xref: /freebsd/sys/powerpc/aim/mmu_oea.c (revision aa0a1e58)
1 /*-
2  * Copyright (c) 2001 The NetBSD Foundation, Inc.
3  * All rights reserved.
4  *
5  * This code is derived from software contributed to The NetBSD Foundation
6  * by Matt Thomas <matt@3am-software.com> of Allegro Networks, Inc.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *        This product includes software developed by the NetBSD
19  *        Foundation, Inc. and its contributors.
20  * 4. Neither the name of The NetBSD Foundation nor the names of its
21  *    contributors may be used to endorse or promote products derived
22  *    from this software without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
25  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
26  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
27  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
28  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
29  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
30  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
31  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
32  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
33  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
34  * POSSIBILITY OF SUCH DAMAGE.
35  */
36 /*-
37  * Copyright (C) 1995, 1996 Wolfgang Solfrank.
38  * Copyright (C) 1995, 1996 TooLs GmbH.
39  * All rights reserved.
40  *
41  * Redistribution and use in source and binary forms, with or without
42  * modification, are permitted provided that the following conditions
43  * are met:
44  * 1. Redistributions of source code must retain the above copyright
45  *    notice, this list of conditions and the following disclaimer.
46  * 2. Redistributions in binary form must reproduce the above copyright
47  *    notice, this list of conditions and the following disclaimer in the
48  *    documentation and/or other materials provided with the distribution.
49  * 3. All advertising materials mentioning features or use of this software
50  *    must display the following acknowledgement:
51  *	This product includes software developed by TooLs GmbH.
52  * 4. The name of TooLs GmbH may not be used to endorse or promote products
53  *    derived from this software without specific prior written permission.
54  *
55  * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
56  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
57  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
58  * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
59  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
60  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
61  * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
62  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
63  * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
64  * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
65  *
66  * $NetBSD: pmap.c,v 1.28 2000/03/26 20:42:36 kleink Exp $
67  */
68 /*-
69  * Copyright (C) 2001 Benno Rice.
70  * All rights reserved.
71  *
72  * Redistribution and use in source and binary forms, with or without
73  * modification, are permitted provided that the following conditions
74  * are met:
75  * 1. Redistributions of source code must retain the above copyright
76  *    notice, this list of conditions and the following disclaimer.
77  * 2. Redistributions in binary form must reproduce the above copyright
78  *    notice, this list of conditions and the following disclaimer in the
79  *    documentation and/or other materials provided with the distribution.
80  *
81  * THIS SOFTWARE IS PROVIDED BY Benno Rice ``AS IS'' AND ANY EXPRESS OR
82  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
83  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
84  * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
85  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
86  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
87  * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
88  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
89  * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
90  * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
91  */
92 
93 #include <sys/cdefs.h>
94 __FBSDID("$FreeBSD$");
95 
96 /*
97  * Manages physical address maps.
98  *
99  * In addition to hardware address maps, this module is called upon to
100  * provide software-use-only maps which may or may not be stored in the
101  * same form as hardware maps.  These pseudo-maps are used to store
102  * intermediate results from copy operations to and from address spaces.
103  *
104  * Since the information managed by this module is also stored by the
105  * logical address mapping module, this module may throw away valid virtual
106  * to physical mappings at almost any time.  However, invalidations of
107  * mappings must be done as requested.
108  *
109  * In order to cope with hardware architectures which make virtual to
110  * physical map invalidates expensive, this module may delay invalidate
111  * reduced protection operations until such time as they are actually
112  * necessary.  This module is given full information as to which processors
113  * are currently using which maps, and to when physical maps must be made
114  * correct.
115  */
116 
117 #include "opt_kstack_pages.h"
118 
119 #include <sys/param.h>
120 #include <sys/kernel.h>
121 #include <sys/ktr.h>
122 #include <sys/lock.h>
123 #include <sys/msgbuf.h>
124 #include <sys/mutex.h>
125 #include <sys/proc.h>
126 #include <sys/sysctl.h>
127 #include <sys/systm.h>
128 #include <sys/vmmeter.h>
129 
130 #include <dev/ofw/openfirm.h>
131 
132 #include <vm/vm.h>
133 #include <vm/vm_param.h>
134 #include <vm/vm_kern.h>
135 #include <vm/vm_page.h>
136 #include <vm/vm_map.h>
137 #include <vm/vm_object.h>
138 #include <vm/vm_extern.h>
139 #include <vm/vm_pageout.h>
140 #include <vm/vm_pager.h>
141 #include <vm/uma.h>
142 
143 #include <machine/cpu.h>
144 #include <machine/platform.h>
145 #include <machine/bat.h>
146 #include <machine/frame.h>
147 #include <machine/md_var.h>
148 #include <machine/psl.h>
149 #include <machine/pte.h>
150 #include <machine/smp.h>
151 #include <machine/sr.h>
152 #include <machine/mmuvar.h>
153 
154 #include "mmu_if.h"
155 
156 #define	MOEA_DEBUG
157 
158 #define TODO	panic("%s: not implemented", __func__);
159 
160 #define	VSID_MAKE(sr, hash)	((sr) | (((hash) & 0xfffff) << 4))
161 #define	VSID_TO_SR(vsid)	((vsid) & 0xf)
162 #define	VSID_TO_HASH(vsid)	(((vsid) >> 4) & 0xfffff)
163 
164 #define	MOEA_PVO_CHECK(pvo)
165 
166 struct ofw_map {
167 	vm_offset_t	om_va;
168 	vm_size_t	om_len;
169 	vm_offset_t	om_pa;
170 	u_int		om_mode;
171 };
172 
173 /*
174  * Map of physical memory regions.
175  */
176 static struct	mem_region *regions;
177 static struct	mem_region *pregions;
178 static u_int    phys_avail_count;
179 static int	regions_sz, pregions_sz;
180 static struct	ofw_map *translations;
181 
182 /*
183  * Lock for the pteg and pvo tables.
184  */
185 struct mtx	moea_table_mutex;
186 struct mtx	moea_vsid_mutex;
187 
188 /* tlbie instruction synchronization */
189 static struct mtx tlbie_mtx;
190 
191 /*
192  * PTEG data.
193  */
194 static struct	pteg *moea_pteg_table;
195 u_int		moea_pteg_count;
196 u_int		moea_pteg_mask;
197 
198 /*
199  * PVO data.
200  */
201 struct	pvo_head *moea_pvo_table;		/* pvo entries by pteg index */
202 struct	pvo_head moea_pvo_kunmanaged =
203     LIST_HEAD_INITIALIZER(moea_pvo_kunmanaged);	/* list of unmanaged pages */
204 
205 uma_zone_t	moea_upvo_zone;	/* zone for pvo entries for unmanaged pages */
206 uma_zone_t	moea_mpvo_zone;	/* zone for pvo entries for managed pages */
207 
208 #define	BPVO_POOL_SIZE	32768
209 static struct	pvo_entry *moea_bpvo_pool;
210 static int	moea_bpvo_pool_index = 0;
211 
212 #define	VSID_NBPW	(sizeof(u_int32_t) * 8)
213 static u_int	moea_vsid_bitmap[NPMAPS / VSID_NBPW];
214 
215 static boolean_t moea_initialized = FALSE;
216 
217 /*
218  * Statistics.
219  */
220 u_int	moea_pte_valid = 0;
221 u_int	moea_pte_overflow = 0;
222 u_int	moea_pte_replacements = 0;
223 u_int	moea_pvo_entries = 0;
224 u_int	moea_pvo_enter_calls = 0;
225 u_int	moea_pvo_remove_calls = 0;
226 u_int	moea_pte_spills = 0;
227 SYSCTL_INT(_machdep, OID_AUTO, moea_pte_valid, CTLFLAG_RD, &moea_pte_valid,
228     0, "");
229 SYSCTL_INT(_machdep, OID_AUTO, moea_pte_overflow, CTLFLAG_RD,
230     &moea_pte_overflow, 0, "");
231 SYSCTL_INT(_machdep, OID_AUTO, moea_pte_replacements, CTLFLAG_RD,
232     &moea_pte_replacements, 0, "");
233 SYSCTL_INT(_machdep, OID_AUTO, moea_pvo_entries, CTLFLAG_RD, &moea_pvo_entries,
234     0, "");
235 SYSCTL_INT(_machdep, OID_AUTO, moea_pvo_enter_calls, CTLFLAG_RD,
236     &moea_pvo_enter_calls, 0, "");
237 SYSCTL_INT(_machdep, OID_AUTO, moea_pvo_remove_calls, CTLFLAG_RD,
238     &moea_pvo_remove_calls, 0, "");
239 SYSCTL_INT(_machdep, OID_AUTO, moea_pte_spills, CTLFLAG_RD,
240     &moea_pte_spills, 0, "");
241 
242 /*
243  * Allocate physical memory for use in moea_bootstrap.
244  */
245 static vm_offset_t	moea_bootstrap_alloc(vm_size_t, u_int);
246 
247 /*
248  * PTE calls.
249  */
250 static int		moea_pte_insert(u_int, struct pte *);
251 
252 /*
253  * PVO calls.
254  */
255 static int	moea_pvo_enter(pmap_t, uma_zone_t, struct pvo_head *,
256 		    vm_offset_t, vm_offset_t, u_int, int);
257 static void	moea_pvo_remove(struct pvo_entry *, int);
258 static struct	pvo_entry *moea_pvo_find_va(pmap_t, vm_offset_t, int *);
259 static struct	pte *moea_pvo_to_pte(const struct pvo_entry *, int);
260 
261 /*
262  * Utility routines.
