1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause OR GPL-2.0
3  *
4  * Copyright (c) 2004 Mellanox Technologies Ltd.  All rights reserved.
5  * Copyright (c) 2004 Infinicon Corporation.  All rights reserved.
6  * Copyright (c) 2004 Intel Corporation.  All rights reserved.
7  * Copyright (c) 2004 Topspin Corporation.  All rights reserved.
8  * Copyright (c) 2004 Voltaire Corporation.  All rights reserved.
9  * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
10  * Copyright (c) 2005, 2006 Cisco Systems.  All rights reserved.
11  *
12  * This software is available to you under a choice of one of two
13  * licenses.  You may choose to be licensed under the terms of the GNU
14  * General Public License (GPL) Version 2, available from the file
15  * COPYING in the main directory of this source tree, or the
16  * OpenIB.org BSD license below:
17  *
18  *     Redistribution and use in source and binary forms, with or
19  *     without modification, are permitted provided that the following
20  *     conditions are met:
21  *
22  *      - Redistributions of source code must retain the above
23  *        copyright notice, this list of conditions and the following
24  *        disclaimer.
25  *
26  *      - Redistributions in binary form must reproduce the above
27  *        copyright notice, this list of conditions and the following
28  *        disclaimer in the documentation and/or other materials
29  *        provided with the distribution.
30  *
31  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
32  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
33  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
34  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
35  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
36  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
37  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
38  * SOFTWARE.
39  */
40 
41 #include <sys/cdefs.h>
42 __FBSDID("$FreeBSD$");
43 
44 #include <linux/errno.h>
45 #include <linux/err.h>
46 #include <linux/string.h>
47 #include <linux/slab.h>
48 #include <linux/in.h>
49 #include <linux/in6.h>
50 #include <linux/wait.h>
51 
52 #include <rdma/ib_verbs.h>
53 #include <rdma/ib_cache.h>
54 #include <rdma/ib_addr.h>
55 
56 #include <netinet/ip.h>
57 #include <netinet/ip6.h>
58 
59 #include <machine/in_cksum.h>
60 
61 #include "core_priv.h"
62 
63 static const char * const ib_events[] = {
64 	[IB_EVENT_CQ_ERR]		= "CQ error",
65 	[IB_EVENT_QP_FATAL]		= "QP fatal error",
66 	[IB_EVENT_QP_REQ_ERR]		= "QP request error",
67 	[IB_EVENT_QP_ACCESS_ERR]	= "QP access error",
68 	[IB_EVENT_COMM_EST]		= "communication established",
69 	[IB_EVENT_SQ_DRAINED]		= "send queue drained",
70 	[IB_EVENT_PATH_MIG]		= "path migration successful",
71 	[IB_EVENT_PATH_MIG_ERR]		= "path migration error",
72 	[IB_EVENT_DEVICE_FATAL]		= "device fatal error",
73 	[IB_EVENT_PORT_ACTIVE]		= "port active",
74 	[IB_EVENT_PORT_ERR]		= "port error",
75 	[IB_EVENT_LID_CHANGE]		= "LID change",
76 	[IB_EVENT_PKEY_CHANGE]		= "P_key change",
77 	[IB_EVENT_SM_CHANGE]		= "SM change",
78 	[IB_EVENT_SRQ_ERR]		= "SRQ error",
79 	[IB_EVENT_SRQ_LIMIT_REACHED]	= "SRQ limit reached",
80 	[IB_EVENT_QP_LAST_WQE_REACHED]	= "last WQE reached",
81 	[IB_EVENT_CLIENT_REREGISTER]	= "client reregister",
82 	[IB_EVENT_GID_CHANGE]		= "GID changed",
83 };
84 
85 const char *__attribute_const__ ib_event_msg(enum ib_event_type event)
86 {
87 	size_t index = event;
88 
89 	return (index < ARRAY_SIZE(ib_events) && ib_events[index]) ?
90 			ib_events[index] : "unrecognized event";
91 }
92 EXPORT_SYMBOL(ib_event_msg);
93 
94 static const char * const wc_statuses[] = {
95 	[IB_WC_SUCCESS]			= "success",
96 	[IB_WC_LOC_LEN_ERR]		= "local length error",
97 	[IB_WC_LOC_QP_OP_ERR]		= "local QP operation error",
98 	[IB_WC_LOC_EEC_OP_ERR]		= "local EE context operation error",
99 	[IB_WC_LOC_PROT_ERR]		= "local protection error",
100 	[IB_WC_WR_FLUSH_ERR]		= "WR flushed",
101 	[IB_WC_MW_BIND_ERR]		= "memory management operation error",
102 	[IB_WC_BAD_RESP_ERR]		= "bad response error",
103 	[IB_WC_LOC_ACCESS_ERR]		= "local access error",
104 	[IB_WC_REM_INV_REQ_ERR]		= "invalid request error",
105 	[IB_WC_REM_ACCESS_ERR]		= "remote access error",
106 	[IB_WC_REM_OP_ERR]		= "remote operation error",
107 	[IB_WC_RETRY_EXC_ERR]		= "transport retry counter exceeded",
108 	[IB_WC_RNR_RETRY_EXC_ERR]	= "RNR retry counter exceeded",
109 	[IB_WC_LOC_RDD_VIOL_ERR]	= "local RDD violation error",
110 	[IB_WC_REM_INV_RD_REQ_ERR]	= "remote invalid RD request",
111 	[IB_WC_REM_ABORT_ERR]		= "operation aborted",
112 	[IB_WC_INV_EECN_ERR]		= "invalid EE context number",
113 	[IB_WC_INV_EEC_STATE_ERR]	= "invalid EE context state",
114 	[IB_WC_FATAL_ERR]		= "fatal error",
115 	[IB_WC_RESP_TIMEOUT_ERR]	= "response timeout error",
116 	[IB_WC_GENERAL_ERR]		= "general error",
117 };
118 
119 const char *__attribute_const__ ib_wc_status_msg(enum ib_wc_status status)
120 {
121 	size_t index = status;
122 
123 	return (index < ARRAY_SIZE(wc_statuses) && wc_statuses[index]) ?
124 			wc_statuses[index] : "unrecognized status";
125 }
126 EXPORT_SYMBOL(ib_wc_status_msg);
127 
128 __attribute_const__ int ib_rate_to_mult(enum ib_rate rate)
129 {
130 	switch (rate) {
131 	case IB_RATE_2_5_GBPS: return   1;
132 	case IB_RATE_5_GBPS:   return   2;
133 	case IB_RATE_10_GBPS:  return   4;
134 	case IB_RATE_20_GBPS:  return   8;
135 	case IB_RATE_30_GBPS:  return  12;
136 	case IB_RATE_40_GBPS:  return  16;
137 	case IB_RATE_60_GBPS:  return  24;
138 	case IB_RATE_80_GBPS:  return  32;
139 	case IB_RATE_120_GBPS: return  48;
140 	case IB_RATE_14_GBPS:  return   6;
141 	case IB_RATE_56_GBPS:  return  22;
142 	case IB_RATE_112_GBPS: return  45;
143 	case IB_RATE_168_GBPS: return  67;
144 	case IB_RATE_25_GBPS:  return  10;
145 	case IB_RATE_100_GBPS: return  40;
146 	case IB_RATE_200_GBPS: return  80;
147 	case IB_RATE_300_GBPS: return 120;
148 	case IB_RATE_28_GBPS:  return  11;
149 	case IB_RATE_50_GBPS:  return  20;
150 	case IB_RATE_400_GBPS: return 160;
151 	case IB_RATE_600_GBPS: return 240;
152 	default:	       return  -1;
153 	}
154 }
155 EXPORT_SYMBOL(ib_rate_to_mult);
156 
157 __attribute_const__ enum ib_rate mult_to_ib_rate(int mult)
158 {
159 	switch (mult) {
160 	case 1:   return IB_RATE_2_5_GBPS;
161 	case 2:   return IB_RATE_5_GBPS;
162 	case 4:   return IB_RATE_10_GBPS;
163 	case 8:   return IB_RATE_20_GBPS;
164 	case 12:  return IB_RATE_30_GBPS;
165 	case 16:  return IB_RATE_40_GBPS;
166 	case 24:  return IB_RATE_60_GBPS;
167 	case 32:  return IB_RATE_80_GBPS;
168 	case 48:  return IB_RATE_120_GBPS;
169 	case 6:   return IB_RATE_14_GBPS;
170 	case 22:  return IB_RATE_56_GBPS;
171 	case 45:  return IB_RATE_112_GBPS;
172 	case 67:  return IB_RATE_168_GBPS;
173 	case 10:  return IB_RATE_25_GBPS;
174 	case 40:  return IB_RATE_100_GBPS;
175 	case 80:  return IB_RATE_200_GBPS;
176 	case 120: return IB_RATE_300_GBPS;
177 	case 11:  return IB_RATE_28_GBPS;
178 	case 20:  return IB_RATE_50_GBPS;
179 	case 160: return IB_RATE_400_GBPS;
180 	case 240: return IB_RATE_600_GBPS;
181 	default:  return IB_RATE_PORT_CURRENT;
182 	}
183 }
184 EXPORT_SYMBOL(mult_to_ib_rate);
185 
186 __attribute_const__ int ib_rate_to_mbps(enum ib_rate rate)
187 {
188 	switch (rate) {
189 	case IB_RATE_2_5_GBPS: return 2500;
190 	case IB_RATE_5_GBPS:   return 5000;
191 	case IB_RATE_10_GBPS:  return 10000;
192 	case IB_RATE_20_GBPS:  return 20000;
193 	case IB_RATE_30_GBPS:  return 30000;
194 	case IB_RATE_40_GBPS:  return 40000;
195 	case IB_RATE_60_GBPS:  return 60000;
196 	case IB_RATE_80_GBPS:  return 80000;
197 	case IB_RATE_120_GBPS: return 120000;
198 	case IB_RATE_14_GBPS:  return 14062;
199 	case IB_RATE_56_GBPS:  return 56250;
200 	case IB_RATE_112_GBPS: return 112500;
201 	case IB_RATE_168_GBPS: return 168750;
202 	case IB_RATE_25_GBPS:  return 25781;
203 	case IB_RATE_100_GBPS: return 103125;
204 	case IB_RATE_200_GBPS: return 206250;
205 	case IB_RATE_300_GBPS: return 309375;
206 	case IB_RATE_28_GBPS:  return 28125;
207 	case IB_RATE_50_GBPS:  return 53125;
208 	case IB_RATE_400_GBPS: return 425000;
209 	case IB_RATE_600_GBPS: return 637500;
210 	default:	       return -1;
211 	}
212 }
213 EXPORT_SYMBOL(ib_rate_to_mbps);
214 
215 __attribute_const__ enum rdma_transport_type
216 rdma_node_get_transport(enum rdma_node_type node_type)
217 {
218 	switch (node_type) {
219 	case RDMA_NODE_IB_CA:
220 	case RDMA_NODE_IB_SWITCH:
221 	case RDMA_NODE_IB_ROUTER:
222 		return RDMA_TRANSPORT_IB;
223 	case RDMA_NODE_RNIC:
224 		return RDMA_TRANSPORT_IWARP;
225 	case RDMA_NODE_USNIC:
226 		return RDMA_TRANSPORT_USNIC;
227 	case RDMA_NODE_USNIC_UDP:
228 		return RDMA_TRANSPORT_USNIC_UDP;
229 	default:
230 		BUG();
231 		return 0;
232 	}
233 }
234 EXPORT_SYMBOL(rdma_node_get_transport);
235 
236 enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device, u8 port_num)
237 {
238 	if (device->get_link_layer)
239 		return device->get_link_layer(device, port_num);
240 
241 	switch (rdma_node_get_transport(device->node_type)) {
242 	case RDMA_TRANSPORT_IB:
243 		return IB_LINK_LAYER_INFINIBAND;
244 	case RDMA_TRANSPORT_IWARP:
245 	case RDMA_TRANSPORT_USNIC:
246 	case RDMA_TRANSPORT_USNIC_UDP:
247 		return IB_LINK_LAYER_ETHERNET;
248 	default:
249 		return IB_LINK_LAYER_UNSPECIFIED;
250 	}
251 }
252 EXPORT_SYMBOL(rdma_port_get_link_layer);
253 
254 /* Protection domains */
255 
256 /**
257  * ib_alloc_pd - Allocates an unused protection domain.
258  * @device: The device on which to allocate the protection domain.
