xref: /freebsd/sys/opencrypto/cbc_mac.c (revision 0957b409)
1 /*
2  * Copyright (c) 2018-2019 iXsystems Inc.  All rights reserved.
3  *
4  * Redistribution and use in source and binary forms, with or without
5  * modification, are permitted provided that the following conditions
6  * are met:
7  * 1. Redistributions of source code must retain the above copyright
8  *    notice, this list of conditions and the following disclaimer.
9  * 2. Redistributions in binary form must reproduce the above copyright
10  *    notice, this list of conditions and the following disclaimer in the
11  *    documentation and/or other materials provided with the distribution.
12  *
13  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
14  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
15  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
16  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
17  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
18  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
19  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
20  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
21  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
22  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
23  */
24 
25 #include <sys/cdefs.h>
26 __FBSDID("$FreeBSD$");
27 
28 #include <sys/types.h>
29 #include <sys/systm.h>
30 #include <sys/param.h>
31 #include <sys/endian.h>
32 #include <opencrypto/cbc_mac.h>
33 #include <opencrypto/xform_auth.h>
34 
35 /*
36  * Given two CCM_CBC_BLOCK_LEN blocks, xor
37  * them into dst, and then encrypt dst.
38  */
39 static void
40 xor_and_encrypt(struct aes_cbc_mac_ctx *ctx,
41 		const uint8_t *src, uint8_t *dst)
42 {
43 	const uint64_t *b1;
44 	uint64_t *b2;
45 	uint64_t temp_block[CCM_CBC_BLOCK_LEN/sizeof(uint64_t)];
46 
47 	b1 = (const uint64_t*)src;
48 	b2 = (uint64_t*)dst;
49 
50 	for (size_t count = 0;
51 	     count < CCM_CBC_BLOCK_LEN/sizeof(uint64_t);
52 	     count++) {
53 		temp_block[count] = b1[count] ^ b2[count];
54 	}
55 	rijndaelEncrypt(ctx->keysched, ctx->rounds, (void*)temp_block, dst);
56 }
57 
58 void
59 AES_CBC_MAC_Init(struct aes_cbc_mac_ctx *ctx)
60 {
61 	bzero(ctx, sizeof(*ctx));
62 }
63 
64 void
65 AES_CBC_MAC_Setkey(struct aes_cbc_mac_ctx *ctx, const uint8_t *key, uint16_t klen)
66 {
67 	ctx->rounds = rijndaelKeySetupEnc(ctx->keysched, key, klen * 8);
68 }
69 
70 /*
71  * This is called to set the nonce, aka IV.
72  * Before this call, the authDataLength and cryptDataLength fields
73  * MUST have been set.  Sadly, there's no way to return an error.
74  *
75  * The CBC-MAC algorithm requires that the first block contain the
76  * nonce, as well as information about the sizes and lengths involved.
77  */
78 void
79 AES_CBC_MAC_Reinit(struct aes_cbc_mac_ctx *ctx, const uint8_t *nonce, uint16_t nonceLen)
80 {
81 	uint8_t b0[CCM_CBC_BLOCK_LEN];
82 	uint8_t *bp = b0, flags = 0;
83 	uint8_t L = 0;
84 	uint64_t dataLength = ctx->cryptDataLength;
85 
86 	KASSERT(ctx->authDataLength != 0 || ctx->cryptDataLength != 0,
87 	    ("Auth Data and Data lengths cannot both be 0"));
88 
89 	KASSERT(nonceLen >= 7 && nonceLen <= 13,
90 	    ("nonceLen must be between 7 and 13 bytes"));
91 
92 	ctx->nonce = nonce;
93 	ctx->nonceLength = nonceLen;
94 
95 	ctx->authDataCount = 0;
96 	ctx->blockIndex = 0;
97 	explicit_bzero(ctx->staging_block, sizeof(ctx->staging_block));
98 
99 	/*
100 	 * Need to determine the L field value.  This is the number of
101 	 * bytes needed to specify the length of the message; the length
102 	 * is whatever is left in the 16 bytes after specifying flags and
103 	 * the nonce.
104 	 */
105 	L = 15 - nonceLen;
106 
107 	flags = ((ctx->authDataLength > 0) << 6) +
108 	    (((AES_CBC_MAC_HASH_LEN - 2) / 2) << 3) +
109 	    L - 1;
110 	/*
111 	 * Now we need to set up the first block, which has flags, nonce,
112 	 * and the message length.
113 	 */
114 	b0[0] = flags;
115 	bcopy(nonce, b0 + 1, nonceLen);
116 	bp = b0 + 1 + nonceLen;
117 
118 	/* Need to copy L' [aka L-1] bytes of cryptDataLength */
119 	for (uint8_t *dst = b0 + sizeof(b0) - 1; dst >= bp; dst--) {
120 		*dst = dataLength;
121 		dataLength >>= 8;
122 	}
123 	/* Now need to encrypt b0 */
124 	rijndaelEncrypt(ctx->keysched, ctx->rounds, b0, ctx->block);
125 	/* If there is auth data, we need to set up the staging block */
126 	if (ctx->authDataLength) {
127 		size_t addLength;
128 		if (ctx->authDataLength < ((1<<16) - (1<<8))) {
129 			uint16_t sizeVal = htobe16(ctx->authDataLength);
130 			bcopy(&sizeVal, ctx->staging_block, sizeof(sizeVal));
131 			addLength = sizeof(sizeVal);
132 		} else if (ctx->authDataLength < (1ULL<<32)) {
133 			uint32_t sizeVal = htobe32(ctx->authDataLength);
134 			ctx->staging_block[0] = 0xff;
135 			ctx->staging_block[1] = 0xfe;
136 			bcopy(&sizeVal, ctx->staging_block+2, sizeof(sizeVal));
137 			addLength = 2 + sizeof(sizeVal);
138 		} else {
139 			uint64_t sizeVal = htobe64(ctx->authDataLength);
140 			ctx->staging_block[0] = 0xff;
141 			ctx->staging_block[1] = 0xff;
142 			bcopy(&sizeVal, ctx->staging_block+2, sizeof(sizeVal));
143 			addLength = 2 + sizeof(sizeVal);
144 		}
145 		ctx->blockIndex = addLength;
146 		/*
147 		 * The length descriptor goes into the AAD buffer, so we
148 		 * need to account for it.
