1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause OR GPL-2.0
3  *
4  * Copyright (c) 2004 Mellanox Technologies Ltd.  All rights reserved.
5  * Copyright (c) 2004 Infinicon Corporation.  All rights reserved.
6  * Copyright (c) 2004 Intel Corporation.  All rights reserved.
7  * Copyright (c) 2004 Topspin Corporation.  All rights reserved.
8  * Copyright (c) 2004 Voltaire Corporation.  All rights reserved.
9  * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
10  * Copyright (c) 2005, 2006 Cisco Systems.  All rights reserved.
11  *
12  * This software is available to you under a choice of one of two
13  * licenses.  You may choose to be licensed under the terms of the GNU
14  * General Public License (GPL) Version 2, available from the file
15  * COPYING in the main directory of this source tree, or the
16  * OpenIB.org BSD license below:
17  *
18  *     Redistribution and use in source and binary forms, with or
19  *     without modification, are permitted provided that the following
20  *     conditions are met:
21  *
22  *      - Redistributions of source code must retain the above
23  *        copyright notice, this list of conditions and the following
24  *        disclaimer.
25  *
26  *      - Redistributions in binary form must reproduce the above
27  *        copyright notice, this list of conditions and the following
28  *        disclaimer in the documentation and/or other materials
29  *        provided with the distribution.
30  *
31  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
32  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
33  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
34  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
35  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
36  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
37  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
38  * SOFTWARE.
39  */
40 
41 #include <sys/cdefs.h>
42 __FBSDID("$FreeBSD$");
43 
44 #include <linux/errno.h>
45 #include <linux/err.h>
46 #include <linux/string.h>
47 #include <linux/slab.h>
48 #include <linux/in.h>
49 #include <linux/in6.h>
50 
51 #include <rdma/ib_verbs.h>
52 #include <rdma/ib_cache.h>
53 #include <rdma/ib_addr.h>
54 
55 #include <netinet/ip.h>
56 #include <netinet/ip6.h>
57 
58 #include <machine/in_cksum.h>
59 
60 #include "core_priv.h"
61 
62 static const char * const ib_events[] = {
63 	[IB_EVENT_CQ_ERR]		= "CQ error",
64 	[IB_EVENT_QP_FATAL]		= "QP fatal error",
65 	[IB_EVENT_QP_REQ_ERR]		= "QP request error",
66 	[IB_EVENT_QP_ACCESS_ERR]	= "QP access error",
67 	[IB_EVENT_COMM_EST]		= "communication established",
68 	[IB_EVENT_SQ_DRAINED]		= "send queue drained",
69 	[IB_EVENT_PATH_MIG]		= "path migration successful",
70 	[IB_EVENT_PATH_MIG_ERR]		= "path migration error",
71 	[IB_EVENT_DEVICE_FATAL]		= "device fatal error",
72 	[IB_EVENT_PORT_ACTIVE]		= "port active",
73 	[IB_EVENT_PORT_ERR]		= "port error",
74 	[IB_EVENT_LID_CHANGE]		= "LID change",
75 	[IB_EVENT_PKEY_CHANGE]		= "P_key change",
76 	[IB_EVENT_SM_CHANGE]		= "SM change",
77 	[IB_EVENT_SRQ_ERR]		= "SRQ error",
78 	[IB_EVENT_SRQ_LIMIT_REACHED]	= "SRQ limit reached",
79 	[IB_EVENT_QP_LAST_WQE_REACHED]	= "last WQE reached",
80 	[IB_EVENT_CLIENT_REREGISTER]	= "client reregister",
81 	[IB_EVENT_GID_CHANGE]		= "GID changed",
82 };
83 
84 const char *__attribute_const__ ib_event_msg(enum ib_event_type event)
85 {
86 	size_t index = event;
87 
88 	return (index < ARRAY_SIZE(ib_events) && ib_events[index]) ?
89 			ib_events[index] : "unrecognized event";
90 }
91 EXPORT_SYMBOL(ib_event_msg);
92 
93 static const char * const wc_statuses[] = {
94 	[IB_WC_SUCCESS]			= "success",
95 	[IB_WC_LOC_LEN_ERR]		= "local length error",
96 	[IB_WC_LOC_QP_OP_ERR]		= "local QP operation error",
97 	[IB_WC_LOC_EEC_OP_ERR]		= "local EE context operation error",
98 	[IB_WC_LOC_PROT_ERR]		= "local protection error",
99 	[IB_WC_WR_FLUSH_ERR]		= "WR flushed",
100 	[IB_WC_MW_BIND_ERR]		= "memory management operation error",
101 	[IB_WC_BAD_RESP_ERR]		= "bad response error",
102 	[IB_WC_LOC_ACCESS_ERR]		= "local access error",
103 	[IB_WC_REM_INV_REQ_ERR]		= "invalid request error",
104 	[IB_WC_REM_ACCESS_ERR]		= "remote access error",
105 	[IB_WC_REM_OP_ERR]		= "remote operation error",
106 	[IB_WC_RETRY_EXC_ERR]		= "transport retry counter exceeded",
107 	[IB_WC_RNR_RETRY_EXC_ERR]	= "RNR retry counter exceeded",
108 	[IB_WC_LOC_RDD_VIOL_ERR]	= "local RDD violation error",
109 	[IB_WC_REM_INV_RD_REQ_ERR]	= "remote invalid RD request",
110 	[IB_WC_REM_ABORT_ERR]		= "operation aborted",
111 	[IB_WC_INV_EECN_ERR]		= "invalid EE context number",
112 	[IB_WC_INV_EEC_STATE_ERR]	= "invalid EE context state",
113 	[IB_WC_FATAL_ERR]		= "fatal error",
114 	[IB_WC_RESP_TIMEOUT_ERR]	= "response timeout error",
115 	[IB_WC_GENERAL_ERR]		= "general error",
116 };
117 
118 const char *__attribute_const__ ib_wc_status_msg(enum ib_wc_status status)
119 {
120 	size_t index = status;
121 
122 	return (index < ARRAY_SIZE(wc_statuses) && wc_statuses[index]) ?
123 			wc_statuses[index] : "unrecognized status";
124 }
125 EXPORT_SYMBOL(ib_wc_status_msg);
126 
127 __attribute_const__ int ib_rate_to_mult(enum ib_rate rate)
128 {
129 	switch (rate) {
130 	case IB_RATE_2_5_GBPS: return  1;
131 	case IB_RATE_5_GBPS:   return  2;
132 	case IB_RATE_10_GBPS:  return  4;
133 	case IB_RATE_20_GBPS:  return  8;
134 	case IB_RATE_30_GBPS:  return 12;
135 	case IB_RATE_40_GBPS:  return 16;
136 	case IB_RATE_60_GBPS:  return 24;
137 	case IB_RATE_80_GBPS:  return 32;
138 	case IB_RATE_120_GBPS: return 48;
139 	default:	       return -1;
140 	}
141 }
142 EXPORT_SYMBOL(ib_rate_to_mult);
143 
144 __attribute_const__ enum ib_rate mult_to_ib_rate(int mult)
145 {
146 	switch (mult) {
147 	case 1:  return IB_RATE_2_5_GBPS;
148 	case 2:  return IB_RATE_5_GBPS;
149 	case 4:  return IB_RATE_10_GBPS;
150 	case 8:  return IB_RATE_20_GBPS;
151 	case 12: return IB_RATE_30_GBPS;
152 	case 16: return IB_RATE_40_GBPS;
153 	case 24: return IB_RATE_60_GBPS;
154 	case 32: return IB_RATE_80_GBPS;
155 	case 48: return IB_RATE_120_GBPS;
156 	default: return IB_RATE_PORT_CURRENT;
157 	}
158 }
159 EXPORT_SYMBOL(mult_to_ib_rate);
160 
161 __attribute_const__ int ib_rate_to_mbps(enum ib_rate rate)
162 {
163 	switch (rate) {
164 	case IB_RATE_2_5_GBPS: return 2500;
165 	case IB_RATE_5_GBPS:   return 5000;
166 	case IB_RATE_10_GBPS:  return 10000;
167 	case IB_RATE_20_GBPS:  return 20000;
168 	case IB_RATE_30_GBPS:  return 30000;
169 	case IB_RATE_40_GBPS:  return 40000;
170 	case IB_RATE_60_GBPS:  return 60000;
171 	case IB_RATE_80_GBPS:  return 80000;
172 	case IB_RATE_120_GBPS: return 120000;
173 	case IB_RATE_14_GBPS:  return 14062;
174 	case IB_RATE_56_GBPS:  return 56250;
175 	case IB_RATE_112_GBPS: return 112500;
176 	case IB_RATE_168_GBPS: return 168750;
177 	case IB_RATE_25_GBPS:  return 25781;
178 	case IB_RATE_100_GBPS: return 103125;
179 	case IB_RATE_200_GBPS: return 206250;
180 	case IB_RATE_300_GBPS: return 309375;
181 	default:	       return -1;
182 	}
183 }
184 EXPORT_SYMBOL(ib_rate_to_mbps);
185 
186 __attribute_const__ enum rdma_transport_type
187 rdma_node_get_transport(enum rdma_node_type node_type)
188 {
189 	switch (node_type) {
190 	case RDMA_NODE_IB_CA:
191 	case RDMA_NODE_IB_SWITCH:
192 	case RDMA_NODE_IB_ROUTER:
193 		return RDMA_TRANSPORT_IB;
194 	case RDMA_NODE_RNIC:
195 		return RDMA_TRANSPORT_IWARP;
196 	case RDMA_NODE_USNIC:
197 		return RDMA_TRANSPORT_USNIC;
198 	case RDMA_NODE_USNIC_UDP:
199 		return RDMA_TRANSPORT_USNIC_UDP;
200 	default:
201 		BUG();
202 		return 0;
203 	}
204 }
205 EXPORT_SYMBOL(rdma_node_get_transport);
206 
207 enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device, u8 port_num)
208 {
209 	if (device->get_link_layer)
210 		return device->get_link_layer(device, port_num);
211 
212 	switch (rdma_node_get_transport(device->node_type)) {
213 	case RDMA_TRANSPORT_IB:
214 		return IB_LINK_LAYER_INFINIBAND;
215 	case RDMA_TRANSPORT_IWARP:
216 	case RDMA_TRANSPORT_USNIC:
217 	case RDMA_TRANSPORT_USNIC_UDP:
218 		return IB_LINK_LAYER_ETHERNET;
219 	default:
220 		return IB_LINK_LAYER_UNSPECIFIED;
221 	}
222 }
223 EXPORT_SYMBOL(rdma_port_get_link_layer);
224 
225 /* Protection domains */
226 
227 /**
228  * ib_alloc_pd - Allocates an unused protection domain.
229  * @device: The device on which to allocate the protection domain.
230  *
231  * A protection domain object provides an association between QPs, shared
232  * receive queues, address handles, memory regions, and memory windows.
233  *
234  * Every PD has a local_dma_lkey which can be used as the lkey value for local
235  * memory operations.
