1 /*-
2  * Copyright (c) 2015-2018 Yandex LLC
3  * Copyright (c) 2015-2018 Andrey V. Elsukov <ae@FreeBSD.org>
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  *
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26  */
27 
28 #include <sys/cdefs.h>
29 __FBSDID("$FreeBSD$");
30 
31 #include <sys/param.h>
32 #include <sys/systm.h>
33 #include <sys/counter.h>
34 #include <sys/errno.h>
35 #include <sys/kernel.h>
36 #include <sys/lock.h>
37 #include <sys/mbuf.h>
38 #include <sys/module.h>
39 #include <sys/rmlock.h>
40 #include <sys/rwlock.h>
41 #include <sys/socket.h>
42 #include <sys/queue.h>
43 
44 #include <net/if.h>
45 #include <net/if_var.h>
46 #include <net/if_pflog.h>
47 #include <net/pfil.h>
48 #include <net/netisr.h>
49 #include <net/route.h>
50 
51 #include <netinet/in.h>
52 #include <netinet/in_fib.h>
53 #include <netinet/ip.h>
54 #include <netinet/ip_var.h>
55 #include <netinet/ip_fw.h>
56 #include <netinet/ip6.h>
57 #include <netinet/icmp6.h>
58 #include <netinet/ip_icmp.h>
59 #include <netinet/tcp.h>
60 #include <netinet/udp.h>
61 #include <netinet6/in6_var.h>
62 #include <netinet6/in6_fib.h>
63 #include <netinet6/ip6_var.h>
64 
65 #include <netpfil/pf/pf.h>
66 #include <netpfil/ipfw/ip_fw_private.h>
67 #include <machine/in_cksum.h>
68 
69 #include "ip_fw_nat64.h"
70 #include "nat64_translate.h"
71 
72 
73 typedef int (*nat64_output_t)(struct ifnet *, struct mbuf *,
74     struct sockaddr *, struct nat64_counters *, void *);
75 typedef int (*nat64_output_one_t)(struct mbuf *, struct nat64_counters *,
76     void *);
77 
78 static int nat64_find_route4(struct nhop4_basic *, struct sockaddr_in *,
79     struct mbuf *);
80 static int nat64_find_route6(struct nhop6_basic *, struct sockaddr_in6 *,
81     struct mbuf *);
82 static int nat64_output_one(struct mbuf *, struct nat64_counters *, void *);
83 static int nat64_output(struct ifnet *, struct mbuf *, struct sockaddr *,
84     struct nat64_counters *, void *);
85 static int nat64_direct_output_one(struct mbuf *, struct nat64_counters *,
86     void *);
87 static int nat64_direct_output(struct ifnet *, struct mbuf *,
88     struct sockaddr *, struct nat64_counters *, void *);
89 
90 struct nat64_methods {
91 	nat64_output_t		output;
92 	nat64_output_one_t	output_one;
93 };
94 static const struct nat64_methods nat64_netisr = {
95 	.output = nat64_output,
96 	.output_one = nat64_output_one
97 };
98 static const struct nat64_methods nat64_direct = {
99 	.output = nat64_direct_output,
100 	.output_one = nat64_direct_output_one
101 };
102 VNET_DEFINE_STATIC(const struct nat64_methods *, nat64out) = &nat64_netisr;
103 #define	V_nat64out	VNET(nat64out)
104 
105 void
106 nat64_set_output_method(int direct)
107 {
108 
109 	V_nat64out = direct != 0 ? &nat64_direct: &nat64_netisr;
110 }
111 
112 int
113 nat64_get_output_method(void)
114 {
115 
116 	return (V_nat64out == &nat64_direct ? 1: 0);
117 }
118 
119 static void
120 nat64_log(struct pfloghdr *logdata, struct mbuf *m, sa_family_t family)
121 {
122 
123 	logdata->dir = PF_OUT;
124 	logdata->af = family;
125 	ipfw_bpf_mtap2(logdata, PFLOG_HDRLEN, m);
126 }
127 
128 static int
129 nat64_direct_output(struct ifnet *ifp, struct mbuf *m, struct sockaddr *dst,
130     struct nat64_counters *stats, void *logdata)
131 {
132 	int error;
133 
134 	if (logdata != NULL)
135 		nat64_log(logdata, m, dst->sa_family);
136 	error = (*ifp->if_output)(ifp, m, dst, NULL);
137 	if (error != 0)
138 		NAT64STAT_INC(stats, oerrors);
139 	return (error);
140 }
141 
142 static int
143 nat64_direct_output_one(struct mbuf *m, struct nat64_counters *stats,
144     void *logdata)
145 {
146 	struct nhop6_basic nh6;
147 	struct nhop4_basic nh4;
148 	struct sockaddr_in6 dst6;
149 	struct sockaddr_in dst4;
150 	struct sockaddr *dst;
151 	struct ip6_hdr *ip6;
152 	struct ip *ip4;
153 	struct ifnet *ifp;
154 	int error;
155 
156 	ip4 = mtod(m, struct ip *);
157 	switch (ip4->ip_v) {
158 	case IPVERSION:
159 		dst4.sin_addr = ip4->ip_dst;
160 		error = nat64_find_route4(&nh4, &dst4, m);
161 		if (error != 0)
162 			NAT64STAT_INC(stats, noroute4);
163 		else {
164 			ifp = nh4.nh_ifp;
165 			dst = (struct sockaddr *)&dst4;
166 		}
167 		break;
168 	case (IPV6_VERSION >> 4):
169 		ip6 = mtod(m, struct ip6_hdr *);
170 		dst6.sin6_addr = ip6->ip6_dst;
171 		error = nat64_find_route6(&nh6, &dst6, m);
172 		if (error != 0)
173 			NAT64STAT_INC(stats, noroute6);
174 		else {
175 			ifp = nh6.nh_ifp;
176 			dst = (struct sockaddr *)&dst6;
177 		}
178 		break;
179 	default:
180 		m_freem(m);
181 		NAT64STAT_INC(stats, dropped);
182 		DPRINTF(DP_DROPS, "dropped due to unknown IP version");
183 		return (EAFNOSUPPORT);
184 	}
185 	if (error != 0) {
186 		m_freem(m);
187 		return (EHOSTUNREACH);
188 	}
189 	if (logdata != NULL)
190 		nat64_log(logdata, m, dst->sa_family);
191 	error = (*ifp->if_output)(ifp, m, dst, NULL);
192 	if (error != 0)
193 		NAT64STAT_INC(stats, oerrors);
194 	return (error);
195 }
196 
197 static int
198 nat64_output(struct ifnet *ifp, struct mbuf *m, struct sockaddr *dst,
199     struct nat64_counters *stats, void *logdata)
200 {
201 	struct ip *ip4;
202 	int ret, af;
203 
204 	ip4 = mtod(m, struct ip *);
205 	switch (ip4->ip_v) {
206 	case IPVERSION:
207 		af = AF_INET;
208 		ret = NETISR_IP;
209 		break;
210 	case (IPV6_VERSION >> 4):
211 		af = AF_INET6;
212 		ret = NETISR_IPV6;
213 		break;
214 	default:
215 		m_freem(m);
216 		NAT64STAT_INC(stats, dropped);
217 		DPRINTF(DP_DROPS, "unknown IP version");
218 		return (EAFNOSUPPORT);
219 	}
220 	if (logdata != NULL)
221 		nat64_log(logdata, m, af);
222 	ret = netisr_queue(ret, m);
223 	if (ret != 0)
224 		NAT64STAT_INC(stats, oerrors);
225 	return (ret);
226 }
227 
228 static int
229 nat64_output_one(struct mbuf *m, struct nat64_counters *stats, void *logdata)
230 {
231 
232 	return (nat64_output(NULL, m, NULL, stats, logdata));
233 }
234 
235 /*
236  * Check the given IPv6 prefix and length according to RFC6052:
237  *   The prefixes can only have one of the following lengths:
238  *   32, 40, 48, 56, 64, or 96 (The Well-Known Prefix is 96 bits long).
239  * Returns zero on success, otherwise EINVAL.
