xref: /freebsd/sys/powerpc/aim/mmu_oea.c (revision e28a4053)
1 /*-
2  * Copyright (c) 2001 The NetBSD Foundation, Inc.
3  * All rights reserved.
4  *
5  * This code is derived from software contributed to The NetBSD Foundation
6  * by Matt Thomas <matt@3am-software.com> of Allegro Networks, Inc.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *        This product includes software developed by the NetBSD
19  *        Foundation, Inc. and its contributors.
20  * 4. Neither the name of The NetBSD Foundation nor the names of its
21  *    contributors may be used to endorse or promote products derived
22  *    from this software without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
25  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
26  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
27  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
28  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
29  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
30  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
31  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
32  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
33  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
34  * POSSIBILITY OF SUCH DAMAGE.
35  */
36 /*-
37  * Copyright (C) 1995, 1996 Wolfgang Solfrank.
38  * Copyright (C) 1995, 1996 TooLs GmbH.
39  * All rights reserved.
40  *
41  * Redistribution and use in source and binary forms, with or without
42  * modification, are permitted provided that the following conditions
43  * are met:
44  * 1. Redistributions of source code must retain the above copyright
45  *    notice, this list of conditions and the following disclaimer.
46  * 2. Redistributions in binary form must reproduce the above copyright
47  *    notice, this list of conditions and the following disclaimer in the
48  *    documentation and/or other materials provided with the distribution.
49  * 3. All advertising materials mentioning features or use of this software
50  *    must display the following acknowledgement:
51  *	This product includes software developed by TooLs GmbH.
52  * 4. The name of TooLs GmbH may not be used to endorse or promote products
53  *    derived from this software without specific prior written permission.
54  *
55  * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
56  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
57  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
58  * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
59  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
60  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
61  * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
62  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
63  * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
64  * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
65  *
66  * $NetBSD: pmap.c,v 1.28 2000/03/26 20:42:36 kleink Exp $
67  */
68 /*-
69  * Copyright (C) 2001 Benno Rice.
70  * All rights reserved.
71  *
72  * Redistribution and use in source and binary forms, with or without
73  * modification, are permitted provided that the following conditions
74  * are met:
75  * 1. Redistributions of source code must retain the above copyright
76  *    notice, this list of conditions and the following disclaimer.
77  * 2. Redistributions in binary form must reproduce the above copyright
78  *    notice, this list of conditions and the following disclaimer in the
79  *    documentation and/or other materials provided with the distribution.
80  *
81  * THIS SOFTWARE IS PROVIDED BY Benno Rice ``AS IS'' AND ANY EXPRESS OR
82  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
83  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
84  * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
85  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
86  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
87  * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
88  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
89  * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
90  * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
91  */
92 
93 #include <sys/cdefs.h>
94 __FBSDID("$FreeBSD$");
95 
96 /*
97  * Manages physical address maps.
98  *
99  * In addition to hardware address maps, this module is called upon to
100  * provide software-use-only maps which may or may not be stored in the
101  * same form as hardware maps.  These pseudo-maps are used to store
102  * intermediate results from copy operations to and from address spaces.
103  *
104  * Since the information managed by this module is also stored by the
105  * logical address mapping module, this module may throw away valid virtual
106  * to physical mappings at almost any time.  However, invalidations of
107  * mappings must be done as requested.
108  *
109  * In order to cope with hardware architectures which make virtual to
110  * physical map invalidates expensive, this module may delay invalidate
111  * reduced protection operations until such time as they are actually
112  * necessary.  This module is given full information as to which processors
113  * are currently using which maps, and to when physical maps must be made
114  * correct.
115  */
116 
117 #include "opt_kstack_pages.h"
118 
119 #include <sys/param.h>
120 #include <sys/kernel.h>
121 #include <sys/ktr.h>
122 #include <sys/lock.h>
123 #include <sys/msgbuf.h>
124 #include <sys/mutex.h>
125 #include <sys/proc.h>
126 #include <sys/sysctl.h>
127 #include <sys/systm.h>
128 #include <sys/vmmeter.h>
129 
130 #include <dev/ofw/openfirm.h>
131 
132 #include <vm/vm.h>
133 #include <vm/vm_param.h>
134 #include <vm/vm_kern.h>
135 #include <vm/vm_page.h>
136 #include <vm/vm_map.h>
137 #include <vm/vm_object.h>
138 #include <vm/vm_extern.h>
139 #include <vm/vm_pageout.h>
140 #include <vm/vm_pager.h>
141 #include <vm/uma.h>
142 
143 #include <machine/cpu.h>
144 #include <machine/platform.h>
145 #include <machine/bat.h>
146 #include <machine/frame.h>
147 #include <machine/md_var.h>
148 #include <machine/psl.h>
149 #include <machine/pte.h>
150 #include <machine/smp.h>
151 #include <machine/sr.h>
152 #include <machine/mmuvar.h>
153 
154 #include "mmu_if.h"
155 
156 #define	MOEA_DEBUG
157 
158 #define TODO	panic("%s: not implemented", __func__);
159 
160 #define	VSID_MAKE(sr, hash)	((sr) | (((hash) & 0xfffff) << 4))
161 #define	VSID_TO_SR(vsid)	((vsid) & 0xf)
162 #define	VSID_TO_HASH(vsid)	(((vsid) >> 4) & 0xfffff)
163 
164 #define	PVO_PTEGIDX_MASK	0x007		/* which PTEG slot */
165 #define	PVO_PTEGIDX_VALID	0x008		/* slot is valid */
166 #define	PVO_WIRED		0x010		/* PVO entry is wired */
167 #define	PVO_MANAGED		0x020		/* PVO entry is managed */
168 #define	PVO_EXECUTABLE		0x040		/* PVO entry is executable */
169 #define	PVO_BOOTSTRAP		0x080		/* PVO entry allocated during
170 						   bootstrap */
171 #define PVO_FAKE		0x100		/* fictitious phys page */
172 #define	PVO_VADDR(pvo)		((pvo)->pvo_vaddr & ~ADDR_POFF)
173 #define	PVO_ISEXECUTABLE(pvo)	((pvo)->pvo_vaddr & PVO_EXECUTABLE)
174 #define PVO_ISFAKE(pvo)		((pvo)->pvo_vaddr & PVO_FAKE)
175 #define	PVO_PTEGIDX_GET(pvo)	((pvo)->pvo_vaddr & PVO_PTEGIDX_MASK)
176 #define	PVO_PTEGIDX_ISSET(pvo)	((pvo)->pvo_vaddr & PVO_PTEGIDX_VALID)
177 #define	PVO_PTEGIDX_CLR(pvo)	\
178 	((void)((pvo)->pvo_vaddr &= ~(PVO_PTEGIDX_VALID|PVO_PTEGIDX_MASK)))
179 #define	PVO_PTEGIDX_SET(pvo, i)	\
180 	((void)((pvo)->pvo_vaddr |= (i)|PVO_PTEGIDX_VALID))
181 
182 #define	MOEA_PVO_CHECK(pvo)
183 
184 struct ofw_map {
185 	vm_offset_t	om_va;
186 	vm_size_t	om_len;
187 	vm_offset_t	om_pa;
188 	u_int		om_mode;
189 };
190 
191 /*
192  * Map of physical memory regions.
193  */
194 static struct	mem_region *regions;
195 static struct	mem_region *pregions;
196 static u_int    phys_avail_count;
197 static int	regions_sz, pregions_sz;
198 static struct	ofw_map *translations;
199 
200 extern struct pmap ofw_pmap;
201 
202 /*
203  * Lock for the pteg and pvo tables.
204  */
205 struct mtx	moea_table_mutex;
206 struct mtx	moea_vsid_mutex;
207 
208 /* tlbie instruction synchronization */
209 static struct mtx tlbie_mtx;
210 
211 /*
212  * PTEG data.
213  */
214 static struct	pteg *moea_pteg_table;
215 u_int		moea_pteg_count;
216 u_int		moea_pteg_mask;
217 
218 /*
219  * PVO data.
220  */
221 struct	pvo_head *moea_pvo_table;		/* pvo entries by pteg index */
222 struct	pvo_head moea_pvo_kunmanaged =
223     LIST_HEAD_INITIALIZER(moea_pvo_kunmanaged);	/* list of unmanaged pages */
224 
225 uma_zone_t	moea_upvo_zone;	/* zone for pvo entries for unmanaged pages */
226 uma_zone_t	moea_mpvo_zone;	/* zone for pvo entries for managed pages */
227 
228 #define	BPVO_POOL_SIZE	32768
229 static struct	pvo_entry *moea_bpvo_pool;
230 static int	moea_bpvo_pool_index = 0;
231 
232 #define	VSID_NBPW	(sizeof(u_int32_t) * 8)
233 static u_int	moea_vsid_bitmap[NPMAPS / VSID_NBPW];
234 
235 static boolean_t moea_initialized = FALSE;
236 
237 /*
238  * Statistics.
239  */
240 u_int	moea_pte_valid = 0;
241 u_int	moea_pte_overflow = 0;
242 u_int	moea_pte_replacements = 0;
243 u_int	moea_pvo_entries = 0;
244 u_int	moea_pvo_enter_calls = 0;
245 u_int	moea_pvo_remove_calls = 0;
246 u_int	moea_pte_spills = 0;
247 SYSCTL_INT(_machdep, OID_AUTO, moea_pte_valid, CTLFLAG_RD, &moea_pte_valid,
248     0, "");
249 SYSCTL_INT(_machdep, OID_AUTO, moea_pte_overflow, CTLFLAG_RD,
250     &moea_pte_overflow, 0, "");
251 SYSCTL_INT(_machdep, OID_AUTO, moea_pte_replacements, CTLFLAG_RD,
252     &moea_pte_replacements, 0, "");
253 SYSCTL_INT(_machdep, OID_AUTO, moea_pvo_entries, CTLFLAG_RD, &moea_pvo_entries,
254     0, "");
255 SYSCTL_INT(_machdep, OID_AUTO, moea_pvo_enter_calls, CTLFLAG_RD,
256     &moea_pvo_enter_calls, 0, "");
257 SYSCTL_INT(_machdep, OID_AUTO, moea_pvo_remove_calls, CTLFLAG_RD,
258     &moea_pvo_remove_calls, 0, "");
259 SYSCTL_INT(_machdep, OID_AUTO, moea_pte_spills, CTLFLAG_RD,
260     &moea_pte_spills, 0, "");
261 
262 /*
263  * Allocate physical memory for use in moea_bootstrap.
264  */
265 static vm_offset_t	moea_bootstrap_alloc(vm_size_t, u_int);
266 
267 /*
268  * PTE calls.
269  */
270 static int		moea_pte_insert(u_int, struct pte *);
271 
272 /*
273  * PVO calls.
274  */
275 static int	moea_pvo_enter(pmap_t, uma_zone_t, struct pvo_head *,
276 		    vm_offset_t, vm_offset_t, u_int, int);
277 static void	moea_pvo_remove(struct pvo_entry *, int);
278 static struct	pvo_entry *moea_pvo_find_va(pmap_t, vm_offset_t, int *);
279 static struct	pte *moea_pvo_to_pte(const struct pvo_entry *, int);
280 
281 /*
282  * Utility routines.