236  */
237 struct ib_pd *__ib_alloc_pd(struct ib_device *device, unsigned int flags,
238 		const char *caller)
239 {
240 	struct ib_pd *pd;
241 	int mr_access_flags = 0;
242 
243 	pd = device->alloc_pd(device, NULL, NULL);
244 	if (IS_ERR(pd))
245 		return pd;
246 
247 	pd->device = device;
248 	pd->uobject = NULL;
249 	pd->__internal_mr = NULL;
250 	atomic_set(&pd->usecnt, 0);
251 	pd->flags = flags;
252 
253 	if (device->attrs.device_cap_flags & IB_DEVICE_LOCAL_DMA_LKEY)
254 		pd->local_dma_lkey = device->local_dma_lkey;
255 	else
256 		mr_access_flags |= IB_ACCESS_LOCAL_WRITE;
257 
258 	if (flags & IB_PD_UNSAFE_GLOBAL_RKEY) {
259 		pr_warn("%s: enabling unsafe global rkey\n", caller);
260 		mr_access_flags |= IB_ACCESS_REMOTE_READ | IB_ACCESS_REMOTE_WRITE;
261 	}
262 
263 	if (mr_access_flags) {
264 		struct ib_mr *mr;
265 
266 		mr = pd->device->get_dma_mr(pd, mr_access_flags);
267 		if (IS_ERR(mr)) {
268 			ib_dealloc_pd(pd);
269 			return ERR_CAST(mr);
270 		}
271 
272 		mr->device	= pd->device;
273 		mr->pd		= pd;
274 		mr->uobject	= NULL;
275 		mr->need_inval	= false;
276 
277 		pd->__internal_mr = mr;
278 
279 		if (!(device->attrs.device_cap_flags & IB_DEVICE_LOCAL_DMA_LKEY))
280 			pd->local_dma_lkey = pd->__internal_mr->lkey;
281 
282 		if (flags & IB_PD_UNSAFE_GLOBAL_RKEY)
283 			pd->unsafe_global_rkey = pd->__internal_mr->rkey;
284 	}
285 
286 	return pd;
287 }
288 EXPORT_SYMBOL(__ib_alloc_pd);
289 
290 /**
291  * ib_dealloc_pd - Deallocates a protection domain.
292  * @pd: The protection domain to deallocate.
293  *
294  * It is an error to call this function while any resources in the pd still
295  * exist.  The caller is responsible to synchronously destroy them and
296  * guarantee no new allocations will happen.
297  */
298 void ib_dealloc_pd(struct ib_pd *pd)
299 {
300 	int ret;
301 
302 	if (pd->__internal_mr) {
303 		ret = pd->device->dereg_mr(pd->__internal_mr);
304 		WARN_ON(ret);
305 		pd->__internal_mr = NULL;
306 	}
307 
308 	/* uverbs manipulates usecnt with proper locking, while the kabi
309 	   requires the caller to guarantee we can't race here. */
310 	WARN_ON(atomic_read(&pd->usecnt));
311 
312 	/* Making delalloc_pd a void return is a WIP, no driver should return
313 	   an error here. */
314 	ret = pd->device->dealloc_pd(pd);
315 	WARN_ONCE(ret, "Infiniband HW driver failed dealloc_pd");
316 }
317 EXPORT_SYMBOL(ib_dealloc_pd);
318 
319 /* Address handles */
320 
321 struct ib_ah *ib_create_ah(struct ib_pd *pd, struct ib_ah_attr *ah_attr)
322 {
323 	struct ib_ah *ah;
324 
325 	ah = pd->device->create_ah(pd, ah_attr, NULL);
326 
327 	if (!IS_ERR(ah)) {
328 		ah->device  = pd->device;
329 		ah->pd      = pd;
330 		ah->uobject = NULL;
331 		atomic_inc(&pd->usecnt);
332 	}
333 
334 	return ah;
335 }
336 EXPORT_SYMBOL(ib_create_ah);
337 
338 static int ib_get_header_version(const union rdma_network_hdr *hdr)
339 {
340 	const struct ip *ip4h = (const struct ip *)&hdr->roce4grh;
341 	struct ip ip4h_checked;
342 	const struct ip6_hdr *ip6h = (const struct ip6_hdr *)&hdr->ibgrh;
343 
344 	/* If it's IPv6, the version must be 6, otherwise, the first
345 	 * 20 bytes (before the IPv4 header) are garbled.
346 	 */
347 	if ((ip6h->ip6_vfc & IPV6_VERSION_MASK) != IPV6_VERSION)
348 		return (ip4h->ip_v == 4) ? 4 : 0;
349 	/* version may be 6 or 4 because the first 20 bytes could be garbled */
350 
351 	/* RoCE v2 requires no options, thus header length
352 	 * must be 5 words
353 	 */
354 	if (ip4h->ip_hl != 5)
355 		return 6;
356 
357 	/* Verify checksum.
358 	 * We can't write on scattered buffers so we need to copy to
359 	 * temp buffer.
360 	 */
361 	memcpy(&ip4h_checked, ip4h, sizeof(ip4h_checked));
362 	ip4h_checked.ip_sum = 0;
363 #if defined(INET) || defined(INET6)
364 	ip4h_checked.ip_sum = in_cksum_hdr(&ip4h_checked);
365 #endif
366 	/* if IPv4 header checksum is OK, believe it */
367 	if (ip4h->ip_sum == ip4h_checked.ip_sum)
368 		return 4;
369 	return 6;
370 }
371 
372 static enum rdma_network_type ib_get_net_type_by_grh(struct ib_device *device,
373 						     u8 port_num,
374 						     const struct ib_grh *grh)
375 {
376 	int grh_version;
377 
378 	if (rdma_protocol_ib(device, port_num))
379 		return RDMA_NETWORK_IB;
380 
381 	grh_version = ib_get_header_version((const union rdma_network_hdr *)grh);
382 
383 	if (grh_version == 4)
384 		return RDMA_NETWORK_IPV4;
385 
386 	if (grh->next_hdr == IPPROTO_UDP)
387 		return RDMA_NETWORK_IPV6;
388 
389 	return RDMA_NETWORK_ROCE_V1;
390 }
391 
392 struct find_gid_index_context {
393 	u16 vlan_id;
394 	enum ib_gid_type gid_type;
395 };
396 
397 static bool find_gid_index(const union ib_gid *gid,
398 			   const struct ib_gid_attr *gid_attr,
399 			   void *context)
400 {
401 	struct find_gid_index_context *ctx =
402 		(struct find_gid_index_context *)context;
403 
404 	if (ctx->gid_type != gid_attr->gid_type)
405 		return false;
406 	if (rdma_vlan_dev_vlan_id(gid_attr->ndev) != ctx->vlan_id)
407 		return false;
408 	return true;
409 }
410 
411 static int get_sgid_index_from_eth(struct ib_device *device, u8 port_num,
412 				   u16 vlan_id, const union ib_gid *sgid,
413 				   enum ib_gid_type gid_type,
414 				   u16 *gid_index)
415 {
416 	struct find_gid_index_context context = {.vlan_id = vlan_id,
417 						 .gid_type = gid_type};
418 
419 	return ib_find_gid_by_filter(device, sgid, port_num, find_gid_index,
420 				     &context, gid_index);
421 }
422 
423 static int get_gids_from_rdma_hdr(const union rdma_network_hdr *hdr,
424 				  enum rdma_network_type net_type,
425 				  union ib_gid *sgid, union ib_gid *dgid)
426 {
427 	struct sockaddr_in  src_in;
428 	struct sockaddr_in  dst_in;
429 	__be32 src_saddr, dst_saddr;
430 
431 	if (!sgid || !dgid)
432 		return -EINVAL;
433 
434 	if (net_type == RDMA_NETWORK_IPV4) {
435 		memcpy(&src_in.sin_addr.s_addr,
436 		       &hdr->roce4grh.ip_src, 4);
437 		memcpy(&dst_in.sin_addr.s_addr,
438 		       &hdr->roce4grh.ip_dst, 4);
439 		src_saddr = src_in.sin_addr.s_addr;
440 		dst_saddr = dst_in.sin_addr.s_addr;
441 		ipv6_addr_set_v4mapped(src_saddr,
442 				       (struct in6_addr *)sgid);
443 		ipv6_addr_set_v4mapped(dst_saddr,
444 				       (struct in6_addr *)dgid);
445 		return 0;
446 	} else if (net_type == RDMA_NETWORK_IPV6 ||
447 		   net_type == RDMA_NETWORK_IB) {
448 		*dgid = hdr->ibgrh.dgid;
449 		*sgid = hdr->ibgrh.sgid;
450 		return 0;
451 	} else {
452 		return -EINVAL;
453 	}
454 }
455 
456 int ib_init_ah_from_wc(struct ib_device *device, u8 port_num,
457 		       const struct ib_wc *wc, const struct ib_grh *grh,
458 		       struct ib_ah_attr *ah_attr)
459 {
460 	u32 flow_class;
461 	u16 gid_index = 0;
462 	int ret;
463 	enum rdma_network_type net_type = RDMA_NETWORK_IB;
464 	enum ib_gid_type gid_type = IB_GID_TYPE_IB;
465 	int hoplimit = 0xff;
466 	union ib_gid dgid;
467 	union ib_gid sgid;
468 
469 	memset(ah_attr, 0, sizeof *ah_attr);
470 	if (rdma_cap_eth_ah(device, port_num)) {
471 		if (wc->wc_flags & IB_WC_WITH_NETWORK_HDR_TYPE)
472 			net_type = wc->network_hdr_type;
473 		else
474 			net_type = ib_get_net_type_by_grh(device, port_num, grh);
475 		gid_type = ib_network_to_gid_type(net_type);
476 	}
477 	ret = get_gids_from_rdma_hdr((const union rdma_network_hdr *)grh, net_type,
478 				     &sgid, &dgid);
479 	if (ret)
480 		return ret;
481 
482 	if (rdma_protocol_roce(device, port_num)) {
483 		struct ib_gid_attr dgid_attr;
484 		const u16 vlan_id = (wc->wc_flags & IB_WC_WITH_VLAN) ?
