1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause OR GPL-2.0
3  *
4  * Copyright (c) 2004 Mellanox Technologies Ltd.  All rights reserved.
5  * Copyright (c) 2004 Infinicon Corporation.  All rights reserved.
6  * Copyright (c) 2004 Intel Corporation.  All rights reserved.
7  * Copyright (c) 2004 Topspin Corporation.  All rights reserved.
8  * Copyright (c) 2004 Voltaire Corporation.  All rights reserved.
9  * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
10  * Copyright (c) 2005, 2006 Cisco Systems.  All rights reserved.
11  *
12  * This software is available to you under a choice of one of two
13  * licenses.  You may choose to be licensed under the terms of the GNU
14  * General Public License (GPL) Version 2, available from the file
15  * COPYING in the main directory of this source tree, or the
16  * OpenIB.org BSD license below:
17  *
18  *     Redistribution and use in source and binary forms, with or
19  *     without modification, are permitted provided that the following
20  *     conditions are met:
21  *
22  *      - Redistributions of source code must retain the above
23  *        copyright notice, this list of conditions and the following
24  *        disclaimer.
25  *
26  *      - Redistributions in binary form must reproduce the above
27  *        copyright notice, this list of conditions and the following
28  *        disclaimer in the documentation and/or other materials
29  *        provided with the distribution.
30  *
31  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
32  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
33  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
34  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
35  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
36  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
37  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
38  * SOFTWARE.
39  *
40  * $FreeBSD$
41  */
42 
43 #include <linux/errno.h>
44 #include <linux/err.h>
45 #include <linux/string.h>
46 #include <linux/slab.h>
47 #include <linux/in.h>
48 #include <linux/in6.h>
49 
50 #include <rdma/ib_verbs.h>
51 #include <rdma/ib_cache.h>
52 #include <rdma/ib_addr.h>
53 
54 #include <netinet/ip.h>
55 #include <netinet/ip6.h>
56 
57 #include <machine/in_cksum.h>
58 
59 #include "core_priv.h"
60 
61 static const char * const ib_events[] = {
62 	[IB_EVENT_CQ_ERR]		= "CQ error",
63 	[IB_EVENT_QP_FATAL]		= "QP fatal error",
64 	[IB_EVENT_QP_REQ_ERR]		= "QP request error",
65 	[IB_EVENT_QP_ACCESS_ERR]	= "QP access error",
66 	[IB_EVENT_COMM_EST]		= "communication established",
67 	[IB_EVENT_SQ_DRAINED]		= "send queue drained",
68 	[IB_EVENT_PATH_MIG]		= "path migration successful",
69 	[IB_EVENT_PATH_MIG_ERR]		= "path migration error",
70 	[IB_EVENT_DEVICE_FATAL]		= "device fatal error",
71 	[IB_EVENT_PORT_ACTIVE]		= "port active",
72 	[IB_EVENT_PORT_ERR]		= "port error",
73 	[IB_EVENT_LID_CHANGE]		= "LID change",
74 	[IB_EVENT_PKEY_CHANGE]		= "P_key change",
75 	[IB_EVENT_SM_CHANGE]		= "SM change",
76 	[IB_EVENT_SRQ_ERR]		= "SRQ error",
77 	[IB_EVENT_SRQ_LIMIT_REACHED]	= "SRQ limit reached",
78 	[IB_EVENT_QP_LAST_WQE_REACHED]	= "last WQE reached",
79 	[IB_EVENT_CLIENT_REREGISTER]	= "client reregister",
80 	[IB_EVENT_GID_CHANGE]		= "GID changed",
81 };
82 
83 const char *__attribute_const__ ib_event_msg(enum ib_event_type event)
84 {
85 	size_t index = event;
86 
87 	return (index < ARRAY_SIZE(ib_events) && ib_events[index]) ?
88 			ib_events[index] : "unrecognized event";
89 }
90 EXPORT_SYMBOL(ib_event_msg);
91 
92 static const char * const wc_statuses[] = {
93 	[IB_WC_SUCCESS]			= "success",
94 	[IB_WC_LOC_LEN_ERR]		= "local length error",
95 	[IB_WC_LOC_QP_OP_ERR]		= "local QP operation error",
96 	[IB_WC_LOC_EEC_OP_ERR]		= "local EE context operation error",
97 	[IB_WC_LOC_PROT_ERR]		= "local protection error",
98 	[IB_WC_WR_FLUSH_ERR]		= "WR flushed",
99 	[IB_WC_MW_BIND_ERR]		= "memory management operation error",
100 	[IB_WC_BAD_RESP_ERR]		= "bad response error",
101 	[IB_WC_LOC_ACCESS_ERR]		= "local access error",
102 	[IB_WC_REM_INV_REQ_ERR]		= "invalid request error",
103 	[IB_WC_REM_ACCESS_ERR]		= "remote access error",
104 	[IB_WC_REM_OP_ERR]		= "remote operation error",
105 	[IB_WC_RETRY_EXC_ERR]		= "transport retry counter exceeded",
106 	[IB_WC_RNR_RETRY_EXC_ERR]	= "RNR retry counter exceeded",
107 	[IB_WC_LOC_RDD_VIOL_ERR]	= "local RDD violation error",
108 	[IB_WC_REM_INV_RD_REQ_ERR]	= "remote invalid RD request",
109 	[IB_WC_REM_ABORT_ERR]		= "operation aborted",
110 	[IB_WC_INV_EECN_ERR]		= "invalid EE context number",
111 	[IB_WC_INV_EEC_STATE_ERR]	= "invalid EE context state",
112 	[IB_WC_FATAL_ERR]		= "fatal error",
113 	[IB_WC_RESP_TIMEOUT_ERR]	= "response timeout error",
114 	[IB_WC_GENERAL_ERR]		= "general error",
115 };
116 
117 const char *__attribute_const__ ib_wc_status_msg(enum ib_wc_status status)
118 {
119 	size_t index = status;
120 
121 	return (index < ARRAY_SIZE(wc_statuses) && wc_statuses[index]) ?
122 			wc_statuses[index] : "unrecognized status";
123 }
124 EXPORT_SYMBOL(ib_wc_status_msg);
125 
126 __attribute_const__ int ib_rate_to_mult(enum ib_rate rate)
127 {
128 	switch (rate) {
129 	case IB_RATE_2_5_GBPS: return  1;
130 	case IB_RATE_5_GBPS:   return  2;
131 	case IB_RATE_10_GBPS:  return  4;
132 	case IB_RATE_20_GBPS:  return  8;
133 	case IB_RATE_30_GBPS:  return 12;
134 	case IB_RATE_40_GBPS:  return 16;
135 	case IB_RATE_60_GBPS:  return 24;
136 	case IB_RATE_80_GBPS:  return 32;
137 	case IB_RATE_120_GBPS: return 48;
138 	default:	       return -1;
139 	}
140 }
141 EXPORT_SYMBOL(ib_rate_to_mult);
142 
143 __attribute_const__ enum ib_rate mult_to_ib_rate(int mult)
144 {
145 	switch (mult) {
146 	case 1:  return IB_RATE_2_5_GBPS;
147 	case 2:  return IB_RATE_5_GBPS;
148 	case 4:  return IB_RATE_10_GBPS;
149 	case 8:  return IB_RATE_20_GBPS;
150 	case 12: return IB_RATE_30_GBPS;
151 	case 16: return IB_RATE_40_GBPS;
152 	case 24: return IB_RATE_60_GBPS;
153 	case 32: return IB_RATE_80_GBPS;
154 	case 48: return IB_RATE_120_GBPS;
155 	default: return IB_RATE_PORT_CURRENT;
156 	}
157 }
158 EXPORT_SYMBOL(mult_to_ib_rate);
159 
160 __attribute_const__ int ib_rate_to_mbps(enum ib_rate rate)
161 {
162 	switch (rate) {
163 	case IB_RATE_2_5_GBPS: return 2500;
164 	case IB_RATE_5_GBPS:   return 5000;
165 	case IB_RATE_10_GBPS:  return 10000;
166 	case IB_RATE_20_GBPS:  return 20000;
167 	case IB_RATE_30_GBPS:  return 30000;
168 	case IB_RATE_40_GBPS:  return 40000;
169 	case IB_RATE_60_GBPS:  return 60000;
170 	case IB_RATE_80_GBPS:  return 80000;
171 	case IB_RATE_120_GBPS: return 120000;
172 	case IB_RATE_14_GBPS:  return 14062;
173 	case IB_RATE_56_GBPS:  return 56250;
174 	case IB_RATE_112_GBPS: return 112500;
175 	case IB_RATE_168_GBPS: return 168750;
176 	case IB_RATE_25_GBPS:  return 25781;
177 	case IB_RATE_100_GBPS: return 103125;
178 	case IB_RATE_200_GBPS: return 206250;
179 	case IB_RATE_300_GBPS: return 309375;
180 	default:	       return -1;
181 	}
182 }
183 EXPORT_SYMBOL(ib_rate_to_mbps);
184 
185 __attribute_const__ enum rdma_transport_type
186 rdma_node_get_transport(enum rdma_node_type node_type)
187 {
188 	switch (node_type) {
189 	case RDMA_NODE_IB_CA:
190 	case RDMA_NODE_IB_SWITCH:
191 	case RDMA_NODE_IB_ROUTER:
192 		return RDMA_TRANSPORT_IB;
193 	case RDMA_NODE_RNIC:
194 		return RDMA_TRANSPORT_IWARP;
195 	case RDMA_NODE_USNIC:
196 		return RDMA_TRANSPORT_USNIC;
197 	case RDMA_NODE_USNIC_UDP:
198 		return RDMA_TRANSPORT_USNIC_UDP;
199 	default:
200 		BUG();
201 		return 0;
202 	}
203 }
204 EXPORT_SYMBOL(rdma_node_get_transport);
205 
206 enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device, u8 port_num)
207 {
208 	if (device->get_link_layer)
209 		return device->get_link_layer(device, port_num);
210 
211 	switch (rdma_node_get_transport(device->node_type)) {
212 	case RDMA_TRANSPORT_IB:
213 		return IB_LINK_LAYER_INFINIBAND;
214 	case RDMA_TRANSPORT_IWARP:
215 	case RDMA_TRANSPORT_USNIC:
216 	case RDMA_TRANSPORT_USNIC_UDP:
217 		return IB_LINK_LAYER_ETHERNET;
218 	default:
219 		return IB_LINK_LAYER_UNSPECIFIED;
220 	}
221 }
222 EXPORT_SYMBOL(rdma_port_get_link_layer);
223 
224 /* Protection domains */
225 
226 /**
227  * ib_alloc_pd - Allocates an unused protection domain.
228  * @device: The device on which to allocate the protection domain.
229  *
230  * A protection domain object provides an association between QPs, shared
231  * receive queues, address handles, memory regions, and memory windows.
232  *
233  * Every PD has a local_dma_lkey which can be used as the lkey value for local
234  * memory operations.