283  */
284 static void		moea_enter_locked(pmap_t, vm_offset_t, vm_page_t,
285 			    vm_prot_t, boolean_t);
286 static void		moea_syncicache(vm_offset_t, vm_size_t);
287 static boolean_t	moea_query_bit(vm_page_t, int);
288 static u_int		moea_clear_bit(vm_page_t, int);
289 static void		moea_kremove(mmu_t, vm_offset_t);
290 int		moea_pte_spill(vm_offset_t);
291 
292 /*
293  * Kernel MMU interface
294  */
295 void moea_change_wiring(mmu_t, pmap_t, vm_offset_t, boolean_t);
296 void moea_clear_modify(mmu_t, vm_page_t);
297 void moea_clear_reference(mmu_t, vm_page_t);
298 void moea_copy_page(mmu_t, vm_page_t, vm_page_t);
299 void moea_enter(mmu_t, pmap_t, vm_offset_t, vm_page_t, vm_prot_t, boolean_t);
300 void moea_enter_object(mmu_t, pmap_t, vm_offset_t, vm_offset_t, vm_page_t,
301     vm_prot_t);
302 void moea_enter_quick(mmu_t, pmap_t, vm_offset_t, vm_page_t, vm_prot_t);
303 vm_paddr_t moea_extract(mmu_t, pmap_t, vm_offset_t);
304 vm_page_t moea_extract_and_hold(mmu_t, pmap_t, vm_offset_t, vm_prot_t);
305 void moea_init(mmu_t);
306 boolean_t moea_is_modified(mmu_t, vm_page_t);
307 boolean_t moea_is_prefaultable(mmu_t, pmap_t, vm_offset_t);
308 boolean_t moea_is_referenced(mmu_t, vm_page_t);
309 boolean_t moea_ts_referenced(mmu_t, vm_page_t);
310 vm_offset_t moea_map(mmu_t, vm_offset_t *, vm_offset_t, vm_offset_t, int);
311 boolean_t moea_page_exists_quick(mmu_t, pmap_t, vm_page_t);
312 int moea_page_wired_mappings(mmu_t, vm_page_t);
313 void moea_pinit(mmu_t, pmap_t);
314 void moea_pinit0(mmu_t, pmap_t);
315 void moea_protect(mmu_t, pmap_t, vm_offset_t, vm_offset_t, vm_prot_t);
316 void moea_qenter(mmu_t, vm_offset_t, vm_page_t *, int);
317 void moea_qremove(mmu_t, vm_offset_t, int);
318 void moea_release(mmu_t, pmap_t);
319 void moea_remove(mmu_t, pmap_t, vm_offset_t, vm_offset_t);
320 void moea_remove_all(mmu_t, vm_page_t);
321 void moea_remove_write(mmu_t, vm_page_t);
322 void moea_zero_page(mmu_t, vm_page_t);
323 void moea_zero_page_area(mmu_t, vm_page_t, int, int);
324 void moea_zero_page_idle(mmu_t, vm_page_t);
325 void moea_activate(mmu_t, struct thread *);
326 void moea_deactivate(mmu_t, struct thread *);
327 void moea_cpu_bootstrap(mmu_t, int);
328 void moea_bootstrap(mmu_t, vm_offset_t, vm_offset_t);
329 void *moea_mapdev(mmu_t, vm_offset_t, vm_size_t);
330 void *moea_mapdev_attr(mmu_t, vm_offset_t, vm_size_t, vm_memattr_t);
331 void moea_unmapdev(mmu_t, vm_offset_t, vm_size_t);
332 vm_offset_t moea_kextract(mmu_t, vm_offset_t);
333 void moea_kenter_attr(mmu_t, vm_offset_t, vm_offset_t, vm_memattr_t);
334 void moea_kenter(mmu_t, vm_offset_t, vm_offset_t);
335 void moea_page_set_memattr(mmu_t mmu, vm_page_t m, vm_memattr_t ma);
336 boolean_t moea_dev_direct_mapped(mmu_t, vm_offset_t, vm_size_t);
337 static void moea_sync_icache(mmu_t, pmap_t, vm_offset_t, vm_size_t);
338 
339 static mmu_method_t moea_methods[] = {
340 	MMUMETHOD(mmu_change_wiring,	moea_change_wiring),
341 	MMUMETHOD(mmu_clear_modify,	moea_clear_modify),
342 	MMUMETHOD(mmu_clear_reference,	moea_clear_reference),
343 	MMUMETHOD(mmu_copy_page,	moea_copy_page),
344 	MMUMETHOD(mmu_enter,		moea_enter),
345 	MMUMETHOD(mmu_enter_object,	moea_enter_object),
346 	MMUMETHOD(mmu_enter_quick,	moea_enter_quick),
347 	MMUMETHOD(mmu_extract,		moea_extract),
348 	MMUMETHOD(mmu_extract_and_hold,	moea_extract_and_hold),
349 	MMUMETHOD(mmu_init,		moea_init),
350 	MMUMETHOD(mmu_is_modified,	moea_is_modified),
351 	MMUMETHOD(mmu_is_prefaultable,	moea_is_prefaultable),
352 	MMUMETHOD(mmu_is_referenced,	moea_is_referenced),
353 	MMUMETHOD(mmu_ts_referenced,	moea_ts_referenced),
354 	MMUMETHOD(mmu_map,     		moea_map),
355 	MMUMETHOD(mmu_page_exists_quick,moea_page_exists_quick),
356 	MMUMETHOD(mmu_page_wired_mappings,moea_page_wired_mappings),
357 	MMUMETHOD(mmu_pinit,		moea_pinit),
358 	MMUMETHOD(mmu_pinit0,		moea_pinit0),
359 	MMUMETHOD(mmu_protect,		moea_protect),
360 	MMUMETHOD(mmu_qenter,		moea_qenter),
361 	MMUMETHOD(mmu_qremove,		moea_qremove),
362 	MMUMETHOD(mmu_release,		moea_release),
363 	MMUMETHOD(mmu_remove,		moea_remove),
364 	MMUMETHOD(mmu_remove_all,      	moea_remove_all),
365 	MMUMETHOD(mmu_remove_write,	moea_remove_write),
366 	MMUMETHOD(mmu_sync_icache,	moea_sync_icache),
367 	MMUMETHOD(mmu_zero_page,       	moea_zero_page),
368 	MMUMETHOD(mmu_zero_page_area,	moea_zero_page_area),
369 	MMUMETHOD(mmu_zero_page_idle,	moea_zero_page_idle),
370 	MMUMETHOD(mmu_activate,		moea_activate),
371 	MMUMETHOD(mmu_deactivate,      	moea_deactivate),
372 	MMUMETHOD(mmu_page_set_memattr,	moea_page_set_memattr),
373 
374 	/* Internal interfaces */
375 	MMUMETHOD(mmu_bootstrap,       	moea_bootstrap),
376 	MMUMETHOD(mmu_cpu_bootstrap,   	moea_cpu_bootstrap),
377 	MMUMETHOD(mmu_mapdev_attr,	moea_mapdev_attr),
378 	MMUMETHOD(mmu_mapdev,		moea_mapdev),
379 	MMUMETHOD(mmu_unmapdev,		moea_unmapdev),
380 	MMUMETHOD(mmu_kextract,		moea_kextract),
381 	MMUMETHOD(mmu_kenter,		moea_kenter),
382 	MMUMETHOD(mmu_kenter_attr,	moea_kenter_attr),
383 	MMUMETHOD(mmu_dev_direct_mapped,moea_dev_direct_mapped),
384 
385 	{ 0, 0 }
386 };
387 
388 MMU_DEF(oea_mmu, MMU_TYPE_OEA, moea_methods, 0);
389 
390 static __inline uint32_t
391 moea_calc_wimg(vm_offset_t pa, vm_memattr_t ma)
392 {
393 	uint32_t pte_lo;
394 	int i;
395 
396 	if (ma != VM_MEMATTR_DEFAULT) {
397 		switch (ma) {
398 		case VM_MEMATTR_UNCACHEABLE:
399 			return (PTE_I | PTE_G);
400 		case VM_MEMATTR_WRITE_COMBINING:
401 		case VM_MEMATTR_WRITE_BACK:
402 		case VM_MEMATTR_PREFETCHABLE:
403 			return (PTE_I);
404 		case VM_MEMATTR_WRITE_THROUGH:
405 			return (PTE_W | PTE_M);
406 		}
407 	}
408 
409 	/*
410 	 * Assume the page is cache inhibited and access is guarded unless
411 	 * it's in our available memory array.
412 	 */
413 	pte_lo = PTE_I | PTE_G;
414 	for (i = 0; i < pregions_sz; i++) {
415 		if ((pa >= pregions[i].mr_start) &&
416 		    (pa < (pregions[i].mr_start + pregions[i].mr_size))) {
417 			pte_lo = PTE_M;
418 			break;
419 		}
420 	}
421 
422 	return pte_lo;
423 }
424 
425 static void
426 tlbie(vm_offset_t va)
427 {
428 
429 	mtx_lock_spin(&tlbie_mtx);
430 	__asm __volatile("ptesync");
431 	__asm __volatile("tlbie %0" :: "r"(va));
432 	__asm __volatile("eieio; tlbsync; ptesync");
433 	mtx_unlock_spin(&tlbie_mtx);
434 }
435 
436 static void
437 tlbia(void)
438 {
439 	vm_offset_t va;
440 
441 	for (va = 0; va < 0x00040000; va += 0x00001000) {
442 		__asm __volatile("tlbie %0" :: "r"(va));
443 		powerpc_sync();
444 	}
445 	__asm __volatile("tlbsync");
446 	powerpc_sync();
447 }
448 
449 static __inline int
450 va_to_sr(u_int *sr, vm_offset_t va)
451 {
452 	return (sr[(uintptr_t)va >> ADDR_SR_SHFT]);
453 }
454 
455 static __inline u_int
456 va_to_pteg(u_int sr, vm_offset_t addr)
457 {
458 	u_int hash;
459 
460 	hash = (sr & SR_VSID_MASK) ^ (((u_int)addr & ADDR_PIDX) >>
461 	    ADDR_PIDX_SHFT);
462 	return (hash & moea_pteg_mask);
463 }
464 
465 static __inline struct pvo_head *
466 vm_page_to_pvoh(vm_page_t m)
467 {
468 
469 	return (&m->md.mdpg_pvoh);
470 }
471 
472 static __inline void
473 moea_attr_clear(vm_page_t m, int ptebit)
474 {
475 
476 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
477 	m->md.mdpg_attrs &= ~ptebit;
478 }
479 
480 static __inline int
481 moea_attr_fetch(vm_page_t m)
482 {
483 
484 	return (m->md.mdpg_attrs);
485 }
486 
487 static __inline void
488 moea_attr_save(vm_page_t m, int ptebit)
489 {
490 
491 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
492 	m->md.mdpg_attrs |= ptebit;
493 }
494 
495 static __inline int
496 moea_pte_compare(const struct pte *pt, const struct pte *pvo_pt)
497 {
498 	if (pt->pte_hi == pvo_pt->pte_hi)
499 		return (1);
500 
501 	return (0);
502 }
503 
504 static __inline int
505 moea_pte_match(struct pte *pt, u_int sr, vm_offset_t va, int which)
506 {
507 	return (pt->pte_hi & ~PTE_VALID) ==
508 	    (((sr & SR_VSID_MASK) << PTE_VSID_SHFT) |
509 	    ((va >> ADDR_API_SHFT) & PTE_API) | which);
510 }
511 
512 static __inline void
513 moea_pte_create(struct pte *pt, u_int sr, vm_offset_t va, u_int pte_lo)
514 {
515 
516 	mtx_assert(&moea_table_mutex, MA_OWNED);
517 
518 	/*
519 	 * Construct a PTE.  Default to IMB initially.  Valid bit only gets
520 	 * set when the real pte is set in memory.
521 	 *
522 	 * Note: Don't set the valid bit for correct operation of tlb update.
523 	 */
524 	pt->pte_hi = ((sr & SR_VSID_MASK) << PTE_VSID_SHFT) |
525 	    (((va & ADDR_PIDX) >> ADDR_API_SHFT) & PTE_API);
526 	pt->pte_lo = pte_lo;
527 }
528 
529 static __inline void
530 moea_pte_synch(struct pte *pt, struct pte *pvo_pt)
531 {
532 
533 	mtx_assert(&moea_table_mutex, MA_OWNED);
534 	pvo_pt->pte_lo |= pt->pte_lo & (PTE_REF | PTE_CHG);
535 }
536 
537 static __inline void
538 moea_pte_clear(struct pte *pt, vm_offset_t va, int ptebit)
539 {
540 
541 	mtx_assert(&moea_table_mutex, MA_OWNED);
542 
543 	/*
544 	 * As shown in Section 7.6.3.2.3
545 	 */
546 	pt->pte_lo &= ~ptebit;
547 	tlbie(va);
548 }
549 
550 static __inline void
551 moea_pte_set(struct pte *pt, struct pte *pvo_pt)
552 {
553 
554 	mtx_assert(&moea_table_mutex, MA_OWNED);
555 	pvo_pt->pte_hi |= PTE_VALID;
556 
557 	/*
558 	 * Update the PTE as defined in section 7.6.3.1.
559 	 * Note that the REF/CHG bits are from pvo_pt and thus should havce
560 	 * been saved so this routine can restore them (if desired).
561 	 */
562 	pt->pte_lo = pvo_pt->pte_lo;
563 	powerpc_sync();
564 	pt->pte_hi = pvo_pt->pte_hi;
565 	powerpc_sync();
566 	moea_pte_valid++;
567 }
568 
569 static __inline void
570 moea_pte_unset(struct pte *pt, struct pte *pvo_pt, vm_offset_t va)
571 {
572 
573 	mtx_assert(&moea_table_mutex, MA_OWNED);
574 	pvo_pt->pte_hi &= ~PTE_VALID;
575 
576 	/*
577 	 * Force the reg & chg bits back into the PTEs.
578 	 */
579 	powerpc_sync();
580 
581 	/*
582 	 * Invalidate the pte.
583 	 */
584 	pt->pte_hi &= ~PTE_VALID;
585 
586 	tlbie(va);
587 
588 	/*
589 	 * Save the reg & chg bits.
590 	 */
591 	moea_pte_synch(pt, pvo_pt);
592 	moea_pte_valid--;
593 }
594 
595 static __inline void
596 moea_pte_change(struct pte *pt, struct pte *pvo_pt, vm_offset_t va)
597 {
598 
599 	/*
600 	 * Invalidate the PTE
601 	 */
602 	moea_pte_unset(pt, pvo_pt, va);
603 	moea_pte_set(pt, pvo_pt);
604 }
605 
606 /*
607  * Quick sort callout for comparing memory regions.
