1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause OR GPL-2.0
3  *
4  * Copyright (c) 2005 Voltaire Inc.  All rights reserved.
5  * Copyright (c) 2002-2005, Network Appliance, Inc. All rights reserved.
6  * Copyright (c) 1999-2019, Mellanox Technologies, Inc. All rights reserved.
7  * Copyright (c) 2005 Intel Corporation.  All rights reserved.
8  *
9  * This software is available to you under a choice of one of two
10  * licenses.  You may choose to be licensed under the terms of the GNU
11  * General Public License (GPL) Version 2, available from the file
12  * COPYING in the main directory of this source tree, or the
13  * OpenIB.org BSD license below:
14  *
15  *     Redistribution and use in source and binary forms, with or
16  *     without modification, are permitted provided that the following
17  *     conditions are met:
18  *
19  *      - Redistributions of source code must retain the above
20  *        copyright notice, this list of conditions and the following
21  *        disclaimer.
22  *
23  *      - Redistributions in binary form must reproduce the above
24  *        copyright notice, this list of conditions and the following
25  *        disclaimer in the documentation and/or other materials
26  *        provided with the distribution.
27  *
28  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
29  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
30  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
31  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
32  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
33  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
34  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
35  * SOFTWARE.
36  */
37 
38 #include <sys/cdefs.h>
39 __FBSDID("$FreeBSD$");
40 
41 #include <linux/mutex.h>
42 #include <linux/inetdevice.h>
43 #include <linux/slab.h>
44 #include <linux/workqueue.h>
45 #include <linux/module.h>
46 #include <net/route.h>
47 #include <net/route/nhop.h>
48 #include <net/netevent.h>
49 #include <rdma/ib_addr.h>
50 #include <rdma/ib.h>
51 
52 #include <netinet/in_fib.h>
53 #include <netinet/if_ether.h>
54 #include <netinet/ip_var.h>
55 #include <netinet6/scope6_var.h>
56 #include <netinet6/in6_pcb.h>
57 #include <netinet6/in6_fib.h>
58 
59 #include "core_priv.h"
60 
61 struct addr_req {
62 	struct list_head list;
63 	struct sockaddr_storage src_addr;
64 	struct sockaddr_storage dst_addr;
65 	struct rdma_dev_addr *addr;
66 	struct rdma_addr_client *client;
67 	void *context;
68 	void (*callback)(int status, struct sockaddr *src_addr,
69 			 struct rdma_dev_addr *addr, void *context);
70 	int timeout;
71 	int status;
72 };
73 
74 static void process_req(struct work_struct *work);
75 
76 static DEFINE_MUTEX(lock);
77 static LIST_HEAD(req_list);
78 static DECLARE_DELAYED_WORK(work, process_req);
79 static struct workqueue_struct *addr_wq;
80 
81 int rdma_addr_size(struct sockaddr *addr)
82 {
83 	switch (addr->sa_family) {
84 	case AF_INET:
85 		return sizeof(struct sockaddr_in);
86 	case AF_INET6:
87 		return sizeof(struct sockaddr_in6);
88 	case AF_IB:
89 		return sizeof(struct sockaddr_ib);
90 	default:
91 		return 0;
92 	}
93 }
94 EXPORT_SYMBOL(rdma_addr_size);
95 
96 int rdma_addr_size_in6(struct sockaddr_in6 *addr)
97 {