235  */
236 struct ib_pd *__ib_alloc_pd(struct ib_device *device, unsigned int flags,
237 		const char *caller)
238 {
239 	struct ib_pd *pd;
240 	int mr_access_flags = 0;
241 
242 	pd = device->alloc_pd(device, NULL, NULL);
243 	if (IS_ERR(pd))
244 		return pd;
245 
246 	pd->device = device;
247 	pd->uobject = NULL;
248 	pd->__internal_mr = NULL;
249 	atomic_set(&pd->usecnt, 0);
250 	pd->flags = flags;
251 
252 	if (device->attrs.device_cap_flags & IB_DEVICE_LOCAL_DMA_LKEY)
253 		pd->local_dma_lkey = device->local_dma_lkey;
254 	else
255 		mr_access_flags |= IB_ACCESS_LOCAL_WRITE;
256 
257 	if (flags & IB_PD_UNSAFE_GLOBAL_RKEY) {
258 		pr_warn("%s: enabling unsafe global rkey\n", caller);
259 		mr_access_flags |= IB_ACCESS_REMOTE_READ | IB_ACCESS_REMOTE_WRITE;
260 	}
261 
262 	if (mr_access_flags) {
263 		struct ib_mr *mr;
264 
265 		mr = pd->device->get_dma_mr(pd, mr_access_flags);
266 		if (IS_ERR(mr)) {
267 			ib_dealloc_pd(pd);
268 			return ERR_CAST(mr);
269 		}
270 
271 		mr->device	= pd->device;
272 		mr->pd		= pd;
273 		mr->uobject	= NULL;
274 		mr->need_inval	= false;
275 
276 		pd->__internal_mr = mr;
277 
278 		if (!(device->attrs.device_cap_flags & IB_DEVICE_LOCAL_DMA_LKEY))
279 			pd->local_dma_lkey = pd->__internal_mr->lkey;
280 
281 		if (flags & IB_PD_UNSAFE_GLOBAL_RKEY)
282 			pd->unsafe_global_rkey = pd->__internal_mr->rkey;
283 	}
284 
285 	return pd;
286 }
287 EXPORT_SYMBOL(__ib_alloc_pd);
288 
289 /**
290  * ib_dealloc_pd - Deallocates a protection domain.
291  * @pd: The protection domain to deallocate.
292  *
293  * It is an error to call this function while any resources in the pd still
294  * exist.  The caller is responsible to synchronously destroy them and
295  * guarantee no new allocations will happen.
296  */
297 void ib_dealloc_pd(struct ib_pd *pd)
298 {
299 	int ret;
300 
301 	if (pd->__internal_mr) {
302 		ret = pd->device->dereg_mr(pd->__internal_mr);
303 		WARN_ON(ret);
304 		pd->__internal_mr = NULL;
305 	}
306 
307 	/* uverbs manipulates usecnt with proper locking, while the kabi
308 	   requires the caller to guarantee we can't race here. */
309 	WARN_ON(atomic_read(&pd->usecnt));
310 
311 	/* Making delalloc_pd a void return is a WIP, no driver should return
312 	   an error here. */
313 	ret = pd->device->dealloc_pd(pd);
314 	WARN_ONCE(ret, "Infiniband HW driver failed dealloc_pd");
315 }
316 EXPORT_SYMBOL(ib_dealloc_pd);
317 
318 /* Address handles */
319 
320 struct ib_ah *ib_create_ah(struct ib_pd *pd, struct ib_ah_attr *ah_attr)
321 {
322 	struct ib_ah *ah;
323 
324 	ah = pd->device->create_ah(pd, ah_attr, NULL);
325 
326 	if (!IS_ERR(ah)) {
327 		ah->device  = pd->device;
328 		ah->pd      = pd;
329 		ah->uobject = NULL;
330 		atomic_inc(&pd->usecnt);
331 	}
332 
333 	return ah;
334 }
335 EXPORT_SYMBOL(ib_create_ah);
336 
337 static int ib_get_header_version(const union rdma_network_hdr *hdr)
338 {
339 	const struct ip *ip4h = (const struct ip *)&hdr->roce4grh;
340 	struct ip ip4h_checked;
341 	const struct ip6_hdr *ip6h = (const struct ip6_hdr *)&hdr->ibgrh;
342 
343 	/* If it's IPv6, the version must be 6, otherwise, the first
344 	 * 20 bytes (before the IPv4 header) are garbled.
345 	 */
346 	if ((ip6h->ip6_vfc & IPV6_VERSION_MASK) != IPV6_VERSION)
347 		return (ip4h->ip_v == 4) ? 4 : 0;
348 	/* version may be 6 or 4 because the first 20 bytes could be garbled */
349 
350 	/* RoCE v2 requires no options, thus header length
351 	 * must be 5 words
352 	 */
353 	if (ip4h->ip_hl != 5)
354 		return 6;
355 
356 	/* Verify checksum.
357 	 * We can't write on scattered buffers so we need to copy to
358 	 * temp buffer.
359 	 */
360 	memcpy(&ip4h_checked, ip4h, sizeof(ip4h_checked));
361 	ip4h_checked.ip_sum = 0;
362 #if defined(INET) || defined(INET6)
363 	ip4h_checked.ip_sum = in_cksum_hdr(&ip4h_checked);
364 #endif
365 	/* if IPv4 header checksum is OK, believe it */
366 	if (ip4h->ip_sum == ip4h_checked.ip_sum)
367 		return 4;
368 	return 6;
369 }
370 
371 static enum rdma_network_type ib_get_net_type_by_grh(struct ib_device *device,
372 						     u8 port_num,
373 						     const struct ib_grh *grh)
374 {
375 	int grh_version;
376 
377 	if (rdma_protocol_ib(device, port_num))
378 		return RDMA_NETWORK_IB;
379 
380 	grh_version = ib_get_header_version((const union rdma_network_hdr *)grh);
381 
382 	if (grh_version == 4)
383 		return RDMA_NETWORK_IPV4;
384 
385 	if (grh->next_hdr == IPPROTO_UDP)
386 		return RDMA_NETWORK_IPV6;
387 
388 	return RDMA_NETWORK_ROCE_V1;
389 }
390 
391 struct find_gid_index_context {
392 	u16 vlan_id;
393 	enum ib_gid_type gid_type;
394 };
395 
396 static bool find_gid_index(const union ib_gid *gid,
397 			   const struct ib_gid_attr *gid_attr,
398 			   void *context)
399 {
400 	struct find_gid_index_context *ctx =
401 		(struct find_gid_index_context *)context;
402 
403 	if (ctx->gid_type != gid_attr->gid_type)
404 		return false;
405 
406 	if ((!!(ctx->vlan_id != 0xffff) == !is_vlan_dev(gid_attr->ndev)) ||
407 	    (is_vlan_dev(gid_attr->ndev) &&
408 	     vlan_dev_vlan_id(gid_attr->ndev) != ctx->vlan_id))
409 		return false;
410 
411 	return true;
412 }
413 
414 static int get_sgid_index_from_eth(struct ib_device *device, u8 port_num,
415 				   u16 vlan_id, const union ib_gid *sgid,
416 				   enum ib_gid_type gid_type,
417 				   u16 *gid_index)
418 {
419 	struct find_gid_index_context context = {.vlan_id = vlan_id,
420 						 .gid_type = gid_type};
421 
422 	return ib_find_gid_by_filter(device, sgid, port_num, find_gid_index,
423 				     &context, gid_index);
424 }
425 
426 static int get_gids_from_rdma_hdr(const union rdma_network_hdr *hdr,
427 				  enum rdma_network_type net_type,
428 				  union ib_gid *sgid, union ib_gid *dgid)
429 {
430 	struct sockaddr_in  src_in;
431 	struct sockaddr_in  dst_in;
432 	__be32 src_saddr, dst_saddr;
433 
434 	if (!sgid || !dgid)
435 		return -EINVAL;
436 
437 	if (net_type == RDMA_NETWORK_IPV4) {
438 		memcpy(&src_in.sin_addr.s_addr,
439 		       &hdr->roce4grh.ip_src, 4);
440 		memcpy(&dst_in.sin_addr.s_addr,
441 		       &hdr->roce4grh.ip_dst, 4);
442 		src_saddr = src_in.sin_addr.s_addr;
443 		dst_saddr = dst_in.sin_addr.s_addr;
444 		ipv6_addr_set_v4mapped(src_saddr,
445 				       (struct in6_addr *)sgid);
446 		ipv6_addr_set_v4mapped(dst_saddr,
447 				       (struct in6_addr *)dgid);
448 		return 0;
449 	} else if (net_type == RDMA_NETWORK_IPV6 ||
450 		   net_type == RDMA_NETWORK_IB) {
451 		*dgid = hdr->ibgrh.dgid;
452 		*sgid = hdr->ibgrh.sgid;
453 		return 0;
454 	} else {
455 		return -EINVAL;
456 	}
457 }
458 
459 int ib_init_ah_from_wc(struct ib_device *device, u8 port_num,
460 		       const struct ib_wc *wc, const struct ib_grh *grh,
461 		       struct ib_ah_attr *ah_attr)
462 {
463 	u32 flow_class;
464 	u16 gid_index;
465 	int ret;
466 	enum rdma_network_type net_type = RDMA_NETWORK_IB;
467 	enum ib_gid_type gid_type = IB_GID_TYPE_IB;
468 	int hoplimit = 0xff;
469 	union ib_gid dgid;
470 	union ib_gid sgid;
471 
472 	memset(ah_attr, 0, sizeof *ah_attr);
473 	if (rdma_cap_eth_ah(device, port_num)) {
474 		if (wc->wc_flags & IB_WC_WITH_NETWORK_HDR_TYPE)
475 			net_type = wc->network_hdr_type;
476 		else
477 			net_type = ib_get_net_type_by_grh(device, port_num, grh);
478 		gid_type = ib_network_to_gid_type(net_type);
479 	}
480 	ret = get_gids_from_rdma_hdr((const union rdma_network_hdr *)grh, net_type,
481 				     &sgid, &dgid);
482 	if (ret)
483 		return ret;
484 
485 	if (rdma_protocol_roce(device, port_num)) {
486 		struct ib_gid_attr dgid_attr;
487 		const u16 vlan_id = wc->wc_flags & IB_WC_WITH_VLAN ?
