *      ipfw_obj_tentry *tent);
260  * MANDATORY, locked(UH). (M_NOWAIT). Returns 0 on success.
261  *
262  * Dumps entry @e to @tent.
263  *
264  *
265  * -print_config: prints custom algorithm options into buffer.
266  *  typedef void (ta_print_config)(void *ta_state, struct table_info *ti,
267  *      char *buf, size_t bufsize);
268  * OPTIONAL. locked(UH). (M_NOWAIT).
269  *
270  * Prints custom algorithm options in the format suitable to pass
271  * back to -init callback.
272  *
273  *
274  *
275  * -dump_tinfo: dumps algo-specific info.
276  *  typedef void ta_dump_tinfo(void *ta_state, struct table_info *ti,
277  *      ipfw_ta_tinfo *tinfo);
278  * OPTIONAL. locked(UH). (M_NOWAIT).
279  *
280  * Dumps options like items size/hash size, etc.
281  */
282 
283 MALLOC_DEFINE(M_IPFW_TBL, "ipfw_tbl", "IpFw tables");
284 
285 /*
286  * Utility structures/functions common to more than one algo
287  */
288 
289 struct mod_item {
290 	void	*main_ptr;
291 	size_t	size;
292 	void	*main_ptr6;
293 	size_t	size6;
294 };
295 
296 static int badd(const void *key, void *item, void *base, size_t nmemb,
297     size_t size, int (*compar) (const void *, const void *));
298 static int bdel(const void *key, void *base, size_t nmemb, size_t size,
299     int (*compar) (const void *, const void *));
300 
301 /*
302  * ADDR implementation using radix
303  *
304  */
305 
306 /*
307  * The radix code expects addr and mask to be array of bytes,
308  * with the first byte being the length of the array. rn_inithead
309  * is called with the offset in bits of the lookup key within the
310  * array. If we use a sockaddr_in as the underlying type,
311  * sin_len is conveniently located at offset 0, sin_addr is at
312  * offset 4 and normally aligned.
313  * But for portability, let's avoid assumption and make the code explicit
314  */
315 #define KEY_LEN(v)	*((uint8_t *)&(v))
316 /*
317  * Do not require radix to compare more than actual IPv4/IPv6/MAC address
318  */
319 #define KEY_LEN_INET	(offsetof(struct sockaddr_in, sin_addr) + sizeof(in_addr_t))
320 #define KEY_LEN_INET6	(offsetof(struct sa_in6, sin6_addr) + sizeof(struct in6_addr))
321 #define KEY_LEN_MAC	(offsetof(struct sa_mac, mac_addr) + ETHER_ADDR_LEN)
322 
323 #define OFF_LEN_INET	(8 * offsetof(struct sockaddr_in, sin_addr))
324 #define OFF_LEN_INET6	(8 * offsetof(struct sa_in6, sin6_addr))
325 #define OFF_LEN_MAC	(8 * offsetof(struct sa_mac, mac_addr))
326 
327 struct addr_radix_entry {
328 	struct radix_node	rn[2];
329 	struct sockaddr_in	addr;
330 	uint32_t		value;
331 	uint8_t			masklen;
332 };
333 
334 struct sa_in6 {
335 	uint8_t			sin6_len;
336 	uint8_t			sin6_family;
337 	uint8_t			pad[2];
338 	struct in6_addr		sin6_addr;
339 };
340 
341 struct addr_radix_xentry {
342 	struct radix_node	rn[2];
343 	struct sa_in6		addr6;
344 	uint32_t		value;
345 	uint8_t			masklen;
346 };
347 
348 struct addr_radix_cfg {
349 	struct radix_node_head	*head4;
350 	struct radix_node_head	*head6;
351 	size_t			count4;
352 	size_t			count6;
353 };
354 
355 struct sa_mac {
356 	uint8_t			mac_len;
357 	struct ether_addr	mac_addr;
358 };
359 
360 struct ta_buf_radix
361 {
362 	void *ent_ptr;
363 	struct sockaddr	*addr_ptr;
364 	struct sockaddr	*mask_ptr;
365 	union {
366 		struct {
367 			struct sockaddr_in sa;
368 			struct sockaddr_in ma;
369 		} a4;
370 		struct {
371 			struct sa_in6 sa;
372 			struct sa_in6 ma;
373 		} a6;
374 		struct {
375 			struct sa_mac sa;
376 			struct sa_mac ma;
377 		} mac;
378 	} addr;
379 };
380 
381 static int ta_lookup_addr_radix(struct table_info *ti, void *key, uint32_t keylen,
382     uint32_t *val);
383 static int ta_init_addr_radix(struct ip_fw_chain *ch, void **ta_state,
384     struct table_info *ti, char *data, uint8_t tflags);
385 static int flush_radix_entry(struct radix_node *rn, void *arg);
386 static void ta_destroy_addr_radix(void *ta_state, struct table_info *ti);
387 static void ta_dump_addr_radix_tinfo(void *ta_state, struct table_info *ti,
388     ipfw_ta_tinfo *tinfo);
389 static int ta_dump_addr_radix_tentry(void *ta_state, struct table_info *ti,
390     void *e, ipfw_obj_tentry *tent);
391 static int ta_find_addr_radix_tentry(void *ta_state, struct table_info *ti,
392     ipfw_obj_tentry *tent);
393 static void ta_foreach_addr_radix(void *ta_state, struct table_info *ti,
394     ta_foreach_f *f, void *arg);
395 static void tei_to_sockaddr_ent_addr(struct tentry_info *tei, struct sockaddr *sa,
396     struct sockaddr *ma, int *set_mask);
397 static int ta_prepare_add_addr_radix(struct ip_fw_chain *ch, struct tentry_info *tei,
398     void *ta_buf);
399 static int ta_add_addr_radix(void *ta_state, struct table_info *ti,
400     struct tentry_info *tei, void *ta_buf, uint32_t *pnum);
401 static int ta_prepare_del_addr_radix(struct ip_fw_chain *ch, struct tentry_info *tei,
402     void *ta_buf);
403 static int ta_del_addr_radix(void *ta_state, struct table_info *ti,
404     struct tentry_info *tei, void *ta_buf, uint32_t *pnum);
405 static void ta_flush_radix_entry(struct ip_fw_chain *ch, struct tentry_info *tei,
406     void *ta_buf);
407 static int ta_need_modify_radix(void *ta_state, struct table_info *ti,
408     uint32_t count, uint64_t *pflags);
409 
410 static int
411 ta_lookup_addr_radix(struct table_info *ti, void *key, uint32_t keylen,
412     uint32_t *val)
413 {
414 	struct radix_node_head *rnh;
415 
416 	if (keylen == sizeof(in_addr_t)) {
417 		struct addr_radix_entry *ent;
418 		struct sockaddr_in sa;
419 		KEY_LEN(sa) = KEY_LEN_INET;
420 		sa.sin_addr.s_addr = *((in_addr_t *)key);
421 		rnh = (struct radix_node_head *)ti->state;
422 		ent = (struct addr_radix_entry *)(rnh->rnh_matchaddr(&sa, &rnh->rh));
423 		if (ent != NULL) {
424 			*val = ent->value;
425 			return (1);
426 		}
427 	} else if (keylen == sizeof(struct in6_addr)) {
428 		struct addr_radix_xentry *xent;
429 		struct sa_in6 sa6;
430 		KEY_LEN(sa6) = KEY_LEN_INET6;
431 		memcpy(&sa6.sin6_addr, key, sizeof(struct in6_addr));
432 		rnh = (struct radix_node_head *)ti->xstate;
433 		xent = (struct addr_radix_xentry *)(rnh->rnh_matchaddr(&sa6, &rnh->rh));
434 		if (xent != NULL) {
435 			*val = xent->value;
436 			return (1);
437 		}
438 	}
439 
440 	return (0);
441 }
442 
443 /*
444  * New table
445  */
446 static int
447 ta_init_addr_radix(struct ip_fw_chain *ch, void **ta_state, struct table_info *ti,
448     char *data, uint8_t tflags)
449 {
450 	struct addr_radix_cfg *cfg;
451 
452 	if (!rn_inithead(&ti->state, OFF_LEN_INET))
453 		return (ENOMEM);
454 	if (!rn_inithead(&ti->xstate, OFF_LEN_INET6)) {
455 		rn_detachhead(&ti->state);
456 		return (ENOMEM);
457 	}
458 
459 	cfg = malloc(sizeof(struct addr_radix_cfg), M_IPFW, M_WAITOK | M_ZERO);
460 
461 	*ta_state = cfg;
462 	ti->lookup = ta_lookup_addr_radix;
463 
464 	return (0);
465 }
466 
467 static int
468 flush_radix_entry(struct radix_node *rn, void *arg)
469 {
470 	struct radix_node_head * const rnh = arg;
471 	struct addr_radix_entry *ent;
472 
473 	ent = (struct addr_radix_entry *)
474 	    rnh->rnh_deladdr(rn->rn_key, rn->rn_mask, &rnh->rh);
475 	if (ent != NULL)
476 		free(ent, M_IPFW_TBL);
477 	return (0);
478 }
479 
480 static void
481 ta_destroy_addr_radix(void *ta_state, struct table_info *ti)
482 {
483 	struct addr_radix_cfg *cfg;
484 	struct radix_node_head *rnh;
485 
486 	cfg = (struct addr_radix_cfg *)ta_state;
487 
488 	rnh = (struct radix_node_head *)(ti->state);
489 	rnh->rnh_walktree(&rnh->rh, flush_radix_entry, rnh);
490 	rn_detachhead(&ti->state);
491 
492 	rnh = (struct radix_node_head *)(ti->xstate);
493 	rnh->rnh_walktree(&rnh->rh, flush_radix_entry, rnh);
494 	rn_detachhead(&ti->xstate);
495 
496 	free(cfg, M_IPFW);
497 }
498 
499 /*
500  * Provide algo-specific table info
501  */
502 static void
503 ta_dump_addr_radix_tinfo(void *ta_state, struct table_info *ti, ipfw_ta_tinfo *tinfo)
504 {
505 	struct addr_radix_cfg *cfg;
506 
507 	cfg = (struct addr_radix_cfg *)ta_state;
508 
509 	tinfo->flags = IPFW_TATFLAGS_AFDATA | IPFW_TATFLAGS_AFITEM;
510 	tinfo->taclass4 = IPFW_TACLASS_RADIX;
511 	tinfo->count4 = cfg->count4;
512 	tinfo->itemsize4 = sizeof(struct addr_radix_entry);
513 	tinfo->taclass6 = IPFW_TACLASS_RADIX;
514 	tinfo->count6 = cfg->count6;
515 	tinfo->itemsize6 = sizeof(struct addr_radix_xentry);
516 }
517 
518 static int
519 ta_dump_addr_radix_tentry(void *ta_state, struct table_info *ti, void *e,
520     ipfw_obj_tentry *tent)
521 {
522 	struct addr_radix_entry *n;
523 #ifdef INET6
524 	struct addr_radix_xentry *xn;
525 #endif
526 
527 	n = (struct addr_radix_entry *)e;
528 
529 	/* Guess IPv4/IPv6 radix by sockaddr family */
530 	if (n->addr.sin_family == AF_INET) {
531 		tent->k.addr.s_addr = n->addr.sin_addr.s_addr;
532 		tent->masklen = n->masklen;
533 		tent->subtype = AF_INET;
534 		tent->v.kidx = n->value;
535 #ifdef INET6
536 	} else {
537 		xn = (struct addr_radix_xentry *)e;
538 		memcpy(&tent->k.addr6, &xn->addr6.sin6_addr,
539 		    sizeof(struct in6_addr));
540 		tent->masklen = xn->masklen;
541 		tent->subtype = AF_INET6;
542 		tent->v.kidx = xn->value;
543 #endif
544 	}
545 
546 	return (0);
547 }
548 
549 static int
550 ta_find_addr_radix_tentry(void *ta_state, struct table_info *ti,
551     ipfw_obj_tentry *tent)
552 {
553 	struct radix_node_head *rnh;
554 	void *e;
555 
556 	e = NULL;
557 	if (tent->subtype == AF_INET) {
558 		struct sockaddr_in sa;
559 		KEY_LEN(sa) = KEY_LEN_INET;
560 		sa.sin_addr.s_addr = tent->k.addr.s_addr;
561 		rnh = (struct radix_node_head *)ti->state;
562 		e = rnh->rnh_matchaddr(&sa, &rnh->rh);
563 	} else if (tent->subtype == AF_INET6) {
564 		struct sa_in6 sa6;
565 		KEY_LEN(sa6) = KEY_LEN_INET6;
566 		memcpy(&sa6.sin6_addr, &tent->k.addr6, sizeof(struct in6_addr));
567 		rnh = (struct radix_node_head *)ti->xstate;
568 		e = rnh->rnh_matchaddr(&sa6, &rnh->rh);
569 	}
570 
571 	if (e != NULL) {
572 		ta_dump_addr_radix_tentry(ta_state, ti, e, tent);
573 		return (0);
574 	}
575 
576 	return (ENOENT);
577 }
578 
579 static void
580 ta_foreach_addr_radix(void *ta_state, struct table_info *ti, ta_foreach_f *f,
581     void *arg)
582 {
583 	struct radix_node_head *rnh;
584 
585 	rnh = (struct radix_node_head *)(ti->state);
586 	rnh->rnh_walktree(&rnh->rh, (walktree_f_t *)f, arg);
587 
588 	rnh = (struct radix_node_head *)(ti->xstate);
589 	rnh->rnh_walktree(&rnh->rh, (walktree_f_t *)f, arg);
590 }
591 
592 #ifdef INET6
593 static inline void ipv6_writemask(struct in6_addr *addr6, uint8_t mask);
594 
595 static inline void
596 ipv6_writemask(struct in6_addr *addr6, uint8_t mask)
597 {
598 	uint32_t *cp;
599 
600 	for (cp = (uint32_t *)addr6; mask >= 32; mask -= 32)
601 		*cp++ = 0xFFFFFFFF;
602 	if (mask > 0)
603 		*cp = htonl(mask ? ~((1 << (32 - mask)) - 1) : 0);
604 }
605 #endif
606 
607 static void
608 tei_to_sockaddr_ent_addr(struct tentry_info *tei, struct sockaddr *sa,
609     struct sockaddr *ma, int *set_mask)
610 {
611 	int mlen;
612 #ifdef INET
613 	struct sockaddr_in *addr, *mask;
614 #endif
615 #ifdef INET6
616 	struct sa_in6 *addr6, *mask6;
617 #endif
618 	in_addr_t a4;
619 
620 	mlen = tei->masklen;
621 
622 	if (tei->subtype == AF_INET) {
623 #ifdef INET
624 		addr = (struct sockaddr_in *)sa;
625 		mask = (struct sockaddr_in *)ma;
626 		/* Set 'total' structure length */
627 		KEY_LEN(*addr) = KEY_LEN_INET;
628 		KEY_LEN(*mask) = KEY_LEN_INET;
629 		addr->sin_family = AF_INET;
630 		mask->sin_addr.s_addr =
631 		    htonl(mlen ? ~((1 << (32 - mlen)) - 1) : 0);
632 		a4 = *((in_addr_t *)tei->paddr);
633 		addr->sin_addr.s_addr = a4 & mask->sin_addr.s_addr;
634 		if (mlen != 32)
635 			*set_mask = 1;
636 		else
637 			*set_mask = 0;
638 #endif
639 #ifdef INET6
640 	} else if (tei->subtype == AF_INET6) {
641 		/* IPv6 case */
642 		addr6 = (struct sa_in6 *)sa;
643 		mask6 = (struct sa_in6 *)ma;
644 		/* Set 'total' structure length */
645 		KEY_LEN(*addr6) = KEY_LEN_INET6;
646 		KEY_LEN(*mask6) = KEY_LEN_INET6;
647 		addr6->sin6_family = AF_INET6;
648 		ipv6_writemask(&mask6->sin6_addr, mlen);
649 		memcpy(&addr6->sin6_addr, tei->paddr, sizeof(struct in6_addr));
650 		APPLY_MASK(&addr6->sin6_addr, &mask6->sin6_addr);
651 		if (mlen != 128)
652 			*set_mask = 1;
653 		else
654 			*set_mask = 0;
655 #endif
656 	}
657 }
658 
659 static int
660 ta_prepare_add_addr_radix(struct ip_fw_chain *ch, struct tentry_info *tei,
661     void *ta_buf)
662 {
663 	struct ta_buf_radix *tb;
664 	struct addr_radix_entry *ent;
665 #ifdef INET6
666 	struct addr_radix_xentry *xent;
667 #endif
668 	struct sockaddr *addr, *mask;
669 	int mlen, set_mask;
670 
671 	tb = (struct ta_buf_radix *)ta_buf;
672 
673 	mlen = tei->masklen;
674 	set_mask = 0;
675 
676 	if (tei->subtype == AF_INET) {
677 #ifdef INET
678 		if (mlen > 32)
679 			return (EINVAL);
680 		ent = malloc(sizeof(*ent), M_IPFW_TBL, M_WAITOK | M_ZERO);
681 		ent->masklen = mlen;
682 
683 		addr = (struct sockaddr *)&ent->addr;
684 		mask = (struct sockaddr *)&tb->addr.a4.ma;
685 		tb->ent_ptr = ent;
686 #endif
687 #ifdef INET6
688 	} else if (tei->subtype == AF_INET6) {
689 		/* IPv6 case */
690 		if (mlen > 128)
691 			return (EINVAL);
692 		xent = malloc(sizeof(*xent), M_IPFW_TBL, M_WAITOK | M_ZERO);
693 		xent->masklen = mlen;
694 
695 		addr = (struct sockaddr *)&xent->addr6;
696 		mask = (struct sockaddr *)&tb->addr.a6.ma;
697 		tb->ent_ptr = xent;
698 #endif
699 	} else {
700 		/* Unknown CIDR type */
701 		return (EINVAL);
702 	}
703 
704 	tei_to_sockaddr_ent_addr(tei, addr, mask, &set_mask);
705 	/* Set pointers */
706 	tb->addr_ptr = addr;
707 	if (set_mask != 0)
708 		tb->mask_ptr = mask;
709 
710 	return (0);
711 }
712 
713 static int
714 ta_add_addr_radix(void *ta_state, struct table_info *ti, struct tentry_info *tei,
715     void *ta_buf, uint32_t *pnum)
716 {
717 	struct addr_radix_cfg *cfg;
718 	struct radix_node_head *rnh;
719 	struct radix_node *rn;
720 	struct ta_buf_radix *tb;
721 	uint32_t *old_value, value;
722 
723 	cfg = (struct addr_radix_cfg *)ta_state;
724 	tb = (struct ta_buf_radix *)ta_buf;
725 
726 	/* Save current entry value from @tei */
727 	if (tei->subtype == AF_INET) {
728 		rnh = ti->state;
729 		((struct addr_radix_entry *)tb->ent_ptr)->value = tei->value;
730 	} else {
731 		rnh = ti->xstate;
732 		((struct addr_radix_xentry *)tb->ent_ptr)->value = tei->value;
733 	}
734 
735 	/* Search for an entry first */
736 	rn = rnh->rnh_lookup(tb->addr_ptr, tb->mask_ptr, &rnh->rh);
737 	if (rn != NULL) {
738 		if ((tei->flags & TEI_FLAGS_UPDATE) == 0)
739 			return (EEXIST);
740 		/* Record already exists. Update value if we're asked to */
741 		if (tei->subtype == AF_INET)
742 			old_value = &((struct addr_radix_entry *)rn)->value;
743 		else
744 			old_value = &((struct addr_radix_xentry *)rn)->value;
745 
746 		value = *old_value;
747 		*old_value = tei->value;
748 		tei->value = value;
749 
750 		/* Indicate that update has happened instead of addition */
751 		tei->flags |= TEI_FLAGS_UPDATED;
752 		*pnum = 0;
753 
754 		return (0);
755 	}
756 
757 	if ((tei->flags & TEI_FLAGS_DONTADD) != 0)
758 		return (EFBIG);
759 
760 	rn = rnh->rnh_addaddr(tb->addr_ptr, tb->mask_ptr, &rnh->rh,tb->ent_ptr);
761 	if (rn == NULL) {
762 		/* Unknown error */
763 		return (EINVAL);
764 	}
765 
766 	if (tei->subtype == AF_INET)
767 		cfg->count4++;
768 	else
769 		cfg->count6++;
770 	tb->ent_ptr = NULL;
771 	*pnum = 1;
772 
773 	return (0);
774 }
775 
776 static int
777 ta_prepare_del_addr_radix(struct ip_fw_chain *ch, struct tentry_info *tei,
778     void *ta_buf)
779 {
780 	struct ta_buf_radix *tb;
781 	struct sockaddr *addr, *mask;
782 	int mlen, set_mask;
783 
784 	tb = (struct ta_buf_radix *)ta_buf;
785 
786 	mlen = tei->masklen;
787 	set_mask = 0;
788 
789 	if (tei->subtype == AF_INET) {
790 		if (mlen > 32)
791 			return (EINVAL);
792 
793 		addr = (struct sockaddr *)&tb->addr.a4.sa;
794 		mask = (struct sockaddr *)&tb->addr.a4.ma;
795 #ifdef INET6
796 	} else if (tei->subtype == AF_INET6) {
797 		if (mlen > 128)
798 			return (EINVAL);
799 
800 		addr = (struct sockaddr *)&tb->addr.a6.sa;
801 		mask = (struct sockaddr *)&tb->addr.a6.ma;
802 #endif
803 	} else
804 		return (EINVAL);
805 
806 	tei_to_sockaddr_ent_addr(tei, addr, mask, &set_mask);
807 	tb->addr_ptr = addr;
808 	if (set_mask != 0)
809 		tb->mask_ptr = mask;
810 
811 	return (0);
812 }
813 
814 static int
815 ta_del_addr_radix(void *ta_state, struct table_info *ti, struct tentry_info *tei,
816     void *ta_buf, uint32_t *pnum)
817 {
818 	struct addr_radix_cfg *cfg;
819 	struct radix_node_head *rnh;
820 	struct radix_node *rn;
821 	struct ta_buf_radix *tb;
822 
823 	cfg = (struct addr_radix_cfg *)ta_state;
824 	tb = (struct ta_buf_radix *)ta_buf;
825 
826 	if (tei->subtype == AF_INET)
827 		rnh = ti->state;
828 	else
829 		rnh = ti->xstate;
830 
831 	rn = rnh->rnh_deladdr(tb->addr_ptr, tb->mask_ptr, &rnh->rh);
832 
833 	if (rn == NULL)
834 		return (ENOENT);
835 
836 	/* Save entry value to @tei */
837 	if (tei->subtype == AF_INET)
838 		tei->value = ((struct addr_radix_entry *)rn)->value;
839 	else
840 		tei->value = ((struct addr_radix_xentry *)rn)->value;
841 
842 	tb->ent_ptr = rn;
843 
844 	if (tei->subtype == AF_INET)
845 		cfg->count4--;
846 	else
847 		cfg->count6--;
848 	*pnum = 1;
849 
850 	return (0);
851 }
852 
853 static void
854 ta_flush_radix_entry(struct ip_fw_chain *ch, struct tentry_info *tei,
855     void *ta_buf)
856 {
857 	struct ta_buf_radix *tb;
858 
859 	tb = (struct ta_buf_radix *)ta_buf;
860 
861 	if (tb->ent_ptr != NULL)
862 		free(tb->ent_ptr, M_IPFW_TBL);
863 }
864 
865 static int
866 ta_need_modify_radix(void *ta_state, struct table_info *ti, uint32_t count,
867     uint64_t *pflags)
868 {
869 
870 	/*
871 	 * radix does not require additional memory allocations
872 	 * other than nodes itself. Adding new masks to the tree do
873 	 * but we don't have any API to call (and we don't known which
874 	 * sizes do we need).
