xref: /freebsd/sys/opencrypto/crypto.c (revision 266f97b5)
1 /*-
2  * Copyright (c) 2002-2006 Sam Leffler.  All rights reserved.
3  * Copyright (c) 2021 The FreeBSD Foundation
4  *
5  * Portions of this software were developed by Ararat River
6  * Consulting, LLC under sponsorship of the FreeBSD Foundation.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27  */
28 
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD$");
31 
32 /*
33  * Cryptographic Subsystem.
34  *
35  * This code is derived from the Openbsd Cryptographic Framework (OCF)
36  * that has the copyright shown below.  Very little of the original
37  * code remains.
38  */
39 
40 /*-
41  * The author of this code is Angelos D. Keromytis (angelos@cis.upenn.edu)
42  *
43  * This code was written by Angelos D. Keromytis in Athens, Greece, in
44  * February 2000. Network Security Technologies Inc. (NSTI) kindly
45  * supported the development of this code.
46  *
47  * Copyright (c) 2000, 2001 Angelos D. Keromytis
48  *
49  * Permission to use, copy, and modify this software with or without fee
50  * is hereby granted, provided that this entire notice is included in
51  * all source code copies of any software which is or includes a copy or
52  * modification of this software.
53  *
54  * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR
55  * IMPLIED WARRANTY. IN PARTICULAR, NONE OF THE AUTHORS MAKES ANY
56  * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE
57  * MERCHANTABILITY OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR
58  * PURPOSE.
59  */
60 
61 #include "opt_compat.h"
62 #include "opt_ddb.h"
63 
64 #include <sys/param.h>
65 #include <sys/systm.h>
66 #include <sys/counter.h>
67 #include <sys/kernel.h>
68 #include <sys/kthread.h>
69 #include <sys/linker.h>
70 #include <sys/lock.h>
71 #include <sys/module.h>
72 #include <sys/mutex.h>
73 #include <sys/malloc.h>
74 #include <sys/mbuf.h>
75 #include <sys/proc.h>
76 #include <sys/refcount.h>
77 #include <sys/sdt.h>
78 #include <sys/smp.h>
79 #include <sys/sysctl.h>
80 #include <sys/taskqueue.h>
81 #include <sys/uio.h>
82 
83 #include <ddb/ddb.h>
84 
85 #include <machine/vmparam.h>
86 #include <vm/uma.h>
87 
88 #include <crypto/intake.h>
89 #include <opencrypto/cryptodev.h>
90 #include <opencrypto/xform_auth.h>
91 #include <opencrypto/xform_enc.h>
92 
93 #include <sys/kobj.h>
94 #include <sys/bus.h>
95 #include "cryptodev_if.h"
96 
97 #if defined(__i386__) || defined(__amd64__) || defined(__aarch64__)
98 #include <machine/pcb.h>
99 #endif
100 
101 SDT_PROVIDER_DEFINE(opencrypto);
102 
103 /*
104  * Crypto drivers register themselves by allocating a slot in the
105  * crypto_drivers table with crypto_get_driverid().
106  */
107 static	struct mtx crypto_drivers_mtx;		/* lock on driver table */
108 #define	CRYPTO_DRIVER_LOCK()	mtx_lock(&crypto_drivers_mtx)
109 #define	CRYPTO_DRIVER_UNLOCK()	mtx_unlock(&crypto_drivers_mtx)
110 #define	CRYPTO_DRIVER_ASSERT()	mtx_assert(&crypto_drivers_mtx, MA_OWNED)
111 
112 /*
113  * Crypto device/driver capabilities structure.
114  *
115  * Synchronization:
116  * (d) - protected by CRYPTO_DRIVER_LOCK()
117  * (q) - protected by CRYPTO_Q_LOCK()
118  * Not tagged fields are read-only.
119  */
120 struct cryptocap {
121 	device_t	cc_dev;
122 	uint32_t	cc_hid;
123 	uint32_t	cc_sessions;		/* (d) # of sessions */
124 
125 	int		cc_flags;		/* (d) flags */
126 #define CRYPTOCAP_F_CLEANUP	0x80000000	/* needs resource cleanup */
127 	int		cc_qblocked;		/* (q) symmetric q blocked */
128 	size_t		cc_session_size;
129 	volatile int	cc_refs;
130 };
131 
132 static	struct cryptocap **crypto_drivers = NULL;
133 static	int crypto_drivers_size = 0;
134 
135 struct crypto_session {
136 	struct cryptocap *cap;
137 	struct crypto_session_params csp;
138 	uint64_t id;
139 	/* Driver softc follows. */
140 };
141 
142 static	int crp_sleep = 0;
143 static	TAILQ_HEAD(cryptop_q ,cryptop) crp_q;		/* request queues */
144 static	struct mtx crypto_q_mtx;
145 #define	CRYPTO_Q_LOCK()		mtx_lock(&crypto_q_mtx)
146 #define	CRYPTO_Q_UNLOCK()	mtx_unlock(&crypto_q_mtx)
147 
148 SYSCTL_NODE(_kern, OID_AUTO, crypto, CTLFLAG_RW, 0,
149     "In-kernel cryptography");
150 
151 /*
152  * Taskqueue used to dispatch the crypto requests
153  * that have the CRYPTO_F_ASYNC flag
154  */
155 static struct taskqueue *crypto_tq;
156 
157 /*
158  * Crypto seq numbers are operated on with modular arithmetic
159  */
160 #define	CRYPTO_SEQ_GT(a,b)	((int)((a)-(b)) > 0)
161 
162 struct crypto_ret_worker {
163 	struct mtx crypto_ret_mtx;
164 
165 	TAILQ_HEAD(,cryptop) crp_ordered_ret_q;	/* ordered callback queue for symetric jobs */
166 	TAILQ_HEAD(,cryptop) crp_ret_q;		/* callback queue for symetric jobs */
167 
168 	uint32_t reorder_ops;		/* total ordered sym jobs received */
169 	uint32_t reorder_cur_seq;	/* current sym job dispatched */
170 
171 	struct thread *td;
172 };
173 static struct crypto_ret_worker *crypto_ret_workers = NULL;
174 
175 #define CRYPTO_RETW(i)		(&crypto_ret_workers[i])
176 #define CRYPTO_RETW_ID(w)	((w) - crypto_ret_workers)
177 #define FOREACH_CRYPTO_RETW(w) \
178 	for (w = crypto_ret_workers; w < crypto_ret_workers + crypto_workers_num; ++w)
179 
180 #define	CRYPTO_RETW_LOCK(w)	mtx_lock(&w->crypto_ret_mtx)
181 #define	CRYPTO_RETW_UNLOCK(w)	mtx_unlock(&w->crypto_ret_mtx)
182 
183 static int crypto_workers_num = 0;
184 SYSCTL_INT(_kern_crypto, OID_AUTO, num_workers, CTLFLAG_RDTUN,
185 	   &crypto_workers_num, 0,
186 	   "Number of crypto workers used to dispatch crypto jobs");
187 #ifdef COMPAT_FREEBSD12
188 SYSCTL_INT(_kern, OID_AUTO, crypto_workers_num, CTLFLAG_RDTUN,
189 	   &crypto_workers_num, 0,
190 	   "Number of crypto workers used to dispatch crypto jobs");
191 #endif
192 
193 static	uma_zone_t cryptop_zone;
194 
195 int	crypto_devallowsoft = 0;
196 SYSCTL_INT(_kern_crypto, OID_AUTO, allow_soft, CTLFLAG_RWTUN,
197 	   &crypto_devallowsoft, 0,
198 	   "Enable use of software crypto by /dev/crypto");
199 #ifdef COMPAT_FREEBSD12
200 SYSCTL_INT(_kern, OID_AUTO, cryptodevallowsoft, CTLFLAG_RWTUN,
201 	   &crypto_devallowsoft, 0,
202 	   "Enable/disable use of software crypto by /dev/crypto");
203 #endif
204 
205 MALLOC_DEFINE(M_CRYPTO_DATA, "crypto", "crypto session records");
206 
207 static	void crypto_dispatch_thread(void *arg);
208 static	struct thread *cryptotd;
209 static	void crypto_ret_thread(void *arg);
210 static	void crypto_destroy(void);
211 static	int crypto_invoke(struct cryptocap *cap, struct cryptop *crp, int hint);
212 static	void crypto_task_invoke(void *ctx, int pending);
213 static void crypto_batch_enqueue(struct cryptop *crp);
214 