263  */
264 static void		moea_enter_locked(pmap_t, vm_offset_t, vm_page_t,
265 			    vm_prot_t, boolean_t);
266 static void		moea_syncicache(vm_offset_t, vm_size_t);
267 static boolean_t	moea_query_bit(vm_page_t, int);
268 static u_int		moea_clear_bit(vm_page_t, int);
269 static void		moea_kremove(mmu_t, vm_offset_t);
270 int		moea_pte_spill(vm_offset_t);
271 
272 /*
273  * Kernel MMU interface
274  */
275 void moea_change_wiring(mmu_t, pmap_t, vm_offset_t, boolean_t);
276 void moea_clear_modify(mmu_t, vm_page_t);
277 void moea_clear_reference(mmu_t, vm_page_t);
278 void moea_copy_page(mmu_t, vm_page_t, vm_page_t);
279 void moea_enter(mmu_t, pmap_t, vm_offset_t, vm_page_t, vm_prot_t, boolean_t);
280 void moea_enter_object(mmu_t, pmap_t, vm_offset_t, vm_offset_t, vm_page_t,
281     vm_prot_t);
282 void moea_enter_quick(mmu_t, pmap_t, vm_offset_t, vm_page_t, vm_prot_t);
283 vm_paddr_t moea_extract(mmu_t, pmap_t, vm_offset_t);
284 vm_page_t moea_extract_and_hold(mmu_t, pmap_t, vm_offset_t, vm_prot_t);
285 void moea_init(mmu_t);
286 boolean_t moea_is_modified(mmu_t, vm_page_t);
287 boolean_t moea_is_prefaultable(mmu_t, pmap_t, vm_offset_t);
288 boolean_t moea_is_referenced(mmu_t, vm_page_t);
289 boolean_t moea_ts_referenced(mmu_t, vm_page_t);
290 vm_offset_t moea_map(mmu_t, vm_offset_t *, vm_offset_t, vm_offset_t, int);
291 boolean_t moea_page_exists_quick(mmu_t, pmap_t, vm_page_t);
292 int moea_page_wired_mappings(mmu_t, vm_page_t);
293 void moea_pinit(mmu_t, pmap_t);
294 void moea_pinit0(mmu_t, pmap_t);
295 void moea_protect(mmu_t, pmap_t, vm_offset_t, vm_offset_t, vm_prot_t);
296 void moea_qenter(mmu_t, vm_offset_t, vm_page_t *, int);
297 void moea_qremove(mmu_t, vm_offset_t, int);
298 void moea_release(mmu_t, pmap_t);
299 void moea_remove(mmu_t, pmap_t, vm_offset_t, vm_offset_t);
300 void moea_remove_all(mmu_t, vm_page_t);
301 void moea_remove_write(mmu_t, vm_page_t);
302 void moea_zero_page(mmu_t, vm_page_t);
303 void moea_zero_page_area(mmu_t, vm_page_t, int, int);
304 void moea_zero_page_idle(mmu_t, vm_page_t);
305 void moea_activate(mmu_t, struct thread *);
306 void moea_deactivate(mmu_t, struct thread *);
307 void moea_cpu_bootstrap(mmu_t, int);
308 void moea_bootstrap(mmu_t, vm_offset_t, vm_offset_t);
309 void *moea_mapdev(mmu_t, vm_offset_t, vm_size_t);
310 void *moea_mapdev_attr(mmu_t, vm_offset_t, vm_size_t, vm_memattr_t);
311 void moea_unmapdev(mmu_t, vm_offset_t, vm_size_t);
312 vm_offset_t moea_kextract(mmu_t, vm_offset_t);
313 void moea_kenter_attr(mmu_t, vm_offset_t, vm_offset_t, vm_memattr_t);
314 void moea_kenter(mmu_t, vm_offset_t, vm_offset_t);
315 void moea_page_set_memattr(mmu_t mmu, vm_page_t m, vm_memattr_t ma);
316 boolean_t moea_dev_direct_mapped(mmu_t, vm_offset_t, vm_size_t);
317 static void moea_sync_icache(mmu_t, pmap_t, vm_offset_t, vm_size_t);
318 
319 static mmu_method_t moea_methods[] = {
320 	MMUMETHOD(mmu_change_wiring,	moea_change_wiring),
321 	MMUMETHOD(mmu_clear_modify,	moea_clear_modify),
322 	MMUMETHOD(mmu_clear_reference,	moea_clear_reference),
323 	MMUMETHOD(mmu_copy_page,	moea_copy_page),
324 	MMUMETHOD(mmu_enter,		moea_enter),
325 	MMUMETHOD(mmu_enter_object,	moea_enter_object),
326 	MMUMETHOD(mmu_enter_quick,	moea_enter_quick),
327 	MMUMETHOD(mmu_extract,		moea_extract),
328 	MMUMETHOD(mmu_extract_and_hold,	moea_extract_and_hold),
329 	MMUMETHOD(mmu_init,		moea_init),
330 	MMUMETHOD(mmu_is_modified,	moea_is_modified),
331 	MMUMETHOD(mmu_is_prefaultable,	moea_is_prefaultable),
332 	MMUMETHOD(mmu_is_referenced,	moea_is_referenced),
333 	MMUMETHOD(mmu_ts_referenced,	moea_ts_referenced),
334 	MMUMETHOD(mmu_map,     		moea_map),
335 	MMUMETHOD(mmu_page_exists_quick,moea_page_exists_quick),
336 	MMUMETHOD(mmu_page_wired_mappings,moea_page_wired_mappings),
337 	MMUMETHOD(mmu_pinit,		moea_pinit),
338 	MMUMETHOD(mmu_pinit0,		moea_pinit0),
339 	MMUMETHOD(mmu_protect,		moea_protect),
340 	MMUMETHOD(mmu_qenter,		moea_qenter),
341 	MMUMETHOD(mmu_qremove,		moea_qremove),
342 	MMUMETHOD(mmu_release,		moea_release),
343 	MMUMETHOD(mmu_remove,		moea_remove),
344 	MMUMETHOD(mmu_remove_all,      	moea_remove_all),
345 	MMUMETHOD(mmu_remove_write,	moea_remove_write),
346 	MMUMETHOD(mmu_sync_icache,	moea_sync_icache),
347 	MMUMETHOD(mmu_zero_page,       	moea_zero_page),
348 	MMUMETHOD(mmu_zero_page_area,	moea_zero_page_area),
349 	MMUMETHOD(mmu_zero_page_idle,	moea_zero_page_idle),
350 	MMUMETHOD(mmu_activate,		moea_activate),
351 	MMUMETHOD(mmu_deactivate,      	moea_deactivate),
352 	MMUMETHOD(mmu_page_set_memattr,	moea_page_set_memattr),
353 
354 	/* Internal interfaces */
355 	MMUMETHOD(mmu_bootstrap,       	moea_bootstrap),
356 	MMUMETHOD(mmu_cpu_bootstrap,   	moea_cpu_bootstrap),
357 	MMUMETHOD(mmu_mapdev_attr,	moea_mapdev_attr),
358 	MMUMETHOD(mmu_mapdev,		moea_mapdev),
359 	MMUMETHOD(mmu_unmapdev,		moea_unmapdev),
360 	MMUMETHOD(mmu_kextract,		moea_kextract),
361 	MMUMETHOD(mmu_kenter,		moea_kenter),
362 	MMUMETHOD(mmu_kenter_attr,	moea_kenter_attr),
363 	MMUMETHOD(mmu_dev_direct_mapped,moea_dev_direct_mapped),
364 
365 	{ 0, 0 }
366 };
367 
368 MMU_DEF(oea_mmu, MMU_TYPE_OEA, moea_methods, 0);
369 
370 static __inline uint32_t
371 moea_calc_wimg(vm_offset_t pa, vm_memattr_t ma)
372 {
373 	uint32_t pte_lo;
374 	int i;
375 
376 	if (ma != VM_MEMATTR_DEFAULT) {
377 		switch (ma) {
378 		case VM_MEMATTR_UNCACHEABLE:
379 			return (PTE_I | PTE_G);
380 		case VM_MEMATTR_WRITE_COMBINING:
381 		case VM_MEMATTR_WRITE_BACK:
382 		case VM_MEMATTR_PREFETCHABLE:
383 			return (PTE_I);
384 		case VM_MEMATTR_WRITE_THROUGH:
385 			return (PTE_W | PTE_M);
386 		}
387 	}
388 
389 	/*
390 	 * Assume the page is cache inhibited and access is guarded unless
391 	 * it's in our available memory array.
392 	 */
393 	pte_lo = PTE_I | PTE_G;
394 	for (i = 0; i < pregions_sz; i++) {
395 		if ((pa >= pregions[i].mr_start) &&
396 		    (pa < (pregions[i].mr_start + pregions[i].mr_size))) {
397 			pte_lo = PTE_M;
398 			break;
399 		}
400 	}
401 
402 	return pte_lo;
403 }
404 
405 static void
406 tlbie(vm_offset_t va)
407 {
408 
409 	mtx_lock_spin(&tlbie_mtx);
410 	__asm __volatile("ptesync");
411 	__asm __volatile("tlbie %0" :: "r"(va));
412 	__asm __volatile("eieio; tlbsync; ptesync");
413 	mtx_unlock_spin(&tlbie_mtx);
414 }
415 
416 static void
417 tlbia(void)
418 {
419 	vm_offset_t va;
420 
421 	for (va = 0; va < 0x00040000; va += 0x00001000) {
422 		__asm __volatile("tlbie %0" :: "r"(va));
423 		powerpc_sync();
424 	}
425 	__asm __volatile("tlbsync");
426 	powerpc_sync();
427 }
428 
429 static __inline int
430 va_to_sr(u_int *sr, vm_offset_t va)
431 {
432 	return (sr[(uintptr_t)va >> ADDR_SR_SHFT]);
433 }
434 
435 static __inline u_int
436 va_to_pteg(u_int sr, vm_offset_t addr)
437 {
438 	u_int hash;
439 
440 	hash = (sr & SR_VSID_MASK) ^ (((u_int)addr & ADDR_PIDX) >>
441 	    ADDR_PIDX_SHFT);
442 	return (hash & moea_pteg_mask);
443 }
444 
445 static __inline struct pvo_head *
446 vm_page_to_pvoh(vm_page_t m)
447 {
448 
449 	return (&m->md.mdpg_pvoh);
450 }
451 
452 static __inline void
453 moea_attr_clear(vm_page_t m, int ptebit)
454 {
455 
456 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
457 	m->md.mdpg_attrs &= ~ptebit;
458 }
459 
460 static __inline int
461 moea_attr_fetch(vm_page_t m)
462 {
463 
464 	return (m->md.mdpg_attrs);
465 }
466 
467 static __inline void
468 moea_attr_save(vm_page_t m, int ptebit)
469 {
470 
471 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
472 	m->md.mdpg_attrs |= ptebit;
473 }
474 
475 static __inline int
476 moea_pte_compare(const struct pte *pt, const struct pte *pvo_pt)
477 {
478 	if (pt->pte_hi == pvo_pt->pte_hi)
479 		return (1);
480 
481 	return (0);
482 }
483 
484 static __inline int
485 moea_pte_match(struct pte *pt, u_int sr, vm_offset_t va, int which)
486 {
487 	return (pt->pte_hi & ~PTE_VALID) ==
488 	    (((sr & SR_VSID_MASK) << PTE_VSID_SHFT) |
489 	    ((va >> ADDR_API_SHFT) & PTE_API) | which);
490 }
491 
492 static __inline void
493 moea_pte_create(struct pte *pt, u_int sr, vm_offset_t va, u_int pte_lo)
494 {
495 
496 	mtx_assert(&moea_table_mutex, MA_OWNED);
497 
498 	/*
499 	 * Construct a PTE.  Default to IMB initially.  Valid bit only gets
500 	 * set when the real pte is set in memory.
501 	 *
502 	 * Note: Don't set the valid bit for correct operation of tlb update.
503 	 */
504 	pt->pte_hi = ((sr & SR_VSID_MASK) << PTE_VSID_SHFT) |
505 	    (((va & ADDR_PIDX) >> ADDR_API_SHFT) & PTE_API);
506 	pt->pte_lo = pte_lo;
507 }
508 
509 static __inline void
510 moea_pte_synch(struct pte *pt, struct pte *pvo_pt)
511 {
512 
513 	mtx_assert(&moea_table_mutex, MA_OWNED);
514 	pvo_pt->pte_lo |= pt->pte_lo & (PTE_REF | PTE_CHG);
515 }
516 
517 static __inline void
518 moea_pte_clear(struct pte *pt, vm_offset_t va, int ptebit)
519 {
520 
521 	mtx_assert(&moea_table_mutex, MA_OWNED);
522 
523 	/*
524 	 * As shown in Section 7.6.3.2.3
525 	 */
526 	pt->pte_lo &= ~ptebit;
527 	tlbie(va);
528 }
529 
530 static __inline void
531 moea_pte_set(struct pte *pt, struct pte *pvo_pt)
532 {
533 
534 	mtx_assert(&moea_table_mutex, MA_OWNED);
535 	pvo_pt->pte_hi |= PTE_VALID;
536 
537 	/*
538 	 * Update the PTE as defined in section 7.6.3.1.
539 	 * Note that the REF/CHG bits are from pvo_pt and thus should havce
540 	 * been saved so this routine can restore them (if desired).
541 	 */
542 	pt->pte_lo = pvo_pt->pte_lo;
543 	powerpc_sync();
544 	pt->pte_hi = pvo_pt->pte_hi;
545 	powerpc_sync();
546 	moea_pte_valid++;
547 }
548 
549 static __inline void
550 moea_pte_unset(struct pte *pt, struct pte *pvo_pt, vm_offset_t va)
551 {
552 
553 	mtx_assert(&moea_table_mutex, MA_OWNED);
554 	pvo_pt->pte_hi &= ~PTE_VALID;
555 
556 	/*
557 	 * Force the reg & chg bits back into the PTEs.
558 	 */
559 	powerpc_sync();
560 
561 	/*
562 	 * Invalidate the pte.
563 	 */
564 	pt->pte_hi &= ~PTE_VALID;
565 
566 	tlbie(va);
567 
568 	/*
569 	 * Save the reg & chg bits.
570 	 */
571 	moea_pte_synch(pt, pvo_pt);
572 	moea_pte_valid--;
573 }
574 
575 static __inline void
576 moea_pte_change(struct pte *pt, struct pte *pvo_pt, vm_offset_t va)
577 {
578 
579 	/*
580 	 * Invalidate the PTE
581 	 */
582 	moea_pte_unset(pt, pvo_pt, va);
583 	moea_pte_set(pt, pvo_pt);
584 }
585 
586 /*
587  * Quick sort callout for comparing memory regions.