875 	 */
876 	return (0);
877 }
878 
879 struct table_algo addr_radix = {
880 	.name		= "addr:radix",
881 	.type		= IPFW_TABLE_ADDR,
882 	.flags		= TA_FLAG_DEFAULT,
883 	.ta_buf_size	= sizeof(struct ta_buf_radix),
884 	.init		= ta_init_addr_radix,
885 	.destroy	= ta_destroy_addr_radix,
886 	.prepare_add	= ta_prepare_add_addr_radix,
887 	.prepare_del	= ta_prepare_del_addr_radix,
888 	.add		= ta_add_addr_radix,
889 	.del		= ta_del_addr_radix,
890 	.flush_entry	= ta_flush_radix_entry,
891 	.foreach	= ta_foreach_addr_radix,
892 	.dump_tentry	= ta_dump_addr_radix_tentry,
893 	.find_tentry	= ta_find_addr_radix_tentry,
894 	.dump_tinfo	= ta_dump_addr_radix_tinfo,
895 	.need_modify	= ta_need_modify_radix,
896 };
897 
898 /*
899  * addr:hash cmds
900  *
901  *
902  * ti->data:
903  * [inv.mask4][inv.mask6][log2hsize4][log2hsize6]
904  * [        8][        8[          8][         8]
905  *
906  * inv.mask4: 32 - mask
907  * inv.mask6:
908  * 1) _slow lookup: mask
909  * 2) _aligned: (128 - mask) / 8
910  * 3) _64: 8
911  *
912  *
913  * pflags:
914  * [v4=1/v6=0][hsize]
915  * [       32][   32]
916  */
917 
918 struct chashentry;
919 
920 SLIST_HEAD(chashbhead, chashentry);
921 
922 struct chash_cfg {
923 	struct chashbhead *head4;
924 	struct chashbhead *head6;
925 	size_t	size4;
926 	size_t	size6;
927 	size_t	items4;
928 	size_t	items6;
929 	uint8_t	mask4;
930 	uint8_t	mask6;
931 };
932 
933 struct chashentry {
934 	SLIST_ENTRY(chashentry)	next;
935 	uint32_t	value;
936 	uint32_t	type;
937 	union {
938 		uint32_t	a4;	/* Host format */
939 		struct in6_addr	a6;	/* Network format */
940 	} a;
941 };
942 
943 struct ta_buf_chash
944 {
945 	void *ent_ptr;
946 	struct chashentry ent;
947 };
948 
949 #ifdef INET
950 static __inline uint32_t hash_ip(uint32_t addr, int hsize);
951 #endif
952 #ifdef INET6
953 static __inline uint32_t hash_ip6(struct in6_addr *addr6, int hsize);
954 static __inline uint16_t hash_ip64(struct in6_addr *addr6, int hsize);
955 static __inline uint32_t hash_ip6_slow(struct in6_addr *addr6, void *key,
956     int mask, int hsize);
957 static __inline uint32_t hash_ip6_al(struct in6_addr *addr6, void *key, int mask,
958     int hsize);
959 #endif
960 static int ta_lookup_chash_slow(struct table_info *ti, void *key, uint32_t keylen,
961     uint32_t *val);
962 static int ta_lookup_chash_aligned(struct table_info *ti, void *key,
963     uint32_t keylen, uint32_t *val);
964 static int ta_lookup_chash_64(struct table_info *ti, void *key, uint32_t keylen,
965     uint32_t *val);
966 static int chash_parse_opts(struct chash_cfg *cfg, char *data);
967 static void ta_print_chash_config(void *ta_state, struct table_info *ti,
968     char *buf, size_t bufsize);
969 static int ta_log2(uint32_t v);
970 static int ta_init_chash(struct ip_fw_chain *ch, void **ta_state,
971     struct table_info *ti, char *data, uint8_t tflags);
972 static void ta_destroy_chash(void *ta_state, struct table_info *ti);
973 static void ta_dump_chash_tinfo(void *ta_state, struct table_info *ti,
974     ipfw_ta_tinfo *tinfo);
975 static int ta_dump_chash_tentry(void *ta_state, struct table_info *ti,
976     void *e, ipfw_obj_tentry *tent);
977 static uint32_t hash_ent(struct chashentry *ent, int af, int mlen,
978     uint32_t size);
979 static int tei_to_chash_ent(struct tentry_info *tei, struct chashentry *ent);
980 static int ta_find_chash_tentry(void *ta_state, struct table_info *ti,
981     ipfw_obj_tentry *tent);
982 static void ta_foreach_chash(void *ta_state, struct table_info *ti,
983     ta_foreach_f *f, void *arg);
984 static int ta_prepare_add_chash(struct ip_fw_chain *ch, struct tentry_info *tei,
985     void *ta_buf);
986 static int ta_add_chash(void *ta_state, struct table_info *ti,
987     struct tentry_info *tei, void *ta_buf, uint32_t *pnum);
988 static int ta_prepare_del_chash(struct ip_fw_chain *ch, struct tentry_info *tei,
989     void *ta_buf);
990 static int ta_del_chash(void *ta_state, struct table_info *ti,
991     struct tentry_info *tei, void *ta_buf, uint32_t *pnum);
992 static void ta_flush_chash_entry(struct ip_fw_chain *ch, struct tentry_info *tei,
993     void *ta_buf);
994 static int ta_need_modify_chash(void *ta_state, struct table_info *ti,
995     uint32_t count, uint64_t *pflags);
996 static int ta_prepare_mod_chash(void *ta_buf, uint64_t *pflags);
997 static int ta_fill_mod_chash(void *ta_state, struct table_info *ti, void *ta_buf,
998     uint64_t *pflags);
999 static void ta_modify_chash(void *ta_state, struct table_info *ti, void *ta_buf,
1000     uint64_t pflags);
1001 static void ta_flush_mod_chash(void *ta_buf);
1002 
1003 #ifdef INET
1004 static __inline uint32_t
1005 hash_ip(uint32_t addr, int hsize)
1006 {
1007 
1008 	return (addr % (hsize - 1));
1009 }
1010 #endif
1011 
1012 #ifdef INET6
1013 static __inline uint32_t
1014 hash_ip6(struct in6_addr *addr6, int hsize)
1015 {
1016 	uint32_t i;
1017 
1018 	i = addr6->s6_addr32[0] ^ addr6->s6_addr32[1] ^
1019 	    addr6->s6_addr32[2] ^ addr6->s6_addr32[3];
1020 
1021 	return (i % (hsize - 1));
1022 }
1023 
1024 static __inline uint16_t
1025 hash_ip64(struct in6_addr *addr6, int hsize)
1026 {
1027 	uint32_t i;
1028 
1029 	i = addr6->s6_addr32[0] ^ addr6->s6_addr32[1];
1030 
1031 	return (i % (hsize - 1));
1032 }
1033 
1034 static __inline uint32_t
1035 hash_ip6_slow(struct in6_addr *addr6, void *key, int mask, int hsize)
1036 {
1037 	struct in6_addr mask6;
1038 
1039 	ipv6_writemask(&mask6, mask);
1040 	memcpy(addr6, key, sizeof(struct in6_addr));
1041 	APPLY_MASK(addr6, &mask6);
1042 	return (hash_ip6(addr6, hsize));
1043 }
1044 
1045 static __inline uint32_t
1046 hash_ip6_al(struct in6_addr *addr6, void *key, int mask, int hsize)
1047 {
1048 	uint64_t *paddr;
1049 
1050 	paddr = (uint64_t *)addr6;
1051 	*paddr = 0;
1052 	*(paddr + 1) = 0;
1053 	memcpy(addr6, key, mask);
1054 	return (hash_ip6(addr6, hsize));
1055 }
1056 #endif
1057 
1058 static int
1059 ta_lookup_chash_slow(struct table_info *ti, void *key, uint32_t keylen,
1060     uint32_t *val)
1061 {
1062 	struct chashbhead *head;
1063 	struct chashentry *ent;
1064 	uint16_t hash, hsize;
1065 	uint8_t imask;
1066 
1067 	if (keylen == sizeof(in_addr_t)) {
1068 #ifdef INET
1069 		head = (struct chashbhead *)ti->state;
1070 		imask = ti->data >> 24;
1071 		hsize = 1 << ((ti->data & 0xFFFF) >> 8);
1072 		uint32_t a;
1073 		a = ntohl(*((in_addr_t *)key));
1074 		a = a >> imask;
1075 		hash = hash_ip(a, hsize);
1076 		SLIST_FOREACH(ent, &head[hash], next) {
1077 			if (ent->a.a4 == a) {
1078 				*val = ent->value;
1079 				return (1);
1080 			}
1081 		}
1082 #endif
1083 	} else {
1084 #ifdef INET6
1085 		/* IPv6: worst scenario: non-round mask */
1086 		struct in6_addr addr6;
1087 		head = (struct chashbhead *)ti->xstate;
1088 		imask = (ti->data & 0xFF0000) >> 16;
1089 		hsize = 1 << (ti->data & 0xFF);
1090 		hash = hash_ip6_slow(&addr6, key, imask, hsize);
1091 		SLIST_FOREACH(ent, &head[hash], next) {
1092 			if (memcmp(&ent->a.a6, &addr6, 16) == 0) {
1093 				*val = ent->value;
1094 				return (1);
1095 			}
1096 		}
1097 #endif
1098 	}
1099 
1100 	return (0);
1101 }
1102 
1103 static int
1104 ta_lookup_chash_aligned(struct table_info *ti, void *key, uint32_t keylen,
1105     uint32_t *val)
1106 {
1107 	struct chashbhead *head;
1108 	struct chashentry *ent;
1109 	uint16_t hash, hsize;
1110 	uint8_t imask;
1111 
1112 	if (keylen == sizeof(in_addr_t)) {
1113 #ifdef INET
1114 		head = (struct chashbhead *)ti->state;
1115 		imask = ti->data >> 24;
1116 		hsize = 1 << ((ti->data & 0xFFFF) >> 8);
1117 		uint32_t a;
1118 		a = ntohl(*((in_addr_t *)key));
1119 		a = a >> imask;
1120 		hash = hash_ip(a, hsize);
1121 		SLIST_FOREACH(ent, &head[hash], next) {
1122 			if (ent->a.a4 == a) {
1123 				*val = ent->value;
1124 				return (1);
1125 			}
1126 		}
1127 #endif
1128 	} else {
1129 #ifdef INET6
1130 		/* IPv6: aligned to 8bit mask */
1131 		struct in6_addr addr6;
1132 		uint64_t *paddr, *ptmp;
1133 		head = (struct chashbhead *)ti->xstate;
1134 		imask = (ti->data & 0xFF0000) >> 16;
1135 		hsize = 1 << (ti->data & 0xFF);
1136 
1137 		hash = hash_ip6_al(&addr6, key, imask, hsize);
1138 		paddr = (uint64_t *)&addr6;
1139 		SLIST_FOREACH(ent, &head[hash], next) {
1140 			ptmp = (uint64_t *)&ent->a.a6;
1141 			if (paddr[0] == ptmp[0] && paddr[1] == ptmp[1]) {
1142 				*val = ent->value;
1143 				return (1);
1144 			}
1145 		}
1146 #endif
1147 	}
1148 
1149 	return (0);
1150 }
1151 
1152 static int
1153 ta_lookup_chash_64(struct table_info *ti, void *key, uint32_t keylen,
1154     uint32_t *val)
1155 {
1156 	struct chashbhead *head;
1157 	struct chashentry *ent;
1158 	uint16_t hash, hsize;
1159 	uint8_t imask;
1160 
1161 	if (keylen == sizeof(in_addr_t)) {
1162 #ifdef INET
1163 		head = (struct chashbhead *)ti->state;
1164 		imask = ti->data >> 24;
1165 		hsize = 1 << ((ti->data & 0xFFFF) >> 8);
1166 		uint32_t a;
1167 		a = ntohl(*((in_addr_t *)key));
1168 		a = a >> imask;
1169 		hash = hash_ip(a, hsize);
1170 		SLIST_FOREACH(ent, &head[hash], next) {
1171 			if (ent->a.a4 == a) {
1172 				*val = ent->value;
1173 				return (1);
1174 			}
1175 		}
1176 #endif
1177 	} else {
1178 #ifdef INET6
1179 		/* IPv6: /64 */
1180 		uint64_t a6, *paddr;
1181 		head = (struct chashbhead *)ti->xstate;
1182 		paddr = (uint64_t *)key;
1183 		hsize = 1 << (ti->data & 0xFF);
1184 		a6 = *paddr;
1185 		hash = hash_ip64((struct in6_addr *)key, hsize);
1186 		SLIST_FOREACH(ent, &head[hash], next) {
1187 			paddr = (uint64_t *)&ent->a.a6;
1188 			if (a6 == *paddr) {
1189 				*val = ent->value;
1190 				return (1);
1191 			}
1192 		}
1193 #endif
1194 	}
1195 
1196 	return (0);
1197 }
1198 
1199 static int
1200 chash_parse_opts(struct chash_cfg *cfg, char *data)
1201 {
1202 	char *pdel, *pend, *s;
1203 	int mask4, mask6;
1204 
1205 	mask4 = cfg->mask4;
1206 	mask6 = cfg->mask6;
1207 
1208 	if (data == NULL)
1209 		return (0);
1210 	if ((pdel = strchr(data, ' ')) == NULL)
1211 		return (0);
1212 	while (*pdel == ' ')
1213 		pdel++;
1214 	if (strncmp(pdel, "masks=", 6) != 0)
1215 		return (EINVAL);
1216 	if ((s = strchr(pdel, ' ')) != NULL)
1217 		*s++ = '\0';
1218 
1219 	pdel += 6;
1220 	/* Need /XX[,/YY] */
1221 	if (*pdel++ != '/')
1222 		return (EINVAL);
1223 	mask4 = strtol(pdel, &pend, 10);
1224 	if (*pend == ',') {
1225 		/* ,/YY */
1226 		pdel = pend + 1;
1227 		if (*pdel++ != '/')
1228 			return (EINVAL);
1229 		mask6 = strtol(pdel, &pend, 10);
1230 		if (*pend != '\0')
1231 			return (EINVAL);
1232 	} else if (*pend != '\0')
1233 		return (EINVAL);
1234 
1235 	if (mask4 < 0 || mask4 > 32 || mask6 < 0 || mask6 > 128)
1236 		return (EINVAL);
1237 
1238 	cfg->mask4 = mask4;
1239 	cfg->mask6 = mask6;
1240 
1241 	return (0);
1242 }
1243 
1244 static void
1245 ta_print_chash_config(void *ta_state, struct table_info *ti, char *buf,
1246     size_t bufsize)
1247 {
1248 	struct chash_cfg *cfg;
1249 
1250 	cfg = (struct chash_cfg *)ta_state;
1251 
1252 	if (cfg->mask4 != 32 || cfg->mask6 != 128)
1253 		snprintf(buf, bufsize, "%s masks=/%d,/%d", "addr:hash",
1254 		    cfg->mask4, cfg->mask6);
1255 	else
1256 		snprintf(buf, bufsize, "%s", "addr:hash");
1257 }
1258 
1259 static int
1260 ta_log2(uint32_t v)
1261 {
1262 	uint32_t r;
1263 
1264 	r = 0;
1265 	while (v >>= 1)
1266 		r++;
1267 
1268 	return (r);
1269 }
1270 
1271 /*
1272  * New table.