259  *
260  * A protection domain object provides an association between QPs, shared
261  * receive queues, address handles, memory regions, and memory windows.
262  *
263  * Every PD has a local_dma_lkey which can be used as the lkey value for local
264  * memory operations.
265  */
266 struct ib_pd *__ib_alloc_pd(struct ib_device *device, unsigned int flags,
267 		const char *caller)
268 {
269 	struct ib_pd *pd;
270 	int mr_access_flags = 0;
271 	int ret;
272 
273 	pd = rdma_zalloc_drv_obj(device, ib_pd);
274 	if (!pd)
275 		return ERR_PTR(-ENOMEM);
276 
277 	pd->device = device;
278 	pd->uobject = NULL;
279 	pd->__internal_mr = NULL;
280 	atomic_set(&pd->usecnt, 0);
281 	pd->flags = flags;
282 
283 	ret = device->alloc_pd(pd, NULL);
284 	if (ret) {
285 		kfree(pd);
286 		return ERR_PTR(ret);
287 	}
288 
289 	if (device->attrs.device_cap_flags & IB_DEVICE_LOCAL_DMA_LKEY)
290 		pd->local_dma_lkey = device->local_dma_lkey;
291 	else
292 		mr_access_flags |= IB_ACCESS_LOCAL_WRITE;
293 
294 	if (flags & IB_PD_UNSAFE_GLOBAL_RKEY) {
295 		pr_warn("%s: enabling unsafe global rkey\n", caller);
296 		mr_access_flags |= IB_ACCESS_REMOTE_READ | IB_ACCESS_REMOTE_WRITE;
297 	}
298 
299 	if (mr_access_flags) {
300 		struct ib_mr *mr;
301 
302 		mr = pd->device->get_dma_mr(pd, mr_access_flags);
303 		if (IS_ERR(mr)) {
304 			ib_dealloc_pd(pd);
305 			return ERR_CAST(mr);
306 		}
307 
308 		mr->device	= pd->device;
309 		mr->pd		= pd;
310 		mr->type        = IB_MR_TYPE_DMA;
311 		mr->uobject	= NULL;
312 		mr->need_inval	= false;
313 
314 		pd->__internal_mr = mr;
315 
316 		if (!(device->attrs.device_cap_flags & IB_DEVICE_LOCAL_DMA_LKEY))
317 			pd->local_dma_lkey = pd->__internal_mr->lkey;
318 
319 		if (flags & IB_PD_UNSAFE_GLOBAL_RKEY)
320 			pd->unsafe_global_rkey = pd->__internal_mr->rkey;
321 	}
322 
323 	return pd;
324 }
325 EXPORT_SYMBOL(__ib_alloc_pd);
326 
327 /**
328  * ib_dealloc_pd_user - Deallocates a protection domain.
329  * @pd: The protection domain to deallocate.
330  * @udata: Valid user data or NULL for kernel object
331  *
332  * It is an error to call this function while any resources in the pd still
333  * exist.  The caller is responsible to synchronously destroy them and
334  * guarantee no new allocations will happen.
335  */
336 void ib_dealloc_pd_user(struct ib_pd *pd, struct ib_udata *udata)
337 {
338 	int ret;
339 
340 	if (pd->__internal_mr) {
341 		ret = pd->device->dereg_mr(pd->__internal_mr, NULL);
342 		WARN_ON(ret);
343 		pd->__internal_mr = NULL;
344 	}
345 
346 	/* uverbs manipulates usecnt with proper locking, while the kabi
347 	   requires the caller to guarantee we can't race here. */
348 	WARN_ON(atomic_read(&pd->usecnt));
349 
350 	pd->device->dealloc_pd(pd, udata);
351 	kfree(pd);
352 }
353 EXPORT_SYMBOL(ib_dealloc_pd_user);
354 
355 /* Address handles */
356 
357 static struct ib_ah *_ib_create_ah(struct ib_pd *pd,
358 				     struct ib_ah_attr *ah_attr,
359 				     u32 flags,
360 				     struct ib_udata *udata)
361 {
362 	struct ib_device *device = pd->device;
363 	struct ib_ah *ah;
364 	int ret;
365 
366 	might_sleep_if(flags & RDMA_CREATE_AH_SLEEPABLE);
367 
368 	if (!device->create_ah)
369 		return ERR_PTR(-EOPNOTSUPP);
370 
371 	ah = rdma_zalloc_drv_obj_gfp(
372 		device, ib_ah,
373 		(flags & RDMA_CREATE_AH_SLEEPABLE) ? GFP_KERNEL : GFP_ATOMIC);
374 	if (!ah)
375 		return ERR_PTR(-ENOMEM);
376 
377 	ah->device = device;
378 	ah->pd = pd;
379 
380 	ret = device->create_ah(ah, ah_attr, flags, udata);
381 	if (ret) {
382 		kfree(ah);
383 		return ERR_PTR(ret);
384 	}
385 
386 	atomic_inc(&pd->usecnt);
387 	return ah;
388 }
389 
390 /**
391  * rdma_create_ah - Creates an address handle for the
392  * given address vector.
393  * @pd: The protection domain associated with the address handle.
394  * @ah_attr: The attributes of the address vector.
395  * @flags: Create address handle flags (see enum rdma_create_ah_flags).
396  *
397  * It returns 0 on success and returns appropriate error code on error.
398  * The address handle is used to reference a local or global destination
399  * in all UD QP post sends.
400  */
401 struct ib_ah *ib_create_ah(struct ib_pd *pd, struct ib_ah_attr *ah_attr,
402 			   u32 flags)
403 {
404 	struct ib_ah *ah;
405 
406 	ah = _ib_create_ah(pd, ah_attr, flags, NULL);
407 
408 	return ah;
409 }
410 EXPORT_SYMBOL(ib_create_ah);
411 
412 /**
413  * ib_create_user_ah - Creates an address handle for the
414  * given address vector.
415  * It resolves destination mac address for ah attribute of RoCE type.
416  * @pd: The protection domain associated with the address handle.
417  * @ah_attr: The attributes of the address vector.
418  * @udata: pointer to user's input output buffer information need by
419  *         provider driver.
420  *
421  * It returns a valid address handle pointer on success and
422  * returns appropriate error code on error.
423  * The address handle is used to reference a local or global destination
424  * in all UD QP post sends.
425  */
426 struct ib_ah *ib_create_user_ah(struct ib_pd *pd,
427 				struct ib_ah_attr *ah_attr,
428 				struct ib_udata *udata)
429 {
430 	int err;
431 
432 	if (rdma_protocol_roce(pd->device, ah_attr->port_num)) {
433 		err = ib_resolve_eth_dmac(pd->device, ah_attr);
434 		if (err)
435 			return ERR_PTR(err);
436 	}
437 
438 	return _ib_create_ah(pd, ah_attr, RDMA_CREATE_AH_SLEEPABLE, udata);
439 }
440 EXPORT_SYMBOL(ib_create_user_ah);
441 
442 static int ib_get_header_version(const union rdma_network_hdr *hdr)
443 {
444 	const struct ip *ip4h = (const struct ip *)&hdr->roce4grh;
445 	struct ip ip4h_checked;
446 	const struct ip6_hdr *ip6h = (const struct ip6_hdr *)&hdr->ibgrh;
447 
448 	/* If it's IPv6, the version must be 6, otherwise, the first
449 	 * 20 bytes (before the IPv4 header) are garbled.
450 	 */
451 	if ((ip6h->ip6_vfc & IPV6_VERSION_MASK) != IPV6_VERSION)
452 		return (ip4h->ip_v == 4) ? 4 : 0;
453 	/* version may be 6 or 4 because the first 20 bytes could be garbled */
454 
455 	/* RoCE v2 requires no options, thus header length
456 	 * must be 5 words
457 	 */
458 	if (ip4h->ip_hl != 5)
459 		return 6;
460 
461 	/* Verify checksum.
462 	 * We can't write on scattered buffers so we need to copy to
463 	 * temp buffer.
464 	 */
465 	memcpy(&ip4h_checked, ip4h, sizeof(ip4h_checked));
466 	ip4h_checked.ip_sum = 0;
467 #if defined(INET) || defined(INET6)
468 	ip4h_checked.ip_sum = in_cksum_hdr(&ip4h_checked);
469 #endif
470 	/* if IPv4 header checksum is OK, believe it */
471 	if (ip4h->ip_sum == ip4h_checked.ip_sum)
472 		return 4;
473 	return 6;
474 }
475 
476 static enum rdma_network_type ib_get_net_type_by_grh(struct ib_device *device,
477 						     u8 port_num,
478 						     const struct ib_grh *grh)
479 {
480 	int grh_version;
481 
482 	if (rdma_protocol_ib(device, port_num))
483 		return RDMA_NETWORK_IB;
484 
485 	grh_version = ib_get_header_version((const union rdma_network_hdr *)grh);
486 
487 	if (grh_version == 4)
488 		return RDMA_NETWORK_IPV4;
489 
490 	if (grh->next_hdr == IPPROTO_UDP)
491 		return RDMA_NETWORK_IPV6;
492 
493 	return RDMA_NETWORK_ROCE_V1;
494 }
495 
496 struct find_gid_index_context {
497 	u16 vlan_id;
498 	enum ib_gid_type gid_type;
499 };
500 
501 
502 /*
503  * This function will return true only if a inspected GID index
504  * matches the request based on the GID type and VLAN configuration
505  */
506 static bool find_gid_index(const union ib_gid *gid,
507 			   const struct ib_gid_attr *gid_attr,
508 			   void *context)
509 {
510 	u16 vlan_diff;
511 	struct find_gid_index_context *ctx =
512 		(struct find_gid_index_context *)context;
513 
514 	if (ctx->gid_type != gid_attr->gid_type)
515 		return false;
516 
517 	/*
518 	 * The following will verify:
519 	 * 1. VLAN ID matching for VLAN tagged requests.
520 	 * 2. prio-tagged/untagged to prio-tagged/untagged matching.
521 	 *
522 	 * This XOR is valid, since 0x0 < vlan_id < 0x0FFF.
523 	 */
524 	vlan_diff = rdma_vlan_dev_vlan_id(gid_attr->ndev) ^ ctx->vlan_id;
525 
526 	return (vlan_diff == 0x0000 || vlan_diff == 0xFFFF);
527 }
528 
529 static int get_sgid_index_from_eth(struct ib_device *device, u8 port_num,
530 				   u16 vlan_id, const union ib_gid *sgid,
531 				   enum ib_gid_type gid_type,
532 				   u16 *gid_index)
533 {
534 	struct find_gid_index_context context = {.vlan_id = vlan_id,
535 						 .gid_type = gid_type};
536 
537 	return ib_find_gid_by_filter(device, sgid, port_num, find_gid_index,
538 				     &context, gid_index);
539 }
540 
541 static int get_gids_from_rdma_hdr(const union rdma_network_hdr *hdr,
542 				  enum rdma_network_type net_type,
543 				  union ib_gid *sgid, union ib_gid *dgid)
544 {
545 	struct sockaddr_in  src_in;
546 	struct sockaddr_in  dst_in;
547 	__be32 src_saddr, dst_saddr;
548 
549 	if (!sgid || !dgid)
550 		return -EINVAL;
551 
552 	if (net_type == RDMA_NETWORK_IPV4) {
553 		memcpy(&src_in.sin_addr.s_addr,
554 		       &hdr->roce4grh.ip_src, 4);
555 		memcpy(&dst_in.sin_addr.s_addr,
556 		       &hdr->roce4grh.ip_dst, 4);
557 		src_saddr = src_in.sin_addr.s_addr;
558 		dst_saddr = dst_in.sin_addr.s_addr;
559 		ipv6_addr_set_v4mapped(src_saddr,
560 				       (struct in6_addr *)sgid);
561 		ipv6_addr_set_v4mapped(dst_saddr,
562 				       (struct in6_addr *)dgid);
563 		return 0;
564 	} else if (net_type == RDMA_NETWORK_IPV6 ||
565 		   net_type == RDMA_NETWORK_IB) {
566 		*dgid = hdr->ibgrh.dgid;
567 		*sgid = hdr->ibgrh.sgid;
568 		return 0;
569 	} else {
570 		return -EINVAL;
571 	}
572 }
573 
574 int ib_init_ah_from_wc(struct ib_device *device, u8 port_num,
575 		       const struct ib_wc *wc, const struct ib_grh *grh,
576 		       struct ib_ah_attr *ah_attr)
577 {
578 	u32 flow_class;
579 	u16 gid_index = 0;
580 	int ret;
581 	enum rdma_network_type net_type = RDMA_NETWORK_IB;
582 	enum ib_gid_type gid_type = IB_GID_TYPE_IB;
583 	int hoplimit = 0xff;
584 	union ib_gid dgid;
585 	union ib_gid sgid;
586 
587 	memset(ah_attr, 0, sizeof *ah_attr);
588 	if (rdma_cap_eth_ah(device, port_num)) {
589 		if (wc->wc_flags & IB_WC_WITH_NETWORK_HDR_TYPE)
590 			net_type = wc->network_hdr_type;
591 		else
592 			net_type = ib_get_net_type_by_grh(device, port_num, grh);
593 		gid_type = ib_network_to_gid_type(net_type);
594 	}
595 	ret = get_gids_from_rdma_hdr((const union rdma_network_hdr *)grh, net_type,
596 				     &sgid, &dgid);
597 	if (ret)
598 		return ret;
599 
600 	if (rdma_protocol_roce(device, port_num)) {
601 		struct ib_gid_attr dgid_attr;
602 		const u16 vlan_id = (wc->wc_flags & IB_WC_WITH_VLAN) ?