215 static counter_u64_t cryptostats[sizeof(struct cryptostats) / sizeof(uint64_t)];
216 SYSCTL_COUNTER_U64_ARRAY(_kern_crypto, OID_AUTO, stats, CTLFLAG_RW,
217     cryptostats, nitems(cryptostats),
218     "Crypto system statistics");
219 
220 #define	CRYPTOSTAT_INC(stat) do {					\
221 	counter_u64_add(						\
222 	    cryptostats[offsetof(struct cryptostats, stat) / sizeof(uint64_t)],\
223 	    1);								\
224 } while (0)
225 
226 static void
227 cryptostats_init(void *arg __unused)
228 {
229 	COUNTER_ARRAY_ALLOC(cryptostats, nitems(cryptostats), M_WAITOK);
230 }
231 SYSINIT(cryptostats_init, SI_SUB_COUNTER, SI_ORDER_ANY, cryptostats_init, NULL);
232 
233 static void
234 cryptostats_fini(void *arg __unused)
235 {
236 	COUNTER_ARRAY_FREE(cryptostats, nitems(cryptostats));
237 }
238 SYSUNINIT(cryptostats_fini, SI_SUB_COUNTER, SI_ORDER_ANY, cryptostats_fini,
239     NULL);
240 
241 /* Try to avoid directly exposing the key buffer as a symbol */
242 static struct keybuf *keybuf;
243 
244 static struct keybuf empty_keybuf = {
245         .kb_nents = 0
246 };
247 
248 /* Obtain the key buffer from boot metadata */
249 static void
250 keybuf_init(void)
251 {
252 	caddr_t kmdp;
253 
254 	kmdp = preload_search_by_type("elf kernel");
255 
256 	if (kmdp == NULL)
257 		kmdp = preload_search_by_type("elf64 kernel");
258 
259 	keybuf = (struct keybuf *)preload_search_info(kmdp,
260 	    MODINFO_METADATA | MODINFOMD_KEYBUF);
261 
262         if (keybuf == NULL)
263                 keybuf = &empty_keybuf;
264 }
265 
266 /* It'd be nice if we could store these in some kind of secure memory... */
267 struct keybuf *
268 get_keybuf(void)
269 {
270 
271         return (keybuf);
272 }
273 
274 static struct cryptocap *
275 cap_ref(struct cryptocap *cap)
276 {
277 
278 	refcount_acquire(&cap->cc_refs);
279 	return (cap);
280 }
281 
282 static void
283 cap_rele(struct cryptocap *cap)
284 {
285 
286 	if (refcount_release(&cap->cc_refs) == 0)
287 		return;
288 
289 	KASSERT(cap->cc_sessions == 0,
290 	    ("freeing crypto driver with active sessions"));
291 
292 	free(cap, M_CRYPTO_DATA);
293 }
294 
295 static int
296 crypto_init(void)
297 {
298 	struct crypto_ret_worker *ret_worker;
299 	struct proc *p;
300 	int error;
301 
302 	mtx_init(&crypto_drivers_mtx, "crypto driver table", NULL, MTX_DEF);
303 
304 	TAILQ_INIT(&crp_q);
305 	mtx_init(&crypto_q_mtx, "crypto op queues", NULL, MTX_DEF);
306 
307 	cryptop_zone = uma_zcreate("cryptop",
308 	    sizeof(struct cryptop), NULL, NULL, NULL, NULL,
309 	    UMA_ALIGN_PTR, UMA_ZONE_ZINIT);
310 
311 	crypto_drivers_size = CRYPTO_DRIVERS_INITIAL;
312 	crypto_drivers = malloc(crypto_drivers_size *
313 	    sizeof(struct cryptocap), M_CRYPTO_DATA, M_WAITOK | M_ZERO);
314 
315 	if (crypto_workers_num < 1 || crypto_workers_num > mp_ncpus)
316 		crypto_workers_num = mp_ncpus;
317 
318 	crypto_tq = taskqueue_create("crypto", M_WAITOK | M_ZERO,
319 	    taskqueue_thread_enqueue, &crypto_tq);
320 
321 	taskqueue_start_threads(&crypto_tq, crypto_workers_num, PRI_MIN_KERN,
322 	    "crypto");
323 
324 	p = NULL;
325 	error = kproc_kthread_add(crypto_dispatch_thread, NULL, &p, &cryptotd,
326 	    0, 0, "crypto", "crypto");
327 	if (error) {
328 		printf("crypto_init: cannot start crypto thread; error %d",
329 			error);
330 		goto bad;
331 	}
332 
333 	crypto_ret_workers = mallocarray(crypto_workers_num,
334 	    sizeof(struct crypto_ret_worker), M_CRYPTO_DATA, M_WAITOK | M_ZERO);
335 
336 	FOREACH_CRYPTO_RETW(ret_worker) {
337 		TAILQ_INIT(&ret_worker->crp_ordered_ret_q);
338 		TAILQ_INIT(&ret_worker->crp_ret_q);
339 
340 		ret_worker->reorder_ops = 0;
341 		ret_worker->reorder_cur_seq = 0;
342 
343 		mtx_init(&ret_worker->crypto_ret_mtx, "crypto return queues",
344 		    NULL, MTX_DEF);
345 
346 		error = kthread_add(crypto_ret_thread, ret_worker, p,
347 		    &ret_worker->td, 0, 0, "crypto returns %td",
348 		    CRYPTO_RETW_ID(ret_worker));
349 		if (error) {
350 			printf("crypto_init: cannot start cryptoret thread; error %d",
351 				error);
352 			goto bad;
353 		}
354 	}
355 
356 	keybuf_init();
357 
358 	return 0;
359 bad:
360 	crypto_destroy();
361 	return error;
362 }
363 
364 /*
365  * Signal a crypto thread to terminate.  We use the driver
366  * table lock to synchronize the sleep/wakeups so that we
367  * are sure the threads have terminated before we release
368  * the data structures they use.  See crypto_finis below
369  * for the other half of this song-and-dance.
370  */
371 static void
372 crypto_terminate(struct thread **tdp, void *q)
373 {
374 	struct thread *td;
375 
376 	mtx_assert(&crypto_drivers_mtx, MA_OWNED);
377 	td = *tdp;
378 	*tdp = NULL;
379 	if (td != NULL) {
380 		wakeup_one(q);
381 		mtx_sleep(td, &crypto_drivers_mtx, PWAIT, "crypto_destroy", 0);
382 	}
383 }
384 
385 static void
386 hmac_init_pad(const struct auth_hash *axf, const char *key, int klen,
387     void *auth_ctx, uint8_t padval)
388 {
389 	uint8_t hmac_key[HMAC_MAX_BLOCK_LEN];
390 	u_int i;
391 
392 	KASSERT(axf->blocksize <= sizeof(hmac_key),
393 	    ("Invalid HMAC block size %d", axf->blocksize));
394 
395 	/*
396 	 * If the key is larger than the block size, use the digest of
397 	 * the key as the key instead.
398 	 */
399 	memset(hmac_key, 0, sizeof(hmac_key));
400 	if (klen > axf->blocksize) {
401 		axf->Init(auth_ctx);
402 		axf->Update(auth_ctx, key, klen);
403 		axf->Final(hmac_key, auth_ctx);
404 		klen = axf->hashsize;
405 	} else
406 		memcpy(hmac_key, key, klen);
407 
408 	for (i = 0; i < axf->blocksize; i++)
409 		hmac_key[i] ^= padval;
410 
411 	axf->Init(auth_ctx);
412 	axf->Update(auth_ctx, hmac_key, axf->blocksize);
413 	explicit_bzero(hmac_key, sizeof(hmac_key));
414 }
415 
416 void
417 hmac_init_ipad(const struct auth_hash *axf, const char *key, int klen,
418     void *auth_ctx)
419 {
420 
421 	hmac_init_pad(axf, key, klen, auth_ctx, HMAC_IPAD_VAL);
422 }
423 
424 void
425 hmac_init_opad(const struct auth_hash *axf, const char *key, int klen,
426     void *auth_ctx)
427 {
428 
429 	hmac_init_pad(axf, key, klen, auth_ctx, HMAC_OPAD_VAL);
430 }
431 
432 static void
433 crypto_destroy(void)
434 {
435 	struct crypto_ret_worker *ret_worker;
436 	int i;
437 
438 	/*
439 	 * Terminate any crypto threads.
440 	 */
441 	if (crypto_tq != NULL)
442 		taskqueue_drain_all(crypto_tq);
443 	CRYPTO_DRIVER_LOCK();
444 	crypto_terminate(&cryptotd, &crp_q);
445 	FOREACH_CRYPTO_RETW(ret_worker)
446 		crypto_terminate(&ret_worker->td, &ret_worker->crp_ret_q);
447 	CRYPTO_DRIVER_UNLOCK();
448 
449 	/* XXX flush queues??? */
450 
451 	/*
452 	 * Reclaim dynamically allocated resources.