1273  * We assume 'data' to be either NULL or the following format:
1274  * 'addr:hash [masks=/32[,/128]]'
1275  */
1276 static int
1277 ta_init_chash(struct ip_fw_chain *ch, void **ta_state, struct table_info *ti,
1278     char *data, uint8_t tflags)
1279 {
1280 	int error, i;
1281 	uint32_t hsize;
1282 	struct chash_cfg *cfg;
1283 
1284 	cfg = malloc(sizeof(struct chash_cfg), M_IPFW, M_WAITOK | M_ZERO);
1285 
1286 	cfg->mask4 = 32;
1287 	cfg->mask6 = 128;
1288 
1289 	if ((error = chash_parse_opts(cfg, data)) != 0) {
1290 		free(cfg, M_IPFW);
1291 		return (error);
1292 	}
1293 
1294 	cfg->size4 = 128;
1295 	cfg->size6 = 128;
1296 
1297 	cfg->head4 = malloc(sizeof(struct chashbhead) * cfg->size4, M_IPFW,
1298 	    M_WAITOK | M_ZERO);
1299 	cfg->head6 = malloc(sizeof(struct chashbhead) * cfg->size6, M_IPFW,
1300 	    M_WAITOK | M_ZERO);
1301 	for (i = 0; i < cfg->size4; i++)
1302 		SLIST_INIT(&cfg->head4[i]);
1303 	for (i = 0; i < cfg->size6; i++)
1304 		SLIST_INIT(&cfg->head6[i]);
1305 
1306 	*ta_state = cfg;
1307 	ti->state = cfg->head4;
1308 	ti->xstate = cfg->head6;
1309 
1310 	/* Store data depending on v6 mask length */
1311 	hsize = ta_log2(cfg->size4) << 8 | ta_log2(cfg->size6);
1312 	if (cfg->mask6 == 64) {
1313 		ti->data = (32 - cfg->mask4) << 24 | (128 - cfg->mask6) << 16|
1314 		    hsize;
1315 		ti->lookup = ta_lookup_chash_64;
1316 	} else if ((cfg->mask6  % 8) == 0) {
1317 		ti->data = (32 - cfg->mask4) << 24 |
1318 		    cfg->mask6 << 13 | hsize;
1319 		ti->lookup = ta_lookup_chash_aligned;
1320 	} else {
1321 		/* don't do that! */
1322 		ti->data = (32 - cfg->mask4) << 24 |
1323 		    cfg->mask6 << 16 | hsize;
1324 		ti->lookup = ta_lookup_chash_slow;
1325 	}
1326 
1327 	return (0);
1328 }
1329 
1330 static void
1331 ta_destroy_chash(void *ta_state, struct table_info *ti)
1332 {
1333 	struct chash_cfg *cfg;
1334 	struct chashentry *ent, *ent_next;
1335 	int i;
1336 
1337 	cfg = (struct chash_cfg *)ta_state;
1338 
1339 	for (i = 0; i < cfg->size4; i++)
1340 		SLIST_FOREACH_SAFE(ent, &cfg->head4[i], next, ent_next)
1341 			free(ent, M_IPFW_TBL);
1342 
1343 	for (i = 0; i < cfg->size6; i++)
1344 		SLIST_FOREACH_SAFE(ent, &cfg->head6[i], next, ent_next)
1345 			free(ent, M_IPFW_TBL);
1346 
1347 	free(cfg->head4, M_IPFW);
1348 	free(cfg->head6, M_IPFW);
1349 
1350 	free(cfg, M_IPFW);
1351 }
1352 
1353 static void
1354 ta_dump_chash_tinfo(void *ta_state, struct table_info *ti, ipfw_ta_tinfo *tinfo)
1355 {
1356 	struct chash_cfg *cfg;
1357 
1358 	cfg = (struct chash_cfg *)ta_state;
1359 
1360 	tinfo->flags = IPFW_TATFLAGS_AFDATA | IPFW_TATFLAGS_AFITEM;
1361 	tinfo->taclass4 = IPFW_TACLASS_HASH;
1362 	tinfo->size4 = cfg->size4;
1363 	tinfo->count4 = cfg->items4;
1364 	tinfo->itemsize4 = sizeof(struct chashentry);
1365 	tinfo->taclass6 = IPFW_TACLASS_HASH;
1366 	tinfo->size6 = cfg->size6;
1367 	tinfo->count6 = cfg->items6;
1368 	tinfo->itemsize6 = sizeof(struct chashentry);
1369 }
1370 
1371 static int
1372 ta_dump_chash_tentry(void *ta_state, struct table_info *ti, void *e,
1373     ipfw_obj_tentry *tent)
1374 {
1375 	struct chash_cfg *cfg;
1376 	struct chashentry *ent;
1377 
1378 	cfg = (struct chash_cfg *)ta_state;
1379 	ent = (struct chashentry *)e;
1380 
1381 	if (ent->type == AF_INET) {
1382 		tent->k.addr.s_addr = htonl(ent->a.a4 << (32 - cfg->mask4));
1383 		tent->masklen = cfg->mask4;
1384 		tent->subtype = AF_INET;
1385 		tent->v.kidx = ent->value;
1386 #ifdef INET6
1387 	} else {
1388 		memcpy(&tent->k.addr6, &ent->a.a6, sizeof(struct in6_addr));
1389 		tent->masklen = cfg->mask6;
1390 		tent->subtype = AF_INET6;
1391 		tent->v.kidx = ent->value;
1392 #endif
1393 	}
1394 
1395 	return (0);
1396 }
1397 
1398 static uint32_t
1399 hash_ent(struct chashentry *ent, int af, int mlen, uint32_t size)
1400 {
1401 	uint32_t hash;
1402 
1403 	hash = 0;
1404 
1405 	if (af == AF_INET) {
1406 #ifdef INET
1407 		hash = hash_ip(ent->a.a4, size);
1408 #endif
1409 	} else {
1410 #ifdef INET6
1411 		if (mlen == 64)
1412 			hash = hash_ip64(&ent->a.a6, size);
1413 		else
1414 			hash = hash_ip6(&ent->a.a6, size);
1415 #endif
1416 	}
1417 
1418 	return (hash);
1419 }
1420 
1421 static int
1422 tei_to_chash_ent(struct tentry_info *tei, struct chashentry *ent)
1423 {
1424 	int mlen;
1425 #ifdef INET6
1426 	struct in6_addr mask6;
1427 #endif
1428 
1429 	mlen = tei->masklen;
1430 
1431 	if (tei->subtype == AF_INET) {
1432 #ifdef INET
1433 		if (mlen > 32)
1434 			return (EINVAL);
1435 		ent->type = AF_INET;
1436 
1437 		/* Calculate masked address */
1438 		ent->a.a4 = ntohl(*((in_addr_t *)tei->paddr)) >> (32 - mlen);
1439 #endif
1440 #ifdef INET6
1441 	} else if (tei->subtype == AF_INET6) {
1442 		/* IPv6 case */
1443 		if (mlen > 128)
1444 			return (EINVAL);
1445 		ent->type = AF_INET6;
1446 
1447 		ipv6_writemask(&mask6, mlen);
1448 		memcpy(&ent->a.a6, tei->paddr, sizeof(struct in6_addr));
1449 		APPLY_MASK(&ent->a.a6, &mask6);
1450 #endif
1451 	} else {
1452 		/* Unknown CIDR type */
1453 		return (EINVAL);
1454 	}
1455 
1456 	return (0);
1457 }
1458 
1459 static int
1460 ta_find_chash_tentry(void *ta_state, struct table_info *ti,
1461     ipfw_obj_tentry *tent)
1462 {
1463 	struct chash_cfg *cfg;
1464 	struct chashbhead *head;
1465 	struct chashentry ent, *tmp;
1466 	struct tentry_info tei;
1467 	int error;
1468 	uint32_t hash;
1469 
1470 	cfg = (struct chash_cfg *)ta_state;
1471 
1472 	memset(&ent, 0, sizeof(ent));
1473 	memset(&tei, 0, sizeof(tei));
1474 
1475 	if (tent->subtype == AF_INET) {
1476 		tei.paddr = &tent->k.addr;
1477 		tei.masklen = cfg->mask4;
1478 		tei.subtype = AF_INET;
1479 
1480 		if ((error = tei_to_chash_ent(&tei, &ent)) != 0)
1481 			return (error);
1482 
1483 		head = cfg->head4;
1484 		hash = hash_ent(&ent, AF_INET, cfg->mask4, cfg->size4);
1485 		/* Check for existence */
1486 		SLIST_FOREACH(tmp, &head[hash], next) {
1487 			if (tmp->a.a4 != ent.a.a4)
1488 				continue;
1489 
1490 			ta_dump_chash_tentry(ta_state, ti, tmp, tent);
1491 			return (0);
1492 		}
1493 	} else {
1494 		tei.paddr = &tent->k.addr6;
1495 		tei.masklen = cfg->mask6;
1496 		tei.subtype = AF_INET6;
1497 
1498 		if ((error = tei_to_chash_ent(&tei, &ent)) != 0)
1499 			return (error);
1500 
1501 		head = cfg->head6;
1502 		hash = hash_ent(&ent, AF_INET6, cfg->mask6, cfg->size6);
1503 		/* Check for existence */
1504 		SLIST_FOREACH(tmp, &head[hash], next) {
1505 			if (memcmp(&tmp->a.a6, &ent.a.a6, 16) != 0)
1506 				continue;
1507 			ta_dump_chash_tentry(ta_state, ti, tmp, tent);
1508 			return (0);
1509 		}
1510 	}
1511 
1512 	return (ENOENT);
1513 }
1514 
1515 static void
1516 ta_foreach_chash(void *ta_state, struct table_info *ti, ta_foreach_f *f,
1517     void *arg)
1518 {
1519 	struct chash_cfg *cfg;
1520 	struct chashentry *ent, *ent_next;
1521 	int i;
1522 
1523 	cfg = (struct chash_cfg *)ta_state;
1524 
1525 	for (i = 0; i < cfg->size4; i++)
1526 		SLIST_FOREACH_SAFE(ent, &cfg->head4[i], next, ent_next)
1527 			f(ent, arg);
1528 
1529 	for (i = 0; i < cfg->size6; i++)
1530 		SLIST_FOREACH_SAFE(ent, &cfg->head6[i], next, ent_next)
1531 			f(ent, arg);
1532 }
1533 
1534 static int
1535 ta_prepare_add_chash(struct ip_fw_chain *ch, struct tentry_info *tei,
1536     void *ta_buf)
1537 {
1538 	struct ta_buf_chash *tb;
1539 	struct chashentry *ent;
1540 	int error;
1541 
1542 	tb = (struct ta_buf_chash *)ta_buf;
1543 
1544 	ent = malloc(sizeof(*ent), M_IPFW_TBL, M_WAITOK | M_ZERO);
1545 
1546 	error = tei_to_chash_ent(tei, ent);
1547 	if (error != 0) {
1548 		free(ent, M_IPFW_TBL);
1549 		return (error);
1550 	}
1551 	tb->ent_ptr = ent;
1552 
1553 	return (0);
1554 }
1555 
1556 static int
1557 ta_add_chash(void *ta_state, struct table_info *ti, struct tentry_info *tei,
1558     void *ta_buf, uint32_t *pnum)
1559 {
1560 	struct chash_cfg *cfg;
1561 	struct chashbhead *head;
1562 	struct chashentry *ent, *tmp;
1563 	struct ta_buf_chash *tb;
1564 	int exists;
1565 	uint32_t hash, value;
1566 
1567 	cfg = (struct chash_cfg *)ta_state;
1568 	tb = (struct ta_buf_chash *)ta_buf;
1569 	ent = (struct chashentry *)tb->ent_ptr;
1570 	hash = 0;
1571 	exists = 0;
1572 
1573 	/* Read current value from @tei */
1574 	ent->value = tei->value;
1575 
1576 	/* Read cuurrent value */
1577 	if (tei->subtype == AF_INET) {
1578 		if (tei->masklen != cfg->mask4)
1579 			return (EINVAL);
1580 		head = cfg->head4;
1581 		hash = hash_ent(ent, AF_INET, cfg->mask4, cfg->size4);
1582 
1583 		/* Check for existence */
1584 		SLIST_FOREACH(tmp, &head[hash], next) {
1585 			if (tmp->a.a4 == ent->a.a4) {
1586 				exists = 1;
1587 				break;
1588 			}
1589 		}
1590 	} else {
1591 		if (tei->masklen != cfg->mask6)
1592 			return (EINVAL);
1593 		head = cfg->head6;
1594 		hash = hash_ent(ent, AF_INET6, cfg->mask6, cfg->size6);
1595 		/* Check for existence */
1596 		SLIST_FOREACH(tmp, &head[hash], next) {
1597 			if (memcmp(&tmp->a.a6, &ent->a.a6, 16) == 0) {
1598 				exists = 1;
1599 				break;
1600 			}
1601 		}
1602 	}
1603 
1604 	if (exists == 1) {
1605 		if ((tei->flags & TEI_FLAGS_UPDATE) == 0)
1606 			return (EEXIST);
1607 		/* Record already exists. Update value if we're asked to */
1608 		value = tmp->value;
1609 		tmp->value = tei->value;
1610 		tei->value = value;
1611 		/* Indicate that update has happened instead of addition */
1612 		tei->flags |= TEI_FLAGS_UPDATED;
1613 		*pnum = 0;
1614 	} else {
1615 		if ((tei->flags & TEI_FLAGS_DONTADD) != 0)
1616 			return (EFBIG);
1617 		SLIST_INSERT_HEAD(&head[hash], ent, next);
1618 		tb->ent_ptr = NULL;
1619 		*pnum = 1;
1620 
1621 		/* Update counters */
1622 		if (tei->subtype == AF_INET)
1623 			cfg->items4++;
1624 		else
1625 			cfg->items6++;
1626 	}
1627 
1628 	return (0);
1629 }
1630 
1631 static int
1632 ta_prepare_del_chash(struct ip_fw_chain *ch, struct tentry_info *tei,
1633     void *ta_buf)
1634 {
1635 	struct ta_buf_chash *tb;
1636 
1637 	tb = (struct ta_buf_chash *)ta_buf;
1638 
1639 	return (tei_to_chash_ent(tei, &tb->ent));
1640 }
1641 
1642 static int
1643 ta_del_chash(void *ta_state, struct table_info *ti, struct tentry_info *tei,
1644     void *ta_buf, uint32_t *pnum)
1645 {
1646 	struct chash_cfg *cfg;
1647 	struct chashbhead *head;
1648 	struct chashentry *tmp, *tmp_next, *ent;
1649 	struct ta_buf_chash *tb;
1650 	uint32_t hash;
1651 
1652 	cfg = (struct chash_cfg *)ta_state;
1653 	tb = (struct ta_buf_chash *)ta_buf;
1654 	ent = &tb->ent;
1655 
1656 	if (tei->subtype == AF_INET) {
1657 		if (tei->masklen != cfg->mask4)
1658 			return (EINVAL);
1659 		head = cfg->head4;
1660 		hash = hash_ent(ent, AF_INET, cfg->mask4, cfg->size4);
1661 
1662 		SLIST_FOREACH_SAFE(tmp, &head[hash], next, tmp_next) {
1663 			if (tmp->a.a4 != ent->a.a4)
1664 				continue;
1665 
1666 			SLIST_REMOVE(&head[hash], tmp, chashentry, next);
1667 			cfg->items4--;
1668 			tb->ent_ptr = tmp;
1669 			tei->value = tmp->value;
1670 			*pnum = 1;
1671 			return (0);
1672 		}
1673 	} else {
1674 		if (tei->masklen != cfg->mask6)
1675 			return (EINVAL);
1676 		head = cfg->head6;
1677 		hash = hash_ent(ent, AF_INET6, cfg->mask6, cfg->size6);
1678 		SLIST_FOREACH_SAFE(tmp, &head[hash], next, tmp_next) {
1679 			if (memcmp(&tmp->a.a6, &ent->a.a6, 16) != 0)
1680 				continue;
1681 
1682 			SLIST_REMOVE(&head[hash], tmp, chashentry, next);
1683 			cfg->items6--;
1684 			tb->ent_ptr = tmp;
1685 			tei->value = tmp->value;
1686 			*pnum = 1;
1687 			return (0);
1688 		}
1689 	}
1690 
1691 	return (ENOENT);
1692 }
1693 
1694 static void
1695 ta_flush_chash_entry(struct ip_fw_chain *ch, struct tentry_info *tei,
1696     void *ta_buf)
1697 {
1698 	struct ta_buf_chash *tb;
1699 
1700 	tb = (struct ta_buf_chash *)ta_buf;
1701 
1702 	if (tb->ent_ptr != NULL)
1703 		free(tb->ent_ptr, M_IPFW_TBL);
1704 }
1705 
1706 /*
1707  * Hash growing callbacks.
1708  */
1709 
1710 static int
1711 ta_need_modify_chash(void *ta_state, struct table_info *ti, uint32_t count,
1712     uint64_t *pflags)
1713 {
1714 	struct chash_cfg *cfg;
1715 	uint64_t data;
1716 
1717 	/*
1718 	 * Since we don't know exact number of IPv4/IPv6 records in @count,
1719 	 * ignore non-zero @count value at all. Check current hash sizes
1720 	 * and return appropriate data.
1721 	 */
1722 
1723 	cfg = (struct chash_cfg *)ta_state;
1724 
1725 	data = 0;
1726 	if (cfg->items4 > cfg->size4 && cfg->size4 < 65536)
1727 		data |= (cfg->size4 * 2) << 16;
1728 	if (cfg->items6 > cfg->size6 && cfg->size6 < 65536)
1729 		data |= cfg->size6 * 2;
1730 
1731 	if (data != 0) {
1732 		*pflags = data;
1733 		return (1);
1734 	}
1735 
1736 	return (0);
1737 }
1738 
1739 /*
1740  * Allocate new, larger chash.
1741  */
1742 static int
1743 ta_prepare_mod_chash(void *ta_buf, uint64_t *pflags)
1744 {
1745 	struct mod_item *mi;
1746 	struct chashbhead *head;
1747 	int i;
1748 
1749 	mi = (struct mod_item *)ta_buf;
1750 
1751 	memset(mi, 0, sizeof(struct mod_item));
1752 	mi->size = (*pflags >> 16) & 0xFFFF;
1753 	mi->size6 = *pflags & 0xFFFF;
1754 	if (mi->size > 0) {
1755 		head = malloc(sizeof(struct chashbhead) * mi->size,
1756 		    M_IPFW, M_WAITOK | M_ZERO);
1757 		for (i = 0; i < mi->size; i++)
1758 			SLIST_INIT(&head[i]);
1759 		mi->main_ptr = head;
1760 	}
1761 
1762 	if (mi->size6 > 0) {
1763 		head = malloc(sizeof(struct chashbhead) * mi->size6,
1764 		    M_IPFW, M_WAITOK | M_ZERO);
1765 		for (i = 0; i < mi->size6; i++)
1766 			SLIST_INIT(&head[i]);
1767 		mi->main_ptr6 = head;
1768 	}
1769 
1770 	return (0);
1771 }
1772 
1773 /*
1774  * Copy data from old runtime array to new one.
1775  */
1776 static int
1777 ta_fill_mod_chash(void *ta_state, struct table_info *ti, void *ta_buf,
1778     uint64_t *pflags)
1779 {
1780 
1781 	/* In is not possible to do rehash if we're not holidng WLOCK. */
1782 	return (0);
1783 }
1784 
1785 /*
1786  * Switch old & new arrays.
