xref: /freebsd/sys/powerpc/aim/mmu_radix.c (revision 53b70c86)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2018 Matthew Macy
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  *
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26  */
27 
28 #include "opt_platform.h"
29 
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 #include <sys/param.h>
34 #include <sys/kernel.h>
35 #include <sys/systm.h>
36 #include <sys/conf.h>
37 #include <sys/bitstring.h>
38 #include <sys/queue.h>
39 #include <sys/cpuset.h>
40 #include <sys/endian.h>
41 #include <sys/kerneldump.h>
42 #include <sys/ktr.h>
43 #include <sys/lock.h>
44 #include <sys/syslog.h>
45 #include <sys/msgbuf.h>
46 #include <sys/malloc.h>
47 #include <sys/mman.h>
48 #include <sys/mutex.h>
49 #include <sys/proc.h>
50 #include <sys/rwlock.h>
51 #include <sys/sched.h>
52 #include <sys/sysctl.h>
53 #include <sys/systm.h>
54 #include <sys/vmem.h>
55 #include <sys/vmmeter.h>
56 #include <sys/smp.h>
57 
58 #include <sys/kdb.h>
59 
60 #include <dev/ofw/openfirm.h>
61 
62 #include <vm/vm.h>
63 #include <vm/pmap.h>
64 #include <vm/vm_param.h>
65 #include <vm/vm_kern.h>
66 #include <vm/vm_page.h>
67 #include <vm/vm_map.h>
68 #include <vm/vm_object.h>
69 #include <vm/vm_extern.h>
70 #include <vm/vm_pageout.h>
71 #include <vm/vm_phys.h>
72 #include <vm/vm_reserv.h>
73 #include <vm/vm_dumpset.h>
74 #include <vm/uma.h>
75 
76 #include <machine/_inttypes.h>
77 #include <machine/cpu.h>
78 #include <machine/platform.h>
79 #include <machine/frame.h>
80 #include <machine/md_var.h>
81 #include <machine/psl.h>
82 #include <machine/bat.h>
83 #include <machine/hid.h>
84 #include <machine/pte.h>
85 #include <machine/sr.h>
86 #include <machine/trap.h>
87 #include <machine/mmuvar.h>
88 
89 /* For pseries bit. */
90 #include <powerpc/pseries/phyp-hvcall.h>
91 
92 #ifdef INVARIANTS
93 #include <vm/uma_dbg.h>
94 #endif
95 
96 #define PPC_BITLSHIFT(bit)	(sizeof(long)*NBBY - 1 - (bit))
97 #define PPC_BIT(bit)		(1UL << PPC_BITLSHIFT(bit))
98 #define PPC_BITLSHIFT_VAL(val, bit) ((val) << PPC_BITLSHIFT(bit))
99 
100 #include "opt_ddb.h"
101 
102 #ifdef DDB
103 static void pmap_pte_walk(pml1_entry_t *l1, vm_offset_t va);
104 #endif
105 
106 #define PG_W	RPTE_WIRED
107 #define PG_V	RPTE_VALID
108 #define PG_MANAGED	RPTE_MANAGED
109 #define PG_PROMOTED	RPTE_PROMOTED
110 #define PG_M	RPTE_C
111 #define PG_A	RPTE_R
112 #define PG_X	RPTE_EAA_X
113 #define PG_RW	RPTE_EAA_W
114 #define PG_PTE_CACHE RPTE_ATTR_MASK
115 
116 #define RPTE_SHIFT 9
117 #define NLS_MASK ((1UL<<5)-1)
118 #define RPTE_ENTRIES (1UL<<RPTE_SHIFT)
119 #define RPTE_MASK (RPTE_ENTRIES-1)
120 
121 #define NLB_SHIFT 0
122 #define NLB_MASK (((1UL<<52)-1) << 8)
123 
124 extern int nkpt;
125 extern caddr_t crashdumpmap;
126 
127 #define RIC_FLUSH_TLB 0
128 #define RIC_FLUSH_PWC 1
129 #define RIC_FLUSH_ALL 2
130 
131 #define POWER9_TLB_SETS_RADIX	128	/* # sets in POWER9 TLB Radix mode */
132 
133 #define PPC_INST_TLBIE			0x7c000264
134 #define PPC_INST_TLBIEL			0x7c000224
135 #define PPC_INST_SLBIA			0x7c0003e4
136 
137 #define ___PPC_RA(a)	(((a) & 0x1f) << 16)
138 #define ___PPC_RB(b)	(((b) & 0x1f) << 11)
139 #define ___PPC_RS(s)	(((s) & 0x1f) << 21)
140 #define ___PPC_RT(t)	___PPC_RS(t)
141 #define ___PPC_R(r)	(((r) & 0x1) << 16)
142 #define ___PPC_PRS(prs)	(((prs) & 0x1) << 17)
143 #define ___PPC_RIC(ric)	(((ric) & 0x3) << 18)
144 
145 #define PPC_SLBIA(IH)	__XSTRING(.long PPC_INST_SLBIA | \
146 				       ((IH & 0x7) << 21))
147 #define	PPC_TLBIE_5(rb,rs,ric,prs,r)				\
148 	__XSTRING(.long PPC_INST_TLBIE |			\
149 			  ___PPC_RB(rb) | ___PPC_RS(rs) |	\
150 			  ___PPC_RIC(ric) | ___PPC_PRS(prs) |	\
151 			  ___PPC_R(r))
152 
153 #define	PPC_TLBIEL(rb,rs,ric,prs,r) \
154 	 __XSTRING(.long PPC_INST_TLBIEL | \
155 			   ___PPC_RB(rb) | ___PPC_RS(rs) |	\
156 			   ___PPC_RIC(ric) | ___PPC_PRS(prs) |	\
157 			   ___PPC_R(r))
158 
159 #define PPC_INVALIDATE_ERAT		PPC_SLBIA(7)
160 
161 static __inline void
162 ttusync(void)
163 {
164 	__asm __volatile("eieio; tlbsync; ptesync" ::: "memory");
165 }
166 
167 #define TLBIEL_INVAL_SEL_MASK	0xc00	/* invalidation selector */
168 #define  TLBIEL_INVAL_PAGE	0x000	/* invalidate a single page */
169 #define  TLBIEL_INVAL_SET_PID	0x400	/* invalidate a set for the current PID */
170 #define  TLBIEL_INVAL_SET_LPID	0x800	/* invalidate a set for current LPID */
171 #define  TLBIEL_INVAL_SET	0xc00	/* invalidate a set for all LPIDs */
172 
173 #define TLBIE_ACTUAL_PAGE_MASK		0xe0
174 #define  TLBIE_ACTUAL_PAGE_4K		0x00
175 #define  TLBIE_ACTUAL_PAGE_64K		0xa0
176 #define  TLBIE_ACTUAL_PAGE_2M		0x20
177 #define  TLBIE_ACTUAL_PAGE_1G		0x40
178 
179 #define TLBIE_PRS_PARTITION_SCOPE	0x0
180 #define TLBIE_PRS_PROCESS_SCOPE	0x1
181 
182 #define TLBIE_RIC_INVALIDATE_TLB	0x0	/* Invalidate just TLB */
183 #define TLBIE_RIC_INVALIDATE_PWC	0x1	/* Invalidate just PWC */
184 #define TLBIE_RIC_INVALIDATE_ALL	0x2	/* Invalidate TLB, PWC,
185 						 * cached {proc, part}tab entries
186 						 */
187 #define TLBIE_RIC_INVALIDATE_SEQ	0x3	/* HPT - only:
188 						 * Invalidate a range of translations
189 						 */
190 
191 static __always_inline void
192 radix_tlbie(uint8_t ric, uint8_t prs, uint16_t is, uint32_t pid, uint32_t lpid,
193 			vm_offset_t va, uint16_t ap)
194 {
195 	uint64_t rb, rs;
196 
197 	MPASS((va & PAGE_MASK) == 0);
198 
199 	rs = ((uint64_t)pid << 32) | lpid;
200 	rb = va | is | ap;
201 	__asm __volatile(PPC_TLBIE_5(%0, %1, %2, %3, 1) : :
202 		"r" (rb), "r" (rs), "i" (ric), "i" (prs) : "memory");
203 }
204 
205 static __inline void
206 radix_tlbie_fixup(uint32_t pid, vm_offset_t va, int ap)
207 {
208 
209 	__asm __volatile("ptesync" ::: "memory");
210 	radix_tlbie(TLBIE_RIC_INVALIDATE_TLB, TLBIE_PRS_PROCESS_SCOPE,
211 	    TLBIEL_INVAL_PAGE, 0, 0, va, ap);
212 	__asm __volatile("ptesync" ::: "memory");
213 	radix_tlbie(TLBIE_RIC_INVALIDATE_TLB, TLBIE_PRS_PROCESS_SCOPE,
214 	    TLBIEL_INVAL_PAGE, pid, 0, va, ap);
215 }
216 
217 static __inline void
218 radix_tlbie_invlpg_user_4k(uint32_t pid, vm_offset_t va)
219 {
220 
221 	radix_tlbie(TLBIE_RIC_INVALIDATE_TLB, TLBIE_PRS_PROCESS_SCOPE,
222 		TLBIEL_INVAL_PAGE, pid, 0, va, TLBIE_ACTUAL_PAGE_4K);
223 	radix_tlbie_fixup(pid, va, TLBIE_ACTUAL_PAGE_4K);
224 }
225 
226 static __inline void
227 radix_tlbie_invlpg_user_2m(uint32_t pid, vm_offset_t va)
228 {
229 
230 	radix_tlbie(TLBIE_RIC_INVALIDATE_TLB, TLBIE_PRS_PROCESS_SCOPE,
231 		TLBIEL_INVAL_PAGE, pid, 0, va, TLBIE_ACTUAL_PAGE_2M);
232 	radix_tlbie_fixup(pid, va, TLBIE_ACTUAL_PAGE_2M);
233 }
234 
235 static __inline void
236 radix_tlbie_invlpwc_user(uint32_t pid)
237 {
238 
239 	radix_tlbie(TLBIE_RIC_INVALIDATE_PWC, TLBIE_PRS_PROCESS_SCOPE,
240 		TLBIEL_INVAL_SET_PID, pid, 0, 0, 0);
241 }
242 
243 static __inline void
244 radix_tlbie_flush_user(uint32_t pid)
245 {
246 
247 	radix_tlbie(TLBIE_RIC_INVALIDATE_ALL, TLBIE_PRS_PROCESS_SCOPE,
248 		TLBIEL_INVAL_SET_PID, pid, 0, 0, 0);
249 }
250 
251 static __inline void
252 radix_tlbie_invlpg_kernel_4k(vm_offset_t va)
253 {
254 
255 	radix_tlbie(TLBIE_RIC_INVALIDATE_TLB, TLBIE_PRS_PROCESS_SCOPE,
256 	    TLBIEL_INVAL_PAGE, 0, 0, va, TLBIE_ACTUAL_PAGE_4K);
257 	radix_tlbie_fixup(0, va, TLBIE_ACTUAL_PAGE_4K);
258 }
259 
260 static __inline void
261 radix_tlbie_invlpg_kernel_2m(vm_offset_t va)
262 {
263 
264 	radix_tlbie(TLBIE_RIC_INVALIDATE_TLB, TLBIE_PRS_PROCESS_SCOPE,
265 	    TLBIEL_INVAL_PAGE, 0, 0, va, TLBIE_ACTUAL_PAGE_2M);
266 	radix_tlbie_fixup(0, va, TLBIE_ACTUAL_PAGE_2M);
267 }
268 
269 /* 1GB pages aren't currently supported. */
270 static __inline __unused void
271 radix_tlbie_invlpg_kernel_1g(vm_offset_t va)
272 {
273 
274 	radix_tlbie(TLBIE_RIC_INVALIDATE_TLB, TLBIE_PRS_PROCESS_SCOPE,
275 	    TLBIEL_INVAL_PAGE, 0, 0, va, TLBIE_ACTUAL_PAGE_1G);
276 	radix_tlbie_fixup(0, va, TLBIE_ACTUAL_PAGE_1G);
277 }
278 
279 static __inline void
280 radix_tlbie_invlpwc_kernel(void)
281 {
282 
283 	radix_tlbie(TLBIE_RIC_INVALIDATE_PWC, TLBIE_PRS_PROCESS_SCOPE,
284 	    TLBIEL_INVAL_SET_LPID, 0, 0, 0, 0);
285 }
286 
287 static __inline void
288 radix_tlbie_flush_kernel(void)
289 {
290 
291 	radix_tlbie(TLBIE_RIC_INVALIDATE_ALL, TLBIE_PRS_PROCESS_SCOPE,
292 	    TLBIEL_INVAL_SET_LPID, 0, 0, 0, 0);
293 }
294 
295 static __inline vm_pindex_t
296 pmap_l3e_pindex(vm_offset_t va)
297 {
298 	return ((va & PG_FRAME) >> L3_PAGE_SIZE_SHIFT);
299 }
300 
301 static __inline vm_pindex_t
302 pmap_pml3e_index(vm_offset_t va)
303 {
304 
305 	return ((va >> L3_PAGE_SIZE_SHIFT) & RPTE_MASK);
306 }
307 
308 static __inline vm_pindex_t
309 pmap_pml2e_index(vm_offset_t va)
310 {
311 	return ((va >> L2_PAGE_SIZE_SHIFT) & RPTE_MASK);
312 }
313 
314 static __inline vm_pindex_t
315 pmap_pml1e_index(vm_offset_t va)
316 {
317 	return ((va & PG_FRAME) >> L1_PAGE_SIZE_SHIFT);
318 }
319 
320 /* Return various clipped indexes for a given VA */
321 static __inline vm_pindex_t
322 pmap_pte_index(vm_offset_t va)
323 {
324 
325 	return ((va >> PAGE_SHIFT) & RPTE_MASK);
326 }
327 
328 /* Return a pointer to the PT slot that corresponds to a VA */
329 static __inline pt_entry_t *
330 pmap_l3e_to_pte(pt_entry_t *l3e, vm_offset_t va)
331 {
332 	pt_entry_t *pte;
333 	vm_paddr_t ptepa;
334 
335 	ptepa = (be64toh(*l3e) & NLB_MASK);
336 	pte = (pt_entry_t *)PHYS_TO_DMAP(ptepa);
337 	return (&pte[pmap_pte_index(va)]);
338 }
339 
340 /* Return a pointer to the PD slot that corresponds to a VA */
341 static __inline pt_entry_t *
342 pmap_l2e_to_l3e(pt_entry_t *l2e, vm_offset_t va)
343 {
344 	pt_entry_t *l3e;
345 	vm_paddr_t l3pa;
346 
347 	l3pa = (be64toh(*l2e) & NLB_MASK);
348 	l3e = (pml3_entry_t *)PHYS_TO_DMAP(l3pa);
349 	return (&l3e[pmap_pml3e_index(va)]);
350 }
351 
352 /* Return a pointer to the PD slot that corresponds to a VA */
353 static __inline pt_entry_t *
354 pmap_l1e_to_l2e(pt_entry_t *l1e, vm_offset_t va)
355 {
356 	pt_entry_t *l2e;
357 	vm_paddr_t l2pa;
358 
359 	l2pa = (be64toh(*l1e) & NLB_MASK);
360 
361 	l2e = (pml2_entry_t *)PHYS_TO_DMAP(l2pa);
362 	return (&l2e[pmap_pml2e_index(va)]);
363 }
364 
365 static __inline pml1_entry_t *
366 pmap_pml1e(pmap_t pmap, vm_offset_t va)
367 {
368 
369 	return (&pmap->pm_pml1[pmap_pml1e_index(va)]);
370 }
371 
372 static pt_entry_t *
373 pmap_pml2e(pmap_t pmap, vm_offset_t va)
374 {
375 	pt_entry_t *l1e;
376 
377 	l1e = pmap_pml1e(pmap, va);
378 	if (l1e == NULL || (be64toh(*l1e) & RPTE_VALID) == 0)
379 		return (NULL);
380 	return (pmap_l1e_to_l2e(l1e, va));
381 }
382 
383 static __inline pt_entry_t *
384 pmap_pml3e(pmap_t pmap, vm_offset_t va)
385 {
386 	pt_entry_t *l2e;
387 
388 	l2e = pmap_pml2e(pmap, va);
389 	if (l2e == NULL || (be64toh(*l2e) & RPTE_VALID) == 0)
390 		return (NULL);
391 	return (pmap_l2e_to_l3e(l2e, va));
392 }
393 
394 static __inline pt_entry_t *
395 pmap_pte(pmap_t pmap, vm_offset_t va)
396 {
397 	pt_entry_t *l3e;
398 
399 	l3e = pmap_pml3e(pmap, va);
400 	if (l3e == NULL || (be64toh(*l3e) & RPTE_VALID) == 0)
401 		return (NULL);
402 	return (pmap_l3e_to_pte(l3e, va));
403 }
404 
405 int nkpt = 64;
406 SYSCTL_INT(_machdep, OID_AUTO, nkpt, CTLFLAG_RD, &nkpt, 0,
407     "Number of kernel page table pages allocated on bootup");
408 
409 vm_paddr_t dmaplimit;
410 
411 SYSCTL_DECL(_vm_pmap);
412 
413 #ifdef INVARIANTS
414 #define VERBOSE_PMAP 0
415 #define VERBOSE_PROTECT 0
416 static int pmap_logging;
417 SYSCTL_INT(_vm_pmap, OID_AUTO, pmap_logging, CTLFLAG_RWTUN,
418     &pmap_logging, 0, "verbose debug logging");
419 #endif
420 
421 static u_int64_t	KPTphys;	/* phys addr of kernel level 1 */
422 
423 //static vm_paddr_t	KERNend;	/* phys addr of end of bootstrap data */
424 
425 static vm_offset_t qframe = 0;
426 static struct mtx qframe_mtx;
427 
428 void mmu_radix_activate(struct thread *);
429 void mmu_radix_advise(pmap_t, vm_offset_t, vm_offset_t, int);
430 void mmu_radix_align_superpage(vm_object_t, vm_ooffset_t, vm_offset_t *,
431     vm_size_t);
432 void mmu_radix_clear_modify(vm_page_t);
433 void mmu_radix_copy(pmap_t, pmap_t, vm_offset_t, vm_size_t, vm_offset_t);
434 int mmu_radix_decode_kernel_ptr(vm_offset_t, int *, vm_offset_t *);
435 int mmu_radix_enter(pmap_t, vm_offset_t, vm_page_t, vm_prot_t, u_int, int8_t);
436 void mmu_radix_enter_object(pmap_t, vm_offset_t, vm_offset_t, vm_page_t,
437 	vm_prot_t);
438 void mmu_radix_enter_quick(pmap_t, vm_offset_t, vm_page_t, vm_prot_t);
439 vm_paddr_t mmu_radix_extract(pmap_t pmap, vm_offset_t va);
440 vm_page_t mmu_radix_extract_and_hold(pmap_t, vm_offset_t, vm_prot_t);
441 void mmu_radix_kenter(vm_offset_t, vm_paddr_t);
442 vm_paddr_t mmu_radix_kextract(vm_offset_t);
443 void mmu_radix_kremove(vm_offset_t);
444 boolean_t mmu_radix_is_modified(vm_page_t);
445 boolean_t mmu_radix_is_prefaultable(pmap_t, vm_offset_t);
446 boolean_t mmu_radix_is_referenced(vm_page_t);
447 void mmu_radix_object_init_pt(pmap_t, vm_offset_t, vm_object_t,
448 	vm_pindex_t, vm_size_t);
449 boolean_t mmu_radix_page_exists_quick(pmap_t, vm_page_t);
450 void mmu_radix_page_init(vm_page_t);
451 boolean_t mmu_radix_page_is_mapped(vm_page_t m);
452 void mmu_radix_page_set_memattr(vm_page_t, vm_memattr_t);
453 int mmu_radix_page_wired_mappings(vm_page_t);
454 int mmu_radix_pinit(pmap_t);
455 void mmu_radix_protect(pmap_t, vm_offset_t, vm_offset_t, vm_prot_t);
456 bool mmu_radix_ps_enabled(pmap_t);
457 void mmu_radix_qenter(vm_offset_t, vm_page_t *, int);
458 void mmu_radix_qremove(vm_offset_t, int);
459 vm_offset_t mmu_radix_quick_enter_page(vm_page_t);
460 void mmu_radix_quick_remove_page(vm_offset_t);
461 boolean_t mmu_radix_ts_referenced(vm_page_t);
462 void mmu_radix_release(pmap_t);
463 void mmu_radix_remove(pmap_t, vm_offset_t, vm_offset_t);
464 void mmu_radix_remove_all(vm_page_t);
465 void mmu_radix_remove_pages(pmap_t);
466 void mmu_radix_remove_write(vm_page_t);
467 void mmu_radix_unwire(pmap_t, vm_offset_t, vm_offset_t);
468 void mmu_radix_zero_page(vm_page_t);
469 void mmu_radix_zero_page_area(vm_page_t, int, int);
470 int mmu_radix_change_attr(vm_offset_t, vm_size_t, vm_memattr_t);
471 void mmu_radix_page_array_startup(long pages);
472 
473 #include "mmu_oea64.h"
474 
475 /*
476  * Kernel MMU interface
477  */
478 
479 static void	mmu_radix_bootstrap(vm_offset_t, vm_offset_t);
480 
481 static void mmu_radix_copy_page(vm_page_t, vm_page_t);
482 static void mmu_radix_copy_pages(vm_page_t *ma, vm_offset_t a_offset,
483     vm_page_t *mb, vm_offset_t b_offset, int xfersize);
484 static void mmu_radix_growkernel(vm_offset_t);
485 static void mmu_radix_init(void);
486 static int mmu_radix_mincore(pmap_t, vm_offset_t, vm_paddr_t *);
487 static vm_offset_t mmu_radix_map(vm_offset_t *, vm_paddr_t, vm_paddr_t, int);
488 static void mmu_radix_pinit0(pmap_t);
489 
490 static void *mmu_radix_mapdev(vm_paddr_t, vm_size_t);
491 static void *mmu_radix_mapdev_attr(vm_paddr_t, vm_size_t, vm_memattr_t);
492 static void mmu_radix_unmapdev(vm_offset_t, vm_size_t);
493 static void mmu_radix_kenter_attr(vm_offset_t, vm_paddr_t, vm_memattr_t ma);
494 static boolean_t mmu_radix_dev_direct_mapped(vm_paddr_t, vm_size_t);
495 static void mmu_radix_dumpsys_map(vm_paddr_t pa, size_t sz, void **va);
496 static void mmu_radix_scan_init(void);
497 static void	mmu_radix_cpu_bootstrap(int ap);
498 static void	mmu_radix_tlbie_all(void);
499 
500 static struct pmap_funcs mmu_radix_methods = {
501 	.bootstrap = mmu_radix_bootstrap,
502 	.copy_page = mmu_radix_copy_page,
503 	.copy_pages = mmu_radix_copy_pages,
504 	.cpu_bootstrap = mmu_radix_cpu_bootstrap,
505 	.growkernel = mmu_radix_growkernel,
506 	.init = mmu_radix_init,
507 	.map =      		mmu_radix_map,
508 	.mincore =      	mmu_radix_mincore,
509 	.pinit = mmu_radix_pinit,
510 	.pinit0 = mmu_radix_pinit0,
511 
512 	.mapdev = mmu_radix_mapdev,
513 	.mapdev_attr = mmu_radix_mapdev_attr,
514 	.unmapdev = mmu_radix_unmapdev,
515 	.kenter_attr = mmu_radix_kenter_attr,
516 	.dev_direct_mapped = mmu_radix_dev_direct_mapped,
517 	.dumpsys_pa_init = mmu_radix_scan_init,
518 	.dumpsys_map_chunk = mmu_radix_dumpsys_map,
519 	.page_is_mapped = mmu_radix_page_is_mapped,
520 	.ps_enabled = mmu_radix_ps_enabled,
521 	.align_superpage = mmu_radix_align_superpage,
522 	.object_init_pt = mmu_radix_object_init_pt,
523 	.protect = mmu_radix_protect,
524 	/* pmap dispatcher interface */
525 	.clear_modify = mmu_radix_clear_modify,
526 	.copy = mmu_radix_copy,
527 	.enter = mmu_radix_enter,
528 	.enter_object = mmu_radix_enter_object,
529 	.enter_quick = mmu_radix_enter_quick,
530 	.extract = mmu_radix_extract,
531 	.extract_and_hold = mmu_radix_extract_and_hold,
532 	.is_modified = mmu_radix_is_modified,
533 	.is_prefaultable = mmu_radix_is_prefaultable,
534 	.is_referenced = mmu_radix_is_referenced,
535 	.ts_referenced = mmu_radix_ts_referenced,
536 	.page_exists_quick = mmu_radix_page_exists_quick,
537 	.page_init = mmu_radix_page_init,
538 	.page_wired_mappings =  mmu_radix_page_wired_mappings,
539 	.qenter = mmu_radix_qenter,
540 	.qremove = mmu_radix_qremove,
541 	.release = mmu_radix_release,
542 	.remove = mmu_radix_remove,
543 	.remove_all = mmu_radix_remove_all,
544 	.remove_write = mmu_radix_remove_write,
545 	.unwire = mmu_radix_unwire,
546 	.zero_page = mmu_radix_zero_page,
547 	.zero_page_area = mmu_radix_zero_page_area,
548 	.activate = mmu_radix_activate,
549 	.quick_enter_page =  mmu_radix_quick_enter_page,
550 	.quick_remove_page =  mmu_radix_quick_remove_page,
551 	.page_set_memattr = mmu_radix_page_set_memattr,
552 	.page_array_startup =  mmu_radix_page_array_startup,
553 
554 	/* Internal interfaces */
555 	.kenter = mmu_radix_kenter,
556 	.kextract = mmu_radix_kextract,
557 	.kremove = mmu_radix_kremove,
558 	.change_attr = mmu_radix_change_attr,
559 	.decode_kernel_ptr =  mmu_radix_decode_kernel_ptr,
560 
561 	.tlbie_all = mmu_radix_tlbie_all,
562 };
563 
564 MMU_DEF(mmu_radix, MMU_TYPE_RADIX, mmu_radix_methods);
565 
566 static boolean_t pmap_demote_l3e_locked(pmap_t pmap, pml3_entry_t *l3e, vm_offset_t va,
567 	struct rwlock **lockp);
568 static boolean_t pmap_demote_l3e(pmap_t pmap, pml3_entry_t *pde, vm_offset_t va);
569 static int pmap_unuse_pt(pmap_t, vm_offset_t, pml3_entry_t, struct spglist *);
570 static int pmap_remove_l3e(pmap_t pmap, pml3_entry_t *pdq, vm_offset_t sva,
571     struct spglist *free, struct rwlock **lockp);
572 static int pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t sva,
573     pml3_entry_t ptepde, struct spglist *free, struct rwlock **lockp);
574 static vm_page_t pmap_remove_pt_page(pmap_t pmap, vm_offset_t va);
575 static bool pmap_remove_page(pmap_t pmap, vm_offset_t va, pml3_entry_t *pde,
576     struct spglist *free);
577 static bool	pmap_remove_ptes(pmap_t pmap, vm_offset_t sva, vm_offset_t eva,
578 	pml3_entry_t *l3e, struct spglist *free, struct rwlock **lockp);
579 
580 static bool	pmap_pv_insert_l3e(pmap_t pmap, vm_offset_t va, pml3_entry_t l3e,
581 		    u_int flags, struct rwlock **lockp);
582 #if VM_NRESERVLEVEL > 0
583 static void	pmap_pv_promote_l3e(pmap_t pmap, vm_offset_t va, vm_paddr_t pa,
584 	struct rwlock **lockp);
585 #endif
586 static void	pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va);
587 static int pmap_insert_pt_page(pmap_t pmap, vm_page_t mpte);
588 static vm_page_t mmu_radix_enter_quick_locked(pmap_t pmap, vm_offset_t va, vm_page_t m,
589 	vm_prot_t prot, vm_page_t mpte, struct rwlock **lockp, bool *invalidate);
590 
591 static bool	pmap_enter_2mpage(pmap_t pmap, vm_offset_t va, vm_page_t m,
592 	vm_prot_t prot, struct rwlock **lockp);
593 static int	pmap_enter_l3e(pmap_t pmap, vm_offset_t va, pml3_entry_t newpde,
594 	u_int flags, vm_page_t m, struct rwlock **lockp);
595 
596 static vm_page_t reclaim_pv_chunk(pmap_t locked_pmap, struct rwlock **lockp);
597 static void free_pv_chunk(struct pv_chunk *pc);
598 static vm_page_t _pmap_allocpte(pmap_t pmap, vm_pindex_t ptepindex, struct rwlock **lockp);
599 static vm_page_t pmap_allocl3e(pmap_t pmap, vm_offset_t va,
600 	struct rwlock **lockp);
601 static vm_page_t pmap_allocpte(pmap_t pmap, vm_offset_t va,
602 	struct rwlock **lockp);
603 static void _pmap_unwire_ptp(pmap_t pmap, vm_offset_t va, vm_page_t m,
604     struct spglist *free);
605 static boolean_t pmap_unwire_ptp(pmap_t pmap, vm_offset_t va, vm_page_t m, struct spglist *free);
606 
607 static void pmap_invalidate_page(pmap_t pmap, vm_offset_t start);
608 static void pmap_invalidate_all(pmap_t pmap);
609 static int pmap_change_attr_locked(vm_offset_t va, vm_size_t size, int mode, bool flush);
610 
611 /*
612  * Internal flags for pmap_enter()'s helper functions.
613  */
614 #define	PMAP_ENTER_NORECLAIM	0x1000000	/* Don't reclaim PV entries. */
615 #define	PMAP_ENTER_NOREPLACE	0x2000000	/* Don't replace mappings. */
616 
617 #define UNIMPLEMENTED() panic("%s not implemented", __func__)
618 #define UNTESTED() panic("%s not yet tested", __func__)
619 
620 /* Number of supported PID bits */
621 static unsigned int isa3_pid_bits;
622 
623 /* PID to start allocating from */
624 static unsigned int isa3_base_pid;
625 
626 #define PROCTAB_SIZE_SHIFT	(isa3_pid_bits + 4)
627 #define PROCTAB_ENTRIES	(1ul << isa3_pid_bits)
628 
629 /*
630  * Map of physical memory regions.
631  */
632 static struct	mem_region *regions, *pregions;
633 static struct	numa_mem_region *numa_pregions;
634 static u_int	phys_avail_count;
635 static int	regions_sz, pregions_sz, numa_pregions_sz;
636 static struct pate *isa3_parttab;
637 static struct prte *isa3_proctab;
638 static vmem_t *asid_arena;
639 
640 extern void bs_remap_earlyboot(void);
641 
642 #define	RADIX_PGD_SIZE_SHIFT	16
643 #define RADIX_PGD_SIZE	(1UL << RADIX_PGD_SIZE_SHIFT)
644 
645 #define	RADIX_PGD_INDEX_SHIFT	(RADIX_PGD_SIZE_SHIFT-3)
646 #define NL2EPG (PAGE_SIZE/sizeof(pml2_entry_t))
647 #define NL3EPG (PAGE_SIZE/sizeof(pml3_entry_t))
648 
649 #define	NUPML1E		(RADIX_PGD_SIZE/sizeof(uint64_t))	/* number of userland PML1 pages */
650 #define	NUPDPE		(NUPML1E * NL2EPG)/* number of userland PDP pages */
651 #define	NUPDE		(NUPDPE * NL3EPG)	/* number of userland PD entries */
652 
653 /* POWER9 only permits a 64k partition table size. */
654 #define	PARTTAB_SIZE_SHIFT	16
655 #define PARTTAB_SIZE	(1UL << PARTTAB_SIZE_SHIFT)
656 
657 #define PARTTAB_HR		(1UL << 63) /* host uses radix */
658 #define PARTTAB_GR		(1UL << 63) /* guest uses radix must match host */
659 
660 /* TLB flush actions. Used as argument to tlbiel_flush() */
661 enum {
662 	TLB_INVAL_SCOPE_LPID = 2,	/* invalidate TLBs for current LPID */
663 	TLB_INVAL_SCOPE_GLOBAL = 3,	/* invalidate all TLBs */
664 };
665 
666 #define	NPV_LIST_LOCKS	MAXCPU
667 static int pmap_initialized;
668 static vm_paddr_t proctab0pa;
669 static vm_paddr_t parttab_phys;
670 CTASSERT(sizeof(struct pv_chunk) == PAGE_SIZE);
671 
672 /*
673  * Data for the pv entry allocation mechanism.