488 				wc->vlan_id : 0xffff;
489 
490 		if (!(wc->wc_flags & IB_WC_GRH))
491 			return -EPROTOTYPE;
492 
493 		ret = get_sgid_index_from_eth(device, port_num, vlan_id,
494 					      &dgid, gid_type, &gid_index);
495 		if (ret)
496 			return ret;
497 
498 		ret = ib_get_cached_gid(device, port_num, gid_index, &dgid, &dgid_attr);
499 		if (ret)
500 			return ret;
501 
502 		if (dgid_attr.ndev == NULL)
503 			return -ENODEV;
504 
505 		ret = rdma_addr_find_l2_eth_by_grh(&dgid, &sgid, ah_attr->dmac,
506 		    dgid_attr.ndev, &hoplimit);
507 
508 		dev_put(dgid_attr.ndev);
509 		if (ret)
510 			return ret;
511 	}
512 
513 	ah_attr->dlid = wc->slid;
514 	ah_attr->sl = wc->sl;
515 	ah_attr->src_path_bits = wc->dlid_path_bits;
516 	ah_attr->port_num = port_num;
517 
518 	if (wc->wc_flags & IB_WC_GRH) {
519 		ah_attr->ah_flags = IB_AH_GRH;
520 		ah_attr->grh.dgid = sgid;
521 
522 		if (!rdma_cap_eth_ah(device, port_num)) {
523 			if (dgid.global.interface_id != cpu_to_be64(IB_SA_WELL_KNOWN_GUID)) {
524 				ret = ib_find_cached_gid_by_port(device, &dgid,
525 								 IB_GID_TYPE_IB,
526 								 port_num, NULL,
527 								 &gid_index);
528 				if (ret)
529 					return ret;
530 			} else {
531 				gid_index = 0;
532 			}
533 		}
534 
535 		ah_attr->grh.sgid_index = (u8) gid_index;
536 		flow_class = be32_to_cpu(grh->version_tclass_flow);
537 		ah_attr->grh.flow_label = flow_class & 0xFFFFF;
538 		ah_attr->grh.hop_limit = hoplimit;
539 		ah_attr->grh.traffic_class = (flow_class >> 20) & 0xFF;
540 	}
541 	return 0;
542 }
543 EXPORT_SYMBOL(ib_init_ah_from_wc);
544 
545 struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc,
546 				   const struct ib_grh *grh, u8 port_num)
547 {
548 	struct ib_ah_attr ah_attr;
549 	int ret;
550 
551 	ret = ib_init_ah_from_wc(pd->device, port_num, wc, grh, &ah_attr);
552 	if (ret)
553 		return ERR_PTR(ret);
554 
555 	return ib_create_ah(pd, &ah_attr);
556 }
557 EXPORT_SYMBOL(ib_create_ah_from_wc);
558 
559 int ib_modify_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr)
560 {
561 	return ah->device->modify_ah ?
562 		ah->device->modify_ah(ah, ah_attr) :
563 		-ENOSYS;
564 }
565 EXPORT_SYMBOL(ib_modify_ah);
566 
567 int ib_query_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr)
568 {
569 	return ah->device->query_ah ?
570 		ah->device->query_ah(ah, ah_attr) :
571 		-ENOSYS;
572 }
573 EXPORT_SYMBOL(ib_query_ah);
574 
575 int ib_destroy_ah(struct ib_ah *ah)
576 {
577 	struct ib_pd *pd;
578 	int ret;
579 
580 	pd = ah->pd;
581 	ret = ah->device->destroy_ah(ah);
582 	if (!ret)
583 		atomic_dec(&pd->usecnt);
584 
585 	return ret;
586 }
587 EXPORT_SYMBOL(ib_destroy_ah);
588 
589 /* Shared receive queues */
590 
591 struct ib_srq *ib_create_srq(struct ib_pd *pd,
592 			     struct ib_srq_init_attr *srq_init_attr)
593 {
594 	struct ib_srq *srq;
595 
596 	if (!pd->device->create_srq)
597 		return ERR_PTR(-ENOSYS);
598 
599 	srq = pd->device->create_srq(pd, srq_init_attr, NULL);
600 
601 	if (!IS_ERR(srq)) {
602 		srq->device    	   = pd->device;
603 		srq->pd        	   = pd;
604 		srq->uobject       = NULL;
605 		srq->event_handler = srq_init_attr->event_handler;
606 		srq->srq_context   = srq_init_attr->srq_context;
607 		srq->srq_type      = srq_init_attr->srq_type;
608 		if (srq->srq_type == IB_SRQT_XRC) {
609 			srq->ext.xrc.xrcd = srq_init_attr->ext.xrc.xrcd;
610 			srq->ext.xrc.cq   = srq_init_attr->ext.xrc.cq;
611 			atomic_inc(&srq->ext.xrc.xrcd->usecnt);
612 			atomic_inc(&srq->ext.xrc.cq->usecnt);
613 		}
614 		atomic_inc(&pd->usecnt);
615 		atomic_set(&srq->usecnt, 0);
616 	}
617 
618 	return srq;
619 }
620 EXPORT_SYMBOL(ib_create_srq);
621 
622 int ib_modify_srq(struct ib_srq *srq,
623 		  struct ib_srq_attr *srq_attr,
624 		  enum ib_srq_attr_mask srq_attr_mask)
625 {
626 	return srq->device->modify_srq ?
627 		srq->device->modify_srq(srq, srq_attr, srq_attr_mask, NULL) :
628 		-ENOSYS;
629 }
630 EXPORT_SYMBOL(ib_modify_srq);
631 
632 int ib_query_srq(struct ib_srq *srq,
633 		 struct ib_srq_attr *srq_attr)
634 {
635 	return srq->device->query_srq ?
636 		srq->device->query_srq(srq, srq_attr) : -ENOSYS;
637 }
638 EXPORT_SYMBOL(ib_query_srq);
639 
640 int ib_destroy_srq(struct ib_srq *srq)
641 {
642 	struct ib_pd *pd;
643 	enum ib_srq_type srq_type;
644 	struct ib_xrcd *uninitialized_var(xrcd);
645 	struct ib_cq *uninitialized_var(cq);
646 	int ret;
647 
648 	if (atomic_read(&srq->usecnt))
649 		return -EBUSY;
650 
651 	pd = srq->pd;
652 	srq_type = srq->srq_type;
653 	if (srq_type == IB_SRQT_XRC) {
654 		xrcd = srq->ext.xrc.xrcd;
655 		cq = srq->ext.xrc.cq;
656 	}
657 
658 	ret = srq->device->destroy_srq(srq);
659 	if (!ret) {
660 		atomic_dec(&pd->usecnt);
661 		if (srq_type == IB_SRQT_XRC) {
662 			atomic_dec(&xrcd->usecnt);
663 			atomic_dec(&cq->usecnt);
664 		}
665 	}
666 
667 	return ret;
668 }
669 EXPORT_SYMBOL(ib_destroy_srq);
670 
671 /* Queue pairs */
672 
673 static void __ib_shared_qp_event_handler(struct ib_event *event, void *context)
674 {
675 	struct ib_qp *qp = context;
676 	unsigned long flags;
677 
678 	spin_lock_irqsave(&qp->device->event_handler_lock, flags);
679 	list_for_each_entry(event->element.qp, &qp->open_list, open_list)
680 		if (event->element.qp->event_handler)
681 			event->element.qp->event_handler(event, event->element.qp->qp_context);
682 	spin_unlock_irqrestore(&qp->device->event_handler_lock, flags);
683 }
684 
685 static void __ib_insert_xrcd_qp(struct ib_xrcd *xrcd, struct ib_qp *qp)
686 {
687 	mutex_lock(&xrcd->tgt_qp_mutex);
688 	list_add(&qp->xrcd_list, &xrcd->tgt_qp_list);
689 	mutex_unlock(&xrcd->tgt_qp_mutex);
690 }
691 
692 static struct ib_qp *__ib_open_qp(struct ib_qp *real_qp,
693 				  void (*event_handler)(struct ib_event *, void *),
694 				  void *qp_context)
695 {
696 	struct ib_qp *qp;
697 	unsigned long flags;
698 
699 	qp = kzalloc(sizeof *qp, GFP_KERNEL);
700 	if (!qp)
701 		return ERR_PTR(-ENOMEM);
702 
703 	qp->real_qp = real_qp;
704 	atomic_inc(&real_qp->usecnt);
705 	qp->device = real_qp->device;
706 	qp->event_handler = event_handler;
707 	qp->qp_context = qp_context;
708 	qp->qp_num = real_qp->qp_num;
709 	qp->qp_type = real_qp->qp_type;
710 
711 	spin_lock_irqsave(&real_qp->device->event_handler_lock, flags);
712 	list_add(&qp->open_list, &real_qp->open_list);
713 	spin_unlock_irqrestore(&real_qp->device->event_handler_lock, flags);
714 
715 	return qp;
716 }
717 
718 struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd,
719 			 struct ib_qp_open_attr *qp_open_attr)
720 {
721 	struct ib_qp *qp, *real_qp;
722 
723 	if (qp_open_attr->qp_type != IB_QPT_XRC_TGT)
724 		return ERR_PTR(-EINVAL);
725 
726 	qp = ERR_PTR(-EINVAL);
727 	mutex_lock(&xrcd->tgt_qp_mutex);
728 	list_for_each_entry(real_qp, &xrcd->tgt_qp_list, xrcd_list) {
729 		if (real_qp->qp_num == qp_open_attr->qp_num) {
730 			qp = __ib_open_qp(real_qp, qp_open_attr->event_handler,
731 					  qp_open_attr->qp_context);
732 			break;
733 		}
734 	}
735 	mutex_unlock(&xrcd->tgt_qp_mutex);
736 	return qp;
737 }
738 EXPORT_SYMBOL(ib_open_qp);
739 
740 static struct ib_qp *ib_create_xrc_qp(struct ib_qp *qp,
741 		struct ib_qp_init_attr *qp_init_attr)
742 {
743 	struct ib_qp *real_qp = qp;
744 
745 	qp->event_handler = __ib_shared_qp_event_handler;
746 	qp->qp_context = qp;
747 	qp->pd = NULL;
748 	qp->send_cq = qp->recv_cq = NULL;
749 	qp->srq = NULL;
750 	qp->xrcd = qp_init_attr->xrcd;
751 	atomic_inc(&qp_init_attr->xrcd->usecnt);
752 	INIT_LIST_HEAD(&qp->open_list);
753 
754 	qp = __ib_open_qp(real_qp, qp_init_attr->event_handler,
755 			  qp_init_attr->qp_context);
756 	if (!IS_ERR(qp))
757 		__ib_insert_xrcd_qp(qp_init_attr->xrcd, real_qp);
758 	else
759 		real_qp->device->destroy_qp(real_qp);
760 	return qp;
761 }
762 
763 struct ib_qp *ib_create_qp(struct ib_pd *pd,
764 			   struct ib_qp_init_attr *qp_init_attr)
765 {
766 	struct ib_device *device = pd ? pd->device : qp_init_attr->xrcd->device;
767 	struct ib_qp *qp;
768 
769 	if (qp_init_attr->rwq_ind_tbl &&
770 	    (qp_init_attr->recv_cq ||
771 	    qp_init_attr->srq || qp_init_attr->cap.max_recv_wr ||
772 	    qp_init_attr->cap.max_recv_sge))
773 		return ERR_PTR(-EINVAL);
774 
775 	qp = device->create_qp(pd, qp_init_attr, NULL);
776 	if (IS_ERR(qp))
777 		return qp;
778 
779 	qp->device     = device;
780 	qp->real_qp    = qp;
781 	qp->uobject    = NULL;
782 	qp->qp_type    = qp_init_attr->qp_type;
783 	qp->rwq_ind_tbl = qp_init_attr->rwq_ind_tbl;
784 
785 	atomic_set(&qp->usecnt, 0);
786 	spin_lock_init(&qp->mr_lock);
787 
788 	if (qp_init_attr->qp_type == IB_QPT_XRC_TGT)
789 		return ib_create_xrc_qp(qp, qp_init_attr);
790 
791 	qp->event_handler = qp_init_attr->event_handler;
792 	qp->qp_context = qp_init_attr->qp_context;
793 	if (qp_init_attr->qp_type == IB_QPT_XRC_INI) {
794 		qp->recv_cq = NULL;
795 		qp->srq = NULL;
796 	} else {
797 		qp->recv_cq = qp_init_attr->recv_cq;
798 		if (qp_init_attr->recv_cq)
799 			atomic_inc(&qp_init_attr->recv_cq->usecnt);
800 		qp->srq = qp_init_attr->srq;
801 		if (qp->srq)
802 			atomic_inc(&qp_init_attr->srq->usecnt);
803 	}
804 
805 	qp->pd	    = pd;
806 	qp->send_cq = qp_init_attr->send_cq;
807 	qp->xrcd    = NULL;
808 
809 	atomic_inc(&pd->usecnt);
810 	if (qp_init_attr->send_cq)
811 		atomic_inc(&qp_init_attr->send_cq->usecnt);
812 	if (qp_init_attr->rwq_ind_tbl)
813 		atomic_inc(&qp->rwq_ind_tbl->usecnt);
814 
815 	/*
816 	 * Note: all hw drivers guarantee that max_send_sge is lower than
817 	 * the device RDMA WRITE SGE limit but not all hw drivers ensure that
818 	 * max_send_sge <= max_sge_rd.