1787  */
1788 static void
1789 ta_modify_chash(void *ta_state, struct table_info *ti, void *ta_buf,
1790     uint64_t pflags)
1791 {
1792 	struct mod_item *mi;
1793 	struct chash_cfg *cfg;
1794 	struct chashbhead *old_head, *new_head;
1795 	struct chashentry *ent, *ent_next;
1796 	int af, i, mlen;
1797 	uint32_t nhash;
1798 	size_t old_size, new_size;
1799 
1800 	mi = (struct mod_item *)ta_buf;
1801 	cfg = (struct chash_cfg *)ta_state;
1802 
1803 	/* Check which hash we need to grow and do we still need that */
1804 	if (mi->size > 0 && cfg->size4 < mi->size) {
1805 		new_head = (struct chashbhead *)mi->main_ptr;
1806 		new_size = mi->size;
1807 		old_size = cfg->size4;
1808 		old_head = ti->state;
1809 		mlen = cfg->mask4;
1810 		af = AF_INET;
1811 
1812 		for (i = 0; i < old_size; i++) {
1813 			SLIST_FOREACH_SAFE(ent, &old_head[i], next, ent_next) {
1814 				nhash = hash_ent(ent, af, mlen, new_size);
1815 				SLIST_INSERT_HEAD(&new_head[nhash], ent, next);
1816 			}
1817 		}
1818 
1819 		ti->state = new_head;
1820 		cfg->head4 = new_head;
1821 		cfg->size4 = mi->size;
1822 		mi->main_ptr = old_head;
1823 	}
1824 
1825 	if (mi->size6 > 0 && cfg->size6 < mi->size6) {
1826 		new_head = (struct chashbhead *)mi->main_ptr6;
1827 		new_size = mi->size6;
1828 		old_size = cfg->size6;
1829 		old_head = ti->xstate;
1830 		mlen = cfg->mask6;
1831 		af = AF_INET6;
1832 
1833 		for (i = 0; i < old_size; i++) {
1834 			SLIST_FOREACH_SAFE(ent, &old_head[i], next, ent_next) {
1835 				nhash = hash_ent(ent, af, mlen, new_size);
1836 				SLIST_INSERT_HEAD(&new_head[nhash], ent, next);
1837 			}
1838 		}
1839 
1840 		ti->xstate = new_head;
1841 		cfg->head6 = new_head;
1842 		cfg->size6 = mi->size6;
1843 		mi->main_ptr6 = old_head;
1844 	}
1845 
1846 	/* Update lower 32 bits with new values */
1847 	ti->data &= 0xFFFFFFFF00000000;
1848 	ti->data |= ta_log2(cfg->size4) << 8 | ta_log2(cfg->size6);
1849 }
1850 
1851 /*
1852  * Free unneded array.
1853  */
1854 static void
1855 ta_flush_mod_chash(void *ta_buf)
1856 {
1857 	struct mod_item *mi;
1858 
1859 	mi = (struct mod_item *)ta_buf;
1860 	if (mi->main_ptr != NULL)
1861 		free(mi->main_ptr, M_IPFW);
1862 	if (mi->main_ptr6 != NULL)
1863 		free(mi->main_ptr6, M_IPFW);
1864 }
1865 
1866 struct table_algo addr_hash = {
1867 	.name		= "addr:hash",
1868 	.type		= IPFW_TABLE_ADDR,
1869 	.ta_buf_size	= sizeof(struct ta_buf_chash),
1870 	.init		= ta_init_chash,
1871 	.destroy	= ta_destroy_chash,
1872 	.prepare_add	= ta_prepare_add_chash,
1873 	.prepare_del	= ta_prepare_del_chash,
1874 	.add		= ta_add_chash,
1875 	.del		= ta_del_chash,
1876 	.flush_entry	= ta_flush_chash_entry,
1877 	.foreach	= ta_foreach_chash,
1878 	.dump_tentry	= ta_dump_chash_tentry,
1879 	.find_tentry	= ta_find_chash_tentry,
1880 	.print_config	= ta_print_chash_config,
1881 	.dump_tinfo	= ta_dump_chash_tinfo,
1882 	.need_modify	= ta_need_modify_chash,
1883 	.prepare_mod	= ta_prepare_mod_chash,
1884 	.fill_mod	= ta_fill_mod_chash,
1885 	.modify		= ta_modify_chash,
1886 	.flush_mod	= ta_flush_mod_chash,
1887 };
1888 
1889 /*
1890  * Iface table cmds.
1891  *
1892  * Implementation:
1893  *
1894  * Runtime part:
1895  * - sorted array of "struct ifidx" pointed by ti->state.
1896  *   Array is allocated with rounding up to IFIDX_CHUNK. Only existing
1897  *   interfaces are stored in array, however its allocated size is
1898  *   sufficient to hold all table records if needed.
1899  * - current array size is stored in ti->data
1900  *
1901  * Table data:
1902  * - "struct iftable_cfg" is allocated to store table state (ta_state).
1903  * - All table records are stored inside namedobj instance.
1904  *
1905  */
1906 
1907 struct ifidx {
1908 	uint16_t	kidx;
1909 	uint16_t	spare;
1910 	uint32_t	value;
1911 };
1912 #define	DEFAULT_IFIDX_SIZE	64
1913 
1914 struct iftable_cfg;
1915 
1916 struct ifentry {
1917 	struct named_object	no;
1918 	struct ipfw_ifc		ic;
1919 	struct iftable_cfg	*icfg;
1920 	uint32_t		value;
1921 	int			linked;
1922 };
1923 
1924 struct iftable_cfg {
1925 	struct namedobj_instance	*ii;
1926 	struct ip_fw_chain	*ch;
1927 	struct table_info	*ti;
1928 	void	*main_ptr;
1929 	size_t	size;	/* Number of items allocated in array */
1930 	size_t	count;	/* Number of all items */
1931 	size_t	used;	/* Number of items _active_ now */
1932 };
1933 
1934 struct ta_buf_ifidx
1935 {
1936 	struct ifentry *ife;
1937 	uint32_t value;
1938 };
1939 
1940 int compare_ifidx(const void *k, const void *v);
1941 static struct ifidx * ifidx_find(struct table_info *ti, void *key);
1942 static int ta_lookup_ifidx(struct table_info *ti, void *key, uint32_t keylen,
1943     uint32_t *val);
1944 static int ta_init_ifidx(struct ip_fw_chain *ch, void **ta_state,
1945     struct table_info *ti, char *data, uint8_t tflags);
1946 static void ta_change_ti_ifidx(void *ta_state, struct table_info *ti);
1947 static int destroy_ifidx_locked(struct namedobj_instance *ii,
1948     struct named_object *no, void *arg);
1949 static void ta_destroy_ifidx(void *ta_state, struct table_info *ti);
1950 static void ta_dump_ifidx_tinfo(void *ta_state, struct table_info *ti,
1951     ipfw_ta_tinfo *tinfo);
1952 static int ta_prepare_add_ifidx(struct ip_fw_chain *ch, struct tentry_info *tei,
1953     void *ta_buf);
1954 static int ta_add_ifidx(void *ta_state, struct table_info *ti,
1955     struct tentry_info *tei, void *ta_buf, uint32_t *pnum);
1956 static int ta_prepare_del_ifidx(struct ip_fw_chain *ch, struct tentry_info *tei,
1957     void *ta_buf);
1958 static int ta_del_ifidx(void *ta_state, struct table_info *ti,
1959     struct tentry_info *tei, void *ta_buf, uint32_t *pnum);
1960 static void ta_flush_ifidx_entry(struct ip_fw_chain *ch,
1961     struct tentry_info *tei, void *ta_buf);
1962 static void if_notifier(struct ip_fw_chain *ch, void *cbdata, uint16_t ifindex);
1963 static int ta_need_modify_ifidx(void *ta_state, struct table_info *ti,
1964     uint32_t count, uint64_t *pflags);
1965 static int ta_prepare_mod_ifidx(void *ta_buf, uint64_t *pflags);
1966 static int ta_fill_mod_ifidx(void *ta_state, struct table_info *ti,
1967     void *ta_buf, uint64_t *pflags);
1968 static void ta_modify_ifidx(void *ta_state, struct table_info *ti, void *ta_buf,
1969     uint64_t pflags);
1970 static void ta_flush_mod_ifidx(void *ta_buf);
1971 static int ta_dump_ifidx_tentry(void *ta_state, struct table_info *ti, void *e,
1972     ipfw_obj_tentry *tent);
1973 static int ta_find_ifidx_tentry(void *ta_state, struct table_info *ti,
1974     ipfw_obj_tentry *tent);
1975 static int foreach_ifidx(struct namedobj_instance *ii, struct named_object *no,
1976     void *arg);
1977 static void ta_foreach_ifidx(void *ta_state, struct table_info *ti,
1978     ta_foreach_f *f, void *arg);
1979 
1980 int
1981 compare_ifidx(const void *k, const void *v)
1982 {
1983 	const struct ifidx *ifidx;
1984 	uint16_t key;
1985 
1986 	key = *((const uint16_t *)k);
1987 	ifidx = (const struct ifidx *)v;
1988 
1989 	if (key < ifidx->kidx)
1990 		return (-1);
1991 	else if (key > ifidx->kidx)
1992 		return (1);
1993 
1994 	return (0);
1995 }
1996 
1997 /*
1998  * Adds item @item with key @key into ascending-sorted array @base.
1999  * Assumes @base has enough additional storage.
2000  *
2001  * Returns 1 on success, 0 on duplicate key.
2002  */
2003 static int
2004 badd(const void *key, void *item, void *base, size_t nmemb,
2005     size_t size, int (*compar) (const void *, const void *))
2006 {
2007 	int min, max, mid, shift, res;
2008 	caddr_t paddr;
2009 
2010 	if (nmemb == 0) {
2011 		memcpy(base, item, size);
2012 		return (1);
2013 	}
2014 
2015 	/* Binary search */
2016 	min = 0;
2017 	max = nmemb - 1;
2018 	mid = 0;
2019 	while (min <= max) {
2020 		mid = (min + max) / 2;
2021 		res = compar(key, (const void *)((caddr_t)base + mid * size));
2022 		if (res == 0)
2023 			return (0);
2024 
2025 		if (res > 0)
2026 			min = mid + 1;
2027 		else
2028 			max = mid - 1;
2029 	}
2030 
2031 	/* Item not found. */
2032 	res = compar(key, (const void *)((caddr_t)base + mid * size));
2033 	if (res > 0)
2034 		shift = mid + 1;
2035 	else
2036 		shift = mid;
2037 
2038 	paddr = (caddr_t)base + shift * size;
2039 	if (nmemb > shift)
2040 		memmove(paddr + size, paddr, (nmemb - shift) * size);
2041 
2042 	memcpy(paddr, item, size);
2043 
2044 	return (1);
2045 }
2046 
2047 /*
2048  * Deletes item with key @key from ascending-sorted array @base.
2049  *
2050  * Returns 1 on success, 0 for non-existent key.
2051  */
2052 static int
2053 bdel(const void *key, void *base, size_t nmemb, size_t size,
2054     int (*compar) (const void *, const void *))
2055 {
2056 	caddr_t item;
2057 	size_t sz;
2058 
2059 	item = (caddr_t)bsearch(key, base, nmemb, size, compar);
2060 
2061 	if (item == NULL)
2062 		return (0);
2063 
2064 	sz = (caddr_t)base + nmemb * size - item;
2065 
2066 	if (sz > 0)
2067 		memmove(item, item + size, sz);
2068 
2069 	return (1);
2070 }
2071 
2072 static struct ifidx *
2073 ifidx_find(struct table_info *ti, void *key)
2074 {
2075 	struct ifidx *ifi;
2076 
2077 	ifi = bsearch(key, ti->state, ti->data, sizeof(struct ifidx),
2078 	    compare_ifidx);
2079 
2080 	return (ifi);
2081 }
2082 
2083 static int
2084 ta_lookup_ifidx(struct table_info *ti, void *key, uint32_t keylen,
2085     uint32_t *val)
2086 {
2087 	struct ifidx *ifi;
2088 
2089 	ifi = ifidx_find(ti, key);
2090 
2091 	if (ifi != NULL) {
2092 		*val = ifi->value;
2093 		return (1);
2094 	}
2095 
2096 	return (0);
2097 }
2098 
2099 static int
2100 ta_init_ifidx(struct ip_fw_chain *ch, void **ta_state, struct table_info *ti,
2101     char *data, uint8_t tflags)
2102 {
2103 	struct iftable_cfg *icfg;
2104 
2105 	icfg = malloc(sizeof(struct iftable_cfg), M_IPFW, M_WAITOK | M_ZERO);
2106 
2107 	icfg->ii = ipfw_objhash_create(DEFAULT_IFIDX_SIZE);
2108 	icfg->size = DEFAULT_IFIDX_SIZE;
2109 	icfg->main_ptr = malloc(sizeof(struct ifidx) * icfg->size, M_IPFW,
2110 	    M_WAITOK | M_ZERO);
2111 	icfg->ch = ch;
2112 
2113 	*ta_state = icfg;
2114 	ti->state = icfg->main_ptr;
2115 	ti->lookup = ta_lookup_ifidx;
2116 
2117 	return (0);
2118 }
2119 
2120 /*
2121  * Handle tableinfo @ti pointer change (on table array resize).
2122  */
2123 static void
2124 ta_change_ti_ifidx(void *ta_state, struct table_info *ti)
2125 {
2126 	struct iftable_cfg *icfg;
2127 
2128 	icfg = (struct iftable_cfg *)ta_state;
2129 	icfg->ti = ti;
2130 }
2131 
2132 static int
2133 destroy_ifidx_locked(struct namedobj_instance *ii, struct named_object *no,
2134     void *arg)
2135 {
2136 	struct ifentry *ife;
2137 	struct ip_fw_chain *ch;
2138 
2139 	ch = (struct ip_fw_chain *)arg;
2140 	ife = (struct ifentry *)no;
2141 
2142 	ipfw_iface_del_notify(ch, &ife->ic);
2143 	ipfw_iface_unref(ch, &ife->ic);
2144 	free(ife, M_IPFW_TBL);
2145 	return (0);
2146 }
2147 
2148 /*
2149  * Destroys table @ti
2150  */
2151 static void
2152 ta_destroy_ifidx(void *ta_state, struct table_info *ti)
2153 {
2154 	struct iftable_cfg *icfg;
2155 	struct ip_fw_chain *ch;
2156 
2157 	icfg = (struct iftable_cfg *)ta_state;
2158 	ch = icfg->ch;
2159 
2160 	if (icfg->main_ptr != NULL)
2161 		free(icfg->main_ptr, M_IPFW);
2162 
2163 	IPFW_UH_WLOCK(ch);
2164 	ipfw_objhash_foreach(icfg->ii, destroy_ifidx_locked, ch);
2165 	IPFW_UH_WUNLOCK(ch);
2166 
2167 	ipfw_objhash_destroy(icfg->ii);
2168 
2169 	free(icfg, M_IPFW);
2170 }
2171 
2172 /*
2173  * Provide algo-specific table info
2174  */
2175 static void
2176 ta_dump_ifidx_tinfo(void *ta_state, struct table_info *ti, ipfw_ta_tinfo *tinfo)
2177 {
2178 	struct iftable_cfg *cfg;
2179 
2180 	cfg = (struct iftable_cfg *)ta_state;
2181 
2182 	tinfo->taclass4 = IPFW_TACLASS_ARRAY;
2183 	tinfo->size4 = cfg->size;
2184 	tinfo->count4 = cfg->used;
2185 	tinfo->itemsize4 = sizeof(struct ifidx);
2186 }
2187 
2188 /*
2189  * Prepare state to add to the table:
2190  * allocate ifentry and reference needed interface.
2191  */
2192 static int
2193 ta_prepare_add_ifidx(struct ip_fw_chain *ch, struct tentry_info *tei,
2194     void *ta_buf)
2195 {
2196 	struct ta_buf_ifidx *tb;
2197 	char *ifname;
2198 	struct ifentry *ife;
2199 
2200 	tb = (struct ta_buf_ifidx *)ta_buf;
2201 
2202 	/* Check if string is terminated */
2203 	ifname = (char *)tei->paddr;
2204 	if (strnlen(ifname, IF_NAMESIZE) == IF_NAMESIZE)
2205 		return (EINVAL);
2206 
2207 	ife = malloc(sizeof(struct ifentry), M_IPFW_TBL, M_WAITOK | M_ZERO);
2208 	ife->ic.cb = if_notifier;
2209 	ife->ic.cbdata = ife;
2210 
2211 	if (ipfw_iface_ref(ch, ifname, &ife->ic) != 0) {
2212 		free(ife, M_IPFW_TBL);
2213 		return (EINVAL);
2214 	}
2215 
2216 	/* Use ipfw_iface 'ifname' field as stable storage */
2217 	ife->no.name = ife->ic.iface->ifname;
2218 
2219 	tb->ife = ife;
2220 
2221 	return (0);
2222 }
2223 
2224 static int
2225 ta_add_ifidx(void *ta_state, struct table_info *ti, struct tentry_info *tei,
2226     void *ta_buf, uint32_t *pnum)
2227 {
2228 	struct iftable_cfg *icfg;
2229 	struct ifentry *ife, *tmp;
2230 	struct ta_buf_ifidx *tb;
2231 	struct ipfw_iface *iif;
2232 	struct ifidx *ifi;
2233 	char *ifname;
2234 	uint32_t value;
2235 
2236 	tb = (struct ta_buf_ifidx *)ta_buf;
2237 	ifname = (char *)tei->paddr;
2238 	icfg = (struct iftable_cfg *)ta_state;
2239 	ife = tb->ife;
2240 
2241 	ife->icfg = icfg;
2242 	ife->value = tei->value;
2243 
2244 	tmp = (struct ifentry *)ipfw_objhash_lookup_name(icfg->ii, 0, ifname);
2245 
2246 	if (tmp != NULL) {
2247 		if ((tei->flags & TEI_FLAGS_UPDATE) == 0)
2248 			return (EEXIST);
2249 
2250 		/* Exchange values in @tmp and @tei */
2251 		value = tmp->value;
2252 		tmp->value = tei->value;
2253 		tei->value = value;
2254 
2255 		iif = tmp->ic.iface;
2256 		if (iif->resolved != 0) {
2257 			/* We have to update runtime value, too */
2258 			ifi = ifidx_find(ti, &iif->ifindex);
2259 			ifi->value = ife->value;
2260 		}
2261 
2262 		/* Indicate that update has happened instead of addition */
2263 		tei->flags |= TEI_FLAGS_UPDATED;
2264 		*pnum = 0;
2265 		return (0);
2266 	}
2267 
2268 	if ((tei->flags & TEI_FLAGS_DONTADD) != 0)
2269 		return (EFBIG);
2270 
2271 	/* Link to internal list */
2272 	ipfw_objhash_add(icfg->ii, &ife->no);
2273 
2274 	/* Link notifier (possible running its callback) */
2275 	ipfw_iface_add_notify(icfg->ch, &ife->ic);
2276 	icfg->count++;
2277 
2278 	tb->ife = NULL;
2279 	*pnum = 1;
2280 
2281 	return (0);
2282 }
2283 
2284 /*
2285  * Prepare to delete key from table.
2286  * Do basic interface name checks.
2287  */
2288 static int
2289 ta_prepare_del_ifidx(struct ip_fw_chain *ch, struct tentry_info *tei,
2290     void *ta_buf)
2291 {
2292 	char *ifname;
2293 
2294 	/* Check if string is terminated */
2295 	ifname = (char *)tei->paddr;
2296 	if (strnlen(ifname, IF_NAMESIZE) == IF_NAMESIZE)
2297 		return (EINVAL);
2298 
2299 	return (0);
2300 }
2301 
2302 /*
2303  * Remove key from both configuration list and
2304  * runtime array. Removed interface notification.
