1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause OR GPL-2.0
3  *
4  * Copyright (c) 2004 Mellanox Technologies Ltd.  All rights reserved.
5  * Copyright (c) 2004 Infinicon Corporation.  All rights reserved.
6  * Copyright (c) 2004 Intel Corporation.  All rights reserved.
7  * Copyright (c) 2004 Topspin Corporation.  All rights reserved.
8  * Copyright (c) 2004 Voltaire Corporation.  All rights reserved.
9  * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
10  * Copyright (c) 2005, 2006 Cisco Systems.  All rights reserved.
11  *
12  * This software is available to you under a choice of one of two
13  * licenses.  You may choose to be licensed under the terms of the GNU
14  * General Public License (GPL) Version 2, available from the file
15  * COPYING in the main directory of this source tree, or the
16  * OpenIB.org BSD license below:
17  *
18  *     Redistribution and use in source and binary forms, with or
19  *     without modification, are permitted provided that the following
20  *     conditions are met:
21  *
22  *      - Redistributions of source code must retain the above
23  *        copyright notice, this list of conditions and the following
24  *        disclaimer.
25  *
26  *      - Redistributions in binary form must reproduce the above
27  *        copyright notice, this list of conditions and the following
28  *        disclaimer in the documentation and/or other materials
29  *        provided with the distribution.
30  *
31  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
32  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
33  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
34  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
35  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
36  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
37  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
38  * SOFTWARE.
39  */
40 
41 #include <sys/cdefs.h>
42 __FBSDID("$FreeBSD$");
43 
44 #include <linux/errno.h>
45 #include <linux/err.h>
46 #include <linux/string.h>
47 #include <linux/slab.h>
48 #include <linux/in.h>
49 #include <linux/in6.h>
50 
51 #include <rdma/ib_verbs.h>
52 #include <rdma/ib_cache.h>
53 #include <rdma/ib_addr.h>
54 
55 #include <netinet/ip.h>
56 #include <netinet/ip6.h>
57 
58 #include <machine/in_cksum.h>
59 
60 #include "core_priv.h"
61 
62 static const char * const ib_events[] = {
63 	[IB_EVENT_CQ_ERR]		= "CQ error",
64 	[IB_EVENT_QP_FATAL]		= "QP fatal error",
65 	[IB_EVENT_QP_REQ_ERR]		= "QP request error",
66 	[IB_EVENT_QP_ACCESS_ERR]	= "QP access error",
67 	[IB_EVENT_COMM_EST]		= "communication established",
68 	[IB_EVENT_SQ_DRAINED]		= "send queue drained",
69 	[IB_EVENT_PATH_MIG]		= "path migration successful",
70 	[IB_EVENT_PATH_MIG_ERR]		= "path migration error",
71 	[IB_EVENT_DEVICE_FATAL]		= "device fatal error",
72 	[IB_EVENT_PORT_ACTIVE]		= "port active",
73 	[IB_EVENT_PORT_ERR]		= "port error",
74 	[IB_EVENT_LID_CHANGE]		= "LID change",
75 	[IB_EVENT_PKEY_CHANGE]		= "P_key change",
76 	[IB_EVENT_SM_CHANGE]		= "SM change",
77 	[IB_EVENT_SRQ_ERR]		= "SRQ error",
78 	[IB_EVENT_SRQ_LIMIT_REACHED]	= "SRQ limit reached",
79 	[IB_EVENT_QP_LAST_WQE_REACHED]	= "last WQE reached",
80 	[IB_EVENT_CLIENT_REREGISTER]	= "client reregister",
81 	[IB_EVENT_GID_CHANGE]		= "GID changed",
82 };
83 
84 const char *__attribute_const__ ib_event_msg(enum ib_event_type event)
85 {
86 	size_t index = event;
87 
88 	return (index < ARRAY_SIZE(ib_events) && ib_events[index]) ?
89 			ib_events[index] : "unrecognized event";
90 }
91 EXPORT_SYMBOL(ib_event_msg);
92 
93 static const char * const wc_statuses[] = {
94 	[IB_WC_SUCCESS]			= "success",
95 	[IB_WC_LOC_LEN_ERR]		= "local length error",
96 	[IB_WC_LOC_QP_OP_ERR]		= "local QP operation error",
97 	[IB_WC_LOC_EEC_OP_ERR]		= "local EE context operation error",
98 	[IB_WC_LOC_PROT_ERR]		= "local protection error",
99 	[IB_WC_WR_FLUSH_ERR]		= "WR flushed",
100 	[IB_WC_MW_BIND_ERR]		= "memory management operation error",
101 	[IB_WC_BAD_RESP_ERR]		= "bad response error",
102 	[IB_WC_LOC_ACCESS_ERR]		= "local access error",
103 	[IB_WC_REM_INV_REQ_ERR]		= "invalid request error",
104 	[IB_WC_REM_ACCESS_ERR]		= "remote access error",
105 	[IB_WC_REM_OP_ERR]		= "remote operation error",
106 	[IB_WC_RETRY_EXC_ERR]		= "transport retry counter exceeded",
107 	[IB_WC_RNR_RETRY_EXC_ERR]	= "RNR retry counter exceeded",
108 	[IB_WC_LOC_RDD_VIOL_ERR]	= "local RDD violation error",
109 	[IB_WC_REM_INV_RD_REQ_ERR]	= "remote invalid RD request",
110 	[IB_WC_REM_ABORT_ERR]		= "operation aborted",
111 	[IB_WC_INV_EECN_ERR]		= "invalid EE context number",
112 	[IB_WC_INV_EEC_STATE_ERR]	= "invalid EE context state",
113 	[IB_WC_FATAL_ERR]		= "fatal error",
114 	[IB_WC_RESP_TIMEOUT_ERR]	= "response timeout error",
115 	[IB_WC_GENERAL_ERR]		= "general error",
116 };
117 
118 const char *__attribute_const__ ib_wc_status_msg(enum ib_wc_status status)
119 {
120 	size_t index = status;
121 
122 	return (index < ARRAY_SIZE(wc_statuses) && wc_statuses[index]) ?
123 			wc_statuses[index] : "unrecognized status";
124 }
125 EXPORT_SYMBOL(ib_wc_status_msg);
126 
127 __attribute_const__ int ib_rate_to_mult(enum ib_rate rate)
128 {
129 	switch (rate) {
130 	case IB_RATE_2_5_GBPS: return  1;
131 	case IB_RATE_5_GBPS:   return  2;
132 	case IB_RATE_10_GBPS:  return  4;
133 	case IB_RATE_20_GBPS:  return  8;
134 	case IB_RATE_30_GBPS:  return 12;
135 	case IB_RATE_40_GBPS:  return 16;
136 	case IB_RATE_60_GBPS:  return 24;
137 	case IB_RATE_80_GBPS:  return 32;
138 	case IB_RATE_120_GBPS: return 48;
139 	case IB_RATE_28_GBPS:  return  11;
140 	case IB_RATE_50_GBPS:  return  20;
141 	case IB_RATE_400_GBPS: return 160;
142 	case IB_RATE_600_GBPS: return 240;
143 	default:	       return -1;
144 	}
145 }
146 EXPORT_SYMBOL(ib_rate_to_mult);
147 
148 __attribute_const__ enum ib_rate mult_to_ib_rate(int mult)
149 {
150 	switch (mult) {
151 	case 1:  return IB_RATE_2_5_GBPS;
152 	case 2:  return IB_RATE_5_GBPS;
153 	case 4:  return IB_RATE_10_GBPS;
154 	case 8:  return IB_RATE_20_GBPS;
155 	case 12: return IB_RATE_30_GBPS;
156 	case 16: return IB_RATE_40_GBPS;
157 	case 24: return IB_RATE_60_GBPS;
158 	case 32: return IB_RATE_80_GBPS;
159 	case 48: return IB_RATE_120_GBPS;
160 	case 6:   return IB_RATE_14_GBPS;
161 	case 22:  return IB_RATE_56_GBPS;
162 	case 45:  return IB_RATE_112_GBPS;
163 	case 67:  return IB_RATE_168_GBPS;
164 	case 10:  return IB_RATE_25_GBPS;
165 	case 40:  return IB_RATE_100_GBPS;
166 	case 80:  return IB_RATE_200_GBPS;
167 	case 120: return IB_RATE_300_GBPS;
168 	case 11:  return IB_RATE_28_GBPS;
169 	case 20:  return IB_RATE_50_GBPS;
170 	case 160: return IB_RATE_400_GBPS;
171 	case 240: return IB_RATE_600_GBPS;
172 	default: return IB_RATE_PORT_CURRENT;
173 	}
174 }
175 EXPORT_SYMBOL(mult_to_ib_rate);
176 
177 __attribute_const__ int ib_rate_to_mbps(enum ib_rate rate)
178 {
179 	switch (rate) {
180 	case IB_RATE_2_5_GBPS: return 2500;
181 	case IB_RATE_5_GBPS:   return 5000;
182 	case IB_RATE_10_GBPS:  return 10000;
183 	case IB_RATE_20_GBPS:  return 20000;
184 	case IB_RATE_30_GBPS:  return 30000;
185 	case IB_RATE_40_GBPS:  return 40000;
186 	case IB_RATE_60_GBPS:  return 60000;
187 	case IB_RATE_80_GBPS:  return 80000;
188 	case IB_RATE_120_GBPS: return 120000;
189 	case IB_RATE_14_GBPS:  return 14062;
190 	case IB_RATE_56_GBPS:  return 56250;
191 	case IB_RATE_112_GBPS: return 112500;
192 	case IB_RATE_168_GBPS: return 168750;
193 	case IB_RATE_25_GBPS:  return 25781;
194 	case IB_RATE_100_GBPS: return 103125;
195 	case IB_RATE_200_GBPS: return 206250;
196 	case IB_RATE_300_GBPS: return 309375;
197 	case IB_RATE_28_GBPS:  return 28125;
198 	case IB_RATE_50_GBPS:  return 53125;
199 	case IB_RATE_400_GBPS: return 425000;
200 	case IB_RATE_600_GBPS: return 637500;
201 	default:	       return -1;
202 	}
203 }
204 EXPORT_SYMBOL(ib_rate_to_mbps);
205 
206 __attribute_const__ enum rdma_transport_type
207 rdma_node_get_transport(enum rdma_node_type node_type)
208 {
209 	switch (node_type) {
210 	case RDMA_NODE_IB_CA:
211 	case RDMA_NODE_IB_SWITCH:
212 	case RDMA_NODE_IB_ROUTER:
213 		return RDMA_TRANSPORT_IB;
214 	case RDMA_NODE_RNIC:
215 		return RDMA_TRANSPORT_IWARP;
216 	case RDMA_NODE_USNIC:
217 		return RDMA_TRANSPORT_USNIC;
218 	case RDMA_NODE_USNIC_UDP:
219 		return RDMA_TRANSPORT_USNIC_UDP;
220 	default:
221 		BUG();
222 		return 0;
223 	}
224 }
225 EXPORT_SYMBOL(rdma_node_get_transport);
226 
227 enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device, u8 port_num)
228 {
229 	if (device->get_link_layer)
230 		return device->get_link_layer(device, port_num);
231 
232 	switch (rdma_node_get_transport(device->node_type)) {
233 	case RDMA_TRANSPORT_IB:
234 		return IB_LINK_LAYER_INFINIBAND;
235 	case RDMA_TRANSPORT_IWARP:
236 	case RDMA_TRANSPORT_USNIC:
237 	case RDMA_TRANSPORT_USNIC_UDP:
238 		return IB_LINK_LAYER_ETHERNET;
239 	default:
240 		return IB_LINK_LAYER_UNSPECIFIED;
241 	}
242 }
243 EXPORT_SYMBOL(rdma_port_get_link_layer);
244 
245 /* Protection domains */
246 
247 /**
248  * ib_alloc_pd - Allocates an unused protection domain.