453 	 */
454 	for (i = 0; i < crypto_drivers_size; i++) {
455 		if (crypto_drivers[i] != NULL)
456 			cap_rele(crypto_drivers[i]);
457 	}
458 	free(crypto_drivers, M_CRYPTO_DATA);
459 
460 	if (cryptop_zone != NULL)
461 		uma_zdestroy(cryptop_zone);
462 	mtx_destroy(&crypto_q_mtx);
463 	FOREACH_CRYPTO_RETW(ret_worker)
464 		mtx_destroy(&ret_worker->crypto_ret_mtx);
465 	free(crypto_ret_workers, M_CRYPTO_DATA);
466 	if (crypto_tq != NULL)
467 		taskqueue_free(crypto_tq);
468 	mtx_destroy(&crypto_drivers_mtx);
469 }
470 
471 uint32_t
472 crypto_ses2hid(crypto_session_t crypto_session)
473 {
474 	return (crypto_session->cap->cc_hid);
475 }
476 
477 uint32_t
478 crypto_ses2caps(crypto_session_t crypto_session)
479 {
480 	return (crypto_session->cap->cc_flags & 0xff000000);
481 }
482 
483 void *
484 crypto_get_driver_session(crypto_session_t crypto_session)
485 {
486 	return (crypto_session + 1);
487 }
488 
489 const struct crypto_session_params *
490 crypto_get_params(crypto_session_t crypto_session)
491 {
492 	return (&crypto_session->csp);
493 }
494 
495 const struct auth_hash *
496 crypto_auth_hash(const struct crypto_session_params *csp)
497 {
498 
499 	switch (csp->csp_auth_alg) {
500 	case CRYPTO_SHA1_HMAC:
501 		return (&auth_hash_hmac_sha1);
502 	case CRYPTO_SHA2_224_HMAC:
503 		return (&auth_hash_hmac_sha2_224);
504 	case CRYPTO_SHA2_256_HMAC:
505 		return (&auth_hash_hmac_sha2_256);
506 	case CRYPTO_SHA2_384_HMAC:
507 		return (&auth_hash_hmac_sha2_384);
508 	case CRYPTO_SHA2_512_HMAC:
509 		return (&auth_hash_hmac_sha2_512);
510 	case CRYPTO_NULL_HMAC:
511 		return (&auth_hash_null);
512 	case CRYPTO_RIPEMD160_HMAC:
513 		return (&auth_hash_hmac_ripemd_160);
514 	case CRYPTO_SHA1:
515 		return (&auth_hash_sha1);
516 	case CRYPTO_SHA2_224:
517 		return (&auth_hash_sha2_224);
518 	case CRYPTO_SHA2_256:
519 		return (&auth_hash_sha2_256);
520 	case CRYPTO_SHA2_384:
521 		return (&auth_hash_sha2_384);
522 	case CRYPTO_SHA2_512:
523 		return (&auth_hash_sha2_512);
524 	case CRYPTO_AES_NIST_GMAC:
525 		switch (csp->csp_auth_klen) {
526 		case 128 / 8:
527 			return (&auth_hash_nist_gmac_aes_128);
528 		case 192 / 8:
529 			return (&auth_hash_nist_gmac_aes_192);
530 		case 256 / 8:
531 			return (&auth_hash_nist_gmac_aes_256);
532 		default:
533 			return (NULL);
534 		}
535 	case CRYPTO_BLAKE2B:
536 		return (&auth_hash_blake2b);
537 	case CRYPTO_BLAKE2S:
538 		return (&auth_hash_blake2s);
539 	case CRYPTO_POLY1305:
540 		return (&auth_hash_poly1305);
541 	case CRYPTO_AES_CCM_CBC_MAC:
542 		switch (csp->csp_auth_klen) {
543 		case 128 / 8:
544 			return (&auth_hash_ccm_cbc_mac_128);
545 		case 192 / 8:
546 			return (&auth_hash_ccm_cbc_mac_192);
547 		case 256 / 8:
548 			return (&auth_hash_ccm_cbc_mac_256);
549 		default:
550 			return (NULL);
551 		}
552 	default:
553 		return (NULL);
554 	}
555 }
556 
557 const struct enc_xform *
558 crypto_cipher(const struct crypto_session_params *csp)
559 {
560 
561 	switch (csp->csp_cipher_alg) {
562 	case CRYPTO_RIJNDAEL128_CBC:
563 		return (&enc_xform_rijndael128);
564 	case CRYPTO_AES_XTS:
565 		return (&enc_xform_aes_xts);
566 	case CRYPTO_AES_ICM:
567 		return (&enc_xform_aes_icm);
568 	case CRYPTO_AES_NIST_GCM_16:
569 		return (&enc_xform_aes_nist_gcm);
570 	case CRYPTO_CAMELLIA_CBC:
571 		return (&enc_xform_camellia);
572 	case CRYPTO_NULL_CBC:
573 		return (&enc_xform_null);
574 	case CRYPTO_CHACHA20:
575 		return (&enc_xform_chacha20);
576 	case CRYPTO_AES_CCM_16:
577 		return (&enc_xform_ccm);
578 	case CRYPTO_CHACHA20_POLY1305:
579 		return (&enc_xform_chacha20_poly1305);
580 	default:
581 		return (NULL);
582 	}
583 }
584 
585 static struct cryptocap *
586 crypto_checkdriver(uint32_t hid)
587 {
588 
589 	return (hid >= crypto_drivers_size ? NULL : crypto_drivers[hid]);
590 }
591 
592 /*
593  * Select a driver for a new session that supports the specified
594  * algorithms and, optionally, is constrained according to the flags.
595  */
596 static struct cryptocap *
597 crypto_select_driver(const struct crypto_session_params *csp, int flags)
598 {
599 	struct cryptocap *cap, *best;
600 	int best_match, error, hid;
601 
602 	CRYPTO_DRIVER_ASSERT();
603 
604 	best = NULL;
605 	for (hid = 0; hid < crypto_drivers_size; hid++) {
606 		/*
607 		 * If there is no driver for this slot, or the driver
608 		 * is not appropriate (hardware or software based on
609 		 * match), then skip.
610 		 */
611 		cap = crypto_drivers[hid];
612 		if (cap == NULL ||
613 		    (cap->cc_flags & flags) == 0)
614 			continue;
615 
616 		error = CRYPTODEV_PROBESESSION(cap->cc_dev, csp);
617 		if (error >= 0)
618 			continue;
619 
620 		/*
621 		 * Use the driver with the highest probe value.
622 		 * Hardware drivers use a higher probe value than
623 		 * software.  In case of a tie, prefer the driver with
624 		 * the fewest active sessions.
625 		 */
626 		if (best == NULL || error > best_match ||
627 		    (error == best_match &&
628 		    cap->cc_sessions < best->cc_sessions)) {
629 			best = cap;
630 			best_match = error;
631 		}
632 	}
633 	return best;
634 }
635 
636 static enum alg_type {
637 	ALG_NONE = 0,
638 	ALG_CIPHER,
639 	ALG_DIGEST,
640 	ALG_KEYED_DIGEST,
641 	ALG_COMPRESSION,
642 	ALG_AEAD
643 } alg_types[] = {
644 	[CRYPTO_SHA1_HMAC] = ALG_KEYED_DIGEST,
645 	[CRYPTO_RIPEMD160_HMAC] = ALG_KEYED_DIGEST,
646 	[CRYPTO_AES_CBC] = ALG_CIPHER,
647 	[CRYPTO_SHA1] = ALG_DIGEST,
648 	[CRYPTO_NULL_HMAC] = ALG_DIGEST,
649 	[CRYPTO_NULL_CBC] = ALG_CIPHER,
650 	[CRYPTO_DEFLATE_COMP] = ALG_COMPRESSION,
651 	[CRYPTO_SHA2_256_HMAC] = ALG_KEYED_DIGEST,
652 	[CRYPTO_SHA2_384_HMAC] = ALG_KEYED_DIGEST,
653 	[CRYPTO_SHA2_512_HMAC] = ALG_KEYED_DIGEST,
654 	[CRYPTO_CAMELLIA_CBC] = ALG_CIPHER,
655 	[CRYPTO_AES_XTS] = ALG_CIPHER,
656 	[CRYPTO_AES_ICM] = ALG_CIPHER,
657 	[CRYPTO_AES_NIST_GMAC] = ALG_KEYED_DIGEST,
658 	[CRYPTO_AES_NIST_GCM_16] = ALG_AEAD,
659 	[CRYPTO_BLAKE2B] = ALG_KEYED_DIGEST,
660 	[CRYPTO_BLAKE2S] = ALG_KEYED_DIGEST,
661 	[CRYPTO_CHACHA20] = ALG_CIPHER,
662 	[CRYPTO_SHA2_224_HMAC] = ALG_KEYED_DIGEST,
663 	[CRYPTO_RIPEMD160] = ALG_DIGEST,
664 	[CRYPTO_SHA2_224] = ALG_DIGEST,
665 	[CRYPTO_SHA2_256] = ALG_DIGEST,
666 	[CRYPTO_SHA2_384] = ALG_DIGEST,
667 	[CRYPTO_SHA2_512] = ALG_DIGEST,
668 	[CRYPTO_POLY1305] = ALG_KEYED_DIGEST,
669 	[CRYPTO_AES_CCM_CBC_MAC] = ALG_KEYED_DIGEST,
670 	[CRYPTO_AES_CCM_16] = ALG_AEAD,
671 	[CRYPTO_CHACHA20_POLY1305] = ALG_AEAD,
672 };
673 
674 static enum alg_type
675 alg_type(int alg)
676 {
677 
678 	if (alg < nitems(alg_types))
679 		return (alg_types[alg]);
680 	return (ALG_NONE);
681 }
682 
683 static bool
684 alg_is_compression(int alg)
685 {
686 
687 	return (alg_type(alg) == ALG_COMPRESSION);
688 }
689 
690 static bool
691 alg_is_cipher(int alg)
692 {
693 
694 	return (alg_type(alg) == ALG_CIPHER);
695 }
696 
697 static bool
698 alg_is_digest(int alg)
699 {
700 
701 	return (alg_type(alg) == ALG_DIGEST ||
702 	    alg_type(alg) == ALG_KEYED_DIGEST);
703 }
704 
705 static bool
706 alg_is_keyed_digest(int alg)
707 {
708 
709 	return (alg_type(alg) == ALG_KEYED_DIGEST);
710 }
711 
712 static bool
713 alg_is_aead(int alg)
714 {
715 
716 	return (alg_type(alg) == ALG_AEAD);
717 }
718 
719 static bool
720 ccm_tag_length_valid(int len)
721 {
722 	/* RFC 3610 */
723 	switch (len) {
724 	case 4:
725 	case 6:
726 	case 8:
727 	case 10:
728 	case 12:
729 	case 14:
730 	case 16:
731 		return (true);
732 	default:
733 		return (false);
734 	}
735 }
736 
737 #define SUPPORTED_SES (CSP_F_SEPARATE_OUTPUT | CSP_F_SEPARATE_AAD | CSP_F_ESN)
738 
739 /* Various sanity checks on crypto session parameters. */
740 static bool
741 check_csp(const struct crypto_session_params *csp)