2305  */
2306 static int
2307 ta_del_ifidx(void *ta_state, struct table_info *ti, struct tentry_info *tei,
2308     void *ta_buf, uint32_t *pnum)
2309 {
2310 	struct iftable_cfg *icfg;
2311 	struct ifentry *ife;
2312 	struct ta_buf_ifidx *tb;
2313 	char *ifname;
2314 	uint16_t ifindex;
2315 	int res __diagused;
2316 
2317 	tb = (struct ta_buf_ifidx *)ta_buf;
2318 	ifname = (char *)tei->paddr;
2319 	icfg = (struct iftable_cfg *)ta_state;
2320 
2321 	ife = (struct ifentry *)ipfw_objhash_lookup_name(icfg->ii, 0, ifname);
2322 
2323 	if (ife == NULL)
2324 		return (ENOENT);
2325 
2326 	if (ife->linked != 0) {
2327 		/* We have to remove item from runtime */
2328 		ifindex = ife->ic.iface->ifindex;
2329 
2330 		res = bdel(&ifindex, icfg->main_ptr, icfg->used,
2331 		    sizeof(struct ifidx), compare_ifidx);
2332 
2333 		KASSERT(res == 1, ("index %d does not exist", ifindex));
2334 		icfg->used--;
2335 		ti->data = icfg->used;
2336 		ife->linked = 0;
2337 	}
2338 
2339 	/* Unlink from local list */
2340 	ipfw_objhash_del(icfg->ii, &ife->no);
2341 	/* Unlink notifier and deref */
2342 	ipfw_iface_del_notify(icfg->ch, &ife->ic);
2343 	ipfw_iface_unref(icfg->ch, &ife->ic);
2344 
2345 	icfg->count--;
2346 	tei->value = ife->value;
2347 
2348 	tb->ife = ife;
2349 	*pnum = 1;
2350 
2351 	return (0);
2352 }
2353 
2354 /*
2355  * Flush deleted entry.
2356  * Drops interface reference and frees entry.
2357  */
2358 static void
2359 ta_flush_ifidx_entry(struct ip_fw_chain *ch, struct tentry_info *tei,
2360     void *ta_buf)
2361 {
2362 	struct ta_buf_ifidx *tb;
2363 
2364 	tb = (struct ta_buf_ifidx *)ta_buf;
2365 
2366 	if (tb->ife != NULL)
2367 		free(tb->ife, M_IPFW_TBL);
2368 }
2369 
2370 /*
2371  * Handle interface announce/withdrawal for particular table.
2372  * Every real runtime array modification happens here.
2373  */
2374 static void
2375 if_notifier(struct ip_fw_chain *ch, void *cbdata, uint16_t ifindex)
2376 {
2377 	struct ifentry *ife;
2378 	struct ifidx ifi;
2379 	struct iftable_cfg *icfg;
2380 	struct table_info *ti;
2381 	int res __diagused;
2382 
2383 	ife = (struct ifentry *)cbdata;
2384 	icfg = ife->icfg;
2385 	ti = icfg->ti;
2386 
2387 	KASSERT(ti != NULL, ("ti=NULL, check change_ti handler"));
2388 
2389 	if (ife->linked == 0 && ifindex != 0) {
2390 		/* Interface announce */
2391 		ifi.kidx = ifindex;
2392 		ifi.spare = 0;
2393 		ifi.value = ife->value;
2394 		res = badd(&ifindex, &ifi, icfg->main_ptr, icfg->used,
2395 		    sizeof(struct ifidx), compare_ifidx);
2396 		KASSERT(res == 1, ("index %d already exists", ifindex));
2397 		icfg->used++;
2398 		ti->data = icfg->used;
2399 		ife->linked = 1;
2400 	} else if (ife->linked != 0 && ifindex == 0) {
2401 		/* Interface withdrawal */
2402 		ifindex = ife->ic.iface->ifindex;
2403 
2404 		res = bdel(&ifindex, icfg->main_ptr, icfg->used,
2405 		    sizeof(struct ifidx), compare_ifidx);
2406 
2407 		KASSERT(res == 1, ("index %d does not exist", ifindex));
2408 		icfg->used--;
2409 		ti->data = icfg->used;
2410 		ife->linked = 0;
2411 	}
2412 }
2413 
2414 /*
2415  * Table growing callbacks.
2416  */
2417 
2418 static int
2419 ta_need_modify_ifidx(void *ta_state, struct table_info *ti, uint32_t count,
2420     uint64_t *pflags)
2421 {
2422 	struct iftable_cfg *cfg;
2423 	uint32_t size;
2424 
2425 	cfg = (struct iftable_cfg *)ta_state;
2426 
2427 	size = cfg->size;
2428 	while (size < cfg->count + count)
2429 		size *= 2;
2430 
2431 	if (size != cfg->size) {
2432 		*pflags = size;
2433 		return (1);
2434 	}
2435 
2436 	return (0);
2437 }
2438 
2439 /*
2440  * Allocate ned, larger runtime ifidx array.
2441  */
2442 static int
2443 ta_prepare_mod_ifidx(void *ta_buf, uint64_t *pflags)
2444 {
2445 	struct mod_item *mi;
2446 
2447 	mi = (struct mod_item *)ta_buf;
2448 
2449 	memset(mi, 0, sizeof(struct mod_item));
2450 	mi->size = *pflags;
2451 	mi->main_ptr = malloc(sizeof(struct ifidx) * mi->size, M_IPFW,
2452 	    M_WAITOK | M_ZERO);
2453 
2454 	return (0);
2455 }
2456 
2457 /*
2458  * Copy data from old runtime array to new one.
2459  */
2460 static int
2461 ta_fill_mod_ifidx(void *ta_state, struct table_info *ti, void *ta_buf,
2462     uint64_t *pflags)
2463 {
2464 	struct mod_item *mi;
2465 	struct iftable_cfg *icfg;
2466 
2467 	mi = (struct mod_item *)ta_buf;
2468 	icfg = (struct iftable_cfg *)ta_state;
2469 
2470 	/* Check if we still need to grow array */
2471 	if (icfg->size >= mi->size) {
2472 		*pflags = 0;
2473 		return (0);
2474 	}
2475 
2476 	memcpy(mi->main_ptr, icfg->main_ptr, icfg->used * sizeof(struct ifidx));
2477 
2478 	return (0);
2479 }
2480 
2481 /*
2482  * Switch old & new arrays.
2483  */
2484 static void
2485 ta_modify_ifidx(void *ta_state, struct table_info *ti, void *ta_buf,
2486     uint64_t pflags)
2487 {
2488 	struct mod_item *mi;
2489 	struct iftable_cfg *icfg;
2490 	void *old_ptr;
2491 
2492 	mi = (struct mod_item *)ta_buf;
2493 	icfg = (struct iftable_cfg *)ta_state;
2494 
2495 	old_ptr = icfg->main_ptr;
2496 	icfg->main_ptr = mi->main_ptr;
2497 	icfg->size = mi->size;
2498 	ti->state = icfg->main_ptr;
2499 
2500 	mi->main_ptr = old_ptr;
2501 }
2502 
2503 /*
2504  * Free unneded array.
2505  */
2506 static void
2507 ta_flush_mod_ifidx(void *ta_buf)
2508 {
2509 	struct mod_item *mi;
2510 
2511 	mi = (struct mod_item *)ta_buf;
2512 	if (mi->main_ptr != NULL)
2513 		free(mi->main_ptr, M_IPFW);
2514 }
2515 
2516 static int
2517 ta_dump_ifidx_tentry(void *ta_state, struct table_info *ti, void *e,
2518     ipfw_obj_tentry *tent)
2519 {
2520 	struct ifentry *ife;
2521 
2522 	ife = (struct ifentry *)e;
2523 
2524 	tent->masklen = 8 * IF_NAMESIZE;
2525 	memcpy(&tent->k, ife->no.name, IF_NAMESIZE);
2526 	tent->v.kidx = ife->value;
2527 
2528 	return (0);
2529 }
2530 
2531 static int
2532 ta_find_ifidx_tentry(void *ta_state, struct table_info *ti,
2533     ipfw_obj_tentry *tent)
2534 {
2535 	struct iftable_cfg *icfg;
2536 	struct ifentry *ife;
2537 	char *ifname;
2538 
2539 	icfg = (struct iftable_cfg *)ta_state;
2540 	ifname = tent->k.iface;
2541 
2542 	if (strnlen(ifname, IF_NAMESIZE) == IF_NAMESIZE)
2543 		return (EINVAL);
2544 
2545 	ife = (struct ifentry *)ipfw_objhash_lookup_name(icfg->ii, 0, ifname);
2546 
2547 	if (ife != NULL) {
2548 		ta_dump_ifidx_tentry(ta_state, ti, ife, tent);
2549 		return (0);
2550 	}
2551 
2552 	return (ENOENT);
2553 }
2554 
2555 struct wa_ifidx {
2556 	ta_foreach_f	*f;
2557 	void		*arg;
2558 };
2559 
2560 static int
2561 foreach_ifidx(struct namedobj_instance *ii, struct named_object *no,
2562     void *arg)
2563 {
2564 	struct ifentry *ife;
2565 	struct wa_ifidx *wa;
2566 
2567 	ife = (struct ifentry *)no;
2568 	wa = (struct wa_ifidx *)arg;
2569 
2570 	wa->f(ife, wa->arg);
2571 	return (0);
2572 }
2573 
2574 static void
2575 ta_foreach_ifidx(void *ta_state, struct table_info *ti, ta_foreach_f *f,
2576     void *arg)
2577 {
2578 	struct iftable_cfg *icfg;
2579 	struct wa_ifidx wa;
2580 
2581 	icfg = (struct iftable_cfg *)ta_state;
2582 
2583 	wa.f = f;
2584 	wa.arg = arg;
2585 
2586 	ipfw_objhash_foreach(icfg->ii, foreach_ifidx, &wa);
2587 }
2588 
2589 struct table_algo iface_idx = {
2590 	.name		= "iface:array",
2591 	.type		= IPFW_TABLE_INTERFACE,
2592 	.flags		= TA_FLAG_DEFAULT,
2593 	.ta_buf_size	= sizeof(struct ta_buf_ifidx),
2594 	.init		= ta_init_ifidx,
2595 	.destroy	= ta_destroy_ifidx,
2596 	.prepare_add	= ta_prepare_add_ifidx,
2597 	.prepare_del	= ta_prepare_del_ifidx,
2598 	.add		= ta_add_ifidx,
2599 	.del		= ta_del_ifidx,
2600 	.flush_entry	= ta_flush_ifidx_entry,
2601 	.foreach	= ta_foreach_ifidx,
2602 	.dump_tentry	= ta_dump_ifidx_tentry,
2603 	.find_tentry	= ta_find_ifidx_tentry,
2604 	.dump_tinfo	= ta_dump_ifidx_tinfo,
2605 	.need_modify	= ta_need_modify_ifidx,
2606 	.prepare_mod	= ta_prepare_mod_ifidx,
2607 	.fill_mod	= ta_fill_mod_ifidx,
2608 	.modify		= ta_modify_ifidx,
2609 	.flush_mod	= ta_flush_mod_ifidx,
2610 	.change_ti	= ta_change_ti_ifidx,
2611 };
2612 
2613 /*
2614  * Number array cmds.
2615  *
2616  * Implementation:
2617  *
2618  * Runtime part:
2619  * - sorted array of "struct numarray" pointed by ti->state.
2620  *   Array is allocated with rounding up to NUMARRAY_CHUNK.
2621  * - current array size is stored in ti->data
2622  *
2623  */
2624 
2625 struct numarray {
2626 	uint32_t	number;
2627 	uint32_t	value;
2628 };
2629 
2630 struct numarray_cfg {
2631 	void	*main_ptr;
2632 	size_t	size;	/* Number of items allocated in array */
2633 	size_t	used;	/* Number of items _active_ now */
2634 };
2635 
2636 struct ta_buf_numarray
2637 {
2638 	struct numarray na;
2639 };
2640 
2641 int compare_numarray(const void *k, const void *v);
2642 static struct numarray *numarray_find(struct table_info *ti, void *key);
2643 static int ta_lookup_numarray(struct table_info *ti, void *key,
2644     uint32_t keylen, uint32_t *val);
2645 static int ta_init_numarray(struct ip_fw_chain *ch, void **ta_state,
2646     struct table_info *ti, char *data, uint8_t tflags);
2647 static void ta_destroy_numarray(void *ta_state, struct table_info *ti);
2648 static void ta_dump_numarray_tinfo(void *ta_state, struct table_info *ti,
2649     ipfw_ta_tinfo *tinfo);
2650 static int ta_prepare_add_numarray(struct ip_fw_chain *ch,
2651     struct tentry_info *tei, void *ta_buf);
2652 static int ta_add_numarray(void *ta_state, struct table_info *ti,
2653     struct tentry_info *tei, void *ta_buf, uint32_t *pnum);
2654 static int ta_del_numarray(void *ta_state, struct table_info *ti,
2655     struct tentry_info *tei, void *ta_buf, uint32_t *pnum);
2656 static void ta_flush_numarray_entry(struct ip_fw_chain *ch,
2657     struct tentry_info *tei, void *ta_buf);
2658 static int ta_need_modify_numarray(void *ta_state, struct table_info *ti,
2659     uint32_t count, uint64_t *pflags);
2660 static int ta_prepare_mod_numarray(void *ta_buf, uint64_t *pflags);
2661 static int ta_fill_mod_numarray(void *ta_state, struct table_info *ti,
2662     void *ta_buf, uint64_t *pflags);
2663 static void ta_modify_numarray(void *ta_state, struct table_info *ti,
2664     void *ta_buf, uint64_t pflags);
2665 static void ta_flush_mod_numarray(void *ta_buf);
2666 static int ta_dump_numarray_tentry(void *ta_state, struct table_info *ti,
2667     void *e, ipfw_obj_tentry *tent);
2668 static int ta_find_numarray_tentry(void *ta_state, struct table_info *ti,
2669     ipfw_obj_tentry *tent);
2670 static void ta_foreach_numarray(void *ta_state, struct table_info *ti,
2671     ta_foreach_f *f, void *arg);
2672 
2673 int
2674 compare_numarray(const void *k, const void *v)
2675 {
2676 	const struct numarray *na;
2677 	uint32_t key;
2678 
2679 	key = *((const uint32_t *)k);
2680 	na = (const struct numarray *)v;
2681 
2682 	if (key < na->number)
2683 		return (-1);
2684 	else if (key > na->number)
2685 		return (1);
2686 
2687 	return (0);
2688 }
2689 
2690 static struct numarray *
2691 numarray_find(struct table_info *ti, void *key)
2692 {
2693 	struct numarray *ri;
2694 
2695 	ri = bsearch(key, ti->state, ti->data, sizeof(struct numarray),
2696 	    compare_ifidx);
2697 
2698 	return (ri);
2699 }
2700 
2701 static int
2702 ta_lookup_numarray(struct table_info *ti, void *key, uint32_t keylen,
2703     uint32_t *val)
2704 {
2705 	struct numarray *ri;
2706 
2707 	ri = numarray_find(ti, key);
2708 
2709 	if (ri != NULL) {
2710 		*val = ri->value;
2711 		return (1);
2712 	}
2713 
2714 	return (0);
2715 }
2716 
2717 static int
2718 ta_init_numarray(struct ip_fw_chain *ch, void **ta_state, struct table_info *ti,
2719     char *data, uint8_t tflags)
2720 {
2721 	struct numarray_cfg *cfg;
2722 
2723 	cfg = malloc(sizeof(*cfg), M_IPFW, M_WAITOK | M_ZERO);
2724 
2725 	cfg->size = 16;
2726 	cfg->main_ptr = malloc(sizeof(struct numarray) * cfg->size, M_IPFW,
2727 	    M_WAITOK | M_ZERO);
2728 
2729 	*ta_state = cfg;
2730 	ti->state = cfg->main_ptr;
2731 	ti->lookup = ta_lookup_numarray;
2732 
2733 	return (0);
2734 }
2735 
2736 /*
2737  * Destroys table @ti
2738  */
2739 static void
2740 ta_destroy_numarray(void *ta_state, struct table_info *ti)
2741 {
2742 	struct numarray_cfg *cfg;
2743 
2744 	cfg = (struct numarray_cfg *)ta_state;
2745 
2746 	if (cfg->main_ptr != NULL)
2747 		free(cfg->main_ptr, M_IPFW);
2748 
2749 	free(cfg, M_IPFW);
2750 }
2751 
2752 /*
2753  * Provide algo-specific table info
2754  */
2755 static void
2756 ta_dump_numarray_tinfo(void *ta_state, struct table_info *ti, ipfw_ta_tinfo *tinfo)
2757 {
2758 	struct numarray_cfg *cfg;
2759 
2760 	cfg = (struct numarray_cfg *)ta_state;
2761 
2762 	tinfo->taclass4 = IPFW_TACLASS_ARRAY;
2763 	tinfo->size4 = cfg->size;
2764 	tinfo->count4 = cfg->used;
2765 	tinfo->itemsize4 = sizeof(struct numarray);
2766 }
2767 
2768 /*
2769  * Prepare for addition/deletion to an array.
2770  */
2771 static int
2772 ta_prepare_add_numarray(struct ip_fw_chain *ch, struct tentry_info *tei,
2773     void *ta_buf)
2774 {
2775 	struct ta_buf_numarray *tb;
2776 
2777 	tb = (struct ta_buf_numarray *)ta_buf;
2778 
2779 	tb->na.number = *((uint32_t *)tei->paddr);
2780 
2781 	return (0);
2782 }
2783 
2784 static int
2785 ta_add_numarray(void *ta_state, struct table_info *ti, struct tentry_info *tei,
2786     void *ta_buf, uint32_t *pnum)
2787 {
2788 	struct numarray_cfg *cfg;
2789 	struct ta_buf_numarray *tb;
2790 	struct numarray *ri;
2791 	int res __diagused;
2792 	uint32_t value;
2793 
2794 	tb = (struct ta_buf_numarray *)ta_buf;
2795 	cfg = (struct numarray_cfg *)ta_state;
2796 
2797 	/* Read current value from @tei */
2798 	tb->na.value = tei->value;
2799 
2800 	ri = numarray_find(ti, &tb->na.number);
2801 
2802 	if (ri != NULL) {
2803 		if ((tei->flags & TEI_FLAGS_UPDATE) == 0)
2804 			return (EEXIST);
2805 
2806 		/* Exchange values between ri and @tei */
2807 		value = ri->value;
2808 		ri->value = tei->value;
2809 		tei->value = value;
2810 		/* Indicate that update has happened instead of addition */
2811 		tei->flags |= TEI_FLAGS_UPDATED;
2812 		*pnum = 0;
2813 		return (0);
2814 	}
2815 
2816 	if ((tei->flags & TEI_FLAGS_DONTADD) != 0)
2817 		return (EFBIG);
2818 
2819 	res = badd(&tb->na.number, &tb->na, cfg->main_ptr, cfg->used,
2820 	    sizeof(struct numarray), compare_numarray);
2821 
2822 	KASSERT(res == 1, ("number %d already exists", tb->na.number));
2823 	cfg->used++;
2824 	ti->data = cfg->used;
2825 	*pnum = 1;
2826 
2827 	return (0);
2828 }
2829 
2830 /*
2831  * Remove key from both configuration list and
2832  * runtime array. Removed interface notification.