608  */
609 static int	mr_cmp(const void *a, const void *b);
610 static int	om_cmp(const void *a, const void *b);
611 
612 static int
613 mr_cmp(const void *a, const void *b)
614 {
615 	const struct	mem_region *regiona;
616 	const struct	mem_region *regionb;
617 
618 	regiona = a;
619 	regionb = b;
620 	if (regiona->mr_start < regionb->mr_start)
621 		return (-1);
622 	else if (regiona->mr_start > regionb->mr_start)
623 		return (1);
624 	else
625 		return (0);
626 }
627 
628 static int
629 om_cmp(const void *a, const void *b)
630 {
631 	const struct	ofw_map *mapa;
632 	const struct	ofw_map *mapb;
633 
634 	mapa = a;
635 	mapb = b;
636 	if (mapa->om_pa < mapb->om_pa)
637 		return (-1);
638 	else if (mapa->om_pa > mapb->om_pa)
639 		return (1);
640 	else
641 		return (0);
642 }
643 
644 void
645 moea_cpu_bootstrap(mmu_t mmup, int ap)
646 {
647 	u_int sdr;
648 	int i;
649 
650 	if (ap) {
651 		powerpc_sync();
652 		__asm __volatile("mtdbatu 0,%0" :: "r"(battable[0].batu));
653 		__asm __volatile("mtdbatl 0,%0" :: "r"(battable[0].batl));
654 		isync();
655 		__asm __volatile("mtibatu 0,%0" :: "r"(battable[0].batu));
656 		__asm __volatile("mtibatl 0,%0" :: "r"(battable[0].batl));
657 		isync();
658 	}
659 
660 	__asm __volatile("mtdbatu 1,%0" :: "r"(battable[8].batu));
661 	__asm __volatile("mtdbatl 1,%0" :: "r"(battable[8].batl));
662 	isync();
663 
664 	__asm __volatile("mtibatu 1,%0" :: "r"(0));
665 	__asm __volatile("mtdbatu 2,%0" :: "r"(0));
666 	__asm __volatile("mtibatu 2,%0" :: "r"(0));
667 	__asm __volatile("mtdbatu 3,%0" :: "r"(0));
668 	__asm __volatile("mtibatu 3,%0" :: "r"(0));
669 	isync();
670 
671 	for (i = 0; i < 16; i++)
672 		mtsrin(i << ADDR_SR_SHFT, EMPTY_SEGMENT);
673 
674 	__asm __volatile("mtsr %0,%1" :: "n"(KERNEL_SR), "r"(KERNEL_SEGMENT));
675 	__asm __volatile("mtsr %0,%1" :: "n"(KERNEL2_SR), "r"(KERNEL2_SEGMENT));
676 	powerpc_sync();
677 
678 	sdr = (u_int)moea_pteg_table | (moea_pteg_mask >> 10);
679 	__asm __volatile("mtsdr1 %0" :: "r"(sdr));
680 	isync();
681 
682 	tlbia();
683 }
684 
685 void
686 moea_bootstrap(mmu_t mmup, vm_offset_t kernelstart, vm_offset_t kernelend)
687 {
688 	ihandle_t	mmui;
689 	phandle_t	chosen, mmu;
690 	int		sz;
691 	int		i, j;
692 	int		ofw_mappings;
693 	vm_size_t	size, physsz, hwphyssz;
694 	vm_offset_t	pa, va, off;
695 	void		*dpcpu;
696 	register_t	msr;
697 
698         /*
699          * Set up BAT0 to map the lowest 256 MB area
700          */
701         battable[0x0].batl = BATL(0x00000000, BAT_M, BAT_PP_RW);
702         battable[0x0].batu = BATU(0x00000000, BAT_BL_256M, BAT_Vs);
703 
704         /*
705          * Map PCI memory space.
706          */
707         battable[0x8].batl = BATL(0x80000000, BAT_I|BAT_G, BAT_PP_RW);
708         battable[0x8].batu = BATU(0x80000000, BAT_BL_256M, BAT_Vs);
709 
710         battable[0x9].batl = BATL(0x90000000, BAT_I|BAT_G, BAT_PP_RW);
711         battable[0x9].batu = BATU(0x90000000, BAT_BL_256M, BAT_Vs);
712 
713         battable[0xa].batl = BATL(0xa0000000, BAT_I|BAT_G, BAT_PP_RW);
714         battable[0xa].batu = BATU(0xa0000000, BAT_BL_256M, BAT_Vs);
715 
716         battable[0xb].batl = BATL(0xb0000000, BAT_I|BAT_G, BAT_PP_RW);
717         battable[0xb].batu = BATU(0xb0000000, BAT_BL_256M, BAT_Vs);
718 
719         /*
720          * Map obio devices.
721          */
722         battable[0xf].batl = BATL(0xf0000000, BAT_I|BAT_G, BAT_PP_RW);
723         battable[0xf].batu = BATU(0xf0000000, BAT_BL_256M, BAT_Vs);
724 
725 	/*
726 	 * Use an IBAT and a DBAT to map the bottom segment of memory
727 	 * where we are. Turn off instruction relocation temporarily
728 	 * to prevent faults while reprogramming the IBAT.
729 	 */
730 	msr = mfmsr();
731 	mtmsr(msr & ~PSL_IR);
732 	__asm (".balign 32; \n"
733 	       "mtibatu 0,%0; mtibatl 0,%1; isync; \n"
734 	       "mtdbatu 0,%0; mtdbatl 0,%1; isync"
735 	    :: "r"(battable[0].batu), "r"(battable[0].batl));
736 	mtmsr(msr);
737 
738 	/* map pci space */
739 	__asm __volatile("mtdbatu 1,%0" :: "r"(battable[8].batu));
740 	__asm __volatile("mtdbatl 1,%0" :: "r"(battable[8].batl));
741 	isync();
742 
743 	/* set global direct map flag */
744 	hw_direct_map = 1;
745 
746 	mem_regions(&pregions, &pregions_sz, &regions, &regions_sz);
747 	CTR0(KTR_PMAP, "moea_bootstrap: physical memory");
748 
749 	qsort(pregions, pregions_sz, sizeof(*pregions), mr_cmp);
750 	for (i = 0; i < pregions_sz; i++) {
751 		vm_offset_t pa;
752 		vm_offset_t end;
753 
754 		CTR3(KTR_PMAP, "physregion: %#x - %#x (%#x)",
755 			pregions[i].mr_start,
756 			pregions[i].mr_start + pregions[i].mr_size,
757 			pregions[i].mr_size);
758 		/*
759 		 * Install entries into the BAT table to allow all
760 		 * of physmem to be convered by on-demand BAT entries.
761 		 * The loop will sometimes set the same battable element
762 		 * twice, but that's fine since they won't be used for
763 		 * a while yet.
764 		 */
765 		pa = pregions[i].mr_start & 0xf0000000;
766 		end = pregions[i].mr_start + pregions[i].mr_size;
767 		do {
768                         u_int n = pa >> ADDR_SR_SHFT;
769 
770 			battable[n].batl = BATL(pa, BAT_M, BAT_PP_RW);
771 			battable[n].batu = BATU(pa, BAT_BL_256M, BAT_Vs);
772 			pa += SEGMENT_LENGTH;
773 		} while (pa < end);
774 	}
775 
776 	if (sizeof(phys_avail)/sizeof(phys_avail[0]) < regions_sz)
777 		panic("moea_bootstrap: phys_avail too small");
778 	qsort(regions, regions_sz, sizeof(*regions), mr_cmp);
779 	phys_avail_count = 0;
780 	physsz = 0;
781 	hwphyssz = 0;
782 	TUNABLE_ULONG_FETCH("hw.physmem", (u_long *) &hwphyssz);
783 	for (i = 0, j = 0; i < regions_sz; i++, j += 2) {
784 		CTR3(KTR_PMAP, "region: %#x - %#x (%#x)", regions[i].mr_start,
785 		    regions[i].mr_start + regions[i].mr_size,
786 		    regions[i].mr_size);
787 		if (hwphyssz != 0 &&
788 		    (physsz + regions[i].mr_size) >= hwphyssz) {
789 			if (physsz < hwphyssz) {
790 				phys_avail[j] = regions[i].mr_start;
791 				phys_avail[j + 1] = regions[i].mr_start +
792 				    hwphyssz - physsz;
793 				physsz = hwphyssz;
794 				phys_avail_count++;
795 			}
796 			break;
797 		}
798 		phys_avail[j] = regions[i].mr_start;
799 		phys_avail[j + 1] = regions[i].mr_start + regions[i].mr_size;
800 		phys_avail_count++;
801 		physsz += regions[i].mr_size;
802 	}
803 	physmem = btoc(physsz);
804 
805 	/*
806 	 * Allocate PTEG table.
807 	 */
808 #ifdef PTEGCOUNT
809 	moea_pteg_count = PTEGCOUNT;
810 #else
811 	moea_pteg_count = 0x1000;
812 
813 	while (moea_pteg_count < physmem)
814 		moea_pteg_count <<= 1;
815 
816 	moea_pteg_count >>= 1;
817 #endif /* PTEGCOUNT */
818 
819 	size = moea_pteg_count * sizeof(struct pteg);
820 	CTR2(KTR_PMAP, "moea_bootstrap: %d PTEGs, %d bytes", moea_pteg_count,
821 	    size);
822 	moea_pteg_table = (struct pteg *)moea_bootstrap_alloc(size, size);
823 	CTR1(KTR_PMAP, "moea_bootstrap: PTEG table at %p", moea_pteg_table);
824 	bzero((void *)moea_pteg_table, moea_pteg_count * sizeof(struct pteg));
825 	moea_pteg_mask = moea_pteg_count - 1;
826 
827 	/*
828 	 * Allocate pv/overflow lists.
829 	 */
830 	size = sizeof(struct pvo_head) * moea_pteg_count;
831 	moea_pvo_table = (struct pvo_head *)moea_bootstrap_alloc(size,
832 	    PAGE_SIZE);
833 	CTR1(KTR_PMAP, "moea_bootstrap: PVO table at %p", moea_pvo_table);
834 	for (i = 0; i < moea_pteg_count; i++)
835 		LIST_INIT(&moea_pvo_table[i]);
836 
837 	/*
838 	 * Initialize the lock that synchronizes access to the pteg and pvo
839 	 * tables.
840 	 */
841 	mtx_init(&moea_table_mutex, "pmap table", NULL, MTX_DEF |
842 	    MTX_RECURSE);
843 	mtx_init(&moea_vsid_mutex, "VSID table", NULL, MTX_DEF);
844 
845 	mtx_init(&tlbie_mtx, "tlbie", NULL, MTX_SPIN);
846 
847 	/*
848 	 * Initialise the unmanaged pvo pool.
849 	 */
850 	moea_bpvo_pool = (struct pvo_entry *)moea_bootstrap_alloc(
851 		BPVO_POOL_SIZE*sizeof(struct pvo_entry), 0);
852 	moea_bpvo_pool_index = 0;
853 
854 	/*
855 	 * Make sure kernel vsid is allocated as well as VSID 0.
856 	 */
857 	moea_vsid_bitmap[(KERNEL_VSIDBITS & (NPMAPS - 1)) / VSID_NBPW]
858 		|= 1 << (KERNEL_VSIDBITS % VSID_NBPW);
859 	moea_vsid_bitmap[0] |= 1;
860 
861 	/*
862 	 * Set up the Open Firmware pmap and add it's mappings.
863 	 */
864 	moea_pinit(mmup, &ofw_pmap);
865 	ofw_pmap.pm_sr[KERNEL_SR] = KERNEL_SEGMENT;
866 	ofw_pmap.pm_sr[KERNEL2_SR] = KERNEL2_SEGMENT;
867 	if ((chosen = OF_finddevice("/chosen")) == -1)
868 		panic("moea_bootstrap: can't find /chosen");
869 	OF_getprop(chosen, "mmu", &mmui, 4);
870 	if ((mmu = OF_instance_to_package(mmui)) == -1)
871 		panic("moea_bootstrap: can't get mmu package");
872 	if ((sz = OF_getproplen(mmu, "translations")) == -1)
873 		panic("moea_bootstrap: can't get ofw translation count");
874 	translations = NULL;
875 	for (i = 0; phys_avail[i] != 0; i += 2) {
876 		if (phys_avail[i + 1] >= sz) {
877 			translations = (struct ofw_map *)phys_avail[i];
878 			break;
879 		}
880 	}
881 	if (translations == NULL)
882 		panic("moea_bootstrap: no space to copy translations");
883 	bzero(translations, sz);
884 	if (OF_getprop(mmu, "translations", translations, sz) == -1)
885 		panic("moea_bootstrap: can't get ofw translations");
886 	CTR0(KTR_PMAP, "moea_bootstrap: translations");
887 	sz /= sizeof(*translations);
888 	qsort(translations, sz, sizeof (*translations), om_cmp);
889 	for (i = 0, ofw_mappings = 0; i < sz; i++) {
890 		CTR3(KTR_PMAP, "translation: pa=%#x va=%#x len=%#x",
891 		    translations[i].om_pa, translations[i].om_va,
892 		    translations[i].om_len);
893 
894 		/*
895 		 * If the mapping is 1:1, let the RAM and device on-demand
896 		 * BAT tables take care of the translation.
897 		 */
898 		if (translations[i].om_va == translations[i].om_pa)
899 			continue;
900 
901 		/* Enter the pages */
902 		for (off = 0; off < translations[i].om_len; off += PAGE_SIZE) {
903 			struct	vm_page m;
904 
905 			m.phys_addr = translations[i].om_pa + off;
906 			m.md.mdpg_cache_attrs = VM_MEMATTR_DEFAULT;
907 			m.oflags = VPO_BUSY;
908 			PMAP_LOCK(&ofw_pmap);
909 			moea_enter_locked(&ofw_pmap,
910 				   translations[i].om_va + off, &m,
911 				   VM_PROT_ALL, 1);
912 			PMAP_UNLOCK(&ofw_pmap);
913 			ofw_mappings++;
914 		}
915 	}
916 
917 	/*
918 	 * Calculate the last available physical address.