588  */
589 static int	mr_cmp(const void *a, const void *b);
590 static int	om_cmp(const void *a, const void *b);
591 
592 static int
593 mr_cmp(const void *a, const void *b)
594 {
595 	const struct	mem_region *regiona;
596 	const struct	mem_region *regionb;
597 
598 	regiona = a;
599 	regionb = b;
600 	if (regiona->mr_start < regionb->mr_start)
601 		return (-1);
602 	else if (regiona->mr_start > regionb->mr_start)
603 		return (1);
604 	else
605 		return (0);
606 }
607 
608 static int
609 om_cmp(const void *a, const void *b)
610 {
611 	const struct	ofw_map *mapa;
612 	const struct	ofw_map *mapb;
613 
614 	mapa = a;
615 	mapb = b;
616 	if (mapa->om_pa < mapb->om_pa)
617 		return (-1);
618 	else if (mapa->om_pa > mapb->om_pa)
619 		return (1);
620 	else
621 		return (0);
622 }
623 
624 void
625 moea_cpu_bootstrap(mmu_t mmup, int ap)
626 {
627 	u_int sdr;
628 	int i;
629 
630 	if (ap) {
631 		powerpc_sync();
632 		__asm __volatile("mtdbatu 0,%0" :: "r"(battable[0].batu));
633 		__asm __volatile("mtdbatl 0,%0" :: "r"(battable[0].batl));
634 		isync();
635 		__asm __volatile("mtibatu 0,%0" :: "r"(battable[0].batu));
636 		__asm __volatile("mtibatl 0,%0" :: "r"(battable[0].batl));
637 		isync();
638 	}
639 
640 	__asm __volatile("mtdbatu 1,%0" :: "r"(battable[8].batu));
641 	__asm __volatile("mtdbatl 1,%0" :: "r"(battable[8].batl));
642 	isync();
643 
644 	__asm __volatile("mtibatu 1,%0" :: "r"(0));
645 	__asm __volatile("mtdbatu 2,%0" :: "r"(0));
646 	__asm __volatile("mtibatu 2,%0" :: "r"(0));
647 	__asm __volatile("mtdbatu 3,%0" :: "r"(0));
648 	__asm __volatile("mtibatu 3,%0" :: "r"(0));
649 	isync();
650 
651 	for (i = 0; i < 16; i++)
652 		mtsrin(i << ADDR_SR_SHFT, kernel_pmap->pm_sr[i]);
653 	powerpc_sync();
654 
655 	sdr = (u_int)moea_pteg_table | (moea_pteg_mask >> 10);
656 	__asm __volatile("mtsdr1 %0" :: "r"(sdr));
657 	isync();
658 
659 	tlbia();
660 }
661 
662 void
663 moea_bootstrap(mmu_t mmup, vm_offset_t kernelstart, vm_offset_t kernelend)
664 {
665 	ihandle_t	mmui;
666 	phandle_t	chosen, mmu;
667 	int		sz;
668 	int		i, j;
669 	vm_size_t	size, physsz, hwphyssz;
670 	vm_offset_t	pa, va, off;
671 	void		*dpcpu;
672 	register_t	msr;
673 
674         /*
675          * Set up BAT0 to map the lowest 256 MB area
676          */
677         battable[0x0].batl = BATL(0x00000000, BAT_M, BAT_PP_RW);
678         battable[0x0].batu = BATU(0x00000000, BAT_BL_256M, BAT_Vs);
679 
680         /*
681          * Map PCI memory space.
682          */
683         battable[0x8].batl = BATL(0x80000000, BAT_I|BAT_G, BAT_PP_RW);
684         battable[0x8].batu = BATU(0x80000000, BAT_BL_256M, BAT_Vs);
685 
686         battable[0x9].batl = BATL(0x90000000, BAT_I|BAT_G, BAT_PP_RW);
687         battable[0x9].batu = BATU(0x90000000, BAT_BL_256M, BAT_Vs);
688 
689         battable[0xa].batl = BATL(0xa0000000, BAT_I|BAT_G, BAT_PP_RW);
690         battable[0xa].batu = BATU(0xa0000000, BAT_BL_256M, BAT_Vs);
691 
692         battable[0xb].batl = BATL(0xb0000000, BAT_I|BAT_G, BAT_PP_RW);
693         battable[0xb].batu = BATU(0xb0000000, BAT_BL_256M, BAT_Vs);
694 
695         /*
696          * Map obio devices.
697          */
698         battable[0xf].batl = BATL(0xf0000000, BAT_I|BAT_G, BAT_PP_RW);
699         battable[0xf].batu = BATU(0xf0000000, BAT_BL_256M, BAT_Vs);
700 
701 	/*
702 	 * Use an IBAT and a DBAT to map the bottom segment of memory
703 	 * where we are. Turn off instruction relocation temporarily
704 	 * to prevent faults while reprogramming the IBAT.
705 	 */
706 	msr = mfmsr();
707 	mtmsr(msr & ~PSL_IR);
708 	__asm (".balign 32; \n"
709 	       "mtibatu 0,%0; mtibatl 0,%1; isync; \n"
710 	       "mtdbatu 0,%0; mtdbatl 0,%1; isync"
711 	    :: "r"(battable[0].batu), "r"(battable[0].batl));
712 	mtmsr(msr);
713 
714 	/* map pci space */
715 	__asm __volatile("mtdbatu 1,%0" :: "r"(battable[8].batu));
716 	__asm __volatile("mtdbatl 1,%0" :: "r"(battable[8].batl));
717 	isync();
718 
719 	/* set global direct map flag */
720 	hw_direct_map = 1;
721 
722 	mem_regions(&pregions, &pregions_sz, &regions, &regions_sz);
723 	CTR0(KTR_PMAP, "moea_bootstrap: physical memory");
724 
725 	qsort(pregions, pregions_sz, sizeof(*pregions), mr_cmp);
726 	for (i = 0; i < pregions_sz; i++) {
727 		vm_offset_t pa;
728 		vm_offset_t end;
729 
730 		CTR3(KTR_PMAP, "physregion: %#x - %#x (%#x)",
731 			pregions[i].mr_start,
732 			pregions[i].mr_start + pregions[i].mr_size,
733 			pregions[i].mr_size);
734 		/*
735 		 * Install entries into the BAT table to allow all
736 		 * of physmem to be convered by on-demand BAT entries.
737 		 * The loop will sometimes set the same battable element
738 		 * twice, but that's fine since they won't be used for
739 		 * a while yet.
740 		 */
741 		pa = pregions[i].mr_start & 0xf0000000;
742 		end = pregions[i].mr_start + pregions[i].mr_size;
743 		do {
744                         u_int n = pa >> ADDR_SR_SHFT;
745 
746 			battable[n].batl = BATL(pa, BAT_M, BAT_PP_RW);
747 			battable[n].batu = BATU(pa, BAT_BL_256M, BAT_Vs);
748 			pa += SEGMENT_LENGTH;
749 		} while (pa < end);
750 	}
751 
752 	if (sizeof(phys_avail)/sizeof(phys_avail[0]) < regions_sz)
753 		panic("moea_bootstrap: phys_avail too small");
754 	qsort(regions, regions_sz, sizeof(*regions), mr_cmp);
755 	phys_avail_count = 0;
756 	physsz = 0;
757 	hwphyssz = 0;
758 	TUNABLE_ULONG_FETCH("hw.physmem", (u_long *) &hwphyssz);
759 	for (i = 0, j = 0; i < regions_sz; i++, j += 2) {
760 		CTR3(KTR_PMAP, "region: %#x - %#x (%#x)", regions[i].mr_start,
761 		    regions[i].mr_start + regions[i].mr_size,
762 		    regions[i].mr_size);
763 		if (hwphyssz != 0 &&
764 		    (physsz + regions[i].mr_size) >= hwphyssz) {
765 			if (physsz < hwphyssz) {
766 				phys_avail[j] = regions[i].mr_start;
767 				phys_avail[j + 1] = regions[i].mr_start +
768 				    hwphyssz - physsz;
769 				physsz = hwphyssz;
770 				phys_avail_count++;
771 			}
772 			break;
773 		}
774 		phys_avail[j] = regions[i].mr_start;
775 		phys_avail[j + 1] = regions[i].mr_start + regions[i].mr_size;
776 		phys_avail_count++;
777 		physsz += regions[i].mr_size;
778 	}
779 	physmem = btoc(physsz);
780 
781 	/*
782 	 * Allocate PTEG table.
783 	 */
784 #ifdef PTEGCOUNT
785 	moea_pteg_count = PTEGCOUNT;
786 #else
787 	moea_pteg_count = 0x1000;
788 
789 	while (moea_pteg_count < physmem)
790 		moea_pteg_count <<= 1;
791 
792 	moea_pteg_count >>= 1;
793 #endif /* PTEGCOUNT */
794 
795 	size = moea_pteg_count * sizeof(struct pteg);
796 	CTR2(KTR_PMAP, "moea_bootstrap: %d PTEGs, %d bytes", moea_pteg_count,
797 	    size);
798 	moea_pteg_table = (struct pteg *)moea_bootstrap_alloc(size, size);
799 	CTR1(KTR_PMAP, "moea_bootstrap: PTEG table at %p", moea_pteg_table);
800 	bzero((void *)moea_pteg_table, moea_pteg_count * sizeof(struct pteg));
801 	moea_pteg_mask = moea_pteg_count - 1;
802 
803 	/*
804 	 * Allocate pv/overflow lists.
805 	 */
806 	size = sizeof(struct pvo_head) * moea_pteg_count;
807 	moea_pvo_table = (struct pvo_head *)moea_bootstrap_alloc(size,
808 	    PAGE_SIZE);
809 	CTR1(KTR_PMAP, "moea_bootstrap: PVO table at %p", moea_pvo_table);
810 	for (i = 0; i < moea_pteg_count; i++)
811 		LIST_INIT(&moea_pvo_table[i]);
812 
813 	/*
814 	 * Initialize the lock that synchronizes access to the pteg and pvo
815 	 * tables.
816 	 */
817 	mtx_init(&moea_table_mutex, "pmap table", NULL, MTX_DEF |
818 	    MTX_RECURSE);
819 	mtx_init(&moea_vsid_mutex, "VSID table", NULL, MTX_DEF);
820 
821 	mtx_init(&tlbie_mtx, "tlbie", NULL, MTX_SPIN);
822 
823 	/*
824 	 * Initialise the unmanaged pvo pool.
825 	 */
826 	moea_bpvo_pool = (struct pvo_entry *)moea_bootstrap_alloc(
827 		BPVO_POOL_SIZE*sizeof(struct pvo_entry), 0);
828 	moea_bpvo_pool_index = 0;
829 
830 	/*
831 	 * Make sure kernel vsid is allocated as well as VSID 0.
832 	 */
833 	moea_vsid_bitmap[(KERNEL_VSIDBITS & (NPMAPS - 1)) / VSID_NBPW]
834 		|= 1 << (KERNEL_VSIDBITS % VSID_NBPW);
835 	moea_vsid_bitmap[0] |= 1;
836 
837 	/*
838 	 * Initialize the kernel pmap (which is statically allocated).
839 	 */
840 	PMAP_LOCK_INIT(kernel_pmap);
841 	for (i = 0; i < 16; i++)
842 		kernel_pmap->pm_sr[i] = EMPTY_SEGMENT + i;
843 	kernel_pmap->pm_active = ~0;
844 
845 	/*
846 	 * Set up the Open Firmware mappings
847 	 */
848 	if ((chosen = OF_finddevice("/chosen")) == -1)
849 		panic("moea_bootstrap: can't find /chosen");
850 	OF_getprop(chosen, "mmu", &mmui, 4);
851 	if ((mmu = OF_instance_to_package(mmui)) == -1)
852 		panic("moea_bootstrap: can't get mmu package");
853 	if ((sz = OF_getproplen(mmu, "translations")) == -1)
854 		panic("moea_bootstrap: can't get ofw translation count");
855 	translations = NULL;
856 	for (i = 0; phys_avail[i] != 0; i += 2) {
857 		if (phys_avail[i + 1] >= sz) {
858 			translations = (struct ofw_map *)phys_avail[i];
859 			break;
860 		}
861 	}
862 	if (translations == NULL)
863 		panic("moea_bootstrap: no space to copy translations");
864 	bzero(translations, sz);
865 	if (OF_getprop(mmu, "translations", translations, sz) == -1)
866 		panic("moea_bootstrap: can't get ofw translations");
867 	CTR0(KTR_PMAP, "moea_bootstrap: translations");
868 	sz /= sizeof(*translations);
869 	qsort(translations, sz, sizeof (*translations), om_cmp);
870 	for (i = 0; i < sz; i++) {
871 		CTR3(KTR_PMAP, "translation: pa=%#x va=%#x len=%#x",
872 		    translations[i].om_pa, translations[i].om_va,
873 		    translations[i].om_len);
874 
875 		/*
876 		 * If the mapping is 1:1, let the RAM and device on-demand
877 		 * BAT tables take care of the translation.
878 		 */
879 		if (translations[i].om_va == translations[i].om_pa)
880 			continue;
881 
882 		/* Enter the pages */
883 		for (off = 0; off < translations[i].om_len; off += PAGE_SIZE)
884 			moea_kenter(mmup, translations[i].om_va + off,
885 				    translations[i].om_pa + off);
886 	}
887 
888 	/*
889 	 * Calculate the last available physical address.
890 	 */
891 	for (i = 0; phys_avail[i + 2] != 0; i += 2)
892 		;
893 	Maxmem = powerpc_btop(phys_avail[i + 1]);
894 
895 	moea_cpu_bootstrap(mmup,0);
896 
897 	pmap_bootstrapped++;
898 
899 	/*
900 	 * Set the start and end of kva.
901 	 */
902 	virtual_avail = VM_MIN_KERNEL_ADDRESS;
903 	virtual_end = VM_MAX_SAFE_KERNEL_ADDRESS;
904 
905 	/*
906 	 * Allocate a kernel stack with a guard page for thread0 and map it
907 	 * into the kernel page map.
908 	 */
909 	pa = moea_bootstrap_alloc(KSTACK_PAGES * PAGE_SIZE, PAGE_SIZE);
910 	va = virtual_avail + KSTACK_GUARD_PAGES * PAGE_SIZE;
911 	virtual_avail = va + KSTACK_PAGES * PAGE_SIZE;
912 	CTR2(KTR_PMAP, "moea_bootstrap: kstack0 at %#x (%#x)", pa, va);
913 	thread0.td_kstack = va;
914 	thread0.td_kstack_pages = KSTACK_PAGES;
915 	for (i = 0; i < KSTACK_PAGES; i++) {
916 		moea_kenter(mmup, va, pa);
917 		pa += PAGE_SIZE;
918 		va += PAGE_SIZE;
919 	}
920 
921 	/*
922 	 * Allocate virtual address space for the message buffer.