603 				wc->vlan_id : 0xffff;
604 
605 		if (!(wc->wc_flags & IB_WC_GRH))
606 			return -EPROTOTYPE;
607 
608 		ret = get_sgid_index_from_eth(device, port_num, vlan_id,
609 					      &dgid, gid_type, &gid_index);
610 		if (ret)
611 			return ret;
612 
613 		ret = ib_get_cached_gid(device, port_num, gid_index, &dgid, &dgid_attr);
614 		if (ret)
615 			return ret;
616 
617 		if (dgid_attr.ndev == NULL)
618 			return -ENODEV;
619 
620 		ret = rdma_addr_find_l2_eth_by_grh(&dgid, &sgid, ah_attr->dmac,
621 		    dgid_attr.ndev, &hoplimit);
622 
623 		dev_put(dgid_attr.ndev);
624 		if (ret)
625 			return ret;
626 	}
627 
628 	ah_attr->dlid = wc->slid;
629 	ah_attr->sl = wc->sl;
630 	ah_attr->src_path_bits = wc->dlid_path_bits;
631 	ah_attr->port_num = port_num;
632 
633 	if (wc->wc_flags & IB_WC_GRH) {
634 		ah_attr->ah_flags = IB_AH_GRH;
635 		ah_attr->grh.dgid = sgid;
636 
637 		if (!rdma_cap_eth_ah(device, port_num)) {
638 			if (dgid.global.interface_id != cpu_to_be64(IB_SA_WELL_KNOWN_GUID)) {
639 				ret = ib_find_cached_gid_by_port(device, &dgid,
640 								 IB_GID_TYPE_IB,
641 								 port_num, NULL,
642 								 &gid_index);
643 				if (ret)
644 					return ret;
645 			}
646 		}
647 
648 		ah_attr->grh.sgid_index = (u8) gid_index;
649 		flow_class = be32_to_cpu(grh->version_tclass_flow);
650 		ah_attr->grh.flow_label = flow_class & 0xFFFFF;
651 		ah_attr->grh.hop_limit = hoplimit;
652 		ah_attr->grh.traffic_class = (flow_class >> 20) & 0xFF;
653 	}
654 	return 0;
655 }
656 EXPORT_SYMBOL(ib_init_ah_from_wc);
657 
658 struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc,
659 				   const struct ib_grh *grh, u8 port_num)
660 {
661 	struct ib_ah_attr ah_attr;
662 	int ret;
663 
664 	ret = ib_init_ah_from_wc(pd->device, port_num, wc, grh, &ah_attr);
665 	if (ret)
666 		return ERR_PTR(ret);
667 
668 	return ib_create_ah(pd, &ah_attr, RDMA_CREATE_AH_SLEEPABLE);
669 }
670 EXPORT_SYMBOL(ib_create_ah_from_wc);
671 
672 int ib_modify_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr)
673 {
674 	return ah->device->modify_ah ?
675 		ah->device->modify_ah(ah, ah_attr) :
676 		-ENOSYS;
677 }
678 EXPORT_SYMBOL(ib_modify_ah);
679 
680 int ib_query_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr)
681 {
682 	return ah->device->query_ah ?
683 		ah->device->query_ah(ah, ah_attr) :
684 		-ENOSYS;
685 }
686 EXPORT_SYMBOL(ib_query_ah);
687 
688 int ib_destroy_ah_user(struct ib_ah *ah, u32 flags, struct ib_udata *udata)
689 {
690 	struct ib_pd *pd;
691 
692 	might_sleep_if(flags & RDMA_DESTROY_AH_SLEEPABLE);
693 
694 	pd = ah->pd;
695 	ah->device->destroy_ah(ah, flags);
696 	atomic_dec(&pd->usecnt);
697 
698 	kfree(ah);
699 	return 0;
700 }
701 EXPORT_SYMBOL(ib_destroy_ah_user);
702 
703 /* Shared receive queues */
704 
705 struct ib_srq *ib_create_srq(struct ib_pd *pd,
706 			     struct ib_srq_init_attr *srq_init_attr)
707 {
708 	struct ib_srq *srq;
709 	int ret;
710 
711 	if (!pd->device->create_srq)
712 		return ERR_PTR(-EOPNOTSUPP);
713 
714 	srq = rdma_zalloc_drv_obj(pd->device, ib_srq);
715 	if (!srq)
716 		return ERR_PTR(-ENOMEM);
717 
718 	srq->device = pd->device;
719 	srq->pd = pd;
720 	srq->event_handler = srq_init_attr->event_handler;
721 	srq->srq_context = srq_init_attr->srq_context;
722 	srq->srq_type = srq_init_attr->srq_type;
723 
724 	if (ib_srq_has_cq(srq->srq_type)) {
725 		srq->ext.cq = srq_init_attr->ext.cq;
726 		atomic_inc(&srq->ext.cq->usecnt);
727 	}
728 	if (srq->srq_type == IB_SRQT_XRC) {
729 		srq->ext.xrc.xrcd = srq_init_attr->ext.xrc.xrcd;
730 		atomic_inc(&srq->ext.xrc.xrcd->usecnt);
731 	}
732 	atomic_inc(&pd->usecnt);
733 
734 	ret = pd->device->create_srq(srq, srq_init_attr, NULL);
735 	if (ret) {
736 		atomic_dec(&srq->pd->usecnt);
737 		if (srq->srq_type == IB_SRQT_XRC)
738 			atomic_dec(&srq->ext.xrc.xrcd->usecnt);
739 		if (ib_srq_has_cq(srq->srq_type))
740 			atomic_dec(&srq->ext.cq->usecnt);
741 		kfree(srq);
742 		return ERR_PTR(ret);
743 	}
744 
745 	return srq;
746 }
747 EXPORT_SYMBOL(ib_create_srq);
748 
749 int ib_modify_srq(struct ib_srq *srq,
750 		  struct ib_srq_attr *srq_attr,
751 		  enum ib_srq_attr_mask srq_attr_mask)
752 {
753 	return srq->device->modify_srq ?
754 		srq->device->modify_srq(srq, srq_attr, srq_attr_mask, NULL) :
755 		-ENOSYS;
756 }
757 EXPORT_SYMBOL(ib_modify_srq);
758 
759 int ib_query_srq(struct ib_srq *srq,
760 		 struct ib_srq_attr *srq_attr)
761 {
762 	return srq->device->query_srq ?
763 		srq->device->query_srq(srq, srq_attr) : -ENOSYS;
764 }
765 EXPORT_SYMBOL(ib_query_srq);
766 
767 int ib_destroy_srq_user(struct ib_srq *srq, struct ib_udata *udata)
768 {
769 	if (atomic_read(&srq->usecnt))
770 		return -EBUSY;
771 
772 	srq->device->destroy_srq(srq, udata);
773 
774 	atomic_dec(&srq->pd->usecnt);
775 	if (srq->srq_type == IB_SRQT_XRC)
776 		atomic_dec(&srq->ext.xrc.xrcd->usecnt);
777 	if (ib_srq_has_cq(srq->srq_type))
778 		atomic_dec(&srq->ext.cq->usecnt);
779 	kfree(srq);
780 
781 	return 0;
782 }
783 EXPORT_SYMBOL(ib_destroy_srq_user);
784 
785 /* Queue pairs */
786 
787 static void __ib_shared_qp_event_handler(struct ib_event *event, void *context)
788 {
789 	struct ib_qp *qp = context;
790 	unsigned long flags;
791 
792 	spin_lock_irqsave(&qp->device->event_handler_lock, flags);
793 	list_for_each_entry(event->element.qp, &qp->open_list, open_list)
794 		if (event->element.qp->event_handler)
795 			event->element.qp->event_handler(event, event->element.qp->qp_context);
796 	spin_unlock_irqrestore(&qp->device->event_handler_lock, flags);
797 }
798 
799 static void __ib_insert_xrcd_qp(struct ib_xrcd *xrcd, struct ib_qp *qp)
800 {
801 	mutex_lock(&xrcd->tgt_qp_mutex);
802 	list_add(&qp->xrcd_list, &xrcd->tgt_qp_list);
803 	mutex_unlock(&xrcd->tgt_qp_mutex);
804 }
805 
806 static struct ib_qp *__ib_open_qp(struct ib_qp *real_qp,
807 				  void (*event_handler)(struct ib_event *, void *),
808 				  void *qp_context)
809 {
810 	struct ib_qp *qp;
811 	unsigned long flags;
812 
813 	qp = kzalloc(sizeof *qp, GFP_KERNEL);
814 	if (!qp)
815 		return ERR_PTR(-ENOMEM);
816 
817 	qp->real_qp = real_qp;
818 	atomic_inc(&real_qp->usecnt);
819 	qp->device = real_qp->device;
820 	qp->event_handler = event_handler;
821 	qp->qp_context = qp_context;
822 	qp->qp_num = real_qp->qp_num;
823 	qp->qp_type = real_qp->qp_type;
824 
825 	spin_lock_irqsave(&real_qp->device->event_handler_lock, flags);
826 	list_add(&qp->open_list, &real_qp->open_list);
827 	spin_unlock_irqrestore(&real_qp->device->event_handler_lock, flags);
828 
829 	return qp;
830 }
831 
832 struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd,
833 			 struct ib_qp_open_attr *qp_open_attr)
834 {
835 	struct ib_qp *qp, *real_qp;
836 
837 	if (qp_open_attr->qp_type != IB_QPT_XRC_TGT)
838 		return ERR_PTR(-EINVAL);
839 
840 	qp = ERR_PTR(-EINVAL);
841 	mutex_lock(&xrcd->tgt_qp_mutex);
842 	list_for_each_entry(real_qp, &xrcd->tgt_qp_list, xrcd_list) {
843 		if (real_qp->qp_num == qp_open_attr->qp_num) {
844 			qp = __ib_open_qp(real_qp, qp_open_attr->event_handler,
845 					  qp_open_attr->qp_context);
846 			break;
847 		}
848 	}
849 	mutex_unlock(&xrcd->tgt_qp_mutex);
850 	return qp;
851 }
852 EXPORT_SYMBOL(ib_open_qp);
853 
854 static struct ib_qp *ib_create_xrc_qp(struct ib_qp *qp,
855 		struct ib_qp_init_attr *qp_init_attr)
856 {
857 	struct ib_qp *real_qp = qp;
858 
859 	qp->event_handler = __ib_shared_qp_event_handler;
860 	qp->qp_context = qp;
861 	qp->pd = NULL;
862 	qp->send_cq = qp->recv_cq = NULL;
863 	qp->srq = NULL;
864 	qp->xrcd = qp_init_attr->xrcd;
865 	atomic_inc(&qp_init_attr->xrcd->usecnt);
866 	INIT_LIST_HEAD(&qp->open_list);
867 
868 	qp = __ib_open_qp(real_qp, qp_init_attr->event_handler,
869 			  qp_init_attr->qp_context);
870 	if (!IS_ERR(qp))
871 		__ib_insert_xrcd_qp(qp_init_attr->xrcd, real_qp);
872 	else
873 		real_qp->device->destroy_qp(real_qp, NULL);
874 	return qp;
875 }
876 
877 struct ib_qp *ib_create_qp(struct ib_pd *pd,
878 			   struct ib_qp_init_attr *qp_init_attr)
879 {
880 	struct ib_device *device = pd ? pd->device : qp_init_attr->xrcd->device;
881 	struct ib_qp *qp;
882 
883 	if (qp_init_attr->rwq_ind_tbl &&
884 	    (qp_init_attr->recv_cq ||
885 	    qp_init_attr->srq || qp_init_attr->cap.max_recv_wr ||
886 	    qp_init_attr->cap.max_recv_sge))
887 		return ERR_PTR(-EINVAL);
888 
889 	qp = _ib_create_qp(device, pd, qp_init_attr, NULL, NULL);
890 	if (IS_ERR(qp))
891 		return qp;
892 
893 	qp->device     = device;
894 	qp->real_qp    = qp;
895 	qp->uobject    = NULL;
896 	qp->qp_type    = qp_init_attr->qp_type;
897 	qp->rwq_ind_tbl = qp_init_attr->rwq_ind_tbl;
898 
899 	atomic_set(&qp->usecnt, 0);
900 	spin_lock_init(&qp->mr_lock);
901 
902 	if (qp_init_attr->qp_type == IB_QPT_XRC_TGT)
903 		return ib_create_xrc_qp(qp, qp_init_attr);
904 
905 	qp->event_handler = qp_init_attr->event_handler;
906 	qp->qp_context = qp_init_attr->qp_context;
907 	if (qp_init_attr->qp_type == IB_QPT_XRC_INI) {
908 		qp->recv_cq = NULL;
909 		qp->srq = NULL;
910 	} else {
911 		qp->recv_cq = qp_init_attr->recv_cq;
912 		if (qp_init_attr->recv_cq)
913 			atomic_inc(&qp_init_attr->recv_cq->usecnt);
914 		qp->srq = qp_init_attr->srq;
915 		if (qp->srq)
916 			atomic_inc(&qp_init_attr->srq->usecnt);
917 	}
918 
919 	qp->pd	    = pd;
920 	qp->send_cq = qp_init_attr->send_cq;
921 	qp->xrcd    = NULL;
922 
923 	atomic_inc(&pd->usecnt);
924 	if (qp_init_attr->send_cq)
925 		atomic_inc(&qp_init_attr->send_cq->usecnt);
926 	if (qp_init_attr->rwq_ind_tbl)
927 		atomic_inc(&qp->rwq_ind_tbl->usecnt);
928 
929 	/*
930 	 * Note: all hw drivers guarantee that max_send_sge is lower than
931 	 * the device RDMA WRITE SGE limit but not all hw drivers ensure that
932 	 * max_send_sge <= max_sge_rd.