240  */
241 int
242 nat64_check_prefix6(const struct in6_addr *prefix, int length)
243 {
244 
245 	switch (length) {
246 	case 32:
247 	case 40:
248 	case 48:
249 	case 56:
250 	case 64:
251 		/* Well-known prefix has 96 prefix length */
252 		if (IN6_IS_ADDR_WKPFX(prefix))
253 			return (EINVAL);
254 		/* FALLTHROUGH */
255 	case 96:
256 		/* Bits 64 to 71 must be set to zero */
257 		if (prefix->__u6_addr.__u6_addr8[8] != 0)
258 			return (EINVAL);
259 		/* Some extra checks */
260 		if (IN6_IS_ADDR_MULTICAST(prefix) ||
261 		    IN6_IS_ADDR_UNSPECIFIED(prefix) ||
262 		    IN6_IS_ADDR_LOOPBACK(prefix))
263 			return (EINVAL);
264 		return (0);
265 	}
266 	return (EINVAL);
267 }
268 
269 int
270 nat64_check_private_ip4(const struct nat64_config *cfg, in_addr_t ia)
271 {
272 
273 	if (V_nat64_allow_private)
274 		return (0);
275 
276 	/* WKPFX must not be used to represent non-global IPv4 addresses */
277 	if (cfg->flags & NAT64_WKPFX) {
278 		/* IN_PRIVATE */
279 		if ((ia & htonl(0xff000000)) == htonl(0x0a000000) ||
280 		    (ia & htonl(0xfff00000)) == htonl(0xac100000) ||
281 		    (ia & htonl(0xffff0000)) == htonl(0xc0a80000))
282 			return (1);
283 		/*
284 		 * RFC 5735:
285 		 *  192.0.0.0/24 - reserved for IETF protocol assignments
286 		 *  192.88.99.0/24 - for use as 6to4 relay anycast addresses
287 		 *  198.18.0.0/15 - for use in benchmark tests
288 		 *  192.0.2.0/24, 198.51.100.0/24, 203.0.113.0/24 - for use
289 		 *   in documentation and example code
290 		 */
291 		if ((ia & htonl(0xffffff00)) == htonl(0xc0000000) ||
292 		    (ia & htonl(0xffffff00)) == htonl(0xc0586300) ||
293 		    (ia & htonl(0xfffffe00)) == htonl(0xc6120000) ||
294 		    (ia & htonl(0xffffff00)) == htonl(0xc0000200) ||
295 		    (ia & htonl(0xfffffe00)) == htonl(0xc6336400) ||
296 		    (ia & htonl(0xffffff00)) == htonl(0xcb007100))
297 			return (1);
298 	}
299 	return (0);
300 }
301 
302 void
303 nat64_embed_ip4(const struct nat64_config *cfg, in_addr_t ia,
304     struct in6_addr *ip6)
305 {
306 
307 	/* assume the prefix6 is properly filled with zeros */
308 	bcopy(&cfg->prefix6, ip6, sizeof(*ip6));
309 	switch (cfg->plen6) {
310 	case 32:
311 	case 96:
312 		ip6->s6_addr32[cfg->plen6 / 32] = ia;
313 		break;
314 	case 40:
315 	case 48:
316 	case 56:
317 #if BYTE_ORDER == BIG_ENDIAN
318 		ip6->s6_addr32[1] = cfg->prefix6.s6_addr32[1] |
319 		    (ia >> (cfg->plen6 % 32));
320 		ip6->s6_addr32[2] = ia << (24 - cfg->plen6 % 32);
321 #elif BYTE_ORDER == LITTLE_ENDIAN
322 		ip6->s6_addr32[1] = cfg->prefix6.s6_addr32[1] |
323 		    (ia << (cfg->plen6 % 32));
324 		ip6->s6_addr32[2] = ia >> (24 - cfg->plen6 % 32);
325 #endif
326 		break;
327 	case 64:
328 #if BYTE_ORDER == BIG_ENDIAN
329 		ip6->s6_addr32[2] = ia >> 8;
330 		ip6->s6_addr32[3] = ia << 24;
331 #elif BYTE_ORDER == LITTLE_ENDIAN
332 		ip6->s6_addr32[2] = ia << 8;
333 		ip6->s6_addr32[3] = ia >> 24;
334 #endif
335 		break;
336 	default:
337 		panic("Wrong plen6");
338 	};
339 	ip6->s6_addr8[8] = 0;
340 }
341 
342 in_addr_t
343 nat64_extract_ip4(const struct nat64_config *cfg, const struct in6_addr *ip6)
344 {
345 	in_addr_t ia;
346 
347 	/*
348 	 * According to RFC 6052 p2.2:
349 	 * IPv4-embedded IPv6 addresses are composed of a variable-length
350 	 * prefix, the embedded IPv4 address, and a variable length suffix.
351 	 * The suffix bits are reserved for future extensions and SHOULD
352 	 * be set to zero.
353 	 */
354 	switch (cfg->plen6) {
355 	case 32:
356 		if (ip6->s6_addr32[3] != 0 || ip6->s6_addr32[2] != 0)
357 			goto badip6;
358 		break;
359 	case 40:
360 		if (ip6->s6_addr32[3] != 0 ||
361 		    (ip6->s6_addr32[2] & htonl(0xff00ffff)) != 0)
362 			goto badip6;
363 		break;
364 	case 48:
365 		if (ip6->s6_addr32[3] != 0 ||
366 		    (ip6->s6_addr32[2] & htonl(0xff0000ff)) != 0)
367 			goto badip6;
368 		break;
369 	case 56:
370 		if (ip6->s6_addr32[3] != 0 || ip6->s6_addr8[8] != 0)
371 			goto badip6;
372 		break;
373 	case 64:
374 		if (ip6->s6_addr8[8] != 0 ||
375 		    (ip6->s6_addr32[3] & htonl(0x00ffffff)) != 0)
376 			goto badip6;
377 	};
378 	switch (cfg->plen6) {
379 	case 32:
380 	case 96:
381 		ia = ip6->s6_addr32[cfg->plen6 / 32];
382 		break;
383 	case 40:
384 	case 48:
385 	case 56:
386 #if BYTE_ORDER == BIG_ENDIAN
387 		ia = (ip6->s6_addr32[1] << (cfg->plen6 % 32)) |
388 		    (ip6->s6_addr32[2] >> (24 - cfg->plen6 % 32));
389 #elif BYTE_ORDER == LITTLE_ENDIAN
390 		ia = (ip6->s6_addr32[1] >> (cfg->plen6 % 32)) |
391 		    (ip6->s6_addr32[2] << (24 - cfg->plen6 % 32));
392 #endif
393 		break;
394 	case 64:
395 #if BYTE_ORDER == BIG_ENDIAN
396 		ia = (ip6->s6_addr32[2] << 8) | (ip6->s6_addr32[3] >> 24);
397 #elif BYTE_ORDER == LITTLE_ENDIAN
398 		ia = (ip6->s6_addr32[2] >> 8) | (ip6->s6_addr32[3] << 24);
399 #endif
400 		break;
401 	default:
402 		return (0);
403 	};
404 	if (nat64_check_ip4(ia) != 0 ||
405 	    nat64_check_private_ip4(cfg, ia) != 0)
406 		goto badip4;
407 
408 	return (ia);
409 badip4:
410 	DPRINTF(DP_GENERIC | DP_DROPS,
411 	    "invalid destination address: %08x", ia);
412 	return (0);
413 badip6:
414 	DPRINTF(DP_GENERIC | DP_DROPS, "invalid IPv4-embedded IPv6 address");
415 	return (0);
416 }
417 
418 /*
419  * According to RFC 1624 the equation for incremental checksum update is:
420  *	HC' = ~(~HC + ~m + m')	--	[Eqn. 3]
421  *	HC' = HC - ~m - m'	--	[Eqn. 4]
422  * So, when we are replacing IPv4 addresses to IPv6, we
423  * can assume, that new bytes previously were zeros, and vise versa -
424  * when we replacing IPv6 addresses to IPv4, now unused bytes become
425  * zeros. The payload length in pseudo header has bigger size, but one
426  * half of it should be zero. Using the equation 4 we get:
427  *	HC' = HC - (~m0 + m0')	-- m0 is first changed word
428  *	HC' = (HC - (~m0 + m0')) - (~m1 + m1')	-- m1 is second changed word
429  *	HC' = HC - ~m0 - m0' - ~m1 - m1' - ... =
430  *	  = HC - sum(~m[i] + m'[i])
431  *
432  * The function result should be used as follows:
433  *	IPv6 to IPv4:	HC' = cksum_add(HC, result)
434  *	IPv4 to IPv6:	HC' = cksum_add(HC, ~result)
435  */
436 static NAT64NOINLINE uint16_t
437 nat64_cksum_convert(struct ip6_hdr *ip6, struct ip *ip)
438 {
439 	uint32_t sum;
440 	uint16_t *p;
441 
442 	sum = ~ip->ip_src.s_addr >> 16;
443 	sum += ~ip->ip_src.s_addr & 0xffff;
444 	sum += ~ip->ip_dst.s_addr >> 16;
445 	sum += ~ip->ip_dst.s_addr & 0xffff;
446 
447 	for (p = (uint16_t *)&ip6->ip6_src;
448 	    p < (uint16_t *)(&ip6->ip6_src + 2); p++)
449 		sum += *p;
450 
451 	while (sum >> 16)
452 		sum = (sum & 0xffff) + (sum >> 16);
453 	return (sum);
454 }
455 
456 static NAT64NOINLINE void
457 nat64_init_ip4hdr(const struct ip6_hdr *ip6, const struct ip6_frag *frag,
458     uint16_t plen, uint8_t proto, struct ip *ip)
459 {
460 
461 	/* assume addresses are already initialized */
462 	ip->ip_v = IPVERSION;
463 	ip->ip_hl = sizeof(*ip) >> 2;
464 	ip->ip_tos = (ntohl(ip6->ip6_flow) >> 20) & 0xff;
465 	ip->ip_len = htons(sizeof(*ip) + plen);
466 	ip->ip_ttl = ip6->ip6_hlim;
467 	/* Forwarding code will decrement TTL for netisr based output. */
468 	if (V_nat64out == &nat64_direct)
469 		ip->ip_ttl -= IPV6_HLIMDEC;
470 	ip->ip_sum = 0;
471 	ip->ip_p = (proto == IPPROTO_ICMPV6) ? IPPROTO_ICMP: proto;
472 	ip_fillid(ip);
473 	if (frag != NULL) {
474 		ip->ip_off = htons(ntohs(frag->ip6f_offlg) >> 3);
475 		if (frag->ip6f_offlg & IP6F_MORE_FRAG)
476 			ip->ip_off |= htons(IP_MF);
477 	} else {
478 		ip->ip_off = htons(IP_DF);
479 	}
480 	ip->ip_sum = in_cksum_hdr(ip);
481 }
482 
483 #define	FRAGSZ(mtu) ((mtu) - sizeof(struct ip6_hdr) - sizeof(struct ip6_frag))
484 static NAT64NOINLINE int
485 nat64_fragment6(struct nat64_counters *stats, struct ip6_hdr *ip6,
486     struct mbufq *mq, struct mbuf *m, uint32_t mtu, uint16_t ip_id,
487     uint16_t ip_off)
488 {
489 	struct ip6_frag ip6f;
490 	struct mbuf *n;
491 	uint16_t hlen, len, offset;
492 	int plen;
493 
494 	plen = ntohs(ip6->ip6_plen);
495 	hlen = sizeof(struct ip6_hdr);
496 
497 	/* Fragmentation isn't needed */
498 	if (ip_off == 0 && plen <= mtu - hlen) {
499 		M_PREPEND(m, hlen, M_NOWAIT);
500 		if (m == NULL) {
501 			NAT64STAT_INC(stats, nomem);
502 			return (ENOMEM);
503 		}
504 		bcopy(ip6, mtod(m, void *), hlen);
505 		if (mbufq_enqueue(mq, m) != 0) {
506 			m_freem(m);
507 			NAT64STAT_INC(stats, dropped);
508 			DPRINTF(DP_DROPS, "dropped due to mbufq overflow");
509 			return (ENOBUFS);
510 		}
511 		return (0);
512 	}
513 
514 	hlen += sizeof(struct ip6_frag);
515 	ip6f.ip6f_reserved = 0;
516 	ip6f.ip6f_nxt = ip6->ip6_nxt;
517 	ip6->ip6_nxt = IPPROTO_FRAGMENT;
518 	if (ip_off != 0) {
519 		/*
520 		 * We have got an IPv4 fragment.