742 {
743 	const struct auth_hash *axf;
744 
745 	/* Mode-independent checks. */
746 	if ((csp->csp_flags & ~(SUPPORTED_SES)) != 0)
747 		return (false);
748 	if (csp->csp_ivlen < 0 || csp->csp_cipher_klen < 0 ||
749 	    csp->csp_auth_klen < 0 || csp->csp_auth_mlen < 0)
750 		return (false);
751 	if (csp->csp_auth_key != NULL && csp->csp_auth_klen == 0)
752 		return (false);
753 	if (csp->csp_cipher_key != NULL && csp->csp_cipher_klen == 0)
754 		return (false);
755 
756 	switch (csp->csp_mode) {
757 	case CSP_MODE_COMPRESS:
758 		if (!alg_is_compression(csp->csp_cipher_alg))
759 			return (false);
760 		if (csp->csp_flags & CSP_F_SEPARATE_OUTPUT)
761 			return (false);
762 		if (csp->csp_flags & CSP_F_SEPARATE_AAD)
763 			return (false);
764 		if (csp->csp_cipher_klen != 0 || csp->csp_ivlen != 0 ||
765 		    csp->csp_auth_alg != 0 || csp->csp_auth_klen != 0 ||
766 		    csp->csp_auth_mlen != 0)
767 			return (false);
768 		break;
769 	case CSP_MODE_CIPHER:
770 		if (!alg_is_cipher(csp->csp_cipher_alg))
771 			return (false);
772 		if (csp->csp_flags & CSP_F_SEPARATE_AAD)
773 			return (false);
774 		if (csp->csp_cipher_alg != CRYPTO_NULL_CBC) {
775 			if (csp->csp_cipher_klen == 0)
776 				return (false);
777 			if (csp->csp_ivlen == 0)
778 				return (false);
779 		}
780 		if (csp->csp_ivlen >= EALG_MAX_BLOCK_LEN)
781 			return (false);
782 		if (csp->csp_auth_alg != 0 || csp->csp_auth_klen != 0 ||
783 		    csp->csp_auth_mlen != 0)
784 			return (false);
785 		break;
786 	case CSP_MODE_DIGEST:
787 		if (csp->csp_cipher_alg != 0 || csp->csp_cipher_klen != 0)
788 			return (false);
789 
790 		if (csp->csp_flags & CSP_F_SEPARATE_AAD)
791 			return (false);
792 
793 		/* IV is optional for digests (e.g. GMAC). */
794 		switch (csp->csp_auth_alg) {
795 		case CRYPTO_AES_CCM_CBC_MAC:
796 			if (csp->csp_ivlen < 7 || csp->csp_ivlen > 13)
797 				return (false);
798 			break;
799 		case CRYPTO_AES_NIST_GMAC:
800 			if (csp->csp_ivlen != AES_GCM_IV_LEN)
801 				return (false);
802 			break;
803 		default:
804 			if (csp->csp_ivlen != 0)
805 				return (false);
806 			break;
807 		}
808 
809 		if (!alg_is_digest(csp->csp_auth_alg))
810 			return (false);
811 
812 		/* Key is optional for BLAKE2 digests. */
813 		if (csp->csp_auth_alg == CRYPTO_BLAKE2B ||
814 		    csp->csp_auth_alg == CRYPTO_BLAKE2S)
815 			;
816 		else if (alg_is_keyed_digest(csp->csp_auth_alg)) {
817 			if (csp->csp_auth_klen == 0)
818 				return (false);
819 		} else {
820 			if (csp->csp_auth_klen != 0)
821 				return (false);
822 		}
823 		if (csp->csp_auth_mlen != 0) {
824 			axf = crypto_auth_hash(csp);
825 			if (axf == NULL || csp->csp_auth_mlen > axf->hashsize)
826 				return (false);
827 
828 			if (csp->csp_auth_alg == CRYPTO_AES_CCM_CBC_MAC &&
829 			    !ccm_tag_length_valid(csp->csp_auth_mlen))
830 				return (false);
831 		}
832 		break;
833 	case CSP_MODE_AEAD:
834 		if (!alg_is_aead(csp->csp_cipher_alg))
835 			return (false);
836 		if (csp->csp_cipher_klen == 0)
837 			return (false);
838 		if (csp->csp_ivlen == 0 ||
839 		    csp->csp_ivlen >= EALG_MAX_BLOCK_LEN)
840 			return (false);
841 		if (csp->csp_auth_alg != 0 || csp->csp_auth_klen != 0)
842 			return (false);
843 
844 		switch (csp->csp_cipher_alg) {
845 		case CRYPTO_AES_CCM_16:
846 			if (csp->csp_auth_mlen != 0 &&
847 			    !ccm_tag_length_valid(csp->csp_auth_mlen))
848 				return (false);
849 
850 			if (csp->csp_ivlen < 7 || csp->csp_ivlen > 13)
851 				return (false);
852 			break;
853 		case CRYPTO_AES_NIST_GCM_16:
854 			if (csp->csp_auth_mlen > 16)
855 				return (false);
856 			break;
857 		case CRYPTO_CHACHA20_POLY1305:
858 			if (csp->csp_ivlen != 8 && csp->csp_ivlen != 12)
859 				return (false);
860 			if (csp->csp_auth_mlen > POLY1305_HASH_LEN)
861 				return (false);
862 			break;
863 		}
864 		break;
865 	case CSP_MODE_ETA:
866 		if (!alg_is_cipher(csp->csp_cipher_alg))
867 			return (false);
868 		if (csp->csp_cipher_alg != CRYPTO_NULL_CBC) {
869 			if (csp->csp_cipher_klen == 0)
870 				return (false);
871 			if (csp->csp_ivlen == 0)
872 				return (false);
873 		}
874 		if (csp->csp_ivlen >= EALG_MAX_BLOCK_LEN)
875 			return (false);
876 		if (!alg_is_digest(csp->csp_auth_alg))
877 			return (false);
878 
879 		/* Key is optional for BLAKE2 digests. */
880 		if (csp->csp_auth_alg == CRYPTO_BLAKE2B ||
881 		    csp->csp_auth_alg == CRYPTO_BLAKE2S)
882 			;
883 		else if (alg_is_keyed_digest(csp->csp_auth_alg)) {
884 			if (csp->csp_auth_klen == 0)
885 				return (false);
886 		} else {
887 			if (csp->csp_auth_klen != 0)
888 				return (false);
889 		}
890 		if (csp->csp_auth_mlen != 0) {
891 			axf = crypto_auth_hash(csp);
892 			if (axf == NULL || csp->csp_auth_mlen > axf->hashsize)
893 				return (false);
894 		}
895 		break;
896 	default:
897 		return (false);
898 	}
899 
900 	return (true);
901 }
902 
903 /*
904  * Delete a session after it has been detached from its driver.
905  */
906 static void
907 crypto_deletesession(crypto_session_t cses)
908 {
909 	struct cryptocap *cap;
910 
911 	cap = cses->cap;
912 
913 	zfree(cses, M_CRYPTO_DATA);
914 
915 	CRYPTO_DRIVER_LOCK();
916 	cap->cc_sessions--;
917 	if (cap->cc_sessions == 0 && cap->cc_flags & CRYPTOCAP_F_CLEANUP)
918 		wakeup(cap);
919 	CRYPTO_DRIVER_UNLOCK();
920 	cap_rele(cap);
921 }
922 
923 /*
924  * Create a new session.  The crid argument specifies a crypto
925  * driver to use or constraints on a driver to select (hardware
926  * only, software only, either).  Whatever driver is selected
927  * must be capable of the requested crypto algorithms.
928  */
929 int
930 crypto_newsession(crypto_session_t *cses,
931     const struct crypto_session_params *csp, int crid)
932 {
933 	static uint64_t sessid = 0;
934 	crypto_session_t res;
935 	struct cryptocap *cap;
936 	int err;
937 
938 	if (!check_csp(csp))
939 		return (EINVAL);
940 
941 	res = NULL;
942 
943 	CRYPTO_DRIVER_LOCK();
944 	if ((crid & (CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE)) == 0) {
945 		/*
946 		 * Use specified driver; verify it is capable.
947 		 */
948 		cap = crypto_checkdriver(crid);
949 		if (cap != NULL && CRYPTODEV_PROBESESSION(cap->cc_dev, csp) > 0)
950 			cap = NULL;
951 	} else {
952 		/*
953 		 * No requested driver; select based on crid flags.
954 		 */
955 		cap = crypto_select_driver(csp, crid);
956 	}
957 	if (cap == NULL) {
958 		CRYPTO_DRIVER_UNLOCK();
959 		CRYPTDEB("no driver");
960 		return (EOPNOTSUPP);
961 	}
962 	cap_ref(cap);
963 	cap->cc_sessions++;
964 	CRYPTO_DRIVER_UNLOCK();
965 
966 	/* Allocate a single block for the generic session and driver softc. */
967 	res = malloc(sizeof(*res) + cap->cc_session_size, M_CRYPTO_DATA,
968 	    M_WAITOK | M_ZERO);
969 	res->cap = cap;
970 	res->csp = *csp;
971 	res->id = atomic_fetchadd_64(&sessid, 1);
972 
973 	/* Call the driver initialization routine. */
974 	err = CRYPTODEV_NEWSESSION(cap->cc_dev, res, csp);
975 	if (err != 0) {
976 		CRYPTDEB("dev newsession failed: %d", err);
977 		crypto_deletesession(res);
978 		return (err);
979 	}
980 
981 	*cses = res;
982 	return (0);
983 }
984 
985 /*
986  * Delete an existing session (or a reserved session on an unregistered
987  * driver).
988  */
989 void
990 crypto_freesession(crypto_session_t cses)
991 {
992 	struct cryptocap *cap;
993 
994 	if (cses == NULL)
995 		return;
996 
997 	cap = cses->cap;
998 
999 	/* Call the driver cleanup routine, if available. */
1000 	CRYPTODEV_FREESESSION(cap->cc_dev, cses);
1001 
1002 	crypto_deletesession(cses);
1003 }
1004 
1005 /*
1006  * Return a new driver id.  Registers a driver with the system so that
1007  * it can be probed by subsequent sessions.