819 	 */
820 	qp->max_write_sge = qp_init_attr->cap.max_send_sge;
821 	qp->max_read_sge = min_t(u32, qp_init_attr->cap.max_send_sge,
822 				 device->attrs.max_sge_rd);
823 
824 	return qp;
825 }
826 EXPORT_SYMBOL(ib_create_qp);
827 
828 static const struct {
829 	int			valid;
830 	enum ib_qp_attr_mask	req_param[IB_QPT_MAX];
831 	enum ib_qp_attr_mask	opt_param[IB_QPT_MAX];
832 } qp_state_table[IB_QPS_ERR + 1][IB_QPS_ERR + 1] = {
833 	[IB_QPS_RESET] = {
834 		[IB_QPS_RESET] = { .valid = 1 },
835 		[IB_QPS_INIT]  = {
836 			.valid = 1,
837 			.req_param = {
838 				[IB_QPT_UD]  = (IB_QP_PKEY_INDEX		|
839 						IB_QP_PORT			|
840 						IB_QP_QKEY),
841 				[IB_QPT_RAW_PACKET] = IB_QP_PORT,
842 				[IB_QPT_UC]  = (IB_QP_PKEY_INDEX		|
843 						IB_QP_PORT			|
844 						IB_QP_ACCESS_FLAGS),
845 				[IB_QPT_RC]  = (IB_QP_PKEY_INDEX		|
846 						IB_QP_PORT			|
847 						IB_QP_ACCESS_FLAGS),
848 				[IB_QPT_XRC_INI] = (IB_QP_PKEY_INDEX		|
849 						IB_QP_PORT			|
850 						IB_QP_ACCESS_FLAGS),
851 				[IB_QPT_XRC_TGT] = (IB_QP_PKEY_INDEX		|
852 						IB_QP_PORT			|
853 						IB_QP_ACCESS_FLAGS),
854 				[IB_QPT_SMI] = (IB_QP_PKEY_INDEX		|
855 						IB_QP_QKEY),
856 				[IB_QPT_GSI] = (IB_QP_PKEY_INDEX		|
857 						IB_QP_QKEY),
858 			}
859 		},
860 	},
861 	[IB_QPS_INIT]  = {
862 		[IB_QPS_RESET] = { .valid = 1 },
863 		[IB_QPS_ERR] =   { .valid = 1 },
864 		[IB_QPS_INIT]  = {
865 			.valid = 1,
866 			.opt_param = {
867 				[IB_QPT_UD]  = (IB_QP_PKEY_INDEX		|
868 						IB_QP_PORT			|
869 						IB_QP_QKEY),
870 				[IB_QPT_UC]  = (IB_QP_PKEY_INDEX		|
871 						IB_QP_PORT			|
872 						IB_QP_ACCESS_FLAGS),
873 				[IB_QPT_RC]  = (IB_QP_PKEY_INDEX		|
874 						IB_QP_PORT			|
875 						IB_QP_ACCESS_FLAGS),
876 				[IB_QPT_XRC_INI] = (IB_QP_PKEY_INDEX		|
877 						IB_QP_PORT			|
878 						IB_QP_ACCESS_FLAGS),
879 				[IB_QPT_XRC_TGT] = (IB_QP_PKEY_INDEX		|
880 						IB_QP_PORT			|
881 						IB_QP_ACCESS_FLAGS),
882 				[IB_QPT_SMI] = (IB_QP_PKEY_INDEX		|
883 						IB_QP_QKEY),
884 				[IB_QPT_GSI] = (IB_QP_PKEY_INDEX		|
885 						IB_QP_QKEY),
886 			}
887 		},
888 		[IB_QPS_RTR]   = {
889 			.valid = 1,
890 			.req_param = {
891 				[IB_QPT_UC]  = (IB_QP_AV			|
892 						IB_QP_PATH_MTU			|
893 						IB_QP_DEST_QPN			|
894 						IB_QP_RQ_PSN),
895 				[IB_QPT_RC]  = (IB_QP_AV			|
896 						IB_QP_PATH_MTU			|
897 						IB_QP_DEST_QPN			|
898 						IB_QP_RQ_PSN			|
899 						IB_QP_MAX_DEST_RD_ATOMIC	|
900 						IB_QP_MIN_RNR_TIMER),
901 				[IB_QPT_XRC_INI] = (IB_QP_AV			|
902 						IB_QP_PATH_MTU			|
903 						IB_QP_DEST_QPN			|
904 						IB_QP_RQ_PSN),
905 				[IB_QPT_XRC_TGT] = (IB_QP_AV			|
906 						IB_QP_PATH_MTU			|
907 						IB_QP_DEST_QPN			|
908 						IB_QP_RQ_PSN			|
909 						IB_QP_MAX_DEST_RD_ATOMIC	|
910 						IB_QP_MIN_RNR_TIMER),
911 			},
912 			.opt_param = {
913 				 [IB_QPT_UD]  = (IB_QP_PKEY_INDEX		|
914 						 IB_QP_QKEY),
915 				 [IB_QPT_UC]  = (IB_QP_ALT_PATH			|
916 						 IB_QP_ACCESS_FLAGS		|
917 						 IB_QP_PKEY_INDEX),
918 				 [IB_QPT_RC]  = (IB_QP_ALT_PATH			|
919 						 IB_QP_ACCESS_FLAGS		|
920 						 IB_QP_PKEY_INDEX),
921 				 [IB_QPT_XRC_INI] = (IB_QP_ALT_PATH		|
922 						 IB_QP_ACCESS_FLAGS		|
923 						 IB_QP_PKEY_INDEX),
924 				 [IB_QPT_XRC_TGT] = (IB_QP_ALT_PATH		|
925 						 IB_QP_ACCESS_FLAGS		|
926 						 IB_QP_PKEY_INDEX),
927 				 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX		|
928 						 IB_QP_QKEY),
929 				 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX		|
930 						 IB_QP_QKEY),
931 			 },
932 		},
933 	},
934 	[IB_QPS_RTR]   = {
935 		[IB_QPS_RESET] = { .valid = 1 },
936 		[IB_QPS_ERR] =   { .valid = 1 },
937 		[IB_QPS_RTS]   = {
938 			.valid = 1,
939 			.req_param = {
940 				[IB_QPT_UD]  = IB_QP_SQ_PSN,
941 				[IB_QPT_UC]  = IB_QP_SQ_PSN,
942 				[IB_QPT_RC]  = (IB_QP_TIMEOUT			|
943 						IB_QP_RETRY_CNT			|
944 						IB_QP_RNR_RETRY			|
945 						IB_QP_SQ_PSN			|
946 						IB_QP_MAX_QP_RD_ATOMIC),
947 				[IB_QPT_XRC_INI] = (IB_QP_TIMEOUT		|
948 						IB_QP_RETRY_CNT			|
949 						IB_QP_RNR_RETRY			|
950 						IB_QP_SQ_PSN			|
951 						IB_QP_MAX_QP_RD_ATOMIC),
952 				[IB_QPT_XRC_TGT] = (IB_QP_TIMEOUT		|
953 						IB_QP_SQ_PSN),
954 				[IB_QPT_SMI] = IB_QP_SQ_PSN,
955 				[IB_QPT_GSI] = IB_QP_SQ_PSN,
956 			},
957 			.opt_param = {
958 				 [IB_QPT_UD]  = (IB_QP_CUR_STATE		|
959 						 IB_QP_QKEY),
960 				 [IB_QPT_UC]  = (IB_QP_CUR_STATE		|
961 						 IB_QP_ALT_PATH			|
962 						 IB_QP_ACCESS_FLAGS		|
963 						 IB_QP_PATH_MIG_STATE),
964 				 [IB_QPT_RC]  = (IB_QP_CUR_STATE		|
965 						 IB_QP_ALT_PATH			|
966 						 IB_QP_ACCESS_FLAGS		|
967 						 IB_QP_MIN_RNR_TIMER		|
968 						 IB_QP_PATH_MIG_STATE),
969 				 [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE		|
970 						 IB_QP_ALT_PATH			|
971 						 IB_QP_ACCESS_FLAGS		|
972 						 IB_QP_PATH_MIG_STATE),
973 				 [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE		|
974 						 IB_QP_ALT_PATH			|
975 						 IB_QP_ACCESS_FLAGS		|
976 						 IB_QP_MIN_RNR_TIMER		|
977 						 IB_QP_PATH_MIG_STATE),
978 				 [IB_QPT_SMI] = (IB_QP_CUR_STATE		|
979 						 IB_QP_QKEY),
980 				 [IB_QPT_GSI] = (IB_QP_CUR_STATE		|
981 						 IB_QP_QKEY),
982 			 }
983 		}
984 	},
985 	[IB_QPS_RTS]   = {
986 		[IB_QPS_RESET] = { .valid = 1 },
987 		[IB_QPS_ERR] =   { .valid = 1 },
988 		[IB_QPS_RTS]   = {
989 			.valid = 1,
990 			.opt_param = {
991 				[IB_QPT_UD]  = (IB_QP_CUR_STATE			|
992 						IB_QP_QKEY),
993 				[IB_QPT_UC]  = (IB_QP_CUR_STATE			|
994 						IB_QP_ACCESS_FLAGS		|
995 						IB_QP_ALT_PATH			|
996 						IB_QP_PATH_MIG_STATE),
997 				[IB_QPT_RC]  = (IB_QP_CUR_STATE			|
998 						IB_QP_ACCESS_FLAGS		|
999 						IB_QP_ALT_PATH			|
1000 						IB_QP_PATH_MIG_STATE		|
1001 						IB_QP_MIN_RNR_TIMER),
1002 				[IB_QPT_XRC_INI] = (IB_QP_CUR_STATE		|
1003 						IB_QP_ACCESS_FLAGS		|
1004 						IB_QP_ALT_PATH			|
1005 						IB_QP_PATH_MIG_STATE),
1006 				[IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE		|
1007 						IB_QP_ACCESS_FLAGS		|
1008 						IB_QP_ALT_PATH			|
1009 						IB_QP_PATH_MIG_STATE		|
1010 						IB_QP_MIN_RNR_TIMER),
1011 				[IB_QPT_SMI] = (IB_QP_CUR_STATE			|
1012 						IB_QP_QKEY),
1013 				[IB_QPT_GSI] = (IB_QP_CUR_STATE			|
1014 						IB_QP_QKEY),
1015 			}
1016 		},
1017 		[IB_QPS_SQD]   = {
1018 			.valid = 1,
1019 			.opt_param = {
1020 				[IB_QPT_UD]  = IB_QP_EN_SQD_ASYNC_NOTIFY,