2833  */
2834 static int
2835 ta_del_numarray(void *ta_state, struct table_info *ti, struct tentry_info *tei,
2836     void *ta_buf, uint32_t *pnum)
2837 {
2838 	struct numarray_cfg *cfg;
2839 	struct ta_buf_numarray *tb;
2840 	struct numarray *ri;
2841 	int res __diagused;
2842 
2843 	tb = (struct ta_buf_numarray *)ta_buf;
2844 	cfg = (struct numarray_cfg *)ta_state;
2845 
2846 	ri = numarray_find(ti, &tb->na.number);
2847 	if (ri == NULL)
2848 		return (ENOENT);
2849 
2850 	tei->value = ri->value;
2851 
2852 	res = bdel(&tb->na.number, cfg->main_ptr, cfg->used,
2853 	    sizeof(struct numarray), compare_numarray);
2854 
2855 	KASSERT(res == 1, ("number %u does not exist", tb->na.number));
2856 	cfg->used--;
2857 	ti->data = cfg->used;
2858 	*pnum = 1;
2859 
2860 	return (0);
2861 }
2862 
2863 static void
2864 ta_flush_numarray_entry(struct ip_fw_chain *ch, struct tentry_info *tei,
2865     void *ta_buf)
2866 {
2867 
2868 	/* We don't have any state, do nothing */
2869 }
2870 
2871 /*
2872  * Table growing callbacks.
2873  */
2874 
2875 static int
2876 ta_need_modify_numarray(void *ta_state, struct table_info *ti, uint32_t count,
2877     uint64_t *pflags)
2878 {
2879 	struct numarray_cfg *cfg;
2880 	size_t size;
2881 
2882 	cfg = (struct numarray_cfg *)ta_state;
2883 
2884 	size = cfg->size;
2885 	while (size < cfg->used + count)
2886 		size *= 2;
2887 
2888 	if (size != cfg->size) {
2889 		*pflags = size;
2890 		return (1);
2891 	}
2892 
2893 	return (0);
2894 }
2895 
2896 /*
2897  * Allocate new, larger runtime array.
2898  */
2899 static int
2900 ta_prepare_mod_numarray(void *ta_buf, uint64_t *pflags)
2901 {
2902 	struct mod_item *mi;
2903 
2904 	mi = (struct mod_item *)ta_buf;
2905 
2906 	memset(mi, 0, sizeof(struct mod_item));
2907 	mi->size = *pflags;
2908 	mi->main_ptr = malloc(sizeof(struct numarray) * mi->size, M_IPFW,
2909 	    M_WAITOK | M_ZERO);
2910 
2911 	return (0);
2912 }
2913 
2914 /*
2915  * Copy data from old runtime array to new one.
2916  */
2917 static int
2918 ta_fill_mod_numarray(void *ta_state, struct table_info *ti, void *ta_buf,
2919     uint64_t *pflags)
2920 {
2921 	struct mod_item *mi;
2922 	struct numarray_cfg *cfg;
2923 
2924 	mi = (struct mod_item *)ta_buf;
2925 	cfg = (struct numarray_cfg *)ta_state;
2926 
2927 	/* Check if we still need to grow array */
2928 	if (cfg->size >= mi->size) {
2929 		*pflags = 0;
2930 		return (0);
2931 	}
2932 
2933 	memcpy(mi->main_ptr, cfg->main_ptr, cfg->used * sizeof(struct numarray));
2934 
2935 	return (0);
2936 }
2937 
2938 /*
2939  * Switch old & new arrays.
2940  */
2941 static void
2942 ta_modify_numarray(void *ta_state, struct table_info *ti, void *ta_buf,
2943     uint64_t pflags)
2944 {
2945 	struct mod_item *mi;
2946 	struct numarray_cfg *cfg;
2947 	void *old_ptr;
2948 
2949 	mi = (struct mod_item *)ta_buf;
2950 	cfg = (struct numarray_cfg *)ta_state;
2951 
2952 	old_ptr = cfg->main_ptr;
2953 	cfg->main_ptr = mi->main_ptr;
2954 	cfg->size = mi->size;
2955 	ti->state = cfg->main_ptr;
2956 
2957 	mi->main_ptr = old_ptr;
2958 }
2959 
2960 /*
2961  * Free unneded array.
2962  */
2963 static void
2964 ta_flush_mod_numarray(void *ta_buf)
2965 {
2966 	struct mod_item *mi;
2967 
2968 	mi = (struct mod_item *)ta_buf;
2969 	if (mi->main_ptr != NULL)
2970 		free(mi->main_ptr, M_IPFW);
2971 }
2972 
2973 static int
2974 ta_dump_numarray_tentry(void *ta_state, struct table_info *ti, void *e,
2975     ipfw_obj_tentry *tent)
2976 {
2977 	struct numarray *na;
2978 
2979 	na = (struct numarray *)e;
2980 
2981 	tent->k.key = na->number;
2982 	tent->v.kidx = na->value;
2983 
2984 	return (0);
2985 }
2986 
2987 static int
2988 ta_find_numarray_tentry(void *ta_state, struct table_info *ti,
2989     ipfw_obj_tentry *tent)
2990 {
2991 	struct numarray *ri;
2992 
2993 	ri = numarray_find(ti, &tent->k.key);
2994 
2995 	if (ri != NULL) {
2996 		ta_dump_numarray_tentry(ta_state, ti, ri, tent);
2997 		return (0);
2998 	}
2999 
3000 	return (ENOENT);
3001 }
3002 
3003 static void
3004 ta_foreach_numarray(void *ta_state, struct table_info *ti, ta_foreach_f *f,
3005     void *arg)
3006 {
3007 	struct numarray_cfg *cfg;
3008 	struct numarray *array;
3009 	int i;
3010 
3011 	cfg = (struct numarray_cfg *)ta_state;
3012 	array = cfg->main_ptr;
3013 
3014 	for (i = 0; i < cfg->used; i++)
3015 		f(&array[i], arg);
3016 }
3017 
3018 struct table_algo number_array = {
3019 	.name		= "number:array",
3020 	.type		= IPFW_TABLE_NUMBER,
3021 	.ta_buf_size	= sizeof(struct ta_buf_numarray),
3022 	.init		= ta_init_numarray,
3023 	.destroy	= ta_destroy_numarray,
3024 	.prepare_add	= ta_prepare_add_numarray,
3025 	.prepare_del	= ta_prepare_add_numarray,
3026 	.add		= ta_add_numarray,
3027 	.del		= ta_del_numarray,
3028 	.flush_entry	= ta_flush_numarray_entry,
3029 	.foreach	= ta_foreach_numarray,
3030 	.dump_tentry	= ta_dump_numarray_tentry,
3031 	.find_tentry	= ta_find_numarray_tentry,
3032 	.dump_tinfo	= ta_dump_numarray_tinfo,
3033 	.need_modify	= ta_need_modify_numarray,
3034 	.prepare_mod	= ta_prepare_mod_numarray,
3035 	.fill_mod	= ta_fill_mod_numarray,
3036 	.modify		= ta_modify_numarray,
3037 	.flush_mod	= ta_flush_mod_numarray,
3038 };
3039 
3040 /*
3041  * flow:hash cmds
3042  *
3043  *
3044  * ti->data:
3045  * [inv.mask4][inv.mask6][log2hsize4][log2hsize6]
3046  * [        8][        8[          8][         8]
3047  *
3048  * inv.mask4: 32 - mask
3049  * inv.mask6:
3050  * 1) _slow lookup: mask
3051  * 2) _aligned: (128 - mask) / 8
3052  * 3) _64: 8
3053  *
3054  *
3055  * pflags:
3056  * [hsize4][hsize6]
3057  * [    16][    16]
3058  */
3059 
3060 struct fhashentry;
3061 
3062 SLIST_HEAD(fhashbhead, fhashentry);
3063 
3064 struct fhashentry {
3065 	SLIST_ENTRY(fhashentry)	next;
3066 	uint8_t		af;
3067 	uint8_t		proto;
3068 	uint16_t	spare0;
3069 	uint16_t	dport;
3070 	uint16_t	sport;
3071 	uint32_t	value;
3072 	uint32_t	spare1;
3073 };
3074 
3075 struct fhashentry4 {
3076 	struct fhashentry	e;
3077 	struct in_addr		dip;
3078 	struct in_addr		sip;
3079 };
3080 
3081 struct fhashentry6 {
3082 	struct fhashentry	e;
3083 	struct in6_addr		dip6;
3084 	struct in6_addr		sip6;
3085 };
3086 
3087 struct fhash_cfg {
3088 	struct fhashbhead	*head;
3089 	size_t			size;
3090 	size_t			items;
3091 	struct fhashentry4	fe4;
3092 	struct fhashentry6	fe6;
3093 };
3094 
3095 struct ta_buf_fhash {
3096 	void	*ent_ptr;
3097 	struct fhashentry6 fe6;
3098 };
3099 
3100 static __inline int cmp_flow_ent(struct fhashentry *a,
3101     struct fhashentry *b, size_t sz);
3102 static __inline uint32_t hash_flow4(struct fhashentry4 *f, int hsize);
3103 static __inline uint32_t hash_flow6(struct fhashentry6 *f, int hsize);
3104 static uint32_t hash_flow_ent(struct fhashentry *ent, uint32_t size);
3105 static int ta_lookup_fhash(struct table_info *ti, void *key, uint32_t keylen,
3106     uint32_t *val);
3107 static int ta_init_fhash(struct ip_fw_chain *ch, void **ta_state,
3108 struct table_info *ti, char *data, uint8_t tflags);
3109 static void ta_destroy_fhash(void *ta_state, struct table_info *ti);
3110 static void ta_dump_fhash_tinfo(void *ta_state, struct table_info *ti,
3111     ipfw_ta_tinfo *tinfo);
3112 static int ta_dump_fhash_tentry(void *ta_state, struct table_info *ti,
3113     void *e, ipfw_obj_tentry *tent);
3114 static int tei_to_fhash_ent(struct tentry_info *tei, struct fhashentry *ent);
3115 static int ta_find_fhash_tentry(void *ta_state, struct table_info *ti,
3116     ipfw_obj_tentry *tent);
3117 static void ta_foreach_fhash(void *ta_state, struct table_info *ti,
3118     ta_foreach_f *f, void *arg);
3119 static int ta_prepare_add_fhash(struct ip_fw_chain *ch,
3120     struct tentry_info *tei, void *ta_buf);
3121 static int ta_add_fhash(void *ta_state, struct table_info *ti,
3122     struct tentry_info *tei, void *ta_buf, uint32_t *pnum);
3123 static int ta_prepare_del_fhash(struct ip_fw_chain *ch, struct tentry_info *tei,
3124     void *ta_buf);
3125 static int ta_del_fhash(void *ta_state, struct table_info *ti,
3126     struct tentry_info *tei, void *ta_buf, uint32_t *pnum);
3127 static void ta_flush_fhash_entry(struct ip_fw_chain *ch, struct tentry_info *tei,
3128     void *ta_buf);
3129 static int ta_need_modify_fhash(void *ta_state, struct table_info *ti,
3130     uint32_t count, uint64_t *pflags);
3131 static int ta_prepare_mod_fhash(void *ta_buf, uint64_t *pflags);
3132 static int ta_fill_mod_fhash(void *ta_state, struct table_info *ti,
3133     void *ta_buf, uint64_t *pflags);
3134 static void ta_modify_fhash(void *ta_state, struct table_info *ti, void *ta_buf,
3135     uint64_t pflags);
3136 static void ta_flush_mod_fhash(void *ta_buf);
3137 
3138 static __inline int
3139 cmp_flow_ent(struct fhashentry *a, struct fhashentry *b, size_t sz)
3140 {
3141 	uint64_t *ka, *kb;
3142 
3143 	ka = (uint64_t *)(&a->next + 1);
3144 	kb = (uint64_t *)(&b->next + 1);
3145 
3146 	if (*ka == *kb && (memcmp(a + 1, b + 1, sz) == 0))
3147 		return (1);
3148 
3149 	return (0);
3150 }
3151 
3152 static __inline uint32_t
3153 hash_flow4(struct fhashentry4 *f, int hsize)
3154 {
3155 	uint32_t i;
3156 
3157 	i = (f->dip.s_addr) ^ (f->sip.s_addr) ^ (f->e.dport) ^ (f->e.sport);
3158 
3159 	return (i % (hsize - 1));
3160 }
3161 
3162 static __inline uint32_t
3163 hash_flow6(struct fhashentry6 *f, int hsize)
3164 {
3165 	uint32_t i;
3166 
3167 	i = (f->dip6.__u6_addr.__u6_addr32[2]) ^
3168 	    (f->dip6.__u6_addr.__u6_addr32[3]) ^
3169 	    (f->sip6.__u6_addr.__u6_addr32[2]) ^
3170 	    (f->sip6.__u6_addr.__u6_addr32[3]) ^
3171 	    (f->e.dport) ^ (f->e.sport);
3172 
3173 	return (i % (hsize - 1));
3174 }
3175 
3176 static uint32_t
3177 hash_flow_ent(struct fhashentry *ent, uint32_t size)
3178 {
3179 	uint32_t hash;
3180 
3181 	if (ent->af == AF_INET) {
3182 		hash = hash_flow4((struct fhashentry4 *)ent, size);
3183 	} else {
3184 		hash = hash_flow6((struct fhashentry6 *)ent, size);
3185 	}
3186 
3187 	return (hash);
3188 }
3189 
3190 static int
3191 ta_lookup_fhash(struct table_info *ti, void *key, uint32_t keylen,
3192     uint32_t *val)
3193 {
3194 	struct fhashbhead *head;
3195 	struct fhashentry *ent;
3196 	struct fhashentry4 *m4;
3197 	struct ipfw_flow_id *id;
3198 	uint32_t hsize;
3199 	uint16_t hash;
3200 
3201 	id = (struct ipfw_flow_id *)key;
3202 	head = (struct fhashbhead *)ti->state;
3203 	hsize = ti->data;
3204 	m4 = (struct fhashentry4 *)ti->xstate;
3205 
3206 	if (id->addr_type == 4) {
3207 		struct fhashentry4 f;
3208 
3209 		/* Copy hash mask */
3210 		f = *m4;
3211 
3212 		f.dip.s_addr &= id->dst_ip;
3213 		f.sip.s_addr &= id->src_ip;
3214 		f.e.dport &= id->dst_port;
3215 		f.e.sport &= id->src_port;
3216 		f.e.proto &= id->proto;
3217 		hash = hash_flow4(&f, hsize);
3218 		SLIST_FOREACH(ent, &head[hash], next) {
3219 			if (cmp_flow_ent(ent, &f.e, 2 * 4) != 0) {
3220 				*val = ent->value;
3221 				return (1);
3222 			}
3223 		}
3224 	} else if (id->addr_type == 6) {
3225 		struct fhashentry6 f;
3226 		uint64_t *fp, *idp;
3227 
3228 		/* Copy hash mask */
3229 		f = *((struct fhashentry6 *)(m4 + 1));
3230 
3231 		/* Handle lack of __u6_addr.__u6_addr64 */
3232 		fp = (uint64_t *)&f.dip6;
3233 		idp = (uint64_t *)&id->dst_ip6;
3234 		/* src IPv6 is stored after dst IPv6 */
3235 		*fp++ &= *idp++;
3236 		*fp++ &= *idp++;
3237 		*fp++ &= *idp++;
3238 		*fp &= *idp;
3239 		f.e.dport &= id->dst_port;
3240 		f.e.sport &= id->src_port;
3241 		f.e.proto &= id->proto;
3242 		hash = hash_flow6(&f, hsize);
3243 		SLIST_FOREACH(ent, &head[hash], next) {
3244 			if (cmp_flow_ent(ent, &f.e, 2 * 16) != 0) {
3245 				*val = ent->value;
3246 				return (1);
3247 			}
3248 		}
3249 	}
3250 
3251 	return (0);
3252 }
3253 
3254 /*
3255  * New table.