485 				wc->vlan_id : 0xffff;
486 
487 		if (!(wc->wc_flags & IB_WC_GRH))
488 			return -EPROTOTYPE;
489 
490 		ret = get_sgid_index_from_eth(device, port_num, vlan_id,
491 					      &dgid, gid_type, &gid_index);
492 		if (ret)
493 			return ret;
494 
495 		ret = ib_get_cached_gid(device, port_num, gid_index, &dgid, &dgid_attr);
496 		if (ret)
497 			return ret;
498 
499 		if (dgid_attr.ndev == NULL)
500 			return -ENODEV;
501 
502 		ret = rdma_addr_find_l2_eth_by_grh(&dgid, &sgid, ah_attr->dmac,
503 		    dgid_attr.ndev, &hoplimit);
504 
505 		dev_put(dgid_attr.ndev);
506 		if (ret)
507 			return ret;
508 	}
509 
510 	ah_attr->dlid = wc->slid;
511 	ah_attr->sl = wc->sl;
512 	ah_attr->src_path_bits = wc->dlid_path_bits;
513 	ah_attr->port_num = port_num;
514 
515 	if (wc->wc_flags & IB_WC_GRH) {
516 		ah_attr->ah_flags = IB_AH_GRH;
517 		ah_attr->grh.dgid = sgid;
518 
519 		if (!rdma_cap_eth_ah(device, port_num)) {
520 			if (dgid.global.interface_id != cpu_to_be64(IB_SA_WELL_KNOWN_GUID)) {
521 				ret = ib_find_cached_gid_by_port(device, &dgid,
522 								 IB_GID_TYPE_IB,
523 								 port_num, NULL,
524 								 &gid_index);
525 				if (ret)
526 					return ret;
527 			}
528 		}
529 
530 		ah_attr->grh.sgid_index = (u8) gid_index;
531 		flow_class = be32_to_cpu(grh->version_tclass_flow);
532 		ah_attr->grh.flow_label = flow_class & 0xFFFFF;
533 		ah_attr->grh.hop_limit = hoplimit;
534 		ah_attr->grh.traffic_class = (flow_class >> 20) & 0xFF;
535 	}
536 	return 0;
537 }
538 EXPORT_SYMBOL(ib_init_ah_from_wc);
539 
540 struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc,
541 				   const struct ib_grh *grh, u8 port_num)
542 {
543 	struct ib_ah_attr ah_attr;
544 	int ret;
545 
546 	ret = ib_init_ah_from_wc(pd->device, port_num, wc, grh, &ah_attr);
547 	if (ret)
548 		return ERR_PTR(ret);
549 
550 	return ib_create_ah(pd, &ah_attr);
551 }
552 EXPORT_SYMBOL(ib_create_ah_from_wc);
553 
554 int ib_modify_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr)
555 {
556 	return ah->device->modify_ah ?
557 		ah->device->modify_ah(ah, ah_attr) :
558 		-ENOSYS;
559 }
560 EXPORT_SYMBOL(ib_modify_ah);
561 
562 int ib_query_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr)
563 {
564 	return ah->device->query_ah ?
565 		ah->device->query_ah(ah, ah_attr) :
566 		-ENOSYS;
567 }
568 EXPORT_SYMBOL(ib_query_ah);
569 
570 int ib_destroy_ah(struct ib_ah *ah)
571 {
572 	struct ib_pd *pd;
573 	int ret;
574 
575 	pd = ah->pd;
576 	ret = ah->device->destroy_ah(ah);
577 	if (!ret)
578 		atomic_dec(&pd->usecnt);
579 
580 	return ret;
581 }
582 EXPORT_SYMBOL(ib_destroy_ah);
583 
584 /* Shared receive queues */
585 
586 struct ib_srq *ib_create_srq(struct ib_pd *pd,
587 			     struct ib_srq_init_attr *srq_init_attr)
588 {
589 	struct ib_srq *srq;
590 
591 	if (!pd->device->create_srq)
592 		return ERR_PTR(-ENOSYS);
593 
594 	srq = pd->device->create_srq(pd, srq_init_attr, NULL);
595 
596 	if (!IS_ERR(srq)) {
597 		srq->device    	   = pd->device;
598 		srq->pd        	   = pd;
599 		srq->uobject       = NULL;
600 		srq->event_handler = srq_init_attr->event_handler;
601 		srq->srq_context   = srq_init_attr->srq_context;
602 		srq->srq_type      = srq_init_attr->srq_type;
603 		if (srq->srq_type == IB_SRQT_XRC) {
604 			srq->ext.xrc.xrcd = srq_init_attr->ext.xrc.xrcd;
605 			srq->ext.xrc.cq   = srq_init_attr->ext.xrc.cq;
606 			atomic_inc(&srq->ext.xrc.xrcd->usecnt);
607 			atomic_inc(&srq->ext.xrc.cq->usecnt);
608 		}
609 		atomic_inc(&pd->usecnt);
610 		atomic_set(&srq->usecnt, 0);
611 	}
612 
613 	return srq;
614 }
615 EXPORT_SYMBOL(ib_create_srq);
616 
617 int ib_modify_srq(struct ib_srq *srq,
618 		  struct ib_srq_attr *srq_attr,
619 		  enum ib_srq_attr_mask srq_attr_mask)
620 {
621 	return srq->device->modify_srq ?
622 		srq->device->modify_srq(srq, srq_attr, srq_attr_mask, NULL) :
623 		-ENOSYS;
624 }
625 EXPORT_SYMBOL(ib_modify_srq);
626 
627 int ib_query_srq(struct ib_srq *srq,
628 		 struct ib_srq_attr *srq_attr)
629 {
630 	return srq->device->query_srq ?
631 		srq->device->query_srq(srq, srq_attr) : -ENOSYS;
632 }
633 EXPORT_SYMBOL(ib_query_srq);
634 
635 int ib_destroy_srq(struct ib_srq *srq)
636 {
637 	struct ib_pd *pd;
638 	enum ib_srq_type srq_type;
639 	struct ib_xrcd *uninitialized_var(xrcd);
640 	struct ib_cq *uninitialized_var(cq);
641 	int ret;
642 
643 	if (atomic_read(&srq->usecnt))
644 		return -EBUSY;
645 
646 	pd = srq->pd;
647 	srq_type = srq->srq_type;
648 	if (srq_type == IB_SRQT_XRC) {
649 		xrcd = srq->ext.xrc.xrcd;
650 		cq = srq->ext.xrc.cq;
651 	}
652 
653 	ret = srq->device->destroy_srq(srq);
654 	if (!ret) {
655 		atomic_dec(&pd->usecnt);
656 		if (srq_type == IB_SRQT_XRC) {
657 			atomic_dec(&xrcd->usecnt);
658 			atomic_dec(&cq->usecnt);
659 		}
660 	}
661 
662 	return ret;
663 }
664 EXPORT_SYMBOL(ib_destroy_srq);
665 
666 /* Queue pairs */
667 
668 static void __ib_shared_qp_event_handler(struct ib_event *event, void *context)
669 {
670 	struct ib_qp *qp = context;
671 	unsigned long flags;
672 
673 	spin_lock_irqsave(&qp->device->event_handler_lock, flags);
674 	list_for_each_entry(event->element.qp, &qp->open_list, open_list)
675 		if (event->element.qp->event_handler)
676 			event->element.qp->event_handler(event, event->element.qp->qp_context);
677 	spin_unlock_irqrestore(&qp->device->event_handler_lock, flags);
678 }
679 
680 static void __ib_insert_xrcd_qp(struct ib_xrcd *xrcd, struct ib_qp *qp)
681 {
682 	mutex_lock(&xrcd->tgt_qp_mutex);
683 	list_add(&qp->xrcd_list, &xrcd->tgt_qp_list);
684 	mutex_unlock(&xrcd->tgt_qp_mutex);
685 }
686 
687 static struct ib_qp *__ib_open_qp(struct ib_qp *real_qp,
688 				  void (*event_handler)(struct ib_event *, void *),
689 				  void *qp_context)
690 {
691 	struct ib_qp *qp;
692 	unsigned long flags;
693 
694 	qp = kzalloc(sizeof *qp, GFP_KERNEL);
695 	if (!qp)
696 		return ERR_PTR(-ENOMEM);
697 
698 	qp->real_qp = real_qp;
699 	atomic_inc(&real_qp->usecnt);
700 	qp->device = real_qp->device;
701 	qp->event_handler = event_handler;
702 	qp->qp_context = qp_context;
703 	qp->qp_num = real_qp->qp_num;
704 	qp->qp_type = real_qp->qp_type;
705 
706 	spin_lock_irqsave(&real_qp->device->event_handler_lock, flags);
707 	list_add(&qp->open_list, &real_qp->open_list);
708 	spin_unlock_irqrestore(&real_qp->device->event_handler_lock, flags);
709 
710 	return qp;
711 }
712 
713 struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd,
714 			 struct ib_qp_open_attr *qp_open_attr)
715 {
716 	struct ib_qp *qp, *real_qp;
717 
718 	if (qp_open_attr->qp_type != IB_QPT_XRC_TGT)
719 		return ERR_PTR(-EINVAL);
720 
721 	qp = ERR_PTR(-EINVAL);
722 	mutex_lock(&xrcd->tgt_qp_mutex);
723 	list_for_each_entry(real_qp, &xrcd->tgt_qp_list, xrcd_list) {
724 		if (real_qp->qp_num == qp_open_attr->qp_num) {
725 			qp = __ib_open_qp(real_qp, qp_open_attr->event_handler,
726 					  qp_open_attr->qp_context);
727 			break;
728 		}
729 	}
730 	mutex_unlock(&xrcd->tgt_qp_mutex);
731 	return qp;
732 }
733 EXPORT_SYMBOL(ib_open_qp);
734 
735 static struct ib_qp *ib_create_xrc_qp(struct ib_qp *qp,
736 		struct ib_qp_init_attr *qp_init_attr)
737 {
738 	struct ib_qp *real_qp = qp;
739 
740 	qp->event_handler = __ib_shared_qp_event_handler;
741 	qp->qp_context = qp;
742 	qp->pd = NULL;
743 	qp->send_cq = qp->recv_cq = NULL;
744 	qp->srq = NULL;
745 	qp->xrcd = qp_init_attr->xrcd;
746 	atomic_inc(&qp_init_attr->xrcd->usecnt);
747 	INIT_LIST_HEAD(&qp->open_list);
748 
749 	qp = __ib_open_qp(real_qp, qp_init_attr->event_handler,
750 			  qp_init_attr->qp_context);
751 	if (!IS_ERR(qp))
752 		__ib_insert_xrcd_qp(qp_init_attr->xrcd, real_qp);
753 	else
754 		real_qp->device->destroy_qp(real_qp);
755 	return qp;
756 }
757 
758 struct ib_qp *ib_create_qp(struct ib_pd *pd,
759 			   struct ib_qp_init_attr *qp_init_attr)
760 {
761 	struct ib_device *device = pd ? pd->device : qp_init_attr->xrcd->device;
762 	struct ib_qp *qp;
763 
764 	if (qp_init_attr->rwq_ind_tbl &&
765 	    (qp_init_attr->recv_cq ||
766 	    qp_init_attr->srq || qp_init_attr->cap.max_recv_wr ||
767 	    qp_init_attr->cap.max_recv_sge))
768 		return ERR_PTR(-EINVAL);
769 
770 	qp = device->create_qp(pd, qp_init_attr, NULL);
771 	if (IS_ERR(qp))
772 		return qp;
773 
774 	qp->device     = device;
775 	qp->real_qp    = qp;
776 	qp->uobject    = NULL;
777 	qp->qp_type    = qp_init_attr->qp_type;
778 	qp->rwq_ind_tbl = qp_init_attr->rwq_ind_tbl;
779 
780 	atomic_set(&qp->usecnt, 0);
781 	spin_lock_init(&qp->mr_lock);
782 
783 	if (qp_init_attr->qp_type == IB_QPT_XRC_TGT)
784 		return ib_create_xrc_qp(qp, qp_init_attr);
785 
786 	qp->event_handler = qp_init_attr->event_handler;
787 	qp->qp_context = qp_init_attr->qp_context;
788 	if (qp_init_attr->qp_type == IB_QPT_XRC_INI) {
789 		qp->recv_cq = NULL;
790 		qp->srq = NULL;
791 	} else {
792 		qp->recv_cq = qp_init_attr->recv_cq;
793 		if (qp_init_attr->recv_cq)
794 			atomic_inc(&qp_init_attr->recv_cq->usecnt);
795 		qp->srq = qp_init_attr->srq;
796 		if (qp->srq)
797 			atomic_inc(&qp_init_attr->srq->usecnt);
798 	}
799 
800 	qp->pd	    = pd;
801 	qp->send_cq = qp_init_attr->send_cq;
802 	qp->xrcd    = NULL;
803 
804 	atomic_inc(&pd->usecnt);
805 	if (qp_init_attr->send_cq)
806 		atomic_inc(&qp_init_attr->send_cq->usecnt);
807 	if (qp_init_attr->rwq_ind_tbl)
808 		atomic_inc(&qp->rwq_ind_tbl->usecnt);
809 
810 	/*
811 	 * Note: all hw drivers guarantee that max_send_sge is lower than
812 	 * the device RDMA WRITE SGE limit but not all hw drivers ensure that
813 	 * max_send_sge <= max_sge_rd.