923 	 */
924 	pa = msgbuf_phys = moea_bootstrap_alloc(msgbufsize, PAGE_SIZE);
925 	msgbufp = (struct msgbuf *)virtual_avail;
926 	va = virtual_avail;
927 	virtual_avail += round_page(msgbufsize);
928 	while (va < virtual_avail) {
929 		moea_kenter(mmup, va, pa);
930 		pa += PAGE_SIZE;
931 		va += PAGE_SIZE;
932 	}
933 
934 	/*
935 	 * Allocate virtual address space for the dynamic percpu area.
936 	 */
937 	pa = moea_bootstrap_alloc(DPCPU_SIZE, PAGE_SIZE);
938 	dpcpu = (void *)virtual_avail;
939 	va = virtual_avail;
940 	virtual_avail += DPCPU_SIZE;
941 	while (va < virtual_avail) {
942 		moea_kenter(mmup, va, pa);
943 		pa += PAGE_SIZE;
944 		va += PAGE_SIZE;
945 	}
946 	dpcpu_init(dpcpu, 0);
947 }
948 
949 /*
950  * Activate a user pmap.  The pmap must be activated before it's address
951  * space can be accessed in any way.
952  */
953 void
954 moea_activate(mmu_t mmu, struct thread *td)
955 {
956 	pmap_t	pm, pmr;
957 
958 	/*
959 	 * Load all the data we need up front to encourage the compiler to
960 	 * not issue any loads while we have interrupts disabled below.
961 	 */
962 	pm = &td->td_proc->p_vmspace->vm_pmap;
963 	pmr = pm->pmap_phys;
964 
965 	pm->pm_active |= PCPU_GET(cpumask);
966 	PCPU_SET(curpmap, pmr);
967 }
968 
969 void
970 moea_deactivate(mmu_t mmu, struct thread *td)
971 {
972 	pmap_t	pm;
973 
974 	pm = &td->td_proc->p_vmspace->vm_pmap;
975 	pm->pm_active &= ~PCPU_GET(cpumask);
976 	PCPU_SET(curpmap, NULL);
977 }
978 
979 void
980 moea_change_wiring(mmu_t mmu, pmap_t pm, vm_offset_t va, boolean_t wired)
981 {
982 	struct	pvo_entry *pvo;
983 
984 	PMAP_LOCK(pm);
985 	pvo = moea_pvo_find_va(pm, va & ~ADDR_POFF, NULL);
986 
987 	if (pvo != NULL) {
988 		if (wired) {
989 			if ((pvo->pvo_vaddr & PVO_WIRED) == 0)
990 				pm->pm_stats.wired_count++;
991 			pvo->pvo_vaddr |= PVO_WIRED;
992 		} else {
993 			if ((pvo->pvo_vaddr & PVO_WIRED) != 0)
994 				pm->pm_stats.wired_count--;
995 			pvo->pvo_vaddr &= ~PVO_WIRED;
996 		}
997 	}
998 	PMAP_UNLOCK(pm);
999 }
1000 
1001 void
1002 moea_copy_page(mmu_t mmu, vm_page_t msrc, vm_page_t mdst)
1003 {
1004 	vm_offset_t	dst;
1005 	vm_offset_t	src;
1006 
1007 	dst = VM_PAGE_TO_PHYS(mdst);
1008 	src = VM_PAGE_TO_PHYS(msrc);
1009 
1010 	kcopy((void *)src, (void *)dst, PAGE_SIZE);
1011 }
1012 
1013 /*
1014  * Zero a page of physical memory by temporarily mapping it into the tlb.
1015  */
1016 void
1017 moea_zero_page(mmu_t mmu, vm_page_t m)
1018 {
1019 	vm_offset_t pa = VM_PAGE_TO_PHYS(m);
1020 	void *va = (void *)pa;
1021 
1022 	bzero(va, PAGE_SIZE);
1023 }
1024 
1025 void
1026 moea_zero_page_area(mmu_t mmu, vm_page_t m, int off, int size)
1027 {
1028 	vm_offset_t pa = VM_PAGE_TO_PHYS(m);
1029 	void *va = (void *)(pa + off);
1030 
1031 	bzero(va, size);
1032 }
1033 
1034 void
1035 moea_zero_page_idle(mmu_t mmu, vm_page_t m)
1036 {
1037 	vm_offset_t pa = VM_PAGE_TO_PHYS(m);
1038 	void *va = (void *)pa;
1039 
1040 	bzero(va, PAGE_SIZE);
1041 }
1042 
1043 /*
1044  * Map the given physical page at the specified virtual address in the
1045  * target pmap with the protection requested.  If specified the page
1046  * will be wired down.
1047  */
1048 void
1049 moea_enter(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
1050 	   boolean_t wired)
1051 {
1052 
1053 	vm_page_lock_queues();
1054 	PMAP_LOCK(pmap);
1055 	moea_enter_locked(pmap, va, m, prot, wired);
1056 	vm_page_unlock_queues();
1057 	PMAP_UNLOCK(pmap);
1058 }
1059 
1060 /*
1061  * Map the given physical page at the specified virtual address in the
1062  * target pmap with the protection requested.  If specified the page
1063  * will be wired down.
1064  *
1065  * The page queues and pmap must be locked.
1066  */
1067 static void
1068 moea_enter_locked(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
1069     boolean_t wired)
1070 {
1071 	struct		pvo_head *pvo_head;
1072 	uma_zone_t	zone;
1073 	vm_page_t	pg;
1074 	u_int		pte_lo, pvo_flags, was_exec;
1075 	int		error;
1076 
1077 	if (!moea_initialized) {
1078 		pvo_head = &moea_pvo_kunmanaged;
1079 		zone = moea_upvo_zone;
1080 		pvo_flags = 0;
1081 		pg = NULL;
1082 		was_exec = PTE_EXEC;
1083 	} else {
1084 		pvo_head = vm_page_to_pvoh(m);
1085 		pg = m;
1086 		zone = moea_mpvo_zone;
1087 		pvo_flags = PVO_MANAGED;
1088 		was_exec = 0;
1089 	}
1090 	if (pmap_bootstrapped)
1091 		mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1092 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1093 	KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) != 0 ||
1094 	    (m->oflags & VPO_BUSY) != 0 || VM_OBJECT_LOCKED(m->object),
1095 	    ("moea_enter_locked: page %p is not busy", m));
1096 
1097 	/* XXX change the pvo head for fake pages */
1098 	if ((m->flags & PG_FICTITIOUS) == PG_FICTITIOUS) {
1099 		pvo_flags &= ~PVO_MANAGED;
1100 		pvo_head = &moea_pvo_kunmanaged;
1101 		zone = moea_upvo_zone;
1102 	}
1103 
1104 	/*
1105 	 * If this is a managed page, and it's the first reference to the page,
1106 	 * clear the execness of the page.  Otherwise fetch the execness.
1107 	 */
1108 	if ((pg != NULL) && ((m->flags & PG_FICTITIOUS) == 0)) {
1109 		if (LIST_EMPTY(pvo_head)) {
1110 			moea_attr_clear(pg, PTE_EXEC);
1111 		} else {
1112 			was_exec = moea_attr_fetch(pg) & PTE_EXEC;
1113 		}
1114 	}
1115 
1116 	pte_lo = moea_calc_wimg(VM_PAGE_TO_PHYS(m), pmap_page_get_memattr(m));
1117 
1118 	if (prot & VM_PROT_WRITE) {
1119 		pte_lo |= PTE_BW;
1120 		if (pmap_bootstrapped &&
1121 		    (m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0)
1122 			vm_page_flag_set(m, PG_WRITEABLE);
1123 	} else
1124 		pte_lo |= PTE_BR;
1125 
1126 	if (prot & VM_PROT_EXECUTE)
1127 		pvo_flags |= PVO_EXECUTABLE;
1128 
1129 	if (wired)
1130 		pvo_flags |= PVO_WIRED;
1131 
1132 	if ((m->flags & PG_FICTITIOUS) != 0)
1133 		pvo_flags |= PVO_FAKE;
1134 
1135 	error = moea_pvo_enter(pmap, zone, pvo_head, va, VM_PAGE_TO_PHYS(m),
1136 	    pte_lo, pvo_flags);
1137 
1138 	/*
1139 	 * Flush the real page from the instruction cache if this page is
1140 	 * mapped executable and cacheable and was not previously mapped (or
1141 	 * was not mapped executable).
1142 	 */
1143 	if (error == 0 && (pvo_flags & PVO_EXECUTABLE) &&
1144 	    (pte_lo & PTE_I) == 0 && was_exec == 0) {
1145 		/*
1146 		 * Flush the real memory from the cache.
1147 		 */
1148 		moea_syncicache(VM_PAGE_TO_PHYS(m), PAGE_SIZE);
1149 		if (pg != NULL)
1150 			moea_attr_save(pg, PTE_EXEC);
1151 	}
1152 
1153 	/* XXX syncicache always until problems are sorted */
1154 	moea_syncicache(VM_PAGE_TO_PHYS(m), PAGE_SIZE);
1155 }
1156 
1157 /*
1158  * Maps a sequence of resident pages belonging to the same object.
1159  * The sequence begins with the given page m_start.  This page is
1160  * mapped at the given virtual address start.  Each subsequent page is
1161  * mapped at a virtual address that is offset from start by the same
1162  * amount as the page is offset from m_start within the object.  The
1163  * last page in the sequence is the page with the largest offset from
1164  * m_start that can be mapped at a virtual address less than the given
1165  * virtual address end.  Not every virtual page between start and end
1166  * is mapped; only those for which a resident page exists with the
1167  * corresponding offset from m_start are mapped.
1168  */
1169 void
1170 moea_enter_object(mmu_t mmu, pmap_t pm, vm_offset_t start, vm_offset_t end,
1171     vm_page_t m_start, vm_prot_t prot)
1172 {
1173 	vm_page_t m;
1174 	vm_pindex_t diff, psize;
1175 
1176 	psize = atop(end - start);
1177 	m = m_start;
1178 	vm_page_lock_queues();
1179 	PMAP_LOCK(pm);
1180 	while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
1181 		moea_enter_locked(pm, start + ptoa(diff), m, prot &
1182 		    (VM_PROT_READ | VM_PROT_EXECUTE), FALSE);
1183 		m = TAILQ_NEXT(m, listq);
1184 	}
1185 	vm_page_unlock_queues();
1186 	PMAP_UNLOCK(pm);
1187 }
1188 
1189 void
1190 moea_enter_quick(mmu_t mmu, pmap_t pm, vm_offset_t va, vm_page_t m,
1191     vm_prot_t prot)
1192 {
1193 
1194 	vm_page_lock_queues();
1195 	PMAP_LOCK(pm);
1196 	moea_enter_locked(pm, va, m, prot & (VM_PROT_READ | VM_PROT_EXECUTE),
1197 	    FALSE);
1198 	vm_page_unlock_queues();
1199 	PMAP_UNLOCK(pm);
1200 }
1201 
1202 vm_paddr_t
1203 moea_extract(mmu_t mmu, pmap_t pm, vm_offset_t va)
1204 {
1205 	struct	pvo_entry *pvo;
1206 	vm_paddr_t pa;
1207 
1208 	PMAP_LOCK(pm);
1209 	pvo = moea_pvo_find_va(pm, va & ~ADDR_POFF, NULL);
1210 	if (pvo == NULL)
1211 		pa = 0;
1212 	else
1213 		pa = (pvo->pvo_pte.pte.pte_lo & PTE_RPGN) | (va & ADDR_POFF);
1214 	PMAP_UNLOCK(pm);
1215 	return (pa);
1216 }
1217 
1218 /*
1219  * Atomically extract and hold the physical page with the given
1220  * pmap and virtual address pair if that mapping permits the given
1221  * protection.