521 		 * Use offset value and ip_id from original fragment.
522 		 */
523 		ip6f.ip6f_ident = htonl(ntohs(ip_id));
524 		offset = (ntohs(ip_off) & IP_OFFMASK) << 3;
525 		NAT64STAT_INC(stats, ifrags);
526 	} else {
527 		/* The packet size exceeds interface MTU */
528 		ip6f.ip6f_ident = htonl(ip6_randomid());
529 		offset = 0; /* First fragment*/
530 	}
531 	while (plen > 0 && m != NULL) {
532 		n = NULL;
533 		len = FRAGSZ(mtu) & ~7;
534 		if (len > plen)
535 			len = plen;
536 		ip6->ip6_plen = htons(len + sizeof(ip6f));
537 		ip6f.ip6f_offlg = ntohs(offset);
538 		if (len < plen || (ip_off & htons(IP_MF)) != 0)
539 			ip6f.ip6f_offlg |= IP6F_MORE_FRAG;
540 		offset += len;
541 		plen -= len;
542 		if (plen > 0) {
543 			n = m_split(m, len, M_NOWAIT);
544 			if (n == NULL)
545 				goto fail;
546 		}
547 		M_PREPEND(m, hlen, M_NOWAIT);
548 		if (m == NULL)
549 			goto fail;
550 		bcopy(ip6, mtod(m, void *), sizeof(struct ip6_hdr));
551 		bcopy(&ip6f, mtodo(m, sizeof(struct ip6_hdr)),
552 		    sizeof(struct ip6_frag));
553 		if (mbufq_enqueue(mq, m) != 0)
554 			goto fail;
555 		m = n;
556 	}
557 	NAT64STAT_ADD(stats, ofrags, mbufq_len(mq));
558 	return (0);
559 fail:
560 	if (m != NULL)
561 		m_freem(m);
562 	if (n != NULL)
563 		m_freem(n);
564 	mbufq_drain(mq);
565 	NAT64STAT_INC(stats, nomem);
566 	return (ENOMEM);
567 }
568 
569 static NAT64NOINLINE int
570 nat64_find_route6(struct nhop6_basic *pnh, struct sockaddr_in6 *dst,
571     struct mbuf *m)
572 {
573 
574 	if (fib6_lookup_nh_basic(M_GETFIB(m), &dst->sin6_addr, 0, 0, 0,
575 	    pnh) != 0)
576 		return (EHOSTUNREACH);
577 	if (pnh->nh_flags & (NHF_BLACKHOLE | NHF_REJECT))
578 		return (EHOSTUNREACH);
579 	/*
580 	 * XXX: we need to use destination address with embedded scope
581 	 * zone id, because LLTABLE uses such form of addresses for lookup.
582 	 */
583 	dst->sin6_family = AF_INET6;
584 	dst->sin6_len = sizeof(*dst);
585 	dst->sin6_addr = pnh->nh_addr;
586 	if (IN6_IS_SCOPE_LINKLOCAL(&dst->sin6_addr))
587 		dst->sin6_addr.s6_addr16[1] =
588 		    htons(pnh->nh_ifp->if_index & 0xffff);
589 	dst->sin6_port = 0;
590 	dst->sin6_scope_id = 0;
591 	dst->sin6_flowinfo = 0;
592 
593 	return (0);
594 }
595 
596 #define	NAT64_ICMP6_PLEN	64
597 static NAT64NOINLINE void
598 nat64_icmp6_reflect(struct mbuf *m, uint8_t type, uint8_t code, uint32_t mtu,
599     struct nat64_counters *stats, void *logdata)
600 {
601 	struct icmp6_hdr *icmp6;
602 	struct ip6_hdr *ip6, *oip6;
603 	struct mbuf *n;
604 	int len, plen;
605 
606 	len = 0;
607 	plen = nat64_getlasthdr(m, &len);
608 	if (plen < 0) {
609 		DPRINTF(DP_DROPS, "mbuf isn't contigious");
610 		goto freeit;
611 	}
612 	/*
613 	 * Do not send ICMPv6 in reply to ICMPv6 errors.
614 	 */
615 	if (plen == IPPROTO_ICMPV6) {
616 		if (m->m_len < len + sizeof(*icmp6)) {
617 			DPRINTF(DP_DROPS, "mbuf isn't contigious");
618 			goto freeit;
619 		}
620 		icmp6 = mtodo(m, len);
621 		if (icmp6->icmp6_type < ICMP6_ECHO_REQUEST ||
622 		    icmp6->icmp6_type == ND_REDIRECT) {
623 			DPRINTF(DP_DROPS, "do not send ICMPv6 in reply to "
624 			    "ICMPv6 errors");
625 			goto freeit;
626 		}
627 	}
628 	/*
629 	if (icmp6_ratelimit(&ip6->ip6_src, type, code))
630 		goto freeit;
631 		*/
632 	ip6 = mtod(m, struct ip6_hdr *);
633 	switch (type) {
634 	case ICMP6_DST_UNREACH:
635 	case ICMP6_PACKET_TOO_BIG:
636 	case ICMP6_TIME_EXCEEDED:
637 	case ICMP6_PARAM_PROB:
638 		break;
639 	default:
640 		goto freeit;
641 	}
642 	/* Calculate length of ICMPv6 payload */
643 	len = (m->m_pkthdr.len > NAT64_ICMP6_PLEN) ? NAT64_ICMP6_PLEN:
644 	    m->m_pkthdr.len;
645 
646 	/* Create new ICMPv6 datagram */
647 	plen = len + sizeof(struct icmp6_hdr);
648 	n = m_get2(sizeof(struct ip6_hdr) + plen + max_hdr, M_NOWAIT,
649 	    MT_HEADER, M_PKTHDR);
650 	if (n == NULL) {
651 		NAT64STAT_INC(stats, nomem);
652 		m_freem(m);
653 		return;
654 	}
655 	/*
656 	 * Move pkthdr from original mbuf. We should have initialized some
657 	 * fields, because we can reinject this mbuf to netisr and it will
658 	 * go trough input path (it requires at least rcvif should be set).
659 	 * Also do M_ALIGN() to reduce chances of need to allocate new mbuf
660 	 * in the chain, when we will do M_PREPEND() or make some type of
661 	 * tunneling.