149 		 */
150 		ctx->authDataLength += addLength;
151 		ctx->authDataCount = addLength;
152 	}
153 }
154 
155 int
156 AES_CBC_MAC_Update(struct aes_cbc_mac_ctx *ctx, const uint8_t *data,
157     uint16_t length)
158 {
159 	size_t copy_amt;
160 
161 	/*
162 	 * This will be called in one of two phases:
163 	 * (1)  Applying authentication data, or
164 	 * (2)  Applying the payload data.
165 	 *
166 	 * Because CBC-MAC puts the authentication data size before the
167 	 * data, subsequent calls won't be block-size-aligned.  Which
168 	 * complicates things a fair bit.
169 	 *
170 	 * The payload data doesn't have that problem.
171 	 */
172 
173 	if (ctx->authDataCount < ctx->authDataLength) {
174 		/*
175 		 * We need to process data as authentication data.
176 		 * Since we may be out of sync, we may also need
177 		 * to pad out the staging block.
178 		 */
179 		const uint8_t *ptr = data;
180 		while (length > 0) {
181 
182 			copy_amt = MIN(length,
183 			    sizeof(ctx->staging_block) - ctx->blockIndex);
184 
185 			bcopy(ptr, ctx->staging_block + ctx->blockIndex,
186 			    copy_amt);
187 			ptr += copy_amt;
188 			length -= copy_amt;
189 			ctx->authDataCount += copy_amt;
190 			ctx->blockIndex += copy_amt;
191 			ctx->blockIndex %= sizeof(ctx->staging_block);
192 
193 			if (ctx->blockIndex == 0 ||
194 			    ctx->authDataCount == ctx->authDataLength) {
195 				/*
196 				 * We're done with this block, so we
197 				 * xor staging_block with block, and then
198 				 * encrypt it.
199 				 */
200 				xor_and_encrypt(ctx, ctx->staging_block, ctx->block);
201 				bzero(ctx->staging_block, sizeof(ctx->staging_block));
202 				ctx->blockIndex = 0;
203 				if (ctx->authDataCount >= ctx->authDataLength)
204 					break;
205 			}
206 		}
207 		/*
208 		 * We'd like to be able to check length == 0 and return
209 		 * here, but the way OCF calls us, length is always
210 		 * blksize (16, in this case).  So we have to count on
211 		 * the fact that OCF calls us separately for the AAD and
212 		 * for the real data.
213 		 */
214 		return (0);
215 	}
216 	/*
217 	 * If we're here, then we're encoding payload data.
218 	 * This is marginally easier, except that _Update can
219 	 * be called with non-aligned update lengths. As a result,
220 	 * we still need to use the staging block.
221 	 */
222 	KASSERT((length + ctx->cryptDataCount) <= ctx->cryptDataLength,
223 	    ("More encryption data than allowed"));
224 
225 	while (length) {
226 		uint8_t *ptr;
227 
228 		copy_amt = MIN(sizeof(ctx->staging_block) - ctx->blockIndex,
229 		    length);
230 		ptr = ctx->staging_block + ctx->blockIndex;
231 		bcopy(data, ptr, copy_amt);
232 		data += copy_amt;
233 		ctx->blockIndex += copy_amt;
234 		ctx->cryptDataCount += copy_amt;
235 		length -= copy_amt;
236 		if (ctx->blockIndex == sizeof(ctx->staging_block)) {
237 			/* We've got a full block */
238 			xor_and_encrypt(ctx, ctx->staging_block, ctx->block);
239 			ctx->blockIndex = 0;
240 			bzero(ctx->staging_block, sizeof(ctx->staging_block));
241 		}
242 	}
243 	return (0);
244 }
245 
246 void
247 AES_CBC_MAC_Final(uint8_t *buf, struct aes_cbc_mac_ctx *ctx)
248 {
249 	uint8_t s0[CCM_CBC_BLOCK_LEN];
250 
251 	/*
252 	 * We first need to check to see if we've got any data
253 	 * left over to encrypt.
254 	 */
255 	if (ctx->blockIndex != 0) {
256 		xor_and_encrypt(ctx, ctx->staging_block, ctx->block);
257 		ctx->cryptDataCount += ctx->blockIndex;
258 		ctx->blockIndex = 0;
259 		explicit_bzero(ctx->staging_block, sizeof(ctx->staging_block));
260 	}
261 	bzero(s0, sizeof(s0));
262 	s0[0] = (15 - ctx->nonceLength) - 1;
263 	bcopy(ctx->nonce, s0 + 1, ctx->nonceLength);
264 	rijndaelEncrypt(ctx->keysched, ctx->rounds, s0, s0);
265 	for (size_t indx = 0; indx < AES_CBC_MAC_HASH_LEN; indx++)
266 		buf[indx] = ctx->block[indx] ^ s0[indx];
267 	explicit_bzero(s0, sizeof(s0));
268 }
269