1008  */
1009 int32_t
1010 crypto_get_driverid(device_t dev, size_t sessionsize, int flags)
1011 {
1012 	struct cryptocap *cap, **newdrv;
1013 	int i;
1014 
1015 	if ((flags & (CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE)) == 0) {
1016 		device_printf(dev,
1017 		    "no flags specified when registering driver\n");
1018 		return -1;
1019 	}
1020 
1021 	cap = malloc(sizeof(*cap), M_CRYPTO_DATA, M_WAITOK | M_ZERO);
1022 	cap->cc_dev = dev;
1023 	cap->cc_session_size = sessionsize;
1024 	cap->cc_flags = flags;
1025 	refcount_init(&cap->cc_refs, 1);
1026 
1027 	CRYPTO_DRIVER_LOCK();
1028 	for (;;) {
1029 		for (i = 0; i < crypto_drivers_size; i++) {
1030 			if (crypto_drivers[i] == NULL)
1031 				break;
1032 		}
1033 
1034 		if (i < crypto_drivers_size)
1035 			break;
1036 
1037 		/* Out of entries, allocate some more. */
1038 
1039 		if (2 * crypto_drivers_size <= crypto_drivers_size) {
1040 			CRYPTO_DRIVER_UNLOCK();
1041 			printf("crypto: driver count wraparound!\n");
1042 			cap_rele(cap);
1043 			return (-1);
1044 		}
1045 		CRYPTO_DRIVER_UNLOCK();
1046 
1047 		newdrv = malloc(2 * crypto_drivers_size *
1048 		    sizeof(*crypto_drivers), M_CRYPTO_DATA, M_WAITOK | M_ZERO);
1049 
1050 		CRYPTO_DRIVER_LOCK();
1051 		memcpy(newdrv, crypto_drivers,
1052 		    crypto_drivers_size * sizeof(*crypto_drivers));
1053 
1054 		crypto_drivers_size *= 2;
1055 
1056 		free(crypto_drivers, M_CRYPTO_DATA);
1057 		crypto_drivers = newdrv;
1058 	}
1059 
1060 	cap->cc_hid = i;
1061 	crypto_drivers[i] = cap;
1062 	CRYPTO_DRIVER_UNLOCK();
1063 
1064 	if (bootverbose)
1065 		printf("crypto: assign %s driver id %u, flags 0x%x\n",
1066 		    device_get_nameunit(dev), i, flags);
1067 
1068 	return i;
1069 }
1070 
1071 /*
1072  * Lookup a driver by name.  We match against the full device
1073  * name and unit, and against just the name.  The latter gives
1074  * us a simple widlcarding by device name.  On success return the
1075  * driver/hardware identifier; otherwise return -1.
1076  */
1077 int
1078 crypto_find_driver(const char *match)
1079 {
1080 	struct cryptocap *cap;
1081 	int i, len = strlen(match);
1082 
1083 	CRYPTO_DRIVER_LOCK();
1084 	for (i = 0; i < crypto_drivers_size; i++) {
1085 		if (crypto_drivers[i] == NULL)
1086 			continue;
1087 		cap = crypto_drivers[i];
1088 		if (strncmp(match, device_get_nameunit(cap->cc_dev), len) == 0 ||
1089 		    strncmp(match, device_get_name(cap->cc_dev), len) == 0) {
1090 			CRYPTO_DRIVER_UNLOCK();
1091 			return (i);
1092 		}
1093 	}
1094 	CRYPTO_DRIVER_UNLOCK();
1095 	return (-1);
1096 }
1097 
1098 /*
1099  * Return the device_t for the specified driver or NULL
1100  * if the driver identifier is invalid.
1101  */
1102 device_t
1103 crypto_find_device_byhid(int hid)
1104 {
1105 	struct cryptocap *cap;
1106 	device_t dev;
1107 
1108 	dev = NULL;
1109 	CRYPTO_DRIVER_LOCK();
1110 	cap = crypto_checkdriver(hid);
1111 	if (cap != NULL)
1112 		dev = cap->cc_dev;
1113 	CRYPTO_DRIVER_UNLOCK();
1114 	return (dev);
1115 }
1116 
1117 /*
1118  * Return the device/driver capabilities.
1119  */
1120 int
1121 crypto_getcaps(int hid)
1122 {
1123 	struct cryptocap *cap;
1124 	int flags;
1125 
1126 	flags = 0;
1127 	CRYPTO_DRIVER_LOCK();
1128 	cap = crypto_checkdriver(hid);
1129 	if (cap != NULL)
1130 		flags = cap->cc_flags;
1131 	CRYPTO_DRIVER_UNLOCK();
1132 	return (flags);
1133 }
1134 
1135 /*
1136  * Unregister all algorithms associated with a crypto driver.
1137  * If there are pending sessions using it, leave enough information
1138  * around so that subsequent calls using those sessions will
1139  * correctly detect the driver has been unregistered and reroute
1140  * requests.
1141  */
1142 int
1143 crypto_unregister_all(uint32_t driverid)
1144 {
1145 	struct cryptocap *cap;
1146 
1147 	CRYPTO_DRIVER_LOCK();
1148 	cap = crypto_checkdriver(driverid);
1149 	if (cap == NULL) {
1150 		CRYPTO_DRIVER_UNLOCK();
1151 		return (EINVAL);
1152 	}
1153 
1154 	cap->cc_flags |= CRYPTOCAP_F_CLEANUP;
1155 	crypto_drivers[driverid] = NULL;
1156 
1157 	/*
1158 	 * XXX: This doesn't do anything to kick sessions that
1159 	 * have no pending operations.
1160 	 */
1161 	while (cap->cc_sessions != 0)
1162 		mtx_sleep(cap, &crypto_drivers_mtx, 0, "cryunreg", 0);
1163 	CRYPTO_DRIVER_UNLOCK();
1164 	cap_rele(cap);
1165 
1166 	return (0);
1167 }
1168 
1169 /*
1170  * Clear blockage on a driver.  The what parameter indicates whether
1171  * the driver is now ready for cryptop's and/or cryptokop's.
1172  */
1173 int
1174 crypto_unblock(uint32_t driverid, int what)
1175 {
1176 	struct cryptocap *cap;
1177 	int err;
1178 
1179 	CRYPTO_Q_LOCK();
1180 	cap = crypto_checkdriver(driverid);
1181 	if (cap != NULL) {
1182 		if (what & CRYPTO_SYMQ)
1183 			cap->cc_qblocked = 0;
1184 		if (crp_sleep)
1185 			wakeup_one(&crp_q);
1186 		err = 0;
1187 	} else
1188 		err = EINVAL;
1189 	CRYPTO_Q_UNLOCK();
1190 
1191 	return err;
1192 }
1193 
1194 size_t
1195 crypto_buffer_len(struct crypto_buffer *cb)
1196 {
1197 	switch (cb->cb_type) {
1198 	case CRYPTO_BUF_CONTIG:
1199 		return (cb->cb_buf_len);
1200 	case CRYPTO_BUF_MBUF:
1201 		if (cb->cb_mbuf->m_flags & M_PKTHDR)
1202 			return (cb->cb_mbuf->m_pkthdr.len);
1203 		return (m_length(cb->cb_mbuf, NULL));
1204 	case CRYPTO_BUF_SINGLE_MBUF:
1205 		return (cb->cb_mbuf->m_len);
1206 	case CRYPTO_BUF_VMPAGE:
1207 		return (cb->cb_vm_page_len);
1208 	case CRYPTO_BUF_UIO:
1209 		return (cb->cb_uio->uio_resid);
1210 	default:
1211 		return (0);
1212 	}
1213 }
1214 
1215 #ifdef INVARIANTS
1216 /* Various sanity checks on crypto requests. */
1217 static void
1218 cb_sanity(struct crypto_buffer *cb, const char *name)
1219 {
1220 	KASSERT(cb->cb_type > CRYPTO_BUF_NONE && cb->cb_type <= CRYPTO_BUF_LAST,
1221 	    ("incoming crp with invalid %s buffer type", name));
1222 	switch (cb->cb_type) {
1223 	case CRYPTO_BUF_CONTIG:
1224 		KASSERT(cb->cb_buf_len >= 0,
1225 		    ("incoming crp with -ve %s buffer length", name));
1226 		break;
1227 	case CRYPTO_BUF_VMPAGE:
1228 		KASSERT(CRYPTO_HAS_VMPAGE,
1229 		    ("incoming crp uses dmap on supported arch"));
1230 		KASSERT(cb->cb_vm_page_len >= 0,
1231 		    ("incoming crp with -ve %s buffer length", name));
1232 		KASSERT(cb->cb_vm_page_offset >= 0,
1233 		    ("incoming crp with -ve %s buffer offset", name));
1234 		KASSERT(cb->cb_vm_page_offset < PAGE_SIZE,
1235 		    ("incoming crp with %s buffer offset greater than page size"
1236 		     , name));
1237 		break;
1238 	default:
1239 		break;
1240 	}
1241 }
1242 
1243 static void
1244 crp_sanity(struct cryptop *crp)
1245 {
1246 	struct crypto_session_params *csp;
1247 	struct crypto_buffer *out;
1248 	size_t ilen, len, olen;
1249 
1250 	KASSERT(crp->crp_session != NULL, ("incoming crp without a session"));
1251 	KASSERT(crp->crp_obuf.cb_type >= CRYPTO_BUF_NONE &&
1252 	    crp->crp_obuf.cb_type <= CRYPTO_BUF_LAST,
1253 	    ("incoming crp with invalid output buffer type"));
1254 	KASSERT(crp->crp_etype == 0, ("incoming crp with error"));
1255 	KASSERT(!(crp->crp_flags & CRYPTO_F_DONE),
1256 	    ("incoming crp already done"));
1257 
1258 	csp = &crp->crp_session->csp;
1259 	cb_sanity(&crp->crp_buf, "input");
1260 	ilen = crypto_buffer_len(&crp->crp_buf);
1261 	olen = ilen;
1262 	out = NULL;
1263 	if (csp->csp_flags & CSP_F_SEPARATE_OUTPUT) {
1264 		if (crp->crp_obuf.cb_type != CRYPTO_BUF_NONE) {
1265 			cb_sanity(&crp->crp_obuf, "output");
1266 			out = &crp->crp_obuf;
1267 			olen = crypto_buffer_len(out);
1268 		}
1269 	} else
1270 		KASSERT(crp->crp_obuf.cb_type == CRYPTO_BUF_NONE,
1271 		    ("incoming crp with separate output buffer "
1272 		    "but no session support"));
1273 