662 	 */
663 	m_move_pkthdr(n, m);
664 	M_ALIGN(n, sizeof(struct ip6_hdr) + plen + max_hdr);
665 
666 	n->m_len = n->m_pkthdr.len = sizeof(struct ip6_hdr) + plen;
667 	oip6 = mtod(n, struct ip6_hdr *);
668 	oip6->ip6_src = ip6->ip6_dst;
669 	oip6->ip6_dst = ip6->ip6_src;
670 	oip6->ip6_nxt = IPPROTO_ICMPV6;
671 	oip6->ip6_flow = 0;
672 	oip6->ip6_vfc |= IPV6_VERSION;
673 	oip6->ip6_hlim = V_ip6_defhlim;
674 	oip6->ip6_plen = htons(plen);
675 
676 	icmp6 = mtodo(n, sizeof(struct ip6_hdr));
677 	icmp6->icmp6_cksum = 0;
678 	icmp6->icmp6_type = type;
679 	icmp6->icmp6_code = code;
680 	icmp6->icmp6_mtu = htonl(mtu);
681 
682 	m_copydata(m, 0, len, mtodo(n, sizeof(struct ip6_hdr) +
683 	    sizeof(struct icmp6_hdr)));
684 	icmp6->icmp6_cksum = in6_cksum(n, IPPROTO_ICMPV6,
685 	    sizeof(struct ip6_hdr), plen);
686 	m_freem(m);
687 	V_nat64out->output_one(n, stats, logdata);
688 	return;
689 freeit:
690 	NAT64STAT_INC(stats, dropped);
691 	m_freem(m);
692 }
693 
694 static NAT64NOINLINE int
695 nat64_find_route4(struct nhop4_basic *pnh, struct sockaddr_in *dst,
696     struct mbuf *m)
697 {
698 
699 	if (fib4_lookup_nh_basic(M_GETFIB(m), dst->sin_addr, 0, 0, pnh) != 0)
700 		return (EHOSTUNREACH);
701 	if (pnh->nh_flags & (NHF_BLACKHOLE | NHF_BROADCAST | NHF_REJECT))
702 		return (EHOSTUNREACH);
703 
704 	dst->sin_family = AF_INET;
705 	dst->sin_len = sizeof(*dst);
706 	dst->sin_addr = pnh->nh_addr;
707 	dst->sin_port = 0;
708 	return (0);
709 }
710 
711 #define	NAT64_ICMP_PLEN	64
712 static NAT64NOINLINE void
713 nat64_icmp_reflect(struct mbuf *m, uint8_t type,
714     uint8_t code, uint16_t mtu, struct nat64_counters *stats, void *logdata)
715 {
716 	struct icmp *icmp;
717 	struct ip *ip, *oip;
718 	struct mbuf *n;
719 	int len, plen;
720 
721 	ip = mtod(m, struct ip *);
722 	/* Do not send ICMP error if packet is not the first fragment */
723 	if (ip->ip_off & ~ntohs(IP_MF|IP_DF)) {
724 		DPRINTF(DP_DROPS, "not first fragment");
725 		goto freeit;
726 	}
727 	/* Do not send ICMP in reply to ICMP errors */
728 	if (ip->ip_p == IPPROTO_ICMP) {
729 		if (m->m_len < (ip->ip_hl << 2)) {
730 			DPRINTF(DP_DROPS, "mbuf isn't contigious");
731 			goto freeit;
732 		}
733 		icmp = mtodo(m, ip->ip_hl << 2);
734 		if (!ICMP_INFOTYPE(icmp->icmp_type)) {
735 			DPRINTF(DP_DROPS, "do not send ICMP in reply to "
736 			    "ICMP errors");
737 			goto freeit;
738 		}
739 	}
740 	switch (type) {
741 	case ICMP_UNREACH:
742 	case ICMP_TIMXCEED:
743 	case ICMP_PARAMPROB:
744 		break;
745 	default:
746 		goto freeit;
747 	}
748 	/* Calculate length of ICMP payload */
749 	len = (m->m_pkthdr.len > NAT64_ICMP_PLEN) ? (ip->ip_hl << 2) + 8:
750 	    m->m_pkthdr.len;
751 
752 	/* Create new ICMPv4 datagram */
753 	plen = len + sizeof(struct icmphdr) + sizeof(uint32_t);
754 	n = m_get2(sizeof(struct ip) + plen + max_hdr, M_NOWAIT,
755 	    MT_HEADER, M_PKTHDR);
756 	if (n == NULL) {
757 		NAT64STAT_INC(stats, nomem);
758 		m_freem(m);
759 		return;
760 	}
761 	m_move_pkthdr(n, m);
762 	M_ALIGN(n, sizeof(struct ip) + plen + max_hdr);
763 
764 	n->m_len = n->m_pkthdr.len = sizeof(struct ip) + plen;
765 	oip = mtod(n, struct ip *);
766 	oip->ip_v = IPVERSION;
767 	oip->ip_hl = sizeof(struct ip) >> 2;
768 	oip->ip_tos = 0;
769 	oip->ip_len = htons(n->m_pkthdr.len);
770 	oip->ip_ttl = V_ip_defttl;
771 	oip->ip_p = IPPROTO_ICMP;
772 	ip_fillid(oip);
773 	oip->ip_off = htons(IP_DF);
774 	oip->ip_src = ip->ip_dst;
775 	oip->ip_dst = ip->ip_src;
776 	oip->ip_sum = 0;
777 	oip->ip_sum = in_cksum_hdr(oip);
778 
779 	icmp = mtodo(n, sizeof(struct ip));
780 	icmp->icmp_type = type;
781 	icmp->icmp_code = code;
782 	icmp->icmp_cksum = 0;
783 	icmp->icmp_pmvoid = 0;
784 	icmp->icmp_nextmtu = htons(mtu);
785 	m_copydata(m, 0, len, mtodo(n, sizeof(struct ip) +
786 	    sizeof(struct icmphdr) + sizeof(uint32_t)));
787 	icmp->icmp_cksum = in_cksum_skip(n, sizeof(struct ip) + plen,
788 	    sizeof(struct ip));
789 	m_freem(m);
790 	V_nat64out->output_one(n, stats, logdata);
791 	return;
792 freeit:
793 	NAT64STAT_INC(stats, dropped);
794 	m_freem(m);
795 }
796 
797 /* Translate ICMP echo request/reply into ICMPv6 */
798 static void
799 nat64_icmp_handle_echo(struct ip6_hdr *ip6, struct icmp6_hdr *icmp6,
800     uint16_t id, uint8_t type)
801 {
802 	uint16_t old;
803 
804 	old = *(uint16_t *)icmp6;	/* save type+code in one word */
805 	icmp6->icmp6_type = type;
806 	/* Reflect ICMPv6 -> ICMPv4 type translation in the cksum */
807 	icmp6->icmp6_cksum = cksum_adjust(icmp6->icmp6_cksum,
808 	    old, *(uint16_t *)icmp6);
809 	if (id != 0) {
810 		old = icmp6->icmp6_id;
811 		icmp6->icmp6_id = id;
812 		/* Reflect ICMP id translation in the cksum */
813 		icmp6->icmp6_cksum = cksum_adjust(icmp6->icmp6_cksum,
814 		    old, id);
815 	}
816 	/* Reflect IPv6 pseudo header in the cksum */
817 	icmp6->icmp6_cksum = ~in6_cksum_pseudo(ip6, ntohs(ip6->ip6_plen),
818 	    IPPROTO_ICMPV6, ~icmp6->icmp6_cksum);
819 }
820 
821 static NAT64NOINLINE struct mbuf *
822 nat64_icmp_translate(struct mbuf *m, struct ip6_hdr *ip6, uint16_t icmpid,
823     int offset, struct nat64_config *cfg)
824 {
825 	struct ip ip;
826 	struct icmp *icmp;
827 	struct tcphdr *tcp;
828 	struct udphdr *udp;
829 	struct ip6_hdr *eip6;
830 	struct mbuf *n;
831 	uint32_t mtu;
832 	int len, hlen, plen;
833 	uint8_t type, code;
834 
835 	if (m->m_len < offset + ICMP_MINLEN)
836 		m = m_pullup(m, offset + ICMP_MINLEN);
837 	if (m == NULL) {
838 		NAT64STAT_INC(&cfg->stats, nomem);
839 		return (m);
840 	}
841 	mtu = 0;
842 	icmp = mtodo(m, offset);
843 	/* RFC 7915 p4.2 */
844 	switch (icmp->icmp_type) {
845 	case ICMP_ECHOREPLY:
846 		type = ICMP6_ECHO_REPLY;
847 		code = 0;
848 		break;
849 	case ICMP_UNREACH:
850 		type = ICMP6_DST_UNREACH;
851 		switch (icmp->icmp_code) {
852 		case ICMP_UNREACH_NET:
853 		case ICMP_UNREACH_HOST:
854 		case ICMP_UNREACH_SRCFAIL:
855 		case ICMP_UNREACH_NET_UNKNOWN:
856 		case ICMP_UNREACH_HOST_UNKNOWN:
857 		case ICMP_UNREACH_TOSNET:
858 		case ICMP_UNREACH_TOSHOST:
859 			code = ICMP6_DST_UNREACH_NOROUTE;
860 			break;
861 		case ICMP_UNREACH_PROTOCOL:
862 			type = ICMP6_PARAM_PROB;
863 			code = ICMP6_PARAMPROB_NEXTHEADER;
864 			break;
865 		case ICMP_UNREACH_PORT:
866 			code = ICMP6_DST_UNREACH_NOPORT;
867 			break;
868 		case ICMP_UNREACH_NEEDFRAG:
869 			type = ICMP6_PACKET_TOO_BIG;
870 			code = 0;
871 			/* XXX: needs an additional look */
872 			mtu = max(IPV6_MMTU, ntohs(icmp->icmp_nextmtu) + 20);
873 			break;
874 		case ICMP_UNREACH_NET_PROHIB:
875 		case ICMP_UNREACH_HOST_PROHIB:
876 		case ICMP_UNREACH_FILTER_PROHIB:
877 		case ICMP_UNREACH_PRECEDENCE_CUTOFF:
878 			code = ICMP6_DST_UNREACH_ADMIN;
879 			break;
880 		default:
881 			DPRINTF(DP_DROPS, "Unsupported ICMP type %d, code %d",
882 			    icmp->icmp_type, icmp->icmp_code);
883 			goto freeit;
884 		}
885 		break;
886 	case ICMP_TIMXCEED:
887 		type = ICMP6_TIME_EXCEEDED;
888 		code = icmp->icmp_code;
889 		break;
890 	case ICMP_ECHO:
891 		type = ICMP6_ECHO_REQUEST;
892 		code = 0;
893 		break;
894 	case ICMP_PARAMPROB:
895 		type = ICMP6_PARAM_PROB;
896 		switch (icmp->icmp_code) {
897 		case ICMP_PARAMPROB_ERRATPTR:
898 		case ICMP_PARAMPROB_LENGTH:
899 			code = ICMP6_PARAMPROB_HEADER;
900 			switch (icmp->icmp_pptr) {
901 			case 0: /* Version/IHL */
902 			case 1: /* Type Of Service */
903 				mtu = icmp->icmp_pptr;
904 				break;
905 			case 2: /* Total Length */
906 			case 3: mtu = 4; /* Payload Length */
907 				break;
908 			case 8: /* Time to Live */
909 				mtu = 7; /* Hop Limit */
910 				break;
911 			case 9: /* Protocol */
912 				mtu = 6; /* Next Header */
913 				break;
914 			case 12: /* Source address */
915 			case 13:
916 			case 14:
917 			case 15:
918 				mtu = 8;
919 				break;
920 			case 16: /* Destination address */
921 			case 17:
922 			case 18:
923 			case 19:
924 				mtu = 24;
925 				break;
926 			default: /* Silently drop */
927 				DPRINTF(DP_DROPS, "Unsupported ICMP type %d,"
928 				    " code %d, pptr %d", icmp->icmp_type,
929 				    icmp->icmp_code, icmp->icmp_pptr);
930 				goto freeit;
931 			}
932 			break;
933 		default:
934 			DPRINTF(DP_DROPS, "Unsupported ICMP type %d,"
935 			    " code %d, pptr %d", icmp->icmp_type,
936 			    icmp->icmp_code, icmp->icmp_pptr);
937 			goto freeit;
938 		}
939 		break;
940 	default:
941 		DPRINTF(DP_DROPS, "Unsupported ICMP type %d, code %d",
942 		    icmp->icmp_type, icmp->icmp_code);
943 		goto freeit;
944 	}
945 	/*
946 	 * For echo request/reply we can use original payload,
947 	 * but we need adjust icmp_cksum, because ICMPv6 cksum covers
948 	 * IPv6 pseudo header and ICMPv6 types differs from ICMPv4.