933 	 */
934 	qp->max_write_sge = qp_init_attr->cap.max_send_sge;
935 	qp->max_read_sge = min_t(u32, qp_init_attr->cap.max_send_sge,
936 				 device->attrs.max_sge_rd);
937 
938 	return qp;
939 }
940 EXPORT_SYMBOL(ib_create_qp);
941 
942 static const struct {
943 	int			valid;
944 	enum ib_qp_attr_mask	req_param[IB_QPT_MAX];
945 	enum ib_qp_attr_mask	opt_param[IB_QPT_MAX];
946 } qp_state_table[IB_QPS_ERR + 1][IB_QPS_ERR + 1] = {
947 	[IB_QPS_RESET] = {
948 		[IB_QPS_RESET] = { .valid = 1 },
949 		[IB_QPS_INIT]  = {
950 			.valid = 1,
951 			.req_param = {
952 				[IB_QPT_UD]  = (IB_QP_PKEY_INDEX		|
953 						IB_QP_PORT			|
954 						IB_QP_QKEY),
955 				[IB_QPT_RAW_PACKET] = IB_QP_PORT,
956 				[IB_QPT_UC]  = (IB_QP_PKEY_INDEX		|
957 						IB_QP_PORT			|
958 						IB_QP_ACCESS_FLAGS),
959 				[IB_QPT_RC]  = (IB_QP_PKEY_INDEX		|
960 						IB_QP_PORT			|
961 						IB_QP_ACCESS_FLAGS),
962 				[IB_QPT_XRC_INI] = (IB_QP_PKEY_INDEX		|
963 						IB_QP_PORT			|
964 						IB_QP_ACCESS_FLAGS),
965 				[IB_QPT_XRC_TGT] = (IB_QP_PKEY_INDEX		|
966 						IB_QP_PORT			|
967 						IB_QP_ACCESS_FLAGS),
968 				[IB_QPT_SMI] = (IB_QP_PKEY_INDEX		|
969 						IB_QP_QKEY),
970 				[IB_QPT_GSI] = (IB_QP_PKEY_INDEX		|
971 						IB_QP_QKEY),
972 			}
973 		},
974 	},
975 	[IB_QPS_INIT]  = {
976 		[IB_QPS_RESET] = { .valid = 1 },
977 		[IB_QPS_ERR] =   { .valid = 1 },
978 		[IB_QPS_INIT]  = {
979 			.valid = 1,
980 			.opt_param = {
981 				[IB_QPT_UD]  = (IB_QP_PKEY_INDEX		|
982 						IB_QP_PORT			|
983 						IB_QP_QKEY),
984 				[IB_QPT_UC]  = (IB_QP_PKEY_INDEX		|
985 						IB_QP_PORT			|
986 						IB_QP_ACCESS_FLAGS),
987 				[IB_QPT_RC]  = (IB_QP_PKEY_INDEX		|
988 						IB_QP_PORT			|
989 						IB_QP_ACCESS_FLAGS),
990 				[IB_QPT_XRC_INI] = (IB_QP_PKEY_INDEX		|
991 						IB_QP_PORT			|
992 						IB_QP_ACCESS_FLAGS),
993 				[IB_QPT_XRC_TGT] = (IB_QP_PKEY_INDEX		|
994 						IB_QP_PORT			|
995 						IB_QP_ACCESS_FLAGS),
996 				[IB_QPT_SMI] = (IB_QP_PKEY_INDEX		|
997 						IB_QP_QKEY),
998 				[IB_QPT_GSI] = (IB_QP_PKEY_INDEX		|
999 						IB_QP_QKEY),
1000 			}
1001 		},
1002 		[IB_QPS_RTR]   = {
1003 			.valid = 1,
1004 			.req_param = {
1005 				[IB_QPT_UC]  = (IB_QP_AV			|
1006 						IB_QP_PATH_MTU			|
1007 						IB_QP_DEST_QPN			|
1008 						IB_QP_RQ_PSN),
1009 				[IB_QPT_RC]  = (IB_QP_AV			|
1010 						IB_QP_PATH_MTU			|
1011 						IB_QP_DEST_QPN			|
1012 						IB_QP_RQ_PSN			|
1013 						IB_QP_MAX_DEST_RD_ATOMIC	|
1014 						IB_QP_MIN_RNR_TIMER),
1015 				[IB_QPT_XRC_INI] = (IB_QP_AV			|
1016 						IB_QP_PATH_MTU			|
1017 						IB_QP_DEST_QPN			|
1018 						IB_QP_RQ_PSN),
1019 				[IB_QPT_XRC_TGT] = (IB_QP_AV			|
1020 						IB_QP_PATH_MTU			|
1021 						IB_QP_DEST_QPN			|
1022 						IB_QP_RQ_PSN			|
1023 						IB_QP_MAX_DEST_RD_ATOMIC	|
1024 						IB_QP_MIN_RNR_TIMER),
1025 			},
1026 			.opt_param = {
1027 				 [IB_QPT_UD]  = (IB_QP_PKEY_INDEX		|
1028 						 IB_QP_QKEY),
1029 				 [IB_QPT_UC]  = (IB_QP_ALT_PATH			|
1030 						 IB_QP_ACCESS_FLAGS		|
1031 						 IB_QP_PKEY_INDEX),
1032 				 [IB_QPT_RC]  = (IB_QP_ALT_PATH			|
1033 						 IB_QP_ACCESS_FLAGS		|
1034 						 IB_QP_PKEY_INDEX),
1035 				 [IB_QPT_XRC_INI] = (IB_QP_ALT_PATH		|
1036 						 IB_QP_ACCESS_FLAGS		|
1037 						 IB_QP_PKEY_INDEX),
1038 				 [IB_QPT_XRC_TGT] = (IB_QP_ALT_PATH		|
1039 						 IB_QP_ACCESS_FLAGS		|
1040 						 IB_QP_PKEY_INDEX),
1041 				 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX		|
1042 						 IB_QP_QKEY),
1043 				 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX		|
1044 						 IB_QP_QKEY),
1045 			 },
1046 		},
1047 	},
1048 	[IB_QPS_RTR]   = {
1049 		[IB_QPS_RESET] = { .valid = 1 },
1050 		[IB_QPS_ERR] =   { .valid = 1 },
1051 		[IB_QPS_RTS]   = {
1052 			.valid = 1,
1053 			.req_param = {
1054 				[IB_QPT_UD]  = IB_QP_SQ_PSN,
1055 				[IB_QPT_UC]  = IB_QP_SQ_PSN,
1056 				[IB_QPT_RC]  = (IB_QP_TIMEOUT			|
1057 						IB_QP_RETRY_CNT			|
1058 						IB_QP_RNR_RETRY			|
1059 						IB_QP_SQ_PSN			|
1060 						IB_QP_MAX_QP_RD_ATOMIC),
1061 				[IB_QPT_XRC_INI] = (IB_QP_TIMEOUT		|
1062 						IB_QP_RETRY_CNT			|
1063 						IB_QP_RNR_RETRY			|
1064 						IB_QP_SQ_PSN			|
1065 						IB_QP_MAX_QP_RD_ATOMIC),
1066 				[IB_QPT_XRC_TGT] = (IB_QP_TIMEOUT		|
1067 						IB_QP_SQ_PSN),
1068 				[IB_QPT_SMI] = IB_QP_SQ_PSN,
1069 				[IB_QPT_GSI] = IB_QP_SQ_PSN,
1070 			},
1071 			.opt_param = {
1072 				 [IB_QPT_UD]  = (IB_QP_CUR_STATE		|
1073 						 IB_QP_QKEY),
1074 				 [IB_QPT_UC]  = (IB_QP_CUR_STATE		|
1075 						 IB_QP_ALT_PATH			|
1076 						 IB_QP_ACCESS_FLAGS		|
1077 						 IB_QP_PATH_MIG_STATE),
1078 				 [IB_QPT_RC]  = (IB_QP_CUR_STATE		|
1079 						 IB_QP_ALT_PATH			|
1080 						 IB_QP_ACCESS_FLAGS		|
1081 						 IB_QP_MIN_RNR_TIMER		|
1082 						 IB_QP_PATH_MIG_STATE),
1083 				 [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE		|
1084 						 IB_QP_ALT_PATH			|
1085 						 IB_QP_ACCESS_FLAGS		|
1086 						 IB_QP_PATH_MIG_STATE),
1087 				 [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE		|
1088 						 IB_QP_ALT_PATH			|
1089 						 IB_QP_ACCESS_FLAGS		|
1090 						 IB_QP_MIN_RNR_TIMER		|
1091 						 IB_QP_PATH_MIG_STATE),
1092 				 [IB_QPT_SMI] = (IB_QP_CUR_STATE		|
1093 						 IB_QP_QKEY),
1094 				 [IB_QPT_GSI] = (IB_QP_CUR_STATE		|
1095 						 IB_QP_QKEY),
1096 				 [IB_QPT_RAW_PACKET] = IB_QP_RATE_LIMIT,
1097 			 }
1098 		}
1099 	},
1100 	[IB_QPS_RTS]   = {
1101 		[IB_QPS_RESET] = { .valid = 1 },
1102 		[IB_QPS_ERR] =   { .valid = 1 },
1103 		[IB_QPS_RTS]   = {
1104 			.valid = 1,
1105 			.opt_param = {
1106 				[IB_QPT_UD]  = (IB_QP_CUR_STATE			|
1107 						IB_QP_QKEY),
1108 				[IB_QPT_UC]  = (IB_QP_CUR_STATE			|
1109 						IB_QP_ACCESS_FLAGS		|
1110 						IB_QP_ALT_PATH			|
1111 						IB_QP_PATH_MIG_STATE),
1112 				[IB_QPT_RC]  = (IB_QP_CUR_STATE			|
1113 						IB_QP_ACCESS_FLAGS		|
1114 						IB_QP_ALT_PATH			|
1115 						IB_QP_PATH_MIG_STATE		|
1116 						IB_QP_MIN_RNR_TIMER),
1117 				[IB_QPT_XRC_INI] = (IB_QP_CUR_STATE		|
1118 						IB_QP_ACCESS_FLAGS		|
1119 						IB_QP_ALT_PATH			|
1120 						IB_QP_PATH_MIG_STATE),
1121 				[IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE		|
1122 						IB_QP_ACCESS_FLAGS		|
1123 						IB_QP_ALT_PATH			|
1124 						IB_QP_PATH_MIG_STATE		|
1125 						IB_QP_MIN_RNR_TIMER),
1126 				[IB_QPT_SMI] = (IB_QP_CUR_STATE			|
1127 						IB_QP_QKEY),
1128 				[IB_QPT_GSI] = (IB_QP_CUR_STATE			|
1129 						IB_QP_QKEY),
1130 				[IB_QPT_RAW_PACKET] = IB_QP_RATE_LIMIT,
1131 			}
1132 		},
1133 		[IB_QPS_SQD]   = {
1134 			.valid = 1,
1135 			.opt_param = {
1136 				[IB_QPT_UD]  = IB_QP_EN_SQD_ASYNC_NOTIFY,
1137 				[IB_QPT_UC]  = IB_QP_EN_SQD_ASYNC_NOTIFY,
1138 				[IB_QPT_RC]  = IB_QP_EN_SQD_ASYNC_NOTIFY,
1139 				[IB_QPT_XRC_INI] = IB_QP_EN_SQD_ASYNC_NOTIFY,
1140 				[IB_QPT_XRC_TGT] = IB_QP_EN_SQD_ASYNC_NOTIFY, /* ??? */
1141 				[IB_QPT_SMI] = IB_QP_EN_SQD_ASYNC_NOTIFY,
1142 				[IB_QPT_GSI] = IB_QP_EN_SQD_ASYNC_NOTIFY
1143 			}
1144 		},
1145 	},
1146 	[IB_QPS_SQD]   = {
1147 		[IB_QPS_RESET] = { .valid = 1 },
1148 		[IB_QPS_ERR] =   { .valid = 1 },
1149 		[IB_QPS_RTS]   = {
1150 			.valid = 1,
1151 			.opt_param = {
1152 				[IB_QPT_UD]  = (IB_QP_CUR_STATE			|
1153 						IB_QP_QKEY),
1154 				[IB_QPT_UC]  = (IB_QP_CUR_STATE			|
1155 						IB_QP_ALT_PATH			|
1156 						IB_QP_ACCESS_FLAGS		|