1222  */
1223 vm_page_t
1224 moea_extract_and_hold(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_prot_t prot)
1225 {
1226 	struct	pvo_entry *pvo;
1227 	vm_page_t m;
1228         vm_paddr_t pa;
1229 
1230 	m = NULL;
1231 	pa = 0;
1232 	PMAP_LOCK(pmap);
1233 retry:
1234 	pvo = moea_pvo_find_va(pmap, va & ~ADDR_POFF, NULL);
1235 	if (pvo != NULL && (pvo->pvo_pte.pte.pte_hi & PTE_VALID) &&
1236 	    ((pvo->pvo_pte.pte.pte_lo & PTE_PP) == PTE_RW ||
1237 	     (prot & VM_PROT_WRITE) == 0)) {
1238 		if (vm_page_pa_tryrelock(pmap, pvo->pvo_pte.pte.pte_lo & PTE_RPGN, &pa))
1239 			goto retry;
1240 		m = PHYS_TO_VM_PAGE(pvo->pvo_pte.pte.pte_lo & PTE_RPGN);
1241 		vm_page_hold(m);
1242 	}
1243 	PA_UNLOCK_COND(pa);
1244 	PMAP_UNLOCK(pmap);
1245 	return (m);
1246 }
1247 
1248 void
1249 moea_init(mmu_t mmu)
1250 {
1251 
1252 	moea_upvo_zone = uma_zcreate("UPVO entry", sizeof (struct pvo_entry),
1253 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
1254 	    UMA_ZONE_VM | UMA_ZONE_NOFREE);
1255 	moea_mpvo_zone = uma_zcreate("MPVO entry", sizeof(struct pvo_entry),
1256 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
1257 	    UMA_ZONE_VM | UMA_ZONE_NOFREE);
1258 	moea_initialized = TRUE;
1259 }
1260 
1261 boolean_t
1262 moea_is_referenced(mmu_t mmu, vm_page_t m)
1263 {
1264 
1265 	KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0,
1266 	    ("moea_is_referenced: page %p is not managed", m));
1267 	return (moea_query_bit(m, PTE_REF));
1268 }
1269 
1270 boolean_t
1271 moea_is_modified(mmu_t mmu, vm_page_t m)
1272 {
1273 
1274 	KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0,
1275 	    ("moea_is_modified: page %p is not managed", m));
1276 
1277 	/*
1278 	 * If the page is not VPO_BUSY, then PG_WRITEABLE cannot be
1279 	 * concurrently set while the object is locked.  Thus, if PG_WRITEABLE
1280 	 * is clear, no PTEs can have PTE_CHG set.
1281 	 */
1282 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1283 	if ((m->oflags & VPO_BUSY) == 0 &&
1284 	    (m->flags & PG_WRITEABLE) == 0)
1285 		return (FALSE);
1286 	return (moea_query_bit(m, PTE_CHG));
1287 }
1288 
1289 boolean_t
1290 moea_is_prefaultable(mmu_t mmu, pmap_t pmap, vm_offset_t va)
1291 {
1292 	struct pvo_entry *pvo;
1293 	boolean_t rv;
1294 
1295 	PMAP_LOCK(pmap);
1296 	pvo = moea_pvo_find_va(pmap, va & ~ADDR_POFF, NULL);
1297 	rv = pvo == NULL || (pvo->pvo_pte.pte.pte_hi & PTE_VALID) == 0;
1298 	PMAP_UNLOCK(pmap);
1299 	return (rv);
1300 }
1301 
1302 void
1303 moea_clear_reference(mmu_t mmu, vm_page_t m)
1304 {
1305 
1306 	KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0,
1307 	    ("moea_clear_reference: page %p is not managed", m));
1308 	moea_clear_bit(m, PTE_REF);
1309 }
1310 
1311 void
1312 moea_clear_modify(mmu_t mmu, vm_page_t m)
1313 {
1314 
1315 	KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0,
1316 	    ("moea_clear_modify: page %p is not managed", m));
1317 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1318 	KASSERT((m->oflags & VPO_BUSY) == 0,
1319 	    ("moea_clear_modify: page %p is busy", m));
1320 
1321 	/*
1322 	 * If the page is not PG_WRITEABLE, then no PTEs can have PTE_CHG
1323 	 * set.  If the object containing the page is locked and the page is
1324 	 * not VPO_BUSY, then PG_WRITEABLE cannot be concurrently set.
1325 	 */
1326 	if ((m->flags & PG_WRITEABLE) == 0)
1327 		return;
1328 	moea_clear_bit(m, PTE_CHG);
1329 }
1330 
1331 /*
1332  * Clear the write and modified bits in each of the given page's mappings.
1333  */
1334 void
1335 moea_remove_write(mmu_t mmu, vm_page_t m)
1336 {
1337 	struct	pvo_entry *pvo;
1338 	struct	pte *pt;
1339 	pmap_t	pmap;
1340 	u_int	lo;
1341 
1342 	KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0,
1343 	    ("moea_remove_write: page %p is not managed", m));
1344 
1345 	/*
1346 	 * If the page is not VPO_BUSY, then PG_WRITEABLE cannot be set by
1347 	 * another thread while the object is locked.  Thus, if PG_WRITEABLE
1348 	 * is clear, no page table entries need updating.
1349 	 */
1350 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1351 	if ((m->oflags & VPO_BUSY) == 0 &&
1352 	    (m->flags & PG_WRITEABLE) == 0)
1353 		return;
1354 	vm_page_lock_queues();
1355 	lo = moea_attr_fetch(m);
1356 	powerpc_sync();
1357 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
1358 		pmap = pvo->pvo_pmap;
1359 		PMAP_LOCK(pmap);
1360 		if ((pvo->pvo_pte.pte.pte_lo & PTE_PP) != PTE_BR) {
1361 			pt = moea_pvo_to_pte(pvo, -1);
1362 			pvo->pvo_pte.pte.pte_lo &= ~PTE_PP;
1363 			pvo->pvo_pte.pte.pte_lo |= PTE_BR;
1364 			if (pt != NULL) {
1365 				moea_pte_synch(pt, &pvo->pvo_pte.pte);
1366 				lo |= pvo->pvo_pte.pte.pte_lo;
1367 				pvo->pvo_pte.pte.pte_lo &= ~PTE_CHG;
1368 				moea_pte_change(pt, &pvo->pvo_pte.pte,
1369 				    pvo->pvo_vaddr);
1370 				mtx_unlock(&moea_table_mutex);
1371 			}
1372 		}
1373 		PMAP_UNLOCK(pmap);
1374 	}
1375 	if ((lo & PTE_CHG) != 0) {
1376 		moea_attr_clear(m, PTE_CHG);
1377 		vm_page_dirty(m);
1378 	}
1379 	vm_page_flag_clear(m, PG_WRITEABLE);
1380 	vm_page_unlock_queues();
1381 }
1382 
1383 /*
1384  *	moea_ts_referenced:
1385  *
1386  *	Return a count of reference bits for a page, clearing those bits.
1387  *	It is not necessary for every reference bit to be cleared, but it
1388  *	is necessary that 0 only be returned when there are truly no
1389  *	reference bits set.
1390  *
1391  *	XXX: The exact number of bits to check and clear is a matter that
1392  *	should be tested and standardized at some point in the future for
1393  *	optimal aging of shared pages.
1394  */
1395 boolean_t
1396 moea_ts_referenced(mmu_t mmu, vm_page_t m)
1397 {
1398 
1399 	KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0,
1400 	    ("moea_ts_referenced: page %p is not managed", m));
1401 	return (moea_clear_bit(m, PTE_REF));
1402 }
1403 
1404 /*
1405  * Modify the WIMG settings of all mappings for a page.
1406  */
1407 void
1408 moea_page_set_memattr(mmu_t mmu, vm_page_t m, vm_memattr_t ma)
1409 {
1410 	struct	pvo_entry *pvo;
1411 	struct	pvo_head *pvo_head;
1412 	struct	pte *pt;
1413 	pmap_t	pmap;
1414 	u_int	lo;
1415 
1416 	if (m->flags & PG_FICTITIOUS) {
1417 		m->md.mdpg_cache_attrs = ma;
1418 		return;
1419 	}
1420 
1421 	vm_page_lock_queues();
1422 	pvo_head = vm_page_to_pvoh(m);
1423 	lo = moea_calc_wimg(VM_PAGE_TO_PHYS(m), ma);
1424 
1425 	LIST_FOREACH(pvo, pvo_head, pvo_vlink) {
1426 		pmap = pvo->pvo_pmap;
1427 		PMAP_LOCK(pmap);
1428 		pt = moea_pvo_to_pte(pvo, -1);
1429 		pvo->pvo_pte.pte.pte_lo &= ~PTE_WIMG;
1430 		pvo->pvo_pte.pte.pte_lo |= lo;
1431 		if (pt != NULL) {
1432 			moea_pte_change(pt, &pvo->pvo_pte.pte,
1433 			    pvo->pvo_vaddr);
1434 			if (pvo->pvo_pmap == kernel_pmap)
1435 				isync();
1436 		}
1437 		mtx_unlock(&moea_table_mutex);
1438 		PMAP_UNLOCK(pmap);
1439 	}
1440 	m->md.mdpg_cache_attrs = ma;
1441 	vm_page_unlock_queues();
1442 }
1443 
1444 /*
1445  * Map a wired page into kernel virtual address space.
1446  */
1447 void
1448 moea_kenter(mmu_t mmu, vm_offset_t va, vm_offset_t pa)
1449 {
1450 
1451 	moea_kenter_attr(mmu, va, pa, VM_MEMATTR_DEFAULT);
1452 }
1453 
1454 void
1455 moea_kenter_attr(mmu_t mmu, vm_offset_t va, vm_offset_t pa, vm_memattr_t ma)
1456 {
1457 	u_int		pte_lo;
1458 	int		error;
1459 
1460 #if 0
1461 	if (va < VM_MIN_KERNEL_ADDRESS)
1462 		panic("moea_kenter: attempt to enter non-kernel address %#x",
1463 		    va);
1464 #endif
1465 
1466 	pte_lo = moea_calc_wimg(pa, ma);
1467 
1468 	PMAP_LOCK(kernel_pmap);
1469 	error = moea_pvo_enter(kernel_pmap, moea_upvo_zone,
1470 	    &moea_pvo_kunmanaged, va, pa, pte_lo, PVO_WIRED);
1471 
1472 	if (error != 0 && error != ENOENT)
1473 		panic("moea_kenter: failed to enter va %#x pa %#x: %d", va,
1474 		    pa, error);
1475 
1476 	/*
1477 	 * Flush the real memory from the instruction cache.
1478 	 */
1479 	if ((pte_lo & (PTE_I | PTE_G)) == 0) {
1480 		moea_syncicache(pa, PAGE_SIZE);
1481 	}
1482 	PMAP_UNLOCK(kernel_pmap);
1483 }
1484 
1485 /*
1486  * Extract the physical page address associated with the given kernel virtual
1487  * address.
1488  */
1489 vm_offset_t
1490 moea_kextract(mmu_t mmu, vm_offset_t va)
1491 {
1492 	struct		pvo_entry *pvo;
1493 	vm_paddr_t pa;
1494 
1495 	/*
1496 	 * Allow direct mappings on 32-bit OEA
1497 	 */
1498 	if (va < VM_MIN_KERNEL_ADDRESS) {
1499 		return (va);
1500 	}
1501 
1502 	PMAP_LOCK(kernel_pmap);
1503 	pvo = moea_pvo_find_va(kernel_pmap, va & ~ADDR_POFF, NULL);
1504 	KASSERT(pvo != NULL, ("moea_kextract: no addr found"));
1505 	pa = (pvo->pvo_pte.pte.pte_lo & PTE_RPGN) | (va & ADDR_POFF);
1506 	PMAP_UNLOCK(kernel_pmap);
1507 	return (pa);
1508 }
1509 
1510 /*
1511  * Remove a wired page from kernel virtual address space.
1512  */
1513 void
1514 moea_kremove(mmu_t mmu, vm_offset_t va)
1515 {
1516 
1517 	moea_remove(mmu, kernel_pmap, va, va + PAGE_SIZE);
1518 }
1519 
1520 /*
1521  * Map a range of physical addresses into kernel virtual address space.
1522  *
1523  * The value passed in *virt is a suggested virtual address for the mapping.
1524  * Architectures which can support a direct-mapped physical to virtual region
1525  * can return the appropriate address within that region, leaving '*virt'
1526  * unchanged.  We cannot and therefore do not; *virt is updated with the
1527  * first usable address after the mapped region.
1528  */
1529 vm_offset_t
1530 moea_map(mmu_t mmu, vm_offset_t *virt, vm_offset_t pa_start,
1531     vm_offset_t pa_end, int prot)
1532 {
1533 	vm_offset_t	sva, va;
1534 
1535 	sva = *virt;
1536 	va = sva;
1537 	for (; pa_start < pa_end; pa_start += PAGE_SIZE, va += PAGE_SIZE)
1538 		moea_kenter(mmu, va, pa_start);
1539 	*virt = va;
1540 	return (sva);
1541 }
1542 
1543 /*
1544  * Returns true if the pmap's pv is one of the first
1545  * 16 pvs linked to from this page.  This count may
1546  * be changed upwards or downwards in the future; it
1547  * is only necessary that true be returned for a small
1548  * subset of pmaps for proper page aging.