98 	int ret = rdma_addr_size((struct sockaddr *) addr);
99 
100 	return ret <= sizeof(*addr) ? ret : 0;
101 }
102 EXPORT_SYMBOL(rdma_addr_size_in6);
103 
104 int rdma_addr_size_kss(struct sockaddr_storage *addr)
105 {
106 	int ret = rdma_addr_size((struct sockaddr *) addr);
107 
108 	return ret <= sizeof(*addr) ? ret : 0;
109 }
110 EXPORT_SYMBOL(rdma_addr_size_kss);
111 
112 static struct rdma_addr_client self;
113 
114 void rdma_addr_register_client(struct rdma_addr_client *client)
115 {
116 	atomic_set(&client->refcount, 1);
117 	init_completion(&client->comp);
118 }
119 EXPORT_SYMBOL(rdma_addr_register_client);
120 
121 static inline void put_client(struct rdma_addr_client *client)
122 {
123 	if (atomic_dec_and_test(&client->refcount))
124 		complete(&client->comp);
125 }
126 
127 void rdma_addr_unregister_client(struct rdma_addr_client *client)
128 {
129 	put_client(client);
130 	wait_for_completion(&client->comp);
131 }
132 EXPORT_SYMBOL(rdma_addr_unregister_client);
133 
134 static inline void
135 rdma_copy_addr_sub(u8 *dst, const u8 *src, unsigned min, unsigned max)
136 {
137 	if (min > max)
138 		min = max;
139 	memcpy(dst, src, min);
140 	memset(dst + min, 0, max - min);
141 }
142 
143 int rdma_copy_addr(struct rdma_dev_addr *dev_addr, struct net_device *dev,
144 		     const unsigned char *dst_dev_addr)
145 {
146 	/* check for loopback device */
147 	if (dev->if_flags & IFF_LOOPBACK) {
148 		dev_addr->dev_type = ARPHRD_ETHER;
149 		memset(dev_addr->src_dev_addr, 0, MAX_ADDR_LEN);
150 		memset(dev_addr->broadcast, 0, MAX_ADDR_LEN);
151 		memset(dev_addr->dst_dev_addr, 0, MAX_ADDR_LEN);
152 		dev_addr->bound_dev_if = dev->if_index;
153 		return (0);
154 	} else if (dev->if_type == IFT_INFINIBAND)
155 		dev_addr->dev_type = ARPHRD_INFINIBAND;
156 	else if (dev->if_type == IFT_ETHER)
157 		dev_addr->dev_type = ARPHRD_ETHER;
158 	else
159 		dev_addr->dev_type = 0;
160 	rdma_copy_addr_sub(dev_addr->src_dev_addr, IF_LLADDR(dev),
161 			   dev->if_addrlen, MAX_ADDR_LEN);
162 	rdma_copy_addr_sub(dev_addr->broadcast, dev->if_broadcastaddr,
163 			   dev->if_addrlen, MAX_ADDR_LEN);
164 	if (dst_dev_addr != NULL) {
165 		rdma_copy_addr_sub(dev_addr->dst_dev_addr, dst_dev_addr,
166 				   dev->if_addrlen, MAX_ADDR_LEN);
167 	}
168 	dev_addr->bound_dev_if = dev->if_index;
169 	return 0;
170 }
171 EXPORT_SYMBOL(rdma_copy_addr);
172 
173 int rdma_translate_ip(const struct sockaddr *addr,
174 		      struct rdma_dev_addr *dev_addr)
175 {
176 	struct net_device *dev;
177 	int ret;
178 
179 	if (dev_addr->bound_dev_if) {
180 		dev = dev_get_by_index(dev_addr->net, dev_addr->bound_dev_if);
181 	} else switch (addr->sa_family) {
182 #ifdef INET
183 	case AF_INET:
184 		dev = ip_dev_find(dev_addr->net,
185 			((const struct sockaddr_in *)addr)->sin_addr.s_addr);
186 		break;
187 #endif
188 #ifdef INET6
189 	case AF_INET6:
190 		dev = ip6_dev_find(dev_addr->net,
191 			((const struct sockaddr_in6 *)addr)->sin6_addr, 0);
192 		break;
193 #endif
194 	default:
195 		dev = NULL;
196 		break;
197 	}
198 
199 	if (dev != NULL) {
200 		/* disallow connections through 127.0.0.1 itself */
201 		if (dev->if_flags & IFF_LOOPBACK)
202 			ret = -EINVAL;
203 		else
204 			ret = rdma_copy_addr(dev_addr, dev, NULL);
205 		dev_put(dev);
206 	} else {