919 	 */
920 	for (i = 0; phys_avail[i + 2] != 0; i += 2)
921 		;
922 	Maxmem = powerpc_btop(phys_avail[i + 1]);
923 
924 	/*
925 	 * Initialize the kernel pmap (which is statically allocated).
926 	 */
927 	PMAP_LOCK_INIT(kernel_pmap);
928 	for (i = 0; i < 16; i++) {
929 		kernel_pmap->pm_sr[i] = EMPTY_SEGMENT;
930 	}
931 	kernel_pmap->pm_sr[KERNEL_SR] = KERNEL_SEGMENT;
932 	kernel_pmap->pm_sr[KERNEL2_SR] = KERNEL2_SEGMENT;
933 	kernel_pmap->pm_active = ~0;
934 
935 	moea_cpu_bootstrap(mmup,0);
936 
937 	pmap_bootstrapped++;
938 
939 	/*
940 	 * Set the start and end of kva.
941 	 */
942 	virtual_avail = VM_MIN_KERNEL_ADDRESS;
943 	virtual_end = VM_MAX_SAFE_KERNEL_ADDRESS;
944 
945 	/*
946 	 * Allocate a kernel stack with a guard page for thread0 and map it
947 	 * into the kernel page map.
948 	 */
949 	pa = moea_bootstrap_alloc(KSTACK_PAGES * PAGE_SIZE, PAGE_SIZE);
950 	va = virtual_avail + KSTACK_GUARD_PAGES * PAGE_SIZE;
951 	virtual_avail = va + KSTACK_PAGES * PAGE_SIZE;
952 	CTR2(KTR_PMAP, "moea_bootstrap: kstack0 at %#x (%#x)", pa, va);
953 	thread0.td_kstack = va;
954 	thread0.td_kstack_pages = KSTACK_PAGES;
955 	for (i = 0; i < KSTACK_PAGES; i++) {
956 		moea_kenter(mmup, va, pa);
957 		pa += PAGE_SIZE;
958 		va += PAGE_SIZE;
959 	}
960 
961 	/*
962 	 * Allocate virtual address space for the message buffer.
963 	 */
964 	pa = msgbuf_phys = moea_bootstrap_alloc(MSGBUF_SIZE, PAGE_SIZE);
965 	msgbufp = (struct msgbuf *)virtual_avail;
966 	va = virtual_avail;
967 	virtual_avail += round_page(MSGBUF_SIZE);
968 	while (va < virtual_avail) {
969 		moea_kenter(mmup, va, pa);
970 		pa += PAGE_SIZE;
971 		va += PAGE_SIZE;
972 	}
973 
974 	/*
975 	 * Allocate virtual address space for the dynamic percpu area.
976 	 */
977 	pa = moea_bootstrap_alloc(DPCPU_SIZE, PAGE_SIZE);
978 	dpcpu = (void *)virtual_avail;
979 	va = virtual_avail;
980 	virtual_avail += DPCPU_SIZE;
981 	while (va < virtual_avail) {
982 		moea_kenter(mmup, va, pa);
983 		pa += PAGE_SIZE;
984 		va += PAGE_SIZE;
985 	}
986 	dpcpu_init(dpcpu, 0);
987 }
988 
989 /*
990  * Activate a user pmap.  The pmap must be activated before it's address
991  * space can be accessed in any way.
992  */
993 void
994 moea_activate(mmu_t mmu, struct thread *td)
995 {
996 	pmap_t	pm, pmr;
997 
998 	/*
999 	 * Load all the data we need up front to encourage the compiler to
1000 	 * not issue any loads while we have interrupts disabled below.
1001 	 */
1002 	pm = &td->td_proc->p_vmspace->vm_pmap;
1003 	pmr = pm->pmap_phys;
1004 
1005 	pm->pm_active |= PCPU_GET(cpumask);
1006 	PCPU_SET(curpmap, pmr);
1007 }
1008 
1009 void
1010 moea_deactivate(mmu_t mmu, struct thread *td)
1011 {
1012 	pmap_t	pm;
1013 
1014 	pm = &td->td_proc->p_vmspace->vm_pmap;
1015 	pm->pm_active &= ~PCPU_GET(cpumask);
1016 	PCPU_SET(curpmap, NULL);
1017 }
1018 
1019 void
1020 moea_change_wiring(mmu_t mmu, pmap_t pm, vm_offset_t va, boolean_t wired)
1021 {
1022 	struct	pvo_entry *pvo;
1023 
1024 	PMAP_LOCK(pm);
1025 	pvo = moea_pvo_find_va(pm, va & ~ADDR_POFF, NULL);
1026 
1027 	if (pvo != NULL) {
1028 		if (wired) {
1029 			if ((pvo->pvo_vaddr & PVO_WIRED) == 0)
1030 				pm->pm_stats.wired_count++;
1031 			pvo->pvo_vaddr |= PVO_WIRED;
1032 		} else {
1033 			if ((pvo->pvo_vaddr & PVO_WIRED) != 0)
1034 				pm->pm_stats.wired_count--;
1035 			pvo->pvo_vaddr &= ~PVO_WIRED;
1036 		}
1037 	}
1038 	PMAP_UNLOCK(pm);
1039 }
1040 
1041 void
1042 moea_copy_page(mmu_t mmu, vm_page_t msrc, vm_page_t mdst)
1043 {
1044 	vm_offset_t	dst;
1045 	vm_offset_t	src;
1046 
1047 	dst = VM_PAGE_TO_PHYS(mdst);
1048 	src = VM_PAGE_TO_PHYS(msrc);
1049 
1050 	kcopy((void *)src, (void *)dst, PAGE_SIZE);
1051 }
1052 
1053 /*
1054  * Zero a page of physical memory by temporarily mapping it into the tlb.
1055  */
1056 void
1057 moea_zero_page(mmu_t mmu, vm_page_t m)
1058 {
1059 	vm_offset_t pa = VM_PAGE_TO_PHYS(m);
1060 	void *va = (void *)pa;
1061 
1062 	bzero(va, PAGE_SIZE);
1063 }
1064 
1065 void
1066 moea_zero_page_area(mmu_t mmu, vm_page_t m, int off, int size)
1067 {
1068 	vm_offset_t pa = VM_PAGE_TO_PHYS(m);
1069 	void *va = (void *)(pa + off);
1070 
1071 	bzero(va, size);
1072 }
1073 
1074 void
1075 moea_zero_page_idle(mmu_t mmu, vm_page_t m)
1076 {
1077 	vm_offset_t pa = VM_PAGE_TO_PHYS(m);
1078 	void *va = (void *)pa;
1079 
1080 	bzero(va, PAGE_SIZE);
1081 }
1082 
1083 /*
1084  * Map the given physical page at the specified virtual address in the
1085  * target pmap with the protection requested.  If specified the page
1086  * will be wired down.
1087  */
1088 void
1089 moea_enter(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
1090 	   boolean_t wired)
1091 {
1092 
1093 	vm_page_lock_queues();
1094 	PMAP_LOCK(pmap);
1095 	moea_enter_locked(pmap, va, m, prot, wired);
1096 	vm_page_unlock_queues();
1097 	PMAP_UNLOCK(pmap);
1098 }
1099 
1100 /*
1101  * Map the given physical page at the specified virtual address in the
1102  * target pmap with the protection requested.  If specified the page
1103  * will be wired down.
1104  *
1105  * The page queues and pmap must be locked.
1106  */
1107 static void
1108 moea_enter_locked(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
1109     boolean_t wired)
1110 {
1111 	struct		pvo_head *pvo_head;
1112 	uma_zone_t	zone;
1113 	vm_page_t	pg;
1114 	u_int		pte_lo, pvo_flags, was_exec;
1115 	int		error;
1116 
1117 	if (!moea_initialized) {
1118 		pvo_head = &moea_pvo_kunmanaged;
1119 		zone = moea_upvo_zone;
1120 		pvo_flags = 0;
1121 		pg = NULL;
1122 		was_exec = PTE_EXEC;
1123 	} else {
1124 		pvo_head = vm_page_to_pvoh(m);
1125 		pg = m;
1126 		zone = moea_mpvo_zone;
1127 		pvo_flags = PVO_MANAGED;
1128 		was_exec = 0;
1129 	}
1130 	if (pmap_bootstrapped)
1131 		mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1132 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1133 	KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) != 0 ||
1134 	    (m->oflags & VPO_BUSY) != 0 || VM_OBJECT_LOCKED(m->object),
1135 	    ("moea_enter_locked: page %p is not busy", m));
1136 
1137 	/* XXX change the pvo head for fake pages */
1138 	if ((m->flags & PG_FICTITIOUS) == PG_FICTITIOUS) {
1139 		pvo_flags &= ~PVO_MANAGED;
1140 		pvo_head = &moea_pvo_kunmanaged;
1141 		zone = moea_upvo_zone;
1142 	}
1143 
1144 	/*
1145 	 * If this is a managed page, and it's the first reference to the page,
1146 	 * clear the execness of the page.  Otherwise fetch the execness.
1147 	 */
1148 	if ((pg != NULL) && ((m->flags & PG_FICTITIOUS) == 0)) {
1149 		if (LIST_EMPTY(pvo_head)) {
1150 			moea_attr_clear(pg, PTE_EXEC);
1151 		} else {
1152 			was_exec = moea_attr_fetch(pg) & PTE_EXEC;
1153 		}
1154 	}
1155 
1156 	pte_lo = moea_calc_wimg(VM_PAGE_TO_PHYS(m), pmap_page_get_memattr(m));
1157 
1158 	if (prot & VM_PROT_WRITE) {
1159 		pte_lo |= PTE_BW;
1160 		if (pmap_bootstrapped &&
1161 		    (m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0)
1162 			vm_page_flag_set(m, PG_WRITEABLE);
1163 	} else
1164 		pte_lo |= PTE_BR;
1165 
1166 	if (prot & VM_PROT_EXECUTE)
1167 		pvo_flags |= PVO_EXECUTABLE;
1168 
1169 	if (wired)
1170 		pvo_flags |= PVO_WIRED;
1171 
1172 	if ((m->flags & PG_FICTITIOUS) != 0)
1173 		pvo_flags |= PVO_FAKE;
1174 
1175 	error = moea_pvo_enter(pmap, zone, pvo_head, va, VM_PAGE_TO_PHYS(m),
1176 	    pte_lo, pvo_flags);
1177 
1178 	/*
1179 	 * Flush the real page from the instruction cache if this page is
1180 	 * mapped executable and cacheable and was not previously mapped (or
1181 	 * was not mapped executable).
1182 	 */
1183 	if (error == 0 && (pvo_flags & PVO_EXECUTABLE) &&
1184 	    (pte_lo & PTE_I) == 0 && was_exec == 0) {
1185 		/*
1186 		 * Flush the real memory from the cache.
1187 		 */
1188 		moea_syncicache(VM_PAGE_TO_PHYS(m), PAGE_SIZE);
1189 		if (pg != NULL)
1190 			moea_attr_save(pg, PTE_EXEC);
1191 	}
1192 
1193 	/* XXX syncicache always until problems are sorted */
1194 	moea_syncicache(VM_PAGE_TO_PHYS(m), PAGE_SIZE);
1195 }
1196 
1197 /*
1198  * Maps a sequence of resident pages belonging to the same object.
1199  * The sequence begins with the given page m_start.  This page is
1200  * mapped at the given virtual address start.  Each subsequent page is
1201  * mapped at a virtual address that is offset from start by the same
1202  * amount as the page is offset from m_start within the object.  The
1203  * last page in the sequence is the page with the largest offset from
1204  * m_start that can be mapped at a virtual address less than the given
1205  * virtual address end.  Not every virtual page between start and end
1206  * is mapped; only those for which a resident page exists with the
1207  * corresponding offset from m_start are mapped.
1208  */
1209 void
1210 moea_enter_object(mmu_t mmu, pmap_t pm, vm_offset_t start, vm_offset_t end,
1211     vm_page_t m_start, vm_prot_t prot)
1212 {
1213 	vm_page_t m;
1214 	vm_pindex_t diff, psize;
1215 
1216 	psize = atop(end - start);
1217 	m = m_start;
1218 	vm_page_lock_queues();
1219 	PMAP_LOCK(pm);
1220 	while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
1221 		moea_enter_locked(pm, start + ptoa(diff), m, prot &
1222 		    (VM_PROT_READ | VM_PROT_EXECUTE), FALSE);
1223 		m = TAILQ_NEXT(m, listq);
1224 	}
1225 	vm_page_unlock_queues();
1226 	PMAP_UNLOCK(pm);
1227 }
1228 
1229 void
1230 moea_enter_quick(mmu_t mmu, pmap_t pm, vm_offset_t va, vm_page_t m,
1231     vm_prot_t prot)
1232 {
1233 
1234 	vm_page_lock_queues();
1235 	PMAP_LOCK(pm);
1236 	moea_enter_locked(pm, va, m, prot & (VM_PROT_READ | VM_PROT_EXECUTE),
1237 	    FALSE);
1238 	vm_page_unlock_queues();
1239 	PMAP_UNLOCK(pm);
1240 }
1241 
1242 vm_paddr_t
1243 moea_extract(mmu_t mmu, pmap_t pm, vm_offset_t va)
1244 {
1245 	struct	pvo_entry *pvo;
1246 	vm_paddr_t pa;
1247 
1248 	PMAP_LOCK(pm);
1249 	pvo = moea_pvo_find_va(pm, va & ~ADDR_POFF, NULL);
1250 	if (pvo == NULL)
1251 		pa = 0;
1252 	else
1253 		pa = (pvo->pvo_pte.pte.pte_lo & PTE_RPGN) | (va & ADDR_POFF);
1254 	PMAP_UNLOCK(pm);
1255 	return (pa);
1256 }
1257 
1258 /*
1259  * Atomically extract and hold the physical page with the given
1260  * pmap and virtual address pair if that mapping permits the given
1261  * protection.