674  * Updates to pv_invl_gen are protected by the pv_list_locks[]
675  * elements, but reads are not.
676  */
677 static TAILQ_HEAD(pch, pv_chunk) pv_chunks = TAILQ_HEAD_INITIALIZER(pv_chunks);
678 static struct mtx __exclusive_cache_line pv_chunks_mutex;
679 static struct rwlock __exclusive_cache_line pv_list_locks[NPV_LIST_LOCKS];
680 static struct md_page *pv_table;
681 static struct md_page pv_dummy;
682 
683 #ifdef PV_STATS
684 #define PV_STAT(x)	do { x ; } while (0)
685 #else
686 #define PV_STAT(x)	do { } while (0)
687 #endif
688 
689 #define	pa_radix_index(pa)	((pa) >> L3_PAGE_SIZE_SHIFT)
690 #define	pa_to_pvh(pa)	(&pv_table[pa_radix_index(pa)])
691 
692 #define	PHYS_TO_PV_LIST_LOCK(pa)	\
693 			(&pv_list_locks[pa_radix_index(pa) % NPV_LIST_LOCKS])
694 
695 #define	CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, pa)	do {	\
696 	struct rwlock **_lockp = (lockp);		\
697 	struct rwlock *_new_lock;			\
698 							\
699 	_new_lock = PHYS_TO_PV_LIST_LOCK(pa);		\
700 	if (_new_lock != *_lockp) {			\
701 		if (*_lockp != NULL)			\
702 			rw_wunlock(*_lockp);		\
703 		*_lockp = _new_lock;			\
704 		rw_wlock(*_lockp);			\
705 	}						\
706 } while (0)
707 
708 #define	CHANGE_PV_LIST_LOCK_TO_VM_PAGE(lockp, m)	\
709 	CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, VM_PAGE_TO_PHYS(m))
710 
711 #define	RELEASE_PV_LIST_LOCK(lockp)		do {	\
712 	struct rwlock **_lockp = (lockp);		\
713 							\
714 	if (*_lockp != NULL) {				\
715 		rw_wunlock(*_lockp);			\
716 		*_lockp = NULL;				\
717 	}						\
718 } while (0)
719 
720 #define	VM_PAGE_TO_PV_LIST_LOCK(m)	\
721 	PHYS_TO_PV_LIST_LOCK(VM_PAGE_TO_PHYS(m))
722 
723 /*
724  * We support 52 bits, hence:
725  * bits 52 - 31 = 21, 0b10101
726  * RTS encoding details
727  * bits 0 - 3 of rts -> bits 6 - 8 unsigned long
728  * bits 4 - 5 of rts -> bits 62 - 63 of unsigned long
729  */
730 #define RTS_SIZE ((0x2UL << 61) | (0x5UL << 5))
731 
732 static int powernv_enabled = 1;
733 
734 static __always_inline void
735 tlbiel_radix_set_isa300(uint32_t set, uint32_t is,
736 	uint32_t pid, uint32_t ric, uint32_t prs)
737 {
738 	uint64_t rb;
739 	uint64_t rs;
740 
741 	rb = PPC_BITLSHIFT_VAL(set, 51) | PPC_BITLSHIFT_VAL(is, 53);
742 	rs = PPC_BITLSHIFT_VAL((uint64_t)pid, 31);
743 
744 	__asm __volatile(PPC_TLBIEL(%0, %1, %2, %3, 1)
745 		     : : "r"(rb), "r"(rs), "i"(ric), "i"(prs)
746 		     : "memory");
747 }
748 
749 static void
750 tlbiel_flush_isa3(uint32_t num_sets, uint32_t is)
751 {
752 	uint32_t set;
753 
754 	__asm __volatile("ptesync": : :"memory");
755 
756 	/*
757 	 * Flush the first set of the TLB, and the entire Page Walk Cache
758 	 * and partition table entries. Then flush the remaining sets of the
759 	 * TLB.
760 	 */
761 	if (is == TLB_INVAL_SCOPE_GLOBAL) {
762 		tlbiel_radix_set_isa300(0, is, 0, RIC_FLUSH_ALL, 0);
763 		for (set = 1; set < num_sets; set++)
764 			tlbiel_radix_set_isa300(set, is, 0, RIC_FLUSH_TLB, 0);
765 	}
766 
767 	/* Do the same for process scoped entries. */
768 	tlbiel_radix_set_isa300(0, is, 0, RIC_FLUSH_ALL, 1);
769 	for (set = 1; set < num_sets; set++)
770 		tlbiel_radix_set_isa300(set, is, 0, RIC_FLUSH_TLB, 1);
771 
772 	__asm __volatile("ptesync": : :"memory");
773 }
774 
775 static void
776 mmu_radix_tlbiel_flush(int scope)
777 {
778 	MPASS(scope == TLB_INVAL_SCOPE_LPID ||
779 		  scope == TLB_INVAL_SCOPE_GLOBAL);
780 
781 	tlbiel_flush_isa3(POWER9_TLB_SETS_RADIX, scope);
782 	__asm __volatile(PPC_INVALIDATE_ERAT "; isync" : : :"memory");
783 }
784 
785 static void
786 mmu_radix_tlbie_all()
787 {
788 	if (powernv_enabled)
789 		mmu_radix_tlbiel_flush(TLB_INVAL_SCOPE_GLOBAL);
790 	else
791 		mmu_radix_tlbiel_flush(TLB_INVAL_SCOPE_LPID);
792 }
793 
794 static void
795 mmu_radix_init_amor(void)
796 {
797 	/*
798 	* In HV mode, we init AMOR (Authority Mask Override Register) so that
799 	* the hypervisor and guest can setup IAMR (Instruction Authority Mask
800 	* Register), enable key 0 and set it to 1.
801 	*
802 	* AMOR = 0b1100 .... 0000 (Mask for key 0 is 11)
803 	*/
804 	mtspr(SPR_AMOR, (3ul << 62));
805 }
806 
807 static void
808 mmu_radix_init_iamr(void)
809 {
810 	/*
811 	 * Radix always uses key0 of the IAMR to determine if an access is
812 	 * allowed. We set bit 0 (IBM bit 1) of key0, to prevent instruction
813 	 * fetch.
814 	 */
815 	mtspr(SPR_IAMR, (1ul << 62));
816 }
817 
818 static void
819 mmu_radix_pid_set(pmap_t pmap)
820 {
821 
822 	mtspr(SPR_PID, pmap->pm_pid);
823 	isync();
824 }
825 
826 /* Quick sort callout for comparing physical addresses. */
827 static int
828 pa_cmp(const void *a, const void *b)
829 {
830 	const vm_paddr_t *pa = a, *pb = b;
831 
832 	if (*pa < *pb)
833 		return (-1);
834 	else if (*pa > *pb)
835 		return (1);
836 	else
837 		return (0);
838 }
839 
840 #define	pte_load_store(ptep, pte)	atomic_swap_long(ptep, pte)
841 #define	pte_load_clear(ptep)		atomic_swap_long(ptep, 0)
842 #define	pte_store(ptep, pte) do {	   \
843 	MPASS((pte) & (RPTE_EAA_R | RPTE_EAA_W | RPTE_EAA_X));	\
844 	*(u_long *)(ptep) = htobe64((u_long)((pte) | PG_V | RPTE_LEAF)); \
845 } while (0)
846 /*
847  * NB: should only be used for adding directories - not for direct mappings
848  */
849 #define	pde_store(ptep, pa) do {				\
850 	*(u_long *)(ptep) = htobe64((u_long)(pa|RPTE_VALID|RPTE_SHIFT)); \
851 } while (0)
852 
853 #define	pte_clear(ptep) do {					\
854 		*(u_long *)(ptep) = (u_long)(0);		\
855 } while (0)
856 
857 #define	PMAP_PDE_SUPERPAGE	(1 << 8)	/* supports 2MB superpages */
858 
859 /*
860  * Promotion to a 2MB (PDE) page mapping requires that the corresponding 4KB
861  * (PTE) page mappings have identical settings for the following fields:
862  */
863 #define	PG_PTE_PROMOTE	(PG_X | PG_MANAGED | PG_W | PG_PTE_CACHE | \
864 	    PG_M | PG_A | RPTE_EAA_MASK | PG_V)
865 
866 static __inline void
867 pmap_resident_count_inc(pmap_t pmap, int count)
868 {
869 
870 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
871 	pmap->pm_stats.resident_count += count;
872 }
873 
874 static __inline void
875 pmap_resident_count_dec(pmap_t pmap, int count)
876 {
877 
878 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
879 	KASSERT(pmap->pm_stats.resident_count >= count,
880 	    ("pmap %p resident count underflow %ld %d", pmap,
881 	    pmap->pm_stats.resident_count, count));
882 	pmap->pm_stats.resident_count -= count;
883 }
884 
885 static void
886 pagezero(vm_offset_t va)
887 {
888 	va = trunc_page(va);
889 
890 	bzero((void *)va, PAGE_SIZE);
891 }
892 
893 static uint64_t
894 allocpages(int n)
895 {
896 	u_int64_t ret;
897 
898 	ret = moea64_bootstrap_alloc(n * PAGE_SIZE, PAGE_SIZE);
899 	for (int i = 0; i < n; i++)
900 		pagezero(PHYS_TO_DMAP(ret + i * PAGE_SIZE));
901 	return (ret);
902 }
903 
904 static pt_entry_t *
905 kvtopte(vm_offset_t va)
906 {
907 	pt_entry_t *l3e;
908 
909 	l3e = pmap_pml3e(kernel_pmap, va);
910 	if ((be64toh(*l3e) & RPTE_VALID) == 0)
911 		return (NULL);
912 	return (pmap_l3e_to_pte(l3e, va));
913 }
914 
915 void
916 mmu_radix_kenter(vm_offset_t va, vm_paddr_t pa)
917 {
918 	pt_entry_t *pte;
919 
920 	pte = kvtopte(va);
921 	MPASS(pte != NULL);
922 	*pte = htobe64(pa | RPTE_VALID | RPTE_LEAF | RPTE_EAA_R | \
923 	    RPTE_EAA_W | RPTE_EAA_P | PG_M | PG_A);
924 }
925 
926 bool
927 mmu_radix_ps_enabled(pmap_t pmap)
928 {
929 	return (superpages_enabled && (pmap->pm_flags & PMAP_PDE_SUPERPAGE) != 0);
930 }
931 
932 static pt_entry_t *
933 pmap_nofault_pte(pmap_t pmap, vm_offset_t va, int *is_l3e)
934 {
935 	pml3_entry_t *l3e;
936 	pt_entry_t *pte;
937 
938 	va &= PG_PS_FRAME;
939 	l3e = pmap_pml3e(pmap, va);
940 	if (l3e == NULL || (be64toh(*l3e) & PG_V) == 0)
941 		return (NULL);
942 
943 	if (be64toh(*l3e) & RPTE_LEAF) {
944 		*is_l3e = 1;
945 		return (l3e);
946 	}
947 	*is_l3e = 0;
948 	va &= PG_FRAME;
949 	pte = pmap_l3e_to_pte(l3e, va);
950 	if (pte == NULL || (be64toh(*pte) & PG_V) == 0)
951 		return (NULL);
952 	return (pte);
953 }
954 
955 int
956 pmap_nofault(pmap_t pmap, vm_offset_t va, vm_prot_t flags)
957 {
958 	pt_entry_t *pte;
959 	pt_entry_t startpte, origpte, newpte;
960 	vm_page_t m;
961 	int is_l3e;
962 
963 	startpte = 0;
964  retry:
965 	if ((pte = pmap_nofault_pte(pmap, va, &is_l3e)) == NULL)
966 		return (KERN_INVALID_ADDRESS);
967 	origpte = newpte = be64toh(*pte);
968 	if (startpte == 0) {
969 		startpte = origpte;
970 		if (((flags & VM_PROT_WRITE) && (startpte & PG_M)) ||
971 		    ((flags & VM_PROT_READ) && (startpte & PG_A))) {
972 			pmap_invalidate_all(pmap);
973 #ifdef INVARIANTS
974 			if (VERBOSE_PMAP || pmap_logging)
975 				printf("%s(%p, %#lx, %#x) (%#lx) -- invalidate all\n",
976 				    __func__, pmap, va, flags, origpte);
977 #endif
978 			return (KERN_FAILURE);
979 		}
980 	}
981 #ifdef INVARIANTS
982 	if (VERBOSE_PMAP || pmap_logging)
983 		printf("%s(%p, %#lx, %#x) (%#lx)\n", __func__, pmap, va,
984 		    flags, origpte);
985 #endif
986 	PMAP_LOCK(pmap);
987 	if ((pte = pmap_nofault_pte(pmap, va, &is_l3e)) == NULL ||
988 	    be64toh(*pte) != origpte) {
989 		PMAP_UNLOCK(pmap);
990 		return (KERN_FAILURE);
991 	}
992 	m = PHYS_TO_VM_PAGE(newpte & PG_FRAME);
993 	MPASS(m != NULL);
994 	switch (flags) {
995 	case VM_PROT_READ:
996 		if ((newpte & (RPTE_EAA_R|RPTE_EAA_X)) == 0)
997 			goto protfail;
998 		newpte |= PG_A;
999 		vm_page_aflag_set(m, PGA_REFERENCED);
1000 		break;
1001 	case VM_PROT_WRITE:
1002 		if ((newpte & RPTE_EAA_W) == 0)
1003 			goto protfail;
1004 		if (is_l3e)
1005 			goto protfail;
1006 		newpte |= PG_M;
1007 		vm_page_dirty(m);
1008 		break;
1009 	case VM_PROT_EXECUTE:
1010 		if ((newpte & RPTE_EAA_X) == 0)
1011 			goto protfail;
1012 		newpte |= PG_A;
1013 		vm_page_aflag_set(m, PGA_REFERENCED);
1014 		break;
1015 	}
1016 
1017 	if (!atomic_cmpset_long(pte, htobe64(origpte), htobe64(newpte)))
1018 		goto retry;
1019 	ptesync();
1020 	PMAP_UNLOCK(pmap);
1021 	if (startpte == newpte)
1022 		return (KERN_FAILURE);
1023 	return (0);
1024  protfail:
1025 	PMAP_UNLOCK(pmap);
1026 	return (KERN_PROTECTION_FAILURE);
1027 }
1028 
1029 /*
1030  * Returns TRUE if the given page is mapped individually or as part of
1031  * a 2mpage.  Otherwise, returns FALSE.
1032  */
1033 boolean_t
1034 mmu_radix_page_is_mapped(vm_page_t m)
1035 {
1036 	struct rwlock *lock;
1037 	boolean_t rv;
1038 
1039 	if ((m->oflags & VPO_UNMANAGED) != 0)
1040 		return (FALSE);
1041 	lock = VM_PAGE_TO_PV_LIST_LOCK(m);
1042 	rw_rlock(lock);
1043 	rv = !TAILQ_EMPTY(&m->md.pv_list) ||
1044 	    ((m->flags & PG_FICTITIOUS) == 0 &&
1045 	    !TAILQ_EMPTY(&pa_to_pvh(VM_PAGE_TO_PHYS(m))->pv_list));
1046 	rw_runlock(lock);
1047 	return (rv);
1048 }
1049 
1050 /*
1051  * Determine the appropriate bits to set in a PTE or PDE for a specified
1052  * caching mode.
1053  */
1054 static int
1055 pmap_cache_bits(vm_memattr_t ma)
1056 {
1057 	if (ma != VM_MEMATTR_DEFAULT) {
1058 		switch (ma) {
1059 		case VM_MEMATTR_UNCACHEABLE:
1060 			return (RPTE_ATTR_GUARDEDIO);
1061 		case VM_MEMATTR_CACHEABLE:
1062 			return (RPTE_ATTR_MEM);
1063 		case VM_MEMATTR_WRITE_BACK:
1064 		case VM_MEMATTR_PREFETCHABLE:
1065 		case VM_MEMATTR_WRITE_COMBINING:
1066 			return (RPTE_ATTR_UNGUARDEDIO);
1067 		}
1068 	}
1069 	return (0);
1070 }
1071 
1072 static void
1073 pmap_invalidate_page(pmap_t pmap, vm_offset_t start)
1074 {
1075 	ptesync();
1076 	if (pmap == kernel_pmap)
1077 		radix_tlbie_invlpg_kernel_4k(start);
1078 	else
1079 		radix_tlbie_invlpg_user_4k(pmap->pm_pid, start);
1080 	ttusync();
1081 }
1082 
1083 static void
1084 pmap_invalidate_page_2m(pmap_t pmap, vm_offset_t start)
1085 {
1086 	ptesync();
1087 	if (pmap == kernel_pmap)
1088 		radix_tlbie_invlpg_kernel_2m(start);
1089 	else
1090 		radix_tlbie_invlpg_user_2m(pmap->pm_pid, start);
1091 	ttusync();
1092 }
1093 
1094 static void
1095 pmap_invalidate_pwc(pmap_t pmap)
1096 {
1097 	ptesync();
1098 	if (pmap == kernel_pmap)
1099 		radix_tlbie_invlpwc_kernel();
1100 	else
1101 		radix_tlbie_invlpwc_user(pmap->pm_pid);
1102 	ttusync();
1103 }
1104 
1105 static void
1106 pmap_invalidate_range(pmap_t pmap, vm_offset_t start, vm_offset_t end)
1107 {
1108 	if (((start - end) >> PAGE_SHIFT) > 8) {
1109 		pmap_invalidate_all(pmap);
1110 		return;
1111 	}
1112 	ptesync();
1113 	if (pmap == kernel_pmap) {
1114 		while (start < end) {
1115 			radix_tlbie_invlpg_kernel_4k(start);
1116 			start += PAGE_SIZE;
1117 		}
1118 	} else {
1119 		while (start < end) {
1120 			radix_tlbie_invlpg_user_4k(pmap->pm_pid, start);
1121 			start += PAGE_SIZE;
1122 		}
1123 	}
1124 	ttusync();
1125 }
1126 
1127 static void
1128 pmap_invalidate_all(pmap_t pmap)
1129 {
1130 	ptesync();
1131 	if (pmap == kernel_pmap)
1132 		radix_tlbie_flush_kernel();
1133 	else
1134 		radix_tlbie_flush_user(pmap->pm_pid);
1135 	ttusync();
1136 }
1137 
1138 static void
1139 pmap_invalidate_l3e_page(pmap_t pmap, vm_offset_t va, pml3_entry_t l3e)
1140 {
1141 
1142 	/*
1143 	 * When the PDE has PG_PROMOTED set, the 2MB page mapping was created
1144 	 * by a promotion that did not invalidate the 512 4KB page mappings
1145 	 * that might exist in the TLB.  Consequently, at this point, the TLB
1146 	 * may hold both 4KB and 2MB page mappings for the address range [va,
1147 	 * va + L3_PAGE_SIZE).  Therefore, the entire range must be invalidated here.
1148 	 * In contrast, when PG_PROMOTED is clear, the TLB will not hold any
1149 	 * 4KB page mappings for the address range [va, va + L3_PAGE_SIZE), and so a
1150 	 * single INVLPG suffices to invalidate the 2MB page mapping from the
1151 	 * TLB.
1152 	 */
1153 	ptesync();
1154 	if ((l3e & PG_PROMOTED) != 0)
1155 		pmap_invalidate_range(pmap, va, va + L3_PAGE_SIZE - 1);
1156 	else
1157 		pmap_invalidate_page_2m(pmap, va);
1158 
1159 	pmap_invalidate_pwc(pmap);
1160 }
1161 
1162 static __inline struct pv_chunk *
1163 pv_to_chunk(pv_entry_t pv)
1164 {
1165 
1166 	return ((struct pv_chunk *)((uintptr_t)pv & ~(uintptr_t)PAGE_MASK));
1167 }
1168 
1169 #define PV_PMAP(pv) (pv_to_chunk(pv)->pc_pmap)
1170 
1171 #define	PC_FREE0	0xfffffffffffffffful
1172 #define	PC_FREE1	0x3ffffffffffffffful
1173 
1174 static const uint64_t pc_freemask[_NPCM] = { PC_FREE0, PC_FREE1 };
1175 
1176 /*
1177  * Ensure that the number of spare PV entries in the specified pmap meets or
1178  * exceeds the given count, "needed".
1179  *
1180  * The given PV list lock may be released.
1181  */
1182 static void
1183 reserve_pv_entries(pmap_t pmap, int needed, struct rwlock **lockp)
1184 {
1185 	struct pch new_tail;
1186 	struct pv_chunk *pc;
1187 	vm_page_t m;
1188 	int avail, free;
1189 	bool reclaimed;
1190 
1191 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1192 	KASSERT(lockp != NULL, ("reserve_pv_entries: lockp is NULL"));
1193 
1194 	/*
1195 	 * Newly allocated PV chunks must be stored in a private list until
1196 	 * the required number of PV chunks have been allocated.  Otherwise,
1197 	 * reclaim_pv_chunk() could recycle one of these chunks.  In
1198 	 * contrast, these chunks must be added to the pmap upon allocation.
1199 	 */
1200 	TAILQ_INIT(&new_tail);
1201 retry:
1202 	avail = 0;
1203 	TAILQ_FOREACH(pc, &pmap->pm_pvchunk, pc_list) {
1204 		//		if ((cpu_feature2 & CPUID2_POPCNT) == 0)
1205 		bit_count((bitstr_t *)pc->pc_map, 0,
1206 				  sizeof(pc->pc_map) * NBBY, &free);
1207 #if 0
1208 		free = popcnt_pc_map_pq(pc->pc_map);
1209 #endif
1210 		if (free == 0)
1211 			break;
1212 		avail += free;
1213 		if (avail >= needed)
1214 			break;
1215 	}
1216 	for (reclaimed = false; avail < needed; avail += _NPCPV) {
1217 		m = vm_page_alloc(NULL, 0, VM_ALLOC_NORMAL | VM_ALLOC_NOOBJ |
1218 		    VM_ALLOC_WIRED);
1219 		if (m == NULL) {
1220 			m = reclaim_pv_chunk(pmap, lockp);
1221 			if (m == NULL)
1222 				goto retry;
1223 			reclaimed = true;
1224 		}
1225 		PV_STAT(atomic_add_int(&pc_chunk_count, 1));
1226 		PV_STAT(atomic_add_int(&pc_chunk_allocs, 1));
1227 		dump_add_page(m->phys_addr);
1228 		pc = (void *)PHYS_TO_DMAP(m->phys_addr);
1229 		pc->pc_pmap = pmap;
1230 		pc->pc_map[0] = PC_FREE0;
1231 		pc->pc_map[1] = PC_FREE1;
1232 		TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
1233 		TAILQ_INSERT_TAIL(&new_tail, pc, pc_lru);
1234 		PV_STAT(atomic_add_int(&pv_entry_spare, _NPCPV));
1235 
1236 		/*
1237 		 * The reclaim might have freed a chunk from the current pmap.
1238 		 * If that chunk contained available entries, we need to
1239 		 * re-count the number of available entries.
1240 		 */
1241 		if (reclaimed)
1242 			goto retry;
1243 	}
1244 	if (!TAILQ_EMPTY(&new_tail)) {
1245 		mtx_lock(&pv_chunks_mutex);
1246 		TAILQ_CONCAT(&pv_chunks, &new_tail, pc_lru);
1247 		mtx_unlock(&pv_chunks_mutex);
1248 	}
1249 }
1250 
1251 /*
1252  * First find and then remove the pv entry for the specified pmap and virtual
1253  * address from the specified pv list.  Returns the pv entry if found and NULL
1254  * otherwise.  This operation can be performed on pv lists for either 4KB or
1255  * 2MB page mappings.
1256  */
1257 static __inline pv_entry_t
1258 pmap_pvh_remove(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
1259 {
1260 	pv_entry_t pv;
1261 
1262 	TAILQ_FOREACH(pv, &pvh->pv_list, pv_link) {
1263 #ifdef INVARIANTS
1264 		if (PV_PMAP(pv) == NULL) {
1265 			printf("corrupted pv_chunk/pv %p\n", pv);
1266 			printf("pv_chunk: %64D\n", pv_to_chunk(pv), ":");
1267 		}
1268 		MPASS(PV_PMAP(pv) != NULL);
1269 		MPASS(pv->pv_va != 0);
1270 #endif
1271 		if (pmap == PV_PMAP(pv) && va == pv->pv_va) {
1272 			TAILQ_REMOVE(&pvh->pv_list, pv, pv_link);
1273 			pvh->pv_gen++;
1274 			break;
1275 		}
1276 	}
1277 	return (pv);
1278 }
1279 
1280 /*
1281  * After demotion from a 2MB page mapping to 512 4KB page mappings,
1282  * destroy the pv entry for the 2MB page mapping and reinstantiate the pv
1283  * entries for each of the 4KB page mappings.
1284  */
1285 static void
1286 pmap_pv_demote_l3e(pmap_t pmap, vm_offset_t va, vm_paddr_t pa,
1287     struct rwlock **lockp)
1288 {
1289 	struct md_page *pvh;
1290 	struct pv_chunk *pc;
1291 	pv_entry_t pv;
1292 	vm_offset_t va_last;
1293 	vm_page_t m;
1294 	int bit, field;
1295 
1296 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1297 	KASSERT((pa & L3_PAGE_MASK) == 0,
1298 	    ("pmap_pv_demote_pde: pa is not 2mpage aligned"));
1299 	CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, pa);
1300 
1301 	/*
1302 	 * Transfer the 2mpage's pv entry for this mapping to the first
1303 	 * page's pv list.  Once this transfer begins, the pv list lock
1304 	 * must not be released until the last pv entry is reinstantiated.
1305 	 */
1306 	pvh = pa_to_pvh(pa);
1307 	va = trunc_2mpage(va);
1308 	pv = pmap_pvh_remove(pvh, pmap, va);
1309 	KASSERT(pv != NULL, ("pmap_pv_demote_pde: pv not found"));
1310 	m = PHYS_TO_VM_PAGE(pa);
1311 	TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_link);
1312 
1313 	m->md.pv_gen++;
1314 	/* Instantiate the remaining NPTEPG - 1 pv entries. */
1315 	PV_STAT(atomic_add_long(&pv_entry_allocs, NPTEPG - 1));
1316 	va_last = va + L3_PAGE_SIZE - PAGE_SIZE;
1317 	for (;;) {
1318 		pc = TAILQ_FIRST(&pmap->pm_pvchunk);
1319 		KASSERT(pc->pc_map[0] != 0 || pc->pc_map[1] != 0
1320 		    , ("pmap_pv_demote_pde: missing spare"));
1321 		for (field = 0; field < _NPCM; field++) {
1322 			while (pc->pc_map[field]) {
1323 				bit = cnttzd(pc->pc_map[field]);
1324 				pc->pc_map[field] &= ~(1ul << bit);
1325 				pv = &pc->pc_pventry[field * 64 + bit];
1326 				va += PAGE_SIZE;
1327 				pv->pv_va = va;
1328 				m++;
1329 				KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1330 			    ("pmap_pv_demote_pde: page %p is not managed", m));
1331 				TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_link);
1332 
1333 				m->md.pv_gen++;
1334 				if (va == va_last)
1335 					goto out;
1336 			}
1337 		}
1338 		TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
1339 		TAILQ_INSERT_TAIL(&pmap->pm_pvchunk, pc, pc_list);
1340 	}
1341 out:
1342 	if (pc->pc_map[0] == 0 && pc->pc_map[1] == 0) {
1343 		TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
1344 		TAILQ_INSERT_TAIL(&pmap->pm_pvchunk, pc, pc_list);
1345 	}
1346 	PV_STAT(atomic_add_long(&pv_entry_count, NPTEPG - 1));
1347 	PV_STAT(atomic_subtract_int(&pv_entry_spare, NPTEPG - 1));
1348 }
1349 
1350 static void
1351 reclaim_pv_chunk_leave_pmap(pmap_t pmap, pmap_t locked_pmap)
1352 {
1353 
1354 	if (pmap == NULL)
1355 		return;
1356 	pmap_invalidate_all(pmap);
1357 	if (pmap != locked_pmap)
1358 		PMAP_UNLOCK(pmap);
1359 }
1360 
1361 /*
1362  * We are in a serious low memory condition.  Resort to
1363  * drastic measures to free some pages so we can allocate
1364  * another pv entry chunk.
1365  *
1366  * Returns NULL if PV entries were reclaimed from the specified pmap.
1367  *
1368  * We do not, however, unmap 2mpages because subsequent accesses will
1369  * allocate per-page pv entries until repromotion occurs, thereby
1370  * exacerbating the shortage of free pv entries.
1371  */
1372 static int active_reclaims = 0;
1373 static vm_page_t
1374 reclaim_pv_chunk(pmap_t locked_pmap, struct rwlock **lockp)
1375 {
1376 	struct pv_chunk *pc, *pc_marker, *pc_marker_end;
1377 	struct pv_chunk_header pc_marker_b, pc_marker_end_b;
1378 	struct md_page *pvh;
1379 	pml3_entry_t *l3e;
1380 	pmap_t next_pmap, pmap;
1381 	pt_entry_t *pte, tpte;
1382 	pv_entry_t pv;
1383 	vm_offset_t va;
1384 	vm_page_t m, m_pc;
1385 	struct spglist free;
1386 	uint64_t inuse;
1387 	int bit, field, freed;
1388 
1389 	PMAP_LOCK_ASSERT(locked_pmap, MA_OWNED);
1390 	KASSERT(lockp != NULL, ("reclaim_pv_chunk: lockp is NULL"));
1391 	pmap = NULL;
1392 	m_pc = NULL;
1393 	SLIST_INIT(&free);
1394 	bzero(&pc_marker_b, sizeof(pc_marker_b));
1395 	bzero(&pc_marker_end_b, sizeof(pc_marker_end_b));
1396 	pc_marker = (struct pv_chunk *)&pc_marker_b;
1397 	pc_marker_end = (struct pv_chunk *)&pc_marker_end_b;
1398 
1399 	mtx_lock(&pv_chunks_mutex);
1400 	active_reclaims++;
1401 	TAILQ_INSERT_HEAD(&pv_chunks, pc_marker, pc_lru);
1402 	TAILQ_INSERT_TAIL(&pv_chunks, pc_marker_end, pc_lru);
1403 	while ((pc = TAILQ_NEXT(pc_marker, pc_lru)) != pc_marker_end &&
1404 	    SLIST_EMPTY(&free)) {
1405 		next_pmap = pc->pc_pmap;
1406 		if (next_pmap == NULL) {
1407 			/*
1408 			 * The next chunk is a marker.  However, it is
1409 			 * not our marker, so active_reclaims must be
1410 			 * > 1.  Consequently, the next_chunk code
1411 			 * will not rotate the pv_chunks list.