249  * @device: The device on which to allocate the protection domain.
250  *
251  * A protection domain object provides an association between QPs, shared
252  * receive queues, address handles, memory regions, and memory windows.
253  *
254  * Every PD has a local_dma_lkey which can be used as the lkey value for local
255  * memory operations.
256  */
257 struct ib_pd *__ib_alloc_pd(struct ib_device *device, unsigned int flags,
258 		const char *caller)
259 {
260 	struct ib_pd *pd;
261 	int mr_access_flags = 0;
262 
263 	pd = device->alloc_pd(device, NULL, NULL);
264 	if (IS_ERR(pd))
265 		return pd;
266 
267 	pd->device = device;
268 	pd->uobject = NULL;
269 	pd->__internal_mr = NULL;
270 	atomic_set(&pd->usecnt, 0);
271 	pd->flags = flags;
272 
273 	if (device->attrs.device_cap_flags & IB_DEVICE_LOCAL_DMA_LKEY)
274 		pd->local_dma_lkey = device->local_dma_lkey;
275 	else
276 		mr_access_flags |= IB_ACCESS_LOCAL_WRITE;
277 
278 	if (flags & IB_PD_UNSAFE_GLOBAL_RKEY) {
279 		pr_warn("%s: enabling unsafe global rkey\n", caller);
280 		mr_access_flags |= IB_ACCESS_REMOTE_READ | IB_ACCESS_REMOTE_WRITE;
281 	}
282 
283 	if (mr_access_flags) {
284 		struct ib_mr *mr;
285 
286 		mr = pd->device->get_dma_mr(pd, mr_access_flags);
287 		if (IS_ERR(mr)) {
288 			ib_dealloc_pd(pd);
289 			return ERR_CAST(mr);
290 		}
291 
292 		mr->device	= pd->device;
293 		mr->pd		= pd;
294 		mr->uobject	= NULL;
295 		mr->need_inval	= false;
296 
297 		pd->__internal_mr = mr;
298 
299 		if (!(device->attrs.device_cap_flags & IB_DEVICE_LOCAL_DMA_LKEY))
300 			pd->local_dma_lkey = pd->__internal_mr->lkey;
301 
302 		if (flags & IB_PD_UNSAFE_GLOBAL_RKEY)
303 			pd->unsafe_global_rkey = pd->__internal_mr->rkey;
304 	}
305 
306 	return pd;
307 }
308 EXPORT_SYMBOL(__ib_alloc_pd);
309 
310 /**
311  * ib_dealloc_pd - Deallocates a protection domain.
312  * @pd: The protection domain to deallocate.
313  *
314  * It is an error to call this function while any resources in the pd still
315  * exist.  The caller is responsible to synchronously destroy them and
316  * guarantee no new allocations will happen.
317  */
318 void ib_dealloc_pd(struct ib_pd *pd)
319 {
320 	int ret;
321 
322 	if (pd->__internal_mr) {
323 		ret = pd->device->dereg_mr(pd->__internal_mr);
324 		WARN_ON(ret);
325 		pd->__internal_mr = NULL;
326 	}
327 
328 	/* uverbs manipulates usecnt with proper locking, while the kabi
329 	   requires the caller to guarantee we can't race here. */
330 	WARN_ON(atomic_read(&pd->usecnt));
331 
332 	/* Making delalloc_pd a void return is a WIP, no driver should return
333 	   an error here. */
334 	ret = pd->device->dealloc_pd(pd);
335 	WARN_ONCE(ret, "Infiniband HW driver failed dealloc_pd");
336 }
337 EXPORT_SYMBOL(ib_dealloc_pd);
338 
339 /* Address handles */
340 
341 struct ib_ah *ib_create_ah(struct ib_pd *pd, struct ib_ah_attr *ah_attr)
342 {
343 	struct ib_ah *ah;
344 
345 	ah = pd->device->create_ah(pd, ah_attr, NULL);
346 
347 	if (!IS_ERR(ah)) {
348 		ah->device  = pd->device;
349 		ah->pd      = pd;
350 		ah->uobject = NULL;
351 		atomic_inc(&pd->usecnt);
352 	}
353 
354 	return ah;
355 }
356 EXPORT_SYMBOL(ib_create_ah);
357 
358 static int ib_get_header_version(const union rdma_network_hdr *hdr)
359 {
360 	const struct ip *ip4h = (const struct ip *)&hdr->roce4grh;
361 	struct ip ip4h_checked;
362 	const struct ip6_hdr *ip6h = (const struct ip6_hdr *)&hdr->ibgrh;
363 
364 	/* If it's IPv6, the version must be 6, otherwise, the first
365 	 * 20 bytes (before the IPv4 header) are garbled.
366 	 */
367 	if ((ip6h->ip6_vfc & IPV6_VERSION_MASK) != IPV6_VERSION)
368 		return (ip4h->ip_v == 4) ? 4 : 0;
369 	/* version may be 6 or 4 because the first 20 bytes could be garbled */
370 
371 	/* RoCE v2 requires no options, thus header length
372 	 * must be 5 words
373 	 */
374 	if (ip4h->ip_hl != 5)
375 		return 6;
376 
377 	/* Verify checksum.
378 	 * We can't write on scattered buffers so we need to copy to
379 	 * temp buffer.
380 	 */
381 	memcpy(&ip4h_checked, ip4h, sizeof(ip4h_checked));
382 	ip4h_checked.ip_sum = 0;
383 #if defined(INET) || defined(INET6)
384 	ip4h_checked.ip_sum = in_cksum_hdr(&ip4h_checked);
385 #endif
386 	/* if IPv4 header checksum is OK, believe it */
387 	if (ip4h->ip_sum == ip4h_checked.ip_sum)
388 		return 4;
389 	return 6;
390 }
391 
392 static enum rdma_network_type ib_get_net_type_by_grh(struct ib_device *device,
393 						     u8 port_num,
394 						     const struct ib_grh *grh)
395 {
396 	int grh_version;
397 
398 	if (rdma_protocol_ib(device, port_num))
399 		return RDMA_NETWORK_IB;
400 
401 	grh_version = ib_get_header_version((const union rdma_network_hdr *)grh);
402 
403 	if (grh_version == 4)
404 		return RDMA_NETWORK_IPV4;
405 
406 	if (grh->next_hdr == IPPROTO_UDP)
407 		return RDMA_NETWORK_IPV6;
408 
409 	return RDMA_NETWORK_ROCE_V1;
410 }
411 
412 struct find_gid_index_context {
413 	u16 vlan_id;
414 	enum ib_gid_type gid_type;
415 };
416 
417 
418 /*
419  * This function will return true only if a inspected GID index
420  * matches the request based on the GID type and VLAN configuration
421  */
422 static bool find_gid_index(const union ib_gid *gid,
423 			   const struct ib_gid_attr *gid_attr,
424 			   void *context)
425 {
426 	u16 vlan_diff;
427 	struct find_gid_index_context *ctx =
428 		(struct find_gid_index_context *)context;
429 
430 	if (ctx->gid_type != gid_attr->gid_type)
431 		return false;
432 
433 	/*
434 	 * The following will verify:
435 	 * 1. VLAN ID matching for VLAN tagged requests.
436 	 * 2. prio-tagged/untagged to prio-tagged/untagged matching.
437 	 *
438 	 * This XOR is valid, since 0x0 < vlan_id < 0x0FFF.
439 	 */
440 	vlan_diff = rdma_vlan_dev_vlan_id(gid_attr->ndev) ^ ctx->vlan_id;
441 
442 	return (vlan_diff == 0x0000 || vlan_diff == 0xFFFF);
443 }
444 
445 static int get_sgid_index_from_eth(struct ib_device *device, u8 port_num,
446 				   u16 vlan_id, const union ib_gid *sgid,
447 				   enum ib_gid_type gid_type,
448 				   u16 *gid_index)
449 {
450 	struct find_gid_index_context context = {.vlan_id = vlan_id,
451 						 .gid_type = gid_type};
452 
453 	return ib_find_gid_by_filter(device, sgid, port_num, find_gid_index,
454 				     &context, gid_index);
455 }
456 
457 static int get_gids_from_rdma_hdr(const union rdma_network_hdr *hdr,
458 				  enum rdma_network_type net_type,
459 				  union ib_gid *sgid, union ib_gid *dgid)
460 {
461 	struct sockaddr_in  src_in;
462 	struct sockaddr_in  dst_in;
463 	__be32 src_saddr, dst_saddr;
464 
465 	if (!sgid || !dgid)
466 		return -EINVAL;
467 
468 	if (net_type == RDMA_NETWORK_IPV4) {
469 		memcpy(&src_in.sin_addr.s_addr,
470 		       &hdr->roce4grh.ip_src, 4);
471 		memcpy(&dst_in.sin_addr.s_addr,
472 		       &hdr->roce4grh.ip_dst, 4);
473 		src_saddr = src_in.sin_addr.s_addr;
474 		dst_saddr = dst_in.sin_addr.s_addr;
475 		ipv6_addr_set_v4mapped(src_saddr,
476 				       (struct in6_addr *)sgid);
477 		ipv6_addr_set_v4mapped(dst_saddr,
478 				       (struct in6_addr *)dgid);
479 		return 0;
480 	} else if (net_type == RDMA_NETWORK_IPV6 ||
481 		   net_type == RDMA_NETWORK_IB) {
482 		*dgid = hdr->ibgrh.dgid;
483 		*sgid = hdr->ibgrh.sgid;
484 		return 0;
485 	} else {
486 		return -EINVAL;
487 	}
488 }
489 
490 int ib_init_ah_from_wc(struct ib_device *device, u8 port_num,
491 		       const struct ib_wc *wc, const struct ib_grh *grh,
492 		       struct ib_ah_attr *ah_attr)
493 {
494 	u32 flow_class;
495 	u16 gid_index = 0;
496 	int ret;
497 	enum rdma_network_type net_type = RDMA_NETWORK_IB;
498 	enum ib_gid_type gid_type = IB_GID_TYPE_IB;
499 	int hoplimit = 0xff;
500 	union ib_gid dgid;
501 	union ib_gid sgid;
502 
503 	memset(ah_attr, 0, sizeof *ah_attr);
504 	if (rdma_cap_eth_ah(device, port_num)) {
505 		if (wc->wc_flags & IB_WC_WITH_NETWORK_HDR_TYPE)
506 			net_type = wc->network_hdr_type;
507 		else
508 			net_type = ib_get_net_type_by_grh(device, port_num, grh);
509 		gid_type = ib_network_to_gid_type(net_type);
510 	}
511 	ret = get_gids_from_rdma_hdr((const union rdma_network_hdr *)grh, net_type,
512 				     &sgid, &dgid);
513 	if (ret)
514 		return ret;
515 
516 	if (rdma_protocol_roce(device, port_num)) {
517 		struct ib_gid_attr dgid_attr;
518 		const u16 vlan_id = (wc->wc_flags & IB_WC_WITH_VLAN) ?