1262  */
1263 vm_page_t
1264 moea_extract_and_hold(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_prot_t prot)
1265 {
1266 	struct	pvo_entry *pvo;
1267 	vm_page_t m;
1268         vm_paddr_t pa;
1269 
1270 	m = NULL;
1271 	pa = 0;
1272 	PMAP_LOCK(pmap);
1273 retry:
1274 	pvo = moea_pvo_find_va(pmap, va & ~ADDR_POFF, NULL);
1275 	if (pvo != NULL && (pvo->pvo_pte.pte.pte_hi & PTE_VALID) &&
1276 	    ((pvo->pvo_pte.pte.pte_lo & PTE_PP) == PTE_RW ||
1277 	     (prot & VM_PROT_WRITE) == 0)) {
1278 		if (vm_page_pa_tryrelock(pmap, pvo->pvo_pte.pte.pte_lo & PTE_RPGN, &pa))
1279 			goto retry;
1280 		m = PHYS_TO_VM_PAGE(pvo->pvo_pte.pte.pte_lo & PTE_RPGN);
1281 		vm_page_hold(m);
1282 	}
1283 	PA_UNLOCK_COND(pa);
1284 	PMAP_UNLOCK(pmap);
1285 	return (m);
1286 }
1287 
1288 void
1289 moea_init(mmu_t mmu)
1290 {
1291 
1292 	moea_upvo_zone = uma_zcreate("UPVO entry", sizeof (struct pvo_entry),
1293 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
1294 	    UMA_ZONE_VM | UMA_ZONE_NOFREE);
1295 	moea_mpvo_zone = uma_zcreate("MPVO entry", sizeof(struct pvo_entry),
1296 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
1297 	    UMA_ZONE_VM | UMA_ZONE_NOFREE);
1298 	moea_initialized = TRUE;
1299 }
1300 
1301 boolean_t
1302 moea_is_referenced(mmu_t mmu, vm_page_t m)
1303 {
1304 
1305 	KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0,
1306 	    ("moea_is_referenced: page %p is not managed", m));
1307 	return (moea_query_bit(m, PTE_REF));
1308 }
1309 
1310 boolean_t
1311 moea_is_modified(mmu_t mmu, vm_page_t m)
1312 {
1313 
1314 	KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0,
1315 	    ("moea_is_modified: page %p is not managed", m));
1316 
1317 	/*
1318 	 * If the page is not VPO_BUSY, then PG_WRITEABLE cannot be
1319 	 * concurrently set while the object is locked.  Thus, if PG_WRITEABLE
1320 	 * is clear, no PTEs can have PTE_CHG set.
1321 	 */
1322 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1323 	if ((m->oflags & VPO_BUSY) == 0 &&
1324 	    (m->flags & PG_WRITEABLE) == 0)
1325 		return (FALSE);
1326 	return (moea_query_bit(m, PTE_CHG));
1327 }
1328 
1329 boolean_t
1330 moea_is_prefaultable(mmu_t mmu, pmap_t pmap, vm_offset_t va)
1331 {
1332 	struct pvo_entry *pvo;
1333 	boolean_t rv;
1334 
1335 	PMAP_LOCK(pmap);
1336 	pvo = moea_pvo_find_va(pmap, va & ~ADDR_POFF, NULL);
1337 	rv = pvo == NULL || (pvo->pvo_pte.pte.pte_hi & PTE_VALID) == 0;
1338 	PMAP_UNLOCK(pmap);
1339 	return (rv);
1340 }
1341 
1342 void
1343 moea_clear_reference(mmu_t mmu, vm_page_t m)
1344 {
1345 
1346 	KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0,
1347 	    ("moea_clear_reference: page %p is not managed", m));
1348 	moea_clear_bit(m, PTE_REF);
1349 }
1350 
1351 void
1352 moea_clear_modify(mmu_t mmu, vm_page_t m)
1353 {
1354 
1355 	KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0,
1356 	    ("moea_clear_modify: page %p is not managed", m));
1357 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1358 	KASSERT((m->oflags & VPO_BUSY) == 0,
1359 	    ("moea_clear_modify: page %p is busy", m));
1360 
1361 	/*
1362 	 * If the page is not PG_WRITEABLE, then no PTEs can have PTE_CHG
1363 	 * set.  If the object containing the page is locked and the page is
1364 	 * not VPO_BUSY, then PG_WRITEABLE cannot be concurrently set.
1365 	 */
1366 	if ((m->flags & PG_WRITEABLE) == 0)
1367 		return;
1368 	moea_clear_bit(m, PTE_CHG);
1369 }
1370 
1371 /*
1372  * Clear the write and modified bits in each of the given page's mappings.
1373  */
1374 void
1375 moea_remove_write(mmu_t mmu, vm_page_t m)
1376 {
1377 	struct	pvo_entry *pvo;
1378 	struct	pte *pt;
1379 	pmap_t	pmap;
1380 	u_int	lo;
1381 
1382 	KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0,
1383 	    ("moea_remove_write: page %p is not managed", m));
1384 
1385 	/*
1386 	 * If the page is not VPO_BUSY, then PG_WRITEABLE cannot be set by
1387 	 * another thread while the object is locked.  Thus, if PG_WRITEABLE
1388 	 * is clear, no page table entries need updating.
1389 	 */
1390 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1391 	if ((m->oflags & VPO_BUSY) == 0 &&
1392 	    (m->flags & PG_WRITEABLE) == 0)
1393 		return;
1394 	vm_page_lock_queues();
1395 	lo = moea_attr_fetch(m);
1396 	powerpc_sync();
1397 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
1398 		pmap = pvo->pvo_pmap;
1399 		PMAP_LOCK(pmap);
1400 		if ((pvo->pvo_pte.pte.pte_lo & PTE_PP) != PTE_BR) {
1401 			pt = moea_pvo_to_pte(pvo, -1);
1402 			pvo->pvo_pte.pte.pte_lo &= ~PTE_PP;
1403 			pvo->pvo_pte.pte.pte_lo |= PTE_BR;
1404 			if (pt != NULL) {
1405 				moea_pte_synch(pt, &pvo->pvo_pte.pte);
1406 				lo |= pvo->pvo_pte.pte.pte_lo;
1407 				pvo->pvo_pte.pte.pte_lo &= ~PTE_CHG;
1408 				moea_pte_change(pt, &pvo->pvo_pte.pte,
1409 				    pvo->pvo_vaddr);
1410 				mtx_unlock(&moea_table_mutex);
1411 			}
1412 		}
1413 		PMAP_UNLOCK(pmap);
1414 	}
1415 	if ((lo & PTE_CHG) != 0) {
1416 		moea_attr_clear(m, PTE_CHG);
1417 		vm_page_dirty(m);
1418 	}
1419 	vm_page_flag_clear(m, PG_WRITEABLE);
1420 	vm_page_unlock_queues();
1421 }
1422 
1423 /*
1424  *	moea_ts_referenced:
1425  *
1426  *	Return a count of reference bits for a page, clearing those bits.
1427  *	It is not necessary for every reference bit to be cleared, but it
1428  *	is necessary that 0 only be returned when there are truly no
1429  *	reference bits set.
1430  *
1431  *	XXX: The exact number of bits to check and clear is a matter that
1432  *	should be tested and standardized at some point in the future for
1433  *	optimal aging of shared pages.
1434  */
1435 boolean_t
1436 moea_ts_referenced(mmu_t mmu, vm_page_t m)
1437 {
1438 
1439 	KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0,
1440 	    ("moea_ts_referenced: page %p is not managed", m));
1441 	return (moea_clear_bit(m, PTE_REF));
1442 }
1443 
1444 /*
1445  * Modify the WIMG settings of all mappings for a page.
1446  */
1447 void
1448 moea_page_set_memattr(mmu_t mmu, vm_page_t m, vm_memattr_t ma)
1449 {
1450 	struct	pvo_entry *pvo;
1451 	struct	pvo_head *pvo_head;
1452 	struct	pte *pt;
1453 	pmap_t	pmap;
1454 	u_int	lo;
1455 
1456 	if (m->flags & PG_FICTITIOUS) {
1457 		m->md.mdpg_cache_attrs = ma;
1458 		return;
1459 	}
1460 
1461 	vm_page_lock_queues();
1462 	pvo_head = vm_page_to_pvoh(m);
1463 	lo = moea_calc_wimg(VM_PAGE_TO_PHYS(m), ma);
1464 
1465 	LIST_FOREACH(pvo, pvo_head, pvo_vlink) {
1466 		pmap = pvo->pvo_pmap;
1467 		PMAP_LOCK(pmap);
1468 		pt = moea_pvo_to_pte(pvo, -1);
1469 		pvo->pvo_pte.pte.pte_lo &= ~PTE_WIMG;
1470 		pvo->pvo_pte.pte.pte_lo |= lo;
1471 		if (pt != NULL) {
1472 			moea_pte_change(pt, &pvo->pvo_pte.pte,
1473 			    pvo->pvo_vaddr);
1474 			if (pvo->pvo_pmap == kernel_pmap)
1475 				isync();
1476 		}
1477 		mtx_unlock(&moea_table_mutex);
1478 		PMAP_UNLOCK(pmap);
1479 	}
1480 	m->md.mdpg_cache_attrs = ma;
1481 	vm_page_unlock_queues();
1482 }
1483 
1484 /*
1485  * Map a wired page into kernel virtual address space.
1486  */
1487 void
1488 moea_kenter(mmu_t mmu, vm_offset_t va, vm_offset_t pa)
1489 {
1490 
1491 	moea_kenter_attr(mmu, va, pa, VM_MEMATTR_DEFAULT);
1492 }
1493 
1494 void
1495 moea_kenter_attr(mmu_t mmu, vm_offset_t va, vm_offset_t pa, vm_memattr_t ma)
1496 {
1497 	u_int		pte_lo;
1498 	int		error;
1499 
1500 #if 0
1501 	if (va < VM_MIN_KERNEL_ADDRESS)
1502 		panic("moea_kenter: attempt to enter non-kernel address %#x",
1503 		    va);
1504 #endif
1505 
1506 	pte_lo = moea_calc_wimg(pa, ma);
1507 
1508 	PMAP_LOCK(kernel_pmap);
1509 	error = moea_pvo_enter(kernel_pmap, moea_upvo_zone,
1510 	    &moea_pvo_kunmanaged, va, pa, pte_lo, PVO_WIRED);
1511 
1512 	if (error != 0 && error != ENOENT)
1513 		panic("moea_kenter: failed to enter va %#x pa %#x: %d", va,
1514 		    pa, error);
1515 
1516 	/*
1517 	 * Flush the real memory from the instruction cache.
1518 	 */
1519 	if ((pte_lo & (PTE_I | PTE_G)) == 0) {
1520 		moea_syncicache(pa, PAGE_SIZE);
1521 	}
1522 	PMAP_UNLOCK(kernel_pmap);
1523 }
1524 
1525 /*
1526  * Extract the physical page address associated with the given kernel virtual
1527  * address.
1528  */
1529 vm_offset_t
1530 moea_kextract(mmu_t mmu, vm_offset_t va)
1531 {
1532 	struct		pvo_entry *pvo;
1533 	vm_paddr_t pa;
1534 
1535 	/*
1536 	 * Allow direct mappings on 32-bit OEA
1537 	 */
1538 	if (va < VM_MIN_KERNEL_ADDRESS) {
1539 		return (va);
1540 	}
1541 
1542 	PMAP_LOCK(kernel_pmap);
1543 	pvo = moea_pvo_find_va(kernel_pmap, va & ~ADDR_POFF, NULL);
1544 	KASSERT(pvo != NULL, ("moea_kextract: no addr found"));
1545 	pa = (pvo->pvo_pte.pte.pte_lo & PTE_RPGN) | (va & ADDR_POFF);
1546 	PMAP_UNLOCK(kernel_pmap);
1547 	return (pa);
1548 }
1549 
1550 /*
1551  * Remove a wired page from kernel virtual address space.
1552  */
1553 void
1554 moea_kremove(mmu_t mmu, vm_offset_t va)
1555 {
1556 
1557 	moea_remove(mmu, kernel_pmap, va, va + PAGE_SIZE);
1558 }
1559 
1560 /*
1561  * Map a range of physical addresses into kernel virtual address space.
1562  *
1563  * The value passed in *virt is a suggested virtual address for the mapping.
1564  * Architectures which can support a direct-mapped physical to virtual region
1565  * can return the appropriate address within that region, leaving '*virt'
1566  * unchanged.  We cannot and therefore do not; *virt is updated with the
1567  * first usable address after the mapped region.