814 	 */
815 	qp->max_write_sge = qp_init_attr->cap.max_send_sge;
816 	qp->max_read_sge = min_t(u32, qp_init_attr->cap.max_send_sge,
817 				 device->attrs.max_sge_rd);
818 
819 	return qp;
820 }
821 EXPORT_SYMBOL(ib_create_qp);
822 
823 static const struct {
824 	int			valid;
825 	enum ib_qp_attr_mask	req_param[IB_QPT_MAX];
826 	enum ib_qp_attr_mask	opt_param[IB_QPT_MAX];
827 } qp_state_table[IB_QPS_ERR + 1][IB_QPS_ERR + 1] = {
828 	[IB_QPS_RESET] = {
829 		[IB_QPS_RESET] = { .valid = 1 },
830 		[IB_QPS_INIT]  = {
831 			.valid = 1,
832 			.req_param = {
833 				[IB_QPT_UD]  = (IB_QP_PKEY_INDEX		|
834 						IB_QP_PORT			|
835 						IB_QP_QKEY),
836 				[IB_QPT_RAW_PACKET] = IB_QP_PORT,
837 				[IB_QPT_UC]  = (IB_QP_PKEY_INDEX		|
838 						IB_QP_PORT			|
839 						IB_QP_ACCESS_FLAGS),
840 				[IB_QPT_RC]  = (IB_QP_PKEY_INDEX		|
841 						IB_QP_PORT			|
842 						IB_QP_ACCESS_FLAGS),
843 				[IB_QPT_XRC_INI] = (IB_QP_PKEY_INDEX		|
844 						IB_QP_PORT			|
845 						IB_QP_ACCESS_FLAGS),
846 				[IB_QPT_XRC_TGT] = (IB_QP_PKEY_INDEX		|
847 						IB_QP_PORT			|
848 						IB_QP_ACCESS_FLAGS),
849 				[IB_QPT_SMI] = (IB_QP_PKEY_INDEX		|
850 						IB_QP_QKEY),
851 				[IB_QPT_GSI] = (IB_QP_PKEY_INDEX		|
852 						IB_QP_QKEY),
853 			}
854 		},
855 	},
856 	[IB_QPS_INIT]  = {
857 		[IB_QPS_RESET] = { .valid = 1 },
858 		[IB_QPS_ERR] =   { .valid = 1 },
859 		[IB_QPS_INIT]  = {
860 			.valid = 1,
861 			.opt_param = {
862 				[IB_QPT_UD]  = (IB_QP_PKEY_INDEX		|
863 						IB_QP_PORT			|
864 						IB_QP_QKEY),
865 				[IB_QPT_UC]  = (IB_QP_PKEY_INDEX		|
866 						IB_QP_PORT			|
867 						IB_QP_ACCESS_FLAGS),
868 				[IB_QPT_RC]  = (IB_QP_PKEY_INDEX		|
869 						IB_QP_PORT			|
870 						IB_QP_ACCESS_FLAGS),
871 				[IB_QPT_XRC_INI] = (IB_QP_PKEY_INDEX		|
872 						IB_QP_PORT			|
873 						IB_QP_ACCESS_FLAGS),
874 				[IB_QPT_XRC_TGT] = (IB_QP_PKEY_INDEX		|
875 						IB_QP_PORT			|
876 						IB_QP_ACCESS_FLAGS),
877 				[IB_QPT_SMI] = (IB_QP_PKEY_INDEX		|
878 						IB_QP_QKEY),
879 				[IB_QPT_GSI] = (IB_QP_PKEY_INDEX		|
880 						IB_QP_QKEY),
881 			}
882 		},
883 		[IB_QPS_RTR]   = {
884 			.valid = 1,
885 			.req_param = {
886 				[IB_QPT_UC]  = (IB_QP_AV			|
887 						IB_QP_PATH_MTU			|
888 						IB_QP_DEST_QPN			|
889 						IB_QP_RQ_PSN),
890 				[IB_QPT_RC]  = (IB_QP_AV			|
891 						IB_QP_PATH_MTU			|
892 						IB_QP_DEST_QPN			|
893 						IB_QP_RQ_PSN			|
894 						IB_QP_MAX_DEST_RD_ATOMIC	|
895 						IB_QP_MIN_RNR_TIMER),
896 				[IB_QPT_XRC_INI] = (IB_QP_AV			|
897 						IB_QP_PATH_MTU			|
898 						IB_QP_DEST_QPN			|
899 						IB_QP_RQ_PSN),
900 				[IB_QPT_XRC_TGT] = (IB_QP_AV			|
901 						IB_QP_PATH_MTU			|
902 						IB_QP_DEST_QPN			|
903 						IB_QP_RQ_PSN			|
904 						IB_QP_MAX_DEST_RD_ATOMIC	|
905 						IB_QP_MIN_RNR_TIMER),
906 			},
907 			.opt_param = {
908 				 [IB_QPT_UD]  = (IB_QP_PKEY_INDEX		|
909 						 IB_QP_QKEY),
910 				 [IB_QPT_UC]  = (IB_QP_ALT_PATH			|
911 						 IB_QP_ACCESS_FLAGS		|
912 						 IB_QP_PKEY_INDEX),
913 				 [IB_QPT_RC]  = (IB_QP_ALT_PATH			|
914 						 IB_QP_ACCESS_FLAGS		|
915 						 IB_QP_PKEY_INDEX),
916 				 [IB_QPT_XRC_INI] = (IB_QP_ALT_PATH		|
917 						 IB_QP_ACCESS_FLAGS		|
918 						 IB_QP_PKEY_INDEX),
919 				 [IB_QPT_XRC_TGT] = (IB_QP_ALT_PATH		|
920 						 IB_QP_ACCESS_FLAGS		|
921 						 IB_QP_PKEY_INDEX),
922 				 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX		|
923 						 IB_QP_QKEY),
924 				 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX		|
925 						 IB_QP_QKEY),
926 			 },
927 		},
928 	},
929 	[IB_QPS_RTR]   = {
930 		[IB_QPS_RESET] = { .valid = 1 },
931 		[IB_QPS_ERR] =   { .valid = 1 },
932 		[IB_QPS_RTS]   = {
933 			.valid = 1,
934 			.req_param = {
935 				[IB_QPT_UD]  = IB_QP_SQ_PSN,
936 				[IB_QPT_UC]  = IB_QP_SQ_PSN,
937 				[IB_QPT_RC]  = (IB_QP_TIMEOUT			|
938 						IB_QP_RETRY_CNT			|
939 						IB_QP_RNR_RETRY			|
940 						IB_QP_SQ_PSN			|
941 						IB_QP_MAX_QP_RD_ATOMIC),
942 				[IB_QPT_XRC_INI] = (IB_QP_TIMEOUT		|
943 						IB_QP_RETRY_CNT			|
944 						IB_QP_RNR_RETRY			|
945 						IB_QP_SQ_PSN			|
946 						IB_QP_MAX_QP_RD_ATOMIC),
947 				[IB_QPT_XRC_TGT] = (IB_QP_TIMEOUT		|
948 						IB_QP_SQ_PSN),
949 				[IB_QPT_SMI] = IB_QP_SQ_PSN,
950 				[IB_QPT_GSI] = IB_QP_SQ_PSN,
951 			},
952 			.opt_param = {
953 				 [IB_QPT_UD]  = (IB_QP_CUR_STATE		|
954 						 IB_QP_QKEY),
955 				 [IB_QPT_UC]  = (IB_QP_CUR_STATE		|
956 						 IB_QP_ALT_PATH			|
957 						 IB_QP_ACCESS_FLAGS		|
958 						 IB_QP_PATH_MIG_STATE),
959 				 [IB_QPT_RC]  = (IB_QP_CUR_STATE		|
960 						 IB_QP_ALT_PATH			|
961 						 IB_QP_ACCESS_FLAGS		|
962 						 IB_QP_MIN_RNR_TIMER		|
963 						 IB_QP_PATH_MIG_STATE),
964 				 [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE		|
965 						 IB_QP_ALT_PATH			|
966 						 IB_QP_ACCESS_FLAGS		|
967 						 IB_QP_PATH_MIG_STATE),
968 				 [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE		|
969 						 IB_QP_ALT_PATH			|
970 						 IB_QP_ACCESS_FLAGS		|
971 						 IB_QP_MIN_RNR_TIMER		|
972 						 IB_QP_PATH_MIG_STATE),
973 				 [IB_QPT_SMI] = (IB_QP_CUR_STATE		|
974 						 IB_QP_QKEY),
975 				 [IB_QPT_GSI] = (IB_QP_CUR_STATE		|
976 						 IB_QP_QKEY),
977 			 }
978 		}
979 	},
980 	[IB_QPS_RTS]   = {
981 		[IB_QPS_RESET] = { .valid = 1 },
982 		[IB_QPS_ERR] =   { .valid = 1 },
983 		[IB_QPS_RTS]   = {
984 			.valid = 1,
985 			.opt_param = {
986 				[IB_QPT_UD]  = (IB_QP_CUR_STATE			|
987 						IB_QP_QKEY),
988 				[IB_QPT_UC]  = (IB_QP_CUR_STATE			|
989 						IB_QP_ACCESS_FLAGS		|
990 						IB_QP_ALT_PATH			|
991 						IB_QP_PATH_MIG_STATE),
992 				[IB_QPT_RC]  = (IB_QP_CUR_STATE			|
993 						IB_QP_ACCESS_FLAGS		|
994 						IB_QP_ALT_PATH			|
995 						IB_QP_PATH_MIG_STATE		|
996 						IB_QP_MIN_RNR_TIMER),
997 				[IB_QPT_XRC_INI] = (IB_QP_CUR_STATE		|
998 						IB_QP_ACCESS_FLAGS		|
999 						IB_QP_ALT_PATH			|
1000 						IB_QP_PATH_MIG_STATE),
1001 				[IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE		|
1002 						IB_QP_ACCESS_FLAGS		|
1003 						IB_QP_ALT_PATH			|
1004 						IB_QP_PATH_MIG_STATE		|
1005 						IB_QP_MIN_RNR_TIMER),
1006 				[IB_QPT_SMI] = (IB_QP_CUR_STATE			|
1007 						IB_QP_QKEY),
1008 				[IB_QPT_GSI] = (IB_QP_CUR_STATE			|
1009 						IB_QP_QKEY),
1010 			}
1011 		},
1012 		[IB_QPS_SQD]   = {
1013 			.valid = 1,
1014 			.opt_param = {
1015 				[IB_QPT_UD]  = IB_QP_EN_SQD_ASYNC_NOTIFY,
1016 				[IB_QPT_UC]  = IB_QP_EN_SQD_ASYNC_NOTIFY,