207 		ret = -ENODEV;
208 	}
209 	return ret;
210 }
211 EXPORT_SYMBOL(rdma_translate_ip);
212 
213 static void set_timeout(int time)
214 {
215 	int delay;	/* under FreeBSD ticks are 32-bit */
216 
217 	delay = time - jiffies;
218 	if (delay <= 0)
219 		delay = 1;
220 	else if (delay > hz)
221 		delay = hz;
222 
223 	mod_delayed_work(addr_wq, &work, delay);
224 }
225 
226 static void queue_req(struct addr_req *req)
227 {
228 	struct addr_req *temp_req;
229 
230 	mutex_lock(&lock);
231 	list_for_each_entry_reverse(temp_req, &req_list, list) {
232 		if (time_after_eq(req->timeout, temp_req->timeout))
233 			break;
234 	}
235 
236 	list_add(&req->list, &temp_req->list);
237 
238 	if (req_list.next == &req->list)
239 		set_timeout(req->timeout);
240 	mutex_unlock(&lock);
241 }
242 
243 #if defined(INET) || defined(INET6)
244 static int addr_resolve_multi(u8 *edst, struct ifnet *ifp, struct sockaddr *dst_in)
245 {
246 	struct sockaddr *llsa;
247 	struct sockaddr_dl sdl;
248 	int error;
249 
250 	sdl.sdl_len = sizeof(sdl);
251 	llsa = (struct sockaddr *)&sdl;
252 
253 	if (ifp->if_resolvemulti == NULL) {
254 		error = EOPNOTSUPP;
255 	} else {
256 		error = ifp->if_resolvemulti(ifp, &llsa, dst_in);
257 		if (error == 0) {
258 			rdma_copy_addr_sub(edst, LLADDR((struct sockaddr_dl *)llsa),
259 			    ifp->if_addrlen, MAX_ADDR_LEN);
260 		}
261 	}
262 	return (error);
263 }
264 #endif
265 
266 #ifdef INET
267 static int addr4_resolve(struct sockaddr_in *src_in,
268 			 const struct sockaddr_in *dst_in,
269 			 struct rdma_dev_addr *addr,
270 			 u8 *edst,
271 			 struct ifnet **ifpp)
272 {
273 	enum {
274 		ADDR_VALID = 0,
275 		ADDR_SRC_ANY = 1,
276 		ADDR_DST_ANY = 2,
277 	};
278 	struct sockaddr_in dst_tmp = *dst_in;
279 	in_port_t src_port;
280 	struct sockaddr *saddr = NULL;
281 	struct nhop_object *nh;
282 	struct ifnet *ifp;
283 	int error;
284 	int type;
285 
286 	NET_EPOCH_ASSERT();
287 
288 	/* set VNET, if any */
289 	CURVNET_SET(addr->net);
290 
291 	/* set default TTL limit */
292 	addr->hoplimit = V_ip_defttl;
293 
294 	type = ADDR_VALID;
295 	if (src_in->sin_addr.s_addr == INADDR_ANY)
296 		type |= ADDR_SRC_ANY;
297 	if (dst_tmp.sin_addr.s_addr == INADDR_ANY)
298 		type |= ADDR_DST_ANY;
299 
300 	/*
301 	 * Make sure the socket address length field is set.
302 	 */
303 	dst_tmp.sin_len = sizeof(dst_tmp);
304 
305 	/* Step 1 - lookup destination route if any */
306 	switch (type) {
307 	case ADDR_VALID:
308 	case ADDR_SRC_ANY:
309 		/* regular destination route lookup */
310 		nh = fib4_lookup(RT_DEFAULT_FIB, dst_tmp.sin_addr,0,NHR_NONE,0);
311 		if (nh == NULL) {
312 			error = EHOSTUNREACH;
313 			goto done;
314 		}
315 		break;
316 	default:
317 		error = ENETUNREACH;
318 		goto done;
319 	}
320 
321 	/* Step 2 - find outgoing network interface */
322 	switch (type) {
323 	case ADDR_VALID:
324 		/* get source interface */
325 		if (addr->bound_dev_if != 0) {
326 			ifp = dev_get_by_index(addr->net, addr->bound_dev_if);
327 		} else {
328 			ifp = ip_dev_find(addr->net, src_in->sin_addr.s_addr);
329 		}
330 
331 		/* check source interface */
332 		if (ifp == NULL) {
333 			error = ENETUNREACH;
334 			goto done;
335 		} else if (ifp->if_flags & IFF_LOOPBACK) {
336 			/*
337 			 * Source address cannot be a loopback device.