1412 			 */
1413 			goto next_chunk;
1414 		}
1415 		mtx_unlock(&pv_chunks_mutex);
1416 
1417 		/*
1418 		 * A pv_chunk can only be removed from the pc_lru list
1419 		 * when both pc_chunks_mutex is owned and the
1420 		 * corresponding pmap is locked.
1421 		 */
1422 		if (pmap != next_pmap) {
1423 			reclaim_pv_chunk_leave_pmap(pmap, locked_pmap);
1424 			pmap = next_pmap;
1425 			/* Avoid deadlock and lock recursion. */
1426 			if (pmap > locked_pmap) {
1427 				RELEASE_PV_LIST_LOCK(lockp);
1428 				PMAP_LOCK(pmap);
1429 				mtx_lock(&pv_chunks_mutex);
1430 				continue;
1431 			} else if (pmap != locked_pmap) {
1432 				if (PMAP_TRYLOCK(pmap)) {
1433 					mtx_lock(&pv_chunks_mutex);
1434 					continue;
1435 				} else {
1436 					pmap = NULL; /* pmap is not locked */
1437 					mtx_lock(&pv_chunks_mutex);
1438 					pc = TAILQ_NEXT(pc_marker, pc_lru);
1439 					if (pc == NULL ||
1440 					    pc->pc_pmap != next_pmap)
1441 						continue;
1442 					goto next_chunk;
1443 				}
1444 			}
1445 		}
1446 
1447 		/*
1448 		 * Destroy every non-wired, 4 KB page mapping in the chunk.
1449 		 */
1450 		freed = 0;
1451 		for (field = 0; field < _NPCM; field++) {
1452 			for (inuse = ~pc->pc_map[field] & pc_freemask[field];
1453 			    inuse != 0; inuse &= ~(1UL << bit)) {
1454 				bit = cnttzd(inuse);
1455 				pv = &pc->pc_pventry[field * 64 + bit];
1456 				va = pv->pv_va;
1457 				l3e = pmap_pml3e(pmap, va);
1458 				if ((be64toh(*l3e) & RPTE_LEAF) != 0)
1459 					continue;
1460 				pte = pmap_l3e_to_pte(l3e, va);
1461 				if ((be64toh(*pte) & PG_W) != 0)
1462 					continue;
1463 				tpte = be64toh(pte_load_clear(pte));
1464 				m = PHYS_TO_VM_PAGE(tpte & PG_FRAME);
1465 				if ((tpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
1466 					vm_page_dirty(m);
1467 				if ((tpte & PG_A) != 0)
1468 					vm_page_aflag_set(m, PGA_REFERENCED);
1469 				CHANGE_PV_LIST_LOCK_TO_VM_PAGE(lockp, m);
1470 				TAILQ_REMOVE(&m->md.pv_list, pv, pv_link);
1471 
1472 				m->md.pv_gen++;
1473 				if (TAILQ_EMPTY(&m->md.pv_list) &&
1474 				    (m->flags & PG_FICTITIOUS) == 0) {
1475 					pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
1476 					if (TAILQ_EMPTY(&pvh->pv_list)) {
1477 						vm_page_aflag_clear(m,
1478 						    PGA_WRITEABLE);
1479 					}
1480 				}
1481 				pc->pc_map[field] |= 1UL << bit;
1482 				pmap_unuse_pt(pmap, va, be64toh(*l3e), &free);
1483 				freed++;
1484 			}
1485 		}
1486 		if (freed == 0) {
1487 			mtx_lock(&pv_chunks_mutex);
1488 			goto next_chunk;
1489 		}
1490 		/* Every freed mapping is for a 4 KB page. */
1491 		pmap_resident_count_dec(pmap, freed);
1492 		PV_STAT(atomic_add_long(&pv_entry_frees, freed));
1493 		PV_STAT(atomic_add_int(&pv_entry_spare, freed));
1494 		PV_STAT(atomic_subtract_long(&pv_entry_count, freed));
1495 		TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
1496 		if (pc->pc_map[0] == PC_FREE0 && pc->pc_map[1] == PC_FREE1) {
1497 			PV_STAT(atomic_subtract_int(&pv_entry_spare, _NPCPV));
1498 			PV_STAT(atomic_subtract_int(&pc_chunk_count, 1));
1499 			PV_STAT(atomic_add_int(&pc_chunk_frees, 1));
1500 			/* Entire chunk is free; return it. */
1501 			m_pc = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t)pc));
1502 			dump_drop_page(m_pc->phys_addr);
1503 			mtx_lock(&pv_chunks_mutex);
1504 			TAILQ_REMOVE(&pv_chunks, pc, pc_lru);
1505 			break;
1506 		}
1507 		TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
1508 		mtx_lock(&pv_chunks_mutex);
1509 		/* One freed pv entry in locked_pmap is sufficient. */
1510 		if (pmap == locked_pmap)
1511 			break;
1512 next_chunk:
1513 		TAILQ_REMOVE(&pv_chunks, pc_marker, pc_lru);
1514 		TAILQ_INSERT_AFTER(&pv_chunks, pc, pc_marker, pc_lru);
1515 		if (active_reclaims == 1 && pmap != NULL) {
1516 			/*
1517 			 * Rotate the pv chunks list so that we do not
1518 			 * scan the same pv chunks that could not be
1519 			 * freed (because they contained a wired
1520 			 * and/or superpage mapping) on every
1521 			 * invocation of reclaim_pv_chunk().
1522 			 */
1523 			while ((pc = TAILQ_FIRST(&pv_chunks)) != pc_marker) {
1524 				MPASS(pc->pc_pmap != NULL);
1525 				TAILQ_REMOVE(&pv_chunks, pc, pc_lru);
1526 				TAILQ_INSERT_TAIL(&pv_chunks, pc, pc_lru);
1527 			}
1528 		}
1529 	}
1530 	TAILQ_REMOVE(&pv_chunks, pc_marker, pc_lru);
1531 	TAILQ_REMOVE(&pv_chunks, pc_marker_end, pc_lru);
1532 	active_reclaims--;
1533 	mtx_unlock(&pv_chunks_mutex);
1534 	reclaim_pv_chunk_leave_pmap(pmap, locked_pmap);
1535 	if (m_pc == NULL && !SLIST_EMPTY(&free)) {
1536 		m_pc = SLIST_FIRST(&free);
1537 		SLIST_REMOVE_HEAD(&free, plinks.s.ss);
1538 		/* Recycle a freed page table page. */
1539 		m_pc->ref_count = 1;
1540 	}
1541 	vm_page_free_pages_toq(&free, true);
1542 	return (m_pc);
1543 }
1544 
1545 /*
1546  * free the pv_entry back to the free list
1547  */
1548 static void
1549 free_pv_entry(pmap_t pmap, pv_entry_t pv)
1550 {
1551 	struct pv_chunk *pc;
1552 	int idx, field, bit;
1553 
1554 #ifdef VERBOSE_PV
1555 	if (pmap != kernel_pmap)
1556 		printf("%s(%p, %p)\n", __func__, pmap, pv);
1557 #endif
1558 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1559 	PV_STAT(atomic_add_long(&pv_entry_frees, 1));
1560 	PV_STAT(atomic_add_int(&pv_entry_spare, 1));
1561 	PV_STAT(atomic_subtract_long(&pv_entry_count, 1));
1562 	pc = pv_to_chunk(pv);
1563 	idx = pv - &pc->pc_pventry[0];
1564 	field = idx / 64;
1565 	bit = idx % 64;
1566 	pc->pc_map[field] |= 1ul << bit;
1567 	if (pc->pc_map[0] != PC_FREE0 || pc->pc_map[1] != PC_FREE1) {
1568 		/* 98% of the time, pc is already at the head of the list. */
1569 		if (__predict_false(pc != TAILQ_FIRST(&pmap->pm_pvchunk))) {
1570 			TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
1571 			TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
1572 		}
1573 		return;
1574 	}
1575 	TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
1576 	free_pv_chunk(pc);
1577 }
1578 
1579 static void
1580 free_pv_chunk(struct pv_chunk *pc)
1581 {
1582 	vm_page_t m;
1583 
1584 	mtx_lock(&pv_chunks_mutex);
1585  	TAILQ_REMOVE(&pv_chunks, pc, pc_lru);
1586 	mtx_unlock(&pv_chunks_mutex);
1587 	PV_STAT(atomic_subtract_int(&pv_entry_spare, _NPCPV));
1588 	PV_STAT(atomic_subtract_int(&pc_chunk_count, 1));
1589 	PV_STAT(atomic_add_int(&pc_chunk_frees, 1));
1590 	/* entire chunk is free, return it */
1591 	m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t)pc));
1592 	dump_drop_page(m->phys_addr);
1593 	vm_page_unwire_noq(m);
1594 	vm_page_free(m);
1595 }
1596 
1597 /*
1598  * Returns a new PV entry, allocating a new PV chunk from the system when
1599  * needed.  If this PV chunk allocation fails and a PV list lock pointer was
1600  * given, a PV chunk is reclaimed from an arbitrary pmap.  Otherwise, NULL is
1601  * returned.
1602  *
1603  * The given PV list lock may be released.
1604  */
1605 static pv_entry_t
1606 get_pv_entry(pmap_t pmap, struct rwlock **lockp)
1607 {
1608 	int bit, field;
1609 	pv_entry_t pv;
1610 	struct pv_chunk *pc;
1611 	vm_page_t m;
1612 
1613 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1614 	PV_STAT(atomic_add_long(&pv_entry_allocs, 1));
1615 retry:
1616 	pc = TAILQ_FIRST(&pmap->pm_pvchunk);
1617 	if (pc != NULL) {
1618 		for (field = 0; field < _NPCM; field++) {
1619 			if (pc->pc_map[field]) {
1620 				bit = cnttzd(pc->pc_map[field]);
1621 				break;
1622 			}
1623 		}
1624 		if (field < _NPCM) {
1625 			pv = &pc->pc_pventry[field * 64 + bit];
1626 			pc->pc_map[field] &= ~(1ul << bit);
1627 			/* If this was the last item, move it to tail */
1628 			if (pc->pc_map[0] == 0 && pc->pc_map[1] == 0) {
1629 				TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
1630 				TAILQ_INSERT_TAIL(&pmap->pm_pvchunk, pc,
1631 				    pc_list);
1632 			}
1633 			PV_STAT(atomic_add_long(&pv_entry_count, 1));
1634 			PV_STAT(atomic_subtract_int(&pv_entry_spare, 1));
1635 			MPASS(PV_PMAP(pv) != NULL);
1636 			return (pv);
1637 		}
1638 	}
1639 	/* No free items, allocate another chunk */
1640 	m = vm_page_alloc(NULL, 0, VM_ALLOC_NORMAL | VM_ALLOC_NOOBJ |
1641 	    VM_ALLOC_WIRED);
1642 	if (m == NULL) {
1643 		if (lockp == NULL) {
1644 			PV_STAT(pc_chunk_tryfail++);
1645 			return (NULL);
1646 		}
1647 		m = reclaim_pv_chunk(pmap, lockp);
1648 		if (m == NULL)
1649 			goto retry;
1650 	}
1651 	PV_STAT(atomic_add_int(&pc_chunk_count, 1));
1652 	PV_STAT(atomic_add_int(&pc_chunk_allocs, 1));
1653 	dump_add_page(m->phys_addr);
1654 	pc = (void *)PHYS_TO_DMAP(m->phys_addr);
1655 	pc->pc_pmap = pmap;
1656 	pc->pc_map[0] = PC_FREE0 & ~1ul;	/* preallocated bit 0 */
1657 	pc->pc_map[1] = PC_FREE1;
1658 	mtx_lock(&pv_chunks_mutex);
1659 	TAILQ_INSERT_TAIL(&pv_chunks, pc, pc_lru);
1660 	mtx_unlock(&pv_chunks_mutex);
1661 	pv = &pc->pc_pventry[0];
1662 	TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
1663 	PV_STAT(atomic_add_long(&pv_entry_count, 1));
1664 	PV_STAT(atomic_add_int(&pv_entry_spare, _NPCPV - 1));
1665 	MPASS(PV_PMAP(pv) != NULL);
1666 	return (pv);
1667 }
1668 
1669 #if VM_NRESERVLEVEL > 0
1670 /*
1671  * After promotion from 512 4KB page mappings to a single 2MB page mapping,
1672  * replace the many pv entries for the 4KB page mappings by a single pv entry
1673  * for the 2MB page mapping.
1674  */
1675 static void
1676 pmap_pv_promote_l3e(pmap_t pmap, vm_offset_t va, vm_paddr_t pa,
1677     struct rwlock **lockp)
1678 {
1679 	struct md_page *pvh;
1680 	pv_entry_t pv;
1681 	vm_offset_t va_last;
1682 	vm_page_t m;
1683 
1684 	KASSERT((pa & L3_PAGE_MASK) == 0,
1685 	    ("pmap_pv_promote_pde: pa is not 2mpage aligned"));
1686 	CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, pa);
1687 
1688 	/*
1689 	 * Transfer the first page's pv entry for this mapping to the 2mpage's
1690 	 * pv list.  Aside from avoiding the cost of a call to get_pv_entry(),
1691 	 * a transfer avoids the possibility that get_pv_entry() calls
1692 	 * reclaim_pv_chunk() and that reclaim_pv_chunk() removes one of the
1693 	 * mappings that is being promoted.
1694 	 */
1695 	m = PHYS_TO_VM_PAGE(pa);
1696 	va = trunc_2mpage(va);
1697 	pv = pmap_pvh_remove(&m->md, pmap, va);
1698 	KASSERT(pv != NULL, ("pmap_pv_promote_pde: pv not found"));
1699 	pvh = pa_to_pvh(pa);
1700 	TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_link);
1701 	pvh->pv_gen++;
1702 	/* Free the remaining NPTEPG - 1 pv entries. */
1703 	va_last = va + L3_PAGE_SIZE - PAGE_SIZE;
1704 	do {
1705 		m++;
1706 		va += PAGE_SIZE;
1707 		pmap_pvh_free(&m->md, pmap, va);
1708 	} while (va < va_last);
1709 }
1710 #endif /* VM_NRESERVLEVEL > 0 */
1711 
1712 /*
1713  * First find and then destroy the pv entry for the specified pmap and virtual
1714  * address.  This operation can be performed on pv lists for either 4KB or 2MB
1715  * page mappings.
1716  */
1717 static void
1718 pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
1719 {
1720 	pv_entry_t pv;
1721 
1722 	pv = pmap_pvh_remove(pvh, pmap, va);
1723 	KASSERT(pv != NULL, ("pmap_pvh_free: pv not found"));
1724 	free_pv_entry(pmap, pv);
1725 }
1726 
1727 /*
1728  * Conditionally create the PV entry for a 4KB page mapping if the required
1729  * memory can be allocated without resorting to reclamation.
1730  */
1731 static boolean_t
1732 pmap_try_insert_pv_entry(pmap_t pmap, vm_offset_t va, vm_page_t m,
1733     struct rwlock **lockp)
1734 {
1735 	pv_entry_t pv;
1736 
1737 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1738 	/* Pass NULL instead of the lock pointer to disable reclamation. */
1739 	if ((pv = get_pv_entry(pmap, NULL)) != NULL) {
1740 		pv->pv_va = va;
1741 		CHANGE_PV_LIST_LOCK_TO_VM_PAGE(lockp, m);
1742 		TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_link);
1743 		m->md.pv_gen++;
1744 		return (TRUE);
1745 	} else
1746 		return (FALSE);
1747 }
1748 
1749 vm_paddr_t phys_avail_debug[2 * VM_PHYSSEG_MAX];
1750 #ifdef INVARIANTS
1751 static void
1752 validate_addr(vm_paddr_t addr, vm_size_t size)
1753 {
1754 	vm_paddr_t end = addr + size;
1755 	bool found = false;
1756 
1757 	for (int i = 0; i < 2 * phys_avail_count; i += 2) {
1758 		if (addr >= phys_avail_debug[i] &&
1759 			end <= phys_avail_debug[i + 1]) {
1760 			found = true;
1761 			break;
1762 		}
1763 	}
1764 	KASSERT(found, ("%#lx-%#lx outside of initial phys_avail array",
1765 					addr, end));
1766 }
1767 #else
1768 static void validate_addr(vm_paddr_t addr, vm_size_t size) {}
1769 #endif
1770 #define DMAP_PAGE_BITS (RPTE_VALID | RPTE_LEAF | RPTE_EAA_MASK | PG_M | PG_A)
1771 
1772 static vm_paddr_t
1773 alloc_pt_page(void)
1774 {
1775 	vm_paddr_t page;
1776 
1777 	page = allocpages(1);
1778 	pagezero(PHYS_TO_DMAP(page));
1779 	return (page);
1780 }
1781 
1782 static void
1783 mmu_radix_dmap_range(vm_paddr_t start, vm_paddr_t end)
1784 {
1785 	pt_entry_t *pte, pteval;
1786 	vm_paddr_t page;
1787 
1788 	if (bootverbose)
1789 		printf("%s %lx -> %lx\n", __func__, start, end);
1790 	while (start < end) {
1791 		pteval = start | DMAP_PAGE_BITS;
1792 		pte = pmap_pml1e(kernel_pmap, PHYS_TO_DMAP(start));
1793 		if ((be64toh(*pte) & RPTE_VALID) == 0) {
1794 			page = alloc_pt_page();
1795 			pde_store(pte, page);
1796 		}
1797 		pte = pmap_l1e_to_l2e(pte, PHYS_TO_DMAP(start));
1798 		if ((start & L2_PAGE_MASK) == 0 &&
1799 			end - start >= L2_PAGE_SIZE) {
1800 			start += L2_PAGE_SIZE;
1801 			goto done;
1802 		} else if ((be64toh(*pte) & RPTE_VALID) == 0) {
1803 			page = alloc_pt_page();
1804 			pde_store(pte, page);
1805 		}
1806 
1807 		pte = pmap_l2e_to_l3e(pte, PHYS_TO_DMAP(start));
1808 		if ((start & L3_PAGE_MASK) == 0 &&
1809 			end - start >= L3_PAGE_SIZE) {
1810 			start += L3_PAGE_SIZE;
1811 			goto done;
1812 		} else if ((be64toh(*pte) & RPTE_VALID) == 0) {
1813 			page = alloc_pt_page();
1814 			pde_store(pte, page);
1815 		}
1816 		pte = pmap_l3e_to_pte(pte, PHYS_TO_DMAP(start));
1817 		start += PAGE_SIZE;
1818 	done:
1819 		pte_store(pte, pteval);
1820 	}
1821 }
1822 
1823 static void
1824 mmu_radix_dmap_populate(vm_size_t hwphyssz)
1825 {
1826 	vm_paddr_t start, end;
1827 
1828 	for (int i = 0; i < pregions_sz; i++) {
1829 		start = pregions[i].mr_start;
1830 		end = start + pregions[i].mr_size;
1831 		if (hwphyssz && start >= hwphyssz)
1832 			break;
1833 		if (hwphyssz && hwphyssz < end)
1834 			end = hwphyssz;
1835 		mmu_radix_dmap_range(start, end);
1836 	}
1837 }
1838 
1839 static void
1840 mmu_radix_setup_pagetables(vm_size_t hwphyssz)
1841 {
1842 	vm_paddr_t ptpages, pages;
1843 	pt_entry_t *pte;
1844 	vm_paddr_t l1phys;
1845 
1846 	bzero(kernel_pmap, sizeof(struct pmap));
1847 	PMAP_LOCK_INIT(kernel_pmap);
1848 
1849 	ptpages = allocpages(3);
1850 	l1phys = moea64_bootstrap_alloc(RADIX_PGD_SIZE, RADIX_PGD_SIZE);
1851 	validate_addr(l1phys, RADIX_PGD_SIZE);
1852 	if (bootverbose)
1853 		printf("l1phys=%lx\n", l1phys);
1854 	MPASS((l1phys & (RADIX_PGD_SIZE-1)) == 0);
1855 	for (int i = 0; i < RADIX_PGD_SIZE/PAGE_SIZE; i++)
1856 		pagezero(PHYS_TO_DMAP(l1phys + i * PAGE_SIZE));
1857 	kernel_pmap->pm_pml1 = (pml1_entry_t *)PHYS_TO_DMAP(l1phys);
1858 
1859 	mmu_radix_dmap_populate(hwphyssz);
1860 
1861 	/*
1862 	 * Create page tables for first 128MB of KVA
1863 	 */
1864 	pages = ptpages;
1865 	pte = pmap_pml1e(kernel_pmap, VM_MIN_KERNEL_ADDRESS);
1866 	*pte = htobe64(pages | RPTE_VALID | RPTE_SHIFT);
1867 	pages += PAGE_SIZE;
1868 	pte = pmap_l1e_to_l2e(pte, VM_MIN_KERNEL_ADDRESS);
1869 	*pte = htobe64(pages | RPTE_VALID | RPTE_SHIFT);
1870 	pages += PAGE_SIZE;
1871 	pte = pmap_l2e_to_l3e(pte, VM_MIN_KERNEL_ADDRESS);
1872 	/*
1873 	 * the kernel page table pages need to be preserved in
1874 	 * phys_avail and not overlap with previous  allocations
1875 	 */
1876 	pages = allocpages(nkpt);
1877 	if (bootverbose) {
1878 		printf("phys_avail after dmap populate and nkpt allocation\n");
1879 		for (int j = 0; j < 2 * phys_avail_count; j+=2)
1880 			printf("phys_avail[%d]=%08lx - phys_avail[%d]=%08lx\n",
1881 				   j, phys_avail[j], j + 1, phys_avail[j + 1]);
1882 	}
1883 	KPTphys = pages;
1884 	for (int i = 0; i < nkpt; i++, pte++, pages += PAGE_SIZE)
1885 		*pte = htobe64(pages | RPTE_VALID | RPTE_SHIFT);
1886 	kernel_vm_end = VM_MIN_KERNEL_ADDRESS + nkpt * L3_PAGE_SIZE;
1887 	if (bootverbose)
1888 		printf("kernel_pmap pml1 %p\n", kernel_pmap->pm_pml1);
1889 	/*
1890 	 * Add a physical memory segment (vm_phys_seg) corresponding to the
1891 	 * preallocated kernel page table pages so that vm_page structures
1892 	 * representing these pages will be created.  The vm_page structures
1893 	 * are required for promotion of the corresponding kernel virtual
1894 	 * addresses to superpage mappings.
1895 	 */
1896 	vm_phys_add_seg(KPTphys, KPTphys + ptoa(nkpt));
1897 }
1898 
1899 static void
1900 mmu_radix_early_bootstrap(vm_offset_t start, vm_offset_t end)
1901 {
1902 	vm_paddr_t	kpstart, kpend;
1903 	vm_size_t	physsz, hwphyssz;
1904 	//uint64_t	l2virt;
1905 	int		rm_pavail, proctab_size;
1906 	int		i, j;
1907 
1908 	kpstart = start & ~DMAP_BASE_ADDRESS;
1909 	kpend = end & ~DMAP_BASE_ADDRESS;
1910 
1911 	/* Get physical memory regions from firmware */
1912 	mem_regions(&pregions, &pregions_sz, &regions, &regions_sz);
1913 	CTR0(KTR_PMAP, "mmu_radix_early_bootstrap: physical memory");
1914 
1915 	if (2 * VM_PHYSSEG_MAX < regions_sz)
1916 		panic("mmu_radix_early_bootstrap: phys_avail too small");
1917 
1918 	if (bootverbose)
1919 		for (int i = 0; i < regions_sz; i++)
1920 			printf("regions[%d].mr_start=%lx regions[%d].mr_size=%lx\n",
1921 			    i, regions[i].mr_start, i, regions[i].mr_size);
1922 	/*
1923 	 * XXX workaround a simulator bug
1924 	 */
1925 	for (int i = 0; i < regions_sz; i++)
1926 		if (regions[i].mr_start & PAGE_MASK) {
1927 			regions[i].mr_start += PAGE_MASK;
1928 			regions[i].mr_start &= ~PAGE_MASK;
1929 			regions[i].mr_size &= ~PAGE_MASK;
1930 		}
1931 	if (bootverbose)
1932 		for (int i = 0; i < pregions_sz; i++)
1933 			printf("pregions[%d].mr_start=%lx pregions[%d].mr_size=%lx\n",
1934 			    i, pregions[i].mr_start, i, pregions[i].mr_size);
1935 
1936 	phys_avail_count = 0;
1937 	physsz = 0;
1938 	hwphyssz = 0;
1939 	TUNABLE_ULONG_FETCH("hw.physmem", (u_long *) &hwphyssz);
1940 	for (i = 0, j = 0; i < regions_sz; i++) {
1941 		if (bootverbose)
1942 			printf("regions[%d].mr_start=%016lx regions[%d].mr_size=%016lx\n",
1943 			    i, regions[i].mr_start, i, regions[i].mr_size);
1944 
1945 		if (regions[i].mr_size < PAGE_SIZE)
1946 			continue;
1947 
1948 		if (hwphyssz != 0 &&
1949 		    (physsz + regions[i].mr_size) >= hwphyssz) {
1950 			if (physsz < hwphyssz) {
1951 				phys_avail[j] = regions[i].mr_start;
1952 				phys_avail[j + 1] = regions[i].mr_start +
1953 				    (hwphyssz - physsz);
1954 				physsz = hwphyssz;
1955 				phys_avail_count++;
1956 				dump_avail[j] = phys_avail[j];
1957 				dump_avail[j + 1] = phys_avail[j + 1];
1958 			}
1959 			break;
1960 		}
1961 		phys_avail[j] = regions[i].mr_start;
1962 		phys_avail[j + 1] = regions[i].mr_start + regions[i].mr_size;
1963 		dump_avail[j] = phys_avail[j];
1964 		dump_avail[j + 1] = phys_avail[j + 1];
1965 
1966 		phys_avail_count++;
1967 		physsz += regions[i].mr_size;
1968 		j += 2;
1969 	}
1970 
1971 	/* Check for overlap with the kernel and exception vectors */
1972 	rm_pavail = 0;
1973 	for (j = 0; j < 2 * phys_avail_count; j+=2) {
1974 		if (phys_avail[j] < EXC_LAST)
1975 			phys_avail[j] += EXC_LAST;
1976 
1977 		if (phys_avail[j] >= kpstart &&
1978 		    phys_avail[j + 1] <= kpend) {
1979 			phys_avail[j] = phys_avail[j + 1] = ~0;
1980 			rm_pavail++;
1981 			continue;
1982 		}
1983 
1984 		if (kpstart >= phys_avail[j] &&
1985 		    kpstart < phys_avail[j + 1]) {
1986 			if (kpend < phys_avail[j + 1]) {
1987 				phys_avail[2 * phys_avail_count] =
1988 				    (kpend & ~PAGE_MASK) + PAGE_SIZE;
1989 				phys_avail[2 * phys_avail_count + 1] =
1990 				    phys_avail[j + 1];
1991 				phys_avail_count++;
1992 			}
1993 
1994 			phys_avail[j + 1] = kpstart & ~PAGE_MASK;
1995 		}
1996 
1997 		if (kpend >= phys_avail[j] &&
1998 		    kpend < phys_avail[j + 1]) {
1999 			if (kpstart > phys_avail[j]) {
2000 				phys_avail[2 * phys_avail_count] = phys_avail[j];
2001 				phys_avail[2 * phys_avail_count + 1] =
2002 				    kpstart & ~PAGE_MASK;
2003 				phys_avail_count++;
2004 			}
2005 
2006 			phys_avail[j] = (kpend & ~PAGE_MASK) +
2007 			    PAGE_SIZE;
2008 		}
2009 	}
2010 	qsort(phys_avail, 2 * phys_avail_count, sizeof(phys_avail[0]), pa_cmp);
2011 	for (i = 0; i < 2 * phys_avail_count; i++)
2012 		phys_avail_debug[i] = phys_avail[i];
2013 
2014 	/* Remove physical available regions marked for removal (~0) */
2015 	if (rm_pavail) {
2016 		phys_avail_count -= rm_pavail;
2017 		for (i = 2 * phys_avail_count;
2018 		     i < 2*(phys_avail_count + rm_pavail); i+=2)
2019 			phys_avail[i] = phys_avail[i + 1] = 0;
2020 	}
2021 	if (bootverbose) {
2022 		printf("phys_avail ranges after filtering:\n");
2023 		for (j = 0; j < 2 * phys_avail_count; j+=2)
2024 			printf("phys_avail[%d]=%08lx - phys_avail[%d]=%08lx\n",
2025 				   j, phys_avail[j], j + 1, phys_avail[j + 1]);
2026 	}
2027 	physmem = btoc(physsz);
2028 
2029 	/* XXX assume we're running non-virtualized and
2030 	 * we don't support BHYVE
2031 	 */
2032 	if (isa3_pid_bits == 0)
2033 		isa3_pid_bits = 20;
2034 	if (powernv_enabled) {
2035 		parttab_phys =
2036 		    moea64_bootstrap_alloc(PARTTAB_SIZE, PARTTAB_SIZE);
2037 		validate_addr(parttab_phys, PARTTAB_SIZE);
2038 		for (int i = 0; i < PARTTAB_SIZE/PAGE_SIZE; i++)
2039 			pagezero(PHYS_TO_DMAP(parttab_phys + i * PAGE_SIZE));
2040 
2041 	}
2042 	proctab_size = 1UL << PROCTAB_SIZE_SHIFT;
2043 	proctab0pa = moea64_bootstrap_alloc(proctab_size, proctab_size);
2044 	validate_addr(proctab0pa, proctab_size);
2045 	for (int i = 0; i < proctab_size/PAGE_SIZE; i++)
2046 		pagezero(PHYS_TO_DMAP(proctab0pa + i * PAGE_SIZE));
2047 
2048 	mmu_radix_setup_pagetables(hwphyssz);
2049 }
2050 
2051 static void
2052 mmu_radix_late_bootstrap(vm_offset_t start, vm_offset_t end)
2053 {
2054 	int		i;
2055 	vm_paddr_t	pa;
2056 	void		*dpcpu;
2057 	vm_offset_t va;
2058 
2059 	/*
2060 	 * Set up the Open Firmware pmap and add its mappings if not in real
2061 	 * mode.
2062 	 */
2063 	if (bootverbose)
2064 		printf("%s enter\n", __func__);
2065 
2066 	/*
2067 	 * Calculate the last available physical address, and reserve the
2068 	 * vm_page_array (upper bound).
2069 	 */
2070 	Maxmem = 0;
2071 	for (i = 0; phys_avail[i + 2] != 0; i += 2)
2072 		Maxmem = MAX(Maxmem, powerpc_btop(phys_avail[i + 1]));
2073 
2074 	/*
2075 	 * Set the start and end of kva.
2076 	 */
2077 	virtual_avail = VM_MIN_KERNEL_ADDRESS;
2078 	virtual_end = VM_MAX_SAFE_KERNEL_ADDRESS;
2079 
2080 	/*
2081 	 * Remap any early IO mappings (console framebuffer, etc.)
2082 	 */
2083 	bs_remap_earlyboot();
2084 
2085 	/*
2086 	 * Allocate a kernel stack with a guard page for thread0 and map it
2087 	 * into the kernel page map.