1157 						IB_QP_PATH_MIG_STATE),
1158 				[IB_QPT_RC]  = (IB_QP_CUR_STATE			|
1159 						IB_QP_ALT_PATH			|
1160 						IB_QP_ACCESS_FLAGS		|
1161 						IB_QP_MIN_RNR_TIMER		|
1162 						IB_QP_PATH_MIG_STATE),
1163 				[IB_QPT_XRC_INI] = (IB_QP_CUR_STATE		|
1164 						IB_QP_ALT_PATH			|
1165 						IB_QP_ACCESS_FLAGS		|
1166 						IB_QP_PATH_MIG_STATE),
1167 				[IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE		|
1168 						IB_QP_ALT_PATH			|
1169 						IB_QP_ACCESS_FLAGS		|
1170 						IB_QP_MIN_RNR_TIMER		|
1171 						IB_QP_PATH_MIG_STATE),
1172 				[IB_QPT_SMI] = (IB_QP_CUR_STATE			|
1173 						IB_QP_QKEY),
1174 				[IB_QPT_GSI] = (IB_QP_CUR_STATE			|
1175 						IB_QP_QKEY),
1176 			}
1177 		},
1178 		[IB_QPS_SQD]   = {
1179 			.valid = 1,
1180 			.opt_param = {
1181 				[IB_QPT_UD]  = (IB_QP_PKEY_INDEX		|
1182 						IB_QP_QKEY),
1183 				[IB_QPT_UC]  = (IB_QP_AV			|
1184 						IB_QP_ALT_PATH			|
1185 						IB_QP_ACCESS_FLAGS		|
1186 						IB_QP_PKEY_INDEX		|
1187 						IB_QP_PATH_MIG_STATE),
1188 				[IB_QPT_RC]  = (IB_QP_PORT			|
1189 						IB_QP_AV			|
1190 						IB_QP_TIMEOUT			|
1191 						IB_QP_RETRY_CNT			|
1192 						IB_QP_RNR_RETRY			|
1193 						IB_QP_MAX_QP_RD_ATOMIC		|
1194 						IB_QP_MAX_DEST_RD_ATOMIC	|
1195 						IB_QP_ALT_PATH			|
1196 						IB_QP_ACCESS_FLAGS		|
1197 						IB_QP_PKEY_INDEX		|
1198 						IB_QP_MIN_RNR_TIMER		|
1199 						IB_QP_PATH_MIG_STATE),
1200 				[IB_QPT_XRC_INI] = (IB_QP_PORT			|
1201 						IB_QP_AV			|
1202 						IB_QP_TIMEOUT			|
1203 						IB_QP_RETRY_CNT			|
1204 						IB_QP_RNR_RETRY			|
1205 						IB_QP_MAX_QP_RD_ATOMIC		|
1206 						IB_QP_ALT_PATH			|
1207 						IB_QP_ACCESS_FLAGS		|
1208 						IB_QP_PKEY_INDEX		|
1209 						IB_QP_PATH_MIG_STATE),
1210 				[IB_QPT_XRC_TGT] = (IB_QP_PORT			|
1211 						IB_QP_AV			|
1212 						IB_QP_TIMEOUT			|
1213 						IB_QP_MAX_DEST_RD_ATOMIC	|
1214 						IB_QP_ALT_PATH			|
1215 						IB_QP_ACCESS_FLAGS		|
1216 						IB_QP_PKEY_INDEX		|
1217 						IB_QP_MIN_RNR_TIMER		|
1218 						IB_QP_PATH_MIG_STATE),
1219 				[IB_QPT_SMI] = (IB_QP_PKEY_INDEX		|
1220 						IB_QP_QKEY),
1221 				[IB_QPT_GSI] = (IB_QP_PKEY_INDEX		|
1222 						IB_QP_QKEY),
1223 			}
1224 		}
1225 	},
1226 	[IB_QPS_SQE]   = {
1227 		[IB_QPS_RESET] = { .valid = 1 },
1228 		[IB_QPS_ERR] =   { .valid = 1 },
1229 		[IB_QPS_RTS]   = {
1230 			.valid = 1,
1231 			.opt_param = {
1232 				[IB_QPT_UD]  = (IB_QP_CUR_STATE			|
1233 						IB_QP_QKEY),
1234 				[IB_QPT_UC]  = (IB_QP_CUR_STATE			|
1235 						IB_QP_ACCESS_FLAGS),
1236 				[IB_QPT_SMI] = (IB_QP_CUR_STATE			|
1237 						IB_QP_QKEY),
1238 				[IB_QPT_GSI] = (IB_QP_CUR_STATE			|
1239 						IB_QP_QKEY),
1240 			}
1241 		}
1242 	},
1243 	[IB_QPS_ERR] = {
1244 		[IB_QPS_RESET] = { .valid = 1 },
1245 		[IB_QPS_ERR] =   { .valid = 1 }
1246 	}
1247 };
1248 
1249 bool ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state,
1250 			enum ib_qp_type type, enum ib_qp_attr_mask mask)
1251 {
1252 	enum ib_qp_attr_mask req_param, opt_param;
1253 
1254 	if (mask & IB_QP_CUR_STATE  &&
1255 	    cur_state != IB_QPS_RTR && cur_state != IB_QPS_RTS &&
1256 	    cur_state != IB_QPS_SQD && cur_state != IB_QPS_SQE)
1257 		return false;
1258 
1259 	if (!qp_state_table[cur_state][next_state].valid)
1260 		return false;
1261 
1262 	req_param = qp_state_table[cur_state][next_state].req_param[type];
1263 	opt_param = qp_state_table[cur_state][next_state].opt_param[type];
1264 
1265 	if ((mask & req_param) != req_param)
1266 		return false;
1267 
1268 	if (mask & ~(req_param | opt_param | IB_QP_STATE))
1269 		return false;
1270 
1271 	return true;
1272 }
1273 EXPORT_SYMBOL(ib_modify_qp_is_ok);
1274 
1275 int ib_resolve_eth_dmac(struct ib_device *device,
1276 			struct ib_ah_attr *ah_attr)
1277 {
1278 	struct ib_gid_attr sgid_attr;
1279 	union ib_gid sgid;
1280 	int hop_limit;
1281 	int ret;
1282 
1283 	if (ah_attr->port_num < rdma_start_port(device) ||
1284 	    ah_attr->port_num > rdma_end_port(device))
1285 		return -EINVAL;
1286 
1287 	if (!rdma_cap_eth_ah(device, ah_attr->port_num))
1288 		return 0;
1289 
1290 	if (rdma_is_multicast_addr((struct in6_addr *)ah_attr->grh.dgid.raw)) {
1291 		if (ipv6_addr_v4mapped((struct in6_addr *)ah_attr->grh.dgid.raw)) {
1292 			__be32 addr = 0;
1293 
1294 			memcpy(&addr, ah_attr->grh.dgid.raw + 12, 4);
1295 			ip_eth_mc_map(addr, (char *)ah_attr->dmac);
1296 		} else {
1297 			ipv6_eth_mc_map((struct in6_addr *)ah_attr->grh.dgid.raw,
1298 					(char *)ah_attr->dmac);
1299 		}
1300 		return 0;
1301 	}
1302 
1303 	ret = ib_query_gid(device,
1304 			   ah_attr->port_num,
1305 			   ah_attr->grh.sgid_index,
1306 			   &sgid, &sgid_attr);
1307 	if (ret != 0)
1308 		return (ret);
1309 	if (!sgid_attr.ndev)
1310 		return -ENXIO;
1311 
1312 	ret = rdma_addr_find_l2_eth_by_grh(&sgid,
1313 					   &ah_attr->grh.dgid,
1314 					   ah_attr->dmac,
1315 					   sgid_attr.ndev, &hop_limit);
1316 	dev_put(sgid_attr.ndev);
1317 
1318 	ah_attr->grh.hop_limit = hop_limit;
1319 	return ret;
1320 }
1321 EXPORT_SYMBOL(ib_resolve_eth_dmac);
1322 
1323 static bool is_qp_type_connected(const struct ib_qp *qp)
1324 {
1325 	return (qp->qp_type == IB_QPT_UC ||
1326 		qp->qp_type == IB_QPT_RC ||
1327 		qp->qp_type == IB_QPT_XRC_INI ||
1328 		qp->qp_type == IB_QPT_XRC_TGT);
1329 }
1330 
1331 /**
1332  * IB core internal function to perform QP attributes modification.
1333  */
1334 static int _ib_modify_qp(struct ib_qp *qp, struct ib_qp_attr *attr,
1335 			 int attr_mask, struct ib_udata *udata)
1336 {
1337 	u8 port = attr_mask & IB_QP_PORT ? attr->port_num : qp->port;
1338 	int ret;
1339 
1340 	if (port < rdma_start_port(qp->device) ||
1341 	    port > rdma_end_port(qp->device))
1342 		return -EINVAL;
1343 
1344 	if (attr_mask & IB_QP_ALT_PATH) {
1345 		/*
1346 		 * Today the core code can only handle alternate paths and APM
1347 		 * for IB. Ban them in roce mode.
1348 		 */
1349 		if (!(rdma_protocol_ib(qp->device,
1350 		      attr->alt_ah_attr.port_num) &&
1351 		      rdma_protocol_ib(qp->device, port))) {
1352 			ret = EINVAL;
1353 			goto out;
1354 		}
1355 	}
1356 
1357 	/*
1358 	 * If the user provided the qp_attr then we have to resolve it. Kernel
1359 	 * users have to provide already resolved rdma_ah_attr's
1360 	 */
1361 	if (udata && (attr_mask & IB_QP_AV) &&
1362 	    rdma_protocol_roce(qp->device, port) &&
1363 	    is_qp_type_connected(qp)) {
1364 		ret = ib_resolve_eth_dmac(qp->device, &attr->ah_attr);
1365 		if (ret)
1366 			goto out;
1367 	}
1368 
1369 	if (rdma_ib_or_roce(qp->device, port)) {
1370 		if (attr_mask & IB_QP_RQ_PSN && attr->rq_psn & ~0xffffff) {
1371 			dev_warn(&qp->device->dev,
1372 				 "%s rq_psn overflow, masking to 24 bits\n",
1373 				 __func__);
1374 			attr->rq_psn &= 0xffffff;
1375 		}
1376 
1377 		if (attr_mask & IB_QP_SQ_PSN && attr->sq_psn & ~0xffffff) {
1378 			dev_warn(&qp->device->dev,
1379 				 " %s sq_psn overflow, masking to 24 bits\n",
1380 				 __func__);
1381 			attr->sq_psn &= 0xffffff;
1382 		}
1383 	}
1384 
1385 	ret = qp->device->modify_qp(qp, attr, attr_mask, udata);
1386 	if (ret)
1387 		goto out;
1388 
1389 	if (attr_mask & IB_QP_PORT)
1390 		qp->port = attr->port_num;
1391 out:
1392 	return ret;
1393 }
1394 
1395 /**
1396  * ib_modify_qp_with_udata - Modifies the attributes for the specified QP.