338 			 */
339 			error = EHOSTUNREACH;
340 			goto error_put_ifp;
341 		} else if (nh->nh_ifp->if_flags & IFF_LOOPBACK) {
342 			if (memcmp(&src_in->sin_addr, &dst_in->sin_addr,
343 			    sizeof(src_in->sin_addr))) {
344 				/*
345 				 * Destination is loopback, but source
346 				 * and destination address is not the
347 				 * same.
348 				 */
349 				error = EHOSTUNREACH;
350 				goto error_put_ifp;
351 			}
352 			/* get destination network interface from route */
353 			dev_put(ifp);
354 			ifp = nh->nh_ifp;
355 			dev_hold(ifp);
356 		} else if (ifp != nh->nh_ifp) {
357 			/*
358 			 * Source and destination interfaces are
359 			 * different.
360 			 */
361 			error = ENETUNREACH;
362 			goto error_put_ifp;
363 		}
364 		break;
365 	case ADDR_SRC_ANY:
366 		/* check for loopback device */
367 		if (nh->nh_ifp->if_flags & IFF_LOOPBACK)
368 			saddr = (struct sockaddr *)&dst_tmp;
369 		else
370 			saddr = nh->nh_ifa->ifa_addr;
371 
372 		/* get destination network interface from route */
373 		ifp = nh->nh_ifp;
374 		dev_hold(ifp);
375 		break;
376 	default:
377 		break;
378 	}
379 
380 	/*
381 	 * Step 3 - resolve destination MAC address
382 	 */
383 	if (dst_tmp.sin_addr.s_addr == INADDR_BROADCAST) {
384 		rdma_copy_addr_sub(edst, ifp->if_broadcastaddr,
385 		    ifp->if_addrlen, MAX_ADDR_LEN);
386 		error = 0;
387 	} else if (IN_MULTICAST(ntohl(dst_tmp.sin_addr.s_addr))) {
388 		bool is_gw = (nh->nh_flags & NHF_GATEWAY) != 0;
389 		error = addr_resolve_multi(edst, ifp, (struct sockaddr *)&dst_tmp);
390 		if (error != 0)
391 			goto error_put_ifp;
392 		else if (is_gw)
393 			addr->network = RDMA_NETWORK_IPV4;
394 	} else if (ifp->if_flags & IFF_LOOPBACK) {
395 		memset(edst, 0, MAX_ADDR_LEN);
396 		error = 0;
397 	} else {
398 		bool is_gw = (nh->nh_flags & NHF_GATEWAY) != 0;
399 		memset(edst, 0, MAX_ADDR_LEN);
400 		error = arpresolve(ifp, is_gw, NULL, is_gw ?
401 		    &nh->gw_sa : (const struct sockaddr *)&dst_tmp,
402 		    edst, NULL, NULL);
403 		if (error != 0)
404 			goto error_put_ifp;
405 		else if (is_gw)
406 			addr->network = RDMA_NETWORK_IPV4;
407 	}
408 
409 	/*
410 	 * Step 4 - update source address, if any
411 	 */
412 	if (saddr != NULL) {
413 		src_port = src_in->sin_port;
414 		memcpy(src_in, saddr, rdma_addr_size(saddr));
415 		src_in->sin_port = src_port;	/* preserve port number */
416 	}
417 
418 	*ifpp = ifp;
419 
420 	goto done;
421 
422 error_put_ifp:
423 	dev_put(ifp);
424 done:
425 	CURVNET_RESTORE();
426 
427 	if (error == EWOULDBLOCK || error == EAGAIN)
428 		error = ENODATA;
429 	return (-error);
430 }
431 #else
432 static int addr4_resolve(struct sockaddr_in *src_in,
433 			 const struct sockaddr_in *dst_in,
434 			 struct rdma_dev_addr *addr,
435 			 u8 *edst,
436 			 struct ifnet **ifpp)
437 {
438 	return -EADDRNOTAVAIL;
439 }
440 #endif
441 
442 #ifdef INET6
443 static int addr6_resolve(struct sockaddr_in6 *src_in,
444 			 const struct sockaddr_in6 *dst_in,
445 			 struct rdma_dev_addr *addr,
446 			 u8 *edst,
447 			 struct ifnet **ifpp)
448 {
449 	enum {
450 		ADDR_VALID = 0,
451 		ADDR_SRC_ANY = 1,
452 		ADDR_DST_ANY = 2,
453 	};
454 	struct sockaddr_in6 dst_tmp = *dst_in;
455 	in_port_t src_port;
456 	struct sockaddr *saddr = NULL;
457 	struct nhop_object *nh;
458 	struct ifnet *ifp;
459 	int error;
460 	int type;
461 
462 	NET_EPOCH_ASSERT();
463 
464 	/* set VNET, if any */
465 	CURVNET_SET(addr->net);
466 
467 	/* set default TTL limit */
468 	addr->hoplimit = V_ip_defttl;
469 
470 	type = ADDR_VALID;
471 	if (ipv6_addr_any(&src_in->sin6_addr))
472 		type |= ADDR_SRC_ANY;
473 	if (ipv6_addr_any(&dst_tmp.sin6_addr))
474 		type |= ADDR_DST_ANY;
475 
476 	/*
477 	 * Make sure the socket address length field is set.