2088 	 */
2089 	pa = allocpages(kstack_pages);
2090 	va = virtual_avail + KSTACK_GUARD_PAGES * PAGE_SIZE;
2091 	virtual_avail = va + kstack_pages * PAGE_SIZE;
2092 	CTR2(KTR_PMAP, "moea64_bootstrap: kstack0 at %#x (%#x)", pa, va);
2093 	thread0.td_kstack = va;
2094 	for (i = 0; i < kstack_pages; i++) {
2095 		mmu_radix_kenter(va, pa);
2096 		pa += PAGE_SIZE;
2097 		va += PAGE_SIZE;
2098 	}
2099 	thread0.td_kstack_pages = kstack_pages;
2100 
2101 	/*
2102 	 * Allocate virtual address space for the message buffer.
2103 	 */
2104 	pa = msgbuf_phys = allocpages((msgbufsize + PAGE_MASK)  >> PAGE_SHIFT);
2105 	msgbufp = (struct msgbuf *)PHYS_TO_DMAP(pa);
2106 
2107 	/*
2108 	 * Allocate virtual address space for the dynamic percpu area.
2109 	 */
2110 	pa = allocpages(DPCPU_SIZE >> PAGE_SHIFT);
2111 	dpcpu = (void *)PHYS_TO_DMAP(pa);
2112 	dpcpu_init(dpcpu, curcpu);
2113 
2114 	crashdumpmap = (caddr_t)virtual_avail;
2115 	virtual_avail += MAXDUMPPGS * PAGE_SIZE;
2116 
2117 	/*
2118 	 * Reserve some special page table entries/VA space for temporary
2119 	 * mapping of pages.
2120 	 */
2121 }
2122 
2123 static void
2124 mmu_parttab_init(void)
2125 {
2126 	uint64_t ptcr;
2127 
2128 	isa3_parttab = (struct pate *)PHYS_TO_DMAP(parttab_phys);
2129 
2130 	if (bootverbose)
2131 		printf("%s parttab: %p\n", __func__, isa3_parttab);
2132 	ptcr = parttab_phys | (PARTTAB_SIZE_SHIFT-12);
2133 	if (bootverbose)
2134 		printf("setting ptcr %lx\n", ptcr);
2135 	mtspr(SPR_PTCR, ptcr);
2136 }
2137 
2138 static void
2139 mmu_parttab_update(uint64_t lpid, uint64_t pagetab, uint64_t proctab)
2140 {
2141 	uint64_t prev;
2142 
2143 	if (bootverbose)
2144 		printf("%s isa3_parttab %p lpid %lx pagetab %lx proctab %lx\n", __func__, isa3_parttab,
2145 			   lpid, pagetab, proctab);
2146 	prev = be64toh(isa3_parttab[lpid].pagetab);
2147 	isa3_parttab[lpid].pagetab = htobe64(pagetab);
2148 	isa3_parttab[lpid].proctab = htobe64(proctab);
2149 
2150 	if (prev & PARTTAB_HR) {
2151 		__asm __volatile(PPC_TLBIE_5(%0,%1,2,0,1) : :
2152 			     "r" (TLBIEL_INVAL_SET_LPID), "r" (lpid));
2153 		__asm __volatile(PPC_TLBIE_5(%0,%1,2,1,1) : :
2154 			     "r" (TLBIEL_INVAL_SET_LPID), "r" (lpid));
2155 	} else {
2156 		__asm __volatile(PPC_TLBIE_5(%0,%1,2,0,0) : :
2157 			     "r" (TLBIEL_INVAL_SET_LPID), "r" (lpid));
2158 	}
2159 	ttusync();
2160 }
2161 
2162 static void
2163 mmu_radix_parttab_init(void)
2164 {
2165 	uint64_t pagetab;
2166 
2167 	mmu_parttab_init();
2168 	pagetab = RTS_SIZE | DMAP_TO_PHYS((vm_offset_t)kernel_pmap->pm_pml1) | \
2169 		         RADIX_PGD_INDEX_SHIFT | PARTTAB_HR;
2170 	mmu_parttab_update(0, pagetab, 0);
2171 }
2172 
2173 static void
2174 mmu_radix_proctab_register(vm_paddr_t proctabpa, uint64_t table_size)
2175 {
2176 	uint64_t pagetab, proctab;
2177 
2178 	pagetab = be64toh(isa3_parttab[0].pagetab);
2179 	proctab = proctabpa | table_size | PARTTAB_GR;
2180 	mmu_parttab_update(0, pagetab, proctab);
2181 }
2182 
2183 static void
2184 mmu_radix_proctab_init(void)
2185 {
2186 
2187 	isa3_base_pid = 1;
2188 
2189 	isa3_proctab = (void*)PHYS_TO_DMAP(proctab0pa);
2190 	isa3_proctab->proctab0 =
2191 	    htobe64(RTS_SIZE | DMAP_TO_PHYS((vm_offset_t)kernel_pmap->pm_pml1) |
2192 		RADIX_PGD_INDEX_SHIFT);
2193 
2194 	if (powernv_enabled) {
2195 		mmu_radix_proctab_register(proctab0pa, PROCTAB_SIZE_SHIFT - 12);
2196 		__asm __volatile("ptesync" : : : "memory");
2197 		__asm __volatile(PPC_TLBIE_5(%0,%1,2,1,1) : :
2198 			     "r" (TLBIEL_INVAL_SET_LPID), "r" (0));
2199 		__asm __volatile("eieio; tlbsync; ptesync" : : : "memory");
2200 #ifdef PSERIES
2201 	} else {
2202 		int64_t rc;
2203 
2204 		rc = phyp_hcall(H_REGISTER_PROC_TBL,
2205 		    PROC_TABLE_NEW | PROC_TABLE_RADIX | PROC_TABLE_GTSE,
2206 		    proctab0pa, 0, PROCTAB_SIZE_SHIFT - 12);
2207 		if (rc != H_SUCCESS)
2208 			panic("mmu_radix_proctab_init: "
2209 				"failed to register process table: rc=%jd",
2210 				(intmax_t)rc);
2211 #endif
2212 	}
2213 
2214 	if (bootverbose)
2215 		printf("process table %p and kernel radix PDE: %p\n",
2216 			   isa3_proctab, kernel_pmap->pm_pml1);
2217 	mtmsr(mfmsr() | PSL_DR );
2218 	mtmsr(mfmsr() &  ~PSL_DR);
2219 	kernel_pmap->pm_pid = isa3_base_pid;
2220 	isa3_base_pid++;
2221 }
2222 
2223 void
2224 mmu_radix_advise(pmap_t pmap, vm_offset_t sva, vm_offset_t eva,
2225     int advice)
2226 {
2227 	struct rwlock *lock;
2228 	pml1_entry_t *l1e;
2229 	pml2_entry_t *l2e;
2230 	pml3_entry_t oldl3e, *l3e;
2231 	pt_entry_t *pte;
2232 	vm_offset_t va, va_next;
2233 	vm_page_t m;
2234 	bool anychanged;
2235 
2236 	if (advice != MADV_DONTNEED && advice != MADV_FREE)
2237 		return;
2238 	anychanged = false;
2239 	PMAP_LOCK(pmap);
2240 	for (; sva < eva; sva = va_next) {
2241 		l1e = pmap_pml1e(pmap, sva);
2242 		if ((be64toh(*l1e) & PG_V) == 0) {
2243 			va_next = (sva + L1_PAGE_SIZE) & ~L1_PAGE_MASK;
2244 			if (va_next < sva)
2245 				va_next = eva;
2246 			continue;
2247 		}
2248 		l2e = pmap_l1e_to_l2e(l1e, sva);
2249 		if ((be64toh(*l2e) & PG_V) == 0) {
2250 			va_next = (sva + L2_PAGE_SIZE) & ~L2_PAGE_MASK;
2251 			if (va_next < sva)
2252 				va_next = eva;
2253 			continue;
2254 		}
2255 		va_next = (sva + L3_PAGE_SIZE) & ~L3_PAGE_MASK;
2256 		if (va_next < sva)
2257 			va_next = eva;
2258 		l3e = pmap_l2e_to_l3e(l2e, sva);
2259 		oldl3e = be64toh(*l3e);
2260 		if ((oldl3e & PG_V) == 0)
2261 			continue;
2262 		else if ((oldl3e & RPTE_LEAF) != 0) {
2263 			if ((oldl3e & PG_MANAGED) == 0)
2264 				continue;
2265 			lock = NULL;
2266 			if (!pmap_demote_l3e_locked(pmap, l3e, sva, &lock)) {
2267 				if (lock != NULL)
2268 					rw_wunlock(lock);
2269 
2270 				/*
2271 				 * The large page mapping was destroyed.
2272 				 */
2273 				continue;
2274 			}
2275 
2276 			/*
2277 			 * Unless the page mappings are wired, remove the
2278 			 * mapping to a single page so that a subsequent
2279 			 * access may repromote.  Choosing the last page
2280 			 * within the address range [sva, min(va_next, eva))
2281 			 * generally results in more repromotions.  Since the
2282 			 * underlying page table page is fully populated, this
2283 			 * removal never frees a page table page.
2284 			 */
2285 			if ((oldl3e & PG_W) == 0) {
2286 				va = eva;
2287 				if (va > va_next)
2288 					va = va_next;
2289 				va -= PAGE_SIZE;
2290 				KASSERT(va >= sva,
2291 				    ("mmu_radix_advise: no address gap"));
2292 				pte = pmap_l3e_to_pte(l3e, va);
2293 				KASSERT((be64toh(*pte) & PG_V) != 0,
2294 				    ("pmap_advise: invalid PTE"));
2295 				pmap_remove_pte(pmap, pte, va, be64toh(*l3e), NULL,
2296 				    &lock);
2297 				anychanged = true;
2298 			}
2299 			if (lock != NULL)
2300 				rw_wunlock(lock);
2301 		}
2302 		if (va_next > eva)
2303 			va_next = eva;
2304 		va = va_next;
2305 		for (pte = pmap_l3e_to_pte(l3e, sva); sva != va_next;
2306 			 pte++, sva += PAGE_SIZE) {
2307 			MPASS(pte == pmap_pte(pmap, sva));
2308 
2309 			if ((be64toh(*pte) & (PG_MANAGED | PG_V)) != (PG_MANAGED | PG_V))
2310 				goto maybe_invlrng;
2311 			else if ((be64toh(*pte) & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
2312 				if (advice == MADV_DONTNEED) {
2313 					/*
2314 					 * Future calls to pmap_is_modified()
2315 					 * can be avoided by making the page
2316 					 * dirty now.
2317 					 */
2318 					m = PHYS_TO_VM_PAGE(be64toh(*pte) & PG_FRAME);
2319 					vm_page_dirty(m);
2320 				}
2321 				atomic_clear_long(pte, htobe64(PG_M | PG_A));
2322 			} else if ((be64toh(*pte) & PG_A) != 0)
2323 				atomic_clear_long(pte, htobe64(PG_A));
2324 			else
2325 				goto maybe_invlrng;
2326 			anychanged = true;
2327 			continue;
2328 maybe_invlrng:
2329 			if (va != va_next) {
2330 				anychanged = true;
2331 				va = va_next;
2332 			}
2333 		}
2334 		if (va != va_next)
2335 			anychanged = true;
2336 	}
2337 	if (anychanged)
2338 		pmap_invalidate_all(pmap);
2339 	PMAP_UNLOCK(pmap);
2340 }
2341 
2342 /*
2343  * Routines used in machine-dependent code
2344  */
2345 static void
2346 mmu_radix_bootstrap(vm_offset_t start, vm_offset_t end)
2347 {
2348 	uint64_t lpcr;
2349 
2350 	if (bootverbose)
2351 		printf("%s\n", __func__);
2352 	hw_direct_map = 1;
2353 	powernv_enabled = (mfmsr() & PSL_HV) ? 1 : 0;
2354 	mmu_radix_early_bootstrap(start, end);
2355 	if (bootverbose)
2356 		printf("early bootstrap complete\n");
2357 	if (powernv_enabled) {
2358 		lpcr = mfspr(SPR_LPCR);
2359 		mtspr(SPR_LPCR, lpcr | LPCR_UPRT | LPCR_HR);
2360 		mmu_radix_parttab_init();
2361 		mmu_radix_init_amor();
2362 		if (bootverbose)
2363 			printf("powernv init complete\n");
2364 	}
2365 	mmu_radix_init_iamr();
2366 	mmu_radix_proctab_init();
2367 	mmu_radix_pid_set(kernel_pmap);
2368 	if (powernv_enabled)
2369 		mmu_radix_tlbiel_flush(TLB_INVAL_SCOPE_GLOBAL);
2370 	else
2371 		mmu_radix_tlbiel_flush(TLB_INVAL_SCOPE_LPID);
2372 
2373 	mmu_radix_late_bootstrap(start, end);
2374 	numa_mem_regions(&numa_pregions, &numa_pregions_sz);
2375 	if (bootverbose)
2376 		printf("%s done\n", __func__);
2377 	pmap_bootstrapped = 1;
2378 	dmaplimit = roundup2(powerpc_ptob(Maxmem), L2_PAGE_SIZE);
2379 	PCPU_SET(flags, PCPU_GET(flags) | PC_FLAG_NOSRS);
2380 }
2381 
2382 static void
2383 mmu_radix_cpu_bootstrap(int ap)
2384 {
2385 	uint64_t lpcr;
2386 	uint64_t ptcr;
2387 
2388 	if (powernv_enabled) {
2389 		lpcr = mfspr(SPR_LPCR);
2390 		mtspr(SPR_LPCR, lpcr | LPCR_UPRT | LPCR_HR);
2391 
2392 		ptcr = parttab_phys | (PARTTAB_SIZE_SHIFT-12);
2393 		mtspr(SPR_PTCR, ptcr);
2394 		mmu_radix_init_amor();
2395 	}
2396 	mmu_radix_init_iamr();
2397 	mmu_radix_pid_set(kernel_pmap);
2398 	if (powernv_enabled)
2399 		mmu_radix_tlbiel_flush(TLB_INVAL_SCOPE_GLOBAL);
2400 	else
2401 		mmu_radix_tlbiel_flush(TLB_INVAL_SCOPE_LPID);
2402 }
2403 
2404 static SYSCTL_NODE(_vm_pmap, OID_AUTO, l3e, CTLFLAG_RD, 0,
2405     "2MB page mapping counters");
2406 
2407 static COUNTER_U64_DEFINE_EARLY(pmap_l3e_demotions);
2408 SYSCTL_COUNTER_U64(_vm_pmap_l3e, OID_AUTO, demotions, CTLFLAG_RD,
2409     &pmap_l3e_demotions, "2MB page demotions");
2410 
2411 static COUNTER_U64_DEFINE_EARLY(pmap_l3e_mappings);
2412 SYSCTL_COUNTER_U64(_vm_pmap_l3e, OID_AUTO, mappings, CTLFLAG_RD,
2413     &pmap_l3e_mappings, "2MB page mappings");
2414 
2415 static COUNTER_U64_DEFINE_EARLY(pmap_l3e_p_failures);
2416 SYSCTL_COUNTER_U64(_vm_pmap_l3e, OID_AUTO, p_failures, CTLFLAG_RD,
2417     &pmap_l3e_p_failures, "2MB page promotion failures");
2418 
2419 static COUNTER_U64_DEFINE_EARLY(pmap_l3e_promotions);
2420 SYSCTL_COUNTER_U64(_vm_pmap_l3e, OID_AUTO, promotions, CTLFLAG_RD,
2421     &pmap_l3e_promotions, "2MB page promotions");
2422 
2423 static SYSCTL_NODE(_vm_pmap, OID_AUTO, l2e, CTLFLAG_RD, 0,
2424     "1GB page mapping counters");
2425 
2426 static COUNTER_U64_DEFINE_EARLY(pmap_l2e_demotions);
2427 SYSCTL_COUNTER_U64(_vm_pmap_l2e, OID_AUTO, demotions, CTLFLAG_RD,
2428     &pmap_l2e_demotions, "1GB page demotions");
2429 
2430 void
2431 mmu_radix_clear_modify(vm_page_t m)
2432 {
2433 	struct md_page *pvh;
2434 	pmap_t pmap;
2435 	pv_entry_t next_pv, pv;
2436 	pml3_entry_t oldl3e, *l3e;
2437 	pt_entry_t oldpte, *pte;
2438 	struct rwlock *lock;
2439 	vm_offset_t va;
2440 	int md_gen, pvh_gen;
2441 
2442 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2443 	    ("pmap_clear_modify: page %p is not managed", m));
2444 	vm_page_assert_busied(m);
2445 	CTR2(KTR_PMAP, "%s(%p)", __func__, m);
2446 
2447 	/*
2448 	 * If the page is not PGA_WRITEABLE, then no PTEs can have PG_M set.
2449 	 * If the object containing the page is locked and the page is not
2450 	 * exclusive busied, then PGA_WRITEABLE cannot be concurrently set.
2451 	 */
2452 	if ((m->a.flags & PGA_WRITEABLE) == 0)
2453 		return;
2454 	pvh = (m->flags & PG_FICTITIOUS) != 0 ? &pv_dummy :
2455 	    pa_to_pvh(VM_PAGE_TO_PHYS(m));
2456 	lock = VM_PAGE_TO_PV_LIST_LOCK(m);
2457 	rw_wlock(lock);
2458 restart:
2459 	TAILQ_FOREACH_SAFE(pv, &pvh->pv_list, pv_link, next_pv) {
2460 		pmap = PV_PMAP(pv);
2461 		if (!PMAP_TRYLOCK(pmap)) {
2462 			pvh_gen = pvh->pv_gen;
2463 			rw_wunlock(lock);
2464 			PMAP_LOCK(pmap);
2465 			rw_wlock(lock);
2466 			if (pvh_gen != pvh->pv_gen) {
2467 				PMAP_UNLOCK(pmap);
2468 				goto restart;
2469 			}
2470 		}
2471 		va = pv->pv_va;
2472 		l3e = pmap_pml3e(pmap, va);
2473 		oldl3e = be64toh(*l3e);
2474 		if ((oldl3e & PG_RW) != 0 &&
2475 		    pmap_demote_l3e_locked(pmap, l3e, va, &lock) &&
2476 		    (oldl3e & PG_W) == 0) {
2477 			/*
2478 			 * Write protect the mapping to a
2479 			 * single page so that a subsequent
2480 			 * write access may repromote.
2481 			 */
2482 			va += VM_PAGE_TO_PHYS(m) - (oldl3e &
2483 			    PG_PS_FRAME);
2484 			pte = pmap_l3e_to_pte(l3e, va);
2485 			oldpte = be64toh(*pte);
2486 			while (!atomic_cmpset_long(pte,
2487 			    htobe64(oldpte),
2488 				htobe64((oldpte | RPTE_EAA_R) & ~(PG_M | PG_RW))))
2489 				   oldpte = be64toh(*pte);
2490 			vm_page_dirty(m);
2491 			pmap_invalidate_page(pmap, va);
2492 		}
2493 		PMAP_UNLOCK(pmap);
2494 	}
2495 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2496 		pmap = PV_PMAP(pv);
2497 		if (!PMAP_TRYLOCK(pmap)) {
2498 			md_gen = m->md.pv_gen;
2499 			pvh_gen = pvh->pv_gen;
2500 			rw_wunlock(lock);
2501 			PMAP_LOCK(pmap);
2502 			rw_wlock(lock);
2503 			if (pvh_gen != pvh->pv_gen || md_gen != m->md.pv_gen) {
2504 				PMAP_UNLOCK(pmap);
2505 				goto restart;
2506 			}
2507 		}
2508 		l3e = pmap_pml3e(pmap, pv->pv_va);
2509 		KASSERT((be64toh(*l3e) & RPTE_LEAF) == 0, ("pmap_clear_modify: found"
2510 		    " a 2mpage in page %p's pv list", m));
2511 		pte = pmap_l3e_to_pte(l3e, pv->pv_va);
2512 		if ((be64toh(*pte) & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
2513 			atomic_clear_long(pte, htobe64(PG_M));
2514 			pmap_invalidate_page(pmap, pv->pv_va);
2515 		}
2516 		PMAP_UNLOCK(pmap);
2517 	}
2518 	rw_wunlock(lock);
2519 }
2520 
2521 void
2522 mmu_radix_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr,
2523     vm_size_t len, vm_offset_t src_addr)
2524 {
2525 	struct rwlock *lock;
2526 	struct spglist free;
2527 	vm_offset_t addr;
2528 	vm_offset_t end_addr = src_addr + len;
2529 	vm_offset_t va_next;
2530 	vm_page_t dst_pdpg, dstmpte, srcmpte;
2531 	bool invalidate_all;
2532 
2533 	CTR6(KTR_PMAP,
2534 	    "%s(dst_pmap=%p, src_pmap=%p, dst_addr=%lx, len=%lu, src_addr=%lx)\n",
2535 	    __func__, dst_pmap, src_pmap, dst_addr, len, src_addr);
2536 
2537 	if (dst_addr != src_addr)
2538 		return;
2539 	lock = NULL;
2540 	invalidate_all = false;
2541 	if (dst_pmap < src_pmap) {
2542 		PMAP_LOCK(dst_pmap);
2543 		PMAP_LOCK(src_pmap);
2544 	} else {
2545 		PMAP_LOCK(src_pmap);
2546 		PMAP_LOCK(dst_pmap);
2547 	}
2548 
2549 	for (addr = src_addr; addr < end_addr; addr = va_next) {
2550 		pml1_entry_t *l1e;
2551 		pml2_entry_t *l2e;
2552 		pml3_entry_t srcptepaddr, *l3e;
2553 		pt_entry_t *src_pte, *dst_pte;
2554 
2555 		l1e = pmap_pml1e(src_pmap, addr);
2556 		if ((be64toh(*l1e) & PG_V) == 0) {
2557 			va_next = (addr + L1_PAGE_SIZE) & ~L1_PAGE_MASK;
2558 			if (va_next < addr)
2559 				va_next = end_addr;
2560 			continue;
2561 		}
2562 
2563 		l2e = pmap_l1e_to_l2e(l1e, addr);
2564 		if ((be64toh(*l2e) & PG_V) == 0) {
2565 			va_next = (addr + L2_PAGE_SIZE) & ~L2_PAGE_MASK;
2566 			if (va_next < addr)
2567 				va_next = end_addr;
2568 			continue;
2569 		}
2570 
2571 		va_next = (addr + L3_PAGE_SIZE) & ~L3_PAGE_MASK;
2572 		if (va_next < addr)
2573 			va_next = end_addr;
2574 
2575 		l3e = pmap_l2e_to_l3e(l2e, addr);
2576 		srcptepaddr = be64toh(*l3e);
2577 		if (srcptepaddr == 0)
2578 			continue;
2579 
2580 		if (srcptepaddr & RPTE_LEAF) {
2581 			if ((addr & L3_PAGE_MASK) != 0 ||
2582 			    addr + L3_PAGE_SIZE > end_addr)
2583 				continue;
2584 			dst_pdpg = pmap_allocl3e(dst_pmap, addr, NULL);
2585 			if (dst_pdpg == NULL)
2586 				break;
2587 			l3e = (pml3_entry_t *)
2588 			    PHYS_TO_DMAP(VM_PAGE_TO_PHYS(dst_pdpg));
2589 			l3e = &l3e[pmap_pml3e_index(addr)];
2590 			if (be64toh(*l3e) == 0 && ((srcptepaddr & PG_MANAGED) == 0 ||
2591 			    pmap_pv_insert_l3e(dst_pmap, addr, srcptepaddr,
2592 			    PMAP_ENTER_NORECLAIM, &lock))) {
2593 				*l3e = htobe64(srcptepaddr & ~PG_W);
2594 				pmap_resident_count_inc(dst_pmap,
2595 				    L3_PAGE_SIZE / PAGE_SIZE);
2596 				counter_u64_add(pmap_l3e_mappings, 1);
2597 			} else
2598 				dst_pdpg->ref_count--;
2599 			continue;
2600 		}
2601 
2602 		srcptepaddr &= PG_FRAME;
2603 		srcmpte = PHYS_TO_VM_PAGE(srcptepaddr);
2604 		KASSERT(srcmpte->ref_count > 0,
2605 		    ("pmap_copy: source page table page is unused"));
2606 
2607 		if (va_next > end_addr)
2608 			va_next = end_addr;
2609 
2610 		src_pte = (pt_entry_t *)PHYS_TO_DMAP(srcptepaddr);
2611 		src_pte = &src_pte[pmap_pte_index(addr)];
2612 		dstmpte = NULL;
2613 		while (addr < va_next) {
2614 			pt_entry_t ptetemp;
2615 			ptetemp = be64toh(*src_pte);
2616 			/*
2617 			 * we only virtual copy managed pages
2618 			 */
2619 			if ((ptetemp & PG_MANAGED) != 0) {
2620 				if (dstmpte != NULL &&
2621 				    dstmpte->pindex == pmap_l3e_pindex(addr))
2622 					dstmpte->ref_count++;
2623 				else if ((dstmpte = pmap_allocpte(dst_pmap,
2624 				    addr, NULL)) == NULL)
2625 					goto out;
2626 				dst_pte = (pt_entry_t *)
2627 				    PHYS_TO_DMAP(VM_PAGE_TO_PHYS(dstmpte));
2628 				dst_pte = &dst_pte[pmap_pte_index(addr)];
2629 				if (be64toh(*dst_pte) == 0 &&
2630 				    pmap_try_insert_pv_entry(dst_pmap, addr,
2631 				    PHYS_TO_VM_PAGE(ptetemp & PG_FRAME),
2632 				    &lock)) {
2633 					/*
2634 					 * Clear the wired, modified, and
2635 					 * accessed (referenced) bits
2636 					 * during the copy.
2637 					 */
2638 					*dst_pte = htobe64(ptetemp & ~(PG_W | PG_M |
2639 					    PG_A));
2640 					pmap_resident_count_inc(dst_pmap, 1);
2641 				} else {
2642 					SLIST_INIT(&free);
2643 					if (pmap_unwire_ptp(dst_pmap, addr,
2644 					    dstmpte, &free)) {
2645 						/*
2646 						 * Although "addr" is not
2647 						 * mapped, paging-structure
2648 						 * caches could nonetheless
2649 						 * have entries that refer to
2650 						 * the freed page table pages.
2651 						 * Invalidate those entries.
2652 						 */
2653 						invalidate_all = true;
2654 						vm_page_free_pages_toq(&free,
2655 						    true);
2656 					}
2657 					goto out;
2658 				}
2659 				if (dstmpte->ref_count >= srcmpte->ref_count)
2660 					break;
2661 			}
2662 			addr += PAGE_SIZE;
2663 			if (__predict_false((addr & L3_PAGE_MASK) == 0))
2664 				src_pte = pmap_pte(src_pmap, addr);
2665 			else
2666 				src_pte++;
2667 		}
2668 	}
2669 out:
2670 	if (invalidate_all)
2671 		pmap_invalidate_all(dst_pmap);
2672 	if (lock != NULL)
2673 		rw_wunlock(lock);
2674 	PMAP_UNLOCK(src_pmap);
2675 	PMAP_UNLOCK(dst_pmap);
2676 }
2677 
2678 static void
2679 mmu_radix_copy_page(vm_page_t msrc, vm_page_t mdst)
2680 {
2681 	vm_offset_t src = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(msrc));
2682 	vm_offset_t dst = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(mdst));
2683 
2684 	CTR3(KTR_PMAP, "%s(%p, %p)", __func__, src, dst);
2685 	/*
2686 	 * XXX slow
2687 	 */
2688 	bcopy((void *)src, (void *)dst, PAGE_SIZE);
2689 }
2690 
2691 static void
2692 mmu_radix_copy_pages(vm_page_t ma[], vm_offset_t a_offset, vm_page_t mb[],
2693     vm_offset_t b_offset, int xfersize)
2694 {
2695         void *a_cp, *b_cp;
2696         vm_offset_t a_pg_offset, b_pg_offset;
2697         int cnt;
2698 
2699 	CTR6(KTR_PMAP, "%s(%p, %#x, %p, %#x, %#x)", __func__, ma,
2700 	    a_offset, mb, b_offset, xfersize);
2701 
2702         while (xfersize > 0) {
2703                 a_pg_offset = a_offset & PAGE_MASK;
2704                 cnt = min(xfersize, PAGE_SIZE - a_pg_offset);
2705                 a_cp = (char *)(uintptr_t)PHYS_TO_DMAP(
2706                     VM_PAGE_TO_PHYS(ma[a_offset >> PAGE_SHIFT])) +
2707                     a_pg_offset;
2708                 b_pg_offset = b_offset & PAGE_MASK;
2709                 cnt = min(cnt, PAGE_SIZE - b_pg_offset);
2710                 b_cp = (char *)(uintptr_t)PHYS_TO_DMAP(
2711                     VM_PAGE_TO_PHYS(mb[b_offset >> PAGE_SHIFT])) +
2712                     b_pg_offset;
2713                 bcopy(a_cp, b_cp, cnt);
2714                 a_offset += cnt;
2715                 b_offset += cnt;
2716                 xfersize -= cnt;
2717         }
2718 }
2719 
2720 #if VM_NRESERVLEVEL > 0
2721 /*
2722  * Tries to promote the 512, contiguous 4KB page mappings that are within a
2723  * single page table page (PTP) to a single 2MB page mapping.  For promotion
2724  * to occur, two conditions must be met: (1) the 4KB page mappings must map
2725  * aligned, contiguous physical memory and (2) the 4KB page mappings must have
2726  * identical characteristics.
2727  */
2728 static int
2729 pmap_promote_l3e(pmap_t pmap, pml3_entry_t *pde, vm_offset_t va,
2730     struct rwlock **lockp)
2731 {
2732 	pml3_entry_t newpde;
2733 	pt_entry_t *firstpte, oldpte, pa, *pte;
2734 	vm_page_t mpte;
2735 
2736 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2737 
2738 	/*
2739 	 * Examine the first PTE in the specified PTP.  Abort if this PTE is
2740 	 * either invalid, unused, or does not map the first 4KB physical page
2741 	 * within a 2MB page.
2742 	 */
2743 	firstpte = (pt_entry_t *)PHYS_TO_DMAP(be64toh(*pde) & PG_FRAME);
2744 setpde:
2745 	newpde = be64toh(*firstpte);
2746 	if ((newpde & ((PG_FRAME & L3_PAGE_MASK) | PG_A | PG_V)) != (PG_A | PG_V)) {
2747 		CTR2(KTR_PMAP, "pmap_promote_l3e: failure for va %#lx"
2748 		    " in pmap %p", va, pmap);
2749 		goto fail;
2750 	}
2751 	if ((newpde & (PG_M | PG_RW)) == PG_RW) {
2752 		/*
2753 		 * When PG_M is already clear, PG_RW can be cleared without
2754 		 * a TLB invalidation.
2755 		 */
2756 		if (!atomic_cmpset_long(firstpte, htobe64(newpde), htobe64((newpde | RPTE_EAA_R) & ~RPTE_EAA_W)))
2757 			goto setpde;
2758 		newpde &= ~RPTE_EAA_W;
2759 	}
2760 
2761 	/*
2762 	 * Examine each of the other PTEs in the specified PTP.  Abort if this
2763 	 * PTE maps an unexpected 4KB physical page or does not have identical
2764 	 * characteristics to the first PTE.