1549  */
1550 boolean_t
1551 moea_page_exists_quick(mmu_t mmu, pmap_t pmap, vm_page_t m)
1552 {
1553         int loops;
1554 	struct pvo_entry *pvo;
1555 	boolean_t rv;
1556 
1557 	KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0,
1558 	    ("moea_page_exists_quick: page %p is not managed", m));
1559 	loops = 0;
1560 	rv = FALSE;
1561 	vm_page_lock_queues();
1562 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
1563 		if (pvo->pvo_pmap == pmap) {
1564 			rv = TRUE;
1565 			break;
1566 		}
1567 		if (++loops >= 16)
1568 			break;
1569 	}
1570 	vm_page_unlock_queues();
1571 	return (rv);
1572 }
1573 
1574 /*
1575  * Return the number of managed mappings to the given physical page
1576  * that are wired.
1577  */
1578 int
1579 moea_page_wired_mappings(mmu_t mmu, vm_page_t m)
1580 {
1581 	struct pvo_entry *pvo;
1582 	int count;
1583 
1584 	count = 0;
1585 	if ((m->flags & PG_FICTITIOUS) != 0)
1586 		return (count);
1587 	vm_page_lock_queues();
1588 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink)
1589 		if ((pvo->pvo_vaddr & PVO_WIRED) != 0)
1590 			count++;
1591 	vm_page_unlock_queues();
1592 	return (count);
1593 }
1594 
1595 static u_int	moea_vsidcontext;
1596 
1597 void
1598 moea_pinit(mmu_t mmu, pmap_t pmap)
1599 {
1600 	int	i, mask;
1601 	u_int	entropy;
1602 
1603 	KASSERT((int)pmap < VM_MIN_KERNEL_ADDRESS, ("moea_pinit: virt pmap"));
1604 	PMAP_LOCK_INIT(pmap);
1605 
1606 	entropy = 0;
1607 	__asm __volatile("mftb %0" : "=r"(entropy));
1608 
1609 	if ((pmap->pmap_phys = (pmap_t)moea_kextract(mmu, (vm_offset_t)pmap))
1610 	    == NULL) {
1611 		pmap->pmap_phys = pmap;
1612 	}
1613 
1614 
1615 	mtx_lock(&moea_vsid_mutex);
1616 	/*
1617 	 * Allocate some segment registers for this pmap.
1618 	 */
1619 	for (i = 0; i < NPMAPS; i += VSID_NBPW) {
1620 		u_int	hash, n;
1621 
1622 		/*
1623 		 * Create a new value by mutiplying by a prime and adding in
1624 		 * entropy from the timebase register.  This is to make the
1625 		 * VSID more random so that the PT hash function collides
1626 		 * less often.  (Note that the prime casues gcc to do shifts
1627 		 * instead of a multiply.)
1628 		 */
1629 		moea_vsidcontext = (moea_vsidcontext * 0x1105) + entropy;
1630 		hash = moea_vsidcontext & (NPMAPS - 1);
1631 		if (hash == 0)		/* 0 is special, avoid it */
1632 			continue;
1633 		n = hash >> 5;
1634 		mask = 1 << (hash & (VSID_NBPW - 1));
1635 		hash = (moea_vsidcontext & 0xfffff);
1636 		if (moea_vsid_bitmap[n] & mask) {	/* collision? */
1637 			/* anything free in this bucket? */
1638 			if (moea_vsid_bitmap[n] == 0xffffffff) {
1639 				entropy = (moea_vsidcontext >> 20);
1640 				continue;
1641 			}
1642 			i = ffs(~moea_vsid_bitmap[n]) - 1;
1643 			mask = 1 << i;
1644 			hash &= 0xfffff & ~(VSID_NBPW - 1);
1645 			hash |= i;
1646 		}
1647 		moea_vsid_bitmap[n] |= mask;
1648 		for (i = 0; i < 16; i++)
1649 			pmap->pm_sr[i] = VSID_MAKE(i, hash);
1650 		mtx_unlock(&moea_vsid_mutex);
1651 		return;
1652 	}
1653 
1654 	mtx_unlock(&moea_vsid_mutex);
1655 	panic("moea_pinit: out of segments");
1656 }
1657 
1658 /*
1659  * Initialize the pmap associated with process 0.
1660  */
1661 void
1662 moea_pinit0(mmu_t mmu, pmap_t pm)
1663 {
1664 
1665 	moea_pinit(mmu, pm);
1666 	bzero(&pm->pm_stats, sizeof(pm->pm_stats));
1667 }
1668 
1669 /*
1670  * Set the physical protection on the specified range of this map as requested.
1671  */
1672 void
1673 moea_protect(mmu_t mmu, pmap_t pm, vm_offset_t sva, vm_offset_t eva,
1674     vm_prot_t prot)
1675 {
1676 	struct	pvo_entry *pvo;
1677 	struct	pte *pt;
1678 	int	pteidx;
1679 
1680 	KASSERT(pm == &curproc->p_vmspace->vm_pmap || pm == kernel_pmap,
1681 	    ("moea_protect: non current pmap"));
1682 
1683 	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
1684 		moea_remove(mmu, pm, sva, eva);
1685 		return;
1686 	}
1687 
1688 	vm_page_lock_queues();
1689 	PMAP_LOCK(pm);
1690 	for (; sva < eva; sva += PAGE_SIZE) {
1691 		pvo = moea_pvo_find_va(pm, sva, &pteidx);
1692 		if (pvo == NULL)
1693 			continue;
1694 
1695 		if ((prot & VM_PROT_EXECUTE) == 0)
1696 			pvo->pvo_vaddr &= ~PVO_EXECUTABLE;
1697 
1698 		/*
1699 		 * Grab the PTE pointer before we diddle with the cached PTE
1700 		 * copy.
1701 		 */
1702 		pt = moea_pvo_to_pte(pvo, pteidx);
1703 		/*
1704 		 * Change the protection of the page.
1705 		 */
1706 		pvo->pvo_pte.pte.pte_lo &= ~PTE_PP;
1707 		pvo->pvo_pte.pte.pte_lo |= PTE_BR;
1708 
1709 		/*
1710 		 * If the PVO is in the page table, update that pte as well.
1711 		 */
1712 		if (pt != NULL) {
1713 			moea_pte_change(pt, &pvo->pvo_pte.pte, pvo->pvo_vaddr);
1714 			mtx_unlock(&moea_table_mutex);
1715 		}
1716 	}
1717 	vm_page_unlock_queues();
1718 	PMAP_UNLOCK(pm);
1719 }
1720 
1721 /*
1722  * Map a list of wired pages into kernel virtual address space.  This is
1723  * intended for temporary mappings which do not need page modification or
1724  * references recorded.  Existing mappings in the region are overwritten.
1725  */
1726 void
1727 moea_qenter(mmu_t mmu, vm_offset_t sva, vm_page_t *m, int count)
1728 {
1729 	vm_offset_t va;
1730 
1731 	va = sva;
1732 	while (count-- > 0) {
1733 		moea_kenter(mmu, va, VM_PAGE_TO_PHYS(*m));
1734 		va += PAGE_SIZE;
1735 		m++;
1736 	}
1737 }
1738 
1739 /*
1740  * Remove page mappings from kernel virtual address space.  Intended for
1741  * temporary mappings entered by moea_qenter.
1742  */
1743 void
1744 moea_qremove(mmu_t mmu, vm_offset_t sva, int count)
1745 {
1746 	vm_offset_t va;
1747 
1748 	va = sva;
1749 	while (count-- > 0) {
1750 		moea_kremove(mmu, va);
1751 		va += PAGE_SIZE;
1752 	}
1753 }
1754 
1755 void
1756 moea_release(mmu_t mmu, pmap_t pmap)
1757 {
1758         int idx, mask;
1759 
1760 	/*
1761 	 * Free segment register's VSID
1762 	 */
1763         if (pmap->pm_sr[0] == 0)
1764                 panic("moea_release");
1765 
1766 	mtx_lock(&moea_vsid_mutex);
1767         idx = VSID_TO_HASH(pmap->pm_sr[0]) & (NPMAPS-1);
1768         mask = 1 << (idx % VSID_NBPW);
1769         idx /= VSID_NBPW;
1770         moea_vsid_bitmap[idx] &= ~mask;
1771 	mtx_unlock(&moea_vsid_mutex);
1772 	PMAP_LOCK_DESTROY(pmap);
1773 }
1774 
1775 /*
1776  * Remove the given range of addresses from the specified map.
1777  */
1778 void
1779 moea_remove(mmu_t mmu, pmap_t pm, vm_offset_t sva, vm_offset_t eva)
1780 {
1781 	struct	pvo_entry *pvo;
1782 	int	pteidx;
1783 
1784 	vm_page_lock_queues();
1785 	PMAP_LOCK(pm);
1786 	for (; sva < eva; sva += PAGE_SIZE) {
1787 		pvo = moea_pvo_find_va(pm, sva, &pteidx);
1788 		if (pvo != NULL) {
1789 			moea_pvo_remove(pvo, pteidx);
1790 		}
1791 	}
1792 	PMAP_UNLOCK(pm);
1793 	vm_page_unlock_queues();
1794 }
1795 
1796 /*
1797  * Remove physical page from all pmaps in which it resides. moea_pvo_remove()
1798  * will reflect changes in pte's back to the vm_page.
1799  */
1800 void
1801 moea_remove_all(mmu_t mmu, vm_page_t m)
1802 {
1803 	struct  pvo_head *pvo_head;
1804 	struct	pvo_entry *pvo, *next_pvo;
1805 	pmap_t	pmap;
1806 
1807 	vm_page_lock_queues();
1808 	pvo_head = vm_page_to_pvoh(m);
1809 	for (pvo = LIST_FIRST(pvo_head); pvo != NULL; pvo = next_pvo) {
1810 		next_pvo = LIST_NEXT(pvo, pvo_vlink);
1811 
1812 		MOEA_PVO_CHECK(pvo);	/* sanity check */
1813 		pmap = pvo->pvo_pmap;
1814 		PMAP_LOCK(pmap);
1815 		moea_pvo_remove(pvo, -1);
1816 		PMAP_UNLOCK(pmap);
1817 	}
1818 	if ((m->flags & PG_WRITEABLE) && moea_is_modified(mmu, m)) {
1819 		moea_attr_clear(m, PTE_CHG);
1820 		vm_page_dirty(m);
1821 	}
1822 	vm_page_flag_clear(m, PG_WRITEABLE);
1823 	vm_page_unlock_queues();
1824 }
1825 
1826 /*
1827  * Allocate a physical page of memory directly from the phys_avail map.
1828  * Can only be called from moea_bootstrap before avail start and end are
1829  * calculated.
1830  */
1831 static vm_offset_t
1832 moea_bootstrap_alloc(vm_size_t size, u_int align)
1833 {
1834 	vm_offset_t	s, e;
1835 	int		i, j;
1836 
1837 	size = round_page(size);
1838 	for (i = 0; phys_avail[i + 1] != 0; i += 2) {
1839 		if (align != 0)
1840 			s = (phys_avail[i] + align - 1) & ~(align - 1);
1841 		else
1842 			s = phys_avail[i];
1843 		e = s + size;
1844 
1845 		if (s < phys_avail[i] || e > phys_avail[i + 1])
1846 			continue;
1847 
1848 		if (s == phys_avail[i]) {
1849 			phys_avail[i] += size;
1850 		} else if (e == phys_avail[i + 1]) {
1851 			phys_avail[i + 1] -= size;
1852 		} else {
1853 			for (j = phys_avail_count * 2; j > i; j -= 2) {
1854 				phys_avail[j] = phys_avail[j - 2];
1855 				phys_avail[j + 1] = phys_avail[j - 1];
1856 			}
1857 
1858 			phys_avail[i + 3] = phys_avail[i + 1];
1859 			phys_avail[i + 1] = s;
1860 			phys_avail[i + 2] = e;
1861 			phys_avail_count++;
1862 		}
1863 
1864 		return (s);
1865 	}
1866 	panic("moea_bootstrap_alloc: could not allocate memory");
1867 }
1868 
1869 static void
1870 moea_syncicache(vm_offset_t pa, vm_size_t len)
1871 {
1872 	__syncicache((void *)pa, len);
1873 }
1874 
1875 static int
1876 moea_pvo_enter(pmap_t pm, uma_zone_t zone, struct pvo_head *pvo_head,
1877     vm_offset_t va, vm_offset_t pa, u_int pte_lo, int flags)
1878 {
1879 	struct	pvo_entry *pvo;
1880 	u_int	sr;
1881 	int	first;
1882 	u_int	ptegidx;
1883 	int	i;
1884 	int     bootstrap;
1885 
1886 	moea_pvo_enter_calls++;
1887 	first = 0;
1888 	bootstrap = 0;
1889 
1890 	/*
1891 	 * Compute the PTE Group index.
1892 	 */
1893 	va &= ~ADDR_POFF;
1894 	sr = va_to_sr(pm->pm_sr, va);
1895 	ptegidx = va_to_pteg(sr, va);
1896 
1897 	/*
1898 	 * Remove any existing mapping for this page.  Reuse the pvo entry if
1899 	 * there is a mapping.