478 	 */
479 	dst_tmp.sin6_len = sizeof(dst_tmp);
480 
481 	/*
482 	 * Make sure the scope ID gets embedded, else nd6_resolve() will
483 	 * not find the record.
484 	 */
485 	dst_tmp.sin6_scope_id = addr->bound_dev_if;
486 	sa6_embedscope(&dst_tmp, 0);
487 
488 	/* Step 1 - lookup destination route if any */
489 	switch (type) {
490 	case ADDR_VALID:
491 		/* sanity check for IPv4 addresses */
492 		if (ipv6_addr_v4mapped(&src_in->sin6_addr) !=
493 		    ipv6_addr_v4mapped(&dst_tmp.sin6_addr)) {
494 			error = EAFNOSUPPORT;
495 			goto done;
496 		}
497 		/* FALLTHROUGH */
498 	case ADDR_SRC_ANY:
499 		/* regular destination route lookup */
500 		nh = fib6_lookup(RT_DEFAULT_FIB, &dst_in->sin6_addr,
501 		    addr->bound_dev_if, NHR_NONE, 0);
502 		if (nh == NULL) {
503 			error = EHOSTUNREACH;
504 			goto done;
505 		}
506 		break;
507 	default:
508 		error = ENETUNREACH;
509 		goto done;
510 	}
511 
512 	/* Step 2 - find outgoing network interface */
513 	switch (type) {
514 	case ADDR_VALID:
515 		/* get source interface */
516 		if (addr->bound_dev_if != 0) {
517 			ifp = dev_get_by_index(addr->net, addr->bound_dev_if);
518 		} else {
519 			ifp = ip6_dev_find(addr->net, src_in->sin6_addr, 0);
520 		}
521 
522 		/* check source interface */
523 		if (ifp == NULL) {
524 			error = ENETUNREACH;
525 			goto done;
526 		} else if (ifp->if_flags & IFF_LOOPBACK) {
527 			/*
528 			 * Source address cannot be a loopback device.
529 			 */
530 			error = EHOSTUNREACH;
531 			goto error_put_ifp;
532 		} else if (nh->nh_ifp->if_flags & IFF_LOOPBACK) {
533 			if (memcmp(&src_in->sin6_addr, &dst_in->sin6_addr,
534 			    sizeof(src_in->sin6_addr))) {
535 				/*
536 				 * Destination is loopback, but source
537 				 * and destination address is not the
538 				 * same.
539 				 */
540 				error = EHOSTUNREACH;
541 				goto error_put_ifp;
542 			}
543 			/* get destination network interface from route */
544 			dev_put(ifp);
545 			ifp = nh->nh_ifp;
546 			dev_hold(ifp);
547 		} else if (ifp != nh->nh_ifp) {
548 			/*
549 			 * Source and destination interfaces are
550 			 * different.