2765 	 */
2766 	pa = (newpde & (PG_PS_FRAME | PG_A | PG_V)) + L3_PAGE_SIZE - PAGE_SIZE;
2767 	for (pte = firstpte + NPTEPG - 1; pte > firstpte; pte--) {
2768 setpte:
2769 		oldpte = be64toh(*pte);
2770 		if ((oldpte & (PG_FRAME | PG_A | PG_V)) != pa) {
2771 			CTR2(KTR_PMAP, "pmap_promote_l3e: failure for va %#lx"
2772 			    " in pmap %p", va, pmap);
2773 			goto fail;
2774 		}
2775 		if ((oldpte & (PG_M | PG_RW)) == PG_RW) {
2776 			/*
2777 			 * When PG_M is already clear, PG_RW can be cleared
2778 			 * without a TLB invalidation.
2779 			 */
2780 			if (!atomic_cmpset_long(pte, htobe64(oldpte), htobe64((oldpte | RPTE_EAA_R) & ~RPTE_EAA_W)))
2781 				goto setpte;
2782 			oldpte &= ~RPTE_EAA_W;
2783 			CTR2(KTR_PMAP, "pmap_promote_l3e: protect for va %#lx"
2784 			    " in pmap %p", (oldpte & PG_FRAME & L3_PAGE_MASK) |
2785 			    (va & ~L3_PAGE_MASK), pmap);
2786 		}
2787 		if ((oldpte & PG_PTE_PROMOTE) != (newpde & PG_PTE_PROMOTE)) {
2788 			CTR2(KTR_PMAP, "pmap_promote_l3e: failure for va %#lx"
2789 			    " in pmap %p", va, pmap);
2790 			goto fail;
2791 		}
2792 		pa -= PAGE_SIZE;
2793 	}
2794 
2795 	/*
2796 	 * Save the page table page in its current state until the PDE
2797 	 * mapping the superpage is demoted by pmap_demote_pde() or
2798 	 * destroyed by pmap_remove_pde().
2799 	 */
2800 	mpte = PHYS_TO_VM_PAGE(be64toh(*pde) & PG_FRAME);
2801 	KASSERT(mpte >= vm_page_array &&
2802 	    mpte < &vm_page_array[vm_page_array_size],
2803 	    ("pmap_promote_l3e: page table page is out of range"));
2804 	KASSERT(mpte->pindex == pmap_l3e_pindex(va),
2805 	    ("pmap_promote_l3e: page table page's pindex is wrong"));
2806 	if (pmap_insert_pt_page(pmap, mpte)) {
2807 		CTR2(KTR_PMAP,
2808 		    "pmap_promote_l3e: failure for va %#lx in pmap %p", va,
2809 		    pmap);
2810 		goto fail;
2811 	}
2812 
2813 	/*
2814 	 * Promote the pv entries.
2815 	 */
2816 	if ((newpde & PG_MANAGED) != 0)
2817 		pmap_pv_promote_l3e(pmap, va, newpde & PG_PS_FRAME, lockp);
2818 
2819 	pte_store(pde, PG_PROMOTED | newpde);
2820 	ptesync();
2821 	counter_u64_add(pmap_l3e_promotions, 1);
2822 	CTR2(KTR_PMAP, "pmap_promote_l3e: success for va %#lx"
2823 	    " in pmap %p", va, pmap);
2824 	return (0);
2825  fail:
2826 	counter_u64_add(pmap_l3e_p_failures, 1);
2827 	return (KERN_FAILURE);
2828 }
2829 #endif /* VM_NRESERVLEVEL > 0 */
2830 
2831 int
2832 mmu_radix_enter(pmap_t pmap, vm_offset_t va, vm_page_t m,
2833     vm_prot_t prot, u_int flags, int8_t psind)
2834 {
2835 	struct rwlock *lock;
2836 	pml3_entry_t *l3e;
2837 	pt_entry_t *pte;
2838 	pt_entry_t newpte, origpte;
2839 	pv_entry_t pv;
2840 	vm_paddr_t opa, pa;
2841 	vm_page_t mpte, om;
2842 	int rv, retrycount;
2843 	boolean_t nosleep, invalidate_all, invalidate_page;
2844 
2845 	va = trunc_page(va);
2846 	retrycount = 0;
2847 	invalidate_page = invalidate_all = false;
2848 	CTR6(KTR_PMAP, "pmap_enter(%p, %#lx, %p, %#x, %#x, %d)", pmap, va,
2849 	    m, prot, flags, psind);
2850 	KASSERT(va <= VM_MAX_KERNEL_ADDRESS, ("pmap_enter: toobig"));
2851 	KASSERT((m->oflags & VPO_UNMANAGED) != 0 || !VA_IS_CLEANMAP(va),
2852 	    ("pmap_enter: managed mapping within the clean submap"));
2853 	if ((m->oflags & VPO_UNMANAGED) == 0)
2854 		VM_PAGE_OBJECT_BUSY_ASSERT(m);
2855 
2856 	KASSERT((flags & PMAP_ENTER_RESERVED) == 0,
2857 	    ("pmap_enter: flags %u has reserved bits set", flags));
2858 	pa = VM_PAGE_TO_PHYS(m);
2859 	newpte = (pt_entry_t)(pa | PG_A | PG_V | RPTE_LEAF);
2860 	if ((flags & VM_PROT_WRITE) != 0)
2861 		newpte |= PG_M;
2862 	if ((flags & VM_PROT_READ) != 0)
2863 		newpte |= PG_A;
2864 	if (prot & VM_PROT_READ)
2865 		newpte |= RPTE_EAA_R;
2866 	if ((prot & VM_PROT_WRITE) != 0)
2867 		newpte |= RPTE_EAA_W;
2868 	KASSERT((newpte & (PG_M | PG_RW)) != PG_M,
2869 	    ("pmap_enter: flags includes VM_PROT_WRITE but prot doesn't"));
2870 
2871 	if (prot & VM_PROT_EXECUTE)
2872 		newpte |= PG_X;
2873 	if ((flags & PMAP_ENTER_WIRED) != 0)
2874 		newpte |= PG_W;
2875 	if (va >= DMAP_MIN_ADDRESS)
2876 		newpte |= RPTE_EAA_P;
2877 	newpte |= pmap_cache_bits(m->md.mdpg_cache_attrs);
2878 	/*
2879 	 * Set modified bit gratuitously for writeable mappings if
2880 	 * the page is unmanaged. We do not want to take a fault
2881 	 * to do the dirty bit accounting for these mappings.
2882 	 */
2883 	if ((m->oflags & VPO_UNMANAGED) != 0) {
2884 		if ((newpte & PG_RW) != 0)
2885 			newpte |= PG_M;
2886 	} else
2887 		newpte |= PG_MANAGED;
2888 
2889 	lock = NULL;
2890 	PMAP_LOCK(pmap);
2891 	if (psind == 1) {
2892 		/* Assert the required virtual and physical alignment. */
2893 		KASSERT((va & L3_PAGE_MASK) == 0, ("pmap_enter: va unaligned"));
2894 		KASSERT(m->psind > 0, ("pmap_enter: m->psind < psind"));
2895 		rv = pmap_enter_l3e(pmap, va, newpte | RPTE_LEAF, flags, m, &lock);
2896 		goto out;
2897 	}
2898 	mpte = NULL;
2899 
2900 	/*
2901 	 * In the case that a page table page is not
2902 	 * resident, we are creating it here.
2903 	 */
2904 retry:
2905 	l3e = pmap_pml3e(pmap, va);
2906 	if (l3e != NULL && (be64toh(*l3e) & PG_V) != 0 && ((be64toh(*l3e) & RPTE_LEAF) == 0 ||
2907 	    pmap_demote_l3e_locked(pmap, l3e, va, &lock))) {
2908 		pte = pmap_l3e_to_pte(l3e, va);
2909 		if (va < VM_MAXUSER_ADDRESS && mpte == NULL) {
2910 			mpte = PHYS_TO_VM_PAGE(be64toh(*l3e) & PG_FRAME);
2911 			mpte->ref_count++;
2912 		}
2913 	} else if (va < VM_MAXUSER_ADDRESS) {
2914 		/*
2915 		 * Here if the pte page isn't mapped, or if it has been
2916 		 * deallocated.
2917 		 */
2918 		nosleep = (flags & PMAP_ENTER_NOSLEEP) != 0;
2919 		mpte = _pmap_allocpte(pmap, pmap_l3e_pindex(va),
2920 		    nosleep ? NULL : &lock);
2921 		if (mpte == NULL && nosleep) {
2922 			rv = KERN_RESOURCE_SHORTAGE;
2923 			goto out;
2924 		}
2925 		if (__predict_false(retrycount++ == 6))
2926 			panic("too many retries");
2927 		invalidate_all = true;
2928 		goto retry;
2929 	} else
2930 		panic("pmap_enter: invalid page directory va=%#lx", va);
2931 
2932 	origpte = be64toh(*pte);
2933 	pv = NULL;
2934 
2935 	/*
2936 	 * Is the specified virtual address already mapped?
2937 	 */
2938 	if ((origpte & PG_V) != 0) {
2939 #ifdef INVARIANTS
2940 		if (VERBOSE_PMAP || pmap_logging) {
2941 			printf("cow fault pmap_enter(%p, %#lx, %p, %#x, %x, %d) --"
2942 			    " asid=%lu curpid=%d name=%s origpte0x%lx\n",
2943 			    pmap, va, m, prot, flags, psind, pmap->pm_pid,
2944 			    curproc->p_pid, curproc->p_comm, origpte);
2945 			pmap_pte_walk(pmap->pm_pml1, va);
2946 		}
2947 #endif
2948 		/*
2949 		 * Wiring change, just update stats. We don't worry about
2950 		 * wiring PT pages as they remain resident as long as there
2951 		 * are valid mappings in them. Hence, if a user page is wired,
2952 		 * the PT page will be also.
2953 		 */
2954 		if ((newpte & PG_W) != 0 && (origpte & PG_W) == 0)
2955 			pmap->pm_stats.wired_count++;
2956 		else if ((newpte & PG_W) == 0 && (origpte & PG_W) != 0)
2957 			pmap->pm_stats.wired_count--;
2958 
2959 		/*
2960 		 * Remove the extra PT page reference.
2961 		 */
2962 		if (mpte != NULL) {
2963 			mpte->ref_count--;
2964 			KASSERT(mpte->ref_count > 0,
2965 			    ("pmap_enter: missing reference to page table page,"
2966 			     " va: 0x%lx", va));
2967 		}
2968 
2969 		/*
2970 		 * Has the physical page changed?
2971 		 */
2972 		opa = origpte & PG_FRAME;
2973 		if (opa == pa) {
2974 			/*
2975 			 * No, might be a protection or wiring change.
2976 			 */
2977 			if ((origpte & PG_MANAGED) != 0 &&
2978 			    (newpte & PG_RW) != 0)
2979 				vm_page_aflag_set(m, PGA_WRITEABLE);
2980 			if (((origpte ^ newpte) & ~(PG_M | PG_A)) == 0) {
2981 				if ((newpte & (PG_A|PG_M)) != (origpte & (PG_A|PG_M))) {
2982 					if (!atomic_cmpset_long(pte, htobe64(origpte), htobe64(newpte)))
2983 						goto retry;
2984 					if ((newpte & PG_M) != (origpte & PG_M))
2985 						vm_page_dirty(m);
2986 					if ((newpte & PG_A) != (origpte & PG_A))
2987 						vm_page_aflag_set(m, PGA_REFERENCED);
2988 					ptesync();
2989 				} else
2990 					invalidate_all = true;
2991 				if (((origpte ^ newpte) & ~(PG_M | PG_A)) == 0)
2992 					goto unchanged;
2993 			}
2994 			goto validate;
2995 		}
2996 
2997 		/*
2998 		 * The physical page has changed.  Temporarily invalidate
2999 		 * the mapping.  This ensures that all threads sharing the
3000 		 * pmap keep a consistent view of the mapping, which is
3001 		 * necessary for the correct handling of COW faults.  It
3002 		 * also permits reuse of the old mapping's PV entry,
3003 		 * avoiding an allocation.
3004 		 *
3005 		 * For consistency, handle unmanaged mappings the same way.
3006 		 */
3007 		origpte = be64toh(pte_load_clear(pte));
3008 		KASSERT((origpte & PG_FRAME) == opa,
3009 		    ("pmap_enter: unexpected pa update for %#lx", va));
3010 		if ((origpte & PG_MANAGED) != 0) {
3011 			om = PHYS_TO_VM_PAGE(opa);
3012 
3013 			/*
3014 			 * The pmap lock is sufficient to synchronize with
3015 			 * concurrent calls to pmap_page_test_mappings() and
3016 			 * pmap_ts_referenced().
3017 			 */
3018 			if ((origpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
3019 				vm_page_dirty(om);
3020 			if ((origpte & PG_A) != 0)
3021 				vm_page_aflag_set(om, PGA_REFERENCED);
3022 			CHANGE_PV_LIST_LOCK_TO_PHYS(&lock, opa);
3023 			pv = pmap_pvh_remove(&om->md, pmap, va);
3024 			if ((newpte & PG_MANAGED) == 0)
3025 				free_pv_entry(pmap, pv);
3026 #ifdef INVARIANTS
3027 			else if (origpte & PG_MANAGED) {
3028 				if (pv == NULL) {
3029 					pmap_page_print_mappings(om);
3030 					MPASS(pv != NULL);
3031 				}
3032 			}
3033 #endif
3034 			if ((om->a.flags & PGA_WRITEABLE) != 0 &&
3035 			    TAILQ_EMPTY(&om->md.pv_list) &&
3036 			    ((om->flags & PG_FICTITIOUS) != 0 ||
3037 			    TAILQ_EMPTY(&pa_to_pvh(opa)->pv_list)))
3038 				vm_page_aflag_clear(om, PGA_WRITEABLE);
3039 		}
3040 		if ((origpte & PG_A) != 0)
3041 			invalidate_page = true;
3042 		origpte = 0;
3043 	} else {
3044 		if (pmap != kernel_pmap) {
3045 #ifdef INVARIANTS
3046 			if (VERBOSE_PMAP || pmap_logging)
3047 				printf("pmap_enter(%p, %#lx, %p, %#x, %x, %d) -- asid=%lu curpid=%d name=%s\n",
3048 				    pmap, va, m, prot, flags, psind,
3049 				    pmap->pm_pid, curproc->p_pid,
3050 				    curproc->p_comm);
3051 #endif
3052 		}
3053 
3054 		/*
3055 		 * Increment the counters.
3056 		 */
3057 		if ((newpte & PG_W) != 0)
3058 			pmap->pm_stats.wired_count++;
3059 		pmap_resident_count_inc(pmap, 1);
3060 	}
3061 
3062 	/*
3063 	 * Enter on the PV list if part of our managed memory.
3064 	 */
3065 	if ((newpte & PG_MANAGED) != 0) {
3066 		if (pv == NULL) {
3067 			pv = get_pv_entry(pmap, &lock);
3068 			pv->pv_va = va;
3069 		}
3070 #ifdef VERBOSE_PV
3071 		else
3072 			printf("reassigning pv: %p to pmap: %p\n",
3073 				   pv, pmap);
3074 #endif
3075 		CHANGE_PV_LIST_LOCK_TO_PHYS(&lock, pa);
3076 		TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_link);
3077 		m->md.pv_gen++;
3078 		if ((newpte & PG_RW) != 0)
3079 			vm_page_aflag_set(m, PGA_WRITEABLE);
3080 	}
3081 
3082 	/*
3083 	 * Update the PTE.
3084 	 */
3085 	if ((origpte & PG_V) != 0) {
3086 validate:
3087 		origpte = be64toh(pte_load_store(pte, htobe64(newpte)));
3088 		KASSERT((origpte & PG_FRAME) == pa,
3089 		    ("pmap_enter: unexpected pa update for %#lx", va));
3090 		if ((newpte & PG_M) == 0 && (origpte & (PG_M | PG_RW)) ==
3091 		    (PG_M | PG_RW)) {
3092 			if ((origpte & PG_MANAGED) != 0)
3093 				vm_page_dirty(m);
3094 			invalidate_page = true;
3095 
3096 			/*
3097 			 * Although the PTE may still have PG_RW set, TLB
3098 			 * invalidation may nonetheless be required because
3099 			 * the PTE no longer has PG_M set.
3100 			 */
3101 		} else if ((origpte & PG_X) != 0 || (newpte & PG_X) == 0) {
3102 			/*
3103 			 * Removing capabilities requires invalidation on POWER
3104 			 */
3105 			invalidate_page = true;
3106 			goto unchanged;
3107 		}
3108 		if ((origpte & PG_A) != 0)
3109 			invalidate_page = true;
3110 	} else {
3111 		pte_store(pte, newpte);
3112 		ptesync();
3113 	}
3114 unchanged:
3115 
3116 #if VM_NRESERVLEVEL > 0
3117 	/*
3118 	 * If both the page table page and the reservation are fully
3119 	 * populated, then attempt promotion.
3120 	 */
3121 	if ((mpte == NULL || mpte->ref_count == NPTEPG) &&
3122 	    mmu_radix_ps_enabled(pmap) &&
3123 	    (m->flags & PG_FICTITIOUS) == 0 &&
3124 	    vm_reserv_level_iffullpop(m) == 0 &&
3125 		pmap_promote_l3e(pmap, l3e, va, &lock) == 0)
3126 		invalidate_all = true;
3127 #endif
3128 	if (invalidate_all)
3129 		pmap_invalidate_all(pmap);
3130 	else if (invalidate_page)
3131 		pmap_invalidate_page(pmap, va);
3132 
3133 	rv = KERN_SUCCESS;
3134 out:
3135 	if (lock != NULL)
3136 		rw_wunlock(lock);
3137 	PMAP_UNLOCK(pmap);
3138 
3139 	return (rv);
3140 }
3141 
3142 /*
3143  * Tries to create a read- and/or execute-only 2MB page mapping.  Returns true
3144  * if successful.  Returns false if (1) a page table page cannot be allocated
3145  * without sleeping, (2) a mapping already exists at the specified virtual
3146  * address, or (3) a PV entry cannot be allocated without reclaiming another
3147  * PV entry.
3148  */
3149 static bool
3150 pmap_enter_2mpage(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
3151     struct rwlock **lockp)
3152 {
3153 	pml3_entry_t newpde;
3154 
3155 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3156 	newpde = VM_PAGE_TO_PHYS(m) | pmap_cache_bits(m->md.mdpg_cache_attrs) |
3157 	    RPTE_LEAF | PG_V;
3158 	if ((m->oflags & VPO_UNMANAGED) == 0)
3159 		newpde |= PG_MANAGED;
3160 	if (prot & VM_PROT_EXECUTE)
3161 		newpde |= PG_X;
3162 	if (prot & VM_PROT_READ)
3163 		newpde |= RPTE_EAA_R;
3164 	if (va >= DMAP_MIN_ADDRESS)
3165 		newpde |= RPTE_EAA_P;
3166 	return (pmap_enter_l3e(pmap, va, newpde, PMAP_ENTER_NOSLEEP |
3167 	    PMAP_ENTER_NOREPLACE | PMAP_ENTER_NORECLAIM, NULL, lockp) ==
3168 	    KERN_SUCCESS);
3169 }
3170 
3171 /*
3172  * Tries to create the specified 2MB page mapping.  Returns KERN_SUCCESS if
3173  * the mapping was created, and either KERN_FAILURE or KERN_RESOURCE_SHORTAGE
3174  * otherwise.  Returns KERN_FAILURE if PMAP_ENTER_NOREPLACE was specified and
3175  * a mapping already exists at the specified virtual address.  Returns
3176  * KERN_RESOURCE_SHORTAGE if PMAP_ENTER_NOSLEEP was specified and a page table
3177  * page allocation failed.  Returns KERN_RESOURCE_SHORTAGE if
3178  * PMAP_ENTER_NORECLAIM was specified and a PV entry allocation failed.
3179  *
3180  * The parameter "m" is only used when creating a managed, writeable mapping.
3181  */
3182 static int
3183 pmap_enter_l3e(pmap_t pmap, vm_offset_t va, pml3_entry_t newpde, u_int flags,
3184     vm_page_t m, struct rwlock **lockp)
3185 {
3186 	struct spglist free;
3187 	pml3_entry_t oldl3e, *l3e;
3188 	vm_page_t mt, pdpg;
3189 
3190 	KASSERT((newpde & (PG_M | PG_RW)) != PG_RW,
3191 	    ("pmap_enter_pde: newpde is missing PG_M"));
3192 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3193 
3194 	if ((pdpg = pmap_allocl3e(pmap, va, (flags & PMAP_ENTER_NOSLEEP) != 0 ?
3195 	    NULL : lockp)) == NULL) {
3196 		CTR2(KTR_PMAP, "pmap_enter_pde: failure for va %#lx"
3197 		    " in pmap %p", va, pmap);
3198 		return (KERN_RESOURCE_SHORTAGE);
3199 	}
3200 	l3e = (pml3_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pdpg));
3201 	l3e = &l3e[pmap_pml3e_index(va)];
3202 	oldl3e = be64toh(*l3e);
3203 	if ((oldl3e & PG_V) != 0) {
3204 		KASSERT(pdpg->ref_count > 1,
3205 		    ("pmap_enter_pde: pdpg's wire count is too low"));
3206 		if ((flags & PMAP_ENTER_NOREPLACE) != 0) {
3207 			pdpg->ref_count--;
3208 			CTR2(KTR_PMAP, "pmap_enter_pde: failure for va %#lx"
3209 			    " in pmap %p", va, pmap);
3210 			return (KERN_FAILURE);
3211 		}
3212 		/* Break the existing mapping(s). */
3213 		SLIST_INIT(&free);
3214 		if ((oldl3e & RPTE_LEAF) != 0) {
3215 			/*
3216 			 * The reference to the PD page that was acquired by
3217 			 * pmap_allocl3e() ensures that it won't be freed.
3218 			 * However, if the PDE resulted from a promotion, then
3219 			 * a reserved PT page could be freed.
3220 			 */
3221 			(void)pmap_remove_l3e(pmap, l3e, va, &free, lockp);
3222 			pmap_invalidate_l3e_page(pmap, va, oldl3e);
3223 		} else {
3224 			if (pmap_remove_ptes(pmap, va, va + L3_PAGE_SIZE, l3e,
3225 			    &free, lockp))
3226 		               pmap_invalidate_all(pmap);
3227 		}
3228 		vm_page_free_pages_toq(&free, true);
3229 		if (va >= VM_MAXUSER_ADDRESS) {
3230 			mt = PHYS_TO_VM_PAGE(be64toh(*l3e) & PG_FRAME);
3231 			if (pmap_insert_pt_page(pmap, mt)) {
3232 				/*
3233 				 * XXX Currently, this can't happen because
3234 				 * we do not perform pmap_enter(psind == 1)
3235 				 * on the kernel pmap.
3236 				 */
3237 				panic("pmap_enter_pde: trie insert failed");
3238 			}
3239 		} else
3240 			KASSERT(be64toh(*l3e) == 0, ("pmap_enter_pde: non-zero pde %p",
3241 			    l3e));
3242 	}
3243 	if ((newpde & PG_MANAGED) != 0) {
3244 		/*
3245 		 * Abort this mapping if its PV entry could not be created.
3246 		 */
3247 		if (!pmap_pv_insert_l3e(pmap, va, newpde, flags, lockp)) {
3248 			SLIST_INIT(&free);
3249 			if (pmap_unwire_ptp(pmap, va, pdpg, &free)) {
3250 				/*
3251 				 * Although "va" is not mapped, paging-
3252 				 * structure caches could nonetheless have
3253 				 * entries that refer to the freed page table
3254 				 * pages.  Invalidate those entries.
3255 				 */
3256 				pmap_invalidate_page(pmap, va);
3257 				vm_page_free_pages_toq(&free, true);
3258 			}
3259 			CTR2(KTR_PMAP, "pmap_enter_pde: failure for va %#lx"
3260 			    " in pmap %p", va, pmap);
3261 			return (KERN_RESOURCE_SHORTAGE);
3262 		}
3263 		if ((newpde & PG_RW) != 0) {
3264 			for (mt = m; mt < &m[L3_PAGE_SIZE / PAGE_SIZE]; mt++)
3265 				vm_page_aflag_set(mt, PGA_WRITEABLE);
3266 		}
3267 	}
3268 
3269 	/*
3270 	 * Increment counters.
3271 	 */
3272 	if ((newpde & PG_W) != 0)
3273 		pmap->pm_stats.wired_count += L3_PAGE_SIZE / PAGE_SIZE;
3274 	pmap_resident_count_inc(pmap, L3_PAGE_SIZE / PAGE_SIZE);
3275 
3276 	/*
3277 	 * Map the superpage.  (This is not a promoted mapping; there will not
3278 	 * be any lingering 4KB page mappings in the TLB.)
3279 	 */
3280 	pte_store(l3e, newpde);
3281 	ptesync();
3282 
3283 	counter_u64_add(pmap_l3e_mappings, 1);
3284 	CTR2(KTR_PMAP, "pmap_enter_pde: success for va %#lx"
3285 	    " in pmap %p", va, pmap);
3286 	return (KERN_SUCCESS);
3287 }
3288 
3289 void
3290 mmu_radix_enter_object(pmap_t pmap, vm_offset_t start,
3291     vm_offset_t end, vm_page_t m_start, vm_prot_t prot)
3292 {
3293 
3294 	struct rwlock *lock;
3295 	vm_offset_t va;
3296 	vm_page_t m, mpte;
3297 	vm_pindex_t diff, psize;
3298 	bool invalidate;
3299 	VM_OBJECT_ASSERT_LOCKED(m_start->object);
3300 
3301 	CTR6(KTR_PMAP, "%s(%p, %#x, %#x, %p, %#x)", __func__, pmap, start,
3302 	    end, m_start, prot);
3303 
3304 	invalidate = false;
3305 	psize = atop(end - start);
3306 	mpte = NULL;
3307 	m = m_start;
3308 	lock = NULL;
3309 	PMAP_LOCK(pmap);
3310 	while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
3311 		va = start + ptoa(diff);
3312 		if ((va & L3_PAGE_MASK) == 0 && va + L3_PAGE_SIZE <= end &&
3313 		    m->psind == 1 && mmu_radix_ps_enabled(pmap) &&
3314 		    pmap_enter_2mpage(pmap, va, m, prot, &lock))
3315 			m = &m[L3_PAGE_SIZE / PAGE_SIZE - 1];
3316 		else
3317 			mpte = mmu_radix_enter_quick_locked(pmap, va, m, prot,
3318 			    mpte, &lock, &invalidate);
3319 		m = TAILQ_NEXT(m, listq);
3320 	}
3321 	ptesync();
3322 	if (lock != NULL)
3323 		rw_wunlock(lock);
3324 	if (invalidate)
3325 		pmap_invalidate_all(pmap);
3326 	PMAP_UNLOCK(pmap);
3327 }
3328 
3329 static vm_page_t
3330 mmu_radix_enter_quick_locked(pmap_t pmap, vm_offset_t va, vm_page_t m,
3331     vm_prot_t prot, vm_page_t mpte, struct rwlock **lockp, bool *invalidate)
3332 {
3333 	struct spglist free;
3334 	pt_entry_t *pte;
3335 	vm_paddr_t pa;
3336 
3337 	KASSERT(!VA_IS_CLEANMAP(va) ||
3338 	    (m->oflags & VPO_UNMANAGED) != 0,
3339 	    ("mmu_radix_enter_quick_locked: managed mapping within the clean submap"));
3340 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3341 
3342 	/*
3343 	 * In the case that a page table page is not
3344 	 * resident, we are creating it here.
3345 	 */
3346 	if (va < VM_MAXUSER_ADDRESS) {
3347 		vm_pindex_t ptepindex;
3348 		pml3_entry_t *ptepa;
3349 
3350 		/*
3351 		 * Calculate pagetable page index
3352 		 */
3353 		ptepindex = pmap_l3e_pindex(va);
3354 		if (mpte && (mpte->pindex == ptepindex)) {
3355 			mpte->ref_count++;
3356 		} else {
3357 			/*
3358 			 * Get the page directory entry
3359 			 */
3360 			ptepa = pmap_pml3e(pmap, va);
3361 
3362 			/*
3363 			 * If the page table page is mapped, we just increment
3364 			 * the hold count, and activate it.  Otherwise, we
3365 			 * attempt to allocate a page table page.  If this
3366 			 * attempt fails, we don't retry.  Instead, we give up.
3367 			 */
3368 			if (ptepa && (be64toh(*ptepa) & PG_V) != 0) {
3369 				if (be64toh(*ptepa) & RPTE_LEAF)
3370 					return (NULL);
3371 				mpte = PHYS_TO_VM_PAGE(be64toh(*ptepa) & PG_FRAME);
3372 				mpte->ref_count++;
3373 			} else {
3374 				/*
3375 				 * Pass NULL instead of the PV list lock
3376 				 * pointer, because we don't intend to sleep.
3377 				 */
3378 				mpte = _pmap_allocpte(pmap, ptepindex, NULL);
3379 				if (mpte == NULL)
3380 					return (mpte);
3381 			}
3382 		}
3383 		pte = (pt_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(mpte));
3384 		pte = &pte[pmap_pte_index(va)];
3385 	} else {
3386 		mpte = NULL;
3387 		pte = pmap_pte(pmap, va);
3388 	}
3389 	if (be64toh(*pte)) {
3390 		if (mpte != NULL) {
3391 			mpte->ref_count--;
3392 			mpte = NULL;
3393 		}
3394 		return (mpte);
3395 	}
3396 
3397 	/*
3398 	 * Enter on the PV list if part of our managed memory.
3399 	 */
3400 	if ((m->oflags & VPO_UNMANAGED) == 0 &&
3401 	    !pmap_try_insert_pv_entry(pmap, va, m, lockp)) {
3402 		if (mpte != NULL) {
3403 			SLIST_INIT(&free);
3404 			if (pmap_unwire_ptp(pmap, va, mpte, &free)) {
3405 				/*
3406 				 * Although "va" is not mapped, paging-
3407 				 * structure caches could nonetheless have
3408 				 * entries that refer to the freed page table
3409 				 * pages.  Invalidate those entries.
3410 				 */
3411 				*invalidate = true;
3412 				vm_page_free_pages_toq(&free, true);
3413 			}
3414 			mpte = NULL;
3415 		}
3416 		return (mpte);
3417 	}
3418 
3419 	/*
3420 	 * Increment counters
3421 	 */
3422 	pmap_resident_count_inc(pmap, 1);
3423 
3424 	pa = VM_PAGE_TO_PHYS(m) | pmap_cache_bits(m->md.mdpg_cache_attrs);
3425 	if (prot & VM_PROT_EXECUTE)
3426 		pa |= PG_X;
3427 	else
3428 		pa |= RPTE_EAA_R;
3429 	if ((m->oflags & VPO_UNMANAGED) == 0)
3430 		pa |= PG_MANAGED;
3431 
3432 	pte_store(pte, pa);
3433 	return (mpte);
3434 }
3435 
3436 void
3437 mmu_radix_enter_quick(pmap_t pmap, vm_offset_t va, vm_page_t m,
3438     vm_prot_t prot)
3439 {
3440 	struct rwlock *lock;
3441 	bool invalidate;
3442 
3443 	lock = NULL;
3444 	invalidate = false;
3445 	PMAP_LOCK(pmap);
3446 	mmu_radix_enter_quick_locked(pmap, va, m, prot, NULL, &lock,
3447 	    &invalidate);
3448 	ptesync();
3449 	if (lock != NULL)
3450 		rw_wunlock(lock);
3451 	if (invalidate)
3452 		pmap_invalidate_all(pmap);
3453 	PMAP_UNLOCK(pmap);
3454 }
3455 
3456 vm_paddr_t
3457 mmu_radix_extract(pmap_t pmap, vm_offset_t va)
3458 {
3459 	pml3_entry_t *l3e;
3460 	pt_entry_t *pte;
3461 	vm_paddr_t pa;
3462 
3463 	l3e = pmap_pml3e(pmap, va);
3464 	if (__predict_false(l3e == NULL))
3465 		return (0);
3466 	if (be64toh(*l3e) & RPTE_LEAF) {
3467 		pa = (be64toh(*l3e) & PG_PS_FRAME) | (va & L3_PAGE_MASK);
3468 		pa |= (va & L3_PAGE_MASK);
3469 	} else {
3470 		/*
3471 		 * Beware of a concurrent promotion that changes the
3472 		 * PDE at this point!  For example, vtopte() must not
3473 		 * be used to access the PTE because it would use the
3474 		 * new PDE.  It is, however, safe to use the old PDE
3475 		 * because the page table page is preserved by the
3476 		 * promotion.