3256  */
3257 static int
3258 ta_init_fhash(struct ip_fw_chain *ch, void **ta_state, struct table_info *ti,
3259     char *data, uint8_t tflags)
3260 {
3261 	struct fhash_cfg *cfg;
3262 	struct fhashentry4 *fe4;
3263 	struct fhashentry6 *fe6;
3264 	u_int i;
3265 
3266 	cfg = malloc(sizeof(struct fhash_cfg), M_IPFW, M_WAITOK | M_ZERO);
3267 
3268 	cfg->size = 512;
3269 
3270 	cfg->head = malloc(sizeof(struct fhashbhead) * cfg->size, M_IPFW,
3271 	    M_WAITOK | M_ZERO);
3272 	for (i = 0; i < cfg->size; i++)
3273 		SLIST_INIT(&cfg->head[i]);
3274 
3275 	/* Fill in fe masks based on @tflags */
3276 	fe4 = &cfg->fe4;
3277 	fe6 = &cfg->fe6;
3278 	if (tflags & IPFW_TFFLAG_SRCIP) {
3279 		memset(&fe4->sip, 0xFF, sizeof(fe4->sip));
3280 		memset(&fe6->sip6, 0xFF, sizeof(fe6->sip6));
3281 	}
3282 	if (tflags & IPFW_TFFLAG_DSTIP) {
3283 		memset(&fe4->dip, 0xFF, sizeof(fe4->dip));
3284 		memset(&fe6->dip6, 0xFF, sizeof(fe6->dip6));
3285 	}
3286 	if (tflags & IPFW_TFFLAG_SRCPORT) {
3287 		memset(&fe4->e.sport, 0xFF, sizeof(fe4->e.sport));
3288 		memset(&fe6->e.sport, 0xFF, sizeof(fe6->e.sport));
3289 	}
3290 	if (tflags & IPFW_TFFLAG_DSTPORT) {
3291 		memset(&fe4->e.dport, 0xFF, sizeof(fe4->e.dport));
3292 		memset(&fe6->e.dport, 0xFF, sizeof(fe6->e.dport));
3293 	}
3294 	if (tflags & IPFW_TFFLAG_PROTO) {
3295 		memset(&fe4->e.proto, 0xFF, sizeof(fe4->e.proto));
3296 		memset(&fe6->e.proto, 0xFF, sizeof(fe6->e.proto));
3297 	}
3298 
3299 	fe4->e.af = AF_INET;
3300 	fe6->e.af = AF_INET6;
3301 
3302 	*ta_state = cfg;
3303 	ti->state = cfg->head;
3304 	ti->xstate = &cfg->fe4;
3305 	ti->data = cfg->size;
3306 	ti->lookup = ta_lookup_fhash;
3307 
3308 	return (0);
3309 }
3310 
3311 static void
3312 ta_destroy_fhash(void *ta_state, struct table_info *ti)
3313 {
3314 	struct fhash_cfg *cfg;
3315 	struct fhashentry *ent, *ent_next;
3316 	int i;
3317 
3318 	cfg = (struct fhash_cfg *)ta_state;
3319 
3320 	for (i = 0; i < cfg->size; i++)
3321 		SLIST_FOREACH_SAFE(ent, &cfg->head[i], next, ent_next)
3322 			free(ent, M_IPFW_TBL);
3323 
3324 	free(cfg->head, M_IPFW);
3325 	free(cfg, M_IPFW);
3326 }
3327 
3328 /*
3329  * Provide algo-specific table info
3330  */
3331 static void
3332 ta_dump_fhash_tinfo(void *ta_state, struct table_info *ti, ipfw_ta_tinfo *tinfo)
3333 {
3334 	struct fhash_cfg *cfg;
3335 
3336 	cfg = (struct fhash_cfg *)ta_state;
3337 
3338 	tinfo->flags = IPFW_TATFLAGS_AFITEM;
3339 	tinfo->taclass4 = IPFW_TACLASS_HASH;
3340 	tinfo->size4 = cfg->size;
3341 	tinfo->count4 = cfg->items;
3342 	tinfo->itemsize4 = sizeof(struct fhashentry4);
3343 	tinfo->itemsize6 = sizeof(struct fhashentry6);
3344 }
3345 
3346 static int
3347 ta_dump_fhash_tentry(void *ta_state, struct table_info *ti, void *e,
3348     ipfw_obj_tentry *tent)
3349 {
3350 	struct fhashentry *ent;
3351 	struct fhashentry4 *fe4;
3352 #ifdef INET6
3353 	struct fhashentry6 *fe6;
3354 #endif
3355 	struct tflow_entry *tfe;
3356 
3357 	ent = (struct fhashentry *)e;
3358 	tfe = &tent->k.flow;
3359 
3360 	tfe->af = ent->af;
3361 	tfe->proto = ent->proto;
3362 	tfe->dport = htons(ent->dport);
3363 	tfe->sport = htons(ent->sport);
3364 	tent->v.kidx = ent->value;
3365 	tent->subtype = ent->af;
3366 
3367 	if (ent->af == AF_INET) {
3368 		fe4 = (struct fhashentry4 *)ent;
3369 		tfe->a.a4.sip.s_addr = htonl(fe4->sip.s_addr);
3370 		tfe->a.a4.dip.s_addr = htonl(fe4->dip.s_addr);
3371 		tent->masklen = 32;
3372 #ifdef INET6
3373 	} else {
3374 		fe6 = (struct fhashentry6 *)ent;
3375 		tfe->a.a6.sip6 = fe6->sip6;
3376 		tfe->a.a6.dip6 = fe6->dip6;
3377 		tent->masklen = 128;
3378 #endif
3379 	}
3380 
3381 	return (0);
3382 }
3383 
3384 static int
3385 tei_to_fhash_ent(struct tentry_info *tei, struct fhashentry *ent)
3386 {
3387 #ifdef INET
3388 	struct fhashentry4 *fe4;
3389 #endif
3390 #ifdef INET6
3391 	struct fhashentry6 *fe6;
3392 #endif
3393 	struct tflow_entry *tfe;
3394 
3395 	tfe = (struct tflow_entry *)tei->paddr;
3396 
3397 	ent->af = tei->subtype;
3398 	ent->proto = tfe->proto;
3399 	ent->dport = ntohs(tfe->dport);
3400 	ent->sport = ntohs(tfe->sport);
3401 
3402 	if (tei->subtype == AF_INET) {
3403 #ifdef INET
3404 		fe4 = (struct fhashentry4 *)ent;
3405 		fe4->sip.s_addr = ntohl(tfe->a.a4.sip.s_addr);
3406 		fe4->dip.s_addr = ntohl(tfe->a.a4.dip.s_addr);
3407 #endif
3408 #ifdef INET6
3409 	} else if (tei->subtype == AF_INET6) {
3410 		fe6 = (struct fhashentry6 *)ent;
3411 		fe6->sip6 = tfe->a.a6.sip6;
3412 		fe6->dip6 = tfe->a.a6.dip6;
3413 #endif
3414 	} else {
3415 		/* Unknown CIDR type */
3416 		return (EINVAL);
3417 	}
3418 
3419 	return (0);
3420 }
3421 
3422 static int
3423 ta_find_fhash_tentry(void *ta_state, struct table_info *ti,
3424     ipfw_obj_tentry *tent)
3425 {
3426 	struct fhash_cfg *cfg;
3427 	struct fhashbhead *head;
3428 	struct fhashentry *ent, *tmp;
3429 	struct fhashentry6 fe6;
3430 	struct tentry_info tei;
3431 	int error;
3432 	uint32_t hash;
3433 	size_t sz;
3434 
3435 	cfg = (struct fhash_cfg *)ta_state;
3436 
3437 	ent = &fe6.e;
3438 
3439 	memset(&fe6, 0, sizeof(fe6));
3440 	memset(&tei, 0, sizeof(tei));
3441 
3442 	tei.paddr = &tent->k.flow;
3443 	tei.subtype = tent->subtype;
3444 
3445 	if ((error = tei_to_fhash_ent(&tei, ent)) != 0)
3446 		return (error);
3447 
3448 	head = cfg->head;
3449 	hash = hash_flow_ent(ent, cfg->size);
3450 
3451 	if (tei.subtype == AF_INET)
3452 		sz = 2 * sizeof(struct in_addr);
3453 	else
3454 		sz = 2 * sizeof(struct in6_addr);
3455 
3456 	/* Check for existence */
3457 	SLIST_FOREACH(tmp, &head[hash], next) {
3458 		if (cmp_flow_ent(tmp, ent, sz) != 0) {
3459 			ta_dump_fhash_tentry(ta_state, ti, tmp, tent);
3460 			return (0);
3461 		}
3462 	}
3463 
3464 	return (ENOENT);
3465 }
3466 
3467 static void
3468 ta_foreach_fhash(void *ta_state, struct table_info *ti, ta_foreach_f *f,
3469     void *arg)
3470 {
3471 	struct fhash_cfg *cfg;
3472 	struct fhashentry *ent, *ent_next;
3473 	int i;
3474 
3475 	cfg = (struct fhash_cfg *)ta_state;
3476 
3477 	for (i = 0; i < cfg->size; i++)
3478 		SLIST_FOREACH_SAFE(ent, &cfg->head[i], next, ent_next)
3479 			f(ent, arg);
3480 }
3481 
3482 static int
3483 ta_prepare_add_fhash(struct ip_fw_chain *ch, struct tentry_info *tei,
3484     void *ta_buf)
3485 {
3486 	struct ta_buf_fhash *tb;
3487 	struct fhashentry *ent;
3488 	size_t sz;
3489 	int error;
3490 
3491 	tb = (struct ta_buf_fhash *)ta_buf;
3492 
3493 	if (tei->subtype == AF_INET)
3494 		sz = sizeof(struct fhashentry4);
3495 	else if (tei->subtype == AF_INET6)
3496 		sz = sizeof(struct fhashentry6);
3497 	else
3498 		return (EINVAL);
3499 
3500 	ent = malloc(sz, M_IPFW_TBL, M_WAITOK | M_ZERO);
3501 
3502 	error = tei_to_fhash_ent(tei, ent);
3503 	if (error != 0) {
3504 		free(ent, M_IPFW_TBL);
3505 		return (error);
3506 	}
3507 	tb->ent_ptr = ent;
3508 
3509 	return (0);
3510 }
3511 
3512 static int
3513 ta_add_fhash(void *ta_state, struct table_info *ti, struct tentry_info *tei,
3514     void *ta_buf, uint32_t *pnum)
3515 {
3516 	struct fhash_cfg *cfg;
3517 	struct fhashbhead *head;
3518 	struct fhashentry *ent, *tmp;
3519 	struct ta_buf_fhash *tb;
3520 	int exists;
3521 	uint32_t hash, value;
3522 	size_t sz;
3523 
3524 	cfg = (struct fhash_cfg *)ta_state;
3525 	tb = (struct ta_buf_fhash *)ta_buf;
3526 	ent = (struct fhashentry *)tb->ent_ptr;
3527 	exists = 0;
3528 
3529 	/* Read current value from @tei */
3530 	ent->value = tei->value;
3531 
3532 	head = cfg->head;
3533 	hash = hash_flow_ent(ent, cfg->size);
3534 
3535 	if (tei->subtype == AF_INET)
3536 		sz = 2 * sizeof(struct in_addr);
3537 	else
3538 		sz = 2 * sizeof(struct in6_addr);
3539 
3540 	/* Check for existence */
3541 	SLIST_FOREACH(tmp, &head[hash], next) {
3542 		if (cmp_flow_ent(tmp, ent, sz) != 0) {
3543 			exists = 1;
3544 			break;
3545 		}
3546 	}
3547 
3548 	if (exists == 1) {
3549 		if ((tei->flags & TEI_FLAGS_UPDATE) == 0)
3550 			return (EEXIST);
3551 		/* Record already exists. Update value if we're asked to */
3552 		/* Exchange values between tmp and @tei */
3553 		value = tmp->value;
3554 		tmp->value = tei->value;
3555 		tei->value = value;
3556 		/* Indicate that update has happened instead of addition */
3557 		tei->flags |= TEI_FLAGS_UPDATED;
3558 		*pnum = 0;
3559 	} else {
3560 		if ((tei->flags & TEI_FLAGS_DONTADD) != 0)
3561 			return (EFBIG);
3562 
3563 		SLIST_INSERT_HEAD(&head[hash], ent, next);
3564 		tb->ent_ptr = NULL;
3565 		*pnum = 1;
3566 
3567 		/* Update counters and check if we need to grow hash */
3568 		cfg->items++;
3569 	}
3570 
3571 	return (0);
3572 }
3573 
3574 static int
3575 ta_prepare_del_fhash(struct ip_fw_chain *ch, struct tentry_info *tei,
3576     void *ta_buf)
3577 {
3578 	struct ta_buf_fhash *tb;
3579 
3580 	tb = (struct ta_buf_fhash *)ta_buf;
3581 
3582 	return (tei_to_fhash_ent(tei, &tb->fe6.e));
3583 }
3584 
3585 static int
3586 ta_del_fhash(void *ta_state, struct table_info *ti, struct tentry_info *tei,
3587     void *ta_buf, uint32_t *pnum)
3588 {
3589 	struct fhash_cfg *cfg;
3590 	struct fhashbhead *head;
3591 	struct fhashentry *ent, *tmp;
3592 	struct ta_buf_fhash *tb;
3593 	uint32_t hash;
3594 	size_t sz;
3595 
3596 	cfg = (struct fhash_cfg *)ta_state;
3597 	tb = (struct ta_buf_fhash *)ta_buf;
3598 	ent = &tb->fe6.e;
3599 
3600 	head = cfg->head;
3601 	hash = hash_flow_ent(ent, cfg->size);
3602 
3603 	if (tei->subtype == AF_INET)
3604 		sz = 2 * sizeof(struct in_addr);
3605 	else
3606 		sz = 2 * sizeof(struct in6_addr);
3607 
3608 	/* Check for existence */
3609 	SLIST_FOREACH(tmp, &head[hash], next) {
3610 		if (cmp_flow_ent(tmp, ent, sz) == 0)
3611 			continue;
3612 
3613 		SLIST_REMOVE(&head[hash], tmp, fhashentry, next);
3614 		tei->value = tmp->value;
3615 		*pnum = 1;
3616 		cfg->items--;
3617 		tb->ent_ptr = tmp;
3618 		return (0);
3619 	}
3620 
3621 	return (ENOENT);
3622 }
3623 
3624 static void
3625 ta_flush_fhash_entry(struct ip_fw_chain *ch, struct tentry_info *tei,
3626     void *ta_buf)
3627 {
3628 	struct ta_buf_fhash *tb;
3629 
3630 	tb = (struct ta_buf_fhash *)ta_buf;
3631 
3632 	if (tb->ent_ptr != NULL)
3633 		free(tb->ent_ptr, M_IPFW_TBL);
3634 }
3635 
3636 /*
3637  * Hash growing callbacks.
3638  */
3639 
3640 static int
3641 ta_need_modify_fhash(void *ta_state, struct table_info *ti, uint32_t count,
3642     uint64_t *pflags)
3643 {
3644 	struct fhash_cfg *cfg;
3645 
3646 	cfg = (struct fhash_cfg *)ta_state;
3647 
3648 	if (cfg->items > cfg->size && cfg->size < 65536) {
3649 		*pflags = cfg->size * 2;
3650 		return (1);
3651 	}
3652 
3653 	return (0);
3654 }
3655 
3656 /*
3657  * Allocate new, larger fhash.
3658  */
3659 static int
3660 ta_prepare_mod_fhash(void *ta_buf, uint64_t *pflags)
3661 {
3662 	struct mod_item *mi;
3663 	struct fhashbhead *head;
3664 	u_int i;
3665 
3666 	mi = (struct mod_item *)ta_buf;
3667 
3668 	memset(mi, 0, sizeof(struct mod_item));
3669 	mi->size = *pflags;
3670 	head = malloc(sizeof(struct fhashbhead) * mi->size, M_IPFW,
3671 	    M_WAITOK | M_ZERO);
3672 	for (i = 0; i < mi->size; i++)
3673 		SLIST_INIT(&head[i]);
3674 
3675 	mi->main_ptr = head;
3676 
3677 	return (0);
3678 }
3679 
3680 /*
3681  * Copy data from old runtime array to new one.
3682  */
3683 static int
3684 ta_fill_mod_fhash(void *ta_state, struct table_info *ti, void *ta_buf,
3685     uint64_t *pflags)
3686 {
3687 
3688 	/* In is not possible to do rehash if we're not holidng WLOCK. */
3689 	return (0);
3690 }
3691 
3692 /*
3693  * Switch old & new arrays.
3694  */
3695 static void
3696 ta_modify_fhash(void *ta_state, struct table_info *ti, void *ta_buf,
3697     uint64_t pflags)
3698 {
3699 	struct mod_item *mi;
3700 	struct fhash_cfg *cfg;
3701 	struct fhashbhead *old_head, *new_head;
3702 	struct fhashentry *ent, *ent_next;
3703 	int i;
3704 	uint32_t nhash;
3705 	size_t old_size;
3706 
3707 	mi = (struct mod_item *)ta_buf;
3708 	cfg = (struct fhash_cfg *)ta_state;
3709 
3710 	old_size = cfg->size;
3711 	old_head = ti->state;
3712 
3713 	new_head = (struct fhashbhead *)mi->main_ptr;
3714 	for (i = 0; i < old_size; i++) {
3715 		SLIST_FOREACH_SAFE(ent, &old_head[i], next, ent_next) {
3716 			nhash = hash_flow_ent(ent, mi->size);
3717 			SLIST_INSERT_HEAD(&new_head[nhash], ent, next);
3718 		}
3719 	}
3720 
3721 	ti->state = new_head;
3722 	ti->data = mi->size;
3723 	cfg->head = new_head;
3724 	cfg->size = mi->size;
3725 
3726 	mi->main_ptr = old_head;
3727 }
3728 
3729 /*
3730  * Free unneded array.
3731  */
3732 static void
3733 ta_flush_mod_fhash(void *ta_buf)
3734 {
3735 	struct mod_item *mi;
3736 
3737 	mi = (struct mod_item *)ta_buf;
3738 	if (mi->main_ptr != NULL)
3739 		free(mi->main_ptr, M_IPFW);
3740 }
3741 
3742 struct table_algo flow_hash = {
3743 	.name		= "flow:hash",
3744 	.type		= IPFW_TABLE_FLOW,
3745 	.flags		= TA_FLAG_DEFAULT,
3746 	.ta_buf_size	= sizeof(struct ta_buf_fhash),
3747 	.init		= ta_init_fhash,
3748 	.destroy	= ta_destroy_fhash,
3749 	.prepare_add	= ta_prepare_add_fhash,
3750 	.prepare_del	= ta_prepare_del_fhash,
3751 	.add		= ta_add_fhash,
3752 	.del		= ta_del_fhash,
3753 	.flush_entry	= ta_flush_fhash_entry,
3754 	.foreach	= ta_foreach_fhash,
3755 	.dump_tentry	= ta_dump_fhash_tentry,
3756 	.find_tentry	= ta_find_fhash_tentry,
3757 	.dump_tinfo	= ta_dump_fhash_tinfo,
3758 	.need_modify	= ta_need_modify_fhash,
3759 	.prepare_mod	= ta_prepare_mod_fhash,
3760 	.fill_mod	= ta_fill_mod_fhash,
3761 	.modify		= ta_modify_fhash,
3762 	.flush_mod	= ta_flush_mod_fhash,
3763 };
3764 
3765 /*
3766  * Kernel fibs bindings.