551 			 */
552 			error = ENETUNREACH;
553 			goto error_put_ifp;
554 		}
555 		break;
556 	case ADDR_SRC_ANY:
557 		/* check for loopback device */
558 		if (nh->nh_ifp->if_flags & IFF_LOOPBACK)
559 			saddr = (struct sockaddr *)&dst_tmp;
560 		else
561 			saddr = nh->nh_ifa->ifa_addr;
562 
563 		/* get destination network interface from route */
564 		ifp = nh->nh_ifp;
565 		dev_hold(ifp);
566 		break;
567 	default:
568 		break;
569 	}
570 
571 	/*
572 	 * Step 3 - resolve destination MAC address
573 	 */
574 	if (IN6_IS_ADDR_MULTICAST(&dst_tmp.sin6_addr)) {
575 		bool is_gw = (nh->nh_flags & NHF_GATEWAY) != 0;
576 		error = addr_resolve_multi(edst, ifp,
577 		    (struct sockaddr *)&dst_tmp);
578 		if (error != 0)
579 			goto error_put_ifp;
580 		else if (is_gw)
581 			addr->network = RDMA_NETWORK_IPV6;
582 	} else if (nh->nh_ifp->if_flags & IFF_LOOPBACK) {
583 		memset(edst, 0, MAX_ADDR_LEN);
584 		error = 0;
585 	} else {
586 		bool is_gw = (nh->nh_flags & NHF_GATEWAY) != 0;
587 		memset(edst, 0, MAX_ADDR_LEN);
588 		error = nd6_resolve(ifp, is_gw, NULL, is_gw ?
589 		    &nh->gw_sa : (const struct sockaddr *)&dst_tmp,
590 		    edst, NULL, NULL);
591 		if (error != 0)
592 			goto error_put_ifp;
593 		else if (is_gw)
594 			addr->network = RDMA_NETWORK_IPV6;
595 	}
596 
597 	/*
598 	 * Step 4 - update source address, if any
599 	 */
600 	if (saddr != NULL) {
601 		src_port = src_in->sin6_port;
602 		memcpy(src_in, saddr, rdma_addr_size(saddr));
603 		src_in->sin6_port = src_port;	/* preserve port number */
604 	}
605 
606 	*ifpp = ifp;
607 
608 	goto done;
609 
610 error_put_ifp:
611 	dev_put(ifp);
612 done:
613 	CURVNET_RESTORE();
614 
615 	if (error == EWOULDBLOCK || error == EAGAIN)
616 		error = ENODATA;
617 	return (-error);
618 }
619 #else
620 static int addr6_resolve(struct sockaddr_in6 *src_in,
621 			 const struct sockaddr_in6 *dst_in,
622 			 struct rdma_dev_addr *addr,
623 			 u8 *edst,
624 			 struct ifnet **ifpp)
625 {
626 	return -EADDRNOTAVAIL;
627 }
628 #endif
629 
630 static int addr_resolve_neigh(struct ifnet *dev,
631 			      const struct sockaddr *dst_in,
632 			      u8 *edst,
633 			      struct rdma_dev_addr *addr)
634 {
635 	if (dev->if_flags & IFF_LOOPBACK) {
636 		int ret;
637 
638 		/*
639 		 * Binding to a loopback device is not allowed. Make
640 		 * sure the destination device address is global by
641 		 * clearing the bound device interface:
642 		 */
643 		if (addr->bound_dev_if == dev->if_index)
644 			addr->bound_dev_if = 0;
645 
646 		ret = rdma_translate_ip(dst_in, addr);
647 		if (ret == 0) {
648 			memcpy(addr->dst_dev_addr, addr->src_dev_addr,
649 			       MAX_ADDR_LEN);
650 		}
651 		return ret;
652 	}
653 
654 	/* If the device doesn't do ARP internally */
655 	if (!(dev->if_flags & IFF_NOARP))
656 		return rdma_copy_addr(addr, dev, edst);
657 
658 	return rdma_copy_addr(addr, dev, NULL);
659 }
660 
661 static int addr_resolve(struct sockaddr *src_in,
662 			const struct sockaddr *dst_in,
663 			struct rdma_dev_addr *addr)
664 {
665 	struct epoch_tracker et;
666 	struct net_device *ndev = NULL;
667 	u8 edst[MAX_ADDR_LEN];
668 	int ret;
669 
670 	if (dst_in->sa_family != src_in->sa_family)
671 		return -EINVAL;
672 
673 	NET_EPOCH_ENTER(et);
674 	switch (src_in->sa_family) {