3477 		 */
3478 		pte = pmap_l3e_to_pte(l3e, va);
3479 		if (__predict_false(pte == NULL))
3480 			return (0);
3481 		pa = be64toh(*pte);
3482 		pa = (pa & PG_FRAME) | (va & PAGE_MASK);
3483 		pa |= (va & PAGE_MASK);
3484 	}
3485 	return (pa);
3486 }
3487 
3488 vm_page_t
3489 mmu_radix_extract_and_hold(pmap_t pmap, vm_offset_t va, vm_prot_t prot)
3490 {
3491 	pml3_entry_t l3e, *l3ep;
3492 	pt_entry_t pte;
3493 	vm_page_t m;
3494 
3495 	m = NULL;
3496 	CTR4(KTR_PMAP, "%s(%p, %#x, %#x)", __func__, pmap, va, prot);
3497 	PMAP_LOCK(pmap);
3498 	l3ep = pmap_pml3e(pmap, va);
3499 	if (l3ep != NULL && (l3e = be64toh(*l3ep))) {
3500 		if (l3e & RPTE_LEAF) {
3501 			if ((l3e & PG_RW) || (prot & VM_PROT_WRITE) == 0)
3502 				m = PHYS_TO_VM_PAGE((l3e & PG_PS_FRAME) |
3503 				    (va & L3_PAGE_MASK));
3504 		} else {
3505 			/* Native endian PTE, do not pass to pmap functions */
3506 			pte = be64toh(*pmap_l3e_to_pte(l3ep, va));
3507 			if ((pte & PG_V) &&
3508 			    ((pte & PG_RW) || (prot & VM_PROT_WRITE) == 0))
3509 				m = PHYS_TO_VM_PAGE(pte & PG_FRAME);
3510 		}
3511 		if (m != NULL && !vm_page_wire_mapped(m))
3512 			m = NULL;
3513 	}
3514 	PMAP_UNLOCK(pmap);
3515 	return (m);
3516 }
3517 
3518 static void
3519 mmu_radix_growkernel(vm_offset_t addr)
3520 {
3521 	vm_paddr_t paddr;
3522 	vm_page_t nkpg;
3523 	pml3_entry_t *l3e;
3524 	pml2_entry_t *l2e;
3525 
3526 	CTR2(KTR_PMAP, "%s(%#x)", __func__, addr);
3527 	if (VM_MIN_KERNEL_ADDRESS < addr &&
3528 		addr < (VM_MIN_KERNEL_ADDRESS + nkpt * L3_PAGE_SIZE))
3529 		return;
3530 
3531 	addr = roundup2(addr, L3_PAGE_SIZE);
3532 	if (addr - 1 >= vm_map_max(kernel_map))
3533 		addr = vm_map_max(kernel_map);
3534 	while (kernel_vm_end < addr) {
3535 		l2e = pmap_pml2e(kernel_pmap, kernel_vm_end);
3536 		if ((be64toh(*l2e) & PG_V) == 0) {
3537 			/* We need a new PDP entry */
3538 			nkpg = vm_page_alloc(NULL, kernel_vm_end >> L2_PAGE_SIZE_SHIFT,
3539 			    VM_ALLOC_INTERRUPT | VM_ALLOC_NOOBJ |
3540 			    VM_ALLOC_WIRED | VM_ALLOC_ZERO);
3541 			if (nkpg == NULL)
3542 				panic("pmap_growkernel: no memory to grow kernel");
3543 			if ((nkpg->flags & PG_ZERO) == 0)
3544 				mmu_radix_zero_page(nkpg);
3545 			paddr = VM_PAGE_TO_PHYS(nkpg);
3546 			pde_store(l2e, paddr);
3547 			continue; /* try again */
3548 		}
3549 		l3e = pmap_l2e_to_l3e(l2e, kernel_vm_end);
3550 		if ((be64toh(*l3e) & PG_V) != 0) {
3551 			kernel_vm_end = (kernel_vm_end + L3_PAGE_SIZE) & ~L3_PAGE_MASK;
3552 			if (kernel_vm_end - 1 >= vm_map_max(kernel_map)) {
3553 				kernel_vm_end = vm_map_max(kernel_map);
3554 				break;
3555 			}
3556 			continue;
3557 		}
3558 
3559 		nkpg = vm_page_alloc(NULL, pmap_l3e_pindex(kernel_vm_end),
3560 		    VM_ALLOC_INTERRUPT | VM_ALLOC_NOOBJ | VM_ALLOC_WIRED |
3561 		    VM_ALLOC_ZERO);
3562 		if (nkpg == NULL)
3563 			panic("pmap_growkernel: no memory to grow kernel");
3564 		if ((nkpg->flags & PG_ZERO) == 0)
3565 			mmu_radix_zero_page(nkpg);
3566 		paddr = VM_PAGE_TO_PHYS(nkpg);
3567 		pde_store(l3e, paddr);
3568 
3569 		kernel_vm_end = (kernel_vm_end + L3_PAGE_SIZE) & ~L3_PAGE_MASK;
3570 		if (kernel_vm_end - 1 >= vm_map_max(kernel_map)) {
3571 			kernel_vm_end = vm_map_max(kernel_map);
3572 			break;
3573 		}
3574 	}
3575 	ptesync();
3576 }
3577 
3578 static MALLOC_DEFINE(M_RADIX_PGD, "radix_pgd", "radix page table root directory");
3579 static uma_zone_t zone_radix_pgd;
3580 
3581 static int
3582 radix_pgd_import(void *arg __unused, void **store, int count, int domain __unused,
3583     int flags)
3584 {
3585 
3586 	for (int i = 0; i < count; i++) {
3587 		vm_page_t m = vm_page_alloc_contig(NULL, 0,
3588 		    VM_ALLOC_NORMAL | VM_ALLOC_NOOBJ | VM_ALLOC_WIRED |
3589 		    VM_ALLOC_ZERO | VM_ALLOC_WAITOK, RADIX_PGD_SIZE/PAGE_SIZE,
3590 		    0, (vm_paddr_t)-1, RADIX_PGD_SIZE, L1_PAGE_SIZE,
3591 		    VM_MEMATTR_DEFAULT);
3592 		/* XXX zero on alloc here so we don't have to later */
3593 		store[i] = (void *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m));
3594 	}
3595 	return (count);
3596 }
3597 
3598 static void
3599 radix_pgd_release(void *arg __unused, void **store, int count)
3600 {
3601 	vm_page_t m;
3602 	struct spglist free;
3603 	int page_count;
3604 
3605 	SLIST_INIT(&free);
3606 	page_count = RADIX_PGD_SIZE/PAGE_SIZE;
3607 
3608 	for (int i = 0; i < count; i++) {
3609 		/*
3610 		 * XXX selectively remove dmap and KVA entries so we don't
3611 		 * need to bzero
3612 		 */
3613 		m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t)store[i]));
3614 		for (int j = page_count-1; j >= 0; j--) {
3615 			vm_page_unwire_noq(&m[j]);
3616 			SLIST_INSERT_HEAD(&free, &m[j], plinks.s.ss);
3617 		}
3618 		vm_page_free_pages_toq(&free, false);
3619 	}
3620 }
3621 
3622 static void
3623 mmu_radix_init()
3624 {
3625 	vm_page_t mpte;
3626 	vm_size_t s;
3627 	int error, i, pv_npg;
3628 
3629 	/* XXX is this really needed for POWER? */
3630 	/* L1TF, reserve page @0 unconditionally */
3631 	vm_page_blacklist_add(0, bootverbose);
3632 
3633 	zone_radix_pgd = uma_zcache_create("radix_pgd_cache",
3634 		RADIX_PGD_SIZE, NULL, NULL,
3635 #ifdef INVARIANTS
3636 	    trash_init, trash_fini,
3637 #else
3638 	    NULL, NULL,
3639 #endif
3640 		radix_pgd_import, radix_pgd_release,
3641 		NULL, UMA_ZONE_NOBUCKET);
3642 
3643 	/*
3644 	 * Initialize the vm page array entries for the kernel pmap's
3645 	 * page table pages.
3646 	 */
3647 	PMAP_LOCK(kernel_pmap);
3648 	for (i = 0; i < nkpt; i++) {
3649 		mpte = PHYS_TO_VM_PAGE(KPTphys + (i << PAGE_SHIFT));
3650 		KASSERT(mpte >= vm_page_array &&
3651 		    mpte < &vm_page_array[vm_page_array_size],
3652 		    ("pmap_init: page table page is out of range size: %lu",
3653 		     vm_page_array_size));
3654 		mpte->pindex = pmap_l3e_pindex(VM_MIN_KERNEL_ADDRESS) + i;
3655 		mpte->phys_addr = KPTphys + (i << PAGE_SHIFT);
3656 		MPASS(PHYS_TO_VM_PAGE(mpte->phys_addr) == mpte);
3657 		//pmap_insert_pt_page(kernel_pmap, mpte);
3658 		mpte->ref_count = 1;
3659 	}
3660 	PMAP_UNLOCK(kernel_pmap);
3661 	vm_wire_add(nkpt);
3662 
3663 	CTR1(KTR_PMAP, "%s()", __func__);
3664 	TAILQ_INIT(&pv_dummy.pv_list);
3665 
3666 	/*
3667 	 * Are large page mappings enabled?
3668 	 */
3669 	TUNABLE_INT_FETCH("vm.pmap.superpages_enabled", &superpages_enabled);
3670 	if (superpages_enabled) {
3671 		KASSERT(MAXPAGESIZES > 1 && pagesizes[1] == 0,
3672 		    ("pmap_init: can't assign to pagesizes[1]"));
3673 		pagesizes[1] = L3_PAGE_SIZE;
3674 	}
3675 
3676 	/*
3677 	 * Initialize the pv chunk list mutex.
3678 	 */
3679 	mtx_init(&pv_chunks_mutex, "pmap pv chunk list", NULL, MTX_DEF);
3680 
3681 	/*
3682 	 * Initialize the pool of pv list locks.
3683 	 */
3684 	for (i = 0; i < NPV_LIST_LOCKS; i++)
3685 		rw_init(&pv_list_locks[i], "pmap pv list");
3686 
3687 	/*
3688 	 * Calculate the size of the pv head table for superpages.
3689 	 */
3690 	pv_npg = howmany(vm_phys_segs[vm_phys_nsegs - 1].end, L3_PAGE_SIZE);
3691 
3692 	/*
3693 	 * Allocate memory for the pv head table for superpages.
3694 	 */
3695 	s = (vm_size_t)(pv_npg * sizeof(struct md_page));
3696 	s = round_page(s);
3697 	pv_table = (struct md_page *)kmem_malloc(s, M_WAITOK | M_ZERO);
3698 	for (i = 0; i < pv_npg; i++)
3699 		TAILQ_INIT(&pv_table[i].pv_list);
3700 	TAILQ_INIT(&pv_dummy.pv_list);
3701 
3702 	pmap_initialized = 1;
3703 	mtx_init(&qframe_mtx, "qfrmlk", NULL, MTX_SPIN);
3704 	error = vmem_alloc(kernel_arena, PAGE_SIZE, M_BESTFIT | M_WAITOK,
3705 	    (vmem_addr_t *)&qframe);
3706 
3707 	if (error != 0)
3708 		panic("qframe allocation failed");
3709 	asid_arena = vmem_create("ASID", isa3_base_pid + 1, (1<<isa3_pid_bits),
3710 	    1, 1, M_WAITOK);
3711 }
3712 
3713 static boolean_t
3714 pmap_page_test_mappings(vm_page_t m, boolean_t accessed, boolean_t modified)
3715 {
3716 	struct rwlock *lock;
3717 	pv_entry_t pv;
3718 	struct md_page *pvh;
3719 	pt_entry_t *pte, mask;
3720 	pmap_t pmap;
3721 	int md_gen, pvh_gen;
3722 	boolean_t rv;
3723 
3724 	rv = FALSE;
3725 	lock = VM_PAGE_TO_PV_LIST_LOCK(m);
3726 	rw_rlock(lock);
3727 restart:
3728 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
3729 		pmap = PV_PMAP(pv);
3730 		if (!PMAP_TRYLOCK(pmap)) {
3731 			md_gen = m->md.pv_gen;
3732 			rw_runlock(lock);
3733 			PMAP_LOCK(pmap);
3734 			rw_rlock(lock);
3735 			if (md_gen != m->md.pv_gen) {
3736 				PMAP_UNLOCK(pmap);
3737 				goto restart;
3738 			}
3739 		}
3740 		pte = pmap_pte(pmap, pv->pv_va);
3741 		mask = 0;
3742 		if (modified)
3743 			mask |= PG_RW | PG_M;
3744 		if (accessed)
3745 			mask |= PG_V | PG_A;
3746 		rv = (be64toh(*pte) & mask) == mask;
3747 		PMAP_UNLOCK(pmap);
3748 		if (rv)
3749 			goto out;
3750 	}
3751 	if ((m->flags & PG_FICTITIOUS) == 0) {
3752 		pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
3753 		TAILQ_FOREACH(pv, &pvh->pv_list, pv_link) {
3754 			pmap = PV_PMAP(pv);
3755 			if (!PMAP_TRYLOCK(pmap)) {
3756 				md_gen = m->md.pv_gen;
3757 				pvh_gen = pvh->pv_gen;
3758 				rw_runlock(lock);
3759 				PMAP_LOCK(pmap);
3760 				rw_rlock(lock);
3761 				if (md_gen != m->md.pv_gen ||
3762 				    pvh_gen != pvh->pv_gen) {
3763 					PMAP_UNLOCK(pmap);
3764 					goto restart;
3765 				}
3766 			}
3767 			pte = pmap_pml3e(pmap, pv->pv_va);
3768 			mask = 0;
3769 			if (modified)
3770 				mask |= PG_RW | PG_M;
3771 			if (accessed)
3772 				mask |= PG_V | PG_A;
3773 			rv = (be64toh(*pte) & mask) == mask;
3774 			PMAP_UNLOCK(pmap);
3775 			if (rv)
3776 				goto out;
3777 		}
3778 	}
3779 out:
3780 	rw_runlock(lock);
3781 	return (rv);
3782 }
3783 
3784 /*
3785  *	pmap_is_modified:
3786  *
3787  *	Return whether or not the specified physical page was modified
3788  *	in any physical maps.
3789  */
3790 boolean_t
3791 mmu_radix_is_modified(vm_page_t m)
3792 {
3793 
3794 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
3795 	    ("pmap_is_modified: page %p is not managed", m));
3796 
3797 	CTR2(KTR_PMAP, "%s(%p)", __func__, m);
3798 	/*
3799 	 * If the page is not busied then this check is racy.
3800 	 */
3801 	if (!pmap_page_is_write_mapped(m))
3802 		return (FALSE);
3803 	return (pmap_page_test_mappings(m, FALSE, TRUE));
3804 }
3805 
3806 boolean_t
3807 mmu_radix_is_prefaultable(pmap_t pmap, vm_offset_t addr)
3808 {
3809 	pml3_entry_t *l3e;
3810 	pt_entry_t *pte;
3811 	boolean_t rv;
3812 
3813 	CTR3(KTR_PMAP, "%s(%p, %#x)", __func__, pmap, addr);
3814 	rv = FALSE;
3815 	PMAP_LOCK(pmap);
3816 	l3e = pmap_pml3e(pmap, addr);
3817 	if (l3e != NULL && (be64toh(*l3e) & (RPTE_LEAF | PG_V)) == PG_V) {
3818 		pte = pmap_l3e_to_pte(l3e, addr);
3819 		rv = (be64toh(*pte) & PG_V) == 0;
3820 	}
3821 	PMAP_UNLOCK(pmap);
3822 	return (rv);
3823 }
3824 
3825 boolean_t
3826 mmu_radix_is_referenced(vm_page_t m)
3827 {
3828 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
3829 	    ("pmap_is_referenced: page %p is not managed", m));
3830 	CTR2(KTR_PMAP, "%s(%p)", __func__, m);
3831 	return (pmap_page_test_mappings(m, TRUE, FALSE));
3832 }
3833 
3834 /*
3835  *	pmap_ts_referenced:
3836  *
3837  *	Return a count of reference bits for a page, clearing those bits.
3838  *	It is not necessary for every reference bit to be cleared, but it
3839  *	is necessary that 0 only be returned when there are truly no
3840  *	reference bits set.
3841  *
3842  *	As an optimization, update the page's dirty field if a modified bit is
3843  *	found while counting reference bits.  This opportunistic update can be
3844  *	performed at low cost and can eliminate the need for some future calls
3845  *	to pmap_is_modified().  However, since this function stops after
3846  *	finding PMAP_TS_REFERENCED_MAX reference bits, it may not detect some
3847  *	dirty pages.  Those dirty pages will only be detected by a future call
3848  *	to pmap_is_modified().
3849  *
3850  *	A DI block is not needed within this function, because
3851  *	invalidations are performed before the PV list lock is
3852  *	released.
3853  */
3854 boolean_t
3855 mmu_radix_ts_referenced(vm_page_t m)
3856 {
3857 	struct md_page *pvh;
3858 	pv_entry_t pv, pvf;
3859 	pmap_t pmap;
3860 	struct rwlock *lock;
3861 	pml3_entry_t oldl3e, *l3e;
3862 	pt_entry_t *pte;
3863 	vm_paddr_t pa;
3864 	int cleared, md_gen, not_cleared, pvh_gen;
3865 	struct spglist free;
3866 
3867 	CTR2(KTR_PMAP, "%s(%p)", __func__, m);
3868 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
3869 	    ("pmap_ts_referenced: page %p is not managed", m));
3870 	SLIST_INIT(&free);
3871 	cleared = 0;
3872 	pa = VM_PAGE_TO_PHYS(m);
3873 	lock = PHYS_TO_PV_LIST_LOCK(pa);
3874 	pvh = (m->flags & PG_FICTITIOUS) != 0 ? &pv_dummy : pa_to_pvh(pa);
3875 	rw_wlock(lock);
3876 retry:
3877 	not_cleared = 0;
3878 	if ((pvf = TAILQ_FIRST(&pvh->pv_list)) == NULL)
3879 		goto small_mappings;
3880 	pv = pvf;
3881 	do {
3882 		if (pvf == NULL)
3883 			pvf = pv;
3884 		pmap = PV_PMAP(pv);
3885 		if (!PMAP_TRYLOCK(pmap)) {
3886 			pvh_gen = pvh->pv_gen;
3887 			rw_wunlock(lock);
3888 			PMAP_LOCK(pmap);
3889 			rw_wlock(lock);
3890 			if (pvh_gen != pvh->pv_gen) {
3891 				PMAP_UNLOCK(pmap);
3892 				goto retry;
3893 			}
3894 		}
3895 		l3e = pmap_pml3e(pmap, pv->pv_va);
3896 		oldl3e = be64toh(*l3e);
3897 		if ((oldl3e & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
3898 			/*
3899 			 * Although "oldpde" is mapping a 2MB page, because
3900 			 * this function is called at a 4KB page granularity,
3901 			 * we only update the 4KB page under test.
3902 			 */
3903 			vm_page_dirty(m);
3904 		}
3905 		if ((oldl3e & PG_A) != 0) {
3906 			/*
3907 			 * Since this reference bit is shared by 512 4KB
3908 			 * pages, it should not be cleared every time it is
3909 			 * tested.  Apply a simple "hash" function on the
3910 			 * physical page number, the virtual superpage number,
3911 			 * and the pmap address to select one 4KB page out of
3912 			 * the 512 on which testing the reference bit will
3913 			 * result in clearing that reference bit.  This
3914 			 * function is designed to avoid the selection of the
3915 			 * same 4KB page for every 2MB page mapping.
3916 			 *
3917 			 * On demotion, a mapping that hasn't been referenced
3918 			 * is simply destroyed.  To avoid the possibility of a
3919 			 * subsequent page fault on a demoted wired mapping,
3920 			 * always leave its reference bit set.  Moreover,
3921 			 * since the superpage is wired, the current state of
3922 			 * its reference bit won't affect page replacement.
3923 			 */
3924 			if ((((pa >> PAGE_SHIFT) ^ (pv->pv_va >> L3_PAGE_SIZE_SHIFT) ^
3925 			    (uintptr_t)pmap) & (NPTEPG - 1)) == 0 &&
3926 			    (oldl3e & PG_W) == 0) {
3927 				atomic_clear_long(l3e, htobe64(PG_A));
3928 				pmap_invalidate_page(pmap, pv->pv_va);
3929 				cleared++;
3930 				KASSERT(lock == VM_PAGE_TO_PV_LIST_LOCK(m),
3931 				    ("inconsistent pv lock %p %p for page %p",
3932 				    lock, VM_PAGE_TO_PV_LIST_LOCK(m), m));
3933 			} else
3934 				not_cleared++;
3935 		}
3936 		PMAP_UNLOCK(pmap);
3937 		/* Rotate the PV list if it has more than one entry. */
3938 		if (pv != NULL && TAILQ_NEXT(pv, pv_link) != NULL) {
3939 			TAILQ_REMOVE(&pvh->pv_list, pv, pv_link);
3940 			TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_link);
3941 			pvh->pv_gen++;
3942 		}
3943 		if (cleared + not_cleared >= PMAP_TS_REFERENCED_MAX)
3944 			goto out;
3945 	} while ((pv = TAILQ_FIRST(&pvh->pv_list)) != pvf);
3946 small_mappings:
3947 	if ((pvf = TAILQ_FIRST(&m->md.pv_list)) == NULL)
3948 		goto out;
3949 	pv = pvf;
3950 	do {
3951 		if (pvf == NULL)
3952 			pvf = pv;
3953 		pmap = PV_PMAP(pv);
3954 		if (!PMAP_TRYLOCK(pmap)) {
3955 			pvh_gen = pvh->pv_gen;
3956 			md_gen = m->md.pv_gen;
3957 			rw_wunlock(lock);
3958 			PMAP_LOCK(pmap);
3959 			rw_wlock(lock);
3960 			if (pvh_gen != pvh->pv_gen || md_gen != m->md.pv_gen) {
3961 				PMAP_UNLOCK(pmap);
3962 				goto retry;
3963 			}
3964 		}
3965 		l3e = pmap_pml3e(pmap, pv->pv_va);
3966 		KASSERT((be64toh(*l3e) & RPTE_LEAF) == 0,
3967 		    ("pmap_ts_referenced: found a 2mpage in page %p's pv list",
3968 		    m));
3969 		pte = pmap_l3e_to_pte(l3e, pv->pv_va);
3970 		if ((be64toh(*pte) & (PG_M | PG_RW)) == (PG_M | PG_RW))
3971 			vm_page_dirty(m);
3972 		if ((be64toh(*pte) & PG_A) != 0) {
3973 			atomic_clear_long(pte, htobe64(PG_A));
3974 			pmap_invalidate_page(pmap, pv->pv_va);
3975 			cleared++;
3976 		}
3977 		PMAP_UNLOCK(pmap);
3978 		/* Rotate the PV list if it has more than one entry. */
3979 		if (pv != NULL && TAILQ_NEXT(pv, pv_link) != NULL) {
3980 			TAILQ_REMOVE(&m->md.pv_list, pv, pv_link);
3981 			TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_link);
3982 			m->md.pv_gen++;
3983 		}
3984 	} while ((pv = TAILQ_FIRST(&m->md.pv_list)) != pvf && cleared +
3985 	    not_cleared < PMAP_TS_REFERENCED_MAX);
3986 out:
3987 	rw_wunlock(lock);
3988 	vm_page_free_pages_toq(&free, true);
3989 	return (cleared + not_cleared);
3990 }
3991 
3992 static vm_offset_t
3993 mmu_radix_map(vm_offset_t *virt __unused, vm_paddr_t start,
3994     vm_paddr_t end, int prot __unused)
3995 {
3996 
3997 	CTR5(KTR_PMAP, "%s(%p, %#x, %#x, %#x)", __func__, virt, start, end,
3998 		 prot);
3999 	return (PHYS_TO_DMAP(start));
4000 }
4001 
4002 void
4003 mmu_radix_object_init_pt(pmap_t pmap, vm_offset_t addr,
4004     vm_object_t object, vm_pindex_t pindex, vm_size_t size)
4005 {
4006 	pml3_entry_t *l3e;
4007 	vm_paddr_t pa, ptepa;
4008 	vm_page_t p, pdpg;
4009 	vm_memattr_t ma;
4010 
4011 	CTR6(KTR_PMAP, "%s(%p, %#x, %p, %u, %#x)", __func__, pmap, addr,
4012 	    object, pindex, size);
4013 	VM_OBJECT_ASSERT_WLOCKED(object);
4014 	KASSERT(object->type == OBJT_DEVICE || object->type == OBJT_SG,
4015 			("pmap_object_init_pt: non-device object"));
4016 	/* NB: size can be logically ored with addr here */
4017 	if ((addr & L3_PAGE_MASK) == 0 && (size & L3_PAGE_MASK) == 0) {
4018 		if (!mmu_radix_ps_enabled(pmap))
4019 			return;
4020 		if (!vm_object_populate(object, pindex, pindex + atop(size)))
4021 			return;
4022 		p = vm_page_lookup(object, pindex);
4023 		KASSERT(p->valid == VM_PAGE_BITS_ALL,
4024 		    ("pmap_object_init_pt: invalid page %p", p));
4025 		ma = p->md.mdpg_cache_attrs;
4026 
4027 		/*
4028 		 * Abort the mapping if the first page is not physically
4029 		 * aligned to a 2MB page boundary.
4030 		 */
4031 		ptepa = VM_PAGE_TO_PHYS(p);
4032 		if (ptepa & L3_PAGE_MASK)
4033 			return;
4034 
4035 		/*
4036 		 * Skip the first page.  Abort the mapping if the rest of
4037 		 * the pages are not physically contiguous or have differing
4038 		 * memory attributes.
4039 		 */
4040 		p = TAILQ_NEXT(p, listq);
4041 		for (pa = ptepa + PAGE_SIZE; pa < ptepa + size;
4042 		    pa += PAGE_SIZE) {
4043 			KASSERT(p->valid == VM_PAGE_BITS_ALL,
4044 			    ("pmap_object_init_pt: invalid page %p", p));
4045 			if (pa != VM_PAGE_TO_PHYS(p) ||
4046 			    ma != p->md.mdpg_cache_attrs)
4047 				return;
4048 			p = TAILQ_NEXT(p, listq);
4049 		}
4050 
4051 		PMAP_LOCK(pmap);
4052 		for (pa = ptepa | pmap_cache_bits(ma);
4053 		    pa < ptepa + size; pa += L3_PAGE_SIZE) {
4054 			pdpg = pmap_allocl3e(pmap, addr, NULL);
4055 			if (pdpg == NULL) {
4056 				/*
4057 				 * The creation of mappings below is only an
4058 				 * optimization.  If a page directory page
4059 				 * cannot be allocated without blocking,
4060 				 * continue on to the next mapping rather than
4061 				 * blocking.
4062 				 */
4063 				addr += L3_PAGE_SIZE;
4064 				continue;
4065 			}
4066 			l3e = (pml3_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pdpg));
4067 			l3e = &l3e[pmap_pml3e_index(addr)];
4068 			if ((be64toh(*l3e) & PG_V) == 0) {
4069 				pa |= PG_M | PG_A | PG_RW;
4070 				pte_store(l3e, pa);
4071 				pmap_resident_count_inc(pmap, L3_PAGE_SIZE / PAGE_SIZE);
4072 				counter_u64_add(pmap_l3e_mappings, 1);
4073 			} else {
4074 				/* Continue on if the PDE is already valid. */
4075 				pdpg->ref_count--;
4076 				KASSERT(pdpg->ref_count > 0,
4077 				    ("pmap_object_init_pt: missing reference "
4078 				    "to page directory page, va: 0x%lx", addr));
4079 			}
4080 			addr += L3_PAGE_SIZE;
4081 		}
4082 		ptesync();
4083 		PMAP_UNLOCK(pmap);
4084 	}
4085 }
4086 
4087 boolean_t
4088 mmu_radix_page_exists_quick(pmap_t pmap, vm_page_t m)
4089 {
4090 	struct md_page *pvh;
4091 	struct rwlock *lock;
4092 	pv_entry_t pv;
4093 	int loops = 0;
4094 	boolean_t rv;
4095 
4096 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4097 	    ("pmap_page_exists_quick: page %p is not managed", m));
4098 	CTR3(KTR_PMAP, "%s(%p, %p)", __func__, pmap, m);
4099 	rv = FALSE;
4100 	lock = VM_PAGE_TO_PV_LIST_LOCK(m);
4101 	rw_rlock(lock);
4102 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
4103 		if (PV_PMAP(pv) == pmap) {
4104 			rv = TRUE;
4105 			break;
4106 		}
4107 		loops++;
4108 		if (loops >= 16)
4109 			break;
4110 	}
4111 	if (!rv && loops < 16 && (m->flags & PG_FICTITIOUS) == 0) {
4112 		pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
4113 		TAILQ_FOREACH(pv, &pvh->pv_list, pv_link) {
4114 			if (PV_PMAP(pv) == pmap) {
4115 				rv = TRUE;
4116 				break;
4117 			}
4118 			loops++;
4119 			if (loops >= 16)
4120 				break;
4121 		}
4122 	}
4123 	rw_runlock(lock);
4124 	return (rv);
4125 }
4126 
4127 void
4128 mmu_radix_page_init(vm_page_t m)
4129 {
4130 
4131 	CTR2(KTR_PMAP, "%s(%p)", __func__, m);
4132 	TAILQ_INIT(&m->md.pv_list);
4133 	m->md.mdpg_cache_attrs = VM_MEMATTR_DEFAULT;
4134 }
4135 
4136 int
4137 mmu_radix_page_wired_mappings(vm_page_t m)
4138 {
4139 	struct rwlock *lock;
4140 	struct md_page *pvh;
4141 	pmap_t pmap;
4142 	pt_entry_t *pte;
4143 	pv_entry_t pv;
4144 	int count, md_gen, pvh_gen;
4145 
4146 	if ((m->oflags & VPO_UNMANAGED) != 0)
4147 		return (0);
4148 	CTR2(KTR_PMAP, "%s(%p)", __func__, m);
4149 	lock = VM_PAGE_TO_PV_LIST_LOCK(m);
4150 	rw_rlock(lock);
4151 restart:
4152 	count = 0;
4153 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
4154 		pmap = PV_PMAP(pv);
4155 		if (!PMAP_TRYLOCK(pmap)) {
4156 			md_gen = m->md.pv_gen;
4157 			rw_runlock(lock);
4158 			PMAP_LOCK(pmap);
4159 			rw_rlock(lock);
4160 			if (md_gen != m->md.pv_gen) {
4161 				PMAP_UNLOCK(pmap);
4162 				goto restart;
4163 			}
4164 		}
4165 		pte = pmap_pte(pmap, pv->pv_va);
4166 		if ((be64toh(*pte) & PG_W) != 0)
4167 			count++;
4168 		PMAP_UNLOCK(pmap);
4169 	}
4170 	if ((m->flags & PG_FICTITIOUS) == 0) {
4171 		pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
4172 		TAILQ_FOREACH(pv, &pvh->pv_list, pv_link) {
4173 			pmap = PV_PMAP(pv);
4174 			if (!PMAP_TRYLOCK(pmap)) {
4175 				md_gen = m->md.pv_gen;
4176 				pvh_gen = pvh->pv_gen;
4177 				rw_runlock(lock);
4178 				PMAP_LOCK(pmap);
4179 				rw_rlock(lock);
4180 				if (md_gen != m->md.pv_gen ||
4181 				    pvh_gen != pvh->pv_gen) {
4182 					PMAP_UNLOCK(pmap);
4183 					goto restart;
4184 				}
4185 			}
4186 			pte = pmap_pml3e(pmap, pv->pv_va);
4187 			if ((be64toh(*pte) & PG_W) != 0)
4188 				count++;
4189 			PMAP_UNLOCK(pmap);
4190 		}
4191 	}
4192 	rw_runlock(lock);
4193 	return (count);
4194 }
4195 
4196 static void
4197 mmu_radix_update_proctab(int pid, pml1_entry_t l1pa)
4198 {
4199 	isa3_proctab[pid].proctab0 = htobe64(RTS_SIZE |  l1pa | RADIX_PGD_INDEX_SHIFT);
4200 }
4201 
4202 int
4203 mmu_radix_pinit(pmap_t pmap)
4204 {
4205 	vmem_addr_t pid;
4206 	vm_paddr_t l1pa;
4207 
4208 	CTR2(KTR_PMAP, "%s(%p)", __func__, pmap);
4209 
4210 	/*
4211 	 * allocate the page directory page
4212 	 */
4213 	pmap->pm_pml1 = uma_zalloc(zone_radix_pgd, M_WAITOK);
4214 
4215 	for (int j = 0; j <  RADIX_PGD_SIZE_SHIFT; j++)
4216 		pagezero((vm_offset_t)pmap->pm_pml1 + j * PAGE_SIZE);
4217 	pmap->pm_radix.rt_root = 0;
4218 	TAILQ_INIT(&pmap->pm_pvchunk);
4219 	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
4220 	pmap->pm_flags = PMAP_PDE_SUPERPAGE;
4221 	vmem_alloc(asid_arena, 1, M_FIRSTFIT|M_WAITOK, &pid);
4222 
4223 	pmap->pm_pid = pid;
4224 	l1pa = DMAP_TO_PHYS((vm_offset_t)pmap->pm_pml1);
4225 	mmu_radix_update_proctab(pid, l1pa);
4226 	__asm __volatile("ptesync;isync" : : : "memory");
4227 
4228 	return (1);
4229 }
4230 
4231 /*
4232  * This routine is called if the desired page table page does not exist.