519 				wc->vlan_id : 0xffff;
520 
521 		if (!(wc->wc_flags & IB_WC_GRH))
522 			return -EPROTOTYPE;
523 
524 		ret = get_sgid_index_from_eth(device, port_num, vlan_id,
525 					      &dgid, gid_type, &gid_index);
526 		if (ret)
527 			return ret;
528 
529 		ret = ib_get_cached_gid(device, port_num, gid_index, &dgid, &dgid_attr);
530 		if (ret)
531 			return ret;
532 
533 		if (dgid_attr.ndev == NULL)
534 			return -ENODEV;
535 
536 		ret = rdma_addr_find_l2_eth_by_grh(&dgid, &sgid, ah_attr->dmac,
537 		    dgid_attr.ndev, &hoplimit);
538 
539 		dev_put(dgid_attr.ndev);
540 		if (ret)
541 			return ret;
542 	}
543 
544 	ah_attr->dlid = wc->slid;
545 	ah_attr->sl = wc->sl;
546 	ah_attr->src_path_bits = wc->dlid_path_bits;
547 	ah_attr->port_num = port_num;
548 
549 	if (wc->wc_flags & IB_WC_GRH) {
550 		ah_attr->ah_flags = IB_AH_GRH;
551 		ah_attr->grh.dgid = sgid;
552 
553 		if (!rdma_cap_eth_ah(device, port_num)) {
554 			if (dgid.global.interface_id != cpu_to_be64(IB_SA_WELL_KNOWN_GUID)) {
555 				ret = ib_find_cached_gid_by_port(device, &dgid,
556 								 IB_GID_TYPE_IB,
557 								 port_num, NULL,
558 								 &gid_index);
559 				if (ret)
560 					return ret;
561 			}
562 		}
563 
564 		ah_attr->grh.sgid_index = (u8) gid_index;
565 		flow_class = be32_to_cpu(grh->version_tclass_flow);
566 		ah_attr->grh.flow_label = flow_class & 0xFFFFF;
567 		ah_attr->grh.hop_limit = hoplimit;
568 		ah_attr->grh.traffic_class = (flow_class >> 20) & 0xFF;
569 	}
570 	return 0;
571 }
572 EXPORT_SYMBOL(ib_init_ah_from_wc);
573 
574 struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc,
575 				   const struct ib_grh *grh, u8 port_num)
576 {
577 	struct ib_ah_attr ah_attr;
578 	int ret;
579 
580 	ret = ib_init_ah_from_wc(pd->device, port_num, wc, grh, &ah_attr);
581 	if (ret)
582 		return ERR_PTR(ret);
583 
584 	return ib_create_ah(pd, &ah_attr);
585 }
586 EXPORT_SYMBOL(ib_create_ah_from_wc);
587 
588 int ib_modify_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr)
589 {
590 	return ah->device->modify_ah ?
591 		ah->device->modify_ah(ah, ah_attr) :
592 		-ENOSYS;
593 }
594 EXPORT_SYMBOL(ib_modify_ah);
595 
596 int ib_query_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr)
597 {
598 	return ah->device->query_ah ?
599 		ah->device->query_ah(ah, ah_attr) :
600 		-ENOSYS;
601 }
602 EXPORT_SYMBOL(ib_query_ah);
603 
604 int ib_destroy_ah(struct ib_ah *ah)
605 {
606 	struct ib_pd *pd;
607 	int ret;
608 
609 	pd = ah->pd;
610 	ret = ah->device->destroy_ah(ah);
611 	if (!ret)
612 		atomic_dec(&pd->usecnt);
613 
614 	return ret;
615 }
616 EXPORT_SYMBOL(ib_destroy_ah);
617 
618 /* Shared receive queues */
619 
620 struct ib_srq *ib_create_srq(struct ib_pd *pd,
621 			     struct ib_srq_init_attr *srq_init_attr)
622 {
623 	struct ib_srq *srq;
624 
625 	if (!pd->device->create_srq)
626 		return ERR_PTR(-ENOSYS);
627 
628 	srq = pd->device->create_srq(pd, srq_init_attr, NULL);
629 
630 	if (!IS_ERR(srq)) {
631 		srq->device    	   = pd->device;
632 		srq->pd        	   = pd;
633 		srq->uobject       = NULL;
634 		srq->event_handler = srq_init_attr->event_handler;
635 		srq->srq_context   = srq_init_attr->srq_context;
636 		srq->srq_type      = srq_init_attr->srq_type;
637 		if (srq->srq_type == IB_SRQT_XRC) {
638 			srq->ext.xrc.xrcd = srq_init_attr->ext.xrc.xrcd;
639 			srq->ext.xrc.cq   = srq_init_attr->ext.xrc.cq;
640 			atomic_inc(&srq->ext.xrc.xrcd->usecnt);
641 			atomic_inc(&srq->ext.xrc.cq->usecnt);
642 		}
643 		atomic_inc(&pd->usecnt);
644 		atomic_set(&srq->usecnt, 0);
645 	}
646 
647 	return srq;
648 }
649 EXPORT_SYMBOL(ib_create_srq);
650 
651 int ib_modify_srq(struct ib_srq *srq,
652 		  struct ib_srq_attr *srq_attr,
653 		  enum ib_srq_attr_mask srq_attr_mask)
654 {
655 	return srq->device->modify_srq ?
656 		srq->device->modify_srq(srq, srq_attr, srq_attr_mask, NULL) :
657 		-ENOSYS;
658 }
659 EXPORT_SYMBOL(ib_modify_srq);
660 
661 int ib_query_srq(struct ib_srq *srq,
662 		 struct ib_srq_attr *srq_attr)
663 {
664 	return srq->device->query_srq ?
665 		srq->device->query_srq(srq, srq_attr) : -ENOSYS;
666 }
667 EXPORT_SYMBOL(ib_query_srq);
668 
669 int ib_destroy_srq(struct ib_srq *srq)
670 {
671 	struct ib_pd *pd;
672 	enum ib_srq_type srq_type;
673 	struct ib_xrcd *uninitialized_var(xrcd);
674 	struct ib_cq *uninitialized_var(cq);
675 	int ret;
676 
677 	if (atomic_read(&srq->usecnt))
678 		return -EBUSY;
679 
680 	pd = srq->pd;
681 	srq_type = srq->srq_type;
682 	if (srq_type == IB_SRQT_XRC) {
683 		xrcd = srq->ext.xrc.xrcd;
684 		cq = srq->ext.xrc.cq;
685 	}
686 
687 	ret = srq->device->destroy_srq(srq);
688 	if (!ret) {
689 		atomic_dec(&pd->usecnt);
690 		if (srq_type == IB_SRQT_XRC) {
691 			atomic_dec(&xrcd->usecnt);
692 			atomic_dec(&cq->usecnt);
693 		}
694 	}
695 
696 	return ret;
697 }
698 EXPORT_SYMBOL(ib_destroy_srq);
699 
700 /* Queue pairs */
701 
702 static void __ib_shared_qp_event_handler(struct ib_event *event, void *context)
703 {
704 	struct ib_qp *qp = context;
705 	unsigned long flags;
706 
707 	spin_lock_irqsave(&qp->device->event_handler_lock, flags);
708 	list_for_each_entry(event->element.qp, &qp->open_list, open_list)
709 		if (event->element.qp->event_handler)
710 			event->element.qp->event_handler(event, event->element.qp->qp_context);
711 	spin_unlock_irqrestore(&qp->device->event_handler_lock, flags);
712 }
713 
714 static void __ib_insert_xrcd_qp(struct ib_xrcd *xrcd, struct ib_qp *qp)
715 {
716 	mutex_lock(&xrcd->tgt_qp_mutex);
717 	list_add(&qp->xrcd_list, &xrcd->tgt_qp_list);
718 	mutex_unlock(&xrcd->tgt_qp_mutex);
719 }
720 
721 static struct ib_qp *__ib_open_qp(struct ib_qp *real_qp,
722 				  void (*event_handler)(struct ib_event *, void *),
723 				  void *qp_context)
724 {
725 	struct ib_qp *qp;
726 	unsigned long flags;
727 
728 	qp = kzalloc(sizeof *qp, GFP_KERNEL);
729 	if (!qp)
730 		return ERR_PTR(-ENOMEM);
731 
732 	qp->real_qp = real_qp;
733 	atomic_inc(&real_qp->usecnt);
734 	qp->device = real_qp->device;
735 	qp->event_handler = event_handler;
736 	qp->qp_context = qp_context;
737 	qp->qp_num = real_qp->qp_num;
738 	qp->qp_type = real_qp->qp_type;
739 
740 	spin_lock_irqsave(&real_qp->device->event_handler_lock, flags);
741 	list_add(&qp->open_list, &real_qp->open_list);
742 	spin_unlock_irqrestore(&real_qp->device->event_handler_lock, flags);
743 
744 	return qp;
745 }
746 
747 struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd,
748 			 struct ib_qp_open_attr *qp_open_attr)
749 {
750 	struct ib_qp *qp, *real_qp;
751 
752 	if (qp_open_attr->qp_type != IB_QPT_XRC_TGT)
753 		return ERR_PTR(-EINVAL);
754 
755 	qp = ERR_PTR(-EINVAL);
756 	mutex_lock(&xrcd->tgt_qp_mutex);
757 	list_for_each_entry(real_qp, &xrcd->tgt_qp_list, xrcd_list) {
758 		if (real_qp->qp_num == qp_open_attr->qp_num) {
759 			qp = __ib_open_qp(real_qp, qp_open_attr->event_handler,
760 					  qp_open_attr->qp_context);
761 			break;
762 		}
763 	}
764 	mutex_unlock(&xrcd->tgt_qp_mutex);
765 	return qp;
766 }
767 EXPORT_SYMBOL(ib_open_qp);
768 
769 static struct ib_qp *ib_create_xrc_qp(struct ib_qp *qp,
770 		struct ib_qp_init_attr *qp_init_attr)
771 {
772 	struct ib_qp *real_qp = qp;
773 
774 	qp->event_handler = __ib_shared_qp_event_handler;
775 	qp->qp_context = qp;
776 	qp->pd = NULL;
777 	qp->send_cq = qp->recv_cq = NULL;
778 	qp->srq = NULL;
779 	qp->xrcd = qp_init_attr->xrcd;
780 	atomic_inc(&qp_init_attr->xrcd->usecnt);
781 	INIT_LIST_HEAD(&qp->open_list);
782 
783 	qp = __ib_open_qp(real_qp, qp_init_attr->event_handler,
784 			  qp_init_attr->qp_context);
785 	if (!IS_ERR(qp))
786 		__ib_insert_xrcd_qp(qp_init_attr->xrcd, real_qp);
787 	else
788 		real_qp->device->destroy_qp(real_qp);
789 	return qp;
790 }
791 
792 struct ib_qp *ib_create_qp(struct ib_pd *pd,
793 			   struct ib_qp_init_attr *qp_init_attr)
794 {
795 	struct ib_device *device = pd ? pd->device : qp_init_attr->xrcd->device;
796 	struct ib_qp *qp;
797 
798 	if (qp_init_attr->rwq_ind_tbl &&
799 	    (qp_init_attr->recv_cq ||
800 	    qp_init_attr->srq || qp_init_attr->cap.max_recv_wr ||
801 	    qp_init_attr->cap.max_recv_sge))
802 		return ERR_PTR(-EINVAL);
803 
804 	qp = device->create_qp(pd, qp_init_attr, NULL);
805 	if (IS_ERR(qp))
806 		return qp;
807 
808 	qp->device     = device;
809 	qp->real_qp    = qp;
810 	qp->uobject    = NULL;
811 	qp->qp_type    = qp_init_attr->qp_type;
812 	qp->rwq_ind_tbl = qp_init_attr->rwq_ind_tbl;
813 
814 	atomic_set(&qp->usecnt, 0);
815 	spin_lock_init(&qp->mr_lock);
816 
817 	if (qp_init_attr->qp_type == IB_QPT_XRC_TGT)
818 		return ib_create_xrc_qp(qp, qp_init_attr);
819 
820 	qp->event_handler = qp_init_attr->event_handler;
821 	qp->qp_context = qp_init_attr->qp_context;
822 	if (qp_init_attr->qp_type == IB_QPT_XRC_INI) {
823 		qp->recv_cq = NULL;
824 		qp->srq = NULL;
825 	} else {
826 		qp->recv_cq = qp_init_attr->recv_cq;
827 		if (qp_init_attr->recv_cq)
828 			atomic_inc(&qp_init_attr->recv_cq->usecnt);
829 		qp->srq = qp_init_attr->srq;
830 		if (qp->srq)
831 			atomic_inc(&qp_init_attr->srq->usecnt);
832 	}
833 
834 	qp->pd	    = pd;
835 	qp->send_cq = qp_init_attr->send_cq;
836 	qp->xrcd    = NULL;
837 
838 	atomic_inc(&pd->usecnt);
839 	if (qp_init_attr->send_cq)
840 		atomic_inc(&qp_init_attr->send_cq->usecnt);
841 	if (qp_init_attr->rwq_ind_tbl)
842 		atomic_inc(&qp->rwq_ind_tbl->usecnt);
843 
844 	/*
845 	 * Note: all hw drivers guarantee that max_send_sge is lower than
846 	 * the device RDMA WRITE SGE limit but not all hw drivers ensure that
847 	 * max_send_sge <= max_sge_rd.