675 	case AF_INET:
676 		ret = addr4_resolve((struct sockaddr_in *)src_in,
677 				    (const struct sockaddr_in *)dst_in,
678 				    addr, edst, &ndev);
679 		break;
680 	case AF_INET6:
681 		ret = addr6_resolve((struct sockaddr_in6 *)src_in,
682 				    (const struct sockaddr_in6 *)dst_in, addr,
683 				    edst, &ndev);
684 		break;
685 	default:
686 		ret = -EADDRNOTAVAIL;
687 		break;
688 	}
689 	NET_EPOCH_EXIT(et);
690 
691 	/* check for error */
692 	if (ret != 0)
693 		return ret;
694 
695 	/* store MAC addresses and check for loopback */
696 	ret = addr_resolve_neigh(ndev, dst_in, edst, addr);
697 
698 	/* set belonging VNET, if any */
699 	addr->net = dev_net(ndev);
700 	dev_put(ndev);
701 
702 	return ret;
703 }
704 
705 static void process_req(struct work_struct *work)
706 {
707 	struct addr_req *req, *temp_req;
708 	struct sockaddr *src_in, *dst_in;
709 	struct list_head done_list;
710 
711 	INIT_LIST_HEAD(&done_list);
712 
713 	mutex_lock(&lock);
714 	list_for_each_entry_safe(req, temp_req, &req_list, list) {
715 		if (req->status == -ENODATA) {
716 			src_in = (struct sockaddr *) &req->src_addr;
717 			dst_in = (struct sockaddr *) &req->dst_addr;
718 			req->status = addr_resolve(src_in, dst_in, req->addr);
719 			if (req->status && time_after_eq(jiffies, req->timeout))
720 				req->status = -ETIMEDOUT;
721 			else if (req->status == -ENODATA)
722 				continue;
723 		}
724 		list_move_tail(&req->list, &done_list);
725 	}
726 
727 	if (!list_empty(&req_list)) {
728 		req = list_entry(req_list.next, struct addr_req, list);
729 		set_timeout(req->timeout);
730 	}
731 	mutex_unlock(&lock);
732 
733 	list_for_each_entry_safe(req, temp_req, &done_list, list) {
734 		list_del(&req->list);
735 		req->callback(req->status, (struct sockaddr *) &req->src_addr,
736 			req->addr, req->context);
737 		put_client(req->client);
738 		kfree(req);
739 	}
740 }
741 
742 int rdma_resolve_ip(struct rdma_addr_client *client,
743 		    struct sockaddr *src_addr, struct sockaddr *dst_addr,
744 		    struct rdma_dev_addr *addr, int timeout_ms,
745 		    void (*callback)(int status, struct sockaddr *src_addr,
746 				     struct rdma_dev_addr *addr, void *context),
747 		    void *context)
748 {
749 	struct sockaddr *src_in, *dst_in;
750 	struct addr_req *req;
751 	int ret = 0;
752 
753 	req = kzalloc(sizeof *req, GFP_KERNEL);
754 	if (!req)
755 		return -ENOMEM;
756 
757 	src_in = (struct sockaddr *) &req->src_addr;
758 	dst_in = (struct sockaddr *) &req->dst_addr;
759 
760 	if (src_addr) {
761 		if (src_addr->sa_family != dst_addr->sa_family) {
762 			ret = -EINVAL;
763 			goto err;
764 		}
765 
766 		memcpy(src_in, src_addr, rdma_addr_size(src_addr));
767 	} else {
768 		src_in->sa_family = dst_addr->sa_family;
769 	}
770 
771 	memcpy(dst_in, dst_addr, rdma_addr_size(dst_addr));
772 	req->addr = addr;
773 	req->callback = callback;
774 	req->context = context;
775 	req->client = client;
776 	atomic_inc(&client->refcount);
777 
778 	req->status = addr_resolve(src_in, dst_in, addr);
779 	switch (req->status) {
780 	case 0:
781 		req->timeout = jiffies;
782 		queue_req(req);
783 		break;
784 	case -ENODATA:
785 		req->timeout = msecs_to_jiffies(timeout_ms) + jiffies;
786 		queue_req(req);
787 		break;