1274 	switch (csp->csp_mode) {
1275 	case CSP_MODE_COMPRESS:
1276 		KASSERT(crp->crp_op == CRYPTO_OP_COMPRESS ||
1277 		    crp->crp_op == CRYPTO_OP_DECOMPRESS,
1278 		    ("invalid compression op %x", crp->crp_op));
1279 		break;
1280 	case CSP_MODE_CIPHER:
1281 		KASSERT(crp->crp_op == CRYPTO_OP_ENCRYPT ||
1282 		    crp->crp_op == CRYPTO_OP_DECRYPT,
1283 		    ("invalid cipher op %x", crp->crp_op));
1284 		break;
1285 	case CSP_MODE_DIGEST:
1286 		KASSERT(crp->crp_op == CRYPTO_OP_COMPUTE_DIGEST ||
1287 		    crp->crp_op == CRYPTO_OP_VERIFY_DIGEST,
1288 		    ("invalid digest op %x", crp->crp_op));
1289 		break;
1290 	case CSP_MODE_AEAD:
1291 		KASSERT(crp->crp_op ==
1292 		    (CRYPTO_OP_ENCRYPT | CRYPTO_OP_COMPUTE_DIGEST) ||
1293 		    crp->crp_op ==
1294 		    (CRYPTO_OP_DECRYPT | CRYPTO_OP_VERIFY_DIGEST),
1295 		    ("invalid AEAD op %x", crp->crp_op));
1296 		KASSERT(crp->crp_flags & CRYPTO_F_IV_SEPARATE,
1297 		    ("AEAD without a separate IV"));
1298 		break;
1299 	case CSP_MODE_ETA:
1300 		KASSERT(crp->crp_op ==
1301 		    (CRYPTO_OP_ENCRYPT | CRYPTO_OP_COMPUTE_DIGEST) ||
1302 		    crp->crp_op ==
1303 		    (CRYPTO_OP_DECRYPT | CRYPTO_OP_VERIFY_DIGEST),
1304 		    ("invalid ETA op %x", crp->crp_op));
1305 		break;
1306 	}
1307 	if (csp->csp_mode == CSP_MODE_AEAD || csp->csp_mode == CSP_MODE_ETA) {
1308 		if (crp->crp_aad == NULL) {
1309 			KASSERT(crp->crp_aad_start == 0 ||
1310 			    crp->crp_aad_start < ilen,
1311 			    ("invalid AAD start"));
1312 			KASSERT(crp->crp_aad_length != 0 ||
1313 			    crp->crp_aad_start == 0,
1314 			    ("AAD with zero length and non-zero start"));
1315 			KASSERT(crp->crp_aad_length == 0 ||
1316 			    crp->crp_aad_start + crp->crp_aad_length <= ilen,
1317 			    ("AAD outside input length"));
1318 		} else {
1319 			KASSERT(csp->csp_flags & CSP_F_SEPARATE_AAD,
1320 			    ("session doesn't support separate AAD buffer"));
1321 			KASSERT(crp->crp_aad_start == 0,
1322 			    ("separate AAD buffer with non-zero AAD start"));
1323 			KASSERT(crp->crp_aad_length != 0,
1324 			    ("separate AAD buffer with zero length"));
1325 		}
1326 	} else {
1327 		KASSERT(crp->crp_aad == NULL && crp->crp_aad_start == 0 &&
1328 		    crp->crp_aad_length == 0,
1329 		    ("AAD region in request not supporting AAD"));
1330 	}
1331 	if (csp->csp_ivlen == 0) {
1332 		KASSERT((crp->crp_flags & CRYPTO_F_IV_SEPARATE) == 0,
1333 		    ("IV_SEPARATE set when IV isn't used"));
1334 		KASSERT(crp->crp_iv_start == 0,
1335 		    ("crp_iv_start set when IV isn't used"));
1336 	} else if (crp->crp_flags & CRYPTO_F_IV_SEPARATE) {
1337 		KASSERT(crp->crp_iv_start == 0,
1338 		    ("IV_SEPARATE used with non-zero IV start"));
1339 	} else {
1340 		KASSERT(crp->crp_iv_start < ilen,
1341 		    ("invalid IV start"));
1342 		KASSERT(crp->crp_iv_start + csp->csp_ivlen <= ilen,
1343 		    ("IV outside buffer length"));
1344 	}
1345 	/* XXX: payload_start of 0 should always be < ilen? */
1346 	KASSERT(crp->crp_payload_start == 0 ||
1347 	    crp->crp_payload_start < ilen,
1348 	    ("invalid payload start"));
1349 	KASSERT(crp->crp_payload_start + crp->crp_payload_length <=
1350 	    ilen, ("payload outside input buffer"));
1351 	if (out == NULL) {
1352 		KASSERT(crp->crp_payload_output_start == 0,
1353 		    ("payload output start non-zero without output buffer"));
1354 	} else {
1355 		KASSERT(crp->crp_payload_output_start < olen,
1356 		    ("invalid payload output start"));
1357 		KASSERT(crp->crp_payload_output_start +
1358 		    crp->crp_payload_length <= olen,
1359 		    ("payload outside output buffer"));
1360 	}
1361 	if (csp->csp_mode == CSP_MODE_DIGEST ||
1362 	    csp->csp_mode == CSP_MODE_AEAD || csp->csp_mode == CSP_MODE_ETA) {
1363 		if (crp->crp_op & CRYPTO_OP_VERIFY_DIGEST)
1364 			len = ilen;
1365 		else
1366 			len = olen;
1367 		KASSERT(crp->crp_digest_start == 0 ||
1368 		    crp->crp_digest_start < len,
1369 		    ("invalid digest start"));
1370 		/* XXX: For the mlen == 0 case this check isn't perfect. */
1371 		KASSERT(crp->crp_digest_start + csp->csp_auth_mlen <= len,
1372 		    ("digest outside buffer"));
1373 	} else {
1374 		KASSERT(crp->crp_digest_start == 0,
1375 		    ("non-zero digest start for request without a digest"));
1376 	}
1377 	if (csp->csp_cipher_klen != 0)
1378 		KASSERT(csp->csp_cipher_key != NULL ||
1379 		    crp->crp_cipher_key != NULL,
1380 		    ("cipher request without a key"));
1381 	if (csp->csp_auth_klen != 0)
1382 		KASSERT(csp->csp_auth_key != NULL || crp->crp_auth_key != NULL,
1383 		    ("auth request without a key"));
1384 	KASSERT(crp->crp_callback != NULL, ("incoming crp without callback"));
1385 }
1386 #endif
1387 
1388 static int
1389 crypto_dispatch_one(struct cryptop *crp, int hint)
1390 {
1391 	struct cryptocap *cap;
1392 	int result;
1393 
1394 #ifdef INVARIANTS
1395 	crp_sanity(crp);
1396 #endif
1397 	CRYPTOSTAT_INC(cs_ops);
1398 
1399 	crp->crp_retw_id = crp->crp_session->id % crypto_workers_num;
1400 
1401 	/*
1402 	 * Caller marked the request to be processed immediately; dispatch it
1403 	 * directly to the driver unless the driver is currently blocked, in
1404 	 * which case it is queued for deferred dispatch.
1405 	 */
1406 	cap = crp->crp_session->cap;
1407 	if (!atomic_load_int(&cap->cc_qblocked)) {
1408 		result = crypto_invoke(cap, crp, hint);
1409 		if (result != ERESTART)
1410 			return (result);
1411 
1412 		/*
1413 		 * The driver ran out of resources, put the request on the
1414 		 * queue.
1415 		 */
1416 	}
1417 	crypto_batch_enqueue(crp);
1418 	return (0);
1419 }
1420 
1421 int
1422 crypto_dispatch(struct cryptop *crp)
1423 {
1424 	return (crypto_dispatch_one(crp, 0));
1425 }
1426 
1427 int
1428 crypto_dispatch_async(struct cryptop *crp, int flags)
1429 {
1430 	struct crypto_ret_worker *ret_worker;
1431 
1432 	if (!CRYPTO_SESS_SYNC(crp->crp_session)) {
1433 		/*
1434 		 * The driver issues completions asynchonously, don't bother
1435 		 * deferring dispatch to a worker thread.
1436 		 */
1437 		return (crypto_dispatch(crp));
1438 	}
1439 
1440 #ifdef INVARIANTS
1441 	crp_sanity(crp);
1442 #endif
1443 	CRYPTOSTAT_INC(cs_ops);
1444 
1445 	crp->crp_retw_id = crp->crp_session->id % crypto_workers_num;
1446 	if ((flags & CRYPTO_ASYNC_ORDERED) != 0) {
1447 		crp->crp_flags |= CRYPTO_F_ASYNC_ORDERED;
1448 		ret_worker = CRYPTO_RETW(crp->crp_retw_id);
1449 		CRYPTO_RETW_LOCK(ret_worker);
1450 		crp->crp_seq = ret_worker->reorder_ops++;
1451 		CRYPTO_RETW_UNLOCK(ret_worker);
1452 	}
1453 	TASK_INIT(&crp->crp_task, 0, crypto_task_invoke, crp);
1454 	taskqueue_enqueue(crypto_tq, &crp->crp_task);
1455 	return (0);
1456 }
1457 
1458 void
1459 crypto_dispatch_batch(struct cryptopq *crpq, int flags)
1460 {
1461 	struct cryptop *crp;
1462 	int hint;
1463 
1464 	while ((crp = TAILQ_FIRST(crpq)) != NULL) {
1465 		hint = TAILQ_NEXT(crp, crp_next) != NULL ? CRYPTO_HINT_MORE : 0;
1466 		TAILQ_REMOVE(crpq, crp, crp_next);
1467 		if (crypto_dispatch_one(crp, hint) != 0)
1468 			crypto_batch_enqueue(crp);
1469 	}
1470 }
1471 
1472 static void
1473 crypto_batch_enqueue(struct cryptop *crp)
1474 {
1475 
1476 	CRYPTO_Q_LOCK();
1477 	TAILQ_INSERT_TAIL(&crp_q, crp, crp_next);
1478 	if (crp_sleep)
1479 		wakeup_one(&crp_q);
1480 	CRYPTO_Q_UNLOCK();
1481 }
1482 
1483 static void
1484 crypto_task_invoke(void *ctx, int pending)
1485 {
1486 	struct cryptocap *cap;
1487 	struct cryptop *crp;
1488 	int result;
1489 
1490 	crp = (struct cryptop *)ctx;
1491 	cap = crp->crp_session->cap;
1492 	result = crypto_invoke(cap, crp, 0);
1493 	if (result == ERESTART)
1494 		crypto_batch_enqueue(crp);
1495 }
1496 
1497 /*
1498  * Dispatch a crypto request to the appropriate crypto devices.