949 	 */
950 	if (type == ICMP6_ECHO_REQUEST || type == ICMP6_ECHO_REPLY) {
951 		nat64_icmp_handle_echo(ip6, ICMP6(icmp), icmpid, type);
952 		return (m);
953 	}
954 	/*
955 	 * For other types of ICMP messages we need to translate inner
956 	 * IPv4 header to IPv6 header.
957 	 * Assume ICMP src is the same as payload dst
958 	 * E.g. we have ( GWsrc1 , NATIP1 ) in outer header
959 	 * and          ( NATIP1, Hostdst1 ) in ICMP copy header.
960 	 * In that case, we already have map for NATIP1 and GWsrc1.
961 	 * The only thing we need is to copy IPv6 map prefix to
962 	 * Hostdst1.
963 	 */
964 	hlen = offset + ICMP_MINLEN;
965 	if (m->m_pkthdr.len < hlen + sizeof(struct ip) + ICMP_MINLEN) {
966 		DPRINTF(DP_DROPS, "Message is too short %d",
967 		    m->m_pkthdr.len);
968 		goto freeit;
969 	}
970 	m_copydata(m, hlen, sizeof(struct ip), (char *)&ip);
971 	if (ip.ip_v != IPVERSION) {
972 		DPRINTF(DP_DROPS, "Wrong IP version %d", ip.ip_v);
973 		goto freeit;
974 	}
975 	hlen += ip.ip_hl << 2; /* Skip inner IP header */
976 	if (nat64_check_ip4(ip.ip_src.s_addr) != 0 ||
977 	    nat64_check_ip4(ip.ip_dst.s_addr) != 0 ||
978 	    nat64_check_private_ip4(cfg, ip.ip_src.s_addr) != 0 ||
979 	    nat64_check_private_ip4(cfg, ip.ip_dst.s_addr) != 0) {
980 		DPRINTF(DP_DROPS, "IP addresses checks failed %04x -> %04x",
981 		    ntohl(ip.ip_src.s_addr), ntohl(ip.ip_dst.s_addr));
982 		goto freeit;
983 	}
984 	if (m->m_pkthdr.len < hlen + ICMP_MINLEN) {
985 		DPRINTF(DP_DROPS, "Message is too short %d",
986 		    m->m_pkthdr.len);
987 		goto freeit;
988 	}
989 #if 0
990 	/*
991 	 * Check that inner source matches the outer destination.
992 	 * XXX: We need some method to convert IPv4 into IPv6 address here,
993 	 *	and compare IPv6 addresses.
994 	 */
995 	if (ip.ip_src.s_addr != nat64_get_ip4(&ip6->ip6_dst)) {
996 		DPRINTF(DP_GENERIC, "Inner source doesn't match destination ",
997 		    "%04x vs %04x", ip.ip_src.s_addr,
998 		    nat64_get_ip4(&ip6->ip6_dst));
999 		goto freeit;
1000 	}
1001 #endif
1002 	/*
1003 	 * Create new mbuf for ICMPv6 datagram.
1004 	 * NOTE: len is data length just after inner IP header.
1005 	 */
1006 	len = m->m_pkthdr.len - hlen;
1007 	if (sizeof(struct ip6_hdr) +
1008 	    sizeof(struct icmp6_hdr) + len > NAT64_ICMP6_PLEN)
1009 		len = NAT64_ICMP6_PLEN - sizeof(struct icmp6_hdr) -
1010 		    sizeof(struct ip6_hdr);
1011 	plen = sizeof(struct icmp6_hdr) + sizeof(struct ip6_hdr) + len;
1012 	n = m_get2(offset + plen + max_hdr, M_NOWAIT, MT_HEADER, M_PKTHDR);
1013 	if (n == NULL) {
1014 		NAT64STAT_INC(&cfg->stats, nomem);
1015 		m_freem(m);
1016 		return (NULL);
1017 	}
1018 	m_move_pkthdr(n, m);
1019 	M_ALIGN(n, offset + plen + max_hdr);
1020 	n->m_len = n->m_pkthdr.len = offset + plen;
1021 	/* Adjust ip6_plen in outer header */
1022 	ip6->ip6_plen = htons(plen);
1023 	/* Construct new inner IPv6 header */
1024 	eip6 = mtodo(n, offset + sizeof(struct icmp6_hdr));
1025 	eip6->ip6_src = ip6->ip6_dst;
1026 	/* Use the fact that we have single /96 prefix for IPv4 map */
1027 	eip6->ip6_dst = ip6->ip6_src;
1028 	nat64_embed_ip4(cfg, ip.ip_dst.s_addr, &eip6->ip6_dst);
1029 
1030 	eip6->ip6_flow = htonl(ip.ip_tos << 20);
1031 	eip6->ip6_vfc |= IPV6_VERSION;
1032 	eip6->ip6_hlim = ip.ip_ttl;
1033 	eip6->ip6_plen = htons(ntohs(ip.ip_len) - (ip.ip_hl << 2));
1034 	eip6->ip6_nxt = (ip.ip_p == IPPROTO_ICMP) ? IPPROTO_ICMPV6: ip.ip_p;
1035 	m_copydata(m, hlen, len, (char *)(eip6 + 1));
1036 	/*
1037 	 * We need to translate source port in the inner ULP header,
1038 	 * and adjust ULP checksum.
1039 	 */
1040 	switch (ip.ip_p) {
1041 	case IPPROTO_TCP:
1042 		if (len < offsetof(struct tcphdr, th_sum))
1043 			break;
1044 		tcp = TCP(eip6 + 1);
1045 		if (icmpid != 0) {
1046 			tcp->th_sum = cksum_adjust(tcp->th_sum,
1047 			    tcp->th_sport, icmpid);
1048 			tcp->th_sport = icmpid;
1049 		}
1050 		tcp->th_sum = cksum_add(tcp->th_sum,
1051 		    ~nat64_cksum_convert(eip6, &ip));
1052 		break;
1053 	case IPPROTO_UDP:
1054 		if (len < offsetof(struct udphdr, uh_sum))
1055 			break;
1056 		udp = UDP(eip6 + 1);
1057 		if (icmpid != 0) {
1058 			udp->uh_sum = cksum_adjust(udp->uh_sum,
1059 			    udp->uh_sport, icmpid);
1060 			udp->uh_sport = icmpid;
1061 		}
1062 		udp->uh_sum = cksum_add(udp->uh_sum,
1063 		    ~nat64_cksum_convert(eip6, &ip));
1064 		break;
1065 	case IPPROTO_ICMP:
1066 		/*
1067 		 * Check if this is an ICMP error message for echo request
1068 		 * that we sent. I.e. ULP in the data containing invoking
1069 		 * packet is IPPROTO_ICMP and its type is ICMP_ECHO.
1070 		 */
1071 		icmp = (struct icmp *)(eip6 + 1);
1072 		if (icmp->icmp_type != ICMP_ECHO) {
1073 			m_freem(n);
1074 			goto freeit;
1075 		}
1076 		/*
1077 		 * For our client this original datagram should looks
1078 		 * like it was ICMPv6 datagram with type ICMP6_ECHO_REQUEST.