1017 				[IB_QPT_RC]  = IB_QP_EN_SQD_ASYNC_NOTIFY,
1018 				[IB_QPT_XRC_INI] = IB_QP_EN_SQD_ASYNC_NOTIFY,
1019 				[IB_QPT_XRC_TGT] = IB_QP_EN_SQD_ASYNC_NOTIFY, /* ??? */
1020 				[IB_QPT_SMI] = IB_QP_EN_SQD_ASYNC_NOTIFY,
1021 				[IB_QPT_GSI] = IB_QP_EN_SQD_ASYNC_NOTIFY
1022 			}
1023 		},
1024 	},
1025 	[IB_QPS_SQD]   = {
1026 		[IB_QPS_RESET] = { .valid = 1 },
1027 		[IB_QPS_ERR] =   { .valid = 1 },
1028 		[IB_QPS_RTS]   = {
1029 			.valid = 1,
1030 			.opt_param = {
1031 				[IB_QPT_UD]  = (IB_QP_CUR_STATE			|
1032 						IB_QP_QKEY),
1033 				[IB_QPT_UC]  = (IB_QP_CUR_STATE			|
1034 						IB_QP_ALT_PATH			|
1035 						IB_QP_ACCESS_FLAGS		|
1036 						IB_QP_PATH_MIG_STATE),
1037 				[IB_QPT_RC]  = (IB_QP_CUR_STATE			|
1038 						IB_QP_ALT_PATH			|
1039 						IB_QP_ACCESS_FLAGS		|
1040 						IB_QP_MIN_RNR_TIMER		|
1041 						IB_QP_PATH_MIG_STATE),
1042 				[IB_QPT_XRC_INI] = (IB_QP_CUR_STATE		|
1043 						IB_QP_ALT_PATH			|
1044 						IB_QP_ACCESS_FLAGS		|
1045 						IB_QP_PATH_MIG_STATE),
1046 				[IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE		|
1047 						IB_QP_ALT_PATH			|
1048 						IB_QP_ACCESS_FLAGS		|
1049 						IB_QP_MIN_RNR_TIMER		|
1050 						IB_QP_PATH_MIG_STATE),
1051 				[IB_QPT_SMI] = (IB_QP_CUR_STATE			|
1052 						IB_QP_QKEY),
1053 				[IB_QPT_GSI] = (IB_QP_CUR_STATE			|
1054 						IB_QP_QKEY),
1055 			}
1056 		},
1057 		[IB_QPS_SQD]   = {
1058 			.valid = 1,
1059 			.opt_param = {
1060 				[IB_QPT_UD]  = (IB_QP_PKEY_INDEX		|
1061 						IB_QP_QKEY),
1062 				[IB_QPT_UC]  = (IB_QP_AV			|
1063 						IB_QP_ALT_PATH			|
1064 						IB_QP_ACCESS_FLAGS		|
1065 						IB_QP_PKEY_INDEX		|
1066 						IB_QP_PATH_MIG_STATE),
1067 				[IB_QPT_RC]  = (IB_QP_PORT			|
1068 						IB_QP_AV			|
1069 						IB_QP_TIMEOUT			|
1070 						IB_QP_RETRY_CNT			|
1071 						IB_QP_RNR_RETRY			|
1072 						IB_QP_MAX_QP_RD_ATOMIC		|
1073 						IB_QP_MAX_DEST_RD_ATOMIC	|
1074 						IB_QP_ALT_PATH			|
1075 						IB_QP_ACCESS_FLAGS		|
1076 						IB_QP_PKEY_INDEX		|
1077 						IB_QP_MIN_RNR_TIMER		|
1078 						IB_QP_PATH_MIG_STATE),
1079 				[IB_QPT_XRC_INI] = (IB_QP_PORT			|
1080 						IB_QP_AV			|
1081 						IB_QP_TIMEOUT			|
1082 						IB_QP_RETRY_CNT			|
1083 						IB_QP_RNR_RETRY			|
1084 						IB_QP_MAX_QP_RD_ATOMIC		|
1085 						IB_QP_ALT_PATH			|
1086 						IB_QP_ACCESS_FLAGS		|
1087 						IB_QP_PKEY_INDEX		|
1088 						IB_QP_PATH_MIG_STATE),
1089 				[IB_QPT_XRC_TGT] = (IB_QP_PORT			|
1090 						IB_QP_AV			|
1091 						IB_QP_TIMEOUT			|
1092 						IB_QP_MAX_DEST_RD_ATOMIC	|
1093 						IB_QP_ALT_PATH			|
1094 						IB_QP_ACCESS_FLAGS		|
1095 						IB_QP_PKEY_INDEX		|
1096 						IB_QP_MIN_RNR_TIMER		|
1097 						IB_QP_PATH_MIG_STATE),
1098 				[IB_QPT_SMI] = (IB_QP_PKEY_INDEX		|
1099 						IB_QP_QKEY),
1100 				[IB_QPT_GSI] = (IB_QP_PKEY_INDEX		|
1101 						IB_QP_QKEY),
1102 			}
1103 		}
1104 	},
1105 	[IB_QPS_SQE]   = {
1106 		[IB_QPS_RESET] = { .valid = 1 },
1107 		[IB_QPS_ERR] =   { .valid = 1 },
1108 		[IB_QPS_RTS]   = {
1109 			.valid = 1,
1110 			.opt_param = {
1111 				[IB_QPT_UD]  = (IB_QP_CUR_STATE			|
1112 						IB_QP_QKEY),
1113 				[IB_QPT_UC]  = (IB_QP_CUR_STATE			|
1114 						IB_QP_ACCESS_FLAGS),
1115 				[IB_QPT_SMI] = (IB_QP_CUR_STATE			|
1116 						IB_QP_QKEY),
1117 				[IB_QPT_GSI] = (IB_QP_CUR_STATE			|
1118 						IB_QP_QKEY),
1119 			}
1120 		}
1121 	},
1122 	[IB_QPS_ERR] = {
1123 		[IB_QPS_RESET] = { .valid = 1 },
1124 		[IB_QPS_ERR] =   { .valid = 1 }
1125 	}
1126 };
1127 
1128 int ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state,
1129 		       enum ib_qp_type type, enum ib_qp_attr_mask mask,
1130 		       enum rdma_link_layer ll)
1131 {
1132 	enum ib_qp_attr_mask req_param, opt_param;
1133 
1134 	if (cur_state  < 0 || cur_state  > IB_QPS_ERR ||
1135 	    next_state < 0 || next_state > IB_QPS_ERR)
1136 		return 0;
1137 
1138 	if (mask & IB_QP_CUR_STATE  &&
1139 	    cur_state != IB_QPS_RTR && cur_state != IB_QPS_RTS &&
1140 	    cur_state != IB_QPS_SQD && cur_state != IB_QPS_SQE)
1141 		return 0;
1142 
1143 	if (!qp_state_table[cur_state][next_state].valid)
1144 		return 0;
1145 
1146 	req_param = qp_state_table[cur_state][next_state].req_param[type];
1147 	opt_param = qp_state_table[cur_state][next_state].opt_param[type];
1148 
1149 	if ((mask & req_param) != req_param)
1150 		return 0;
1151 
1152 	if (mask & ~(req_param | opt_param | IB_QP_STATE))
1153 		return 0;
1154 
1155 	return 1;
1156 }
1157 EXPORT_SYMBOL(ib_modify_qp_is_ok);
1158 
1159 int ib_resolve_eth_dmac(struct ib_device *device,
1160 			struct ib_ah_attr *ah_attr)
1161 {
1162 	struct ib_gid_attr sgid_attr;
1163 	union ib_gid sgid;
1164 	int hop_limit;
1165 	int ret;
1166 
1167 	if (ah_attr->port_num < rdma_start_port(device) ||
1168 	    ah_attr->port_num > rdma_end_port(device))
1169 		return -EINVAL;
1170 
1171 	if (!rdma_cap_eth_ah(device, ah_attr->port_num))
1172 		return 0;
1173 
1174 	if (rdma_is_multicast_addr((struct in6_addr *)ah_attr->grh.dgid.raw)) {
1175 		if (ipv6_addr_v4mapped((struct in6_addr *)ah_attr->grh.dgid.raw)) {
1176 			__be32 addr = 0;
1177 
1178 			memcpy(&addr, ah_attr->grh.dgid.raw + 12, 4);
1179 			ip_eth_mc_map(addr, (char *)ah_attr->dmac);
1180 		} else {
1181 			ipv6_eth_mc_map((struct in6_addr *)ah_attr->grh.dgid.raw,
1182 					(char *)ah_attr->dmac);
1183 		}
1184 		return 0;
1185 	}
1186 
1187 	ret = ib_query_gid(device,
1188 			   ah_attr->port_num,
1189 			   ah_attr->grh.sgid_index,
1190 			   &sgid, &sgid_attr);
1191 	if (ret != 0)
1192 		return (ret);
1193 	if (!sgid_attr.ndev)
1194 		return -ENXIO;
1195 
1196 	ret = rdma_addr_find_l2_eth_by_grh(&sgid,
1197 					   &ah_attr->grh.dgid,
1198 					   ah_attr->dmac,
1199 					   sgid_attr.ndev, &hop_limit);
1200 	dev_put(sgid_attr.ndev);
1201 
1202 	ah_attr->grh.hop_limit = hop_limit;
1203 	return ret;
1204 }
1205 EXPORT_SYMBOL(ib_resolve_eth_dmac);
1206 
1207 
1208 int ib_modify_qp(struct ib_qp *qp,
1209 		 struct ib_qp_attr *qp_attr,
1210 		 int qp_attr_mask)
1211 {
1212 	if (qp_attr_mask & IB_QP_AV) {
1213 		int ret;
1214 
1215 		ret = ib_resolve_eth_dmac(qp->device, &qp_attr->ah_attr);
1216 		if (ret)
1217 			return ret;
1218 	}
1219 
1220 	return qp->device->modify_qp(qp->real_qp, qp_attr, qp_attr_mask, NULL);
1221 }
1222 EXPORT_SYMBOL(ib_modify_qp);
1223 
1224 int ib_query_qp(struct ib_qp *qp,
1225 		struct ib_qp_attr *qp_attr,
1226 		int qp_attr_mask,
1227 		struct ib_qp_init_attr *qp_init_attr)
1228 {
1229 	return qp->device->query_qp ?