1021 				[IB_QPT_UC]  = IB_QP_EN_SQD_ASYNC_NOTIFY,
1022 				[IB_QPT_RC]  = IB_QP_EN_SQD_ASYNC_NOTIFY,
1023 				[IB_QPT_XRC_INI] = IB_QP_EN_SQD_ASYNC_NOTIFY,
1024 				[IB_QPT_XRC_TGT] = IB_QP_EN_SQD_ASYNC_NOTIFY, /* ??? */
1025 				[IB_QPT_SMI] = IB_QP_EN_SQD_ASYNC_NOTIFY,
1026 				[IB_QPT_GSI] = IB_QP_EN_SQD_ASYNC_NOTIFY
1027 			}
1028 		},
1029 	},
1030 	[IB_QPS_SQD]   = {
1031 		[IB_QPS_RESET] = { .valid = 1 },
1032 		[IB_QPS_ERR] =   { .valid = 1 },
1033 		[IB_QPS_RTS]   = {
1034 			.valid = 1,
1035 			.opt_param = {
1036 				[IB_QPT_UD]  = (IB_QP_CUR_STATE			|
1037 						IB_QP_QKEY),
1038 				[IB_QPT_UC]  = (IB_QP_CUR_STATE			|
1039 						IB_QP_ALT_PATH			|
1040 						IB_QP_ACCESS_FLAGS		|
1041 						IB_QP_PATH_MIG_STATE),
1042 				[IB_QPT_RC]  = (IB_QP_CUR_STATE			|
1043 						IB_QP_ALT_PATH			|
1044 						IB_QP_ACCESS_FLAGS		|
1045 						IB_QP_MIN_RNR_TIMER		|
1046 						IB_QP_PATH_MIG_STATE),
1047 				[IB_QPT_XRC_INI] = (IB_QP_CUR_STATE		|
1048 						IB_QP_ALT_PATH			|
1049 						IB_QP_ACCESS_FLAGS		|
1050 						IB_QP_PATH_MIG_STATE),
1051 				[IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE		|
1052 						IB_QP_ALT_PATH			|
1053 						IB_QP_ACCESS_FLAGS		|
1054 						IB_QP_MIN_RNR_TIMER		|
1055 						IB_QP_PATH_MIG_STATE),
1056 				[IB_QPT_SMI] = (IB_QP_CUR_STATE			|
1057 						IB_QP_QKEY),
1058 				[IB_QPT_GSI] = (IB_QP_CUR_STATE			|
1059 						IB_QP_QKEY),
1060 			}
1061 		},
1062 		[IB_QPS_SQD]   = {
1063 			.valid = 1,
1064 			.opt_param = {
1065 				[IB_QPT_UD]  = (IB_QP_PKEY_INDEX		|
1066 						IB_QP_QKEY),
1067 				[IB_QPT_UC]  = (IB_QP_AV			|
1068 						IB_QP_ALT_PATH			|
1069 						IB_QP_ACCESS_FLAGS		|
1070 						IB_QP_PKEY_INDEX		|
1071 						IB_QP_PATH_MIG_STATE),
1072 				[IB_QPT_RC]  = (IB_QP_PORT			|
1073 						IB_QP_AV			|
1074 						IB_QP_TIMEOUT			|
1075 						IB_QP_RETRY_CNT			|
1076 						IB_QP_RNR_RETRY			|
1077 						IB_QP_MAX_QP_RD_ATOMIC		|
1078 						IB_QP_MAX_DEST_RD_ATOMIC	|
1079 						IB_QP_ALT_PATH			|
1080 						IB_QP_ACCESS_FLAGS		|
1081 						IB_QP_PKEY_INDEX		|
1082 						IB_QP_MIN_RNR_TIMER		|
1083 						IB_QP_PATH_MIG_STATE),
1084 				[IB_QPT_XRC_INI] = (IB_QP_PORT			|
1085 						IB_QP_AV			|
1086 						IB_QP_TIMEOUT			|
1087 						IB_QP_RETRY_CNT			|
1088 						IB_QP_RNR_RETRY			|
1089 						IB_QP_MAX_QP_RD_ATOMIC		|
1090 						IB_QP_ALT_PATH			|
1091 						IB_QP_ACCESS_FLAGS		|
1092 						IB_QP_PKEY_INDEX		|
1093 						IB_QP_PATH_MIG_STATE),
1094 				[IB_QPT_XRC_TGT] = (IB_QP_PORT			|
1095 						IB_QP_AV			|
1096 						IB_QP_TIMEOUT			|
1097 						IB_QP_MAX_DEST_RD_ATOMIC	|
1098 						IB_QP_ALT_PATH			|
1099 						IB_QP_ACCESS_FLAGS		|
1100 						IB_QP_PKEY_INDEX		|
1101 						IB_QP_MIN_RNR_TIMER		|
1102 						IB_QP_PATH_MIG_STATE),
1103 				[IB_QPT_SMI] = (IB_QP_PKEY_INDEX		|
1104 						IB_QP_QKEY),
1105 				[IB_QPT_GSI] = (IB_QP_PKEY_INDEX		|
1106 						IB_QP_QKEY),
1107 			}
1108 		}
1109 	},
1110 	[IB_QPS_SQE]   = {
1111 		[IB_QPS_RESET] = { .valid = 1 },
1112 		[IB_QPS_ERR] =   { .valid = 1 },
1113 		[IB_QPS_RTS]   = {
1114 			.valid = 1,
1115 			.opt_param = {
1116 				[IB_QPT_UD]  = (IB_QP_CUR_STATE			|
1117 						IB_QP_QKEY),
1118 				[IB_QPT_UC]  = (IB_QP_CUR_STATE			|
1119 						IB_QP_ACCESS_FLAGS),
1120 				[IB_QPT_SMI] = (IB_QP_CUR_STATE			|
1121 						IB_QP_QKEY),
1122 				[IB_QPT_GSI] = (IB_QP_CUR_STATE			|
1123 						IB_QP_QKEY),
1124 			}
1125 		}
1126 	},
1127 	[IB_QPS_ERR] = {
1128 		[IB_QPS_RESET] = { .valid = 1 },
1129 		[IB_QPS_ERR] =   { .valid = 1 }
1130 	}
1131 };
1132 
1133 int ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state,
1134 		       enum ib_qp_type type, enum ib_qp_attr_mask mask,
1135 		       enum rdma_link_layer ll)
1136 {
1137 	enum ib_qp_attr_mask req_param, opt_param;
1138 
1139 	if (cur_state  < 0 || cur_state  > IB_QPS_ERR ||
1140 	    next_state < 0 || next_state > IB_QPS_ERR)
1141 		return 0;
1142 
1143 	if (mask & IB_QP_CUR_STATE  &&
1144 	    cur_state != IB_QPS_RTR && cur_state != IB_QPS_RTS &&
1145 	    cur_state != IB_QPS_SQD && cur_state != IB_QPS_SQE)
1146 		return 0;
1147 
1148 	if (!qp_state_table[cur_state][next_state].valid)
1149 		return 0;
1150 
1151 	req_param = qp_state_table[cur_state][next_state].req_param[type];
1152 	opt_param = qp_state_table[cur_state][next_state].opt_param[type];
1153 
1154 	if ((mask & req_param) != req_param)
1155 		return 0;
1156 
1157 	if (mask & ~(req_param | opt_param | IB_QP_STATE))
1158 		return 0;
1159 
1160 	return 1;
1161 }
1162 EXPORT_SYMBOL(ib_modify_qp_is_ok);
1163 
1164 int ib_resolve_eth_dmac(struct ib_device *device,
1165 			struct ib_ah_attr *ah_attr)
1166 {
1167 	int           ret = 0;
1168 
1169 	if (ah_attr->port_num < rdma_start_port(device) ||
1170 	    ah_attr->port_num > rdma_end_port(device))
1171 		return -EINVAL;
1172 
1173 	if (!rdma_cap_eth_ah(device, ah_attr->port_num))
1174 		return 0;
1175 
1176 	if (rdma_link_local_addr((struct in6_addr *)ah_attr->grh.dgid.raw)) {
1177 		rdma_get_ll_mac((struct in6_addr *)ah_attr->grh.dgid.raw,
1178 				ah_attr->dmac);
1179 	} else {
1180 		union ib_gid		sgid;
1181 		struct ib_gid_attr	sgid_attr;
1182 		int			hop_limit;
1183 
1184 		ret = ib_query_gid(device,
1185 				   ah_attr->port_num,
1186 				   ah_attr->grh.sgid_index,
1187 				   &sgid, &sgid_attr);
1188 
1189 		if (ret || !sgid_attr.ndev) {
1190 			if (!ret)
1191 				ret = -ENXIO;
1192 			goto out;
1193 		}
1194 
1195 		ret = rdma_addr_find_l2_eth_by_grh(&sgid,
1196 						   &ah_attr->grh.dgid,
1197 						   ah_attr->dmac,
1198 						   sgid_attr.ndev, &hop_limit);
1199 
1200 		dev_put(sgid_attr.ndev);
1201 
1202 		ah_attr->grh.hop_limit = hop_limit;
1203 	}
1204 out:
1205 	return ret;
1206 }
1207 EXPORT_SYMBOL(ib_resolve_eth_dmac);
1208 
1209 
1210 int ib_modify_qp(struct ib_qp *qp,
1211 		 struct ib_qp_attr *qp_attr,
1212 		 int qp_attr_mask)
1213 {
1214 	if (qp_attr_mask & IB_QP_AV) {
1215 		int ret;
1216 
1217 		ret = ib_resolve_eth_dmac(qp->device, &qp_attr->ah_attr);
1218 		if (ret)
1219 			return ret;
1220 	}
1221 
1222 	return qp->device->modify_qp(qp->real_qp, qp_attr, qp_attr_mask, NULL);
1223 }
1224 EXPORT_SYMBOL(ib_modify_qp);
1225 
1226 int ib_query_qp(struct ib_qp *qp,
1227 		struct ib_qp_attr *qp_attr,
1228 		int qp_attr_mask,
1229 		struct ib_qp_init_attr *qp_init_attr)
1230 {
1231 	return qp->device->query_qp ?