1079 		 * Thus we need adjust icmp_cksum and convert type from
1080 		 * ICMP_ECHO to ICMP6_ECHO_REQUEST.
1081 		 */
1082 		nat64_icmp_handle_echo(eip6, ICMP6(icmp), icmpid,
1083 		    ICMP6_ECHO_REQUEST);
1084 	}
1085 	m_freem(m);
1086 	/* Convert ICMPv4 into ICMPv6 header */
1087 	icmp = mtodo(n, offset);
1088 	ICMP6(icmp)->icmp6_type = type;
1089 	ICMP6(icmp)->icmp6_code = code;
1090 	ICMP6(icmp)->icmp6_mtu = htonl(mtu);
1091 	ICMP6(icmp)->icmp6_cksum = 0;
1092 	ICMP6(icmp)->icmp6_cksum = cksum_add(
1093 	    ~in6_cksum_pseudo(ip6, plen, IPPROTO_ICMPV6, 0),
1094 	    in_cksum_skip(n, n->m_pkthdr.len, offset));
1095 	return (n);
1096 freeit:
1097 	m_freem(m);
1098 	NAT64STAT_INC(&cfg->stats, dropped);
1099 	return (NULL);
1100 }
1101 
1102 int
1103 nat64_getlasthdr(struct mbuf *m, int *offset)
1104 {
1105 	struct ip6_hdr *ip6;
1106 	struct ip6_hbh *hbh;
1107 	int proto, hlen;
1108 
1109 	if (offset != NULL)
1110 		hlen = *offset;
1111 	else
1112 		hlen = 0;
1113 
1114 	if (m->m_len < hlen + sizeof(*ip6))
1115 		return (-1);
1116 
1117 	ip6 = mtodo(m, hlen);
1118 	hlen += sizeof(*ip6);
1119 	proto = ip6->ip6_nxt;
1120 	/* Skip extension headers */
1121 	while (proto == IPPROTO_HOPOPTS || proto == IPPROTO_ROUTING ||
1122 	    proto == IPPROTO_DSTOPTS) {
1123 		hbh = mtodo(m, hlen);
1124 		/*
1125 		 * We expect mbuf has contigious data up to
1126 		 * upper level header.
1127 		 */
1128 		if (m->m_len < hlen)
1129 			return (-1);
1130 		/*
1131 		 * We doesn't support Jumbo payload option,
1132 		 * so return error.
1133 		 */
1134 		if (proto == IPPROTO_HOPOPTS && ip6->ip6_plen == 0)
1135 			return (-1);
1136 		proto = hbh->ip6h_nxt;
1137 		hlen += (hbh->ip6h_len + 1) << 3;
1138 	}
1139 	if (offset != NULL)
1140 		*offset = hlen;
1141 	return (proto);
1142 }
1143 
1144 int
1145 nat64_do_handle_ip4(struct mbuf *m, struct in6_addr *saddr,
1146     struct in6_addr *daddr, uint16_t lport, struct nat64_config *cfg,
1147     void *logdata)
1148 {
1149 	struct nhop6_basic nh;
1150 	struct ip6_hdr ip6;
1151 	struct sockaddr_in6 dst;
1152 	struct ip *ip;
1153 	struct mbufq mq;
1154 	uint16_t ip_id, ip_off;
1155 	uint16_t *csum;
1156 	int plen, hlen;
1157 	uint8_t proto;
1158 
1159 	ip = mtod(m, struct ip*);
1160 
1161 	if (ip->ip_ttl <= IPTTLDEC) {
1162 		nat64_icmp_reflect(m, ICMP_TIMXCEED,
1163 		    ICMP_TIMXCEED_INTRANS, 0, &cfg->stats, logdata);
1164 		return (NAT64RETURN);
1165 	}
1166 
1167 	ip6.ip6_dst = *daddr;
1168 	ip6.ip6_src = *saddr;
1169 
1170 	hlen = ip->ip_hl << 2;
1171 	plen = ntohs(ip->ip_len) - hlen;
1172 	proto = ip->ip_p;
1173 
1174 	/* Save ip_id and ip_off, both are in network byte order */
1175 	ip_id = ip->ip_id;
1176 	ip_off = ip->ip_off & htons(IP_OFFMASK | IP_MF);
1177 
1178 	/* Fragment length must be multiple of 8 octets */
1179 	if ((ip->ip_off & htons(IP_MF)) != 0 && (plen & 0x7) != 0) {
1180 		nat64_icmp_reflect(m, ICMP_PARAMPROB,
1181 		    ICMP_PARAMPROB_LENGTH, 0, &cfg->stats, logdata);
1182 		return (NAT64RETURN);
1183 	}
1184 	/* Fragmented ICMP is unsupported */
1185 	if (proto == IPPROTO_ICMP && ip_off != 0) {
1186 		DPRINTF(DP_DROPS, "dropped due to fragmented ICMP");
1187 		NAT64STAT_INC(&cfg->stats, dropped);
1188 		return (NAT64MFREE);
1189 	}
1190 
1191 	dst.sin6_addr = ip6.ip6_dst;
1192 	if (nat64_find_route6(&nh, &dst, m) != 0) {
1193 		NAT64STAT_INC(&cfg->stats, noroute6);
1194 		nat64_icmp_reflect(m, ICMP_UNREACH, ICMP_UNREACH_HOST, 0,
1195 		    &cfg->stats, logdata);
1196 		return (NAT64RETURN);
1197 	}
1198 	if (nh.nh_mtu < plen + sizeof(ip6) &&
1199 	    (ip->ip_off & htons(IP_DF)) != 0) {
1200 		nat64_icmp_reflect(m, ICMP_UNREACH, ICMP_UNREACH_NEEDFRAG,
1201 		    FRAGSZ(nh.nh_mtu) + sizeof(struct ip), &cfg->stats, logdata);
1202 		return (NAT64RETURN);
1203 	}
1204 
1205 	ip6.ip6_flow = htonl(ip->ip_tos << 20);
1206 	ip6.ip6_vfc |= IPV6_VERSION;
1207 	ip6.ip6_hlim = ip->ip_ttl;
1208 	/* Forwarding code will decrement TTL for netisr based output. */
1209 	if (V_nat64out == &nat64_direct)
1210 		ip6.ip6_hlim -= IPTTLDEC;
1211 	ip6.ip6_plen = htons(plen);
1212 	ip6.ip6_nxt = (proto == IPPROTO_ICMP) ? IPPROTO_ICMPV6: proto;
1213 	/* Convert checksums. */
1214 	switch (proto) {
1215 	case IPPROTO_TCP:
1216 		csum = &TCP(mtodo(m, hlen))->th_sum;
1217 		if (lport != 0) {
1218 			struct tcphdr *tcp = TCP(mtodo(m, hlen));
1219 			*csum = cksum_adjust(*csum, tcp->th_dport, lport);
1220 			tcp->th_dport = lport;
1221 		}
1222 		*csum = cksum_add(*csum, ~nat64_cksum_convert(&ip6, ip));
1223 		break;
1224 	case IPPROTO_UDP:
1225 		csum = &UDP(mtodo(m, hlen))->uh_sum;
1226 		if (lport != 0) {
1227 			struct udphdr *udp = UDP(mtodo(m, hlen));
1228 			*csum = cksum_adjust(*csum, udp->uh_dport, lport);
1229 			udp->uh_dport = lport;
1230 		}
1231 		*csum = cksum_add(*csum, ~nat64_cksum_convert(&ip6, ip));
1232 		break;
1233 	case IPPROTO_ICMP:
1234 		m = nat64_icmp_translate(m, &ip6, lport, hlen, cfg);
1235 		if (m == NULL)	/* stats already accounted */
1236 			return (NAT64RETURN);
1237 	}
1238 
1239 	m_adj(m, hlen);
1240 	mbufq_init(&mq, 255);
1241 	nat64_fragment6(&cfg->stats, &ip6, &mq, m, nh.nh_mtu, ip_id, ip_off);
1242 	while ((m = mbufq_dequeue(&mq)) != NULL) {
1243 		if (V_nat64out->output(nh.nh_ifp, m, (struct sockaddr *)&dst,
1244 		    &cfg->stats, logdata) != 0)
1245 			break;
1246 		NAT64STAT_INC(&cfg->stats, opcnt46);
1247 	}
1248 	mbufq_drain(&mq);
1249 	return (NAT64RETURN);
1250 }
1251 
1252 int
1253 nat64_handle_icmp6(struct mbuf *m, int hlen, uint32_t aaddr, uint16_t aport,
1254     struct nat64_config *cfg, void *logdata)
1255 {
1256 	struct ip ip;
1257 	struct icmp6_hdr *icmp6;
1258 	struct ip6_frag *ip6f;
1259 	struct ip6_hdr *ip6, *ip6i;
1260 	uint32_t mtu;
1261 	int plen, proto;
1262 	uint8_t type, code;
1263 
1264 	if (hlen == 0) {
1265 		ip6 = mtod(m, struct ip6_hdr *);
1266 		if (nat64_check_ip6(&ip6->ip6_src) != 0 ||
1267 		    nat64_check_ip6(&ip6->ip6_dst) != 0)
1268 			return (NAT64SKIP);
1269 
1270 		proto = nat64_getlasthdr(m, &hlen);
1271 		if (proto != IPPROTO_ICMPV6) {
1272 			DPRINTF(DP_DROPS,
1273 			    "dropped due to mbuf isn't contigious");
1274 			NAT64STAT_INC(&cfg->stats, dropped);
1275 			return (NAT64MFREE);
1276 		}
1277 	}
1278 
1279 	/*
1280 	 * Translate ICMPv6 type and code to ICMPv4 (RFC7915).