1568  */
1569 vm_offset_t
1570 moea_map(mmu_t mmu, vm_offset_t *virt, vm_offset_t pa_start,
1571     vm_offset_t pa_end, int prot)
1572 {
1573 	vm_offset_t	sva, va;
1574 
1575 	sva = *virt;
1576 	va = sva;
1577 	for (; pa_start < pa_end; pa_start += PAGE_SIZE, va += PAGE_SIZE)
1578 		moea_kenter(mmu, va, pa_start);
1579 	*virt = va;
1580 	return (sva);
1581 }
1582 
1583 /*
1584  * Returns true if the pmap's pv is one of the first
1585  * 16 pvs linked to from this page.  This count may
1586  * be changed upwards or downwards in the future; it
1587  * is only necessary that true be returned for a small
1588  * subset of pmaps for proper page aging.
1589  */
1590 boolean_t
1591 moea_page_exists_quick(mmu_t mmu, pmap_t pmap, vm_page_t m)
1592 {
1593         int loops;
1594 	struct pvo_entry *pvo;
1595 	boolean_t rv;
1596 
1597 	KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0,
1598 	    ("moea_page_exists_quick: page %p is not managed", m));
1599 	loops = 0;
1600 	rv = FALSE;
1601 	vm_page_lock_queues();
1602 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
1603 		if (pvo->pvo_pmap == pmap) {
1604 			rv = TRUE;
1605 			break;
1606 		}
1607 		if (++loops >= 16)
1608 			break;
1609 	}
1610 	vm_page_unlock_queues();
1611 	return (rv);
1612 }
1613 
1614 /*
1615  * Return the number of managed mappings to the given physical page
1616  * that are wired.
1617  */
1618 int
1619 moea_page_wired_mappings(mmu_t mmu, vm_page_t m)
1620 {
1621 	struct pvo_entry *pvo;
1622 	int count;
1623 
1624 	count = 0;
1625 	if ((m->flags & PG_FICTITIOUS) != 0)
1626 		return (count);
1627 	vm_page_lock_queues();
1628 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink)
1629 		if ((pvo->pvo_vaddr & PVO_WIRED) != 0)
1630 			count++;
1631 	vm_page_unlock_queues();
1632 	return (count);
1633 }
1634 
1635 static u_int	moea_vsidcontext;
1636 
1637 void
1638 moea_pinit(mmu_t mmu, pmap_t pmap)
1639 {
1640 	int	i, mask;
1641 	u_int	entropy;
1642 
1643 	KASSERT((int)pmap < VM_MIN_KERNEL_ADDRESS, ("moea_pinit: virt pmap"));
1644 	PMAP_LOCK_INIT(pmap);
1645 
1646 	entropy = 0;
1647 	__asm __volatile("mftb %0" : "=r"(entropy));
1648 
1649 	if ((pmap->pmap_phys = (pmap_t)moea_kextract(mmu, (vm_offset_t)pmap))
1650 	    == NULL) {
1651 		pmap->pmap_phys = pmap;
1652 	}
1653 
1654 
1655 	mtx_lock(&moea_vsid_mutex);
1656 	/*
1657 	 * Allocate some segment registers for this pmap.
1658 	 */
1659 	for (i = 0; i < NPMAPS; i += VSID_NBPW) {
1660 		u_int	hash, n;
1661 
1662 		/*
1663 		 * Create a new value by mutiplying by a prime and adding in
1664 		 * entropy from the timebase register.  This is to make the
1665 		 * VSID more random so that the PT hash function collides
1666 		 * less often.  (Note that the prime casues gcc to do shifts
1667 		 * instead of a multiply.)
1668 		 */
1669 		moea_vsidcontext = (moea_vsidcontext * 0x1105) + entropy;
1670 		hash = moea_vsidcontext & (NPMAPS - 1);
1671 		if (hash == 0)		/* 0 is special, avoid it */
1672 			continue;
1673 		n = hash >> 5;
1674 		mask = 1 << (hash & (VSID_NBPW - 1));
1675 		hash = (moea_vsidcontext & 0xfffff);
1676 		if (moea_vsid_bitmap[n] & mask) {	/* collision? */
1677 			/* anything free in this bucket? */
1678 			if (moea_vsid_bitmap[n] == 0xffffffff) {
1679 				entropy = (moea_vsidcontext >> 20);
1680 				continue;
1681 			}
1682 			i = ffs(~moea_vsid_bitmap[n]) - 1;
1683 			mask = 1 << i;
1684 			hash &= 0xfffff & ~(VSID_NBPW - 1);
1685 			hash |= i;
1686 		}
1687 		moea_vsid_bitmap[n] |= mask;
1688 		for (i = 0; i < 16; i++)
1689 			pmap->pm_sr[i] = VSID_MAKE(i, hash);
1690 		mtx_unlock(&moea_vsid_mutex);
1691 		return;
1692 	}
1693 
1694 	mtx_unlock(&moea_vsid_mutex);
1695 	panic("moea_pinit: out of segments");
1696 }
1697 
1698 /*
1699  * Initialize the pmap associated with process 0.
1700  */
1701 void
1702 moea_pinit0(mmu_t mmu, pmap_t pm)
1703 {
1704 
1705 	moea_pinit(mmu, pm);
1706 	bzero(&pm->pm_stats, sizeof(pm->pm_stats));
1707 }
1708 
1709 /*
1710  * Set the physical protection on the specified range of this map as requested.
1711  */
1712 void
1713 moea_protect(mmu_t mmu, pmap_t pm, vm_offset_t sva, vm_offset_t eva,
1714     vm_prot_t prot)
1715 {
1716 	struct	pvo_entry *pvo;
1717 	struct	pte *pt;
1718 	int	pteidx;
1719 
1720 	KASSERT(pm == &curproc->p_vmspace->vm_pmap || pm == kernel_pmap,
1721 	    ("moea_protect: non current pmap"));
1722 
1723 	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
1724 		moea_remove(mmu, pm, sva, eva);
1725 		return;
1726 	}
1727 
1728 	vm_page_lock_queues();
1729 	PMAP_LOCK(pm);
1730 	for (; sva < eva; sva += PAGE_SIZE) {
1731 		pvo = moea_pvo_find_va(pm, sva, &pteidx);
1732 		if (pvo == NULL)
1733 			continue;
1734 
1735 		if ((prot & VM_PROT_EXECUTE) == 0)
1736 			pvo->pvo_vaddr &= ~PVO_EXECUTABLE;
1737 
1738 		/*
1739 		 * Grab the PTE pointer before we diddle with the cached PTE
1740 		 * copy.
1741 		 */
1742 		pt = moea_pvo_to_pte(pvo, pteidx);
1743 		/*
1744 		 * Change the protection of the page.
1745 		 */
1746 		pvo->pvo_pte.pte.pte_lo &= ~PTE_PP;
1747 		pvo->pvo_pte.pte.pte_lo |= PTE_BR;
1748 
1749 		/*
1750 		 * If the PVO is in the page table, update that pte as well.
1751 		 */
1752 		if (pt != NULL) {
1753 			moea_pte_change(pt, &pvo->pvo_pte.pte, pvo->pvo_vaddr);
1754 			mtx_unlock(&moea_table_mutex);
1755 		}
1756 	}
1757 	vm_page_unlock_queues();
1758 	PMAP_UNLOCK(pm);
1759 }
1760 
1761 /*
1762  * Map a list of wired pages into kernel virtual address space.  This is
1763  * intended for temporary mappings which do not need page modification or
1764  * references recorded.  Existing mappings in the region are overwritten.
1765  */
1766 void
1767 moea_qenter(mmu_t mmu, vm_offset_t sva, vm_page_t *m, int count)
1768 {
1769 	vm_offset_t va;
1770 
1771 	va = sva;
1772 	while (count-- > 0) {
1773 		moea_kenter(mmu, va, VM_PAGE_TO_PHYS(*m));
1774 		va += PAGE_SIZE;
1775 		m++;
1776 	}
1777 }
1778 
1779 /*
1780  * Remove page mappings from kernel virtual address space.  Intended for
1781  * temporary mappings entered by moea_qenter.
1782  */
1783 void
1784 moea_qremove(mmu_t mmu, vm_offset_t sva, int count)
1785 {
1786 	vm_offset_t va;
1787 
1788 	va = sva;
1789 	while (count-- > 0) {
1790 		moea_kremove(mmu, va);
1791 		va += PAGE_SIZE;
1792 	}
1793 }
1794 
1795 void
1796 moea_release(mmu_t mmu, pmap_t pmap)
1797 {
1798         int idx, mask;
1799 
1800 	/*
1801 	 * Free segment register's VSID
1802 	 */
1803         if (pmap->pm_sr[0] == 0)
1804                 panic("moea_release");
1805 
1806 	mtx_lock(&moea_vsid_mutex);
1807         idx = VSID_TO_HASH(pmap->pm_sr[0]) & (NPMAPS-1);
1808         mask = 1 << (idx % VSID_NBPW);
1809         idx /= VSID_NBPW;
1810         moea_vsid_bitmap[idx] &= ~mask;
1811 	mtx_unlock(&moea_vsid_mutex);
1812 	PMAP_LOCK_DESTROY(pmap);
1813 }
1814 
1815 /*
1816  * Remove the given range of addresses from the specified map.
1817  */
1818 void
1819 moea_remove(mmu_t mmu, pmap_t pm, vm_offset_t sva, vm_offset_t eva)
1820 {
1821 	struct	pvo_entry *pvo;
1822 	int	pteidx;
1823 
1824 	vm_page_lock_queues();
1825 	PMAP_LOCK(pm);
1826 	for (; sva < eva; sva += PAGE_SIZE) {
1827 		pvo = moea_pvo_find_va(pm, sva, &pteidx);
1828 		if (pvo != NULL) {
1829 			moea_pvo_remove(pvo, pteidx);
1830 		}
1831 	}
1832 	PMAP_UNLOCK(pm);
1833 	vm_page_unlock_queues();
1834 }
1835 
1836 /*
1837  * Remove physical page from all pmaps in which it resides. moea_pvo_remove()
1838  * will reflect changes in pte's back to the vm_page.
1839  */
1840 void
1841 moea_remove_all(mmu_t mmu, vm_page_t m)
1842 {
1843 	struct  pvo_head *pvo_head;
1844 	struct	pvo_entry *pvo, *next_pvo;
1845 	pmap_t	pmap;
1846 
1847 	vm_page_lock_queues();
1848 	pvo_head = vm_page_to_pvoh(m);
1849 	for (pvo = LIST_FIRST(pvo_head); pvo != NULL; pvo = next_pvo) {
1850 		next_pvo = LIST_NEXT(pvo, pvo_vlink);
1851 
1852 		MOEA_PVO_CHECK(pvo);	/* sanity check */
1853 		pmap = pvo->pvo_pmap;
1854 		PMAP_LOCK(pmap);
1855 		moea_pvo_remove(pvo, -1);
1856 		PMAP_UNLOCK(pmap);
1857 	}
1858 	if ((m->flags & PG_WRITEABLE) && moea_is_modified(mmu, m)) {
1859 		moea_attr_clear(m, PTE_CHG);
1860 		vm_page_dirty(m);
1861 	}
1862 	vm_page_flag_clear(m, PG_WRITEABLE);
1863 	vm_page_unlock_queues();
1864 }
1865 
1866 /*
1867  * Allocate a physical page of memory directly from the phys_avail map.
1868  * Can only be called from moea_bootstrap before avail start and end are
1869  * calculated.
1870  */
1871 static vm_offset_t
1872 moea_bootstrap_alloc(vm_size_t size, u_int align)
1873 {
1874 	vm_offset_t	s, e;
1875 	int		i, j;
1876 
1877 	size = round_page(size);
1878 	for (i = 0; phys_avail[i + 1] != 0; i += 2) {
1879 		if (align != 0)
1880 			s = (phys_avail[i] + align - 1) & ~(align - 1);
1881 		else
1882 			s = phys_avail[i];
1883 		e = s + size;
1884 
1885 		if (s < phys_avail[i] || e > phys_avail[i + 1])
1886 			continue;
1887 
1888 		if (s == phys_avail[i]) {
1889 			phys_avail[i] += size;
1890 		} else if (e == phys_avail[i + 1]) {
1891 			phys_avail[i + 1] -= size;
1892 		} else {
1893 			for (j = phys_avail_count * 2; j > i; j -= 2) {
1894 				phys_avail[j] = phys_avail[j - 2];
1895 				phys_avail[j + 1] = phys_avail[j - 1];
1896 			}
1897 
1898 			phys_avail[i + 3] = phys_avail[i + 1];
1899 			phys_avail[i + 1] = s;
1900 			phys_avail[i + 2] = e;
1901 			phys_avail_count++;
1902 		}
1903 
1904 		return (s);
1905 	}
1906 	panic("moea_bootstrap_alloc: could not allocate memory");
1907 }
1908 
1909 static void
1910 moea_syncicache(vm_offset_t pa, vm_size_t len)
1911 {
1912 	__syncicache((void *)pa, len);
1913 }
1914 
1915 static int
1916 moea_pvo_enter(pmap_t pm, uma_zone_t zone, struct pvo_head *pvo_head,
1917     vm_offset_t va, vm_offset_t pa, u_int pte_lo, int flags)
1918 {
1919 	struct	pvo_entry *pvo;
1920 	u_int	sr;
1921 	int	first;
1922 	u_int	ptegidx;
1923 	int	i;
1924 	int     bootstrap;
1925 
1926 	moea_pvo_enter_calls++;
1927 	first = 0;
1928 	bootstrap = 0;
1929 
1930 	/*
1931 	 * Compute the PTE Group index.