848 	 */
849 	qp->max_write_sge = qp_init_attr->cap.max_send_sge;
850 	qp->max_read_sge = min_t(u32, qp_init_attr->cap.max_send_sge,
851 				 device->attrs.max_sge_rd);
852 
853 	return qp;
854 }
855 EXPORT_SYMBOL(ib_create_qp);
856 
857 static const struct {
858 	int			valid;
859 	enum ib_qp_attr_mask	req_param[IB_QPT_MAX];
860 	enum ib_qp_attr_mask	opt_param[IB_QPT_MAX];
861 } qp_state_table[IB_QPS_ERR + 1][IB_QPS_ERR + 1] = {
862 	[IB_QPS_RESET] = {
863 		[IB_QPS_RESET] = { .valid = 1 },
864 		[IB_QPS_INIT]  = {
865 			.valid = 1,
866 			.req_param = {
867 				[IB_QPT_UD]  = (IB_QP_PKEY_INDEX		|
868 						IB_QP_PORT			|
869 						IB_QP_QKEY),
870 				[IB_QPT_RAW_PACKET] = IB_QP_PORT,
871 				[IB_QPT_UC]  = (IB_QP_PKEY_INDEX		|
872 						IB_QP_PORT			|
873 						IB_QP_ACCESS_FLAGS),
874 				[IB_QPT_RC]  = (IB_QP_PKEY_INDEX		|
875 						IB_QP_PORT			|
876 						IB_QP_ACCESS_FLAGS),
877 				[IB_QPT_XRC_INI] = (IB_QP_PKEY_INDEX		|
878 						IB_QP_PORT			|
879 						IB_QP_ACCESS_FLAGS),
880 				[IB_QPT_XRC_TGT] = (IB_QP_PKEY_INDEX		|
881 						IB_QP_PORT			|
882 						IB_QP_ACCESS_FLAGS),
883 				[IB_QPT_SMI] = (IB_QP_PKEY_INDEX		|
884 						IB_QP_QKEY),
885 				[IB_QPT_GSI] = (IB_QP_PKEY_INDEX		|
886 						IB_QP_QKEY),
887 			}
888 		},
889 	},
890 	[IB_QPS_INIT]  = {
891 		[IB_QPS_RESET] = { .valid = 1 },
892 		[IB_QPS_ERR] =   { .valid = 1 },
893 		[IB_QPS_INIT]  = {
894 			.valid = 1,
895 			.opt_param = {
896 				[IB_QPT_UD]  = (IB_QP_PKEY_INDEX		|
897 						IB_QP_PORT			|
898 						IB_QP_QKEY),
899 				[IB_QPT_UC]  = (IB_QP_PKEY_INDEX		|
900 						IB_QP_PORT			|
901 						IB_QP_ACCESS_FLAGS),
902 				[IB_QPT_RC]  = (IB_QP_PKEY_INDEX		|
903 						IB_QP_PORT			|
904 						IB_QP_ACCESS_FLAGS),
905 				[IB_QPT_XRC_INI] = (IB_QP_PKEY_INDEX		|
906 						IB_QP_PORT			|
907 						IB_QP_ACCESS_FLAGS),
908 				[IB_QPT_XRC_TGT] = (IB_QP_PKEY_INDEX		|
909 						IB_QP_PORT			|
910 						IB_QP_ACCESS_FLAGS),
911 				[IB_QPT_SMI] = (IB_QP_PKEY_INDEX		|
912 						IB_QP_QKEY),
913 				[IB_QPT_GSI] = (IB_QP_PKEY_INDEX		|
914 						IB_QP_QKEY),
915 			}
916 		},
917 		[IB_QPS_RTR]   = {
918 			.valid = 1,
919 			.req_param = {
920 				[IB_QPT_UC]  = (IB_QP_AV			|
921 						IB_QP_PATH_MTU			|
922 						IB_QP_DEST_QPN			|
923 						IB_QP_RQ_PSN),
924 				[IB_QPT_RC]  = (IB_QP_AV			|
925 						IB_QP_PATH_MTU			|
926 						IB_QP_DEST_QPN			|
927 						IB_QP_RQ_PSN			|
928 						IB_QP_MAX_DEST_RD_ATOMIC	|
929 						IB_QP_MIN_RNR_TIMER),
930 				[IB_QPT_XRC_INI] = (IB_QP_AV			|
931 						IB_QP_PATH_MTU			|
932 						IB_QP_DEST_QPN			|
933 						IB_QP_RQ_PSN),
934 				[IB_QPT_XRC_TGT] = (IB_QP_AV			|
935 						IB_QP_PATH_MTU			|
936 						IB_QP_DEST_QPN			|
937 						IB_QP_RQ_PSN			|
938 						IB_QP_MAX_DEST_RD_ATOMIC	|
939 						IB_QP_MIN_RNR_TIMER),
940 			},
941 			.opt_param = {
942 				 [IB_QPT_UD]  = (IB_QP_PKEY_INDEX		|
943 						 IB_QP_QKEY),
944 				 [IB_QPT_UC]  = (IB_QP_ALT_PATH			|
945 						 IB_QP_ACCESS_FLAGS		|
946 						 IB_QP_PKEY_INDEX),
947 				 [IB_QPT_RC]  = (IB_QP_ALT_PATH			|
948 						 IB_QP_ACCESS_FLAGS		|
949 						 IB_QP_PKEY_INDEX),
950 				 [IB_QPT_XRC_INI] = (IB_QP_ALT_PATH		|
951 						 IB_QP_ACCESS_FLAGS		|
952 						 IB_QP_PKEY_INDEX),
953 				 [IB_QPT_XRC_TGT] = (IB_QP_ALT_PATH		|
954 						 IB_QP_ACCESS_FLAGS		|
955 						 IB_QP_PKEY_INDEX),
956 				 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX		|
957 						 IB_QP_QKEY),
958 				 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX		|
959 						 IB_QP_QKEY),
960 			 },
961 		},
962 	},
963 	[IB_QPS_RTR]   = {
964 		[IB_QPS_RESET] = { .valid = 1 },
965 		[IB_QPS_ERR] =   { .valid = 1 },
966 		[IB_QPS_RTS]   = {
967 			.valid = 1,
968 			.req_param = {
969 				[IB_QPT_UD]  = IB_QP_SQ_PSN,
970 				[IB_QPT_UC]  = IB_QP_SQ_PSN,
971 				[IB_QPT_RC]  = (IB_QP_TIMEOUT			|
972 						IB_QP_RETRY_CNT			|
973 						IB_QP_RNR_RETRY			|
974 						IB_QP_SQ_PSN			|
975 						IB_QP_MAX_QP_RD_ATOMIC),
976 				[IB_QPT_XRC_INI] = (IB_QP_TIMEOUT		|
977 						IB_QP_RETRY_CNT			|
978 						IB_QP_RNR_RETRY			|
979 						IB_QP_SQ_PSN			|
980 						IB_QP_MAX_QP_RD_ATOMIC),
981 				[IB_QPT_XRC_TGT] = (IB_QP_TIMEOUT		|
982 						IB_QP_SQ_PSN),
983 				[IB_QPT_SMI] = IB_QP_SQ_PSN,
984 				[IB_QPT_GSI] = IB_QP_SQ_PSN,
985 			},
986 			.opt_param = {
987 				 [IB_QPT_UD]  = (IB_QP_CUR_STATE		|
988 						 IB_QP_QKEY),
989 				 [IB_QPT_UC]  = (IB_QP_CUR_STATE		|
990 						 IB_QP_ALT_PATH			|
991 						 IB_QP_ACCESS_FLAGS		|
992 						 IB_QP_PATH_MIG_STATE),
993 				 [IB_QPT_RC]  = (IB_QP_CUR_STATE		|
994 						 IB_QP_ALT_PATH			|
995 						 IB_QP_ACCESS_FLAGS		|
996 						 IB_QP_MIN_RNR_TIMER		|
997 						 IB_QP_PATH_MIG_STATE),
998 				 [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE		|
999 						 IB_QP_ALT_PATH			|
1000 						 IB_QP_ACCESS_FLAGS		|
1001 						 IB_QP_PATH_MIG_STATE),
1002 				 [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE		|
1003 						 IB_QP_ALT_PATH			|
1004 						 IB_QP_ACCESS_FLAGS		|
1005 						 IB_QP_MIN_RNR_TIMER		|
1006 						 IB_QP_PATH_MIG_STATE),
1007 				 [IB_QPT_SMI] = (IB_QP_CUR_STATE		|
1008 						 IB_QP_QKEY),
1009 				 [IB_QPT_GSI] = (IB_QP_CUR_STATE		|
1010 						 IB_QP_QKEY),
1011 			 }
1012 		}
1013 	},
1014 	[IB_QPS_RTS]   = {
1015 		[IB_QPS_RESET] = { .valid = 1 },
1016 		[IB_QPS_ERR] =   { .valid = 1 },
1017 		[IB_QPS_RTS]   = {
1018 			.valid = 1,
1019 			.opt_param = {
1020 				[IB_QPT_UD]  = (IB_QP_CUR_STATE			|
1021 						IB_QP_QKEY),
1022 				[IB_QPT_UC]  = (IB_QP_CUR_STATE			|
1023 						IB_QP_ACCESS_FLAGS		|
1024 						IB_QP_ALT_PATH			|
1025 						IB_QP_PATH_MIG_STATE),
1026 				[IB_QPT_RC]  = (IB_QP_CUR_STATE			|
1027 						IB_QP_ACCESS_FLAGS		|
1028 						IB_QP_ALT_PATH			|
1029 						IB_QP_PATH_MIG_STATE		|
1030 						IB_QP_MIN_RNR_TIMER),
1031 				[IB_QPT_XRC_INI] = (IB_QP_CUR_STATE		|
1032 						IB_QP_ACCESS_FLAGS		|
1033 						IB_QP_ALT_PATH			|
1034 						IB_QP_PATH_MIG_STATE),
1035 				[IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE		|
1036 						IB_QP_ACCESS_FLAGS		|
1037 						IB_QP_ALT_PATH			|
1038 						IB_QP_PATH_MIG_STATE		|
1039 						IB_QP_MIN_RNR_TIMER),
1040 				[IB_QPT_SMI] = (IB_QP_CUR_STATE			|
1041 						IB_QP_QKEY),
1042 				[IB_QPT_GSI] = (IB_QP_CUR_STATE			|
1043 						IB_QP_QKEY),
1044 			}
1045 		},
1046 		[IB_QPS_SQD]   = {
1047 			.valid = 1,
1048 			.opt_param = {
1049 				[IB_QPT_UD]  = IB_QP_EN_SQD_ASYNC_NOTIFY,
1050 				[IB_QPT_UC]  = IB_QP_EN_SQD_ASYNC_NOTIFY,