1900 	 */
1901 	mtx_lock(&moea_table_mutex);
1902 	LIST_FOREACH(pvo, &moea_pvo_table[ptegidx], pvo_olink) {
1903 		if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
1904 			if ((pvo->pvo_pte.pte.pte_lo & PTE_RPGN) == pa &&
1905 			    (pvo->pvo_pte.pte.pte_lo & PTE_PP) ==
1906 			    (pte_lo & PTE_PP)) {
1907 				mtx_unlock(&moea_table_mutex);
1908 				return (0);
1909 			}
1910 			moea_pvo_remove(pvo, -1);
1911 			break;
1912 		}
1913 	}
1914 
1915 	/*
1916 	 * If we aren't overwriting a mapping, try to allocate.
1917 	 */
1918 	if (moea_initialized) {
1919 		pvo = uma_zalloc(zone, M_NOWAIT);
1920 	} else {
1921 		if (moea_bpvo_pool_index >= BPVO_POOL_SIZE) {
1922 			panic("moea_enter: bpvo pool exhausted, %d, %d, %d",
1923 			      moea_bpvo_pool_index, BPVO_POOL_SIZE,
1924 			      BPVO_POOL_SIZE * sizeof(struct pvo_entry));
1925 		}
1926 		pvo = &moea_bpvo_pool[moea_bpvo_pool_index];
1927 		moea_bpvo_pool_index++;
1928 		bootstrap = 1;
1929 	}
1930 
1931 	if (pvo == NULL) {
1932 		mtx_unlock(&moea_table_mutex);
1933 		return (ENOMEM);
1934 	}
1935 
1936 	moea_pvo_entries++;
1937 	pvo->pvo_vaddr = va;
1938 	pvo->pvo_pmap = pm;
1939 	LIST_INSERT_HEAD(&moea_pvo_table[ptegidx], pvo, pvo_olink);
1940 	pvo->pvo_vaddr &= ~ADDR_POFF;
1941 	if (flags & VM_PROT_EXECUTE)
1942 		pvo->pvo_vaddr |= PVO_EXECUTABLE;
1943 	if (flags & PVO_WIRED)
1944 		pvo->pvo_vaddr |= PVO_WIRED;
1945 	if (pvo_head != &moea_pvo_kunmanaged)
1946 		pvo->pvo_vaddr |= PVO_MANAGED;
1947 	if (bootstrap)
1948 		pvo->pvo_vaddr |= PVO_BOOTSTRAP;
1949 	if (flags & PVO_FAKE)
1950 		pvo->pvo_vaddr |= PVO_FAKE;
1951 
1952 	moea_pte_create(&pvo->pvo_pte.pte, sr, va, pa | pte_lo);
1953 
1954 	/*
1955 	 * Remember if the list was empty and therefore will be the first
1956 	 * item.
1957 	 */
1958 	if (LIST_FIRST(pvo_head) == NULL)
1959 		first = 1;
1960 	LIST_INSERT_HEAD(pvo_head, pvo, pvo_vlink);
1961 
1962 	if (pvo->pvo_pte.pte.pte_lo & PVO_WIRED)
1963 		pm->pm_stats.wired_count++;
1964 	pm->pm_stats.resident_count++;
1965 
1966 	/*
1967 	 * We hope this succeeds but it isn't required.
1968 	 */
1969 	i = moea_pte_insert(ptegidx, &pvo->pvo_pte.pte);
1970 	if (i >= 0) {
1971 		PVO_PTEGIDX_SET(pvo, i);
1972 	} else {
1973 		panic("moea_pvo_enter: overflow");
1974 		moea_pte_overflow++;
1975 	}
1976 	mtx_unlock(&moea_table_mutex);
1977 
1978 	return (first ? ENOENT : 0);
1979 }
1980 
1981 static void
1982 moea_pvo_remove(struct pvo_entry *pvo, int pteidx)
1983 {
1984 	struct	pte *pt;
1985 
1986 	/*
1987 	 * If there is an active pte entry, we need to deactivate it (and
1988 	 * save the ref & cfg bits).
1989 	 */
1990 	pt = moea_pvo_to_pte(pvo, pteidx);
1991 	if (pt != NULL) {
1992 		moea_pte_unset(pt, &pvo->pvo_pte.pte, pvo->pvo_vaddr);
1993 		mtx_unlock(&moea_table_mutex);
1994 		PVO_PTEGIDX_CLR(pvo);
1995 	} else {
1996 		moea_pte_overflow--;
1997 	}
1998 
1999 	/*
2000 	 * Update our statistics.
2001 	 */
2002 	pvo->pvo_pmap->pm_stats.resident_count--;
2003 	if (pvo->pvo_pte.pte.pte_lo & PVO_WIRED)
2004 		pvo->pvo_pmap->pm_stats.wired_count--;
2005 
2006 	/*
2007 	 * Save the REF/CHG bits into their cache if the page is managed.
2008 	 */
2009 	if ((pvo->pvo_vaddr & (PVO_MANAGED|PVO_FAKE)) == PVO_MANAGED) {
2010 		struct	vm_page *pg;
2011 
2012 		pg = PHYS_TO_VM_PAGE(pvo->pvo_pte.pte.pte_lo & PTE_RPGN);
2013 		if (pg != NULL) {
2014 			moea_attr_save(pg, pvo->pvo_pte.pte.pte_lo &
2015 			    (PTE_REF | PTE_CHG));
2016 		}
2017 	}
2018 
2019 	/*
2020 	 * Remove this PVO from the PV list.
2021 	 */
2022 	LIST_REMOVE(pvo, pvo_vlink);
2023 
2024 	/*
2025 	 * Remove this from the overflow list and return it to the pool
2026 	 * if we aren't going to reuse it.
2027 	 */
2028 	LIST_REMOVE(pvo, pvo_olink);
2029 	if (!(pvo->pvo_vaddr & PVO_BOOTSTRAP))
2030 		uma_zfree(pvo->pvo_vaddr & PVO_MANAGED ? moea_mpvo_zone :
2031 		    moea_upvo_zone, pvo);
2032 	moea_pvo_entries--;
2033 	moea_pvo_remove_calls++;
2034 }
2035 
2036 static __inline int
2037 moea_pvo_pte_index(const struct pvo_entry *pvo, int ptegidx)
2038 {
2039 	int	pteidx;
2040 
2041 	/*
2042 	 * We can find the actual pte entry without searching by grabbing
2043 	 * the PTEG index from 3 unused bits in pte_lo[11:9] and by
2044 	 * noticing the HID bit.
2045 	 */
2046 	pteidx = ptegidx * 8 + PVO_PTEGIDX_GET(pvo);
2047 	if (pvo->pvo_pte.pte.pte_hi & PTE_HID)
2048 		pteidx ^= moea_pteg_mask * 8;
2049 
2050 	return (pteidx);
2051 }
2052 
2053 static struct pvo_entry *
2054 moea_pvo_find_va(pmap_t pm, vm_offset_t va, int *pteidx_p)
2055 {
2056 	struct	pvo_entry *pvo;
2057 	int	ptegidx;
2058 	u_int	sr;
2059 
2060 	va &= ~ADDR_POFF;
2061 	sr = va_to_sr(pm->pm_sr, va);
2062 	ptegidx = va_to_pteg(sr, va);
2063 
2064 	mtx_lock(&moea_table_mutex);
2065 	LIST_FOREACH(pvo, &moea_pvo_table[ptegidx], pvo_olink) {
2066 		if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
2067 			if (pteidx_p)
2068 				*pteidx_p = moea_pvo_pte_index(pvo, ptegidx);
2069 			break;
2070 		}
2071 	}
2072 	mtx_unlock(&moea_table_mutex);
2073 
2074 	return (pvo);
2075 }
2076 
2077 static struct pte *
2078 moea_pvo_to_pte(const struct pvo_entry *pvo, int pteidx)
2079 {
2080 	struct	pte *pt;
2081 
2082 	/*
2083 	 * If we haven't been supplied the ptegidx, calculate it.
2084 	 */
2085 	if (pteidx == -1) {
2086 		int	ptegidx;
2087 		u_int	sr;
2088 
2089 		sr = va_to_sr(pvo->pvo_pmap->pm_sr, pvo->pvo_vaddr);
2090 		ptegidx = va_to_pteg(sr, pvo->pvo_vaddr);
2091 		pteidx = moea_pvo_pte_index(pvo, ptegidx);
2092 	}
2093 
2094 	pt = &moea_pteg_table[pteidx >> 3].pt[pteidx & 7];
2095 	mtx_lock(&moea_table_mutex);
2096 
2097 	if ((pvo->pvo_pte.pte.pte_hi & PTE_VALID) && !PVO_PTEGIDX_ISSET(pvo)) {
2098 		panic("moea_pvo_to_pte: pvo %p has valid pte in pvo but no "
2099 		    "valid pte index", pvo);
2100 	}
2101 
2102 	if ((pvo->pvo_pte.pte.pte_hi & PTE_VALID) == 0 && PVO_PTEGIDX_ISSET(pvo)) {
2103 		panic("moea_pvo_to_pte: pvo %p has valid pte index in pvo "
2104 		    "pvo but no valid pte", pvo);
2105 	}
2106 
2107 	if ((pt->pte_hi ^ (pvo->pvo_pte.pte.pte_hi & ~PTE_VALID)) == PTE_VALID) {
2108 		if ((pvo->pvo_pte.pte.pte_hi & PTE_VALID) == 0) {
2109 			panic("moea_pvo_to_pte: pvo %p has valid pte in "
2110 			    "moea_pteg_table %p but invalid in pvo", pvo, pt);
2111 		}
2112 
2113 		if (((pt->pte_lo ^ pvo->pvo_pte.pte.pte_lo) & ~(PTE_CHG|PTE_REF))
2114 		    != 0) {
2115 			panic("moea_pvo_to_pte: pvo %p pte does not match "
2116 			    "pte %p in moea_pteg_table", pvo, pt);
2117 		}
2118 
2119 		mtx_assert(&moea_table_mutex, MA_OWNED);
2120 		return (pt);
2121 	}
2122 
2123 	if (pvo->pvo_pte.pte.pte_hi & PTE_VALID) {
2124 		panic("moea_pvo_to_pte: pvo %p has invalid pte %p in "
2125 		    "moea_pteg_table but valid in pvo", pvo, pt);
2126 	}
2127 
2128 	mtx_unlock(&moea_table_mutex);
2129 	return (NULL);
2130 }
2131 
2132 /*
2133  * XXX: THIS STUFF SHOULD BE IN pte.c?
2134  */
2135 int
2136 moea_pte_spill(vm_offset_t addr)
2137 {
2138 	struct	pvo_entry *source_pvo, *victim_pvo;
2139 	struct	pvo_entry *pvo;
2140 	int	ptegidx, i, j;
2141 	u_int	sr;
2142 	struct	pteg *pteg;
2143 	struct	pte *pt;
2144 
2145 	moea_pte_spills++;
2146 
2147 	sr = mfsrin(addr);
2148 	ptegidx = va_to_pteg(sr, addr);
2149 
2150 	/*
2151 	 * Have to substitute some entry.  Use the primary hash for this.
2152 	 * Use low bits of timebase as random generator.
2153 	 */
2154 	pteg = &moea_pteg_table[ptegidx];
2155 	mtx_lock(&moea_table_mutex);
2156 	__asm __volatile("mftb %0" : "=r"(i));
2157 	i &= 7;
2158 	pt = &pteg->pt[i];
2159 
2160 	source_pvo = NULL;
2161 	victim_pvo = NULL;
2162 	LIST_FOREACH(pvo, &moea_pvo_table[ptegidx], pvo_olink) {
2163 		/*
2164 		 * We need to find a pvo entry for this address.
2165 		 */
2166 		MOEA_PVO_CHECK(pvo);
2167 		if (source_pvo == NULL &&
2168 		    moea_pte_match(&pvo->pvo_pte.pte, sr, addr,
2169 		    pvo->pvo_pte.pte.pte_hi & PTE_HID)) {
2170 			/*
2171 			 * Now found an entry to be spilled into the pteg.
2172 			 * The PTE is now valid, so we know it's active.
2173 			 */
2174 			j = moea_pte_insert(ptegidx, &pvo->pvo_pte.pte);
2175 
2176 			if (j >= 0) {
2177 				PVO_PTEGIDX_SET(pvo, j);
2178 				moea_pte_overflow--;
2179 				MOEA_PVO_CHECK(pvo);
2180 				mtx_unlock(&moea_table_mutex);
2181 				return (1);
2182 			}
2183 
2184 			source_pvo = pvo;
2185 
2186 			if (victim_pvo != NULL)
2187 				break;
2188 		}
2189 
2190 		/*
2191 		 * We also need the pvo entry of the victim we are replacing
2192 		 * so save the R & C bits of the PTE.