1281 	 * NOTE: ICMPv6 echo handled by nat64_do_handle_ip6().
1282 	 */
1283 	icmp6 = mtodo(m, hlen);
1284 	mtu = 0;
1285 	switch (icmp6->icmp6_type) {
1286 	case ICMP6_DST_UNREACH:
1287 		type = ICMP_UNREACH;
1288 		switch (icmp6->icmp6_code) {
1289 		case ICMP6_DST_UNREACH_NOROUTE:
1290 		case ICMP6_DST_UNREACH_BEYONDSCOPE:
1291 		case ICMP6_DST_UNREACH_ADDR:
1292 			code = ICMP_UNREACH_HOST;
1293 			break;
1294 		case ICMP6_DST_UNREACH_ADMIN:
1295 			code = ICMP_UNREACH_HOST_PROHIB;
1296 			break;
1297 		case ICMP6_DST_UNREACH_NOPORT:
1298 			code = ICMP_UNREACH_PORT;
1299 			break;
1300 		default:
1301 			DPRINTF(DP_DROPS, "Unsupported ICMPv6 type %d,"
1302 			    " code %d", icmp6->icmp6_type,
1303 			    icmp6->icmp6_code);
1304 			NAT64STAT_INC(&cfg->stats, dropped);
1305 			return (NAT64MFREE);
1306 		}
1307 		break;
1308 	case ICMP6_PACKET_TOO_BIG:
1309 		type = ICMP_UNREACH;
1310 		code = ICMP_UNREACH_NEEDFRAG;
1311 		mtu = ntohl(icmp6->icmp6_mtu);
1312 		if (mtu < IPV6_MMTU) {
1313 			DPRINTF(DP_DROPS, "Wrong MTU %d in ICMPv6 type %d,"
1314 			    " code %d", mtu, icmp6->icmp6_type,
1315 			    icmp6->icmp6_code);
1316 			NAT64STAT_INC(&cfg->stats, dropped);
1317 			return (NAT64MFREE);
1318 		}
1319 		/*
1320 		 * Adjust MTU to reflect difference between
1321 		 * IPv6 an IPv4 headers.
1322 		 */
1323 		mtu -= sizeof(struct ip6_hdr) - sizeof(struct ip);
1324 		break;
1325 	case ICMP6_TIME_EXCEEDED:
1326 		type = ICMP_TIMXCEED;
1327 		code = icmp6->icmp6_code;
1328 		break;
1329 	case ICMP6_PARAM_PROB:
1330 		switch (icmp6->icmp6_code) {
1331 		case ICMP6_PARAMPROB_HEADER:
1332 			type = ICMP_PARAMPROB;
1333 			code = ICMP_PARAMPROB_ERRATPTR;
1334 			mtu = ntohl(icmp6->icmp6_pptr);
1335 			switch (mtu) {
1336 			case 0: /* Version/Traffic Class */
1337 			case 1: /* Traffic Class/Flow Label */
1338 				break;
1339 			case 4: /* Payload Length */
1340 			case 5:
1341 				mtu = 2;
1342 				break;
1343 			case 6: /* Next Header */
1344 				mtu = 9;
1345 				break;
1346 			case 7: /* Hop Limit */
1347 				mtu = 8;
1348 				break;
1349 			default:
1350 				if (mtu >= 8 && mtu <= 23) {
1351 					mtu = 12; /* Source address */
1352 					break;
1353 				}
1354 				if (mtu >= 24 && mtu <= 39) {
1355 					mtu = 16; /* Destination address */
1356 					break;
1357 				}
1358 				DPRINTF(DP_DROPS, "Unsupported ICMPv6 type %d,"
1359 				    " code %d, pptr %d", icmp6->icmp6_type,
1360 				    icmp6->icmp6_code, mtu);
1361 				NAT64STAT_INC(&cfg->stats, dropped);
1362 				return (NAT64MFREE);
1363 			}
1364 		case ICMP6_PARAMPROB_NEXTHEADER:
1365 			type = ICMP_UNREACH;
1366 			code = ICMP_UNREACH_PROTOCOL;
1367 			break;
1368 		default:
1369 			DPRINTF(DP_DROPS, "Unsupported ICMPv6 type %d,"
1370 			    " code %d, pptr %d", icmp6->icmp6_type,
1371 			    icmp6->icmp6_code, ntohl(icmp6->icmp6_pptr));
1372 			NAT64STAT_INC(&cfg->stats, dropped);
1373 			return (NAT64MFREE);
1374 		}
1375 		break;
1376 	default:
1377 		DPRINTF(DP_DROPS, "Unsupported ICMPv6 type %d, code %d",
1378 		    icmp6->icmp6_type, icmp6->icmp6_code);
1379 		NAT64STAT_INC(&cfg->stats, dropped);
1380 		return (NAT64MFREE);
1381 	}
1382 
1383 	hlen += sizeof(struct icmp6_hdr);
1384 	if (m->m_pkthdr.len < hlen + sizeof(struct ip6_hdr) + ICMP_MINLEN) {
1385 		NAT64STAT_INC(&cfg->stats, dropped);
1386 		DPRINTF(DP_DROPS, "Message is too short %d",
1387 		    m->m_pkthdr.len);
1388 		return (NAT64MFREE);
1389 	}
1390 	/*
1391 	 * We need at least ICMP_MINLEN bytes of original datagram payload
1392 	 * to generate ICMP message. It is nice that ICMP_MINLEN is equal
1393 	 * to sizeof(struct ip6_frag). So, if embedded datagram had a fragment
1394 	 * header we will not have to do m_pullup() again.
1395 	 *
1396 	 * What we have here:
1397 	 * Outer header: (IPv6iGW, v4mapPRefix+v4exthost)
1398 	 * Inner header: (v4mapPRefix+v4host, IPv6iHost) [sport, dport]
1399 	 * We need to translate it to:
1400 	 *
1401 	 * Outer header: (alias_host, v4exthost)
1402 	 * Inner header: (v4exthost, alias_host) [sport, alias_port]
1403 	 *
1404 	 * Assume caller function has checked if v4mapPRefix+v4host
1405 	 * matches configured prefix.
1406 	 * The only two things we should be provided with are mapping between
1407 	 * IPv6iHost <> alias_host and between dport and alias_port.
1408 	 */
1409 	if (m->m_len < hlen + sizeof(struct ip6_hdr) + ICMP_MINLEN)
1410 		m = m_pullup(m, hlen + sizeof(struct ip6_hdr) + ICMP_MINLEN);
1411 	if (m == NULL) {
1412 		NAT64STAT_INC(&cfg->stats, nomem);
1413 		return (NAT64RETURN);
1414 	}
1415 	ip6 = mtod(m, struct ip6_hdr *);
1416 	ip6i = mtodo(m, hlen);
1417 	ip6f = NULL;
1418 	proto = ip6i->ip6_nxt;
1419 	plen = ntohs(ip6i->ip6_plen);
1420 	hlen += sizeof(struct ip6_hdr);
1421 	if (proto == IPPROTO_FRAGMENT) {
1422 		if (m->m_pkthdr.len < hlen + sizeof(struct ip6_frag) +
1423 		    ICMP_MINLEN)
1424 			goto fail;
1425 		ip6f = mtodo(m, hlen);
1426 		proto = ip6f->ip6f_nxt;
1427 		plen -= sizeof(struct ip6_frag);
1428 		hlen += sizeof(struct ip6_frag);
1429 		/* Ajust MTU to reflect frag header size */
1430 		if (type == ICMP_UNREACH && code == ICMP_UNREACH_NEEDFRAG)
1431 			mtu -= sizeof(struct ip6_frag);
1432 	}
1433 	if (proto != IPPROTO_TCP && proto != IPPROTO_UDP) {
1434 		DPRINTF(DP_DROPS, "Unsupported proto %d in the inner header",
1435 		    proto);
1436 		goto fail;
1437 	}
1438 	if (nat64_check_ip6(&ip6i->ip6_src) != 0 ||
1439 	    nat64_check_ip6(&ip6i->ip6_dst) != 0) {
1440 		DPRINTF(DP_DROPS, "Inner addresses do not passes the check");
1441 		goto fail;
1442 	}
1443 	/* Check if outer dst is the same as inner src */
1444 	if (!IN6_ARE_ADDR_EQUAL(&ip6->ip6_dst, &ip6i->ip6_src)) {
1445 		DPRINTF(DP_DROPS, "Inner src doesn't match outer dst");
1446 		goto fail;
1447 	}
1448 
1449 	/* Now we need to make a fake IPv4 packet to generate ICMP message */
1450 	ip.ip_dst.s_addr = aaddr;
1451 	ip.ip_src.s_addr = nat64_extract_ip4(cfg, &ip6i->ip6_src);
1452 	/* XXX: Make fake ulp header */
1453 	if (V_nat64out == &nat64_direct) /* init_ip4hdr will decrement it */
1454 		ip6i->ip6_hlim += IPV6_HLIMDEC;
1455 	nat64_init_ip4hdr(ip6i, ip6f, plen, proto, &ip);
1456 	m_adj(m, hlen - sizeof(struct ip));
1457 	bcopy(&ip, mtod(m, void *), sizeof(ip));
1458 	nat64_icmp_reflect(m, type, code, (uint16_t)mtu, &cfg->stats,
1459 	    logdata);
1460 	return (NAT64RETURN);
1461 fail:
1462 	/*
1463 	 * We must call m_freem() because mbuf pointer could be
1464 	 * changed with m_pullup().