1051 				[IB_QPT_RC]  = IB_QP_EN_SQD_ASYNC_NOTIFY,
1052 				[IB_QPT_XRC_INI] = IB_QP_EN_SQD_ASYNC_NOTIFY,
1053 				[IB_QPT_XRC_TGT] = IB_QP_EN_SQD_ASYNC_NOTIFY, /* ??? */
1054 				[IB_QPT_SMI] = IB_QP_EN_SQD_ASYNC_NOTIFY,
1055 				[IB_QPT_GSI] = IB_QP_EN_SQD_ASYNC_NOTIFY
1056 			}
1057 		},
1058 	},
1059 	[IB_QPS_SQD]   = {
1060 		[IB_QPS_RESET] = { .valid = 1 },
1061 		[IB_QPS_ERR] =   { .valid = 1 },
1062 		[IB_QPS_RTS]   = {
1063 			.valid = 1,
1064 			.opt_param = {
1065 				[IB_QPT_UD]  = (IB_QP_CUR_STATE			|
1066 						IB_QP_QKEY),
1067 				[IB_QPT_UC]  = (IB_QP_CUR_STATE			|
1068 						IB_QP_ALT_PATH			|
1069 						IB_QP_ACCESS_FLAGS		|
1070 						IB_QP_PATH_MIG_STATE),
1071 				[IB_QPT_RC]  = (IB_QP_CUR_STATE			|
1072 						IB_QP_ALT_PATH			|
1073 						IB_QP_ACCESS_FLAGS		|
1074 						IB_QP_MIN_RNR_TIMER		|
1075 						IB_QP_PATH_MIG_STATE),
1076 				[IB_QPT_XRC_INI] = (IB_QP_CUR_STATE		|
1077 						IB_QP_ALT_PATH			|
1078 						IB_QP_ACCESS_FLAGS		|
1079 						IB_QP_PATH_MIG_STATE),
1080 				[IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE		|
1081 						IB_QP_ALT_PATH			|
1082 						IB_QP_ACCESS_FLAGS		|
1083 						IB_QP_MIN_RNR_TIMER		|
1084 						IB_QP_PATH_MIG_STATE),
1085 				[IB_QPT_SMI] = (IB_QP_CUR_STATE			|
1086 						IB_QP_QKEY),
1087 				[IB_QPT_GSI] = (IB_QP_CUR_STATE			|
1088 						IB_QP_QKEY),
1089 			}
1090 		},
1091 		[IB_QPS_SQD]   = {
1092 			.valid = 1,
1093 			.opt_param = {
1094 				[IB_QPT_UD]  = (IB_QP_PKEY_INDEX		|
1095 						IB_QP_QKEY),
1096 				[IB_QPT_UC]  = (IB_QP_AV			|
1097 						IB_QP_ALT_PATH			|
1098 						IB_QP_ACCESS_FLAGS		|
1099 						IB_QP_PKEY_INDEX		|
1100 						IB_QP_PATH_MIG_STATE),
1101 				[IB_QPT_RC]  = (IB_QP_PORT			|
1102 						IB_QP_AV			|
1103 						IB_QP_TIMEOUT			|
1104 						IB_QP_RETRY_CNT			|
1105 						IB_QP_RNR_RETRY			|
1106 						IB_QP_MAX_QP_RD_ATOMIC		|
1107 						IB_QP_MAX_DEST_RD_ATOMIC	|
1108 						IB_QP_ALT_PATH			|
1109 						IB_QP_ACCESS_FLAGS		|
1110 						IB_QP_PKEY_INDEX		|
1111 						IB_QP_MIN_RNR_TIMER		|
1112 						IB_QP_PATH_MIG_STATE),
1113 				[IB_QPT_XRC_INI] = (IB_QP_PORT			|
1114 						IB_QP_AV			|
1115 						IB_QP_TIMEOUT			|
1116 						IB_QP_RETRY_CNT			|
1117 						IB_QP_RNR_RETRY			|
1118 						IB_QP_MAX_QP_RD_ATOMIC		|
1119 						IB_QP_ALT_PATH			|
1120 						IB_QP_ACCESS_FLAGS		|
1121 						IB_QP_PKEY_INDEX		|
1122 						IB_QP_PATH_MIG_STATE),
1123 				[IB_QPT_XRC_TGT] = (IB_QP_PORT			|
1124 						IB_QP_AV			|
1125 						IB_QP_TIMEOUT			|
1126 						IB_QP_MAX_DEST_RD_ATOMIC	|
1127 						IB_QP_ALT_PATH			|
1128 						IB_QP_ACCESS_FLAGS		|
1129 						IB_QP_PKEY_INDEX		|
1130 						IB_QP_MIN_RNR_TIMER		|
1131 						IB_QP_PATH_MIG_STATE),
1132 				[IB_QPT_SMI] = (IB_QP_PKEY_INDEX		|
1133 						IB_QP_QKEY),
1134 				[IB_QPT_GSI] = (IB_QP_PKEY_INDEX		|
1135 						IB_QP_QKEY),
1136 			}
1137 		}
1138 	},
1139 	[IB_QPS_SQE]   = {
1140 		[IB_QPS_RESET] = { .valid = 1 },
1141 		[IB_QPS_ERR] =   { .valid = 1 },
1142 		[IB_QPS_RTS]   = {
1143 			.valid = 1,
1144 			.opt_param = {
1145 				[IB_QPT_UD]  = (IB_QP_CUR_STATE			|
1146 						IB_QP_QKEY),
1147 				[IB_QPT_UC]  = (IB_QP_CUR_STATE			|
1148 						IB_QP_ACCESS_FLAGS),
1149 				[IB_QPT_SMI] = (IB_QP_CUR_STATE			|
1150 						IB_QP_QKEY),
1151 				[IB_QPT_GSI] = (IB_QP_CUR_STATE			|
1152 						IB_QP_QKEY),
1153 			}
1154 		}
1155 	},
1156 	[IB_QPS_ERR] = {
1157 		[IB_QPS_RESET] = { .valid = 1 },
1158 		[IB_QPS_ERR] =   { .valid = 1 }
1159 	}
1160 };
1161 
1162 int ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state,
1163 		       enum ib_qp_type type, enum ib_qp_attr_mask mask,
1164 		       enum rdma_link_layer ll)
1165 {
1166 	enum ib_qp_attr_mask req_param, opt_param;
1167 
1168 	if (cur_state  < 0 || cur_state  > IB_QPS_ERR ||
1169 	    next_state < 0 || next_state > IB_QPS_ERR)
1170 		return 0;
1171 
1172 	if (mask & IB_QP_CUR_STATE  &&
1173 	    cur_state != IB_QPS_RTR && cur_state != IB_QPS_RTS &&
1174 	    cur_state != IB_QPS_SQD && cur_state != IB_QPS_SQE)
1175 		return 0;
1176 
1177 	if (!qp_state_table[cur_state][next_state].valid)
1178 		return 0;
1179 
1180 	req_param = qp_state_table[cur_state][next_state].req_param[type];
1181 	opt_param = qp_state_table[cur_state][next_state].opt_param[type];
1182 
1183 	if ((mask & req_param) != req_param)
1184 		return 0;
1185 
1186 	if (mask & ~(req_param | opt_param | IB_QP_STATE))
1187 		return 0;
1188 
1189 	return 1;
1190 }
1191 EXPORT_SYMBOL(ib_modify_qp_is_ok);
1192 
1193 int ib_resolve_eth_dmac(struct ib_device *device,
1194 			struct ib_ah_attr *ah_attr)
1195 {
1196 	struct ib_gid_attr sgid_attr;
1197 	union ib_gid sgid;
1198 	int hop_limit;
1199 	int ret;
1200 
1201 	if (ah_attr->port_num < rdma_start_port(device) ||
1202 	    ah_attr->port_num > rdma_end_port(device))
1203 		return -EINVAL;
1204 
1205 	if (!rdma_cap_eth_ah(device, ah_attr->port_num))
1206 		return 0;
1207 
1208 	if (rdma_is_multicast_addr((struct in6_addr *)ah_attr->grh.dgid.raw)) {
1209 		if (ipv6_addr_v4mapped((struct in6_addr *)ah_attr->grh.dgid.raw)) {
1210 			__be32 addr = 0;
1211 
1212 			memcpy(&addr, ah_attr->grh.dgid.raw + 12, 4);
1213 			ip_eth_mc_map(addr, (char *)ah_attr->dmac);
1214 		} else {
1215 			ipv6_eth_mc_map((struct in6_addr *)ah_attr->grh.dgid.raw,
1216 					(char *)ah_attr->dmac);
1217 		}
1218 		return 0;
1219 	}
1220 
1221 	ret = ib_query_gid(device,
1222 			   ah_attr->port_num,
1223 			   ah_attr->grh.sgid_index,
1224 			   &sgid, &sgid_attr);
1225 	if (ret != 0)
1226 		return (ret);
1227 	if (!sgid_attr.ndev)
1228 		return -ENXIO;
1229 
1230 	ret = rdma_addr_find_l2_eth_by_grh(&sgid,
1231 					   &ah_attr->grh.dgid,
1232 					   ah_attr->dmac,
1233 					   sgid_attr.ndev, &hop_limit);
1234 	dev_put(sgid_attr.ndev);
1235 
1236 	ah_attr->grh.hop_limit = hop_limit;
1237 	return ret;
1238 }
1239 EXPORT_SYMBOL(ib_resolve_eth_dmac);
1240 
1241 
1242 int ib_modify_qp(struct ib_qp *qp,
1243 		 struct ib_qp_attr *qp_attr,
1244 		 int qp_attr_mask)
1245 {
1246 	if (qp_attr_mask & IB_QP_AV) {
1247 		int ret;
1248 
1249 		ret = ib_resolve_eth_dmac(qp->device, &qp_attr->ah_attr);
1250 		if (ret)
1251 			return ret;
1252 	}
1253 
1254 	return qp->device->modify_qp(qp->real_qp, qp_attr, qp_attr_mask, NULL);
1255 }
1256 EXPORT_SYMBOL(ib_modify_qp);
1257 
1258 int ib_query_qp(struct ib_qp *qp,
1259 		struct ib_qp_attr *qp_attr,
1260 		int qp_attr_mask,
1261 		struct ib_qp_init_attr *qp_init_attr)
1262 {
1263 	return qp->device->query_qp ?