4233  *
4234  * If page table page allocation fails, this routine may sleep before
4235  * returning NULL.  It sleeps only if a lock pointer was given.
4236  *
4237  * Note: If a page allocation fails at page table level two or three,
4238  * one or two pages may be held during the wait, only to be released
4239  * afterwards.  This conservative approach is easily argued to avoid
4240  * race conditions.
4241  */
4242 static vm_page_t
4243 _pmap_allocpte(pmap_t pmap, vm_pindex_t ptepindex, struct rwlock **lockp)
4244 {
4245 	vm_page_t m, pdppg, pdpg;
4246 
4247 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
4248 
4249 	/*
4250 	 * Allocate a page table page.
4251 	 */
4252 	if ((m = vm_page_alloc(NULL, ptepindex, VM_ALLOC_NOOBJ |
4253 	    VM_ALLOC_WIRED | VM_ALLOC_ZERO)) == NULL) {
4254 		if (lockp != NULL) {
4255 			RELEASE_PV_LIST_LOCK(lockp);
4256 			PMAP_UNLOCK(pmap);
4257 			vm_wait(NULL);
4258 			PMAP_LOCK(pmap);
4259 		}
4260 		/*
4261 		 * Indicate the need to retry.  While waiting, the page table
4262 		 * page may have been allocated.
4263 		 */
4264 		return (NULL);
4265 	}
4266 	if ((m->flags & PG_ZERO) == 0)
4267 		mmu_radix_zero_page(m);
4268 
4269 	/*
4270 	 * Map the pagetable page into the process address space, if
4271 	 * it isn't already there.
4272 	 */
4273 
4274 	if (ptepindex >= (NUPDE + NUPDPE)) {
4275 		pml1_entry_t *l1e;
4276 		vm_pindex_t pml1index;
4277 
4278 		/* Wire up a new PDPE page */
4279 		pml1index = ptepindex - (NUPDE + NUPDPE);
4280 		l1e = &pmap->pm_pml1[pml1index];
4281 		KASSERT((be64toh(*l1e) & PG_V) == 0,
4282 		    ("%s: L1 entry %#lx is valid", __func__, *l1e));
4283 		pde_store(l1e, VM_PAGE_TO_PHYS(m));
4284 	} else if (ptepindex >= NUPDE) {
4285 		vm_pindex_t pml1index;
4286 		vm_pindex_t pdpindex;
4287 		pml1_entry_t *l1e;
4288 		pml2_entry_t *l2e;
4289 
4290 		/* Wire up a new l2e page */
4291 		pdpindex = ptepindex - NUPDE;
4292 		pml1index = pdpindex >> RPTE_SHIFT;
4293 
4294 		l1e = &pmap->pm_pml1[pml1index];
4295 		if ((be64toh(*l1e) & PG_V) == 0) {
4296 			/* Have to allocate a new pdp, recurse */
4297 			if (_pmap_allocpte(pmap, NUPDE + NUPDPE + pml1index,
4298 				lockp) == NULL) {
4299 				vm_page_unwire_noq(m);
4300 				vm_page_free_zero(m);
4301 				return (NULL);
4302 			}
4303 		} else {
4304 			/* Add reference to l2e page */
4305 			pdppg = PHYS_TO_VM_PAGE(be64toh(*l1e) & PG_FRAME);
4306 			pdppg->ref_count++;
4307 		}
4308 		l2e = (pml2_entry_t *)PHYS_TO_DMAP(be64toh(*l1e) & PG_FRAME);
4309 
4310 		/* Now find the pdp page */
4311 		l2e = &l2e[pdpindex & RPTE_MASK];
4312 		KASSERT((be64toh(*l2e) & PG_V) == 0,
4313 		    ("%s: L2 entry %#lx is valid", __func__, *l2e));
4314 		pde_store(l2e, VM_PAGE_TO_PHYS(m));
4315 	} else {
4316 		vm_pindex_t pml1index;
4317 		vm_pindex_t pdpindex;
4318 		pml1_entry_t *l1e;
4319 		pml2_entry_t *l2e;
4320 		pml3_entry_t *l3e;
4321 
4322 		/* Wire up a new PTE page */
4323 		pdpindex = ptepindex >> RPTE_SHIFT;
4324 		pml1index = pdpindex >> RPTE_SHIFT;
4325 
4326 		/* First, find the pdp and check that its valid. */
4327 		l1e = &pmap->pm_pml1[pml1index];
4328 		if ((be64toh(*l1e) & PG_V) == 0) {
4329 			/* Have to allocate a new pd, recurse */
4330 			if (_pmap_allocpte(pmap, NUPDE + pdpindex,
4331 			    lockp) == NULL) {
4332 				vm_page_unwire_noq(m);
4333 				vm_page_free_zero(m);
4334 				return (NULL);
4335 			}
4336 			l2e = (pml2_entry_t *)PHYS_TO_DMAP(be64toh(*l1e) & PG_FRAME);
4337 			l2e = &l2e[pdpindex & RPTE_MASK];
4338 		} else {
4339 			l2e = (pml2_entry_t *)PHYS_TO_DMAP(be64toh(*l1e) & PG_FRAME);
4340 			l2e = &l2e[pdpindex & RPTE_MASK];
4341 			if ((be64toh(*l2e) & PG_V) == 0) {
4342 				/* Have to allocate a new pd, recurse */
4343 				if (_pmap_allocpte(pmap, NUPDE + pdpindex,
4344 				    lockp) == NULL) {
4345 					vm_page_unwire_noq(m);
4346 					vm_page_free_zero(m);
4347 					return (NULL);
4348 				}
4349 			} else {
4350 				/* Add reference to the pd page */
4351 				pdpg = PHYS_TO_VM_PAGE(be64toh(*l2e) & PG_FRAME);
4352 				pdpg->ref_count++;
4353 			}
4354 		}
4355 		l3e = (pml3_entry_t *)PHYS_TO_DMAP(be64toh(*l2e) & PG_FRAME);
4356 
4357 		/* Now we know where the page directory page is */
4358 		l3e = &l3e[ptepindex & RPTE_MASK];
4359 		KASSERT((be64toh(*l3e) & PG_V) == 0,
4360 		    ("%s: L3 entry %#lx is valid", __func__, *l3e));
4361 		pde_store(l3e, VM_PAGE_TO_PHYS(m));
4362 	}
4363 
4364 	pmap_resident_count_inc(pmap, 1);
4365 	return (m);
4366 }
4367 static vm_page_t
4368 pmap_allocl3e(pmap_t pmap, vm_offset_t va, struct rwlock **lockp)
4369 {
4370 	vm_pindex_t pdpindex, ptepindex;
4371 	pml2_entry_t *pdpe;
4372 	vm_page_t pdpg;
4373 
4374 retry:
4375 	pdpe = pmap_pml2e(pmap, va);
4376 	if (pdpe != NULL && (be64toh(*pdpe) & PG_V) != 0) {
4377 		/* Add a reference to the pd page. */
4378 		pdpg = PHYS_TO_VM_PAGE(be64toh(*pdpe) & PG_FRAME);
4379 		pdpg->ref_count++;
4380 	} else {
4381 		/* Allocate a pd page. */
4382 		ptepindex = pmap_l3e_pindex(va);
4383 		pdpindex = ptepindex >> RPTE_SHIFT;
4384 		pdpg = _pmap_allocpte(pmap, NUPDE + pdpindex, lockp);
4385 		if (pdpg == NULL && lockp != NULL)
4386 			goto retry;
4387 	}
4388 	return (pdpg);
4389 }
4390 
4391 static vm_page_t
4392 pmap_allocpte(pmap_t pmap, vm_offset_t va, struct rwlock **lockp)
4393 {
4394 	vm_pindex_t ptepindex;
4395 	pml3_entry_t *pd;
4396 	vm_page_t m;
4397 
4398 	/*
4399 	 * Calculate pagetable page index
4400 	 */
4401 	ptepindex = pmap_l3e_pindex(va);
4402 retry:
4403 	/*
4404 	 * Get the page directory entry
4405 	 */
4406 	pd = pmap_pml3e(pmap, va);
4407 
4408 	/*
4409 	 * This supports switching from a 2MB page to a
4410 	 * normal 4K page.
4411 	 */
4412 	if (pd != NULL && (be64toh(*pd) & (RPTE_LEAF | PG_V)) == (RPTE_LEAF | PG_V)) {
4413 		if (!pmap_demote_l3e_locked(pmap, pd, va, lockp)) {
4414 			/*
4415 			 * Invalidation of the 2MB page mapping may have caused
4416 			 * the deallocation of the underlying PD page.
4417 			 */
4418 			pd = NULL;
4419 		}
4420 	}
4421 
4422 	/*
4423 	 * If the page table page is mapped, we just increment the
4424 	 * hold count, and activate it.
4425 	 */
4426 	if (pd != NULL && (be64toh(*pd) & PG_V) != 0) {
4427 		m = PHYS_TO_VM_PAGE(be64toh(*pd) & PG_FRAME);
4428 		m->ref_count++;
4429 	} else {
4430 		/*
4431 		 * Here if the pte page isn't mapped, or if it has been
4432 		 * deallocated.
4433 		 */
4434 		m = _pmap_allocpte(pmap, ptepindex, lockp);
4435 		if (m == NULL && lockp != NULL)
4436 			goto retry;
4437 	}
4438 	return (m);
4439 }
4440 
4441 static void
4442 mmu_radix_pinit0(pmap_t pmap)
4443 {
4444 
4445 	CTR2(KTR_PMAP, "%s(%p)", __func__, pmap);
4446 	PMAP_LOCK_INIT(pmap);
4447 	pmap->pm_pml1 = kernel_pmap->pm_pml1;
4448 	pmap->pm_pid = kernel_pmap->pm_pid;
4449 
4450 	pmap->pm_radix.rt_root = 0;
4451 	TAILQ_INIT(&pmap->pm_pvchunk);
4452 	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
4453 	kernel_pmap->pm_flags =
4454 		pmap->pm_flags = PMAP_PDE_SUPERPAGE;
4455 }
4456 /*
4457  * pmap_protect_l3e: do the things to protect a 2mpage in a process
4458  */
4459 static boolean_t
4460 pmap_protect_l3e(pmap_t pmap, pt_entry_t *l3e, vm_offset_t sva, vm_prot_t prot)
4461 {
4462 	pt_entry_t newpde, oldpde;
4463 	vm_offset_t eva, va;
4464 	vm_page_t m;
4465 	boolean_t anychanged;
4466 
4467 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
4468 	KASSERT((sva & L3_PAGE_MASK) == 0,
4469 	    ("pmap_protect_l3e: sva is not 2mpage aligned"));
4470 	anychanged = FALSE;
4471 retry:
4472 	oldpde = newpde = be64toh(*l3e);
4473 	if ((oldpde & (PG_MANAGED | PG_M | PG_RW)) ==
4474 	    (PG_MANAGED | PG_M | PG_RW)) {
4475 		eva = sva + L3_PAGE_SIZE;
4476 		for (va = sva, m = PHYS_TO_VM_PAGE(oldpde & PG_PS_FRAME);
4477 		    va < eva; va += PAGE_SIZE, m++)
4478 			vm_page_dirty(m);
4479 	}
4480 	if ((prot & VM_PROT_WRITE) == 0) {
4481 		newpde &= ~(PG_RW | PG_M);
4482 		newpde |= RPTE_EAA_R;
4483 	}
4484 	if (prot & VM_PROT_EXECUTE)
4485 		newpde |= PG_X;
4486 	if (newpde != oldpde) {
4487 		/*
4488 		 * As an optimization to future operations on this PDE, clear
4489 		 * PG_PROMOTED.  The impending invalidation will remove any
4490 		 * lingering 4KB page mappings from the TLB.
4491 		 */
4492 		if (!atomic_cmpset_long(l3e, htobe64(oldpde), htobe64(newpde & ~PG_PROMOTED)))
4493 			goto retry;
4494 		anychanged = TRUE;
4495 	}
4496 	return (anychanged);
4497 }
4498 
4499 void
4500 mmu_radix_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva,
4501     vm_prot_t prot)
4502 {
4503 	vm_offset_t va_next;
4504 	pml1_entry_t *l1e;
4505 	pml2_entry_t *l2e;
4506 	pml3_entry_t ptpaddr, *l3e;
4507 	pt_entry_t *pte;
4508 	boolean_t anychanged;
4509 
4510 	CTR5(KTR_PMAP, "%s(%p, %#x, %#x, %#x)", __func__, pmap, sva, eva,
4511 	    prot);
4512 
4513 	KASSERT((prot & ~VM_PROT_ALL) == 0, ("invalid prot %x", prot));
4514 	if (prot == VM_PROT_NONE) {
4515 		mmu_radix_remove(pmap, sva, eva);
4516 		return;
4517 	}
4518 
4519 	if ((prot & (VM_PROT_WRITE|VM_PROT_EXECUTE)) ==
4520 	    (VM_PROT_WRITE|VM_PROT_EXECUTE))
4521 		return;
4522 
4523 #ifdef INVARIANTS
4524 	if (VERBOSE_PROTECT || pmap_logging)
4525 		printf("pmap_protect(%p, %#lx, %#lx, %x) - asid: %lu\n",
4526 			   pmap, sva, eva, prot, pmap->pm_pid);
4527 #endif
4528 	anychanged = FALSE;
4529 
4530 	PMAP_LOCK(pmap);
4531 	for (; sva < eva; sva = va_next) {
4532 		l1e = pmap_pml1e(pmap, sva);
4533 		if ((be64toh(*l1e) & PG_V) == 0) {
4534 			va_next = (sva + L1_PAGE_SIZE) & ~L1_PAGE_MASK;
4535 			if (va_next < sva)
4536 				va_next = eva;
4537 			continue;
4538 		}
4539 
4540 		l2e = pmap_l1e_to_l2e(l1e, sva);
4541 		if ((be64toh(*l2e) & PG_V) == 0) {
4542 			va_next = (sva + L2_PAGE_SIZE) & ~L2_PAGE_MASK;
4543 			if (va_next < sva)
4544 				va_next = eva;
4545 			continue;
4546 		}
4547 
4548 		va_next = (sva + L3_PAGE_SIZE) & ~L3_PAGE_MASK;
4549 		if (va_next < sva)
4550 			va_next = eva;
4551 
4552 		l3e = pmap_l2e_to_l3e(l2e, sva);
4553 		ptpaddr = be64toh(*l3e);
4554 
4555 		/*
4556 		 * Weed out invalid mappings.
4557 		 */
4558 		if (ptpaddr == 0)
4559 			continue;
4560 
4561 		/*
4562 		 * Check for large page.
4563 		 */
4564 		if ((ptpaddr & RPTE_LEAF) != 0) {
4565 			/*
4566 			 * Are we protecting the entire large page?  If not,
4567 			 * demote the mapping and fall through.
4568 			 */
4569 			if (sva + L3_PAGE_SIZE == va_next && eva >= va_next) {
4570 				if (pmap_protect_l3e(pmap, l3e, sva, prot))
4571 					anychanged = TRUE;
4572 				continue;
4573 			} else if (!pmap_demote_l3e(pmap, l3e, sva)) {
4574 				/*
4575 				 * The large page mapping was destroyed.
4576 				 */
4577 				continue;
4578 			}
4579 		}
4580 
4581 		if (va_next > eva)
4582 			va_next = eva;
4583 
4584 		for (pte = pmap_l3e_to_pte(l3e, sva); sva != va_next; pte++,
4585 		    sva += PAGE_SIZE) {
4586 			pt_entry_t obits, pbits;
4587 			vm_page_t m;
4588 
4589 retry:
4590 			MPASS(pte == pmap_pte(pmap, sva));
4591 			obits = pbits = be64toh(*pte);
4592 			if ((pbits & PG_V) == 0)
4593 				continue;
4594 
4595 			if ((prot & VM_PROT_WRITE) == 0) {
4596 				if ((pbits & (PG_MANAGED | PG_M | PG_RW)) ==
4597 				    (PG_MANAGED | PG_M | PG_RW)) {
4598 					m = PHYS_TO_VM_PAGE(pbits & PG_FRAME);
4599 					vm_page_dirty(m);
4600 				}
4601 				pbits &= ~(PG_RW | PG_M);
4602 				pbits |= RPTE_EAA_R;
4603 			}
4604 			if (prot & VM_PROT_EXECUTE)
4605 				pbits |= PG_X;
4606 
4607 			if (pbits != obits) {
4608 				if (!atomic_cmpset_long(pte, htobe64(obits), htobe64(pbits)))
4609 					goto retry;
4610 				if (obits & (PG_A|PG_M)) {
4611 					anychanged = TRUE;
4612 #ifdef INVARIANTS
4613 					if (VERBOSE_PROTECT || pmap_logging)
4614 						printf("%#lx %#lx -> %#lx\n",
4615 						    sva, obits, pbits);
4616 #endif
4617 				}
4618 			}
4619 		}
4620 	}
4621 	if (anychanged)
4622 		pmap_invalidate_all(pmap);
4623 	PMAP_UNLOCK(pmap);
4624 }
4625 
4626 void
4627 mmu_radix_qenter(vm_offset_t sva, vm_page_t *ma, int count)
4628 {
4629 
4630 	CTR4(KTR_PMAP, "%s(%#x, %p, %d)", __func__, sva, ma, count);
4631 	pt_entry_t oldpte, pa, *pte;
4632 	vm_page_t m;
4633 	uint64_t cache_bits, attr_bits;
4634 	vm_offset_t va;
4635 
4636 	oldpte = 0;
4637 	attr_bits = RPTE_EAA_R | RPTE_EAA_W | RPTE_EAA_P | PG_M | PG_A;
4638 	va = sva;
4639 	pte = kvtopte(va);
4640 	while (va < sva + PAGE_SIZE * count) {
4641 		if (__predict_false((va & L3_PAGE_MASK) == 0))
4642 			pte = kvtopte(va);
4643 		MPASS(pte == pmap_pte(kernel_pmap, va));
4644 
4645 		/*
4646 		 * XXX there has to be a more efficient way than traversing
4647 		 * the page table every time - but go for correctness for
4648 		 * today
4649 		 */
4650 
4651 		m = *ma++;
4652 		cache_bits = pmap_cache_bits(m->md.mdpg_cache_attrs);
4653 		pa = VM_PAGE_TO_PHYS(m) | cache_bits | attr_bits;
4654 		if (be64toh(*pte) != pa) {
4655 			oldpte |= be64toh(*pte);
4656 			pte_store(pte, pa);
4657 		}
4658 		va += PAGE_SIZE;
4659 		pte++;
4660 	}
4661 	if (__predict_false((oldpte & RPTE_VALID) != 0))
4662 		pmap_invalidate_range(kernel_pmap, sva, sva + count *
4663 		    PAGE_SIZE);
4664 	else
4665 		ptesync();
4666 }
4667 
4668 void
4669 mmu_radix_qremove(vm_offset_t sva, int count)
4670 {
4671 	vm_offset_t va;
4672 	pt_entry_t *pte;
4673 
4674 	CTR3(KTR_PMAP, "%s(%#x, %d)", __func__, sva, count);
4675 	KASSERT(sva >= VM_MIN_KERNEL_ADDRESS, ("usermode or dmap va %lx", sva));
4676 
4677 	va = sva;
4678 	pte = kvtopte(va);
4679 	while (va < sva + PAGE_SIZE * count) {
4680 		if (__predict_false((va & L3_PAGE_MASK) == 0))
4681 			pte = kvtopte(va);
4682 		pte_clear(pte);
4683 		pte++;
4684 		va += PAGE_SIZE;
4685 	}
4686 	pmap_invalidate_range(kernel_pmap, sva, va);
4687 }
4688 
4689 /***************************************************
4690  * Page table page management routines.....
4691  ***************************************************/
4692 /*
4693  * Schedule the specified unused page table page to be freed.  Specifically,
4694  * add the page to the specified list of pages that will be released to the
4695  * physical memory manager after the TLB has been updated.
4696  */
4697 static __inline void
4698 pmap_add_delayed_free_list(vm_page_t m, struct spglist *free,
4699     boolean_t set_PG_ZERO)
4700 {
4701 
4702 	if (set_PG_ZERO)
4703 		m->flags |= PG_ZERO;
4704 	else
4705 		m->flags &= ~PG_ZERO;
4706 	SLIST_INSERT_HEAD(free, m, plinks.s.ss);
4707 }
4708 
4709 /*
4710  * Inserts the specified page table page into the specified pmap's collection
4711  * of idle page table pages.  Each of a pmap's page table pages is responsible
4712  * for mapping a distinct range of virtual addresses.  The pmap's collection is
4713  * ordered by this virtual address range.
4714  */
4715 static __inline int
4716 pmap_insert_pt_page(pmap_t pmap, vm_page_t mpte)
4717 {
4718 
4719 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
4720 	return (vm_radix_insert(&pmap->pm_radix, mpte));
4721 }
4722 
4723 /*
4724  * Removes the page table page mapping the specified virtual address from the
4725  * specified pmap's collection of idle page table pages, and returns it.
4726  * Otherwise, returns NULL if there is no page table page corresponding to the
4727  * specified virtual address.
4728  */
4729 static __inline vm_page_t
4730 pmap_remove_pt_page(pmap_t pmap, vm_offset_t va)
4731 {
4732 
4733 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
4734 	return (vm_radix_remove(&pmap->pm_radix, pmap_l3e_pindex(va)));
4735 }
4736 
4737 /*
4738  * Decrements a page table page's wire count, which is used to record the
4739  * number of valid page table entries within the page.  If the wire count
4740  * drops to zero, then the page table page is unmapped.  Returns TRUE if the
4741  * page table page was unmapped and FALSE otherwise.
4742  */
4743 static inline boolean_t
4744 pmap_unwire_ptp(pmap_t pmap, vm_offset_t va, vm_page_t m, struct spglist *free)
4745 {
4746 
4747 	--m->ref_count;
4748 	if (m->ref_count == 0) {
4749 		_pmap_unwire_ptp(pmap, va, m, free);
4750 		return (TRUE);
4751 	} else
4752 		return (FALSE);
4753 }
4754 
4755 static void
4756 _pmap_unwire_ptp(pmap_t pmap, vm_offset_t va, vm_page_t m, struct spglist *free)
4757 {
4758 
4759 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
4760 	/*
4761 	 * unmap the page table page
4762 	 */
4763 	if (m->pindex >= NUPDE + NUPDPE) {
4764 		/* PDP page */
4765 		pml1_entry_t *pml1;
4766 		pml1 = pmap_pml1e(pmap, va);
4767 		*pml1 = 0;
4768 	} else if (m->pindex >= NUPDE) {
4769 		/* PD page */
4770 		pml2_entry_t *l2e;
4771 		l2e = pmap_pml2e(pmap, va);
4772 		*l2e = 0;
4773 	} else {
4774 		/* PTE page */
4775 		pml3_entry_t *l3e;
4776 		l3e = pmap_pml3e(pmap, va);
4777 		*l3e = 0;
4778 	}
4779 	pmap_resident_count_dec(pmap, 1);
4780 	if (m->pindex < NUPDE) {
4781 		/* We just released a PT, unhold the matching PD */
4782 		vm_page_t pdpg;
4783 
4784 		pdpg = PHYS_TO_VM_PAGE(be64toh(*pmap_pml2e(pmap, va)) & PG_FRAME);
4785 		pmap_unwire_ptp(pmap, va, pdpg, free);
4786 	}
4787 	else if (m->pindex >= NUPDE && m->pindex < (NUPDE + NUPDPE)) {
4788 		/* We just released a PD, unhold the matching PDP */
4789 		vm_page_t pdppg;
4790 
4791 		pdppg = PHYS_TO_VM_PAGE(be64toh(*pmap_pml1e(pmap, va)) & PG_FRAME);
4792 		pmap_unwire_ptp(pmap, va, pdppg, free);
4793 	}
4794 
4795 	/*
4796 	 * Put page on a list so that it is released after
4797 	 * *ALL* TLB shootdown is done
4798 	 */
4799 	pmap_add_delayed_free_list(m, free, TRUE);
4800 }
4801 
4802 /*
4803  * After removing a page table entry, this routine is used to
4804  * conditionally free the page, and manage the hold/wire counts.
4805  */
4806 static int
4807 pmap_unuse_pt(pmap_t pmap, vm_offset_t va, pml3_entry_t ptepde,
4808     struct spglist *free)
4809 {
4810 	vm_page_t mpte;
4811 
4812 	if (va >= VM_MAXUSER_ADDRESS)
4813 		return (0);
4814 	KASSERT(ptepde != 0, ("pmap_unuse_pt: ptepde != 0"));
4815 	mpte = PHYS_TO_VM_PAGE(ptepde & PG_FRAME);
4816 	return (pmap_unwire_ptp(pmap, va, mpte, free));
4817 }
4818 
4819 void
4820 mmu_radix_release(pmap_t pmap)
4821 {
4822 
4823 	CTR2(KTR_PMAP, "%s(%p)", __func__, pmap);
4824 	KASSERT(pmap->pm_stats.resident_count == 0,
4825 	    ("pmap_release: pmap resident count %ld != 0",
4826 	    pmap->pm_stats.resident_count));
4827 	KASSERT(vm_radix_is_empty(&pmap->pm_radix),
4828 	    ("pmap_release: pmap has reserved page table page(s)"));
4829 
4830 	pmap_invalidate_all(pmap);
4831 	isa3_proctab[pmap->pm_pid].proctab0 = 0;
4832 	uma_zfree(zone_radix_pgd, pmap->pm_pml1);
4833 	vmem_free(asid_arena, pmap->pm_pid, 1);
4834 }
4835 
4836 /*
4837  * Create the PV entry for a 2MB page mapping.  Always returns true unless the
4838  * flag PMAP_ENTER_NORECLAIM is specified.  If that flag is specified, returns
4839  * false if the PV entry cannot be allocated without resorting to reclamation.
4840  */
4841 static bool
4842 pmap_pv_insert_l3e(pmap_t pmap, vm_offset_t va, pml3_entry_t pde, u_int flags,
4843     struct rwlock **lockp)
4844 {
4845 	struct md_page *pvh;
4846 	pv_entry_t pv;
4847 	vm_paddr_t pa;
4848 
4849 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
4850 	/* Pass NULL instead of the lock pointer to disable reclamation. */
4851 	if ((pv = get_pv_entry(pmap, (flags & PMAP_ENTER_NORECLAIM) != 0 ?
4852 	    NULL : lockp)) == NULL)
4853 		return (false);
4854 	pv->pv_va = va;
4855 	pa = pde & PG_PS_FRAME;
4856 	CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, pa);
4857 	pvh = pa_to_pvh(pa);
4858 	TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_link);
4859 	pvh->pv_gen++;
4860 	return (true);
4861 }
4862 
4863 /*
4864  * Fills a page table page with mappings to consecutive physical pages.
4865  */
4866 static void
4867 pmap_fill_ptp(pt_entry_t *firstpte, pt_entry_t newpte)
4868 {
4869 	pt_entry_t *pte;
4870 
4871 	for (pte = firstpte; pte < firstpte + NPTEPG; pte++) {
4872 		*pte = htobe64(newpte);
4873 		newpte += PAGE_SIZE;
4874 	}
4875 }
4876 
4877 static boolean_t
4878 pmap_demote_l3e(pmap_t pmap, pml3_entry_t *pde, vm_offset_t va)
4879 {
4880 	struct rwlock *lock;
4881 	boolean_t rv;
4882 
4883 	lock = NULL;
4884 	rv = pmap_demote_l3e_locked(pmap, pde, va, &lock);
4885 	if (lock != NULL)
4886 		rw_wunlock(lock);
4887 	return (rv);
4888 }
4889 
4890 static boolean_t
4891 pmap_demote_l3e_locked(pmap_t pmap, pml3_entry_t *l3e, vm_offset_t va,
4892     struct rwlock **lockp)
4893 {
4894 	pml3_entry_t oldpde;
4895 	pt_entry_t *firstpte;
4896 	vm_paddr_t mptepa;
4897 	vm_page_t mpte;
4898 	struct spglist free;
4899 	vm_offset_t sva;
4900 
4901 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
4902 	oldpde = be64toh(*l3e);
4903 	KASSERT((oldpde & (RPTE_LEAF | PG_V)) == (RPTE_LEAF | PG_V),
4904 	    ("pmap_demote_l3e: oldpde is missing RPTE_LEAF and/or PG_V %lx",
4905 	    oldpde));
4906 	if ((oldpde & PG_A) == 0 || (mpte = pmap_remove_pt_page(pmap, va)) ==
4907 	    NULL) {
4908 		KASSERT((oldpde & PG_W) == 0,
4909 		    ("pmap_demote_l3e: page table page for a wired mapping"
4910 		    " is missing"));
4911 
4912 		/*
4913 		 * Invalidate the 2MB page mapping and return "failure" if the
4914 		 * mapping was never accessed or the allocation of the new
4915 		 * page table page fails.  If the 2MB page mapping belongs to
4916 		 * the direct map region of the kernel's address space, then
4917 		 * the page allocation request specifies the highest possible
4918 		 * priority (VM_ALLOC_INTERRUPT).  Otherwise, the priority is
4919 		 * normal.  Page table pages are preallocated for every other
4920 		 * part of the kernel address space, so the direct map region
4921 		 * is the only part of the kernel address space that must be
4922 		 * handled here.