2193 		 */
2194 		if ((pt->pte_hi & PTE_HID) == 0 && victim_pvo == NULL &&
2195 		    moea_pte_compare(pt, &pvo->pvo_pte.pte)) {
2196 			victim_pvo = pvo;
2197 			if (source_pvo != NULL)
2198 				break;
2199 		}
2200 	}
2201 
2202 	if (source_pvo == NULL) {
2203 		mtx_unlock(&moea_table_mutex);
2204 		return (0);
2205 	}
2206 
2207 	if (victim_pvo == NULL) {
2208 		if ((pt->pte_hi & PTE_HID) == 0)
2209 			panic("moea_pte_spill: victim p-pte (%p) has no pvo"
2210 			    "entry", pt);
2211 
2212 		/*
2213 		 * If this is a secondary PTE, we need to search it's primary
2214 		 * pvo bucket for the matching PVO.
2215 		 */
2216 		LIST_FOREACH(pvo, &moea_pvo_table[ptegidx ^ moea_pteg_mask],
2217 		    pvo_olink) {
2218 			MOEA_PVO_CHECK(pvo);
2219 			/*
2220 			 * We also need the pvo entry of the victim we are
2221 			 * replacing so save the R & C bits of the PTE.
2222 			 */
2223 			if (moea_pte_compare(pt, &pvo->pvo_pte.pte)) {
2224 				victim_pvo = pvo;
2225 				break;
2226 			}
2227 		}
2228 
2229 		if (victim_pvo == NULL)
2230 			panic("moea_pte_spill: victim s-pte (%p) has no pvo"
2231 			    "entry", pt);
2232 	}
2233 
2234 	/*
2235 	 * We are invalidating the TLB entry for the EA we are replacing even
2236 	 * though it's valid.  If we don't, we lose any ref/chg bit changes
2237 	 * contained in the TLB entry.
2238 	 */
2239 	source_pvo->pvo_pte.pte.pte_hi &= ~PTE_HID;
2240 
2241 	moea_pte_unset(pt, &victim_pvo->pvo_pte.pte, victim_pvo->pvo_vaddr);
2242 	moea_pte_set(pt, &source_pvo->pvo_pte.pte);
2243 
2244 	PVO_PTEGIDX_CLR(victim_pvo);
2245 	PVO_PTEGIDX_SET(source_pvo, i);
2246 	moea_pte_replacements++;
2247 
2248 	MOEA_PVO_CHECK(victim_pvo);
2249 	MOEA_PVO_CHECK(source_pvo);
2250 
2251 	mtx_unlock(&moea_table_mutex);
2252 	return (1);
2253 }
2254 
2255 static int
2256 moea_pte_insert(u_int ptegidx, struct pte *pvo_pt)
2257 {
2258 	struct	pte *pt;
2259 	int	i;
2260 
2261 	mtx_assert(&moea_table_mutex, MA_OWNED);
2262 
2263 	/*
2264 	 * First try primary hash.
2265 	 */
2266 	for (pt = moea_pteg_table[ptegidx].pt, i = 0; i < 8; i++, pt++) {
2267 		if ((pt->pte_hi & PTE_VALID) == 0) {
2268 			pvo_pt->pte_hi &= ~PTE_HID;
2269 			moea_pte_set(pt, pvo_pt);
2270 			return (i);
2271 		}
2272 	}
2273 
2274 	/*
2275 	 * Now try secondary hash.
2276 	 */
2277 	ptegidx ^= moea_pteg_mask;
2278 
2279 	for (pt = moea_pteg_table[ptegidx].pt, i = 0; i < 8; i++, pt++) {
2280 		if ((pt->pte_hi & PTE_VALID) == 0) {
2281 			pvo_pt->pte_hi |= PTE_HID;
2282 			moea_pte_set(pt, pvo_pt);
2283 			return (i);
2284 		}
2285 	}
2286 
2287 	panic("moea_pte_insert: overflow");
2288 	return (-1);
2289 }
2290 
2291 static boolean_t
2292 moea_query_bit(vm_page_t m, int ptebit)
2293 {
2294 	struct	pvo_entry *pvo;
2295 	struct	pte *pt;
2296 
2297 	if (moea_attr_fetch(m) & ptebit)
2298 		return (TRUE);
2299 
2300 	vm_page_lock_queues();
2301 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
2302 		MOEA_PVO_CHECK(pvo);	/* sanity check */
2303 
2304 		/*
2305 		 * See if we saved the bit off.  If so, cache it and return
2306 		 * success.
2307 		 */
2308 		if (pvo->pvo_pte.pte.pte_lo & ptebit) {
2309 			moea_attr_save(m, ptebit);
2310 			MOEA_PVO_CHECK(pvo);	/* sanity check */
2311 			vm_page_unlock_queues();
2312 			return (TRUE);
2313 		}
2314 	}
2315 
2316 	/*
2317 	 * No luck, now go through the hard part of looking at the PTEs
2318 	 * themselves.  Sync so that any pending REF/CHG bits are flushed to
2319 	 * the PTEs.
2320 	 */
2321 	powerpc_sync();
2322 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
2323 		MOEA_PVO_CHECK(pvo);	/* sanity check */
2324 
2325 		/*
2326 		 * See if this pvo has a valid PTE.  if so, fetch the
2327 		 * REF/CHG bits from the valid PTE.  If the appropriate
2328 		 * ptebit is set, cache it and return success.
2329 		 */
2330 		pt = moea_pvo_to_pte(pvo, -1);
2331 		if (pt != NULL) {
2332 			moea_pte_synch(pt, &pvo->pvo_pte.pte);
2333 			mtx_unlock(&moea_table_mutex);
2334 			if (pvo->pvo_pte.pte.pte_lo & ptebit) {
2335 				moea_attr_save(m, ptebit);
2336 				MOEA_PVO_CHECK(pvo);	/* sanity check */
2337 				vm_page_unlock_queues();
2338 				return (TRUE);
2339 			}
2340 		}
2341 	}
2342 
2343 	vm_page_unlock_queues();
2344 	return (FALSE);
2345 }
2346 
2347 static u_int
2348 moea_clear_bit(vm_page_t m, int ptebit)
2349 {
2350 	u_int	count;
2351 	struct	pvo_entry *pvo;
2352 	struct	pte *pt;
2353 
2354 	vm_page_lock_queues();
2355 
2356 	/*
2357 	 * Clear the cached value.
2358 	 */
2359 	moea_attr_clear(m, ptebit);
2360 
2361 	/*
2362 	 * Sync so that any pending REF/CHG bits are flushed to the PTEs (so
2363 	 * we can reset the right ones).  note that since the pvo entries and
2364 	 * list heads are accessed via BAT0 and are never placed in the page
2365 	 * table, we don't have to worry about further accesses setting the
2366 	 * REF/CHG bits.
2367 	 */
2368 	powerpc_sync();
2369 
2370 	/*
2371 	 * For each pvo entry, clear the pvo's ptebit.  If this pvo has a
2372 	 * valid pte clear the ptebit from the valid pte.
2373 	 */
2374 	count = 0;
2375 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
2376 		MOEA_PVO_CHECK(pvo);	/* sanity check */
2377 		pt = moea_pvo_to_pte(pvo, -1);
2378 		if (pt != NULL) {
2379 			moea_pte_synch(pt, &pvo->pvo_pte.pte);
2380 			if (pvo->pvo_pte.pte.pte_lo & ptebit) {
2381 				count++;
2382 				moea_pte_clear(pt, PVO_VADDR(pvo), ptebit);
2383 			}
2384 			mtx_unlock(&moea_table_mutex);
2385 		}
2386 		pvo->pvo_pte.pte.pte_lo &= ~ptebit;
2387 		MOEA_PVO_CHECK(pvo);	/* sanity check */
2388 	}
2389 
2390 	vm_page_unlock_queues();
2391 	return (count);
2392 }
2393 
2394 /*
2395  * Return true if the physical range is encompassed by the battable[idx]
2396  */
2397 static int
2398 moea_bat_mapped(int idx, vm_offset_t pa, vm_size_t size)
2399 {
2400 	u_int prot;
2401 	u_int32_t start;
2402 	u_int32_t end;
2403 	u_int32_t bat_ble;
2404 
2405 	/*
2406 	 * Return immediately if not a valid mapping
2407 	 */
2408 	if (!(battable[idx].batu & BAT_Vs))
2409 		return (EINVAL);
2410 
2411 	/*
2412 	 * The BAT entry must be cache-inhibited, guarded, and r/w
2413 	 * so it can function as an i/o page
2414 	 */
2415 	prot = battable[idx].batl & (BAT_I|BAT_G|BAT_PP_RW);
2416 	if (prot != (BAT_I|BAT_G|BAT_PP_RW))
2417 		return (EPERM);
2418 
2419 	/*
2420 	 * The address should be within the BAT range. Assume that the
2421 	 * start address in the BAT has the correct alignment (thus
2422 	 * not requiring masking)
2423 	 */
2424 	start = battable[idx].batl & BAT_PBS;
2425 	bat_ble = (battable[idx].batu & ~(BAT_EBS)) | 0x03;
2426 	end = start | (bat_ble << 15) | 0x7fff;
2427 
2428 	if ((pa < start) || ((pa + size) > end))
2429 		return (ERANGE);
2430 
2431 	return (0);
2432 }
2433 
2434 boolean_t
2435 moea_dev_direct_mapped(mmu_t mmu, vm_offset_t pa, vm_size_t size)
2436 {
2437 	int i;
2438 
2439 	/*
2440 	 * This currently does not work for entries that
2441 	 * overlap 256M BAT segments.
2442 	 */
2443 
2444 	for(i = 0; i < 16; i++)
2445 		if (moea_bat_mapped(i, pa, size) == 0)
2446 			return (0);
2447 
2448 	return (EFAULT);
2449 }
2450 
2451 /*
2452  * Map a set of physical memory pages into the kernel virtual
2453  * address space. Return a pointer to where it is mapped. This
2454  * routine is intended to be used for mapping device memory,
2455  * NOT real memory.
2456  */
2457 void *
2458 moea_mapdev(mmu_t mmu, vm_offset_t pa, vm_size_t size)
2459 {
2460 
2461 	return (moea_mapdev_attr(mmu, pa, size, VM_MEMATTR_DEFAULT));
2462 }
2463 
2464 void *
2465 moea_mapdev_attr(mmu_t mmu, vm_offset_t pa, vm_size_t size, vm_memattr_t ma)
2466 {
2467 	vm_offset_t va, tmpva, ppa, offset;
2468 	int i;
2469 
2470 	ppa = trunc_page(pa);
2471 	offset = pa & PAGE_MASK;
2472 	size = roundup(offset + size, PAGE_SIZE);
2473 
2474 	/*
2475 	 * If the physical address lies within a valid BAT table entry,
2476 	 * return the 1:1 mapping. This currently doesn't work
2477 	 * for regions that overlap 256M BAT segments.
2478 	 */
2479 	for (i = 0; i < 16; i++) {
2480 		if (moea_bat_mapped(i, pa, size) == 0)
2481 			return ((void *) pa);
2482 	}
2483 
2484 	va = kmem_alloc_nofault(kernel_map, size);
2485 	if (!va)
2486 		panic("moea_mapdev: Couldn't alloc kernel virtual memory");
2487 
2488 	for (tmpva = va; size > 0;) {
2489 		moea_kenter_attr(mmu, tmpva, ppa, ma);
2490 		tlbie(tmpva);
2491 		size -= PAGE_SIZE;
2492 		tmpva += PAGE_SIZE;
2493 		ppa += PAGE_SIZE;
2494 	}
2495 
2496 	return ((void *)(va + offset));
2497 }
2498 
2499 void
2500 moea_unmapdev(mmu_t mmu, vm_offset_t va, vm_size_t size)
2501 {
2502 	vm_offset_t base, offset;
2503 
2504 	/*
2505 	 * If this is outside kernel virtual space, then it's a
2506 	 * battable entry and doesn't require unmapping
2507 	 */
2508 	if ((va >= VM_MIN_KERNEL_ADDRESS) && (va <= virtual_end)) {
2509 		base = trunc_page(va);
2510 		offset = va & PAGE_MASK;
2511 		size = roundup(offset + size, PAGE_SIZE);
2512 		kmem_free(kernel_map, base, size);
2513 	}
2514 }
2515 
2516 static void
2517 moea_sync_icache(mmu_t mmu, pmap_t pm, vm_offset_t va, vm_size_t sz)
2518 {
2519 	struct pvo_entry *pvo;
2520 	vm_offset_t lim;
2521 	vm_paddr_t pa;
2522 	vm_size_t len;
2523 
2524 	PMAP_LOCK(pm);
2525 	while (sz > 0) {
2526 		lim = round_page(va);
2527 		len = MIN(lim - va, sz);
2528 		pvo = moea_pvo_find_va(pm, va & ~ADDR_POFF, NULL);
2529 		if (pvo != NULL) {
2530 			pa = (pvo->pvo_pte.pte.pte_lo & PTE_RPGN) |
2531 			    (va & ADDR_POFF);
2532 			moea_syncicache(pa, len);
2533 		}
2534 		va += len;
2535 		sz -= len;
2536 	}
2537 	PMAP_UNLOCK(pm);
2538 }
2539