1932 	 */
1933 	va &= ~ADDR_POFF;
1934 	sr = va_to_sr(pm->pm_sr, va);
1935 	ptegidx = va_to_pteg(sr, va);
1936 
1937 	/*
1938 	 * Remove any existing mapping for this page.  Reuse the pvo entry if
1939 	 * there is a mapping.
1940 	 */
1941 	mtx_lock(&moea_table_mutex);
1942 	LIST_FOREACH(pvo, &moea_pvo_table[ptegidx], pvo_olink) {
1943 		if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
1944 			if ((pvo->pvo_pte.pte.pte_lo & PTE_RPGN) == pa &&
1945 			    (pvo->pvo_pte.pte.pte_lo & PTE_PP) ==
1946 			    (pte_lo & PTE_PP)) {
1947 				mtx_unlock(&moea_table_mutex);
1948 				return (0);
1949 			}
1950 			moea_pvo_remove(pvo, -1);
1951 			break;
1952 		}
1953 	}
1954 
1955 	/*
1956 	 * If we aren't overwriting a mapping, try to allocate.
1957 	 */
1958 	if (moea_initialized) {
1959 		pvo = uma_zalloc(zone, M_NOWAIT);
1960 	} else {
1961 		if (moea_bpvo_pool_index >= BPVO_POOL_SIZE) {
1962 			panic("moea_enter: bpvo pool exhausted, %d, %d, %d",
1963 			      moea_bpvo_pool_index, BPVO_POOL_SIZE,
1964 			      BPVO_POOL_SIZE * sizeof(struct pvo_entry));
1965 		}
1966 		pvo = &moea_bpvo_pool[moea_bpvo_pool_index];
1967 		moea_bpvo_pool_index++;
1968 		bootstrap = 1;
1969 	}
1970 
1971 	if (pvo == NULL) {
1972 		mtx_unlock(&moea_table_mutex);
1973 		return (ENOMEM);
1974 	}
1975 
1976 	moea_pvo_entries++;
1977 	pvo->pvo_vaddr = va;
1978 	pvo->pvo_pmap = pm;
1979 	LIST_INSERT_HEAD(&moea_pvo_table[ptegidx], pvo, pvo_olink);
1980 	pvo->pvo_vaddr &= ~ADDR_POFF;
1981 	if (flags & VM_PROT_EXECUTE)
1982 		pvo->pvo_vaddr |= PVO_EXECUTABLE;
1983 	if (flags & PVO_WIRED)
1984 		pvo->pvo_vaddr |= PVO_WIRED;
1985 	if (pvo_head != &moea_pvo_kunmanaged)
1986 		pvo->pvo_vaddr |= PVO_MANAGED;
1987 	if (bootstrap)
1988 		pvo->pvo_vaddr |= PVO_BOOTSTRAP;
1989 	if (flags & PVO_FAKE)
1990 		pvo->pvo_vaddr |= PVO_FAKE;
1991 
1992 	moea_pte_create(&pvo->pvo_pte.pte, sr, va, pa | pte_lo);
1993 
1994 	/*
1995 	 * Remember if the list was empty and therefore will be the first
1996 	 * item.
1997 	 */
1998 	if (LIST_FIRST(pvo_head) == NULL)
1999 		first = 1;
2000 	LIST_INSERT_HEAD(pvo_head, pvo, pvo_vlink);
2001 
2002 	if (pvo->pvo_pte.pte.pte_lo & PVO_WIRED)
2003 		pm->pm_stats.wired_count++;
2004 	pm->pm_stats.resident_count++;
2005 
2006 	/*
2007 	 * We hope this succeeds but it isn't required.
2008 	 */
2009 	i = moea_pte_insert(ptegidx, &pvo->pvo_pte.pte);
2010 	if (i >= 0) {
2011 		PVO_PTEGIDX_SET(pvo, i);
2012 	} else {
2013 		panic("moea_pvo_enter: overflow");
2014 		moea_pte_overflow++;
2015 	}
2016 	mtx_unlock(&moea_table_mutex);
2017 
2018 	return (first ? ENOENT : 0);
2019 }
2020 
2021 static void
2022 moea_pvo_remove(struct pvo_entry *pvo, int pteidx)
2023 {
2024 	struct	pte *pt;
2025 
2026 	/*
2027 	 * If there is an active pte entry, we need to deactivate it (and
2028 	 * save the ref & cfg bits).
2029 	 */
2030 	pt = moea_pvo_to_pte(pvo, pteidx);
2031 	if (pt != NULL) {
2032 		moea_pte_unset(pt, &pvo->pvo_pte.pte, pvo->pvo_vaddr);
2033 		mtx_unlock(&moea_table_mutex);
2034 		PVO_PTEGIDX_CLR(pvo);
2035 	} else {
2036 		moea_pte_overflow--;
2037 	}
2038 
2039 	/*
2040 	 * Update our statistics.
2041 	 */
2042 	pvo->pvo_pmap->pm_stats.resident_count--;
2043 	if (pvo->pvo_pte.pte.pte_lo & PVO_WIRED)
2044 		pvo->pvo_pmap->pm_stats.wired_count--;
2045 
2046 	/*
2047 	 * Save the REF/CHG bits into their cache if the page is managed.
2048 	 */
2049 	if ((pvo->pvo_vaddr & (PVO_MANAGED|PVO_FAKE)) == PVO_MANAGED) {
2050 		struct	vm_page *pg;
2051 
2052 		pg = PHYS_TO_VM_PAGE(pvo->pvo_pte.pte.pte_lo & PTE_RPGN);
2053 		if (pg != NULL) {
2054 			moea_attr_save(pg, pvo->pvo_pte.pte.pte_lo &
2055 			    (PTE_REF | PTE_CHG));
2056 		}
2057 	}
2058 
2059 	/*
2060 	 * Remove this PVO from the PV list.
2061 	 */
2062 	LIST_REMOVE(pvo, pvo_vlink);
2063 
2064 	/*
2065 	 * Remove this from the overflow list and return it to the pool
2066 	 * if we aren't going to reuse it.
2067 	 */
2068 	LIST_REMOVE(pvo, pvo_olink);
2069 	if (!(pvo->pvo_vaddr & PVO_BOOTSTRAP))
2070 		uma_zfree(pvo->pvo_vaddr & PVO_MANAGED ? moea_mpvo_zone :
2071 		    moea_upvo_zone, pvo);
2072 	moea_pvo_entries--;
2073 	moea_pvo_remove_calls++;
2074 }
2075 
2076 static __inline int
2077 moea_pvo_pte_index(const struct pvo_entry *pvo, int ptegidx)
2078 {
2079 	int	pteidx;
2080 
2081 	/*
2082 	 * We can find the actual pte entry without searching by grabbing
2083 	 * the PTEG index from 3 unused bits in pte_lo[11:9] and by
2084 	 * noticing the HID bit.
2085 	 */
2086 	pteidx = ptegidx * 8 + PVO_PTEGIDX_GET(pvo);
2087 	if (pvo->pvo_pte.pte.pte_hi & PTE_HID)
2088 		pteidx ^= moea_pteg_mask * 8;
2089 
2090 	return (pteidx);
2091 }
2092 
2093 static struct pvo_entry *
2094 moea_pvo_find_va(pmap_t pm, vm_offset_t va, int *pteidx_p)
2095 {
2096 	struct	pvo_entry *pvo;
2097 	int	ptegidx;
2098 	u_int	sr;
2099 
2100 	va &= ~ADDR_POFF;
2101 	sr = va_to_sr(pm->pm_sr, va);
2102 	ptegidx = va_to_pteg(sr, va);
2103 
2104 	mtx_lock(&moea_table_mutex);
2105 	LIST_FOREACH(pvo, &moea_pvo_table[ptegidx], pvo_olink) {
2106 		if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
2107 			if (pteidx_p)
2108 				*pteidx_p = moea_pvo_pte_index(pvo, ptegidx);
2109 			break;
2110 		}
2111 	}
2112 	mtx_unlock(&moea_table_mutex);
2113 
2114 	return (pvo);
2115 }
2116 
2117 static struct pte *
2118 moea_pvo_to_pte(const struct pvo_entry *pvo, int pteidx)
2119 {
2120 	struct	pte *pt;
2121 
2122 	/*
2123 	 * If we haven't been supplied the ptegidx, calculate it.
2124 	 */
2125 	if (pteidx == -1) {
2126 		int	ptegidx;
2127 		u_int	sr;
2128 
2129 		sr = va_to_sr(pvo->pvo_pmap->pm_sr, pvo->pvo_vaddr);
2130 		ptegidx = va_to_pteg(sr, pvo->pvo_vaddr);
2131 		pteidx = moea_pvo_pte_index(pvo, ptegidx);
2132 	}
2133 
2134 	pt = &moea_pteg_table[pteidx >> 3].pt[pteidx & 7];
2135 	mtx_lock(&moea_table_mutex);
2136 
2137 	if ((pvo->pvo_pte.pte.pte_hi & PTE_VALID) && !PVO_PTEGIDX_ISSET(pvo)) {
2138 		panic("moea_pvo_to_pte: pvo %p has valid pte in pvo but no "
2139 		    "valid pte index", pvo);
2140 	}
2141 
2142 	if ((pvo->pvo_pte.pte.pte_hi & PTE_VALID) == 0 && PVO_PTEGIDX_ISSET(pvo)) {
2143 		panic("moea_pvo_to_pte: pvo %p has valid pte index in pvo "
2144 		    "pvo but no valid pte", pvo);
2145 	}
2146 
2147 	if ((pt->pte_hi ^ (pvo->pvo_pte.pte.pte_hi & ~PTE_VALID)) == PTE_VALID) {
2148 		if ((pvo->pvo_pte.pte.pte_hi & PTE_VALID) == 0) {
2149 			panic("moea_pvo_to_pte: pvo %p has valid pte in "
2150 			    "moea_pteg_table %p but invalid in pvo", pvo, pt);
2151 		}
2152 
2153 		if (((pt->pte_lo ^ pvo->pvo_pte.pte.pte_lo) & ~(PTE_CHG|PTE_REF))
2154 		    != 0) {
2155 			panic("moea_pvo_to_pte: pvo %p pte does not match "
2156 			    "pte %p in moea_pteg_table", pvo, pt);
2157 		}
2158 
2159 		mtx_assert(&moea_table_mutex, MA_OWNED);
2160 		return (pt);
2161 	}
2162 
2163 	if (pvo->pvo_pte.pte.pte_hi & PTE_VALID) {
2164 		panic("moea_pvo_to_pte: pvo %p has invalid pte %p in "
2165 		    "moea_pteg_table but valid in pvo", pvo, pt);
2166 	}
2167 
2168 	mtx_unlock(&moea_table_mutex);
2169 	return (NULL);
2170 }
2171 
2172 /*
2173  * XXX: THIS STUFF SHOULD BE IN pte.c?
2174  */
2175 int
2176 moea_pte_spill(vm_offset_t addr)
2177 {
2178 	struct	pvo_entry *source_pvo, *victim_pvo;
2179 	struct	pvo_entry *pvo;
2180 	int	ptegidx, i, j;
2181 	u_int	sr;
2182 	struct	pteg *pteg;
2183 	struct	pte *pt;
2184 
2185 	moea_pte_spills++;
2186 
2187 	sr = mfsrin(addr);
2188 	ptegidx = va_to_pteg(sr, addr);
2189 
2190 	/*
2191 	 * Have to substitute some entry.  Use the primary hash for this.
2192 	 * Use low bits of timebase as random generator.
2193 	 */
2194 	pteg = &moea_pteg_table[ptegidx];
2195 	mtx_lock(&moea_table_mutex);
2196 	__asm __volatile("mftb %0" : "=r"(i));
2197 	i &= 7;
2198 	pt = &pteg->pt[i];
2199 
2200 	source_pvo = NULL;
2201 	victim_pvo = NULL;
2202 	LIST_FOREACH(pvo, &moea_pvo_table[ptegidx], pvo_olink) {
2203 		/*
2204 		 * We need to find a pvo entry for this address.
2205 		 */
2206 		MOEA_PVO_CHECK(pvo);
2207 		if (source_pvo == NULL &&
2208 		    moea_pte_match(&pvo->pvo_pte.pte, sr, addr,
2209 		    pvo->pvo_pte.pte.pte_hi & PTE_HID)) {
2210 			/*
2211 			 * Now found an entry to be spilled into the pteg.
2212 			 * The PTE is now valid, so we know it's active.
2213 			 */
2214 			j = moea_pte_insert(ptegidx, &pvo->pvo_pte.pte);
2215 
2216 			if (j >= 0) {
2217 				PVO_PTEGIDX_SET(pvo, j);
2218 				moea_pte_overflow--;
2219 				MOEA_PVO_CHECK(pvo);
2220 				mtx_unlock(&moea_table_mutex);
2221 				return (1);
2222 			}
2223 
2224 			source_pvo = pvo;
2225 
2226 			if (victim_pvo != NULL)
2227 				break;
2228 		}
2229 
2230 		/*
2231 		 * We also need the pvo entry of the victim we are replacing
2232 		 * so save the R & C bits of the PTE.