1232 		qp->device->query_qp(qp->real_qp, qp_attr, qp_attr_mask, qp_init_attr) :
1233 		-ENOSYS;
1234 }
1235 EXPORT_SYMBOL(ib_query_qp);
1236 
1237 int ib_close_qp(struct ib_qp *qp)
1238 {
1239 	struct ib_qp *real_qp;
1240 	unsigned long flags;
1241 
1242 	real_qp = qp->real_qp;
1243 	if (real_qp == qp)
1244 		return -EINVAL;
1245 
1246 	spin_lock_irqsave(&real_qp->device->event_handler_lock, flags);
1247 	list_del(&qp->open_list);
1248 	spin_unlock_irqrestore(&real_qp->device->event_handler_lock, flags);
1249 
1250 	atomic_dec(&real_qp->usecnt);
1251 	kfree(qp);
1252 
1253 	return 0;
1254 }
1255 EXPORT_SYMBOL(ib_close_qp);
1256 
1257 static int __ib_destroy_shared_qp(struct ib_qp *qp)
1258 {
1259 	struct ib_xrcd *xrcd;
1260 	struct ib_qp *real_qp;
1261 	int ret;
1262 
1263 	real_qp = qp->real_qp;
1264 	xrcd = real_qp->xrcd;
1265 
1266 	mutex_lock(&xrcd->tgt_qp_mutex);
1267 	ib_close_qp(qp);
1268 	if (atomic_read(&real_qp->usecnt) == 0)
1269 		list_del(&real_qp->xrcd_list);
1270 	else
1271 		real_qp = NULL;
1272 	mutex_unlock(&xrcd->tgt_qp_mutex);
1273 
1274 	if (real_qp) {
1275 		ret = ib_destroy_qp(real_qp);
1276 		if (!ret)
1277 			atomic_dec(&xrcd->usecnt);
1278 		else
1279 			__ib_insert_xrcd_qp(xrcd, real_qp);
1280 	}
1281 
1282 	return 0;
1283 }
1284 
1285 int ib_destroy_qp(struct ib_qp *qp)
1286 {
1287 	struct ib_pd *pd;
1288 	struct ib_cq *scq, *rcq;
1289 	struct ib_srq *srq;
1290 	struct ib_rwq_ind_table *ind_tbl;
1291 	int ret;
1292 
1293 	if (atomic_read(&qp->usecnt))
1294 		return -EBUSY;
1295 
1296 	if (qp->real_qp != qp)
1297 		return __ib_destroy_shared_qp(qp);
1298 
1299 	pd   = qp->pd;
1300 	scq  = qp->send_cq;
1301 	rcq  = qp->recv_cq;
1302 	srq  = qp->srq;
1303 	ind_tbl = qp->rwq_ind_tbl;
1304 
1305 	ret = qp->device->destroy_qp(qp);
1306 	if (!ret) {
1307 		if (pd)
1308 			atomic_dec(&pd->usecnt);
1309 		if (scq)
1310 			atomic_dec(&scq->usecnt);
1311 		if (rcq)
1312 			atomic_dec(&rcq->usecnt);
1313 		if (srq)
1314 			atomic_dec(&srq->usecnt);
1315 		if (ind_tbl)
1316 			atomic_dec(&ind_tbl->usecnt);
1317 	}
1318 
1319 	return ret;
1320 }
1321 EXPORT_SYMBOL(ib_destroy_qp);
1322 
1323 /* Completion queues */
1324 
1325 struct ib_cq *ib_create_cq(struct ib_device *device,
1326 			   ib_comp_handler comp_handler,
1327 			   void (*event_handler)(struct ib_event *, void *),
1328 			   void *cq_context,
1329 			   const struct ib_cq_init_attr *cq_attr)
1330 {
1331 	struct ib_cq *cq;
1332 
1333 	cq = device->create_cq(device, cq_attr, NULL, NULL);
1334 
1335 	if (!IS_ERR(cq)) {
1336 		cq->device        = device;
1337 		cq->uobject       = NULL;
1338 		cq->comp_handler  = comp_handler;
1339 		cq->event_handler = event_handler;
1340 		cq->cq_context    = cq_context;
1341 		atomic_set(&cq->usecnt, 0);
1342 	}
1343 
1344 	return cq;
1345 }
1346 EXPORT_SYMBOL(ib_create_cq);
1347 
1348 int ib_modify_cq(struct ib_cq *cq, u16 cq_count, u16 cq_period)
1349 {
1350 	return cq->device->modify_cq ?
1351 		cq->device->modify_cq(cq, cq_count, cq_period) : -ENOSYS;
1352 }
1353 EXPORT_SYMBOL(ib_modify_cq);
1354 
1355 int ib_destroy_cq(struct ib_cq *cq)
1356 {
1357 	if (atomic_read(&cq->usecnt))
1358 		return -EBUSY;
1359 
1360 	return cq->device->destroy_cq(cq);
1361 }
1362 EXPORT_SYMBOL(ib_destroy_cq);
1363 
1364 int ib_resize_cq(struct ib_cq *cq, int cqe)
1365 {
1366 	return cq->device->resize_cq ?
1367 		cq->device->resize_cq(cq, cqe, NULL) : -ENOSYS;
1368 }
1369 EXPORT_SYMBOL(ib_resize_cq);
1370 
1371 /* Memory regions */
1372 
1373 int ib_dereg_mr(struct ib_mr *mr)
1374 {
1375 	struct ib_pd *pd = mr->pd;
1376 	int ret;
1377 
1378 	ret = mr->device->dereg_mr(mr);
1379 	if (!ret)
1380 		atomic_dec(&pd->usecnt);
1381 
1382 	return ret;
1383 }
1384 EXPORT_SYMBOL(ib_dereg_mr);
1385 
1386 /**
1387  * ib_alloc_mr() - Allocates a memory region
1388  * @pd:            protection domain associated with the region
1389  * @mr_type:       memory region type
1390  * @max_num_sg:    maximum sg entries available for registration.
1391  *
1392  * Notes:
1393  * Memory registeration page/sg lists must not exceed max_num_sg.
1394  * For mr_type IB_MR_TYPE_MEM_REG, the total length cannot exceed
1395  * max_num_sg * used_page_size.
1396  *
1397  */
1398 struct ib_mr *ib_alloc_mr(struct ib_pd *pd,
1399 			  enum ib_mr_type mr_type,
1400 			  u32 max_num_sg)
1401 {
1402 	struct ib_mr *mr;
1403 
1404 	if (!pd->device->alloc_mr)
1405 		return ERR_PTR(-ENOSYS);
1406 
1407 	mr = pd->device->alloc_mr(pd, mr_type, max_num_sg);
1408 	if (!IS_ERR(mr)) {
1409 		mr->device  = pd->device;
1410 		mr->pd      = pd;
1411 		mr->uobject = NULL;
1412 		atomic_inc(&pd->usecnt);
1413 		mr->need_inval = false;
1414 	}
1415 
1416 	return mr;
1417 }
1418 EXPORT_SYMBOL(ib_alloc_mr);
1419 
1420 /* "Fast" memory regions */
1421 
1422 struct ib_fmr *ib_alloc_fmr(struct ib_pd *pd,
1423 			    int mr_access_flags,
1424 			    struct ib_fmr_attr *fmr_attr)
1425 {
1426 	struct ib_fmr *fmr;
1427 
1428 	if (!pd->device->alloc_fmr)
1429 		return ERR_PTR(-ENOSYS);
1430 
1431 	fmr = pd->device->alloc_fmr(pd, mr_access_flags, fmr_attr);
1432 	if (!IS_ERR(fmr)) {
1433 		fmr->device = pd->device;
1434 		fmr->pd     = pd;
1435 		atomic_inc(&pd->usecnt);
1436 	}
1437 
1438 	return fmr;
1439 }
1440 EXPORT_SYMBOL(ib_alloc_fmr);
1441 
1442 int ib_unmap_fmr(struct list_head *fmr_list)
1443 {
1444 	struct ib_fmr *fmr;
1445 
1446 	if (list_empty(fmr_list))
1447 		return 0;
1448 
1449 	fmr = list_entry(fmr_list->next, struct ib_fmr, list);
1450 	return fmr->device->unmap_fmr(fmr_list);
1451 }
1452 EXPORT_SYMBOL(ib_unmap_fmr);
1453 
1454 int ib_dealloc_fmr(struct ib_fmr *fmr)
1455 {
1456 	struct ib_pd *pd;
1457 	int ret;
1458 
1459 	pd = fmr->pd;
1460 	ret = fmr->device->dealloc_fmr(fmr);
1461 	if (!ret)
1462 		atomic_dec(&pd->usecnt);
1463 
1464 	return ret;
1465 }
1466 EXPORT_SYMBOL(ib_dealloc_fmr);
1467 
1468 /* Multicast groups */
1469 
1470 int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid)
1471 {
1472 	int ret;
1473 
1474 	if (!qp->device->attach_mcast)
1475 		return -ENOSYS;
1476 	if (gid->raw[0] != 0xff || qp->qp_type != IB_QPT_UD)
1477 		return -EINVAL;
1478 
1479 	ret = qp->device->attach_mcast(qp, gid, lid);
1480 	if (!ret)
1481 		atomic_inc(&qp->usecnt);
1482 	return ret;
1483 }
1484 EXPORT_SYMBOL(ib_attach_mcast);
1485 
1486 int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid)
1487 {
1488 	int ret;
1489 
1490 	if (!qp->device->detach_mcast)
1491 		return -ENOSYS;
1492 	if (gid->raw[0] != 0xff || qp->qp_type != IB_QPT_UD)
1493 		return -EINVAL;
1494 
1495 	ret = qp->device->detach_mcast(qp, gid, lid);
1496 	if (!ret)
1497 		atomic_dec(&qp->usecnt);
1498 	return ret;
1499 }
1500 EXPORT_SYMBOL(ib_detach_mcast);
1501 
1502 struct ib_xrcd *ib_alloc_xrcd(struct ib_device *device)
1503 {
1504 	struct ib_xrcd *xrcd;
1505 
1506 	if (!device->alloc_xrcd)
1507 		return ERR_PTR(-ENOSYS);
1508 
1509 	xrcd = device->alloc_xrcd(device, NULL, NULL);
1510 	if (!IS_ERR(xrcd)) {
1511 		xrcd->device = device;
1512 		xrcd->inode = NULL;
1513 		atomic_set(&xrcd->usecnt, 0);
1514 		mutex_init(&xrcd->tgt_qp_mutex);
1515 		INIT_LIST_HEAD(&xrcd->tgt_qp_list);
1516 	}
1517 
1518 	return xrcd;
1519 }
1520 EXPORT_SYMBOL(ib_alloc_xrcd);
1521 
1522 int ib_dealloc_xrcd(struct ib_xrcd *xrcd)
1523 {
1524 	struct ib_qp *qp;
1525 	int ret;
1526 
1527 	if (atomic_read(&xrcd->usecnt))
1528 		return -EBUSY;
1529 
1530 	while (!list_empty(&xrcd->tgt_qp_list)) {
1531 		qp = list_entry(xrcd->tgt_qp_list.next, struct ib_qp, xrcd_list);
1532 		ret = ib_destroy_qp(qp);
1533 		if (ret)
1534 			return ret;
1535 	}
1536 
1537 	return xrcd->device->dealloc_xrcd(xrcd);
1538 }
1539 EXPORT_SYMBOL(ib_dealloc_xrcd);
1540 
1541 /**
1542  * ib_create_wq - Creates a WQ associated with the specified protection
1543  * domain.