1397  * @ib_qp: The QP to modify.
1398  * @attr: On input, specifies the QP attributes to modify.  On output,
1399  *   the current values of selected QP attributes are returned.
1400  * @attr_mask: A bit-mask used to specify which attributes of the QP
1401  *   are being modified.
1402  * @udata: pointer to user's input output buffer information
1403  *   are being modified.
1404  * It returns 0 on success and returns appropriate error code on error.
1405  */
1406 int ib_modify_qp_with_udata(struct ib_qp *ib_qp, struct ib_qp_attr *attr,
1407 			    int attr_mask, struct ib_udata *udata)
1408 {
1409 	return _ib_modify_qp(ib_qp->real_qp, attr, attr_mask, udata);
1410 }
1411 EXPORT_SYMBOL(ib_modify_qp_with_udata);
1412 
1413 int ib_modify_qp(struct ib_qp *qp,
1414 		 struct ib_qp_attr *qp_attr,
1415 		 int qp_attr_mask)
1416 {
1417 	if (qp_attr_mask & IB_QP_AV) {
1418 		int ret;
1419 
1420 		ret = ib_resolve_eth_dmac(qp->device, &qp_attr->ah_attr);
1421 		if (ret)
1422 			return ret;
1423 	}
1424 
1425 	return qp->device->modify_qp(qp->real_qp, qp_attr, qp_attr_mask, NULL);
1426 }
1427 EXPORT_SYMBOL(ib_modify_qp);
1428 
1429 int ib_query_qp(struct ib_qp *qp,
1430 		struct ib_qp_attr *qp_attr,
1431 		int qp_attr_mask,
1432 		struct ib_qp_init_attr *qp_init_attr)
1433 {
1434 	return qp->device->query_qp ?
1435 		qp->device->query_qp(qp->real_qp, qp_attr, qp_attr_mask, qp_init_attr) :
1436 		-ENOSYS;
1437 }
1438 EXPORT_SYMBOL(ib_query_qp);
1439 
1440 int ib_close_qp(struct ib_qp *qp)
1441 {
1442 	struct ib_qp *real_qp;
1443 	unsigned long flags;
1444 
1445 	real_qp = qp->real_qp;
1446 	if (real_qp == qp)
1447 		return -EINVAL;
1448 
1449 	spin_lock_irqsave(&real_qp->device->event_handler_lock, flags);
1450 	list_del(&qp->open_list);
1451 	spin_unlock_irqrestore(&real_qp->device->event_handler_lock, flags);
1452 
1453 	atomic_dec(&real_qp->usecnt);
1454 	kfree(qp);
1455 
1456 	return 0;
1457 }
1458 EXPORT_SYMBOL(ib_close_qp);
1459 
1460 static int __ib_destroy_shared_qp(struct ib_qp *qp)
1461 {
1462 	struct ib_xrcd *xrcd;
1463 	struct ib_qp *real_qp;
1464 	int ret;
1465 
1466 	real_qp = qp->real_qp;
1467 	xrcd = real_qp->xrcd;
1468 
1469 	mutex_lock(&xrcd->tgt_qp_mutex);
1470 	ib_close_qp(qp);
1471 	if (atomic_read(&real_qp->usecnt) == 0)
1472 		list_del(&real_qp->xrcd_list);
1473 	else
1474 		real_qp = NULL;
1475 	mutex_unlock(&xrcd->tgt_qp_mutex);
1476 
1477 	if (real_qp) {
1478 		ret = ib_destroy_qp(real_qp);
1479 		if (!ret)
1480 			atomic_dec(&xrcd->usecnt);
1481 		else
1482 			__ib_insert_xrcd_qp(xrcd, real_qp);
1483 	}
1484 
1485 	return 0;
1486 }
1487 
1488 int ib_destroy_qp_user(struct ib_qp *qp, struct ib_udata *udata)
1489 {
1490 	struct ib_pd *pd;
1491 	struct ib_cq *scq, *rcq;
1492 	struct ib_srq *srq;
1493 	struct ib_rwq_ind_table *ind_tbl;
1494 	int ret;
1495 
1496 	if (atomic_read(&qp->usecnt))
1497 		return -EBUSY;
1498 
1499 	if (qp->real_qp != qp)
1500 		return __ib_destroy_shared_qp(qp);
1501 
1502 	pd   = qp->pd;
1503 	scq  = qp->send_cq;
1504 	rcq  = qp->recv_cq;
1505 	srq  = qp->srq;
1506 	ind_tbl = qp->rwq_ind_tbl;
1507 
1508 	ret = qp->device->destroy_qp(qp, udata);
1509 	if (!ret) {
1510 		if (pd)
1511 			atomic_dec(&pd->usecnt);
1512 		if (scq)
1513 			atomic_dec(&scq->usecnt);
1514 		if (rcq)
1515 			atomic_dec(&rcq->usecnt);
1516 		if (srq)
1517 			atomic_dec(&srq->usecnt);
1518 		if (ind_tbl)
1519 			atomic_dec(&ind_tbl->usecnt);
1520 	}
1521 
1522 	return ret;
1523 }
1524 EXPORT_SYMBOL(ib_destroy_qp_user);
1525 
1526 /* Completion queues */
1527 
1528 struct ib_cq *__ib_create_cq(struct ib_device *device,
1529 			     ib_comp_handler comp_handler,
1530 			     void (*event_handler)(struct ib_event *, void *),
1531 			     void *cq_context,
1532 			     const struct ib_cq_init_attr *cq_attr,
1533 			     const char *caller)
1534 {
1535 	struct ib_cq *cq;
1536 	int ret;
1537 
1538 	cq = rdma_zalloc_drv_obj(device, ib_cq);
1539 	if (!cq)
1540 		return ERR_PTR(-ENOMEM);
1541 
1542 	cq->device = device;
1543 	cq->uobject = NULL;
1544 	cq->comp_handler = comp_handler;
1545 	cq->event_handler = event_handler;
1546 	cq->cq_context = cq_context;
1547 	atomic_set(&cq->usecnt, 0);
1548 
1549 	ret = device->create_cq(cq, cq_attr, NULL);
1550 	if (ret) {
1551 		kfree(cq);
1552 		return ERR_PTR(ret);
1553 	}
1554 
1555 	return cq;
1556 }
1557 EXPORT_SYMBOL(__ib_create_cq);
1558 
1559 int ib_modify_cq(struct ib_cq *cq, u16 cq_count, u16 cq_period)
1560 {
1561 	return cq->device->modify_cq ?
1562 		cq->device->modify_cq(cq, cq_count, cq_period) : -ENOSYS;
1563 }
1564 EXPORT_SYMBOL(ib_modify_cq);
1565 
1566 int ib_destroy_cq_user(struct ib_cq *cq, struct ib_udata *udata)
1567 {
1568 	if (atomic_read(&cq->usecnt))
1569 		return -EBUSY;
1570 
1571 	cq->device->destroy_cq(cq, udata);
1572 	kfree(cq);
1573 	return 0;
1574 }
1575 EXPORT_SYMBOL(ib_destroy_cq_user);
1576 
1577 int ib_resize_cq(struct ib_cq *cq, int cqe)
1578 {
1579 	return cq->device->resize_cq ?
1580 		cq->device->resize_cq(cq, cqe, NULL) : -ENOSYS;
1581 }
1582 EXPORT_SYMBOL(ib_resize_cq);
1583 
1584 /* Memory regions */
1585 
1586 int ib_dereg_mr_user(struct ib_mr *mr, struct ib_udata *udata)
1587 {
1588 	struct ib_pd *pd = mr->pd;
1589 	struct ib_dm *dm = mr->dm;
1590 	struct ib_sig_attrs *sig_attrs = mr->sig_attrs;
1591 	int ret;
1592 
1593 	ret = mr->device->dereg_mr(mr, udata);
1594 	if (!ret) {
1595 		atomic_dec(&pd->usecnt);
1596 		if (dm)
1597 			atomic_dec(&dm->usecnt);
1598 		kfree(sig_attrs);
1599 	}
1600 
1601 	return ret;
1602 }
1603 EXPORT_SYMBOL(ib_dereg_mr_user);
1604 
1605 /**
1606  * ib_alloc_mr_user() - Allocates a memory region
1607  * @pd:            protection domain associated with the region
1608  * @mr_type:       memory region type
1609  * @max_num_sg:    maximum sg entries available for registration.
1610  * @udata:	   user data or null for kernel objects
1611  *
1612  * Notes:
1613  * Memory registeration page/sg lists must not exceed max_num_sg.
1614  * For mr_type IB_MR_TYPE_MEM_REG, the total length cannot exceed
1615  * max_num_sg * used_page_size.
1616  *
1617  */
1618 struct ib_mr *ib_alloc_mr_user(struct ib_pd *pd, enum ib_mr_type mr_type,
1619 			       u32 max_num_sg, struct ib_udata *udata)
1620 {
1621 	struct ib_mr *mr;
1622 
1623 	if (!pd->device->alloc_mr) {
1624 		mr = ERR_PTR(-EOPNOTSUPP);
1625 		goto out;
1626 	}
1627 
1628 	if (mr_type == IB_MR_TYPE_INTEGRITY) {
1629 		WARN_ON_ONCE(1);
1630 		mr = ERR_PTR(-EINVAL);
1631 		goto out;
1632 	}
1633 
1634 	mr = pd->device->alloc_mr(pd, mr_type, max_num_sg, udata);
1635 	if (!IS_ERR(mr)) {
1636 		mr->device  = pd->device;
1637 		mr->pd      = pd;
1638 		mr->dm      = NULL;
1639 		mr->uobject = NULL;
1640 		atomic_inc(&pd->usecnt);
1641 		mr->need_inval = false;
1642 		mr->type = mr_type;
1643 		mr->sig_attrs = NULL;
1644 	}
1645 
1646 out:
1647 	return mr;
1648 }
1649 EXPORT_SYMBOL(ib_alloc_mr_user);
1650 
1651 /* "Fast" memory regions */
1652 
1653 struct ib_fmr *ib_alloc_fmr(struct ib_pd *pd,
1654 			    int mr_access_flags,
1655 			    struct ib_fmr_attr *fmr_attr)
1656 {
1657 	struct ib_fmr *fmr;
1658 
1659 	if (!pd->device->alloc_fmr)
1660 		return ERR_PTR(-ENOSYS);
1661 
1662 	fmr = pd->device->alloc_fmr(pd, mr_access_flags, fmr_attr);
1663 	if (!IS_ERR(fmr)) {
1664 		fmr->device = pd->device;
1665 		fmr->pd     = pd;
1666 		atomic_inc(&pd->usecnt);
1667 	}
1668 
1669 	return fmr;
1670 }
1671 EXPORT_SYMBOL(ib_alloc_fmr);
1672 
1673 int ib_unmap_fmr(struct list_head *fmr_list)
1674 {
1675 	struct ib_fmr *fmr;
1676 
1677 	if (list_empty(fmr_list))
1678 		return 0;
1679 
1680 	fmr = list_entry(fmr_list->next, struct ib_fmr, list);
1681 	return fmr->device->unmap_fmr(fmr_list);
1682 }
1683 EXPORT_SYMBOL(ib_unmap_fmr);
1684 
1685 int ib_dealloc_fmr(struct ib_fmr *fmr)
1686 {
1687 	struct ib_pd *pd;
1688 	int ret;
1689 
1690 	pd = fmr->pd;
1691 	ret = fmr->device->dealloc_fmr(fmr);
1692 	if (!ret)
1693 		atomic_dec(&pd->usecnt);
1694 
1695 	return ret;
1696 }
1697 EXPORT_SYMBOL(ib_dealloc_fmr);
1698 
1699 /* Multicast groups */
1700 
1701 static bool is_valid_mcast_lid(struct ib_qp *qp, u16 lid)
1702 {
1703 	struct ib_qp_init_attr init_attr = {};
1704 	struct ib_qp_attr attr = {};
1705 	int num_eth_ports = 0;
1706 	int port;
1707 
1708 	/* If QP state >= init, it is assigned to a port and we can check this
1709 	 * port only.