3767  *
3768  * Implementation:
3769  *
3770  * Runtime part:
3771  * - fully relies on route API
3772  * - fib number is stored in ti->data
3773  *
3774  */
3775 
3776 static int ta_lookup_kfib(struct table_info *ti, void *key, uint32_t keylen,
3777     uint32_t *val);
3778 static int kfib_parse_opts(int *pfib, char *data);
3779 static void ta_print_kfib_config(void *ta_state, struct table_info *ti,
3780     char *buf, size_t bufsize);
3781 static int ta_init_kfib(struct ip_fw_chain *ch, void **ta_state,
3782     struct table_info *ti, char *data, uint8_t tflags);
3783 static void ta_destroy_kfib(void *ta_state, struct table_info *ti);
3784 static void ta_dump_kfib_tinfo(void *ta_state, struct table_info *ti,
3785     ipfw_ta_tinfo *tinfo);
3786 static int ta_dump_kfib_tentry(void *ta_state, struct table_info *ti, void *e,
3787     ipfw_obj_tentry *tent);
3788 static int ta_dump_kfib_tentry_int(int familt, const struct rtentry *rt,
3789     ipfw_obj_tentry *tent);
3790 static int ta_find_kfib_tentry(void *ta_state, struct table_info *ti,
3791     ipfw_obj_tentry *tent);
3792 static void ta_foreach_kfib(void *ta_state, struct table_info *ti,
3793     ta_foreach_f *f, void *arg);
3794 
3795 static int
3796 ta_lookup_kfib(struct table_info *ti, void *key, uint32_t keylen,
3797     uint32_t *val)
3798 {
3799 #ifdef INET
3800 	struct in_addr in;
3801 #endif
3802 	int error;
3803 
3804 	error = ENOENT;
3805 #ifdef INET
3806 	if (keylen == 4) {
3807 		in.s_addr = *(in_addr_t *)key;
3808 		NET_EPOCH_ASSERT();
3809 		error = fib4_lookup(ti->data, in, 0, NHR_NONE, 0) != NULL;
3810 	}
3811 #endif
3812 #ifdef INET6
3813 	if (keylen == 6)
3814 		error = fib6_lookup(ti->data, (struct in6_addr *)key,
3815 		    0, NHR_NONE, 0) != NULL;
3816 #endif
3817 
3818 	if (error != 0)
3819 		return (0);
3820 
3821 	*val = 0;
3822 
3823 	return (1);
3824 }
3825 
3826 /* Parse 'fib=%d' */
3827 static int
3828 kfib_parse_opts(int *pfib, char *data)
3829 {
3830 	char *pdel, *pend, *s;
3831 	int fibnum;
3832 
3833 	if (data == NULL)
3834 		return (0);
3835 	if ((pdel = strchr(data, ' ')) == NULL)
3836 		return (0);
3837 	while (*pdel == ' ')
3838 		pdel++;
3839 	if (strncmp(pdel, "fib=", 4) != 0)
3840 		return (EINVAL);
3841 	if ((s = strchr(pdel, ' ')) != NULL)
3842 		*s++ = '\0';
3843 
3844 	pdel += 4;
3845 	/* Need \d+ */
3846 	fibnum = strtol(pdel, &pend, 10);
3847 	if (*pend != '\0')
3848 		return (EINVAL);
3849 
3850 	*pfib = fibnum;
3851 
3852 	return (0);
3853 }
3854 
3855 static void
3856 ta_print_kfib_config(void *ta_state, struct table_info *ti, char *buf,
3857     size_t bufsize)
3858 {
3859 
3860 	if (ti->data != 0)
3861 		snprintf(buf, bufsize, "%s fib=%lu", "addr:kfib", ti->data);
3862 	else
3863 		snprintf(buf, bufsize, "%s", "addr:kfib");
3864 }
3865 
3866 static int
3867 ta_init_kfib(struct ip_fw_chain *ch, void **ta_state, struct table_info *ti,
3868     char *data, uint8_t tflags)
3869 {
3870 	int error, fibnum;
3871 
3872 	fibnum = 0;
3873 	if ((error = kfib_parse_opts(&fibnum, data)) != 0)
3874 		return (error);
3875 
3876 	if (fibnum >= rt_numfibs)
3877 		return (E2BIG);
3878 
3879 	ti->data = fibnum;
3880 	ti->lookup = ta_lookup_kfib;
3881 
3882 	return (0);
3883 }
3884 
3885 /*
3886  * Destroys table @ti
3887  */
3888 static void
3889 ta_destroy_kfib(void *ta_state, struct table_info *ti)
3890 {
3891 
3892 }
3893 
3894 /*
3895  * Provide algo-specific table info
3896  */
3897 static void
3898 ta_dump_kfib_tinfo(void *ta_state, struct table_info *ti, ipfw_ta_tinfo *tinfo)
3899 {
3900 
3901 	tinfo->flags = IPFW_TATFLAGS_AFDATA;
3902 	tinfo->taclass4 = IPFW_TACLASS_RADIX;
3903 	tinfo->count4 = 0;
3904 	tinfo->itemsize4 = 128; /* table is readonly, value does not matter */
3905 	tinfo->taclass6 = IPFW_TACLASS_RADIX;
3906 	tinfo->count6 = 0;
3907 	tinfo->itemsize6 = 128;
3908 }
3909 
3910 static int
3911 ta_dump_kfib_tentry_int(int family, const struct rtentry *rt,
3912     ipfw_obj_tentry *tent)
3913 {
3914 	uint32_t scopeid;
3915 	int plen;
3916 
3917 #ifdef INET
3918 	if (family == AF_INET) {
3919 		rt_get_inet_prefix_plen(rt, &tent->k.addr, &plen, &scopeid);
3920 		tent->masklen = plen;
3921 		tent->subtype = AF_INET;
3922 		tent->v.kidx = 0;
3923 	}
3924 #endif
3925 #ifdef INET6
3926 	if (family == AF_INET6) {
3927 		rt_get_inet6_prefix_plen(rt, &tent->k.addr6, &plen, &scopeid);
3928 		tent->masklen = plen;
3929 		tent->subtype = AF_INET6;
3930 		tent->v.kidx = 0;
3931 	}
3932 #endif
3933 	return (0);
3934 }
3935 
3936 static int
3937 ta_find_kfib_tentry(void *ta_state, struct table_info *ti,
3938     ipfw_obj_tentry *tent)
3939 {
3940 	struct rtentry *rt = NULL;
3941 	struct route_nhop_data rnd;
3942 	struct epoch_tracker et;
3943 	int error;
3944 
3945 	NET_EPOCH_ENTER(et);
3946 
3947 	switch (tent->subtype) {
3948 #ifdef INET
3949 	case AF_INET:
3950 		rt = fib4_lookup_rt(ti->data, tent->k.addr, 0, 0, &rnd);
3951 		break;
3952 #endif
3953 #ifdef INET6
3954 	case AF_INET6:
3955 		rt = fib6_lookup_rt(ti->data, &tent->k.addr6, 0, 0, &rnd);
3956 		break;
3957 #endif
3958 	}
3959 	if (rt != NULL)
3960 		error = ta_dump_kfib_tentry_int(tent->subtype, rt, tent);
3961 	else
3962 		error = ENOENT;
3963 	NET_EPOCH_EXIT(et);
3964 
3965 	return (error);
3966 }
3967 
3968 struct kfib_dump_arg {
3969 	struct rtentry *rt;
3970 	int		family;
3971 	ta_foreach_f	*f;
3972 	void		*arg;
3973 };
3974 
3975 static int
3976 ta_dump_kfib_tentry(void *ta_state, struct table_info *ti, void *e,
3977     ipfw_obj_tentry *tent)
3978 {
3979 	struct kfib_dump_arg *karg = (struct kfib_dump_arg *)e;
3980 
3981 	return (ta_dump_kfib_tentry_int(karg->family, karg->rt, tent));
3982 }
3983 
3984 static int
3985 walk_wrapper_f(struct rtentry *rt, void *arg)
3986 {
3987 	struct kfib_dump_arg *karg = (struct kfib_dump_arg *)arg;
3988 
3989 	karg->rt = rt;
3990 	return (karg->f(karg, karg->arg));
3991 }
3992 
3993 static void
3994 ta_foreach_kfib(void *ta_state, struct table_info *ti, ta_foreach_f *f,
3995     void *arg)
3996 {
3997 	struct kfib_dump_arg karg = { .f = f, .arg = arg };
3998 
3999 	karg.family = AF_INET;
4000 	rib_walk(ti->data, AF_INET, false, walk_wrapper_f, &karg);
4001 	karg.family = AF_INET6;
4002 	rib_walk(ti->data, AF_INET6, false, walk_wrapper_f, &karg);
4003 }
4004 
4005 struct table_algo addr_kfib = {
4006 	.name		= "addr:kfib",
4007 	.type		= IPFW_TABLE_ADDR,
4008 	.flags		= TA_FLAG_READONLY,
4009 	.ta_buf_size	= 0,
4010 	.init		= ta_init_kfib,
4011 	.destroy	= ta_destroy_kfib,
4012 	.foreach	= ta_foreach_kfib,
4013 	.dump_tentry	= ta_dump_kfib_tentry,
4014 	.find_tentry	= ta_find_kfib_tentry,
4015 	.dump_tinfo	= ta_dump_kfib_tinfo,
4016 	.print_config	= ta_print_kfib_config,
4017 };
4018 
4019 struct mac_radix_entry {
4020 	struct radix_node	rn[2];
4021 	uint32_t		value;
4022 	uint8_t			masklen;
4023 	struct sa_mac		sa;
4024 };
4025 
4026 struct mac_radix_cfg {
4027 	struct radix_node_head	*head;
4028 	size_t			count;
4029 };
4030 
4031 static int
4032 ta_lookup_mac_radix(struct table_info *ti, void *key, uint32_t keylen,
4033     uint32_t *val)
4034 {
4035 	struct radix_node_head *rnh;
4036 
4037 	if (keylen == ETHER_ADDR_LEN) {
4038 		struct mac_radix_entry *ent;
4039 		struct sa_mac sa;
4040 		KEY_LEN(sa) = KEY_LEN_MAC;
4041 		memcpy(sa.mac_addr.octet, key, ETHER_ADDR_LEN);
4042 		rnh = (struct radix_node_head *)ti->state;
4043 		ent = (struct mac_radix_entry *)(rnh->rnh_matchaddr(&sa, &rnh->rh));
4044 		if (ent != NULL) {
4045 			*val = ent->value;
4046 			return (1);
4047 		}
4048 	}
4049 	return (0);
4050 }
4051 
4052 static int
4053 ta_init_mac_radix(struct ip_fw_chain *ch, void **ta_state, struct table_info *ti,
4054     char *data, uint8_t tflags)
4055 {
4056 	struct mac_radix_cfg *cfg;
4057 
4058 	if (!rn_inithead(&ti->state, OFF_LEN_MAC))
4059 		return (ENOMEM);
4060 
4061 	cfg = malloc(sizeof(struct mac_radix_cfg), M_IPFW, M_WAITOK | M_ZERO);
4062 
4063 	*ta_state = cfg;
4064 	ti->lookup = ta_lookup_mac_radix;
4065 
4066 	return (0);
4067 }
4068 
4069 static void
4070 ta_destroy_mac_radix(void *ta_state, struct table_info *ti)
4071 {
4072 	struct mac_radix_cfg *cfg;
4073 	struct radix_node_head *rnh;
4074 
4075 	cfg = (struct mac_radix_cfg *)ta_state;
4076 
4077 	rnh = (struct radix_node_head *)(ti->state);
4078 	rnh->rnh_walktree(&rnh->rh, flush_radix_entry, rnh);
4079 	rn_detachhead(&ti->state);
4080 
4081 	free(cfg, M_IPFW);
4082 }
4083 
4084 static void
4085 tei_to_sockaddr_ent_mac(struct tentry_info *tei, struct sockaddr *sa,
4086     struct sockaddr *ma, int *set_mask)
4087 {
4088 	int mlen, i;
4089 	struct sa_mac *addr, *mask;
4090 	u_char *cp;
4091 
4092 	mlen = tei->masklen;
4093 	addr = (struct sa_mac *)sa;
4094 	mask = (struct sa_mac *)ma;
4095 	/* Set 'total' structure length */
4096 	KEY_LEN(*addr) = KEY_LEN_MAC;
4097 	KEY_LEN(*mask) = KEY_LEN_MAC;
4098 
4099 	for (i = mlen, cp = mask->mac_addr.octet; i >= 8; i -= 8)
4100 		*cp++ = 0xFF;
4101 	if (i > 0)
4102 		*cp = ~((1 << (8 - i)) - 1);
4103 
4104 	addr->mac_addr = *((struct ether_addr *)tei->paddr);
4105 	for (i = 0; i < ETHER_ADDR_LEN; ++i)
4106 		addr->mac_addr.octet[i] &= mask->mac_addr.octet[i];
4107 
4108 	if (mlen != 8 * ETHER_ADDR_LEN)
4109 		*set_mask = 1;
4110 	else
4111 		*set_mask = 0;
4112 }
4113 
4114 static int
4115 ta_prepare_add_mac_radix(struct ip_fw_chain *ch, struct tentry_info *tei,
4116     void *ta_buf)
4117 {
4118 	struct ta_buf_radix *tb;
4119 	struct mac_radix_entry *ent;
4120 	struct sockaddr *addr, *mask;
4121 	int mlen, set_mask;
4122 
4123 	tb = (struct ta_buf_radix *)ta_buf;
4124 
4125 	mlen = tei->masklen;
4126 	set_mask = 0;
4127 
4128 	if (tei->subtype == AF_LINK) {
4129 		if (mlen > 8 * ETHER_ADDR_LEN)
4130 			return (EINVAL);
4131 		ent = malloc(sizeof(*ent), M_IPFW_TBL, M_WAITOK | M_ZERO);
4132 		ent->masklen = mlen;
4133 
4134 		addr = (struct sockaddr *)&ent->sa;
4135 		mask = (struct sockaddr *)&tb->addr.mac.ma;
4136 		tb->ent_ptr = ent;
4137 	} else {
4138 		/* Unknown CIDR type */
4139 		return (EINVAL);
4140 	}
4141 
4142 	tei_to_sockaddr_ent_mac(tei, addr, mask, &set_mask);
4143 	/* Set pointers */
4144 	tb->addr_ptr = addr;
4145 	if (set_mask != 0)
4146 		tb->mask_ptr = mask;
4147 
4148 	return (0);
4149 }
4150 
4151 static int
4152 ta_add_mac_radix(void *ta_state, struct table_info *ti, struct tentry_info *tei,
4153     void *ta_buf, uint32_t *pnum)
4154 {
4155 	struct mac_radix_cfg *cfg;
4156 	struct radix_node_head *rnh;
4157 	struct radix_node *rn;
4158 	struct ta_buf_radix *tb;
4159 	uint32_t *old_value, value;
4160 
4161 	cfg = (struct mac_radix_cfg *)ta_state;
4162 	tb = (struct ta_buf_radix *)ta_buf;
4163 
4164 	/* Save current entry value from @tei */
4165 	rnh = ti->state;
4166 	((struct mac_radix_entry *)tb->ent_ptr)->value = tei->value;
4167 
4168 	/* Search for an entry first */
4169 	rn = rnh->rnh_lookup(tb->addr_ptr, tb->mask_ptr, &rnh->rh);
4170 	if (rn != NULL) {
4171 		if ((tei->flags & TEI_FLAGS_UPDATE) == 0)
4172 			return (EEXIST);
4173 		/* Record already exists. Update value if we're asked to */
4174 		old_value = &((struct mac_radix_entry *)rn)->value;
4175 
4176 		value = *old_value;
4177 		*old_value = tei->value;
4178 		tei->value = value;
4179 
4180 		/* Indicate that update has happened instead of addition */
4181 		tei->flags |= TEI_FLAGS_UPDATED;
4182 		*pnum = 0;
4183 
4184 		return (0);
4185 	}
4186 
4187 	if ((tei->flags & TEI_FLAGS_DONTADD) != 0)
4188 		return (EFBIG);
4189 
4190 	rn = rnh->rnh_addaddr(tb->addr_ptr, tb->mask_ptr, &rnh->rh, tb->ent_ptr);
4191 	if (rn == NULL) {
4192 		/* Unknown error */
4193 		return (EINVAL);
4194 	}
4195 
4196 	cfg->count++;
4197 	tb->ent_ptr = NULL;
4198 	*pnum = 1;
4199 
4200 	return (0);
4201 }
4202 
4203 static int
4204 ta_prepare_del_mac_radix(struct ip_fw_chain *ch, struct tentry_info *tei,
4205     void *ta_buf)
4206 {
4207 	struct ta_buf_radix *tb;
4208 	struct sockaddr *addr, *mask;
4209 	int mlen, set_mask;
4210 
4211 	tb = (struct ta_buf_radix *)ta_buf;
4212 
4213 	mlen = tei->masklen;
4214 	set_mask = 0;
4215 
4216 	if (tei->subtype == AF_LINK) {
4217 		if (mlen > 8 * ETHER_ADDR_LEN)
4218 			return (EINVAL);
4219 
4220 		addr = (struct sockaddr *)&tb->addr.mac.sa;
4221 		mask = (struct sockaddr *)&tb->addr.mac.ma;
4222 	} else
4223 		return (EINVAL);
4224 
4225 	tei_to_sockaddr_ent_mac(tei, addr, mask, &set_mask);
4226 	tb->addr_ptr = addr;
4227 	if (set_mask != 0)
4228 		tb->mask_ptr = mask;
4229 
4230 	return (0);
4231 }
4232 
4233 static int
4234 ta_del_mac_radix(void *ta_state, struct table_info *ti, struct tentry_info *tei,
4235     void *ta_buf, uint32_t *pnum)
4236 {
4237 	struct mac_radix_cfg *cfg;
4238 	struct radix_node_head *rnh;
4239 	struct radix_node *rn;
4240 	struct ta_buf_radix *tb;
4241 
4242 	cfg = (struct mac_radix_cfg *)ta_state;
4243 	tb = (struct ta_buf_radix *)ta_buf;
4244 	rnh = ti->state;
4245 
4246 	rn = rnh->rnh_deladdr(tb->addr_ptr, tb->mask_ptr, &rnh->rh);
4247 
4248 	if (rn == NULL)
4249 		return (ENOENT);
4250 
4251 	/* Save entry value to @tei */
4252 	tei->value = ((struct mac_radix_entry *)rn)->value;
4253 
4254 	tb->ent_ptr = rn;
4255 	cfg->count--;
4256 	*pnum = 1;
4257 
4258 	return (0);
4259 }
4260 
4261 static void
4262 ta_foreach_mac_radix(void *ta_state, struct table_info *ti, ta_foreach_f *f,
4263     void *arg)
4264 {
4265 	struct radix_node_head *rnh;
4266 
4267 	rnh = (struct radix_node_head *)(ti->state);
4268 	rnh->rnh_walktree(&rnh->rh, (walktree_f_t *)f, arg);
4269 }
4270 
4271 static void
4272 ta_dump_mac_radix_tinfo(void *ta_state, struct table_info *ti, ipfw_ta_tinfo *tinfo)
4273 {
4274 	struct mac_radix_cfg *cfg;
4275 
4276 	cfg = (struct mac_radix_cfg *)ta_state;
4277 
4278 	tinfo->flags = IPFW_TATFLAGS_AFDATA | IPFW_TATFLAGS_AFITEM;
4279 	tinfo->taclass4 = IPFW_TACLASS_RADIX;
4280 	tinfo->count4 = cfg->count;
4281 	tinfo->itemsize4 = sizeof(struct mac_radix_entry);
4282 }
4283 
4284 static int
4285 ta_dump_mac_radix_tentry(void *ta_state, struct table_info *ti, void *e,
4286     ipfw_obj_tentry *tent)
4287 {
4288 	struct mac_radix_entry *n = (struct mac_radix_entry *)e;
4289 
4290 	memcpy(tent->k.mac, n->sa.mac_addr.octet, ETHER_ADDR_LEN);
4291 	tent->masklen = n->masklen;
4292 	tent->subtype = AF_LINK;
4293 	tent->v.kidx = n->value;
4294 
4295 	return (0);
4296 }
4297 
4298 static int
4299 ta_find_mac_radix_tentry(void *ta_state, struct table_info *ti,
4300     ipfw_obj_tentry *tent)
4301 {
4302 	struct radix_node_head *rnh;
4303 	void *e;
4304 
4305 	e = NULL;
4306 	if (tent->subtype == AF_LINK) {
4307 		struct sa_mac sa;
4308 		KEY_LEN(sa) = KEY_LEN_MAC;
4309 		memcpy(tent->k.mac, sa.mac_addr.octet, ETHER_ADDR_LEN);
4310 		rnh = (struct radix_node_head *)ti->state;
4311 		e = rnh->rnh_matchaddr(&sa, &rnh->rh);
4312 	}
4313 
4314 	if (e != NULL) {
4315 		ta_dump_mac_radix_tentry(ta_state, ti, e, tent);
4316 		return (0);
4317 	}
4318 
4319 	return (ENOENT);
4320 }
4321 
4322 struct table_algo mac_radix = {
4323 	.name		= "mac:radix",
4324 	.type		= IPFW_TABLE_MAC,
4325 	.flags		= TA_FLAG_DEFAULT,
4326 	.ta_buf_size	= sizeof(struct ta_buf_radix),
4327 	.init		= ta_init_mac_radix,
4328 	.destroy	= ta_destroy_mac_radix,
4329 	.prepare_add	= ta_prepare_add_mac_radix,
4330 	.prepare_del	= ta_prepare_del_mac_radix,
4331 	.add		= ta_add_mac_radix,
4332 	.del		= ta_del_mac_radix,
4333 	.flush_entry	= ta_flush_radix_entry,
4334 	.foreach	= ta_foreach_mac_radix,
4335 	.dump_tentry	= ta_dump_mac_radix_tentry,
4336 	.find_tentry	= ta_find_mac_radix_tentry,
4337 	.dump_tinfo	= ta_dump_mac_radix_tinfo,
4338 	.need_modify	= ta_need_modify_radix,
4339 };
4340 
4341 void
4342 ipfw_table_algo_init(struct ip_fw_chain *ch)
4343 {
4344 	size_t sz;
4345 
4346 	/*
4347 	 * Register all algorithms presented here.
4348 	 */
4349 	sz = sizeof(struct table_algo);
4350 	ipfw_add_table_algo(ch, &addr_radix, sz, &addr_radix.idx);
4351 	ipfw_add_table_algo(ch, &addr_hash, sz, &addr_hash.idx);
4352 	ipfw_add_table_algo(ch, &iface_idx, sz, &iface_idx.idx);
4353 	ipfw_add_table_algo(ch, &number_array, sz, &number_array.idx);
4354 	ipfw_add_table_algo(ch, &flow_hash, sz, &flow_hash.idx);
4355 	ipfw_add_table_algo(ch, &addr_kfib, sz, &addr_kfib.idx);
4356 	ipfw_add_table_algo(ch, &mac_radix, sz, &mac_radix.idx);
4357 }
4358 
4359 void
4360 ipfw_table_algo_destroy(struct ip_fw_chain *ch)
4361 {
4362 
4363 	ipfw_del_table_algo(ch, addr_radix.idx);
4364 	ipfw_del_table_algo(ch, addr_hash.idx);
4365 	ipfw_del_table_algo(ch, iface_idx.idx);
4366 	ipfw_del_table_algo(ch, number_array.idx);
4367 	ipfw_del_table_algo(ch, flow_hash.idx);
4368 	ipfw_del_table_algo(ch, addr_kfib.idx);
4369 	ipfw_del_table_algo(ch, mac_radix.idx);
4370 }
4371