1230 		qp->device->query_qp(qp->real_qp, qp_attr, qp_attr_mask, qp_init_attr) :
1231 		-ENOSYS;
1232 }
1233 EXPORT_SYMBOL(ib_query_qp);
1234 
1235 int ib_close_qp(struct ib_qp *qp)
1236 {
1237 	struct ib_qp *real_qp;
1238 	unsigned long flags;
1239 
1240 	real_qp = qp->real_qp;
1241 	if (real_qp == qp)
1242 		return -EINVAL;
1243 
1244 	spin_lock_irqsave(&real_qp->device->event_handler_lock, flags);
1245 	list_del(&qp->open_list);
1246 	spin_unlock_irqrestore(&real_qp->device->event_handler_lock, flags);
1247 
1248 	atomic_dec(&real_qp->usecnt);
1249 	kfree(qp);
1250 
1251 	return 0;
1252 }
1253 EXPORT_SYMBOL(ib_close_qp);
1254 
1255 static int __ib_destroy_shared_qp(struct ib_qp *qp)
1256 {
1257 	struct ib_xrcd *xrcd;
1258 	struct ib_qp *real_qp;
1259 	int ret;
1260 
1261 	real_qp = qp->real_qp;
1262 	xrcd = real_qp->xrcd;
1263 
1264 	mutex_lock(&xrcd->tgt_qp_mutex);
1265 	ib_close_qp(qp);
1266 	if (atomic_read(&real_qp->usecnt) == 0)
1267 		list_del(&real_qp->xrcd_list);
1268 	else
1269 		real_qp = NULL;
1270 	mutex_unlock(&xrcd->tgt_qp_mutex);
1271 
1272 	if (real_qp) {
1273 		ret = ib_destroy_qp(real_qp);
1274 		if (!ret)
1275 			atomic_dec(&xrcd->usecnt);
1276 		else
1277 			__ib_insert_xrcd_qp(xrcd, real_qp);
1278 	}
1279 
1280 	return 0;
1281 }
1282 
1283 int ib_destroy_qp(struct ib_qp *qp)
1284 {
1285 	struct ib_pd *pd;
1286 	struct ib_cq *scq, *rcq;
1287 	struct ib_srq *srq;
1288 	struct ib_rwq_ind_table *ind_tbl;
1289 	int ret;
1290 
1291 	if (atomic_read(&qp->usecnt))
1292 		return -EBUSY;
1293 
1294 	if (qp->real_qp != qp)
1295 		return __ib_destroy_shared_qp(qp);
1296 
1297 	pd   = qp->pd;
1298 	scq  = qp->send_cq;
1299 	rcq  = qp->recv_cq;
1300 	srq  = qp->srq;
1301 	ind_tbl = qp->rwq_ind_tbl;
1302 
1303 	ret = qp->device->destroy_qp(qp);
1304 	if (!ret) {
1305 		if (pd)
1306 			atomic_dec(&pd->usecnt);
1307 		if (scq)
1308 			atomic_dec(&scq->usecnt);
1309 		if (rcq)
1310 			atomic_dec(&rcq->usecnt);
1311 		if (srq)
1312 			atomic_dec(&srq->usecnt);
1313 		if (ind_tbl)
1314 			atomic_dec(&ind_tbl->usecnt);
1315 	}
1316 
1317 	return ret;
1318 }
1319 EXPORT_SYMBOL(ib_destroy_qp);
1320 
1321 /* Completion queues */
1322 
1323 struct ib_cq *ib_create_cq(struct ib_device *device,
1324 			   ib_comp_handler comp_handler,
1325 			   void (*event_handler)(struct ib_event *, void *),
1326 			   void *cq_context,
1327 			   const struct ib_cq_init_attr *cq_attr)
1328 {
1329 	struct ib_cq *cq;
1330 
1331 	cq = device->create_cq(device, cq_attr, NULL, NULL);
1332 
1333 	if (!IS_ERR(cq)) {
1334 		cq->device        = device;
1335 		cq->uobject       = NULL;
1336 		cq->comp_handler  = comp_handler;
1337 		cq->event_handler = event_handler;
1338 		cq->cq_context    = cq_context;
1339 		atomic_set(&cq->usecnt, 0);
1340 	}
1341 
1342 	return cq;
1343 }
1344 EXPORT_SYMBOL(ib_create_cq);
1345 
1346 int ib_modify_cq(struct ib_cq *cq, u16 cq_count, u16 cq_period)
1347 {
1348 	return cq->device->modify_cq ?
1349 		cq->device->modify_cq(cq, cq_count, cq_period) : -ENOSYS;
1350 }
1351 EXPORT_SYMBOL(ib_modify_cq);
1352 
1353 int ib_destroy_cq(struct ib_cq *cq)
1354 {
1355 	if (atomic_read(&cq->usecnt))
1356 		return -EBUSY;
1357 
1358 	return cq->device->destroy_cq(cq);
1359 }
1360 EXPORT_SYMBOL(ib_destroy_cq);
1361 
1362 int ib_resize_cq(struct ib_cq *cq, int cqe)
1363 {
1364 	return cq->device->resize_cq ?
1365 		cq->device->resize_cq(cq, cqe, NULL) : -ENOSYS;
1366 }
1367 EXPORT_SYMBOL(ib_resize_cq);
1368 
1369 /* Memory regions */
1370 
1371 int ib_dereg_mr(struct ib_mr *mr)
1372 {
1373 	struct ib_pd *pd = mr->pd;
1374 	int ret;
1375 
1376 	ret = mr->device->dereg_mr(mr);
1377 	if (!ret)
1378 		atomic_dec(&pd->usecnt);
1379 
1380 	return ret;
1381 }
1382 EXPORT_SYMBOL(ib_dereg_mr);
1383 
1384 /**
1385  * ib_alloc_mr() - Allocates a memory region
1386  * @pd:            protection domain associated with the region
1387  * @mr_type:       memory region type
1388  * @max_num_sg:    maximum sg entries available for registration.
1389  *
1390  * Notes:
1391  * Memory registeration page/sg lists must not exceed max_num_sg.
1392  * For mr_type IB_MR_TYPE_MEM_REG, the total length cannot exceed
1393  * max_num_sg * used_page_size.
1394  *
1395  */
1396 struct ib_mr *ib_alloc_mr(struct ib_pd *pd,
1397 			  enum ib_mr_type mr_type,
1398 			  u32 max_num_sg)
1399 {
1400 	struct ib_mr *mr;
1401 
1402 	if (!pd->device->alloc_mr)
1403 		return ERR_PTR(-ENOSYS);
1404 
1405 	mr = pd->device->alloc_mr(pd, mr_type, max_num_sg);
1406 	if (!IS_ERR(mr)) {
1407 		mr->device  = pd->device;
1408 		mr->pd      = pd;
1409 		mr->uobject = NULL;
1410 		atomic_inc(&pd->usecnt);
1411 		mr->need_inval = false;
1412 	}
1413 
1414 	return mr;
1415 }
1416 EXPORT_SYMBOL(ib_alloc_mr);
1417 
1418 /* "Fast" memory regions */
1419 
1420 struct ib_fmr *ib_alloc_fmr(struct ib_pd *pd,
1421 			    int mr_access_flags,
1422 			    struct ib_fmr_attr *fmr_attr)
1423 {
1424 	struct ib_fmr *fmr;
1425 
1426 	if (!pd->device->alloc_fmr)
1427 		return ERR_PTR(-ENOSYS);
1428 
1429 	fmr = pd->device->alloc_fmr(pd, mr_access_flags, fmr_attr);
1430 	if (!IS_ERR(fmr)) {
1431 		fmr->device = pd->device;
1432 		fmr->pd     = pd;
1433 		atomic_inc(&pd->usecnt);
1434 	}
1435 
1436 	return fmr;
1437 }
1438 EXPORT_SYMBOL(ib_alloc_fmr);
1439 
1440 int ib_unmap_fmr(struct list_head *fmr_list)
1441 {
1442 	struct ib_fmr *fmr;
1443 
1444 	if (list_empty(fmr_list))
1445 		return 0;
1446 
1447 	fmr = list_entry(fmr_list->next, struct ib_fmr, list);
1448 	return fmr->device->unmap_fmr(fmr_list);
1449 }
1450 EXPORT_SYMBOL(ib_unmap_fmr);
1451 
1452 int ib_dealloc_fmr(struct ib_fmr *fmr)
1453 {
1454 	struct ib_pd *pd;
1455 	int ret;
1456 
1457 	pd = fmr->pd;
1458 	ret = fmr->device->dealloc_fmr(fmr);
1459 	if (!ret)
1460 		atomic_dec(&pd->usecnt);
1461 
1462 	return ret;
1463 }
1464 EXPORT_SYMBOL(ib_dealloc_fmr);
1465 
1466 /* Multicast groups */
1467 
1468 static bool is_valid_mcast_lid(struct ib_qp *qp, u16 lid)
1469 {
1470 	struct ib_qp_init_attr init_attr = {};
1471 	struct ib_qp_attr attr = {};
1472 	int num_eth_ports = 0;
1473 	int port;
1474 
1475 	/* If QP state >= init, it is assigned to a port and we can check this
1476 	 * port only.
1477 	 */
1478 	if (!ib_query_qp(qp, &attr, IB_QP_STATE | IB_QP_PORT, &init_attr)) {
1479 		if (attr.qp_state >= IB_QPS_INIT) {
1480 			if (rdma_port_get_link_layer(qp->device, attr.port_num) !=
1481 			    IB_LINK_LAYER_INFINIBAND)
1482 				return true;
1483 			goto lid_check;
1484 		}
1485 	}
1486 
1487 	/* Can't get a quick answer, iterate over all ports */
1488 	for (port = 0; port < qp->device->phys_port_cnt; port++)
1489 		if (rdma_port_get_link_layer(qp->device, port) !=
1490 		    IB_LINK_LAYER_INFINIBAND)
1491 			num_eth_ports++;
1492 
1493 	/* If we have at lease one Ethernet port, RoCE annex declares that
1494 	 * multicast LID should be ignored. We can't tell at this step if the
1495 	 * QP belongs to an IB or Ethernet port.
1496 	 */
1497 	if (num_eth_ports)
1498 		return true;
1499 
1500 	/* If all the ports are IB, we can check according to IB spec. */
1501 lid_check:
1502 	return !(lid < be16_to_cpu(IB_MULTICAST_LID_BASE) ||
1503 		 lid == be16_to_cpu(IB_LID_PERMISSIVE));
1504 }
1505 
1506 int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid)
1507 {
1508 	int ret;
1509 
1510 	if (!qp->device->attach_mcast)
1511 		return -ENOSYS;
1512 
1513 	if (!rdma_is_multicast_addr((struct in6_addr *)gid->raw) ||
1514 	    qp->qp_type != IB_QPT_UD || !is_valid_mcast_lid(qp, lid))
1515 		return -EINVAL;
1516 
1517 	ret = qp->device->attach_mcast(qp, gid, lid);
1518 	if (!ret)
1519 		atomic_inc(&qp->usecnt);
1520 	return ret;
1521 }
1522 EXPORT_SYMBOL(ib_attach_mcast);
1523 
1524 int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid)
1525 {
1526 	int ret;
1527 
1528 	if (!qp->device->detach_mcast)
1529 		return -ENOSYS;
1530 
1531 	if (!rdma_is_multicast_addr((struct in6_addr *)gid->raw) ||
1532 	    qp->qp_type != IB_QPT_UD || !is_valid_mcast_lid(qp, lid))
1533 		return -EINVAL;
1534 
1535 	ret = qp->device->detach_mcast(qp, gid, lid);
1536 	if (!ret)
1537 		atomic_dec(&qp->usecnt);
1538 	return ret;
1539 }
1540 EXPORT_SYMBOL(ib_detach_mcast);
1541 
1542 struct ib_xrcd *ib_alloc_xrcd(struct ib_device *device)
1543 {
1544 	struct ib_xrcd *xrcd;
1545 
1546 	if (!device->alloc_xrcd)
1547 		return ERR_PTR(-ENOSYS);
1548 
1549 	xrcd = device->alloc_xrcd(device, NULL, NULL);
1550 	if (!IS_ERR(xrcd)) {
1551 		xrcd->device = device;
1552 		xrcd->inode = NULL;
1553 		atomic_set(&xrcd->usecnt, 0);
1554 		mutex_init(&xrcd->tgt_qp_mutex);
1555 		INIT_LIST_HEAD(&xrcd->tgt_qp_list);
1556 	}
1557 
1558 	return xrcd;
1559 }
1560 EXPORT_SYMBOL(ib_alloc_xrcd);
1561 
1562 int ib_dealloc_xrcd(struct ib_xrcd *xrcd)
1563 {
1564 	struct ib_qp *qp;
1565 	int ret;
1566 
1567 	if (atomic_read(&xrcd->usecnt))
1568 		return -EBUSY;
1569 
1570 	while (!list_empty(&xrcd->tgt_qp_list)) {
1571 		qp = list_entry(xrcd->tgt_qp_list.next, struct ib_qp, xrcd_list);
1572 		ret = ib_destroy_qp(qp);
1573 		if (ret)
1574 			return ret;
1575 	}
1576 
1577 	return xrcd->device->dealloc_xrcd(xrcd);
1578 }
1579 EXPORT_SYMBOL(ib_dealloc_xrcd);
1580 
1581 /**
1582  * ib_create_wq - Creates a WQ associated with the specified protection
1583  * domain.