1710 	 */
1711 	if (!ib_query_qp(qp, &attr, IB_QP_STATE | IB_QP_PORT, &init_attr)) {
1712 		if (attr.qp_state >= IB_QPS_INIT) {
1713 			if (rdma_port_get_link_layer(qp->device, attr.port_num) !=
1714 			    IB_LINK_LAYER_INFINIBAND)
1715 				return true;
1716 			goto lid_check;
1717 		}
1718 	}
1719 
1720 	/* Can't get a quick answer, iterate over all ports */
1721 	for (port = 0; port < qp->device->phys_port_cnt; port++)
1722 		if (rdma_port_get_link_layer(qp->device, port) !=
1723 		    IB_LINK_LAYER_INFINIBAND)
1724 			num_eth_ports++;
1725 
1726 	/* If we have at lease one Ethernet port, RoCE annex declares that
1727 	 * multicast LID should be ignored. We can't tell at this step if the
1728 	 * QP belongs to an IB or Ethernet port.
1729 	 */
1730 	if (num_eth_ports)
1731 		return true;
1732 
1733 	/* If all the ports are IB, we can check according to IB spec. */
1734 lid_check:
1735 	return !(lid < be16_to_cpu(IB_MULTICAST_LID_BASE) ||
1736 		 lid == be16_to_cpu(IB_LID_PERMISSIVE));
1737 }
1738 
1739 int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid)
1740 {
1741 	int ret;
1742 
1743 	if (!qp->device->attach_mcast)
1744 		return -ENOSYS;
1745 
1746 	if (!rdma_is_multicast_addr((struct in6_addr *)gid->raw) ||
1747 	    qp->qp_type != IB_QPT_UD || !is_valid_mcast_lid(qp, lid))
1748 		return -EINVAL;
1749 
1750 	ret = qp->device->attach_mcast(qp, gid, lid);
1751 	if (!ret)
1752 		atomic_inc(&qp->usecnt);
1753 	return ret;
1754 }
1755 EXPORT_SYMBOL(ib_attach_mcast);
1756 
1757 int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid)
1758 {
1759 	int ret;
1760 
1761 	if (!qp->device->detach_mcast)
1762 		return -ENOSYS;
1763 
1764 	if (!rdma_is_multicast_addr((struct in6_addr *)gid->raw) ||
1765 	    qp->qp_type != IB_QPT_UD || !is_valid_mcast_lid(qp, lid))
1766 		return -EINVAL;
1767 
1768 	ret = qp->device->detach_mcast(qp, gid, lid);
1769 	if (!ret)
1770 		atomic_dec(&qp->usecnt);
1771 	return ret;
1772 }
1773 EXPORT_SYMBOL(ib_detach_mcast);
1774 
1775 struct ib_xrcd *__ib_alloc_xrcd(struct ib_device *device, const char *caller)
1776 {
1777 	struct ib_xrcd *xrcd;
1778 
1779 	if (!device->alloc_xrcd)
1780 		return ERR_PTR(-EOPNOTSUPP);
1781 
1782 	xrcd = device->alloc_xrcd(device, NULL);
1783 	if (!IS_ERR(xrcd)) {
1784 		xrcd->device = device;
1785 		xrcd->inode = NULL;
1786 		atomic_set(&xrcd->usecnt, 0);
1787 		mutex_init(&xrcd->tgt_qp_mutex);
1788 		INIT_LIST_HEAD(&xrcd->tgt_qp_list);
1789 	}
1790 
1791 	return xrcd;
1792 }
1793 EXPORT_SYMBOL(__ib_alloc_xrcd);
1794 
1795 int ib_dealloc_xrcd(struct ib_xrcd *xrcd, struct ib_udata *udata)
1796 {
1797 	struct ib_qp *qp;
1798 	int ret;
1799 
1800 	if (atomic_read(&xrcd->usecnt))
1801 		return -EBUSY;
1802 
1803 	while (!list_empty(&xrcd->tgt_qp_list)) {
1804 		qp = list_entry(xrcd->tgt_qp_list.next, struct ib_qp, xrcd_list);
1805 		ret = ib_destroy_qp(qp);
1806 		if (ret)
1807 			return ret;
1808 	}
1809 	mutex_destroy(&xrcd->tgt_qp_mutex);
1810 
1811 	return xrcd->device->dealloc_xrcd(xrcd, udata);
1812 }
1813 EXPORT_SYMBOL(ib_dealloc_xrcd);
1814 
1815 /**
1816  * ib_create_wq - Creates a WQ associated with the specified protection
1817  * domain.
1818  * @pd: The protection domain associated with the WQ.
1819  * @wq_init_attr: A list of initial attributes required to create the
1820  * WQ. If WQ creation succeeds, then the attributes are updated to
1821  * the actual capabilities of the created WQ.
1822  *
1823  * wq_init_attr->max_wr and wq_init_attr->max_sge determine
1824  * the requested size of the WQ, and set to the actual values allocated
1825  * on return.
1826  * If ib_create_wq() succeeds, then max_wr and max_sge will always be
1827  * at least as large as the requested values.
1828  */
1829 struct ib_wq *ib_create_wq(struct ib_pd *pd,
1830 			   struct ib_wq_init_attr *wq_attr)
1831 {
1832 	struct ib_wq *wq;
1833 
1834 	if (!pd->device->create_wq)
1835 		return ERR_PTR(-ENOSYS);
1836 
1837 	wq = pd->device->create_wq(pd, wq_attr, NULL);
1838 	if (!IS_ERR(wq)) {
1839 		wq->event_handler = wq_attr->event_handler;
1840 		wq->wq_context = wq_attr->wq_context;
1841 		wq->wq_type = wq_attr->wq_type;
1842 		wq->cq = wq_attr->cq;
1843 		wq->device = pd->device;
1844 		wq->pd = pd;
1845 		wq->uobject = NULL;
1846 		atomic_inc(&pd->usecnt);
1847 		atomic_inc(&wq_attr->cq->usecnt);
1848 		atomic_set(&wq->usecnt, 0);
1849 	}
1850 	return wq;
1851 }
1852 EXPORT_SYMBOL(ib_create_wq);
1853 
1854 /**
1855  * ib_destroy_wq - Destroys the specified user WQ.
1856  * @wq: The WQ to destroy.
1857  * @udata: Valid user data
1858  */
1859 int ib_destroy_wq(struct ib_wq *wq, struct ib_udata *udata)
1860 {
1861 	struct ib_cq *cq = wq->cq;
1862 	struct ib_pd *pd = wq->pd;
1863 
1864 	if (atomic_read(&wq->usecnt))
1865 		return -EBUSY;
1866 
1867 	wq->device->destroy_wq(wq, udata);
1868 	atomic_dec(&pd->usecnt);
1869 	atomic_dec(&cq->usecnt);
1870 
1871 	return 0;
1872 }
1873 EXPORT_SYMBOL(ib_destroy_wq);
1874 
1875 /**
1876  * ib_modify_wq - Modifies the specified WQ.
1877  * @wq: The WQ to modify.
1878  * @wq_attr: On input, specifies the WQ attributes to modify.
1879  * @wq_attr_mask: A bit-mask used to specify which attributes of the WQ
1880  *   are being modified.
1881  * On output, the current values of selected WQ attributes are returned.
1882  */
1883 int ib_modify_wq(struct ib_wq *wq, struct ib_wq_attr *wq_attr,
1884 		 u32 wq_attr_mask)
1885 {
1886 	int err;
1887 
1888 	if (!wq->device->modify_wq)
1889 		return -ENOSYS;
1890 
1891 	err = wq->device->modify_wq(wq, wq_attr, wq_attr_mask, NULL);
1892 	return err;
1893 }
1894 EXPORT_SYMBOL(ib_modify_wq);
1895 
1896 /*
1897  * ib_create_rwq_ind_table - Creates a RQ Indirection Table.
1898  * @device: The device on which to create the rwq indirection table.
1899  * @ib_rwq_ind_table_init_attr: A list of initial attributes required to
1900  * create the Indirection Table.
1901  *
1902  * Note: The life time of ib_rwq_ind_table_init_attr->ind_tbl is not less
1903  *	than the created ib_rwq_ind_table object and the caller is responsible
1904  *	for its memory allocation/free.
1905  */
1906 struct ib_rwq_ind_table *ib_create_rwq_ind_table(struct ib_device *device,
1907 						 struct ib_rwq_ind_table_init_attr *init_attr)
1908 {
1909 	struct ib_rwq_ind_table *rwq_ind_table;
1910 	int i;
1911 	u32 table_size;
1912 
1913 	if (!device->create_rwq_ind_table)
1914 		return ERR_PTR(-ENOSYS);
1915 
1916 	table_size = (1 << init_attr->log_ind_tbl_size);
1917 	rwq_ind_table = device->create_rwq_ind_table(device,
1918 				init_attr, NULL);
1919 	if (IS_ERR(rwq_ind_table))
1920 		return rwq_ind_table;
1921 
1922 	rwq_ind_table->ind_tbl = init_attr->ind_tbl;
1923 	rwq_ind_table->log_ind_tbl_size = init_attr->log_ind_tbl_size;
1924 	rwq_ind_table->device = device;
1925 	rwq_ind_table->uobject = NULL;
1926 	atomic_set(&rwq_ind_table->usecnt, 0);
1927 
1928 	for (i = 0; i < table_size; i++)
1929 		atomic_inc(&rwq_ind_table->ind_tbl[i]->usecnt);
1930 
1931 	return rwq_ind_table;
1932 }
1933 EXPORT_SYMBOL(ib_create_rwq_ind_table);
1934 
1935 /*
1936  * ib_destroy_rwq_ind_table - Destroys the specified Indirection Table.
1937  * @wq_ind_table: The Indirection Table to destroy.
1938 */
1939 int ib_destroy_rwq_ind_table(struct ib_rwq_ind_table *rwq_ind_table)
1940 {
1941 	int err, i;
1942 	u32 table_size = (1 << rwq_ind_table->log_ind_tbl_size);
1943 	struct ib_wq **ind_tbl = rwq_ind_table->ind_tbl;
1944 
1945 	if (atomic_read(&rwq_ind_table->usecnt))
1946 		return -EBUSY;
1947 
1948 	err = rwq_ind_table->device->destroy_rwq_ind_table(rwq_ind_table);
1949 	if (!err) {
1950 		for (i = 0; i < table_size; i++)
1951 			atomic_dec(&ind_tbl[i]->usecnt);
1952 	}
1953 
1954 	return err;
1955 }
1956 EXPORT_SYMBOL(ib_destroy_rwq_ind_table);
1957 
1958 int ib_check_mr_status(struct ib_mr *mr, u32 check_mask,
1959 		       struct ib_mr_status *mr_status)
1960 {
1961 	return mr->device->check_mr_status ?
1962 		mr->device->check_mr_status(mr, check_mask, mr_status) : -ENOSYS;
1963 }
1964 EXPORT_SYMBOL(ib_check_mr_status);
1965 
1966 int ib_set_vf_link_state(struct ib_device *device, int vf, u8 port,
1967 			 int state)
1968 {
1969 	if (!device->set_vf_link_state)
1970 		return -ENOSYS;
1971 
1972 	return device->set_vf_link_state(device, vf, port, state);
1973 }
1974 EXPORT_SYMBOL(ib_set_vf_link_state);
1975 
1976 int ib_get_vf_config(struct ib_device *device, int vf, u8 port,
1977 		     struct ifla_vf_info *info)
1978 {
1979 	if (!device->get_vf_config)
1980 		return -ENOSYS;
1981 
1982 	return device->get_vf_config(device, vf, port, info);
1983 }
1984 EXPORT_SYMBOL(ib_get_vf_config);
1985 
1986 int ib_get_vf_stats(struct ib_device *device, int vf, u8 port,
1987 		    struct ifla_vf_stats *stats)
1988 {
1989 	if (!device->get_vf_stats)
1990 		return -ENOSYS;
1991 
1992 	return device->get_vf_stats(device, vf, port, stats);
1993 }
1994 EXPORT_SYMBOL(ib_get_vf_stats);
1995 
1996 int ib_set_vf_guid(struct ib_device *device, int vf, u8 port, u64 guid,
1997 		   int type)
1998 {
1999 	if (!device->set_vf_guid)
2000 		return -ENOSYS;
2001 
2002 	return device->set_vf_guid(device, vf, port, guid, type);
2003 }
2004 EXPORT_SYMBOL(ib_set_vf_guid);
2005 
2006 /**
2007  * ib_map_mr_sg() - Map the largest prefix of a dma mapped SG list
2008  *     and set it the memory region.