1264 		qp->device->query_qp(qp->real_qp, qp_attr, qp_attr_mask, qp_init_attr) :
1265 		-ENOSYS;
1266 }
1267 EXPORT_SYMBOL(ib_query_qp);
1268 
1269 int ib_close_qp(struct ib_qp *qp)
1270 {
1271 	struct ib_qp *real_qp;
1272 	unsigned long flags;
1273 
1274 	real_qp = qp->real_qp;
1275 	if (real_qp == qp)
1276 		return -EINVAL;
1277 
1278 	spin_lock_irqsave(&real_qp->device->event_handler_lock, flags);
1279 	list_del(&qp->open_list);
1280 	spin_unlock_irqrestore(&real_qp->device->event_handler_lock, flags);
1281 
1282 	atomic_dec(&real_qp->usecnt);
1283 	kfree(qp);
1284 
1285 	return 0;
1286 }
1287 EXPORT_SYMBOL(ib_close_qp);
1288 
1289 static int __ib_destroy_shared_qp(struct ib_qp *qp)
1290 {
1291 	struct ib_xrcd *xrcd;
1292 	struct ib_qp *real_qp;
1293 	int ret;
1294 
1295 	real_qp = qp->real_qp;
1296 	xrcd = real_qp->xrcd;
1297 
1298 	mutex_lock(&xrcd->tgt_qp_mutex);
1299 	ib_close_qp(qp);
1300 	if (atomic_read(&real_qp->usecnt) == 0)
1301 		list_del(&real_qp->xrcd_list);
1302 	else
1303 		real_qp = NULL;
1304 	mutex_unlock(&xrcd->tgt_qp_mutex);
1305 
1306 	if (real_qp) {
1307 		ret = ib_destroy_qp(real_qp);
1308 		if (!ret)
1309 			atomic_dec(&xrcd->usecnt);
1310 		else
1311 			__ib_insert_xrcd_qp(xrcd, real_qp);
1312 	}
1313 
1314 	return 0;
1315 }
1316 
1317 int ib_destroy_qp(struct ib_qp *qp)
1318 {
1319 	struct ib_pd *pd;
1320 	struct ib_cq *scq, *rcq;
1321 	struct ib_srq *srq;
1322 	struct ib_rwq_ind_table *ind_tbl;
1323 	int ret;
1324 
1325 	if (atomic_read(&qp->usecnt))
1326 		return -EBUSY;
1327 
1328 	if (qp->real_qp != qp)
1329 		return __ib_destroy_shared_qp(qp);
1330 
1331 	pd   = qp->pd;
1332 	scq  = qp->send_cq;
1333 	rcq  = qp->recv_cq;
1334 	srq  = qp->srq;
1335 	ind_tbl = qp->rwq_ind_tbl;
1336 
1337 	ret = qp->device->destroy_qp(qp);
1338 	if (!ret) {
1339 		if (pd)
1340 			atomic_dec(&pd->usecnt);
1341 		if (scq)
1342 			atomic_dec(&scq->usecnt);
1343 		if (rcq)
1344 			atomic_dec(&rcq->usecnt);
1345 		if (srq)
1346 			atomic_dec(&srq->usecnt);
1347 		if (ind_tbl)
1348 			atomic_dec(&ind_tbl->usecnt);
1349 	}
1350 
1351 	return ret;
1352 }
1353 EXPORT_SYMBOL(ib_destroy_qp);
1354 
1355 /* Completion queues */
1356 
1357 struct ib_cq *ib_create_cq(struct ib_device *device,
1358 			   ib_comp_handler comp_handler,
1359 			   void (*event_handler)(struct ib_event *, void *),
1360 			   void *cq_context,
1361 			   const struct ib_cq_init_attr *cq_attr)
1362 {
1363 	struct ib_cq *cq;
1364 
1365 	cq = device->create_cq(device, cq_attr, NULL, NULL);
1366 
1367 	if (!IS_ERR(cq)) {
1368 		cq->device        = device;
1369 		cq->uobject       = NULL;
1370 		cq->comp_handler  = comp_handler;
1371 		cq->event_handler = event_handler;
1372 		cq->cq_context    = cq_context;
1373 		atomic_set(&cq->usecnt, 0);
1374 	}
1375 
1376 	return cq;
1377 }
1378 EXPORT_SYMBOL(ib_create_cq);
1379 
1380 int ib_modify_cq(struct ib_cq *cq, u16 cq_count, u16 cq_period)
1381 {
1382 	return cq->device->modify_cq ?
1383 		cq->device->modify_cq(cq, cq_count, cq_period) : -ENOSYS;
1384 }
1385 EXPORT_SYMBOL(ib_modify_cq);
1386 
1387 int ib_destroy_cq(struct ib_cq *cq)
1388 {
1389 	if (atomic_read(&cq->usecnt))
1390 		return -EBUSY;
1391 
1392 	return cq->device->destroy_cq(cq);
1393 }
1394 EXPORT_SYMBOL(ib_destroy_cq);
1395 
1396 int ib_resize_cq(struct ib_cq *cq, int cqe)
1397 {
1398 	return cq->device->resize_cq ?
1399 		cq->device->resize_cq(cq, cqe, NULL) : -ENOSYS;
1400 }
1401 EXPORT_SYMBOL(ib_resize_cq);
1402 
1403 /* Memory regions */
1404 
1405 int ib_dereg_mr(struct ib_mr *mr)
1406 {
1407 	struct ib_pd *pd = mr->pd;
1408 	int ret;
1409 
1410 	ret = mr->device->dereg_mr(mr);
1411 	if (!ret)
1412 		atomic_dec(&pd->usecnt);
1413 
1414 	return ret;
1415 }
1416 EXPORT_SYMBOL(ib_dereg_mr);
1417 
1418 /**
1419  * ib_alloc_mr() - Allocates a memory region
1420  * @pd:            protection domain associated with the region
1421  * @mr_type:       memory region type
1422  * @max_num_sg:    maximum sg entries available for registration.
1423  *
1424  * Notes:
1425  * Memory registeration page/sg lists must not exceed max_num_sg.
1426  * For mr_type IB_MR_TYPE_MEM_REG, the total length cannot exceed
1427  * max_num_sg * used_page_size.
1428  *
1429  */
1430 struct ib_mr *ib_alloc_mr(struct ib_pd *pd,
1431 			  enum ib_mr_type mr_type,
1432 			  u32 max_num_sg)
1433 {
1434 	struct ib_mr *mr;
1435 
1436 	if (!pd->device->alloc_mr)
1437 		return ERR_PTR(-ENOSYS);
1438 
1439 	mr = pd->device->alloc_mr(pd, mr_type, max_num_sg);
1440 	if (!IS_ERR(mr)) {
1441 		mr->device  = pd->device;
1442 		mr->pd      = pd;
1443 		mr->uobject = NULL;
1444 		atomic_inc(&pd->usecnt);
1445 		mr->need_inval = false;
1446 	}
1447 
1448 	return mr;
1449 }
1450 EXPORT_SYMBOL(ib_alloc_mr);
1451 
1452 /* "Fast" memory regions */
1453 
1454 struct ib_fmr *ib_alloc_fmr(struct ib_pd *pd,
1455 			    int mr_access_flags,
1456 			    struct ib_fmr_attr *fmr_attr)
1457 {
1458 	struct ib_fmr *fmr;
1459 
1460 	if (!pd->device->alloc_fmr)
1461 		return ERR_PTR(-ENOSYS);
1462 
1463 	fmr = pd->device->alloc_fmr(pd, mr_access_flags, fmr_attr);
1464 	if (!IS_ERR(fmr)) {
1465 		fmr->device = pd->device;
1466 		fmr->pd     = pd;
1467 		atomic_inc(&pd->usecnt);
1468 	}
1469 
1470 	return fmr;
1471 }
1472 EXPORT_SYMBOL(ib_alloc_fmr);
1473 
1474 int ib_unmap_fmr(struct list_head *fmr_list)
1475 {
1476 	struct ib_fmr *fmr;
1477 
1478 	if (list_empty(fmr_list))
1479 		return 0;
1480 
1481 	fmr = list_entry(fmr_list->next, struct ib_fmr, list);
1482 	return fmr->device->unmap_fmr(fmr_list);
1483 }
1484 EXPORT_SYMBOL(ib_unmap_fmr);
1485 
1486 int ib_dealloc_fmr(struct ib_fmr *fmr)
1487 {
1488 	struct ib_pd *pd;
1489 	int ret;
1490 
1491 	pd = fmr->pd;
1492 	ret = fmr->device->dealloc_fmr(fmr);
1493 	if (!ret)
1494 		atomic_dec(&pd->usecnt);
1495 
1496 	return ret;
1497 }
1498 EXPORT_SYMBOL(ib_dealloc_fmr);
1499 
1500 /* Multicast groups */
1501 
1502 static bool is_valid_mcast_lid(struct ib_qp *qp, u16 lid)
1503 {
1504 	struct ib_qp_init_attr init_attr = {};
1505 	struct ib_qp_attr attr = {};
1506 	int num_eth_ports = 0;
1507 	int port;
1508 
1509 	/* If QP state >= init, it is assigned to a port and we can check this
1510 	 * port only.
1511 	 */
1512 	if (!ib_query_qp(qp, &attr, IB_QP_STATE | IB_QP_PORT, &init_attr)) {
1513 		if (attr.qp_state >= IB_QPS_INIT) {
1514 			if (rdma_port_get_link_layer(qp->device, attr.port_num) !=
1515 			    IB_LINK_LAYER_INFINIBAND)
1516 				return true;
1517 			goto lid_check;
1518 		}
1519 	}
1520 
1521 	/* Can't get a quick answer, iterate over all ports */
1522 	for (port = 0; port < qp->device->phys_port_cnt; port++)
1523 		if (rdma_port_get_link_layer(qp->device, port) !=
1524 		    IB_LINK_LAYER_INFINIBAND)
1525 			num_eth_ports++;
1526 
1527 	/* If we have at lease one Ethernet port, RoCE annex declares that
1528 	 * multicast LID should be ignored. We can't tell at this step if the
1529 	 * QP belongs to an IB or Ethernet port.