788 	default:
789 		ret = req->status;
790 		atomic_dec(&client->refcount);
791 		goto err;
792 	}
793 	return ret;
794 err:
795 	kfree(req);
796 	return ret;
797 }
798 EXPORT_SYMBOL(rdma_resolve_ip);
799 
800 int rdma_resolve_ip_route(struct sockaddr *src_addr,
801 			  const struct sockaddr *dst_addr,
802 			  struct rdma_dev_addr *addr)
803 {
804 	struct sockaddr_storage ssrc_addr = {};
805 	struct sockaddr *src_in = (struct sockaddr *)&ssrc_addr;
806 
807 	if (src_addr) {
808 		if (src_addr->sa_family != dst_addr->sa_family)
809 			return -EINVAL;
810 
811 		memcpy(src_in, src_addr, rdma_addr_size(src_addr));
812 	} else {
813 		src_in->sa_family = dst_addr->sa_family;
814 	}
815 
816 	return addr_resolve(src_in, dst_addr, addr);
817 }
818 EXPORT_SYMBOL(rdma_resolve_ip_route);
819 
820 void rdma_addr_cancel(struct rdma_dev_addr *addr)
821 {
822 	struct addr_req *req, *temp_req;
823 
824 	mutex_lock(&lock);
825 	list_for_each_entry_safe(req, temp_req, &req_list, list) {
826 		if (req->addr == addr) {
827 			req->status = -ECANCELED;
828 			req->timeout = jiffies;
829 			list_move(&req->list, &req_list);
830 			set_timeout(req->timeout);
831 			break;
832 		}
833 	}
834 	mutex_unlock(&lock);
835 }
836 EXPORT_SYMBOL(rdma_addr_cancel);
837 
838 struct resolve_cb_context {
839 	struct rdma_dev_addr *addr;
840 	struct completion comp;
841 	int status;
842 };
843 
844 static void resolve_cb(int status, struct sockaddr *src_addr,
845 	     struct rdma_dev_addr *addr, void *context)
846 {
847 	if (!status)
848 		memcpy(((struct resolve_cb_context *)context)->addr,
849 		       addr, sizeof(struct rdma_dev_addr));
850 	((struct resolve_cb_context *)context)->status = status;
851 	complete(&((struct resolve_cb_context *)context)->comp);
852 }
853 
854 int rdma_addr_find_l2_eth_by_grh(const union ib_gid *sgid,
855 				 const union ib_gid *dgid,
856 				 u8 *dmac, struct net_device *dev,
857 				 int *hoplimit)
858 {
859 	int ret = 0;
860 	struct rdma_dev_addr dev_addr;
861 	struct resolve_cb_context ctx;
862 
863 	union {
864 		struct sockaddr     _sockaddr;
865 		struct sockaddr_in  _sockaddr_in;
866 		struct sockaddr_in6 _sockaddr_in6;
867 	} sgid_addr, dgid_addr;
868 
869 	rdma_gid2ip(&sgid_addr._sockaddr, sgid);
870 	rdma_gid2ip(&dgid_addr._sockaddr, dgid);
871 
872 	memset(&dev_addr, 0, sizeof(dev_addr));
873 
874 	dev_addr.bound_dev_if = dev->if_index;
875 	dev_addr.net = dev_net(dev);
876 
877 	ctx.addr = &dev_addr;
878 	init_completion(&ctx.comp);
879 	ret = rdma_resolve_ip(&self, &sgid_addr._sockaddr, &dgid_addr._sockaddr,
880 			&dev_addr, 1000, resolve_cb, &ctx);
881 	if (ret)
882 		return ret;
883 
884 	wait_for_completion(&ctx.comp);
885 
886 	ret = ctx.status;
887 	if (ret)
888 		return ret;
889 
890 	memcpy(dmac, dev_addr.dst_dev_addr, ETH_ALEN);
891 	if (hoplimit)
892 		*hoplimit = dev_addr.hoplimit;
893 	return ret;
894 }
895 EXPORT_SYMBOL(rdma_addr_find_l2_eth_by_grh);
896 
897 int addr_init(void)
898 {
899 	addr_wq = alloc_workqueue("ib_addr", WQ_MEM_RECLAIM, 0);
900 	if (!addr_wq)
901 		return -ENOMEM;
902 
903 	rdma_addr_register_client(&self);
904 
905 	return 0;
906 }
907 
908 void addr_cleanup(void)
909 {
910 	rdma_addr_unregister_client(&self);
911 	destroy_workqueue(addr_wq);
912 }
913