2233 		 */
2234 		if ((pt->pte_hi & PTE_HID) == 0 && victim_pvo == NULL &&
2235 		    moea_pte_compare(pt, &pvo->pvo_pte.pte)) {
2236 			victim_pvo = pvo;
2237 			if (source_pvo != NULL)
2238 				break;
2239 		}
2240 	}
2241 
2242 	if (source_pvo == NULL) {
2243 		mtx_unlock(&moea_table_mutex);
2244 		return (0);
2245 	}
2246 
2247 	if (victim_pvo == NULL) {
2248 		if ((pt->pte_hi & PTE_HID) == 0)
2249 			panic("moea_pte_spill: victim p-pte (%p) has no pvo"
2250 			    "entry", pt);
2251 
2252 		/*
2253 		 * If this is a secondary PTE, we need to search it's primary
2254 		 * pvo bucket for the matching PVO.
2255 		 */
2256 		LIST_FOREACH(pvo, &moea_pvo_table[ptegidx ^ moea_pteg_mask],
2257 		    pvo_olink) {
2258 			MOEA_PVO_CHECK(pvo);
2259 			/*
2260 			 * We also need the pvo entry of the victim we are
2261 			 * replacing so save the R & C bits of the PTE.
2262 			 */
2263 			if (moea_pte_compare(pt, &pvo->pvo_pte.pte)) {
2264 				victim_pvo = pvo;
2265 				break;
2266 			}
2267 		}
2268 
2269 		if (victim_pvo == NULL)
2270 			panic("moea_pte_spill: victim s-pte (%p) has no pvo"
2271 			    "entry", pt);
2272 	}
2273 
2274 	/*
2275 	 * We are invalidating the TLB entry for the EA we are replacing even
2276 	 * though it's valid.  If we don't, we lose any ref/chg bit changes
2277 	 * contained in the TLB entry.
2278 	 */
2279 	source_pvo->pvo_pte.pte.pte_hi &= ~PTE_HID;
2280 
2281 	moea_pte_unset(pt, &victim_pvo->pvo_pte.pte, victim_pvo->pvo_vaddr);
2282 	moea_pte_set(pt, &source_pvo->pvo_pte.pte);
2283 
2284 	PVO_PTEGIDX_CLR(victim_pvo);
2285 	PVO_PTEGIDX_SET(source_pvo, i);
2286 	moea_pte_replacements++;
2287 
2288 	MOEA_PVO_CHECK(victim_pvo);
2289 	MOEA_PVO_CHECK(source_pvo);
2290 
2291 	mtx_unlock(&moea_table_mutex);
2292 	return (1);
2293 }
2294 
2295 static int
2296 moea_pte_insert(u_int ptegidx, struct pte *pvo_pt)
2297 {
2298 	struct	pte *pt;
2299 	int	i;
2300 
2301 	mtx_assert(&moea_table_mutex, MA_OWNED);
2302 
2303 	/*
2304 	 * First try primary hash.
2305 	 */
2306 	for (pt = moea_pteg_table[ptegidx].pt, i = 0; i < 8; i++, pt++) {
2307 		if ((pt->pte_hi & PTE_VALID) == 0) {
2308 			pvo_pt->pte_hi &= ~PTE_HID;
2309 			moea_pte_set(pt, pvo_pt);
2310 			return (i);
2311 		}
2312 	}
2313 
2314 	/*
2315 	 * Now try secondary hash.
2316 	 */
2317 	ptegidx ^= moea_pteg_mask;
2318 
2319 	for (pt = moea_pteg_table[ptegidx].pt, i = 0; i < 8; i++, pt++) {
2320 		if ((pt->pte_hi & PTE_VALID) == 0) {
2321 			pvo_pt->pte_hi |= PTE_HID;
2322 			moea_pte_set(pt, pvo_pt);
2323 			return (i);
2324 		}
2325 	}
2326 
2327 	panic("moea_pte_insert: overflow");
2328 	return (-1);
2329 }
2330 
2331 static boolean_t
2332 moea_query_bit(vm_page_t m, int ptebit)
2333 {
2334 	struct	pvo_entry *pvo;
2335 	struct	pte *pt;
2336 
2337 	if (moea_attr_fetch(m) & ptebit)
2338 		return (TRUE);
2339 
2340 	vm_page_lock_queues();
2341 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
2342 		MOEA_PVO_CHECK(pvo);	/* sanity check */
2343 
2344 		/*
2345 		 * See if we saved the bit off.  If so, cache it and return
2346 		 * success.
2347 		 */
2348 		if (pvo->pvo_pte.pte.pte_lo & ptebit) {
2349 			moea_attr_save(m, ptebit);
2350 			MOEA_PVO_CHECK(pvo);	/* sanity check */
2351 			vm_page_unlock_queues();
2352 			return (TRUE);
2353 		}
2354 	}
2355 
2356 	/*
2357 	 * No luck, now go through the hard part of looking at the PTEs
2358 	 * themselves.  Sync so that any pending REF/CHG bits are flushed to
2359 	 * the PTEs.
2360 	 */
2361 	powerpc_sync();
2362 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
2363 		MOEA_PVO_CHECK(pvo);	/* sanity check */
2364 
2365 		/*
2366 		 * See if this pvo has a valid PTE.  if so, fetch the
2367 		 * REF/CHG bits from the valid PTE.  If the appropriate
2368 		 * ptebit is set, cache it and return success.
2369 		 */
2370 		pt = moea_pvo_to_pte(pvo, -1);
2371 		if (pt != NULL) {
2372 			moea_pte_synch(pt, &pvo->pvo_pte.pte);
2373 			mtx_unlock(&moea_table_mutex);
2374 			if (pvo->pvo_pte.pte.pte_lo & ptebit) {
2375 				moea_attr_save(m, ptebit);
2376 				MOEA_PVO_CHECK(pvo);	/* sanity check */
2377 				vm_page_unlock_queues();
2378 				return (TRUE);
2379 			}
2380 		}
2381 	}
2382 
2383 	vm_page_unlock_queues();
2384 	return (FALSE);
2385 }
2386 
2387 static u_int
2388 moea_clear_bit(vm_page_t m, int ptebit)
2389 {
2390 	u_int	count;
2391 	struct	pvo_entry *pvo;
2392 	struct	pte *pt;
2393 
2394 	vm_page_lock_queues();
2395 
2396 	/*
2397 	 * Clear the cached value.
2398 	 */
2399 	moea_attr_clear(m, ptebit);
2400 
2401 	/*
2402 	 * Sync so that any pending REF/CHG bits are flushed to the PTEs (so
2403 	 * we can reset the right ones).  note that since the pvo entries and
2404 	 * list heads are accessed via BAT0 and are never placed in the page
2405 	 * table, we don't have to worry about further accesses setting the
2406 	 * REF/CHG bits.
2407 	 */
2408 	powerpc_sync();
2409 
2410 	/*
2411 	 * For each pvo entry, clear the pvo's ptebit.  If this pvo has a
2412 	 * valid pte clear the ptebit from the valid pte.
2413 	 */
2414 	count = 0;
2415 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
2416 		MOEA_PVO_CHECK(pvo);	/* sanity check */
2417 		pt = moea_pvo_to_pte(pvo, -1);
2418 		if (pt != NULL) {
2419 			moea_pte_synch(pt, &pvo->pvo_pte.pte);
2420 			if (pvo->pvo_pte.pte.pte_lo & ptebit) {
2421 				count++;
2422 				moea_pte_clear(pt, PVO_VADDR(pvo), ptebit);
2423 			}
2424 			mtx_unlock(&moea_table_mutex);
2425 		}
2426 		pvo->pvo_pte.pte.pte_lo &= ~ptebit;
2427 		MOEA_PVO_CHECK(pvo);	/* sanity check */
2428 	}
2429 
2430 	vm_page_unlock_queues();
2431 	return (count);
2432 }
2433 
2434 /*
2435  * Return true if the physical range is encompassed by the battable[idx]
2436  */
2437 static int
2438 moea_bat_mapped(int idx, vm_offset_t pa, vm_size_t size)
2439 {
2440 	u_int prot;
2441 	u_int32_t start;
2442 	u_int32_t end;
2443 	u_int32_t bat_ble;
2444 
2445 	/*
2446 	 * Return immediately if not a valid mapping
2447 	 */
2448 	if (!(battable[idx].batu & BAT_Vs))
2449 		return (EINVAL);
2450 
2451 	/*
2452 	 * The BAT entry must be cache-inhibited, guarded, and r/w
2453 	 * so it can function as an i/o page
2454 	 */
2455 	prot = battable[idx].batl & (BAT_I|BAT_G|BAT_PP_RW);
2456 	if (prot != (BAT_I|BAT_G|BAT_PP_RW))
2457 		return (EPERM);
2458 
2459 	/*
2460 	 * The address should be within the BAT range. Assume that the
2461 	 * start address in the BAT has the correct alignment (thus
2462 	 * not requiring masking)
2463 	 */
2464 	start = battable[idx].batl & BAT_PBS;
2465 	bat_ble = (battable[idx].batu & ~(BAT_EBS)) | 0x03;
2466 	end = start | (bat_ble << 15) | 0x7fff;
2467 
2468 	if ((pa < start) || ((pa + size) > end))
2469 		return (ERANGE);
2470 
2471 	return (0);
2472 }
2473 
2474 boolean_t
2475 moea_dev_direct_mapped(mmu_t mmu, vm_offset_t pa, vm_size_t size)
2476 {
2477 	int i;
2478 
2479 	/*
2480 	 * This currently does not work for entries that
2481 	 * overlap 256M BAT segments.
2482 	 */
2483 
2484 	for(i = 0; i < 16; i++)
2485 		if (moea_bat_mapped(i, pa, size) == 0)
2486 			return (0);
2487 
2488 	return (EFAULT);
2489 }
2490 
2491 /*
2492  * Map a set of physical memory pages into the kernel virtual
2493  * address space. Return a pointer to where it is mapped. This
2494  * routine is intended to be used for mapping device memory,
2495  * NOT real memory.
2496  */
2497 void *
2498 moea_mapdev(mmu_t mmu, vm_offset_t pa, vm_size_t size)
2499 {
2500 
2501 	return (moea_mapdev_attr(mmu, pa, size, VM_MEMATTR_DEFAULT));
2502 }
2503 
2504 void *
2505 moea_mapdev_attr(mmu_t mmu, vm_offset_t pa, vm_size_t size, vm_memattr_t ma)
2506 {
2507 	vm_offset_t va, tmpva, ppa, offset;
2508 	int i;
2509 
2510 	ppa = trunc_page(pa);
2511 	offset = pa & PAGE_MASK;
2512 	size = roundup(offset + size, PAGE_SIZE);
2513 
2514 	/*
2515 	 * If the physical address lies within a valid BAT table entry,
2516 	 * return the 1:1 mapping. This currently doesn't work
2517 	 * for regions that overlap 256M BAT segments.
2518 	 */
2519 	for (i = 0; i < 16; i++) {
2520 		if (moea_bat_mapped(i, pa, size) == 0)
2521 			return ((void *) pa);
2522 	}
2523 
2524 	va = kmem_alloc_nofault(kernel_map, size);
2525 	if (!va)
2526 		panic("moea_mapdev: Couldn't alloc kernel virtual memory");
2527 
2528 	for (tmpva = va; size > 0;) {
2529 		moea_kenter_attr(mmu, tmpva, ppa, ma);
2530 		tlbie(tmpva);
2531 		size -= PAGE_SIZE;
2532 		tmpva += PAGE_SIZE;
2533 		ppa += PAGE_SIZE;
2534 	}
2535 
2536 	return ((void *)(va + offset));
2537 }
2538 
2539 void
2540 moea_unmapdev(mmu_t mmu, vm_offset_t va, vm_size_t size)
2541 {
2542 	vm_offset_t base, offset;
2543 
2544 	/*
2545 	 * If this is outside kernel virtual space, then it's a
2546 	 * battable entry and doesn't require unmapping
2547 	 */
2548 	if ((va >= VM_MIN_KERNEL_ADDRESS) && (va <= virtual_end)) {
2549 		base = trunc_page(va);
2550 		offset = va & PAGE_MASK;
2551 		size = roundup(offset + size, PAGE_SIZE);
2552 		kmem_free(kernel_map, base, size);
2553 	}
2554 }
2555 
2556 static void
2557 moea_sync_icache(mmu_t mmu, pmap_t pm, vm_offset_t va, vm_size_t sz)
2558 {
2559 	struct pvo_entry *pvo;
2560 	vm_offset_t lim;
2561 	vm_paddr_t pa;
2562 	vm_size_t len;
2563 
2564 	PMAP_LOCK(pm);
2565 	while (sz > 0) {
2566 		lim = round_page(va);
2567 		len = MIN(lim - va, sz);
2568 		pvo = moea_pvo_find_va(pm, va & ~ADDR_POFF, NULL);
2569 		if (pvo != NULL) {
2570 			pa = (pvo->pvo_pte.pte.pte_lo & PTE_RPGN) |
2571 			    (va & ADDR_POFF);
2572 			moea_syncicache(pa, len);
2573 		}
2574 		va += len;
2575 		sz -= len;
2576 	}
2577 	PMAP_UNLOCK(pm);
2578 }
2579