1530 	 */
1531 	if (num_eth_ports)
1532 		return true;
1533 
1534 	/* If all the ports are IB, we can check according to IB spec. */
1535 lid_check:
1536 	return !(lid < be16_to_cpu(IB_MULTICAST_LID_BASE) ||
1537 		 lid == be16_to_cpu(IB_LID_PERMISSIVE));
1538 }
1539 
1540 int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid)
1541 {
1542 	int ret;
1543 
1544 	if (!qp->device->attach_mcast)
1545 		return -ENOSYS;
1546 
1547 	if (!rdma_is_multicast_addr((struct in6_addr *)gid->raw) ||
1548 	    qp->qp_type != IB_QPT_UD || !is_valid_mcast_lid(qp, lid))
1549 		return -EINVAL;
1550 
1551 	ret = qp->device->attach_mcast(qp, gid, lid);
1552 	if (!ret)
1553 		atomic_inc(&qp->usecnt);
1554 	return ret;
1555 }
1556 EXPORT_SYMBOL(ib_attach_mcast);
1557 
1558 int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid)
1559 {
1560 	int ret;
1561 
1562 	if (!qp->device->detach_mcast)
1563 		return -ENOSYS;
1564 
1565 	if (!rdma_is_multicast_addr((struct in6_addr *)gid->raw) ||
1566 	    qp->qp_type != IB_QPT_UD || !is_valid_mcast_lid(qp, lid))
1567 		return -EINVAL;
1568 
1569 	ret = qp->device->detach_mcast(qp, gid, lid);
1570 	if (!ret)
1571 		atomic_dec(&qp->usecnt);
1572 	return ret;
1573 }
1574 EXPORT_SYMBOL(ib_detach_mcast);
1575 
1576 struct ib_xrcd *ib_alloc_xrcd(struct ib_device *device)
1577 {
1578 	struct ib_xrcd *xrcd;
1579 
1580 	if (!device->alloc_xrcd)
1581 		return ERR_PTR(-ENOSYS);
1582 
1583 	xrcd = device->alloc_xrcd(device, NULL, NULL);
1584 	if (!IS_ERR(xrcd)) {
1585 		xrcd->device = device;
1586 		xrcd->inode = NULL;
1587 		atomic_set(&xrcd->usecnt, 0);
1588 		mutex_init(&xrcd->tgt_qp_mutex);
1589 		INIT_LIST_HEAD(&xrcd->tgt_qp_list);
1590 	}
1591 
1592 	return xrcd;
1593 }
1594 EXPORT_SYMBOL(ib_alloc_xrcd);
1595 
1596 int ib_dealloc_xrcd(struct ib_xrcd *xrcd)
1597 {
1598 	struct ib_qp *qp;
1599 	int ret;
1600 
1601 	if (atomic_read(&xrcd->usecnt))
1602 		return -EBUSY;
1603 
1604 	while (!list_empty(&xrcd->tgt_qp_list)) {
1605 		qp = list_entry(xrcd->tgt_qp_list.next, struct ib_qp, xrcd_list);
1606 		ret = ib_destroy_qp(qp);
1607 		if (ret)
1608 			return ret;
1609 	}
1610 
1611 	return xrcd->device->dealloc_xrcd(xrcd);
1612 }
1613 EXPORT_SYMBOL(ib_dealloc_xrcd);
1614 
1615 /**
1616  * ib_create_wq - Creates a WQ associated with the specified protection
1617  * domain.
1618  * @pd: The protection domain associated with the WQ.
1619  * @wq_init_attr: A list of initial attributes required to create the
1620  * WQ. If WQ creation succeeds, then the attributes are updated to
1621  * the actual capabilities of the created WQ.
1622  *
1623  * wq_init_attr->max_wr and wq_init_attr->max_sge determine
1624  * the requested size of the WQ, and set to the actual values allocated
1625  * on return.
1626  * If ib_create_wq() succeeds, then max_wr and max_sge will always be
1627  * at least as large as the requested values.
1628  */
1629 struct ib_wq *ib_create_wq(struct ib_pd *pd,
1630 			   struct ib_wq_init_attr *wq_attr)
1631 {
1632 	struct ib_wq *wq;
1633 
1634 	if (!pd->device->create_wq)
1635 		return ERR_PTR(-ENOSYS);
1636 
1637 	wq = pd->device->create_wq(pd, wq_attr, NULL);
1638 	if (!IS_ERR(wq)) {
1639 		wq->event_handler = wq_attr->event_handler;
1640 		wq->wq_context = wq_attr->wq_context;
1641 		wq->wq_type = wq_attr->wq_type;
1642 		wq->cq = wq_attr->cq;
1643 		wq->device = pd->device;
1644 		wq->pd = pd;
1645 		wq->uobject = NULL;
1646 		atomic_inc(&pd->usecnt);
1647 		atomic_inc(&wq_attr->cq->usecnt);
1648 		atomic_set(&wq->usecnt, 0);
1649 	}
1650 	return wq;
1651 }
1652 EXPORT_SYMBOL(ib_create_wq);
1653 
1654 /**
1655  * ib_destroy_wq - Destroys the specified WQ.
1656  * @wq: The WQ to destroy.
1657  */
1658 int ib_destroy_wq(struct ib_wq *wq)
1659 {
1660 	int err;
1661 	struct ib_cq *cq = wq->cq;
1662 	struct ib_pd *pd = wq->pd;
1663 
1664 	if (atomic_read(&wq->usecnt))
1665 		return -EBUSY;
1666 
1667 	err = wq->device->destroy_wq(wq);
1668 	if (!err) {
1669 		atomic_dec(&pd->usecnt);
1670 		atomic_dec(&cq->usecnt);
1671 	}
1672 	return err;
1673 }
1674 EXPORT_SYMBOL(ib_destroy_wq);
1675 
1676 /**
1677  * ib_modify_wq - Modifies the specified WQ.
1678  * @wq: The WQ to modify.
1679  * @wq_attr: On input, specifies the WQ attributes to modify.
1680  * @wq_attr_mask: A bit-mask used to specify which attributes of the WQ
1681  *   are being modified.
1682  * On output, the current values of selected WQ attributes are returned.
1683  */
1684 int ib_modify_wq(struct ib_wq *wq, struct ib_wq_attr *wq_attr,
1685 		 u32 wq_attr_mask)
1686 {
1687 	int err;
1688 
1689 	if (!wq->device->modify_wq)
1690 		return -ENOSYS;
1691 
1692 	err = wq->device->modify_wq(wq, wq_attr, wq_attr_mask, NULL);
1693 	return err;
1694 }
1695 EXPORT_SYMBOL(ib_modify_wq);
1696 
1697 /*
1698  * ib_create_rwq_ind_table - Creates a RQ Indirection Table.
1699  * @device: The device on which to create the rwq indirection table.
1700  * @ib_rwq_ind_table_init_attr: A list of initial attributes required to
1701  * create the Indirection Table.
1702  *
1703  * Note: The life time of ib_rwq_ind_table_init_attr->ind_tbl is not less
1704  *	than the created ib_rwq_ind_table object and the caller is responsible
1705  *	for its memory allocation/free.
1706  */
1707 struct ib_rwq_ind_table *ib_create_rwq_ind_table(struct ib_device *device,
1708 						 struct ib_rwq_ind_table_init_attr *init_attr)
1709 {
1710 	struct ib_rwq_ind_table *rwq_ind_table;
1711 	int i;
1712 	u32 table_size;
1713 
1714 	if (!device->create_rwq_ind_table)
1715 		return ERR_PTR(-ENOSYS);
1716 
1717 	table_size = (1 << init_attr->log_ind_tbl_size);
1718 	rwq_ind_table = device->create_rwq_ind_table(device,
1719 				init_attr, NULL);
1720 	if (IS_ERR(rwq_ind_table))
1721 		return rwq_ind_table;
1722 
1723 	rwq_ind_table->ind_tbl = init_attr->ind_tbl;
1724 	rwq_ind_table->log_ind_tbl_size = init_attr->log_ind_tbl_size;
1725 	rwq_ind_table->device = device;
1726 	rwq_ind_table->uobject = NULL;
1727 	atomic_set(&rwq_ind_table->usecnt, 0);
1728 
1729 	for (i = 0; i < table_size; i++)
1730 		atomic_inc(&rwq_ind_table->ind_tbl[i]->usecnt);
1731 
1732 	return rwq_ind_table;
1733 }
1734 EXPORT_SYMBOL(ib_create_rwq_ind_table);
1735 
1736 /*
1737  * ib_destroy_rwq_ind_table - Destroys the specified Indirection Table.
1738  * @wq_ind_table: The Indirection Table to destroy.
1739 */
1740 int ib_destroy_rwq_ind_table(struct ib_rwq_ind_table *rwq_ind_table)
1741 {
1742 	int err, i;
1743 	u32 table_size = (1 << rwq_ind_table->log_ind_tbl_size);
1744 	struct ib_wq **ind_tbl = rwq_ind_table->ind_tbl;
1745 
1746 	if (atomic_read(&rwq_ind_table->usecnt))
1747 		return -EBUSY;
1748 
1749 	err = rwq_ind_table->device->destroy_rwq_ind_table(rwq_ind_table);
1750 	if (!err) {
1751 		for (i = 0; i < table_size; i++)
1752 			atomic_dec(&ind_tbl[i]->usecnt);
1753 	}
1754 
1755 	return err;
1756 }
1757 EXPORT_SYMBOL(ib_destroy_rwq_ind_table);
1758 
1759 struct ib_flow *ib_create_flow(struct ib_qp *qp,
1760 			       struct ib_flow_attr *flow_attr,
1761 			       int domain)
1762 {
1763 	struct ib_flow *flow_id;
1764 	if (!qp->device->create_flow)
1765 		return ERR_PTR(-ENOSYS);
1766 
1767 	flow_id = qp->device->create_flow(qp, flow_attr, domain);
1768 	if (!IS_ERR(flow_id))
1769 		atomic_inc(&qp->usecnt);
1770 	return flow_id;
1771 }
1772 EXPORT_SYMBOL(ib_create_flow);
1773 
1774 int ib_destroy_flow(struct ib_flow *flow_id)
1775 {
1776 	int err;
1777 	struct ib_qp *qp = flow_id->qp;
1778 
1779 	err = qp->device->destroy_flow(flow_id);
1780 	if (!err)
1781 		atomic_dec(&qp->usecnt);
1782 	return err;
1783 }
1784 EXPORT_SYMBOL(ib_destroy_flow);
1785 
1786 int ib_check_mr_status(struct ib_mr *mr, u32 check_mask,
1787 		       struct ib_mr_status *mr_status)
1788 {
1789 	return mr->device->check_mr_status ?
1790 		mr->device->check_mr_status(mr, check_mask, mr_status) : -ENOSYS;
1791 }
1792 EXPORT_SYMBOL(ib_check_mr_status);
1793 
1794 int ib_set_vf_link_state(struct ib_device *device, int vf, u8 port,
1795 			 int state)
1796 {
1797 	if (!device->set_vf_link_state)
1798 		return -ENOSYS;
1799 
1800 	return device->set_vf_link_state(device, vf, port, state);
1801 }
1802 EXPORT_SYMBOL(ib_set_vf_link_state);
1803 
1804 int ib_get_vf_config(struct ib_device *device, int vf, u8 port,
1805 		     struct ifla_vf_info *info)
1806 {
1807 	if (!device->get_vf_config)
1808 		return -ENOSYS;
1809 
1810 	return device->get_vf_config(device, vf, port, info);
1811 }
1812 EXPORT_SYMBOL(ib_get_vf_config);
1813 
1814 int ib_get_vf_stats(struct ib_device *device, int vf, u8 port,
1815 		    struct ifla_vf_stats *stats)
1816 {
1817 	if (!device->get_vf_stats)
1818 		return -ENOSYS;
1819 
1820 	return device->get_vf_stats(device, vf, port, stats);
1821 }
1822 EXPORT_SYMBOL(ib_get_vf_stats);
1823 
1824 int ib_set_vf_guid(struct ib_device *device, int vf, u8 port, u64 guid,
1825 		   int type)
1826 {
1827 	if (!device->set_vf_guid)
1828 		return -ENOSYS;
1829 
1830 	return device->set_vf_guid(device, vf, port, guid, type);
1831 }
1832 EXPORT_SYMBOL(ib_set_vf_guid);
1833 
1834 /**
1835  * ib_map_mr_sg() - Map the largest prefix of a dma mapped SG list
1836  *     and set it the memory region.
1837  * @mr:            memory region
1838  * @sg:            dma mapped scatterlist
1839  * @sg_nents:      number of entries in sg
1840  * @sg_offset:     offset in bytes into sg
1841  * @page_size:     page vector desired page size
1842  *
1843  * Constraints:
1844  * - The first sg element is allowed to have an offset.