1465 	 */
1466 	m_freem(m);
1467 	NAT64STAT_INC(&cfg->stats, dropped);
1468 	return (NAT64RETURN);
1469 }
1470 
1471 int
1472 nat64_do_handle_ip6(struct mbuf *m, uint32_t aaddr, uint16_t aport,
1473     struct nat64_config *cfg, void *logdata)
1474 {
1475 	struct ip ip;
1476 	struct nhop4_basic nh;
1477 	struct sockaddr_in dst;
1478 	struct ip6_frag *frag;
1479 	struct ip6_hdr *ip6;
1480 	struct icmp6_hdr *icmp6;
1481 	uint16_t *csum;
1482 	int plen, hlen, proto;
1483 
1484 	/*
1485 	 * XXX: we expect ipfw_chk() did m_pullup() up to upper level
1486 	 * protocol's headers. Also we skip some checks, that ip6_input(),
1487 	 * ip6_forward(), ip6_fastfwd() and ipfw_chk() already did.
1488 	 */
1489 	ip6 = mtod(m, struct ip6_hdr *);
1490 	if (nat64_check_ip6(&ip6->ip6_src) != 0 ||
1491 	    nat64_check_ip6(&ip6->ip6_dst) != 0) {
1492 		return (NAT64SKIP);
1493 	}
1494 
1495 	/* Starting from this point we must not return zero */
1496 	ip.ip_src.s_addr = aaddr;
1497 	if (nat64_check_ip4(ip.ip_src.s_addr) != 0) {
1498 		DPRINTF(DP_GENERIC | DP_DROPS, "invalid source address: %08x",
1499 		    ip.ip_src.s_addr);
1500 		NAT64STAT_INC(&cfg->stats, dropped);
1501 		return (NAT64MFREE);
1502 	}
1503 
1504 	ip.ip_dst.s_addr = nat64_extract_ip4(cfg, &ip6->ip6_dst);
1505 	if (ip.ip_dst.s_addr == 0) {
1506 		NAT64STAT_INC(&cfg->stats, dropped);
1507 		return (NAT64MFREE);
1508 	}
1509 
1510 	if (ip6->ip6_hlim <= IPV6_HLIMDEC) {
1511 		nat64_icmp6_reflect(m, ICMP6_TIME_EXCEEDED,
1512 		    ICMP6_TIME_EXCEED_TRANSIT, 0, &cfg->stats, logdata);
1513 		return (NAT64RETURN);
1514 	}
1515 
1516 	hlen = 0;
1517 	plen = ntohs(ip6->ip6_plen);
1518 	proto = nat64_getlasthdr(m, &hlen);
1519 	if (proto < 0) {
1520 		DPRINTF(DP_DROPS, "dropped due to mbuf isn't contigious");
1521 		NAT64STAT_INC(&cfg->stats, dropped);
1522 		return (NAT64MFREE);
1523 	}
1524 	frag = NULL;
1525 	if (proto == IPPROTO_FRAGMENT) {
1526 		/* ipfw_chk should m_pullup up to frag header */
1527 		if (m->m_len < hlen + sizeof(*frag)) {
1528 			DPRINTF(DP_DROPS,
1529 			    "dropped due to mbuf isn't contigious");
1530 			NAT64STAT_INC(&cfg->stats, dropped);
1531 			return (NAT64MFREE);
1532 		}
1533 		frag = mtodo(m, hlen);
1534 		proto = frag->ip6f_nxt;
1535 		hlen += sizeof(*frag);
1536 		/* Fragmented ICMPv6 is unsupported */
1537 		if (proto == IPPROTO_ICMPV6) {
1538 			DPRINTF(DP_DROPS, "dropped due to fragmented ICMPv6");
1539 			NAT64STAT_INC(&cfg->stats, dropped);
1540 			return (NAT64MFREE);
1541 		}
1542 		/* Fragment length must be multiple of 8 octets */
1543 		if ((frag->ip6f_offlg & IP6F_MORE_FRAG) != 0 &&
1544 		    ((plen + sizeof(struct ip6_hdr) - hlen) & 0x7) != 0) {
1545 			nat64_icmp6_reflect(m, ICMP6_PARAM_PROB,
1546 			    ICMP6_PARAMPROB_HEADER,
1547 			    offsetof(struct ip6_hdr, ip6_plen), &cfg->stats,
1548 			    logdata);
1549 			return (NAT64RETURN);
1550 		}
1551 	}
1552 	plen -= hlen - sizeof(struct ip6_hdr);
1553 	if (plen < 0 || m->m_pkthdr.len < plen + hlen) {
1554 		DPRINTF(DP_DROPS, "plen %d, pkthdr.len %d, hlen %d",
1555 		    plen, m->m_pkthdr.len, hlen);
1556 		NAT64STAT_INC(&cfg->stats, dropped);
1557 		return (NAT64MFREE);
1558 	}
1559 
1560 	icmp6 = NULL;	/* Make gcc happy */
1561 	if (proto == IPPROTO_ICMPV6) {
1562 		icmp6 = mtodo(m, hlen);
1563 		if (icmp6->icmp6_type != ICMP6_ECHO_REQUEST &&
1564 		    icmp6->icmp6_type != ICMP6_ECHO_REPLY)
1565 			return (nat64_handle_icmp6(m, hlen, aaddr, aport,
1566 			    cfg, logdata));
1567 	}
1568 	dst.sin_addr.s_addr = ip.ip_dst.s_addr;
1569 	if (nat64_find_route4(&nh, &dst, m) != 0) {
1570 		NAT64STAT_INC(&cfg->stats, noroute4);
1571 		nat64_icmp6_reflect(m, ICMP6_DST_UNREACH,
1572 		    ICMP6_DST_UNREACH_NOROUTE, 0, &cfg->stats, logdata);
1573 		return (NAT64RETURN);
1574 	}
1575 	if (nh.nh_mtu < plen + sizeof(ip)) {
1576 		nat64_icmp6_reflect(m, ICMP6_PACKET_TOO_BIG, 0, nh.nh_mtu,
1577 		    &cfg->stats, logdata);
1578 		return (NAT64RETURN);
1579 	}
1580 	nat64_init_ip4hdr(ip6, frag, plen, proto, &ip);
1581 	/* Convert checksums. */
1582 	switch (proto) {
1583 	case IPPROTO_TCP:
1584 		csum = &TCP(mtodo(m, hlen))->th_sum;
1585 		if (aport != 0) {
1586 			struct tcphdr *tcp = TCP(mtodo(m, hlen));
1587 			*csum = cksum_adjust(*csum, tcp->th_sport, aport);
1588 			tcp->th_sport = aport;
1589 		}
1590 		*csum = cksum_add(*csum, nat64_cksum_convert(ip6, &ip));
1591 		break;
1592 	case IPPROTO_UDP:
1593 		csum = &UDP(mtodo(m, hlen))->uh_sum;
1594 		if (aport != 0) {
1595 			struct udphdr *udp = UDP(mtodo(m, hlen));
1596 			*csum = cksum_adjust(*csum, udp->uh_sport, aport);
1597 			udp->uh_sport = aport;
1598 		}
1599 		*csum = cksum_add(*csum, nat64_cksum_convert(ip6, &ip));
1600 		break;
1601 	case IPPROTO_ICMPV6:
1602 		/* Checksum in ICMPv6 covers pseudo header */
1603 		csum = &icmp6->icmp6_cksum;
1604 		*csum = cksum_add(*csum, in6_cksum_pseudo(ip6, plen,
1605 		    IPPROTO_ICMPV6, 0));
1606 		/* Convert ICMPv6 types to ICMP */
1607 		proto = *(uint16_t *)icmp6; /* save old word for cksum_adjust */
1608 		if (icmp6->icmp6_type == ICMP6_ECHO_REQUEST)
1609 			icmp6->icmp6_type = ICMP_ECHO;
1610 		else /* ICMP6_ECHO_REPLY */
1611 			icmp6->icmp6_type = ICMP_ECHOREPLY;
1612 		*csum = cksum_adjust(*csum, (uint16_t)proto,
1613 		    *(uint16_t *)icmp6);
1614 		if (aport != 0) {
1615 			uint16_t old_id = icmp6->icmp6_id;
1616 			icmp6->icmp6_id = aport;
1617 			*csum = cksum_adjust(*csum, old_id, aport);
1618 		}
1619 		break;
1620 	};
1621 
1622 	m_adj(m, hlen - sizeof(ip));
1623 	bcopy(&ip, mtod(m, void *), sizeof(ip));
1624 	if (V_nat64out->output(nh.nh_ifp, m, (struct sockaddr *)&dst,
1625 	    &cfg->stats, logdata) == 0)
1626 		NAT64STAT_INC(&cfg->stats, opcnt64);
1627 	return (NAT64RETURN);
1628 }
1629 
1630