2009  * @mr:            memory region
2010  * @sg:            dma mapped scatterlist
2011  * @sg_nents:      number of entries in sg
2012  * @sg_offset:     offset in bytes into sg
2013  * @page_size:     page vector desired page size
2014  *
2015  * Constraints:
2016  * - The first sg element is allowed to have an offset.
2017  * - Each sg element must either be aligned to page_size or virtually
2018  *   contiguous to the previous element. In case an sg element has a
2019  *   non-contiguous offset, the mapping prefix will not include it.
2020  * - The last sg element is allowed to have length less than page_size.
2021  * - If sg_nents total byte length exceeds the mr max_num_sge * page_size
2022  *   then only max_num_sg entries will be mapped.
2023  * - If the MR was allocated with type IB_MR_TYPE_SG_GAPS, none of these
2024  *   constraints holds and the page_size argument is ignored.
2025  *
2026  * Returns the number of sg elements that were mapped to the memory region.
2027  *
2028  * After this completes successfully, the  memory region
2029  * is ready for registration.
2030  */
2031 int ib_map_mr_sg(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
2032 		 unsigned int *sg_offset, unsigned int page_size)
2033 {
2034 	if (unlikely(!mr->device->map_mr_sg))
2035 		return -ENOSYS;
2036 
2037 	mr->page_size = page_size;
2038 
2039 	return mr->device->map_mr_sg(mr, sg, sg_nents, sg_offset);
2040 }
2041 EXPORT_SYMBOL(ib_map_mr_sg);
2042 
2043 /**
2044  * ib_sg_to_pages() - Convert the largest prefix of a sg list
2045  *     to a page vector
2046  * @mr:            memory region
2047  * @sgl:           dma mapped scatterlist
2048  * @sg_nents:      number of entries in sg
2049  * @sg_offset_p:   IN:  start offset in bytes into sg
2050  *                 OUT: offset in bytes for element n of the sg of the first
2051  *                      byte that has not been processed where n is the return
2052  *                      value of this function.
2053  * @set_page:      driver page assignment function pointer
2054  *
2055  * Core service helper for drivers to convert the largest
2056  * prefix of given sg list to a page vector. The sg list
2057  * prefix converted is the prefix that meet the requirements
2058  * of ib_map_mr_sg.
2059  *
2060  * Returns the number of sg elements that were assigned to
2061  * a page vector.
2062  */
2063 int ib_sg_to_pages(struct ib_mr *mr, struct scatterlist *sgl, int sg_nents,
2064 		unsigned int *sg_offset_p, int (*set_page)(struct ib_mr *, u64))
2065 {
2066 	struct scatterlist *sg;
2067 	u64 last_end_dma_addr = 0;
2068 	unsigned int sg_offset = sg_offset_p ? *sg_offset_p : 0;
2069 	unsigned int last_page_off = 0;
2070 	u64 page_mask = ~((u64)mr->page_size - 1);
2071 	int i, ret;
2072 
2073 	if (unlikely(sg_nents <= 0 || sg_offset > sg_dma_len(&sgl[0])))
2074 		return -EINVAL;
2075 
2076 	mr->iova = sg_dma_address(&sgl[0]) + sg_offset;
2077 	mr->length = 0;
2078 
2079 	for_each_sg(sgl, sg, sg_nents, i) {
2080 		u64 dma_addr = sg_dma_address(sg) + sg_offset;
2081 		u64 prev_addr = dma_addr;
2082 		unsigned int dma_len = sg_dma_len(sg) - sg_offset;
2083 		u64 end_dma_addr = dma_addr + dma_len;
2084 		u64 page_addr = dma_addr & page_mask;
2085 
2086 		/*
2087 		 * For the second and later elements, check whether either the
2088 		 * end of element i-1 or the start of element i is not aligned
2089 		 * on a page boundary.
2090 		 */
2091 		if (i && (last_page_off != 0 || page_addr != dma_addr)) {
2092 			/* Stop mapping if there is a gap. */
2093 			if (last_end_dma_addr != dma_addr)
2094 				break;
2095 
2096 			/*
2097 			 * Coalesce this element with the last. If it is small
2098 			 * enough just update mr->length. Otherwise start
2099 			 * mapping from the next page.
2100 			 */
2101 			goto next_page;
2102 		}
2103 
2104 		do {
2105 			ret = set_page(mr, page_addr);
2106 			if (unlikely(ret < 0)) {
2107 				sg_offset = prev_addr - sg_dma_address(sg);
2108 				mr->length += prev_addr - dma_addr;
2109 				if (sg_offset_p)
2110 					*sg_offset_p = sg_offset;
2111 				return i || sg_offset ? i : ret;
2112 			}
2113 			prev_addr = page_addr;
2114 next_page:
2115 			page_addr += mr->page_size;
2116 		} while (page_addr < end_dma_addr);
2117 
2118 		mr->length += dma_len;
2119 		last_end_dma_addr = end_dma_addr;
2120 		last_page_off = end_dma_addr & ~page_mask;
2121 
2122 		sg_offset = 0;
2123 	}
2124 
2125 	if (sg_offset_p)
2126 		*sg_offset_p = 0;
2127 	return i;
2128 }
2129 EXPORT_SYMBOL(ib_sg_to_pages);
2130 
2131 struct ib_drain_cqe {
2132 	struct ib_cqe cqe;
2133 	struct completion done;
2134 };
2135 
2136 static void ib_drain_qp_done(struct ib_cq *cq, struct ib_wc *wc)
2137 {
2138 	struct ib_drain_cqe *cqe = container_of(wc->wr_cqe, struct ib_drain_cqe,
2139 						cqe);
2140 
2141 	complete(&cqe->done);
2142 }
2143 
2144 /*
2145  * Post a WR and block until its completion is reaped for the SQ.
2146  */
2147 static void __ib_drain_sq(struct ib_qp *qp)
2148 {
2149 	struct ib_qp_attr attr = { .qp_state = IB_QPS_ERR };
2150 	struct ib_drain_cqe sdrain;
2151 	const struct ib_send_wr *bad_swr;
2152 	struct ib_rdma_wr swr = {
2153 		.wr = {
2154 			.opcode	= IB_WR_RDMA_WRITE,
2155 			.wr_cqe	= &sdrain.cqe,
2156 		},
2157 	};
2158 	int ret;
2159 
2160 	if (qp->send_cq->poll_ctx == IB_POLL_DIRECT) {
2161 		WARN_ONCE(qp->send_cq->poll_ctx == IB_POLL_DIRECT,
2162 			  "IB_POLL_DIRECT poll_ctx not supported for drain\n");
2163 		return;
2164 	}
2165 
2166 	sdrain.cqe.done = ib_drain_qp_done;
2167 	init_completion(&sdrain.done);
2168 
2169 	ret = ib_modify_qp(qp, &attr, IB_QP_STATE);
2170 	if (ret) {
2171 		WARN_ONCE(ret, "failed to drain send queue: %d\n", ret);
2172 		return;
2173 	}
2174 
2175 	ret = ib_post_send(qp, &swr.wr, &bad_swr);
2176 	if (ret) {
2177 		WARN_ONCE(ret, "failed to drain send queue: %d\n", ret);
2178 		return;
2179 	}
2180 
2181 	wait_for_completion(&sdrain.done);
2182 }
2183 
2184 /*
2185  * Post a WR and block until its completion is reaped for the RQ.
2186  */
2187 static void __ib_drain_rq(struct ib_qp *qp)
2188 {
2189 	struct ib_qp_attr attr = { .qp_state = IB_QPS_ERR };
2190 	struct ib_drain_cqe rdrain;
2191 	struct ib_recv_wr rwr = {};
2192 	const struct ib_recv_wr *bad_rwr;
2193 	int ret;
2194 
2195 	if (qp->recv_cq->poll_ctx == IB_POLL_DIRECT) {
2196 		WARN_ONCE(qp->recv_cq->poll_ctx == IB_POLL_DIRECT,
2197 			  "IB_POLL_DIRECT poll_ctx not supported for drain\n");
2198 		return;
2199 	}
2200 
2201 	rwr.wr_cqe = &rdrain.cqe;
2202 	rdrain.cqe.done = ib_drain_qp_done;
2203 	init_completion(&rdrain.done);
2204 
2205 	ret = ib_modify_qp(qp, &attr, IB_QP_STATE);
2206 	if (ret) {
2207 		WARN_ONCE(ret, "failed to drain recv queue: %d\n", ret);
2208 		return;
2209 	}
2210 
2211 	ret = ib_post_recv(qp, &rwr, &bad_rwr);
2212 	if (ret) {
2213 		WARN_ONCE(ret, "failed to drain recv queue: %d\n", ret);
2214 		return;
2215 	}
2216 
2217 	wait_for_completion(&rdrain.done);
2218 }
2219 
2220 /**
2221  * ib_drain_sq() - Block until all SQ CQEs have been consumed by the
2222  *		   application.
2223  * @qp:            queue pair to drain
2224  *
2225  * If the device has a provider-specific drain function, then
2226  * call that.  Otherwise call the generic drain function
2227  * __ib_drain_sq().
2228  *
2229  * The caller must:
2230  *
2231  * ensure there is room in the CQ and SQ for the drain work request and
2232  * completion.
2233  *
2234  * allocate the CQ using ib_alloc_cq() and the CQ poll context cannot be
2235  * IB_POLL_DIRECT.
2236  *
2237  * ensure that there are no other contexts that are posting WRs concurrently.
2238  * Otherwise the drain is not guaranteed.
2239  */
2240 void ib_drain_sq(struct ib_qp *qp)
2241 {
2242 	if (qp->device->drain_sq)
2243 		qp->device->drain_sq(qp);
2244 	else
2245 		__ib_drain_sq(qp);
2246 }
2247 EXPORT_SYMBOL(ib_drain_sq);
2248 
2249 /**
2250  * ib_drain_rq() - Block until all RQ CQEs have been consumed by the
2251  *		   application.
2252  * @qp:            queue pair to drain
2253  *
2254  * If the device has a provider-specific drain function, then
2255  * call that.  Otherwise call the generic drain function
2256  * __ib_drain_rq().
2257  *
2258  * The caller must:
2259  *
2260  * ensure there is room in the CQ and RQ for the drain work request and
2261  * completion.
2262  *
2263  * allocate the CQ using ib_alloc_cq() and the CQ poll context cannot be
2264  * IB_POLL_DIRECT.
2265  *
2266  * ensure that there are no other contexts that are posting WRs concurrently.
2267  * Otherwise the drain is not guaranteed.
2268  */
2269 void ib_drain_rq(struct ib_qp *qp)
2270 {
2271 	if (qp->device->drain_rq)
2272 		qp->device->drain_rq(qp);
2273 	else
2274 		__ib_drain_rq(qp);
2275 }
2276 EXPORT_SYMBOL(ib_drain_rq);
2277 
2278 /**
2279  * ib_drain_qp() - Block until all CQEs have been consumed by the
2280  *		   application on both the RQ and SQ.
2281  * @qp:            queue pair to drain
2282  *
2283  * The caller must:
2284  *
2285  * ensure there is room in the CQ(s), SQ, and RQ for drain work requests
2286  * and completions.
2287  *
2288  * allocate the CQs using ib_alloc_cq() and the CQ poll context cannot be
2289  * IB_POLL_DIRECT.
2290  *
2291  * ensure that there are no other contexts that are posting WRs concurrently.
2292  * Otherwise the drain is not guaranteed.
2293  */
2294 void ib_drain_qp(struct ib_qp *qp)
2295 {
2296 	ib_drain_sq(qp);
2297 	if (!qp->srq)
2298 		ib_drain_rq(qp);
2299 }
2300 EXPORT_SYMBOL(ib_drain_qp);
2301