1845  * - Each sg element must either be aligned to page_size or virtually
1846  *   contiguous to the previous element. In case an sg element has a
1847  *   non-contiguous offset, the mapping prefix will not include it.
1848  * - The last sg element is allowed to have length less than page_size.
1849  * - If sg_nents total byte length exceeds the mr max_num_sge * page_size
1850  *   then only max_num_sg entries will be mapped.
1851  * - If the MR was allocated with type IB_MR_TYPE_SG_GAPS, none of these
1852  *   constraints holds and the page_size argument is ignored.
1853  *
1854  * Returns the number of sg elements that were mapped to the memory region.
1855  *
1856  * After this completes successfully, the  memory region
1857  * is ready for registration.
1858  */
1859 int ib_map_mr_sg(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
1860 		 unsigned int *sg_offset, unsigned int page_size)
1861 {
1862 	if (unlikely(!mr->device->map_mr_sg))
1863 		return -ENOSYS;
1864 
1865 	mr->page_size = page_size;
1866 
1867 	return mr->device->map_mr_sg(mr, sg, sg_nents, sg_offset);
1868 }
1869 EXPORT_SYMBOL(ib_map_mr_sg);
1870 
1871 /**
1872  * ib_sg_to_pages() - Convert the largest prefix of a sg list
1873  *     to a page vector
1874  * @mr:            memory region
1875  * @sgl:           dma mapped scatterlist
1876  * @sg_nents:      number of entries in sg
1877  * @sg_offset_p:   IN:  start offset in bytes into sg
1878  *                 OUT: offset in bytes for element n of the sg of the first
1879  *                      byte that has not been processed where n is the return
1880  *                      value of this function.
1881  * @set_page:      driver page assignment function pointer
1882  *
1883  * Core service helper for drivers to convert the largest
1884  * prefix of given sg list to a page vector. The sg list
1885  * prefix converted is the prefix that meet the requirements
1886  * of ib_map_mr_sg.
1887  *
1888  * Returns the number of sg elements that were assigned to
1889  * a page vector.
1890  */
1891 int ib_sg_to_pages(struct ib_mr *mr, struct scatterlist *sgl, int sg_nents,
1892 		unsigned int *sg_offset_p, int (*set_page)(struct ib_mr *, u64))
1893 {
1894 	struct scatterlist *sg;
1895 	u64 last_end_dma_addr = 0;
1896 	unsigned int sg_offset = sg_offset_p ? *sg_offset_p : 0;
1897 	unsigned int last_page_off = 0;
1898 	u64 page_mask = ~((u64)mr->page_size - 1);
1899 	int i, ret;
1900 
1901 	if (unlikely(sg_nents <= 0 || sg_offset > sg_dma_len(&sgl[0])))
1902 		return -EINVAL;
1903 
1904 	mr->iova = sg_dma_address(&sgl[0]) + sg_offset;
1905 	mr->length = 0;
1906 
1907 	for_each_sg(sgl, sg, sg_nents, i) {
1908 		u64 dma_addr = sg_dma_address(sg) + sg_offset;
1909 		u64 prev_addr = dma_addr;
1910 		unsigned int dma_len = sg_dma_len(sg) - sg_offset;
1911 		u64 end_dma_addr = dma_addr + dma_len;
1912 		u64 page_addr = dma_addr & page_mask;
1913 
1914 		/*
1915 		 * For the second and later elements, check whether either the
1916 		 * end of element i-1 or the start of element i is not aligned
1917 		 * on a page boundary.
1918 		 */
1919 		if (i && (last_page_off != 0 || page_addr != dma_addr)) {
1920 			/* Stop mapping if there is a gap. */
1921 			if (last_end_dma_addr != dma_addr)
1922 				break;
1923 
1924 			/*
1925 			 * Coalesce this element with the last. If it is small
1926 			 * enough just update mr->length. Otherwise start
1927 			 * mapping from the next page.
1928 			 */
1929 			goto next_page;
1930 		}
1931 
1932 		do {
1933 			ret = set_page(mr, page_addr);
1934 			if (unlikely(ret < 0)) {
1935 				sg_offset = prev_addr - sg_dma_address(sg);
1936 				mr->length += prev_addr - dma_addr;
1937 				if (sg_offset_p)
1938 					*sg_offset_p = sg_offset;
1939 				return i || sg_offset ? i : ret;
1940 			}
1941 			prev_addr = page_addr;
1942 next_page:
1943 			page_addr += mr->page_size;
1944 		} while (page_addr < end_dma_addr);
1945 
1946 		mr->length += dma_len;
1947 		last_end_dma_addr = end_dma_addr;
1948 		last_page_off = end_dma_addr & ~page_mask;
1949 
1950 		sg_offset = 0;
1951 	}
1952 
1953 	if (sg_offset_p)
1954 		*sg_offset_p = 0;
1955 	return i;
1956 }
1957 EXPORT_SYMBOL(ib_sg_to_pages);
1958 
1959 struct ib_drain_cqe {
1960 	struct ib_cqe cqe;
1961 	struct completion done;
1962 };
1963 
1964 static void ib_drain_qp_done(struct ib_cq *cq, struct ib_wc *wc)
1965 {
1966 	struct ib_drain_cqe *cqe = container_of(wc->wr_cqe, struct ib_drain_cqe,
1967 						cqe);
1968 
1969 	complete(&cqe->done);
1970 }
1971 
1972 /*
1973  * Post a WR and block until its completion is reaped for the SQ.
1974  */
1975 static void __ib_drain_sq(struct ib_qp *qp)
1976 {
1977 	struct ib_qp_attr attr = { .qp_state = IB_QPS_ERR };
1978 	struct ib_drain_cqe sdrain;
1979 	struct ib_send_wr *bad_swr;
1980 	struct ib_rdma_wr swr = {
1981 		.wr = {
1982 			.opcode	= IB_WR_RDMA_WRITE,
1983 			.wr_cqe	= &sdrain.cqe,
1984 		},
1985 	};
1986 	int ret;
1987 
1988 	if (qp->send_cq->poll_ctx == IB_POLL_DIRECT) {
1989 		WARN_ONCE(qp->send_cq->poll_ctx == IB_POLL_DIRECT,
1990 			  "IB_POLL_DIRECT poll_ctx not supported for drain\n");
1991 		return;
1992 	}
1993 
1994 	sdrain.cqe.done = ib_drain_qp_done;
1995 	init_completion(&sdrain.done);
1996 
1997 	ret = ib_modify_qp(qp, &attr, IB_QP_STATE);
1998 	if (ret) {
1999 		WARN_ONCE(ret, "failed to drain send queue: %d\n", ret);
2000 		return;
2001 	}
2002 
2003 	ret = ib_post_send(qp, &swr.wr, &bad_swr);
2004 	if (ret) {
2005 		WARN_ONCE(ret, "failed to drain send queue: %d\n", ret);
2006 		return;
2007 	}
2008 
2009 	wait_for_completion(&sdrain.done);
2010 }
2011 
2012 /*
2013  * Post a WR and block until its completion is reaped for the RQ.
2014  */
2015 static void __ib_drain_rq(struct ib_qp *qp)
2016 {
2017 	struct ib_qp_attr attr = { .qp_state = IB_QPS_ERR };
2018 	struct ib_drain_cqe rdrain;
2019 	struct ib_recv_wr rwr = {}, *bad_rwr;
2020 	int ret;
2021 
2022 	if (qp->recv_cq->poll_ctx == IB_POLL_DIRECT) {
2023 		WARN_ONCE(qp->recv_cq->poll_ctx == IB_POLL_DIRECT,
2024 			  "IB_POLL_DIRECT poll_ctx not supported for drain\n");
2025 		return;
2026 	}
2027 
2028 	rwr.wr_cqe = &rdrain.cqe;
2029 	rdrain.cqe.done = ib_drain_qp_done;
2030 	init_completion(&rdrain.done);
2031 
2032 	ret = ib_modify_qp(qp, &attr, IB_QP_STATE);
2033 	if (ret) {
2034 		WARN_ONCE(ret, "failed to drain recv queue: %d\n", ret);
2035 		return;
2036 	}
2037 
2038 	ret = ib_post_recv(qp, &rwr, &bad_rwr);
2039 	if (ret) {
2040 		WARN_ONCE(ret, "failed to drain recv queue: %d\n", ret);
2041 		return;
2042 	}
2043 
2044 	wait_for_completion(&rdrain.done);
2045 }
2046 
2047 /**
2048  * ib_drain_sq() - Block until all SQ CQEs have been consumed by the
2049  *		   application.
2050  * @qp:            queue pair to drain
2051  *
2052  * If the device has a provider-specific drain function, then
2053  * call that.  Otherwise call the generic drain function
2054  * __ib_drain_sq().
2055  *
2056  * The caller must:
2057  *
2058  * ensure there is room in the CQ and SQ for the drain work request and
2059  * completion.
2060  *
2061  * allocate the CQ using ib_alloc_cq() and the CQ poll context cannot be
2062  * IB_POLL_DIRECT.
2063  *
2064  * ensure that there are no other contexts that are posting WRs concurrently.
2065  * Otherwise the drain is not guaranteed.
2066  */
2067 void ib_drain_sq(struct ib_qp *qp)
2068 {
2069 	if (qp->device->drain_sq)
2070 		qp->device->drain_sq(qp);
2071 	else
2072 		__ib_drain_sq(qp);
2073 }
2074 EXPORT_SYMBOL(ib_drain_sq);
2075 
2076 /**
2077  * ib_drain_rq() - Block until all RQ CQEs have been consumed by the
2078  *		   application.
2079  * @qp:            queue pair to drain
2080  *
2081  * If the device has a provider-specific drain function, then
2082  * call that.  Otherwise call the generic drain function
2083  * __ib_drain_rq().
2084  *
2085  * The caller must:
2086  *
2087  * ensure there is room in the CQ and RQ for the drain work request and
2088  * completion.
2089  *
2090  * allocate the CQ using ib_alloc_cq() and the CQ poll context cannot be
2091  * IB_POLL_DIRECT.
2092  *
2093  * ensure that there are no other contexts that are posting WRs concurrently.
2094  * Otherwise the drain is not guaranteed.
2095  */
2096 void ib_drain_rq(struct ib_qp *qp)
2097 {
2098 	if (qp->device->drain_rq)
2099 		qp->device->drain_rq(qp);
2100 	else
2101 		__ib_drain_rq(qp);
2102 }
2103 EXPORT_SYMBOL(ib_drain_rq);
2104 
2105 /**
2106  * ib_drain_qp() - Block until all CQEs have been consumed by the
2107  *		   application on both the RQ and SQ.
2108  * @qp:            queue pair to drain
2109  *
2110  * The caller must:
2111  *
2112  * ensure there is room in the CQ(s), SQ, and RQ for drain work requests
2113  * and completions.
2114  *
2115  * allocate the CQs using ib_alloc_cq() and the CQ poll context cannot be
2116  * IB_POLL_DIRECT.
2117  *
2118  * ensure that there are no other contexts that are posting WRs concurrently.
2119  * Otherwise the drain is not guaranteed.
2120  */
2121 void ib_drain_qp(struct ib_qp *qp)
2122 {
2123 	ib_drain_sq(qp);
2124 	if (!qp->srq)
2125 		ib_drain_rq(qp);
2126 }
2127 EXPORT_SYMBOL(ib_drain_qp);
2128