1499  */
1500 static int
1501 crypto_invoke(struct cryptocap *cap, struct cryptop *crp, int hint)
1502 {
1503 
1504 	KASSERT(crp != NULL, ("%s: crp == NULL", __func__));
1505 	KASSERT(crp->crp_callback != NULL,
1506 	    ("%s: crp->crp_callback == NULL", __func__));
1507 	KASSERT(crp->crp_session != NULL,
1508 	    ("%s: crp->crp_session == NULL", __func__));
1509 
1510 	if (cap->cc_flags & CRYPTOCAP_F_CLEANUP) {
1511 		struct crypto_session_params csp;
1512 		crypto_session_t nses;
1513 
1514 		/*
1515 		 * Driver has unregistered; migrate the session and return
1516 		 * an error to the caller so they'll resubmit the op.
1517 		 *
1518 		 * XXX: What if there are more already queued requests for this
1519 		 *      session?
1520 		 *
1521 		 * XXX: Real solution is to make sessions refcounted
1522 		 * and force callers to hold a reference when
1523 		 * assigning to crp_session.  Could maybe change
1524 		 * crypto_getreq to accept a session pointer to make
1525 		 * that work.  Alternatively, we could abandon the
1526 		 * notion of rewriting crp_session in requests forcing
1527 		 * the caller to deal with allocating a new session.
1528 		 * Perhaps provide a method to allow a crp's session to
1529 		 * be swapped that callers could use.
1530 		 */
1531 		csp = crp->crp_session->csp;
1532 		crypto_freesession(crp->crp_session);
1533 
1534 		/*
1535 		 * XXX: Key pointers may no longer be valid.  If we
1536 		 * really want to support this we need to define the
1537 		 * KPI such that 'csp' is required to be valid for the
1538 		 * duration of a session by the caller perhaps.
1539 		 *
1540 		 * XXX: If the keys have been changed this will reuse
1541 		 * the old keys.  This probably suggests making
1542 		 * rekeying more explicit and updating the key
1543 		 * pointers in 'csp' when the keys change.
1544 		 */
1545 		if (crypto_newsession(&nses, &csp,
1546 		    CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE) == 0)
1547 			crp->crp_session = nses;
1548 
1549 		crp->crp_etype = EAGAIN;
1550 		crypto_done(crp);
1551 		return 0;
1552 	} else {
1553 		/*
1554 		 * Invoke the driver to process the request.
1555 		 */
1556 		return CRYPTODEV_PROCESS(cap->cc_dev, crp, hint);
1557 	}
1558 }
1559 
1560 void
1561 crypto_destroyreq(struct cryptop *crp)
1562 {
1563 #ifdef DIAGNOSTIC
1564 	{
1565 		struct cryptop *crp2;
1566 		struct crypto_ret_worker *ret_worker;
1567 
1568 		CRYPTO_Q_LOCK();
1569 		TAILQ_FOREACH(crp2, &crp_q, crp_next) {
1570 			KASSERT(crp2 != crp,
1571 			    ("Freeing cryptop from the crypto queue (%p).",
1572 			    crp));
1573 		}
1574 		CRYPTO_Q_UNLOCK();
1575 
1576 		FOREACH_CRYPTO_RETW(ret_worker) {
1577 			CRYPTO_RETW_LOCK(ret_worker);
1578 			TAILQ_FOREACH(crp2, &ret_worker->crp_ret_q, crp_next) {
1579 				KASSERT(crp2 != crp,
1580 				    ("Freeing cryptop from the return queue (%p).",
1581 				    crp));
1582 			}
1583 			CRYPTO_RETW_UNLOCK(ret_worker);
1584 		}
1585 	}
1586 #endif
1587 }
1588 
1589 void
1590 crypto_freereq(struct cryptop *crp)
1591 {
1592 	if (crp == NULL)
1593 		return;
1594 
1595 	crypto_destroyreq(crp);
1596 	uma_zfree(cryptop_zone, crp);
1597 }
1598 
1599 static void
1600 _crypto_initreq(struct cryptop *crp, crypto_session_t cses)
1601 {
1602 	crp->crp_session = cses;
1603 }
1604 
1605 void
1606 crypto_initreq(struct cryptop *crp, crypto_session_t cses)
1607 {
1608 	memset(crp, 0, sizeof(*crp));
1609 	_crypto_initreq(crp, cses);
1610 }
1611 
1612 struct cryptop *
1613 crypto_getreq(crypto_session_t cses, int how)
1614 {
1615 	struct cryptop *crp;
1616 
1617 	MPASS(how == M_WAITOK || how == M_NOWAIT);
1618 	crp = uma_zalloc(cryptop_zone, how | M_ZERO);
1619 	if (crp != NULL)
1620 		_crypto_initreq(crp, cses);
1621 	return (crp);
1622 }
1623 
1624 /*
1625  * Invoke the callback on behalf of the driver.
1626  */
1627 void
1628 crypto_done(struct cryptop *crp)
1629 {
1630 	KASSERT((crp->crp_flags & CRYPTO_F_DONE) == 0,
1631 		("crypto_done: op already done, flags 0x%x", crp->crp_flags));
1632 	crp->crp_flags |= CRYPTO_F_DONE;
1633 	if (crp->crp_etype != 0)
1634 		CRYPTOSTAT_INC(cs_errs);
1635 
1636 	/*
1637 	 * CBIMM means unconditionally do the callback immediately;
1638 	 * CBIFSYNC means do the callback immediately only if the
1639 	 * operation was done synchronously.  Both are used to avoid
1640 	 * doing extraneous context switches; the latter is mostly
1641 	 * used with the software crypto driver.
1642 	 */
1643 	if ((crp->crp_flags & CRYPTO_F_ASYNC_ORDERED) == 0 &&
1644 	    ((crp->crp_flags & CRYPTO_F_CBIMM) != 0 ||
1645 	    ((crp->crp_flags & CRYPTO_F_CBIFSYNC) != 0 &&
1646 	    CRYPTO_SESS_SYNC(crp->crp_session)))) {
1647 		/*
1648 		 * Do the callback directly.  This is ok when the
1649 		 * callback routine does very little (e.g. the
1650 		 * /dev/crypto callback method just does a wakeup).
1651 		 */
1652 		crp->crp_callback(crp);
1653 	} else {
1654 		struct crypto_ret_worker *ret_worker;
1655 		bool wake;
1656 
1657 		ret_worker = CRYPTO_RETW(crp->crp_retw_id);
1658 
1659 		/*
1660 		 * Normal case; queue the callback for the thread.
1661 		 */
1662 		CRYPTO_RETW_LOCK(ret_worker);
1663 		if ((crp->crp_flags & CRYPTO_F_ASYNC_ORDERED) != 0) {
1664 			struct cryptop *tmp;
1665 
1666 			TAILQ_FOREACH_REVERSE(tmp,
1667 			    &ret_worker->crp_ordered_ret_q, cryptop_q,
1668 			    crp_next) {
1669 				if (CRYPTO_SEQ_GT(crp->crp_seq, tmp->crp_seq)) {
1670 					TAILQ_INSERT_AFTER(
1671 					    &ret_worker->crp_ordered_ret_q, tmp,
1672 					    crp, crp_next);
1673 					break;
1674 				}
1675 			}
1676 			if (tmp == NULL) {
1677 				TAILQ_INSERT_HEAD(
1678 				    &ret_worker->crp_ordered_ret_q, crp,
1679 				    crp_next);
1680 			}
1681 
1682 			wake = crp->crp_seq == ret_worker->reorder_cur_seq;
1683 		} else {
1684 			wake = TAILQ_EMPTY(&ret_worker->crp_ret_q);
1685 			TAILQ_INSERT_TAIL(&ret_worker->crp_ret_q, crp,
1686 			    crp_next);
1687 		}
1688 
1689 		if (wake)
1690 			wakeup_one(&ret_worker->crp_ret_q);	/* shared wait channel */
1691 		CRYPTO_RETW_UNLOCK(ret_worker);
1692 	}
1693 }
1694 
1695 /*
1696  * Terminate a thread at module unload.  The process that
1697  * initiated this is waiting for us to signal that we're gone;
1698  * wake it up and exit.  We use the driver table lock to insure
1699  * we don't do the wakeup before they're waiting.  There is no
1700  * race here because the waiter sleeps on the proc lock for the
1701  * thread so it gets notified at the right time because of an
1702  * extra wakeup that's done in exit1().
1703  */
1704 static void
1705 crypto_finis(void *chan)
1706 {
1707 	CRYPTO_DRIVER_LOCK();
1708 	wakeup_one(chan);
1709 	CRYPTO_DRIVER_UNLOCK();
1710 	kthread_exit();
1711 }
1712 
1713 /*
1714  * Crypto thread, dispatches crypto requests.