1544  * @pd: The protection domain associated with the WQ.
1545  * @wq_init_attr: A list of initial attributes required to create the
1546  * WQ. If WQ creation succeeds, then the attributes are updated to
1547  * the actual capabilities of the created WQ.
1548  *
1549  * wq_init_attr->max_wr and wq_init_attr->max_sge determine
1550  * the requested size of the WQ, and set to the actual values allocated
1551  * on return.
1552  * If ib_create_wq() succeeds, then max_wr and max_sge will always be
1553  * at least as large as the requested values.
1554  */
1555 struct ib_wq *ib_create_wq(struct ib_pd *pd,
1556 			   struct ib_wq_init_attr *wq_attr)
1557 {
1558 	struct ib_wq *wq;
1559 
1560 	if (!pd->device->create_wq)
1561 		return ERR_PTR(-ENOSYS);
1562 
1563 	wq = pd->device->create_wq(pd, wq_attr, NULL);
1564 	if (!IS_ERR(wq)) {
1565 		wq->event_handler = wq_attr->event_handler;
1566 		wq->wq_context = wq_attr->wq_context;
1567 		wq->wq_type = wq_attr->wq_type;
1568 		wq->cq = wq_attr->cq;
1569 		wq->device = pd->device;
1570 		wq->pd = pd;
1571 		wq->uobject = NULL;
1572 		atomic_inc(&pd->usecnt);
1573 		atomic_inc(&wq_attr->cq->usecnt);
1574 		atomic_set(&wq->usecnt, 0);
1575 	}
1576 	return wq;
1577 }
1578 EXPORT_SYMBOL(ib_create_wq);
1579 
1580 /**
1581  * ib_destroy_wq - Destroys the specified WQ.
1582  * @wq: The WQ to destroy.
1583  */
1584 int ib_destroy_wq(struct ib_wq *wq)
1585 {
1586 	int err;
1587 	struct ib_cq *cq = wq->cq;
1588 	struct ib_pd *pd = wq->pd;
1589 
1590 	if (atomic_read(&wq->usecnt))
1591 		return -EBUSY;
1592 
1593 	err = wq->device->destroy_wq(wq);
1594 	if (!err) {
1595 		atomic_dec(&pd->usecnt);
1596 		atomic_dec(&cq->usecnt);
1597 	}
1598 	return err;
1599 }
1600 EXPORT_SYMBOL(ib_destroy_wq);
1601 
1602 /**
1603  * ib_modify_wq - Modifies the specified WQ.
1604  * @wq: The WQ to modify.
1605  * @wq_attr: On input, specifies the WQ attributes to modify.
1606  * @wq_attr_mask: A bit-mask used to specify which attributes of the WQ
1607  *   are being modified.
1608  * On output, the current values of selected WQ attributes are returned.
1609  */
1610 int ib_modify_wq(struct ib_wq *wq, struct ib_wq_attr *wq_attr,
1611 		 u32 wq_attr_mask)
1612 {
1613 	int err;
1614 
1615 	if (!wq->device->modify_wq)
1616 		return -ENOSYS;
1617 
1618 	err = wq->device->modify_wq(wq, wq_attr, wq_attr_mask, NULL);
1619 	return err;
1620 }
1621 EXPORT_SYMBOL(ib_modify_wq);
1622 
1623 /*
1624  * ib_create_rwq_ind_table - Creates a RQ Indirection Table.
1625  * @device: The device on which to create the rwq indirection table.
1626  * @ib_rwq_ind_table_init_attr: A list of initial attributes required to
1627  * create the Indirection Table.
1628  *
1629  * Note: The life time of ib_rwq_ind_table_init_attr->ind_tbl is not less
1630  *	than the created ib_rwq_ind_table object and the caller is responsible
1631  *	for its memory allocation/free.
1632  */
1633 struct ib_rwq_ind_table *ib_create_rwq_ind_table(struct ib_device *device,
1634 						 struct ib_rwq_ind_table_init_attr *init_attr)
1635 {
1636 	struct ib_rwq_ind_table *rwq_ind_table;
1637 	int i;
1638 	u32 table_size;
1639 
1640 	if (!device->create_rwq_ind_table)
1641 		return ERR_PTR(-ENOSYS);
1642 
1643 	table_size = (1 << init_attr->log_ind_tbl_size);
1644 	rwq_ind_table = device->create_rwq_ind_table(device,
1645 				init_attr, NULL);
1646 	if (IS_ERR(rwq_ind_table))
1647 		return rwq_ind_table;
1648 
1649 	rwq_ind_table->ind_tbl = init_attr->ind_tbl;
1650 	rwq_ind_table->log_ind_tbl_size = init_attr->log_ind_tbl_size;
1651 	rwq_ind_table->device = device;
1652 	rwq_ind_table->uobject = NULL;
1653 	atomic_set(&rwq_ind_table->usecnt, 0);
1654 
1655 	for (i = 0; i < table_size; i++)
1656 		atomic_inc(&rwq_ind_table->ind_tbl[i]->usecnt);
1657 
1658 	return rwq_ind_table;
1659 }
1660 EXPORT_SYMBOL(ib_create_rwq_ind_table);
1661 
1662 /*
1663  * ib_destroy_rwq_ind_table - Destroys the specified Indirection Table.
1664  * @wq_ind_table: The Indirection Table to destroy.
1665 */
1666 int ib_destroy_rwq_ind_table(struct ib_rwq_ind_table *rwq_ind_table)
1667 {
1668 	int err, i;
1669 	u32 table_size = (1 << rwq_ind_table->log_ind_tbl_size);
1670 	struct ib_wq **ind_tbl = rwq_ind_table->ind_tbl;
1671 
1672 	if (atomic_read(&rwq_ind_table->usecnt))
1673 		return -EBUSY;
1674 
1675 	err = rwq_ind_table->device->destroy_rwq_ind_table(rwq_ind_table);
1676 	if (!err) {
1677 		for (i = 0; i < table_size; i++)
1678 			atomic_dec(&ind_tbl[i]->usecnt);
1679 	}
1680 
1681 	return err;
1682 }
1683 EXPORT_SYMBOL(ib_destroy_rwq_ind_table);
1684 
1685 struct ib_flow *ib_create_flow(struct ib_qp *qp,
1686 			       struct ib_flow_attr *flow_attr,
1687 			       int domain)
1688 {
1689 	struct ib_flow *flow_id;
1690 	if (!qp->device->create_flow)
1691 		return ERR_PTR(-ENOSYS);
1692 
1693 	flow_id = qp->device->create_flow(qp, flow_attr, domain);
1694 	if (!IS_ERR(flow_id))
1695 		atomic_inc(&qp->usecnt);
1696 	return flow_id;
1697 }
1698 EXPORT_SYMBOL(ib_create_flow);
1699 
1700 int ib_destroy_flow(struct ib_flow *flow_id)
1701 {
1702 	int err;
1703 	struct ib_qp *qp = flow_id->qp;
1704 
1705 	err = qp->device->destroy_flow(flow_id);
1706 	if (!err)
1707 		atomic_dec(&qp->usecnt);
1708 	return err;
1709 }
1710 EXPORT_SYMBOL(ib_destroy_flow);
1711 
1712 int ib_check_mr_status(struct ib_mr *mr, u32 check_mask,
1713 		       struct ib_mr_status *mr_status)
1714 {
1715 	return mr->device->check_mr_status ?
1716 		mr->device->check_mr_status(mr, check_mask, mr_status) : -ENOSYS;
1717 }
1718 EXPORT_SYMBOL(ib_check_mr_status);
1719 
1720 int ib_set_vf_link_state(struct ib_device *device, int vf, u8 port,
1721 			 int state)
1722 {
1723 	if (!device->set_vf_link_state)
1724 		return -ENOSYS;
1725 
1726 	return device->set_vf_link_state(device, vf, port, state);
1727 }
1728 EXPORT_SYMBOL(ib_set_vf_link_state);
1729 
1730 int ib_get_vf_config(struct ib_device *device, int vf, u8 port,
1731 		     struct ifla_vf_info *info)
1732 {
1733 	if (!device->get_vf_config)
1734 		return -ENOSYS;
1735 
1736 	return device->get_vf_config(device, vf, port, info);
1737 }
1738 EXPORT_SYMBOL(ib_get_vf_config);
1739 
1740 int ib_get_vf_stats(struct ib_device *device, int vf, u8 port,
1741 		    struct ifla_vf_stats *stats)
1742 {
1743 	if (!device->get_vf_stats)
1744 		return -ENOSYS;
1745 
1746 	return device->get_vf_stats(device, vf, port, stats);
1747 }
1748 EXPORT_SYMBOL(ib_get_vf_stats);
1749 
1750 int ib_set_vf_guid(struct ib_device *device, int vf, u8 port, u64 guid,
1751 		   int type)
1752 {
1753 	if (!device->set_vf_guid)
1754 		return -ENOSYS;
1755 
1756 	return device->set_vf_guid(device, vf, port, guid, type);
1757 }
1758 EXPORT_SYMBOL(ib_set_vf_guid);
1759 
1760 /**
1761  * ib_map_mr_sg() - Map the largest prefix of a dma mapped SG list
1762  *     and set it the memory region.
1763  * @mr:            memory region
1764  * @sg:            dma mapped scatterlist
1765  * @sg_nents:      number of entries in sg
1766  * @sg_offset:     offset in bytes into sg
1767  * @page_size:     page vector desired page size
1768  *
1769  * Constraints:
1770  * - The first sg element is allowed to have an offset.
1771  * - Each sg element must either be aligned to page_size or virtually
1772  *   contiguous to the previous element. In case an sg element has a
1773  *   non-contiguous offset, the mapping prefix will not include it.
1774  * - The last sg element is allowed to have length less than page_size.