1584  * @pd: The protection domain associated with the WQ.
1585  * @wq_init_attr: A list of initial attributes required to create the
1586  * WQ. If WQ creation succeeds, then the attributes are updated to
1587  * the actual capabilities of the created WQ.
1588  *
1589  * wq_init_attr->max_wr and wq_init_attr->max_sge determine
1590  * the requested size of the WQ, and set to the actual values allocated
1591  * on return.
1592  * If ib_create_wq() succeeds, then max_wr and max_sge will always be
1593  * at least as large as the requested values.
1594  */
1595 struct ib_wq *ib_create_wq(struct ib_pd *pd,
1596 			   struct ib_wq_init_attr *wq_attr)
1597 {
1598 	struct ib_wq *wq;
1599 
1600 	if (!pd->device->create_wq)
1601 		return ERR_PTR(-ENOSYS);
1602 
1603 	wq = pd->device->create_wq(pd, wq_attr, NULL);
1604 	if (!IS_ERR(wq)) {
1605 		wq->event_handler = wq_attr->event_handler;
1606 		wq->wq_context = wq_attr->wq_context;
1607 		wq->wq_type = wq_attr->wq_type;
1608 		wq->cq = wq_attr->cq;
1609 		wq->device = pd->device;
1610 		wq->pd = pd;
1611 		wq->uobject = NULL;
1612 		atomic_inc(&pd->usecnt);
1613 		atomic_inc(&wq_attr->cq->usecnt);
1614 		atomic_set(&wq->usecnt, 0);
1615 	}
1616 	return wq;
1617 }
1618 EXPORT_SYMBOL(ib_create_wq);
1619 
1620 /**
1621  * ib_destroy_wq - Destroys the specified WQ.
1622  * @wq: The WQ to destroy.
1623  */
1624 int ib_destroy_wq(struct ib_wq *wq)
1625 {
1626 	int err;
1627 	struct ib_cq *cq = wq->cq;
1628 	struct ib_pd *pd = wq->pd;
1629 
1630 	if (atomic_read(&wq->usecnt))
1631 		return -EBUSY;
1632 
1633 	err = wq->device->destroy_wq(wq);
1634 	if (!err) {
1635 		atomic_dec(&pd->usecnt);
1636 		atomic_dec(&cq->usecnt);
1637 	}
1638 	return err;
1639 }
1640 EXPORT_SYMBOL(ib_destroy_wq);
1641 
1642 /**
1643  * ib_modify_wq - Modifies the specified WQ.
1644  * @wq: The WQ to modify.
1645  * @wq_attr: On input, specifies the WQ attributes to modify.
1646  * @wq_attr_mask: A bit-mask used to specify which attributes of the WQ
1647  *   are being modified.
1648  * On output, the current values of selected WQ attributes are returned.
1649  */
1650 int ib_modify_wq(struct ib_wq *wq, struct ib_wq_attr *wq_attr,
1651 		 u32 wq_attr_mask)
1652 {
1653 	int err;
1654 
1655 	if (!wq->device->modify_wq)
1656 		return -ENOSYS;
1657 
1658 	err = wq->device->modify_wq(wq, wq_attr, wq_attr_mask, NULL);
1659 	return err;
1660 }
1661 EXPORT_SYMBOL(ib_modify_wq);
1662 
1663 /*
1664  * ib_create_rwq_ind_table - Creates a RQ Indirection Table.
1665  * @device: The device on which to create the rwq indirection table.
1666  * @ib_rwq_ind_table_init_attr: A list of initial attributes required to
1667  * create the Indirection Table.
1668  *
1669  * Note: The life time of ib_rwq_ind_table_init_attr->ind_tbl is not less
1670  *	than the created ib_rwq_ind_table object and the caller is responsible
1671  *	for its memory allocation/free.
1672  */
1673 struct ib_rwq_ind_table *ib_create_rwq_ind_table(struct ib_device *device,
1674 						 struct ib_rwq_ind_table_init_attr *init_attr)
1675 {
1676 	struct ib_rwq_ind_table *rwq_ind_table;
1677 	int i;
1678 	u32 table_size;
1679 
1680 	if (!device->create_rwq_ind_table)
1681 		return ERR_PTR(-ENOSYS);
1682 
1683 	table_size = (1 << init_attr->log_ind_tbl_size);
1684 	rwq_ind_table = device->create_rwq_ind_table(device,
1685 				init_attr, NULL);
1686 	if (IS_ERR(rwq_ind_table))
1687 		return rwq_ind_table;
1688 
1689 	rwq_ind_table->ind_tbl = init_attr->ind_tbl;
1690 	rwq_ind_table->log_ind_tbl_size = init_attr->log_ind_tbl_size;
1691 	rwq_ind_table->device = device;
1692 	rwq_ind_table->uobject = NULL;
1693 	atomic_set(&rwq_ind_table->usecnt, 0);
1694 
1695 	for (i = 0; i < table_size; i++)
1696 		atomic_inc(&rwq_ind_table->ind_tbl[i]->usecnt);
1697 
1698 	return rwq_ind_table;
1699 }
1700 EXPORT_SYMBOL(ib_create_rwq_ind_table);
1701 
1702 /*
1703  * ib_destroy_rwq_ind_table - Destroys the specified Indirection Table.
1704  * @wq_ind_table: The Indirection Table to destroy.
1705 */
1706 int ib_destroy_rwq_ind_table(struct ib_rwq_ind_table *rwq_ind_table)
1707 {
1708 	int err, i;
1709 	u32 table_size = (1 << rwq_ind_table->log_ind_tbl_size);
1710 	struct ib_wq **ind_tbl = rwq_ind_table->ind_tbl;
1711 
1712 	if (atomic_read(&rwq_ind_table->usecnt))
1713 		return -EBUSY;
1714 
1715 	err = rwq_ind_table->device->destroy_rwq_ind_table(rwq_ind_table);
1716 	if (!err) {
1717 		for (i = 0; i < table_size; i++)
1718 			atomic_dec(&ind_tbl[i]->usecnt);
1719 	}
1720 
1721 	return err;
1722 }
1723 EXPORT_SYMBOL(ib_destroy_rwq_ind_table);
1724 
1725 struct ib_flow *ib_create_flow(struct ib_qp *qp,
1726 			       struct ib_flow_attr *flow_attr,
1727 			       int domain)
1728 {
1729 	struct ib_flow *flow_id;
1730 	if (!qp->device->create_flow)
1731 		return ERR_PTR(-ENOSYS);
1732 
1733 	flow_id = qp->device->create_flow(qp, flow_attr, domain);
1734 	if (!IS_ERR(flow_id))
1735 		atomic_inc(&qp->usecnt);
1736 	return flow_id;
1737 }
1738 EXPORT_SYMBOL(ib_create_flow);
1739 
1740 int ib_destroy_flow(struct ib_flow *flow_id)
1741 {
1742 	int err;
1743 	struct ib_qp *qp = flow_id->qp;
1744 
1745 	err = qp->device->destroy_flow(flow_id);
1746 	if (!err)
1747 		atomic_dec(&qp->usecnt);
1748 	return err;
1749 }
1750 EXPORT_SYMBOL(ib_destroy_flow);
1751 
1752 int ib_check_mr_status(struct ib_mr *mr, u32 check_mask,
1753 		       struct ib_mr_status *mr_status)
1754 {
1755 	return mr->device->check_mr_status ?
1756 		mr->device->check_mr_status(mr, check_mask, mr_status) : -ENOSYS;
1757 }
1758 EXPORT_SYMBOL(ib_check_mr_status);
1759 
1760 int ib_set_vf_link_state(struct ib_device *device, int vf, u8 port,
1761 			 int state)
1762 {
1763 	if (!device->set_vf_link_state)
1764 		return -ENOSYS;
1765 
1766 	return device->set_vf_link_state(device, vf, port, state);
1767 }
1768 EXPORT_SYMBOL(ib_set_vf_link_state);
1769 
1770 int ib_get_vf_config(struct ib_device *device, int vf, u8 port,
1771 		     struct ifla_vf_info *info)
1772 {
1773 	if (!device->get_vf_config)
1774 		return -ENOSYS;
1775 
1776 	return device->get_vf_config(device, vf, port, info);
1777 }
1778 EXPORT_SYMBOL(ib_get_vf_config);
1779 
1780 int ib_get_vf_stats(struct ib_device *device, int vf, u8 port,
1781 		    struct ifla_vf_stats *stats)
1782 {
1783 	if (!device->get_vf_stats)
1784 		return -ENOSYS;
1785 
1786 	return device->get_vf_stats(device, vf, port, stats);
1787 }
1788 EXPORT_SYMBOL(ib_get_vf_stats);
1789 
1790 int ib_set_vf_guid(struct ib_device *device, int vf, u8 port, u64 guid,
1791 		   int type)
1792 {
1793 	if (!device->set_vf_guid)
1794 		return -ENOSYS;
1795 
1796 	return device->set_vf_guid(device, vf, port, guid, type);
1797 }
1798 EXPORT_SYMBOL(ib_set_vf_guid);
1799 
1800 /**
1801  * ib_map_mr_sg() - Map the largest prefix of a dma mapped SG list
1802  *     and set it the memory region.
1803  * @mr:            memory region
1804  * @sg:            dma mapped scatterlist
1805  * @sg_nents:      number of entries in sg
1806  * @sg_offset:     offset in bytes into sg
1807  * @page_size:     page vector desired page size
1808  *
1809  * Constraints:
1810  * - The first sg element is allowed to have an offset.
1811  * - Each sg element must either be aligned to page_size or virtually
1812  *   contiguous to the previous element. In case an sg element has a
1813  *   non-contiguous offset, the mapping prefix will not include it.