1715  */
1716 static void
1717 crypto_dispatch_thread(void *arg __unused)
1718 {
1719 	struct cryptop *crp, *submit;
1720 	struct cryptocap *cap;
1721 	int result, hint;
1722 
1723 #if defined(__i386__) || defined(__amd64__) || defined(__aarch64__)
1724 	fpu_kern_thread(FPU_KERN_NORMAL);
1725 #endif
1726 
1727 	CRYPTO_Q_LOCK();
1728 	for (;;) {
1729 		/*
1730 		 * Find the first element in the queue that can be
1731 		 * processed and look-ahead to see if multiple ops
1732 		 * are ready for the same driver.
1733 		 */
1734 		submit = NULL;
1735 		hint = 0;
1736 		TAILQ_FOREACH(crp, &crp_q, crp_next) {
1737 			cap = crp->crp_session->cap;
1738 			/*
1739 			 * Driver cannot disappeared when there is an active
1740 			 * session.
1741 			 */
1742 			KASSERT(cap != NULL, ("%s:%u Driver disappeared.",
1743 			    __func__, __LINE__));
1744 			if (cap->cc_flags & CRYPTOCAP_F_CLEANUP) {
1745 				/* Op needs to be migrated, process it. */
1746 				if (submit == NULL)
1747 					submit = crp;
1748 				break;
1749 			}
1750 			if (!cap->cc_qblocked) {
1751 				if (submit != NULL) {
1752 					/*
1753 					 * We stop on finding another op,
1754 					 * regardless whether its for the same
1755 					 * driver or not.  We could keep
1756 					 * searching the queue but it might be
1757 					 * better to just use a per-driver
1758 					 * queue instead.
1759 					 */
1760 					if (submit->crp_session->cap == cap)
1761 						hint = CRYPTO_HINT_MORE;
1762 				} else {
1763 					submit = crp;
1764 				}
1765 				break;
1766 			}
1767 		}
1768 		if (submit != NULL) {
1769 			TAILQ_REMOVE(&crp_q, submit, crp_next);
1770 			cap = submit->crp_session->cap;
1771 			KASSERT(cap != NULL, ("%s:%u Driver disappeared.",
1772 			    __func__, __LINE__));
1773 			CRYPTO_Q_UNLOCK();
1774 			result = crypto_invoke(cap, submit, hint);
1775 			CRYPTO_Q_LOCK();
1776 			if (result == ERESTART) {
1777 				/*
1778 				 * The driver ran out of resources, mark the
1779 				 * driver ``blocked'' for cryptop's and put
1780 				 * the request back in the queue.  It would
1781 				 * best to put the request back where we got
1782 				 * it but that's hard so for now we put it
1783 				 * at the front.  This should be ok; putting
1784 				 * it at the end does not work.
1785 				 */
1786 				cap->cc_qblocked = 1;
1787 				TAILQ_INSERT_HEAD(&crp_q, submit, crp_next);
1788 				CRYPTOSTAT_INC(cs_blocks);
1789 			}
1790 		} else {
1791 			/*
1792 			 * Nothing more to be processed.  Sleep until we're
1793 			 * woken because there are more ops to process.
1794 			 * This happens either by submission or by a driver
1795 			 * becoming unblocked and notifying us through
1796 			 * crypto_unblock.  Note that when we wakeup we
1797 			 * start processing each queue again from the
1798 			 * front. It's not clear that it's important to
1799 			 * preserve this ordering since ops may finish
1800 			 * out of order if dispatched to different devices
1801 			 * and some become blocked while others do not.
1802 			 */
1803 			crp_sleep = 1;
1804 			msleep(&crp_q, &crypto_q_mtx, PWAIT, "crypto_wait", 0);
1805 			crp_sleep = 0;
1806 			if (cryptotd == NULL)
1807 				break;
1808 			CRYPTOSTAT_INC(cs_intrs);
1809 		}
1810 	}
1811 	CRYPTO_Q_UNLOCK();
1812 
1813 	crypto_finis(&crp_q);
1814 }
1815 
1816 /*
1817  * Crypto returns thread, does callbacks for processed crypto requests.
1818  * Callbacks are done here, rather than in the crypto drivers, because
1819  * callbacks typically are expensive and would slow interrupt handling.
1820  */
1821 static void
1822 crypto_ret_thread(void *arg)
1823 {
1824 	struct crypto_ret_worker *ret_worker = arg;
1825 	struct cryptop *crpt;
1826 
1827 	CRYPTO_RETW_LOCK(ret_worker);
1828 	for (;;) {
1829 		/* Harvest return q's for completed ops */
1830 		crpt = TAILQ_FIRST(&ret_worker->crp_ordered_ret_q);
1831 		if (crpt != NULL) {
1832 			if (crpt->crp_seq == ret_worker->reorder_cur_seq) {
1833 				TAILQ_REMOVE(&ret_worker->crp_ordered_ret_q, crpt, crp_next);
1834 				ret_worker->reorder_cur_seq++;
1835 			} else {
1836 				crpt = NULL;
1837 			}
1838 		}
1839 
1840 		if (crpt == NULL) {
1841 			crpt = TAILQ_FIRST(&ret_worker->crp_ret_q);
1842 			if (crpt != NULL)
1843 				TAILQ_REMOVE(&ret_worker->crp_ret_q, crpt, crp_next);
1844 		}
1845 
1846 		if (crpt != NULL) {
1847 			CRYPTO_RETW_UNLOCK(ret_worker);
1848 			/*
1849 			 * Run callbacks unlocked.
1850 			 */
1851 			if (crpt != NULL)
1852 				crpt->crp_callback(crpt);
1853 			CRYPTO_RETW_LOCK(ret_worker);
1854 		} else {
1855 			/*
1856 			 * Nothing more to be processed.  Sleep until we're
1857 			 * woken because there are more returns to process.
1858 			 */
1859 			msleep(&ret_worker->crp_ret_q, &ret_worker->crypto_ret_mtx, PWAIT,
1860 				"crypto_ret_wait", 0);
1861 			if (ret_worker->td == NULL)
1862 				break;
1863 			CRYPTOSTAT_INC(cs_rets);
1864 		}
1865 	}
1866 	CRYPTO_RETW_UNLOCK(ret_worker);
1867 
1868 	crypto_finis(&ret_worker->crp_ret_q);
1869 }
1870 
1871 #ifdef DDB
1872 static void
1873 db_show_drivers(void)
1874 {
1875 	int hid;
1876 
1877 	db_printf("%12s %4s %8s %2s\n"
1878 		, "Device"
1879 		, "Ses"
1880 		, "Flags"
1881 		, "QB"
1882 	);
1883 	for (hid = 0; hid < crypto_drivers_size; hid++) {
1884 		const struct cryptocap *cap = crypto_drivers[hid];
1885 		if (cap == NULL)
1886 			continue;
1887 		db_printf("%-12s %4u %08x %2u\n"
1888 		    , device_get_nameunit(cap->cc_dev)
1889 		    , cap->cc_sessions
1890 		    , cap->cc_flags
1891 		    , cap->cc_qblocked
1892 		);
1893 	}
1894 }
1895 
1896 DB_SHOW_COMMAND(crypto, db_show_crypto)
1897 {
1898 	struct cryptop *crp;
1899 	struct crypto_ret_worker *ret_worker;
1900 
1901 	db_show_drivers();
1902 	db_printf("\n");
1903 
1904 	db_printf("%4s %8s %4s %4s %4s %4s %8s %8s\n",
1905 	    "HID", "Caps", "Ilen", "Olen", "Etype", "Flags",
1906 	    "Device", "Callback");
1907 	TAILQ_FOREACH(crp, &crp_q, crp_next) {
1908 		db_printf("%4u %08x %4u %4u %04x %8p %8p\n"
1909 		    , crp->crp_session->cap->cc_hid
1910 		    , (int) crypto_ses2caps(crp->crp_session)
1911 		    , crp->crp_olen
1912 		    , crp->crp_etype
1913 		    , crp->crp_flags
1914 		    , device_get_nameunit(crp->crp_session->cap->cc_dev)
1915 		    , crp->crp_callback
1916 		);
1917 	}
1918 	FOREACH_CRYPTO_RETW(ret_worker) {
1919 		db_printf("\n%8s %4s %4s %4s %8s\n",
1920 		    "ret_worker", "HID", "Etype", "Flags", "Callback");
1921 		if (!TAILQ_EMPTY(&ret_worker->crp_ret_q)) {
1922 			TAILQ_FOREACH(crp, &ret_worker->crp_ret_q, crp_next) {
1923 				db_printf("%8td %4u %4u %04x %8p\n"
1924 				    , CRYPTO_RETW_ID(ret_worker)
1925 				    , crp->crp_session->cap->cc_hid
1926 				    , crp->crp_etype
1927 				    , crp->crp_flags
1928 				    , crp->crp_callback
1929 				);
1930 			}
1931 		}
1932 	}
1933 }
1934 #endif
1935 
1936 int crypto_modevent(module_t mod, int type, void *unused);
1937 
1938 /*
1939  * Initialization code, both for static and dynamic loading.
1940  * Note this is not invoked with the usual MODULE_DECLARE
1941  * mechanism but instead is listed as a dependency by the
1942  * cryptosoft driver.  This guarantees proper ordering of
1943  * calls on module load/unload.
1944  */
1945 int
1946 crypto_modevent(module_t mod, int type, void *unused)
1947 {
1948 	int error = EINVAL;
1949 
1950 	switch (type) {
1951 	case MOD_LOAD:
1952 		error = crypto_init();
1953 		if (error == 0 && bootverbose)
1954 			printf("crypto: <crypto core>\n");
1955 		break;
1956 	case MOD_UNLOAD:
1957 		/*XXX disallow if active sessions */
1958 		error = 0;
1959 		crypto_destroy();
1960 		return 0;
1961 	}
1962 	return error;
1963 }
1964 MODULE_VERSION(crypto, 1);
1965 MODULE_DEPEND(crypto, zlib, 1, 1, 1);
1966