1775  * - If sg_nents total byte length exceeds the mr max_num_sge * page_size
1776  *   then only max_num_sg entries will be mapped.
1777  * - If the MR was allocated with type IB_MR_TYPE_SG_GAPS, none of these
1778  *   constraints holds and the page_size argument is ignored.
1779  *
1780  * Returns the number of sg elements that were mapped to the memory region.
1781  *
1782  * After this completes successfully, the  memory region
1783  * is ready for registration.
1784  */
1785 int ib_map_mr_sg(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
1786 		 unsigned int *sg_offset, unsigned int page_size)
1787 {
1788 	if (unlikely(!mr->device->map_mr_sg))
1789 		return -ENOSYS;
1790 
1791 	mr->page_size = page_size;
1792 
1793 	return mr->device->map_mr_sg(mr, sg, sg_nents, sg_offset);
1794 }
1795 EXPORT_SYMBOL(ib_map_mr_sg);
1796 
1797 /**
1798  * ib_sg_to_pages() - Convert the largest prefix of a sg list
1799  *     to a page vector
1800  * @mr:            memory region
1801  * @sgl:           dma mapped scatterlist
1802  * @sg_nents:      number of entries in sg
1803  * @sg_offset_p:   IN:  start offset in bytes into sg
1804  *                 OUT: offset in bytes for element n of the sg of the first
1805  *                      byte that has not been processed where n is the return
1806  *                      value of this function.
1807  * @set_page:      driver page assignment function pointer
1808  *
1809  * Core service helper for drivers to convert the largest
1810  * prefix of given sg list to a page vector. The sg list
1811  * prefix converted is the prefix that meet the requirements
1812  * of ib_map_mr_sg.
1813  *
1814  * Returns the number of sg elements that were assigned to
1815  * a page vector.
1816  */
1817 int ib_sg_to_pages(struct ib_mr *mr, struct scatterlist *sgl, int sg_nents,
1818 		unsigned int *sg_offset_p, int (*set_page)(struct ib_mr *, u64))
1819 {
1820 	struct scatterlist *sg;
1821 	u64 last_end_dma_addr = 0;
1822 	unsigned int sg_offset = sg_offset_p ? *sg_offset_p : 0;
1823 	unsigned int last_page_off = 0;
1824 	u64 page_mask = ~((u64)mr->page_size - 1);
1825 	int i, ret;
1826 
1827 	if (unlikely(sg_nents <= 0 || sg_offset > sg_dma_len(&sgl[0])))
1828 		return -EINVAL;
1829 
1830 	mr->iova = sg_dma_address(&sgl[0]) + sg_offset;
1831 	mr->length = 0;
1832 
1833 	for_each_sg(sgl, sg, sg_nents, i) {
1834 		u64 dma_addr = sg_dma_address(sg) + sg_offset;
1835 		u64 prev_addr = dma_addr;
1836 		unsigned int dma_len = sg_dma_len(sg) - sg_offset;
1837 		u64 end_dma_addr = dma_addr + dma_len;
1838 		u64 page_addr = dma_addr & page_mask;
1839 
1840 		/*
1841 		 * For the second and later elements, check whether either the
1842 		 * end of element i-1 or the start of element i is not aligned
1843 		 * on a page boundary.
1844 		 */
1845 		if (i && (last_page_off != 0 || page_addr != dma_addr)) {
1846 			/* Stop mapping if there is a gap. */
1847 			if (last_end_dma_addr != dma_addr)
1848 				break;
1849 
1850 			/*
1851 			 * Coalesce this element with the last. If it is small
1852 			 * enough just update mr->length. Otherwise start
1853 			 * mapping from the next page.
1854 			 */
1855 			goto next_page;
1856 		}
1857 
1858 		do {
1859 			ret = set_page(mr, page_addr);
1860 			if (unlikely(ret < 0)) {
1861 				sg_offset = prev_addr - sg_dma_address(sg);
1862 				mr->length += prev_addr - dma_addr;
1863 				if (sg_offset_p)
1864 					*sg_offset_p = sg_offset;
1865 				return i || sg_offset ? i : ret;
1866 			}
1867 			prev_addr = page_addr;
1868 next_page:
1869 			page_addr += mr->page_size;
1870 		} while (page_addr < end_dma_addr);
1871 
1872 		mr->length += dma_len;
1873 		last_end_dma_addr = end_dma_addr;
1874 		last_page_off = end_dma_addr & ~page_mask;
1875 
1876 		sg_offset = 0;
1877 	}
1878 
1879 	if (sg_offset_p)
1880 		*sg_offset_p = 0;
1881 	return i;
1882 }
1883 EXPORT_SYMBOL(ib_sg_to_pages);
1884 
1885 struct ib_drain_cqe {
1886 	struct ib_cqe cqe;
1887 	struct completion done;
1888 };
1889 
1890 static void ib_drain_qp_done(struct ib_cq *cq, struct ib_wc *wc)
1891 {
1892 	struct ib_drain_cqe *cqe = container_of(wc->wr_cqe, struct ib_drain_cqe,
1893 						cqe);
1894 
1895 	complete(&cqe->done);
1896 }
1897 
1898 /*
1899  * Post a WR and block until its completion is reaped for the SQ.
1900  */
1901 static void __ib_drain_sq(struct ib_qp *qp)
1902 {
1903 	struct ib_qp_attr attr = { .qp_state = IB_QPS_ERR };
1904 	struct ib_drain_cqe sdrain;
1905 	struct ib_send_wr swr = {}, *bad_swr;
1906 	int ret;
1907 
1908 	if (qp->send_cq->poll_ctx == IB_POLL_DIRECT) {
1909 		WARN_ONCE(qp->send_cq->poll_ctx == IB_POLL_DIRECT,
1910 			  "IB_POLL_DIRECT poll_ctx not supported for drain\n");
1911 		return;
1912 	}
1913 
1914 	swr.wr_cqe = &sdrain.cqe;
1915 	sdrain.cqe.done = ib_drain_qp_done;
1916 	init_completion(&sdrain.done);
1917 
1918 	ret = ib_modify_qp(qp, &attr, IB_QP_STATE);
1919 	if (ret) {
1920 		WARN_ONCE(ret, "failed to drain send queue: %d\n", ret);
1921 		return;
1922 	}
1923 
1924 	ret = ib_post_send(qp, &swr, &bad_swr);
1925 	if (ret) {
1926 		WARN_ONCE(ret, "failed to drain send queue: %d\n", ret);
1927 		return;
1928 	}
1929 
1930 	wait_for_completion(&sdrain.done);
1931 }
1932 
1933 /*
1934  * Post a WR and block until its completion is reaped for the RQ.
1935  */
1936 static void __ib_drain_rq(struct ib_qp *qp)
1937 {
1938 	struct ib_qp_attr attr = { .qp_state = IB_QPS_ERR };
1939 	struct ib_drain_cqe rdrain;
1940 	struct ib_recv_wr rwr = {}, *bad_rwr;
1941 	int ret;
1942 
1943 	if (qp->recv_cq->poll_ctx == IB_POLL_DIRECT) {
1944 		WARN_ONCE(qp->recv_cq->poll_ctx == IB_POLL_DIRECT,
1945 			  "IB_POLL_DIRECT poll_ctx not supported for drain\n");
1946 		return;
1947 	}
1948 
1949 	rwr.wr_cqe = &rdrain.cqe;
1950 	rdrain.cqe.done = ib_drain_qp_done;
1951 	init_completion(&rdrain.done);
1952 
1953 	ret = ib_modify_qp(qp, &attr, IB_QP_STATE);
1954 	if (ret) {
1955 		WARN_ONCE(ret, "failed to drain recv queue: %d\n", ret);
1956 		return;
1957 	}
1958 
1959 	ret = ib_post_recv(qp, &rwr, &bad_rwr);
1960 	if (ret) {
1961 		WARN_ONCE(ret, "failed to drain recv queue: %d\n", ret);
1962 		return;
1963 	}
1964 
1965 	wait_for_completion(&rdrain.done);
1966 }
1967 
1968 /**
1969  * ib_drain_sq() - Block until all SQ CQEs have been consumed by the
1970  *		   application.
1971  * @qp:            queue pair to drain
1972  *
1973  * If the device has a provider-specific drain function, then
1974  * call that.  Otherwise call the generic drain function
1975  * __ib_drain_sq().
1976  *
1977  * The caller must:
1978  *
1979  * ensure there is room in the CQ and SQ for the drain work request and
1980  * completion.
1981  *
1982  * allocate the CQ using ib_alloc_cq() and the CQ poll context cannot be
1983  * IB_POLL_DIRECT.
1984  *
1985  * ensure that there are no other contexts that are posting WRs concurrently.
1986  * Otherwise the drain is not guaranteed.
1987  */
1988 void ib_drain_sq(struct ib_qp *qp)
1989 {
1990 	if (qp->device->drain_sq)
1991 		qp->device->drain_sq(qp);
1992 	else
1993 		__ib_drain_sq(qp);
1994 }
1995 EXPORT_SYMBOL(ib_drain_sq);
1996 
1997 /**
1998  * ib_drain_rq() - Block until all RQ CQEs have been consumed by the
1999  *		   application.
2000  * @qp:            queue pair to drain
2001  *
2002  * If the device has a provider-specific drain function, then
2003  * call that.  Otherwise call the generic drain function
2004  * __ib_drain_rq().
2005  *
2006  * The caller must:
2007  *
2008  * ensure there is room in the CQ and RQ for the drain work request and
2009  * completion.
2010  *
2011  * allocate the CQ using ib_alloc_cq() and the CQ poll context cannot be
2012  * IB_POLL_DIRECT.
2013  *
2014  * ensure that there are no other contexts that are posting WRs concurrently.
2015  * Otherwise the drain is not guaranteed.
2016  */
2017 void ib_drain_rq(struct ib_qp *qp)
2018 {
2019 	if (qp->device->drain_rq)
2020 		qp->device->drain_rq(qp);
2021 	else
2022 		__ib_drain_rq(qp);
2023 }
2024 EXPORT_SYMBOL(ib_drain_rq);
2025 
2026 /**
2027  * ib_drain_qp() - Block until all CQEs have been consumed by the
2028  *		   application on both the RQ and SQ.
2029  * @qp:            queue pair to drain
2030  *
2031  * The caller must:
2032  *
2033  * ensure there is room in the CQ(s), SQ, and RQ for drain work requests
2034  * and completions.
2035  *
2036  * allocate the CQs using ib_alloc_cq() and the CQ poll context cannot be
2037  * IB_POLL_DIRECT.
2038  *
2039  * ensure that there are no other contexts that are posting WRs concurrently.
2040  * Otherwise the drain is not guaranteed.
2041  */
2042 void ib_drain_qp(struct ib_qp *qp)
2043 {
2044 	ib_drain_sq(qp);
2045 	if (!qp->srq)
2046 		ib_drain_rq(qp);
2047 }
2048 EXPORT_SYMBOL(ib_drain_qp);
2049