1814  * - The last sg element is allowed to have length less than page_size.
1815  * - If sg_nents total byte length exceeds the mr max_num_sge * page_size
1816  *   then only max_num_sg entries will be mapped.
1817  * - If the MR was allocated with type IB_MR_TYPE_SG_GAPS, none of these
1818  *   constraints holds and the page_size argument is ignored.
1819  *
1820  * Returns the number of sg elements that were mapped to the memory region.
1821  *
1822  * After this completes successfully, the  memory region
1823  * is ready for registration.
1824  */
1825 int ib_map_mr_sg(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
1826 		 unsigned int *sg_offset, unsigned int page_size)
1827 {
1828 	if (unlikely(!mr->device->map_mr_sg))
1829 		return -ENOSYS;
1830 
1831 	mr->page_size = page_size;
1832 
1833 	return mr->device->map_mr_sg(mr, sg, sg_nents, sg_offset);
1834 }
1835 EXPORT_SYMBOL(ib_map_mr_sg);
1836 
1837 /**
1838  * ib_sg_to_pages() - Convert the largest prefix of a sg list
1839  *     to a page vector
1840  * @mr:            memory region
1841  * @sgl:           dma mapped scatterlist
1842  * @sg_nents:      number of entries in sg
1843  * @sg_offset_p:   IN:  start offset in bytes into sg
1844  *                 OUT: offset in bytes for element n of the sg of the first
1845  *                      byte that has not been processed where n is the return
1846  *                      value of this function.
1847  * @set_page:      driver page assignment function pointer
1848  *
1849  * Core service helper for drivers to convert the largest
1850  * prefix of given sg list to a page vector. The sg list
1851  * prefix converted is the prefix that meet the requirements
1852  * of ib_map_mr_sg.
1853  *
1854  * Returns the number of sg elements that were assigned to
1855  * a page vector.
1856  */
1857 int ib_sg_to_pages(struct ib_mr *mr, struct scatterlist *sgl, int sg_nents,
1858 		unsigned int *sg_offset_p, int (*set_page)(struct ib_mr *, u64))
1859 {
1860 	struct scatterlist *sg;
1861 	u64 last_end_dma_addr = 0;
1862 	unsigned int sg_offset = sg_offset_p ? *sg_offset_p : 0;
1863 	unsigned int last_page_off = 0;
1864 	u64 page_mask = ~((u64)mr->page_size - 1);
1865 	int i, ret;
1866 
1867 	if (unlikely(sg_nents <= 0 || sg_offset > sg_dma_len(&sgl[0])))
1868 		return -EINVAL;
1869 
1870 	mr->iova = sg_dma_address(&sgl[0]) + sg_offset;
1871 	mr->length = 0;
1872 
1873 	for_each_sg(sgl, sg, sg_nents, i) {
1874 		u64 dma_addr = sg_dma_address(sg) + sg_offset;
1875 		u64 prev_addr = dma_addr;
1876 		unsigned int dma_len = sg_dma_len(sg) - sg_offset;
1877 		u64 end_dma_addr = dma_addr + dma_len;
1878 		u64 page_addr = dma_addr & page_mask;
1879 
1880 		/*
1881 		 * For the second and later elements, check whether either the
1882 		 * end of element i-1 or the start of element i is not aligned
1883 		 * on a page boundary.
1884 		 */
1885 		if (i && (last_page_off != 0 || page_addr != dma_addr)) {
1886 			/* Stop mapping if there is a gap. */
1887 			if (last_end_dma_addr != dma_addr)
1888 				break;
1889 
1890 			/*
1891 			 * Coalesce this element with the last. If it is small
1892 			 * enough just update mr->length. Otherwise start
1893 			 * mapping from the next page.
1894 			 */
1895 			goto next_page;
1896 		}
1897 
1898 		do {
1899 			ret = set_page(mr, page_addr);
1900 			if (unlikely(ret < 0)) {
1901 				sg_offset = prev_addr - sg_dma_address(sg);
1902 				mr->length += prev_addr - dma_addr;
1903 				if (sg_offset_p)
1904 					*sg_offset_p = sg_offset;
1905 				return i || sg_offset ? i : ret;
1906 			}
1907 			prev_addr = page_addr;
1908 next_page:
1909 			page_addr += mr->page_size;
1910 		} while (page_addr < end_dma_addr);
1911 
1912 		mr->length += dma_len;
1913 		last_end_dma_addr = end_dma_addr;
1914 		last_page_off = end_dma_addr & ~page_mask;
1915 
1916 		sg_offset = 0;
1917 	}
1918 
1919 	if (sg_offset_p)
1920 		*sg_offset_p = 0;
1921 	return i;
1922 }
1923 EXPORT_SYMBOL(ib_sg_to_pages);
1924 
1925 struct ib_drain_cqe {
1926 	struct ib_cqe cqe;
1927 	struct completion done;
1928 };
1929 
1930 static void ib_drain_qp_done(struct ib_cq *cq, struct ib_wc *wc)
1931 {
1932 	struct ib_drain_cqe *cqe = container_of(wc->wr_cqe, struct ib_drain_cqe,
1933 						cqe);
1934 
1935 	complete(&cqe->done);
1936 }
1937 
1938 /*
1939  * Post a WR and block until its completion is reaped for the SQ.
1940  */
1941 static void __ib_drain_sq(struct ib_qp *qp)
1942 {
1943 	struct ib_qp_attr attr = { .qp_state = IB_QPS_ERR };
1944 	struct ib_drain_cqe sdrain;
1945 	struct ib_send_wr *bad_swr;
1946 	struct ib_rdma_wr swr = {
1947 		.wr = {
1948 			.opcode	= IB_WR_RDMA_WRITE,
1949 			.wr_cqe	= &sdrain.cqe,
1950 		},
1951 	};
1952 	int ret;
1953 
1954 	if (qp->send_cq->poll_ctx == IB_POLL_DIRECT) {
1955 		WARN_ONCE(qp->send_cq->poll_ctx == IB_POLL_DIRECT,
1956 			  "IB_POLL_DIRECT poll_ctx not supported for drain\n");
1957 		return;
1958 	}
1959 
1960 	sdrain.cqe.done = ib_drain_qp_done;
1961 	init_completion(&sdrain.done);
1962 
1963 	ret = ib_modify_qp(qp, &attr, IB_QP_STATE);
1964 	if (ret) {
1965 		WARN_ONCE(ret, "failed to drain send queue: %d\n", ret);
1966 		return;
1967 	}
1968 
1969 	ret = ib_post_send(qp, &swr.wr, &bad_swr);
1970 	if (ret) {
1971 		WARN_ONCE(ret, "failed to drain send queue: %d\n", ret);
1972 		return;
1973 	}
1974 
1975 	wait_for_completion(&sdrain.done);
1976 }
1977 
1978 /*
1979  * Post a WR and block until its completion is reaped for the RQ.
1980  */
1981 static void __ib_drain_rq(struct ib_qp *qp)
1982 {
1983 	struct ib_qp_attr attr = { .qp_state = IB_QPS_ERR };
1984 	struct ib_drain_cqe rdrain;
1985 	struct ib_recv_wr rwr = {}, *bad_rwr;
1986 	int ret;
1987 
1988 	if (qp->recv_cq->poll_ctx == IB_POLL_DIRECT) {
1989 		WARN_ONCE(qp->recv_cq->poll_ctx == IB_POLL_DIRECT,
1990 			  "IB_POLL_DIRECT poll_ctx not supported for drain\n");
1991 		return;
1992 	}
1993 
1994 	rwr.wr_cqe = &rdrain.cqe;
1995 	rdrain.cqe.done = ib_drain_qp_done;
1996 	init_completion(&rdrain.done);
1997 
1998 	ret = ib_modify_qp(qp, &attr, IB_QP_STATE);
1999 	if (ret) {
2000 		WARN_ONCE(ret, "failed to drain recv queue: %d\n", ret);
2001 		return;
2002 	}
2003 
2004 	ret = ib_post_recv(qp, &rwr, &bad_rwr);
2005 	if (ret) {
2006 		WARN_ONCE(ret, "failed to drain recv queue: %d\n", ret);
2007 		return;
2008 	}
2009 
2010 	wait_for_completion(&rdrain.done);
2011 }
2012 
2013 /**
2014  * ib_drain_sq() - Block until all SQ CQEs have been consumed by the
2015  *		   application.
2016  * @qp:            queue pair to drain
2017  *
2018  * If the device has a provider-specific drain function, then
2019  * call that.  Otherwise call the generic drain function
2020  * __ib_drain_sq().
2021  *
2022  * The caller must:
2023  *
2024  * ensure there is room in the CQ and SQ for the drain work request and
2025  * completion.
2026  *
2027  * allocate the CQ using ib_alloc_cq() and the CQ poll context cannot be
2028  * IB_POLL_DIRECT.
2029  *
2030  * ensure that there are no other contexts that are posting WRs concurrently.
2031  * Otherwise the drain is not guaranteed.
2032  */
2033 void ib_drain_sq(struct ib_qp *qp)
2034 {
2035 	if (qp->device->drain_sq)
2036 		qp->device->drain_sq(qp);
2037 	else
2038 		__ib_drain_sq(qp);
2039 }
2040 EXPORT_SYMBOL(ib_drain_sq);
2041 
2042 /**
2043  * ib_drain_rq() - Block until all RQ CQEs have been consumed by the
2044  *		   application.
2045  * @qp:            queue pair to drain
2046  *
2047  * If the device has a provider-specific drain function, then
2048  * call that.  Otherwise call the generic drain function
2049  * __ib_drain_rq().
2050  *
2051  * The caller must:
2052  *
2053  * ensure there is room in the CQ and RQ for the drain work request and
2054  * completion.
2055  *
2056  * allocate the CQ using ib_alloc_cq() and the CQ poll context cannot be
2057  * IB_POLL_DIRECT.
2058  *
2059  * ensure that there are no other contexts that are posting WRs concurrently.
2060  * Otherwise the drain is not guaranteed.
2061  */
2062 void ib_drain_rq(struct ib_qp *qp)
2063 {
2064 	if (qp->device->drain_rq)
2065 		qp->device->drain_rq(qp);
2066 	else
2067 		__ib_drain_rq(qp);
2068 }
2069 EXPORT_SYMBOL(ib_drain_rq);
2070 
2071 /**
2072  * ib_drain_qp() - Block until all CQEs have been consumed by the
2073  *		   application on both the RQ and SQ.
2074  * @qp:            queue pair to drain
2075  *
2076  * The caller must:
2077  *
2078  * ensure there is room in the CQ(s), SQ, and RQ for drain work requests
2079  * and completions.
2080  *
2081  * allocate the CQs using ib_alloc_cq() and the CQ poll context cannot be
2082  * IB_POLL_DIRECT.
2083  *
2084  * ensure that there are no other contexts that are posting WRs concurrently.
2085  * Otherwise the drain is not guaranteed.
2086  */
2087 void ib_drain_qp(struct ib_qp *qp)
2088 {
2089 	ib_drain_sq(qp);
2090 	if (!qp->srq)
2091 		ib_drain_rq(qp);
2092 }
2093 EXPORT_SYMBOL(ib_drain_qp);
2094