4923 		 */
4924 		if ((oldpde & PG_A) == 0 || (mpte = vm_page_alloc(NULL,
4925 		    pmap_l3e_pindex(va), (va >= DMAP_MIN_ADDRESS && va <
4926 		    DMAP_MAX_ADDRESS ? VM_ALLOC_INTERRUPT : VM_ALLOC_NORMAL) |
4927 		    VM_ALLOC_NOOBJ | VM_ALLOC_WIRED)) == NULL) {
4928 			SLIST_INIT(&free);
4929 			sva = trunc_2mpage(va);
4930 			pmap_remove_l3e(pmap, l3e, sva, &free, lockp);
4931 			pmap_invalidate_l3e_page(pmap, sva, oldpde);
4932 			vm_page_free_pages_toq(&free, true);
4933 			CTR2(KTR_PMAP, "pmap_demote_l3e: failure for va %#lx"
4934 			    " in pmap %p", va, pmap);
4935 			return (FALSE);
4936 		}
4937 		if (va < VM_MAXUSER_ADDRESS)
4938 			pmap_resident_count_inc(pmap, 1);
4939 	}
4940 	mptepa = VM_PAGE_TO_PHYS(mpte);
4941 	firstpte = (pt_entry_t *)PHYS_TO_DMAP(mptepa);
4942 	KASSERT((oldpde & PG_A) != 0,
4943 	    ("pmap_demote_l3e: oldpde is missing PG_A"));
4944 	KASSERT((oldpde & (PG_M | PG_RW)) != PG_RW,
4945 	    ("pmap_demote_l3e: oldpde is missing PG_M"));
4946 
4947 	/*
4948 	 * If the page table page is new, initialize it.
4949 	 */
4950 	if (mpte->ref_count == 1) {
4951 		mpte->ref_count = NPTEPG;
4952 		pmap_fill_ptp(firstpte, oldpde);
4953 	}
4954 
4955 	KASSERT((be64toh(*firstpte) & PG_FRAME) == (oldpde & PG_FRAME),
4956 	    ("pmap_demote_l3e: firstpte and newpte map different physical"
4957 	    " addresses"));
4958 
4959 	/*
4960 	 * If the mapping has changed attributes, update the page table
4961 	 * entries.
4962 	 */
4963 	if ((be64toh(*firstpte) & PG_PTE_PROMOTE) != (oldpde & PG_PTE_PROMOTE))
4964 		pmap_fill_ptp(firstpte, oldpde);
4965 
4966 	/*
4967 	 * The spare PV entries must be reserved prior to demoting the
4968 	 * mapping, that is, prior to changing the PDE.  Otherwise, the state
4969 	 * of the PDE and the PV lists will be inconsistent, which can result
4970 	 * in reclaim_pv_chunk() attempting to remove a PV entry from the
4971 	 * wrong PV list and pmap_pv_demote_l3e() failing to find the expected
4972 	 * PV entry for the 2MB page mapping that is being demoted.
4973 	 */
4974 	if ((oldpde & PG_MANAGED) != 0)
4975 		reserve_pv_entries(pmap, NPTEPG - 1, lockp);
4976 
4977 	/*
4978 	 * Demote the mapping.  This pmap is locked.  The old PDE has
4979 	 * PG_A set.  If the old PDE has PG_RW set, it also has PG_M
4980 	 * set.  Thus, there is no danger of a race with another
4981 	 * processor changing the setting of PG_A and/or PG_M between
4982 	 * the read above and the store below.
4983 	 */
4984 	pde_store(l3e, mptepa);
4985 	pmap_invalidate_l3e_page(pmap, trunc_2mpage(va), oldpde);
4986 	/*
4987 	 * Demote the PV entry.
4988 	 */
4989 	if ((oldpde & PG_MANAGED) != 0)
4990 		pmap_pv_demote_l3e(pmap, va, oldpde & PG_PS_FRAME, lockp);
4991 
4992 	counter_u64_add(pmap_l3e_demotions, 1);
4993 	CTR2(KTR_PMAP, "pmap_demote_l3e: success for va %#lx"
4994 	    " in pmap %p", va, pmap);
4995 	return (TRUE);
4996 }
4997 
4998 /*
4999  * pmap_remove_kernel_pde: Remove a kernel superpage mapping.
5000  */
5001 static void
5002 pmap_remove_kernel_l3e(pmap_t pmap, pml3_entry_t *l3e, vm_offset_t va)
5003 {
5004 	vm_paddr_t mptepa;
5005 	vm_page_t mpte;
5006 
5007 	KASSERT(pmap == kernel_pmap, ("pmap %p is not kernel_pmap", pmap));
5008 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
5009 	mpte = pmap_remove_pt_page(pmap, va);
5010 	if (mpte == NULL)
5011 		panic("pmap_remove_kernel_pde: Missing pt page.");
5012 
5013 	mptepa = VM_PAGE_TO_PHYS(mpte);
5014 
5015 	/*
5016 	 * Initialize the page table page.
5017 	 */
5018 	pagezero(PHYS_TO_DMAP(mptepa));
5019 
5020 	/*
5021 	 * Demote the mapping.
5022 	 */
5023 	pde_store(l3e, mptepa);
5024 	ptesync();
5025 }
5026 
5027 /*
5028  * pmap_remove_l3e: do the things to unmap a superpage in a process
5029  */
5030 static int
5031 pmap_remove_l3e(pmap_t pmap, pml3_entry_t *pdq, vm_offset_t sva,
5032     struct spglist *free, struct rwlock **lockp)
5033 {
5034 	struct md_page *pvh;
5035 	pml3_entry_t oldpde;
5036 	vm_offset_t eva, va;
5037 	vm_page_t m, mpte;
5038 
5039 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
5040 	KASSERT((sva & L3_PAGE_MASK) == 0,
5041 	    ("pmap_remove_l3e: sva is not 2mpage aligned"));
5042 	oldpde = be64toh(pte_load_clear(pdq));
5043 	if (oldpde & PG_W)
5044 		pmap->pm_stats.wired_count -= (L3_PAGE_SIZE / PAGE_SIZE);
5045 	pmap_resident_count_dec(pmap, L3_PAGE_SIZE / PAGE_SIZE);
5046 	if (oldpde & PG_MANAGED) {
5047 		CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, oldpde & PG_PS_FRAME);
5048 		pvh = pa_to_pvh(oldpde & PG_PS_FRAME);
5049 		pmap_pvh_free(pvh, pmap, sva);
5050 		eva = sva + L3_PAGE_SIZE;
5051 		for (va = sva, m = PHYS_TO_VM_PAGE(oldpde & PG_PS_FRAME);
5052 		    va < eva; va += PAGE_SIZE, m++) {
5053 			if ((oldpde & (PG_M | PG_RW)) == (PG_M | PG_RW))
5054 				vm_page_dirty(m);
5055 			if (oldpde & PG_A)
5056 				vm_page_aflag_set(m, PGA_REFERENCED);
5057 			if (TAILQ_EMPTY(&m->md.pv_list) &&
5058 			    TAILQ_EMPTY(&pvh->pv_list))
5059 				vm_page_aflag_clear(m, PGA_WRITEABLE);
5060 		}
5061 	}
5062 	if (pmap == kernel_pmap) {
5063 		pmap_remove_kernel_l3e(pmap, pdq, sva);
5064 	} else {
5065 		mpte = pmap_remove_pt_page(pmap, sva);
5066 		if (mpte != NULL) {
5067 			pmap_resident_count_dec(pmap, 1);
5068 			KASSERT(mpte->ref_count == NPTEPG,
5069 			    ("pmap_remove_l3e: pte page wire count error"));
5070 			mpte->ref_count = 0;
5071 			pmap_add_delayed_free_list(mpte, free, FALSE);
5072 		}
5073 	}
5074 	return (pmap_unuse_pt(pmap, sva, be64toh(*pmap_pml2e(pmap, sva)), free));
5075 }
5076 
5077 /*
5078  * pmap_remove_pte: do the things to unmap a page in a process
5079  */
5080 static int
5081 pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t va,
5082     pml3_entry_t ptepde, struct spglist *free, struct rwlock **lockp)
5083 {
5084 	struct md_page *pvh;
5085 	pt_entry_t oldpte;
5086 	vm_page_t m;
5087 
5088 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
5089 	oldpte = be64toh(pte_load_clear(ptq));
5090 	if (oldpte & RPTE_WIRED)
5091 		pmap->pm_stats.wired_count -= 1;
5092 	pmap_resident_count_dec(pmap, 1);
5093 	if (oldpte & RPTE_MANAGED) {
5094 		m = PHYS_TO_VM_PAGE(oldpte & PG_FRAME);
5095 		if ((oldpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
5096 			vm_page_dirty(m);
5097 		if (oldpte & PG_A)
5098 			vm_page_aflag_set(m, PGA_REFERENCED);
5099 		CHANGE_PV_LIST_LOCK_TO_VM_PAGE(lockp, m);
5100 		pmap_pvh_free(&m->md, pmap, va);
5101 		if (TAILQ_EMPTY(&m->md.pv_list) &&
5102 		    (m->flags & PG_FICTITIOUS) == 0) {
5103 			pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
5104 			if (TAILQ_EMPTY(&pvh->pv_list))
5105 				vm_page_aflag_clear(m, PGA_WRITEABLE);
5106 		}
5107 	}
5108 	return (pmap_unuse_pt(pmap, va, ptepde, free));
5109 }
5110 
5111 /*
5112  * Remove a single page from a process address space
5113  */
5114 static bool
5115 pmap_remove_page(pmap_t pmap, vm_offset_t va, pml3_entry_t *l3e,
5116     struct spglist *free)
5117 {
5118 	struct rwlock *lock;
5119 	pt_entry_t *pte;
5120 	bool invalidate_all;
5121 
5122 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
5123 	if ((be64toh(*l3e) & RPTE_VALID) == 0) {
5124 		return (false);
5125 	}
5126 	pte = pmap_l3e_to_pte(l3e, va);
5127 	if ((be64toh(*pte) & RPTE_VALID) == 0) {
5128 		return (false);
5129 	}
5130 	lock = NULL;
5131 
5132 	invalidate_all = pmap_remove_pte(pmap, pte, va, be64toh(*l3e), free, &lock);
5133 	if (lock != NULL)
5134 		rw_wunlock(lock);
5135 	if (!invalidate_all)
5136 		pmap_invalidate_page(pmap, va);
5137 	return (invalidate_all);
5138 }
5139 
5140 /*
5141  * Removes the specified range of addresses from the page table page.
5142  */
5143 static bool
5144 pmap_remove_ptes(pmap_t pmap, vm_offset_t sva, vm_offset_t eva,
5145     pml3_entry_t *l3e, struct spglist *free, struct rwlock **lockp)
5146 {
5147 	pt_entry_t *pte;
5148 	vm_offset_t va;
5149 	bool anyvalid;
5150 
5151 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
5152 	anyvalid = false;
5153 	va = eva;
5154 	for (pte = pmap_l3e_to_pte(l3e, sva); sva != eva; pte++,
5155 	    sva += PAGE_SIZE) {
5156 		MPASS(pte == pmap_pte(pmap, sva));
5157 		if (*pte == 0) {
5158 			if (va != eva) {
5159 				anyvalid = true;
5160 				va = eva;
5161 			}
5162 			continue;
5163 		}
5164 		if (va == eva)
5165 			va = sva;
5166 		if (pmap_remove_pte(pmap, pte, sva, be64toh(*l3e), free, lockp)) {
5167 			anyvalid = true;
5168 			sva += PAGE_SIZE;
5169 			break;
5170 		}
5171 	}
5172 	if (anyvalid)
5173 		pmap_invalidate_all(pmap);
5174 	else if (va != eva)
5175 		pmap_invalidate_range(pmap, va, sva);
5176 	return (anyvalid);
5177 }
5178 
5179 void
5180 mmu_radix_remove(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
5181 {
5182 	struct rwlock *lock;
5183 	vm_offset_t va_next;
5184 	pml1_entry_t *l1e;
5185 	pml2_entry_t *l2e;
5186 	pml3_entry_t ptpaddr, *l3e;
5187 	struct spglist free;
5188 	bool anyvalid;
5189 
5190 	CTR4(KTR_PMAP, "%s(%p, %#x, %#x)", __func__, pmap, sva, eva);
5191 
5192 	/*
5193 	 * Perform an unsynchronized read.  This is, however, safe.
5194 	 */
5195 	if (pmap->pm_stats.resident_count == 0)
5196 		return;
5197 
5198 	anyvalid = false;
5199 	SLIST_INIT(&free);
5200 
5201 	/* XXX something fishy here */
5202 	sva = (sva + PAGE_MASK) & ~PAGE_MASK;
5203 	eva = (eva + PAGE_MASK) & ~PAGE_MASK;
5204 
5205 	PMAP_LOCK(pmap);
5206 
5207 	/*
5208 	 * special handling of removing one page.  a very
5209 	 * common operation and easy to short circuit some
5210 	 * code.
5211 	 */
5212 	if (sva + PAGE_SIZE == eva) {
5213 		l3e = pmap_pml3e(pmap, sva);
5214 		if (l3e && (be64toh(*l3e) & RPTE_LEAF) == 0) {
5215 			anyvalid = pmap_remove_page(pmap, sva, l3e, &free);
5216 			goto out;
5217 		}
5218 	}
5219 
5220 	lock = NULL;
5221 	for (; sva < eva; sva = va_next) {
5222 		if (pmap->pm_stats.resident_count == 0)
5223 			break;
5224 		l1e = pmap_pml1e(pmap, sva);
5225 		if (l1e == NULL || (be64toh(*l1e) & PG_V) == 0) {
5226 			va_next = (sva + L1_PAGE_SIZE) & ~L1_PAGE_MASK;
5227 			if (va_next < sva)
5228 				va_next = eva;
5229 			continue;
5230 		}
5231 
5232 		l2e = pmap_l1e_to_l2e(l1e, sva);
5233 		if (l2e == NULL || (be64toh(*l2e) & PG_V) == 0) {
5234 			va_next = (sva + L2_PAGE_SIZE) & ~L2_PAGE_MASK;
5235 			if (va_next < sva)
5236 				va_next = eva;
5237 			continue;
5238 		}
5239 
5240 		/*
5241 		 * Calculate index for next page table.
5242 		 */
5243 		va_next = (sva + L3_PAGE_SIZE) & ~L3_PAGE_MASK;
5244 		if (va_next < sva)
5245 			va_next = eva;
5246 
5247 		l3e = pmap_l2e_to_l3e(l2e, sva);
5248 		ptpaddr = be64toh(*l3e);
5249 
5250 		/*
5251 		 * Weed out invalid mappings.
5252 		 */
5253 		if (ptpaddr == 0)
5254 			continue;
5255 
5256 		/*
5257 		 * Check for large page.
5258 		 */
5259 		if ((ptpaddr & RPTE_LEAF) != 0) {
5260 			/*
5261 			 * Are we removing the entire large page?  If not,
5262 			 * demote the mapping and fall through.
5263 			 */
5264 			if (sva + L3_PAGE_SIZE == va_next && eva >= va_next) {
5265 				pmap_remove_l3e(pmap, l3e, sva, &free, &lock);
5266 				anyvalid = true;
5267 				continue;
5268 			} else if (!pmap_demote_l3e_locked(pmap, l3e, sva,
5269 			    &lock)) {
5270 				/* The large page mapping was destroyed. */
5271 				continue;
5272 			} else
5273 				ptpaddr = be64toh(*l3e);
5274 		}
5275 
5276 		/*
5277 		 * Limit our scan to either the end of the va represented
5278 		 * by the current page table page, or to the end of the
5279 		 * range being removed.
5280 		 */
5281 		if (va_next > eva)
5282 			va_next = eva;
5283 
5284 		if (pmap_remove_ptes(pmap, sva, va_next, l3e, &free, &lock))
5285 			anyvalid = true;
5286 	}
5287 	if (lock != NULL)
5288 		rw_wunlock(lock);
5289 out:
5290 	if (anyvalid)
5291 		pmap_invalidate_all(pmap);
5292 	PMAP_UNLOCK(pmap);
5293 	vm_page_free_pages_toq(&free, true);
5294 }
5295 
5296 void
5297 mmu_radix_remove_all(vm_page_t m)
5298 {
5299 	struct md_page *pvh;
5300 	pv_entry_t pv;
5301 	pmap_t pmap;
5302 	struct rwlock *lock;
5303 	pt_entry_t *pte, tpte;
5304 	pml3_entry_t *l3e;
5305 	vm_offset_t va;
5306 	struct spglist free;
5307 	int pvh_gen, md_gen;
5308 
5309 	CTR2(KTR_PMAP, "%s(%p)", __func__, m);
5310 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
5311 	    ("pmap_remove_all: page %p is not managed", m));
5312 	SLIST_INIT(&free);
5313 	lock = VM_PAGE_TO_PV_LIST_LOCK(m);
5314 	pvh = (m->flags & PG_FICTITIOUS) != 0 ? &pv_dummy :
5315 	    pa_to_pvh(VM_PAGE_TO_PHYS(m));
5316 retry:
5317 	rw_wlock(lock);
5318 	while ((pv = TAILQ_FIRST(&pvh->pv_list)) != NULL) {
5319 		pmap = PV_PMAP(pv);
5320 		if (!PMAP_TRYLOCK(pmap)) {
5321 			pvh_gen = pvh->pv_gen;
5322 			rw_wunlock(lock);
5323 			PMAP_LOCK(pmap);
5324 			rw_wlock(lock);
5325 			if (pvh_gen != pvh->pv_gen) {
5326 				rw_wunlock(lock);
5327 				PMAP_UNLOCK(pmap);
5328 				goto retry;
5329 			}
5330 		}
5331 		va = pv->pv_va;
5332 		l3e = pmap_pml3e(pmap, va);
5333 		(void)pmap_demote_l3e_locked(pmap, l3e, va, &lock);
5334 		PMAP_UNLOCK(pmap);
5335 	}
5336 	while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
5337 		pmap = PV_PMAP(pv);
5338 		if (!PMAP_TRYLOCK(pmap)) {
5339 			pvh_gen = pvh->pv_gen;
5340 			md_gen = m->md.pv_gen;
5341 			rw_wunlock(lock);
5342 			PMAP_LOCK(pmap);
5343 			rw_wlock(lock);
5344 			if (pvh_gen != pvh->pv_gen || md_gen != m->md.pv_gen) {
5345 				rw_wunlock(lock);
5346 				PMAP_UNLOCK(pmap);
5347 				goto retry;
5348 			}
5349 		}
5350 		pmap_resident_count_dec(pmap, 1);
5351 		l3e = pmap_pml3e(pmap, pv->pv_va);
5352 		KASSERT((be64toh(*l3e) & RPTE_LEAF) == 0, ("pmap_remove_all: found"
5353 		    " a 2mpage in page %p's pv list", m));
5354 		pte = pmap_l3e_to_pte(l3e, pv->pv_va);
5355 		tpte = be64toh(pte_load_clear(pte));
5356 		if (tpte & PG_W)
5357 			pmap->pm_stats.wired_count--;
5358 		if (tpte & PG_A)
5359 			vm_page_aflag_set(m, PGA_REFERENCED);
5360 
5361 		/*
5362 		 * Update the vm_page_t clean and reference bits.
5363 		 */
5364 		if ((tpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
5365 			vm_page_dirty(m);
5366 		pmap_unuse_pt(pmap, pv->pv_va, be64toh(*l3e), &free);
5367 		pmap_invalidate_page(pmap, pv->pv_va);
5368 		TAILQ_REMOVE(&m->md.pv_list, pv, pv_link);
5369 		m->md.pv_gen++;
5370 		free_pv_entry(pmap, pv);
5371 		PMAP_UNLOCK(pmap);
5372 	}
5373 	vm_page_aflag_clear(m, PGA_WRITEABLE);
5374 	rw_wunlock(lock);
5375 	vm_page_free_pages_toq(&free, true);
5376 }
5377 
5378 /*
5379  * Destroy all managed, non-wired mappings in the given user-space
5380  * pmap.  This pmap cannot be active on any processor besides the
5381  * caller.
5382  *
5383  * This function cannot be applied to the kernel pmap.  Moreover, it
5384  * is not intended for general use.  It is only to be used during
5385  * process termination.  Consequently, it can be implemented in ways
5386  * that make it faster than pmap_remove().  First, it can more quickly
5387  * destroy mappings by iterating over the pmap's collection of PV
5388  * entries, rather than searching the page table.  Second, it doesn't
5389  * have to test and clear the page table entries atomically, because
5390  * no processor is currently accessing the user address space.  In
5391  * particular, a page table entry's dirty bit won't change state once
5392  * this function starts.
5393  *
5394  * Although this function destroys all of the pmap's managed,
5395  * non-wired mappings, it can delay and batch the invalidation of TLB
5396  * entries without calling pmap_delayed_invl_started() and
5397  * pmap_delayed_invl_finished().  Because the pmap is not active on
5398  * any other processor, none of these TLB entries will ever be used
5399  * before their eventual invalidation.  Consequently, there is no need
5400  * for either pmap_remove_all() or pmap_remove_write() to wait for
5401  * that eventual TLB invalidation.
5402  */
5403 
5404 void
5405 mmu_radix_remove_pages(pmap_t pmap)
5406 {
5407 
5408 	CTR2(KTR_PMAP, "%s(%p)", __func__, pmap);
5409 	pml3_entry_t ptel3e;
5410 	pt_entry_t *pte, tpte;
5411 	struct spglist free;
5412 	vm_page_t m, mpte, mt;
5413 	pv_entry_t pv;
5414 	struct md_page *pvh;
5415 	struct pv_chunk *pc, *npc;
5416 	struct rwlock *lock;
5417 	int64_t bit;
5418 	uint64_t inuse, bitmask;
5419 	int allfree, field, freed, idx;
5420 	boolean_t superpage;
5421 	vm_paddr_t pa;
5422 
5423 	/*
5424 	 * Assert that the given pmap is only active on the current
5425 	 * CPU.  Unfortunately, we cannot block another CPU from
5426 	 * activating the pmap while this function is executing.
5427 	 */
5428 	KASSERT(pmap->pm_pid == mfspr(SPR_PID),
5429 	    ("non-current asid %lu - expected %lu", pmap->pm_pid,
5430 	    mfspr(SPR_PID)));
5431 
5432 	lock = NULL;
5433 
5434 	SLIST_INIT(&free);
5435 	PMAP_LOCK(pmap);
5436 	TAILQ_FOREACH_SAFE(pc, &pmap->pm_pvchunk, pc_list, npc) {
5437 		allfree = 1;
5438 		freed = 0;
5439 		for (field = 0; field < _NPCM; field++) {
5440 			inuse = ~pc->pc_map[field] & pc_freemask[field];
5441 			while (inuse != 0) {
5442 				bit = cnttzd(inuse);
5443 				bitmask = 1UL << bit;
5444 				idx = field * 64 + bit;
5445 				pv = &pc->pc_pventry[idx];
5446 				inuse &= ~bitmask;
5447 
5448 				pte = pmap_pml2e(pmap, pv->pv_va);
5449 				ptel3e = be64toh(*pte);
5450 				pte = pmap_l2e_to_l3e(pte, pv->pv_va);
5451 				tpte = be64toh(*pte);
5452 				if ((tpte & (RPTE_LEAF | PG_V)) == PG_V) {
5453 					superpage = FALSE;
5454 					ptel3e = tpte;
5455 					pte = (pt_entry_t *)PHYS_TO_DMAP(tpte &
5456 					    PG_FRAME);
5457 					pte = &pte[pmap_pte_index(pv->pv_va)];
5458 					tpte = be64toh(*pte);
5459 				} else {
5460 					/*
5461 					 * Keep track whether 'tpte' is a
5462 					 * superpage explicitly instead of
5463 					 * relying on RPTE_LEAF being set.
5464 					 *
5465 					 * This is because RPTE_LEAF is numerically
5466 					 * identical to PG_PTE_PAT and thus a
5467 					 * regular page could be mistaken for
5468 					 * a superpage.
5469 					 */
5470 					superpage = TRUE;
5471 				}
5472 
5473 				if ((tpte & PG_V) == 0) {
5474 					panic("bad pte va %lx pte %lx",
5475 					    pv->pv_va, tpte);
5476 				}
5477 
5478 /*
5479  * We cannot remove wired pages from a process' mapping at this time
5480  */
5481 				if (tpte & PG_W) {
5482 					allfree = 0;
5483 					continue;
5484 				}
5485 
5486 				if (superpage)
5487 					pa = tpte & PG_PS_FRAME;
5488 				else
5489 					pa = tpte & PG_FRAME;
5490 
5491 				m = PHYS_TO_VM_PAGE(pa);
5492 				KASSERT(m->phys_addr == pa,
5493 				    ("vm_page_t %p phys_addr mismatch %016jx %016jx",
5494 				    m, (uintmax_t)m->phys_addr,
5495 				    (uintmax_t)tpte));
5496 
5497 				KASSERT((m->flags & PG_FICTITIOUS) != 0 ||
5498 				    m < &vm_page_array[vm_page_array_size],
5499 				    ("pmap_remove_pages: bad tpte %#jx",
5500 				    (uintmax_t)tpte));
5501 
5502 				pte_clear(pte);
5503 
5504 				/*
5505 				 * Update the vm_page_t clean/reference bits.
5506 				 */
5507 				if ((tpte & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
5508 					if (superpage) {
5509 						for (mt = m; mt < &m[L3_PAGE_SIZE / PAGE_SIZE]; mt++)
5510 							vm_page_dirty(mt);
5511 					} else
5512 						vm_page_dirty(m);
5513 				}
5514 
5515 				CHANGE_PV_LIST_LOCK_TO_VM_PAGE(&lock, m);
5516 
5517 				/* Mark free */
5518 				pc->pc_map[field] |= bitmask;
5519 				if (superpage) {
5520 					pmap_resident_count_dec(pmap, L3_PAGE_SIZE / PAGE_SIZE);
5521 					pvh = pa_to_pvh(tpte & PG_PS_FRAME);
5522 					TAILQ_REMOVE(&pvh->pv_list, pv, pv_link);
5523 					pvh->pv_gen++;
5524 					if (TAILQ_EMPTY(&pvh->pv_list)) {
5525 						for (mt = m; mt < &m[L3_PAGE_SIZE / PAGE_SIZE]; mt++)
5526 							if ((mt->a.flags & PGA_WRITEABLE) != 0 &&
5527 							    TAILQ_EMPTY(&mt->md.pv_list))
5528 								vm_page_aflag_clear(mt, PGA_WRITEABLE);
5529 					}
5530 					mpte = pmap_remove_pt_page(pmap, pv->pv_va);
5531 					if (mpte != NULL) {
5532 						pmap_resident_count_dec(pmap, 1);
5533 						KASSERT(mpte->ref_count == NPTEPG,
5534 						    ("pmap_remove_pages: pte page wire count error"));
5535 						mpte->ref_count = 0;
5536 						pmap_add_delayed_free_list(mpte, &free, FALSE);
5537 					}
5538 				} else {
5539 					pmap_resident_count_dec(pmap, 1);
5540 #ifdef VERBOSE_PV
5541 					printf("freeing pv (%p, %p)\n",
5542 						   pmap, pv);
5543 #endif
5544 					TAILQ_REMOVE(&m->md.pv_list, pv, pv_link);
5545 					m->md.pv_gen++;
5546 					if ((m->a.flags & PGA_WRITEABLE) != 0 &&
5547 					    TAILQ_EMPTY(&m->md.pv_list) &&
5548 					    (m->flags & PG_FICTITIOUS) == 0) {
5549 						pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
5550 						if (TAILQ_EMPTY(&pvh->pv_list))
5551 							vm_page_aflag_clear(m, PGA_WRITEABLE);
5552 					}
5553 				}
5554 				pmap_unuse_pt(pmap, pv->pv_va, ptel3e, &free);
5555 				freed++;
5556 			}
5557 		}
5558 		PV_STAT(atomic_add_long(&pv_entry_frees, freed));
5559 		PV_STAT(atomic_add_int(&pv_entry_spare, freed));
5560 		PV_STAT(atomic_subtract_long(&pv_entry_count, freed));
5561 		if (allfree) {
5562 			TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
5563 			free_pv_chunk(pc);
5564 		}
5565 	}
5566 	if (lock != NULL)
5567 		rw_wunlock(lock);
5568 	pmap_invalidate_all(pmap);
5569 	PMAP_UNLOCK(pmap);
5570 	vm_page_free_pages_toq(&free, true);
5571 }
5572 
5573 void
5574 mmu_radix_remove_write(vm_page_t m)
5575 {
5576 	struct md_page *pvh;
5577 	pmap_t pmap;
5578 	struct rwlock *lock;
5579 	pv_entry_t next_pv, pv;
5580 	pml3_entry_t *l3e;
5581 	pt_entry_t oldpte, *pte;
5582 	int pvh_gen, md_gen;
5583 
5584 	CTR2(KTR_PMAP, "%s(%p)", __func__, m);
5585 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
5586 	    ("pmap_remove_write: page %p is not managed", m));
5587 	vm_page_assert_busied(m);
5588 
5589 	if (!pmap_page_is_write_mapped(m))
5590 		return;
5591 	lock = VM_PAGE_TO_PV_LIST_LOCK(m);
5592 	pvh = (m->flags & PG_FICTITIOUS) != 0 ? &pv_dummy :
5593 	    pa_to_pvh(VM_PAGE_TO_PHYS(m));
5594 retry_pv_loop:
5595 	rw_wlock(lock);
5596 	TAILQ_FOREACH_SAFE(pv, &pvh->pv_list, pv_link, next_pv) {
5597 		pmap = PV_PMAP(pv);
5598 		if (!PMAP_TRYLOCK(pmap)) {
5599 			pvh_gen = pvh->pv_gen;
5600 			rw_wunlock(lock);
5601 			PMAP_LOCK(pmap);
5602 			rw_wlock(lock);
5603 			if (pvh_gen != pvh->pv_gen) {
5604 				PMAP_UNLOCK(pmap);
5605 				rw_wunlock(lock);
5606 				goto retry_pv_loop;
5607 			}
5608 		}
5609 		l3e = pmap_pml3e(pmap, pv->pv_va);
5610 		if ((be64toh(*l3e) & PG_RW) != 0)
5611 			(void)pmap_demote_l3e_locked(pmap, l3e, pv->pv_va, &lock);
5612 		KASSERT(lock == VM_PAGE_TO_PV_LIST_LOCK(m),
5613 		    ("inconsistent pv lock %p %p for page %p",
5614 		    lock, VM_PAGE_TO_PV_LIST_LOCK(m), m));
5615 		PMAP_UNLOCK(pmap);
5616 	}
5617 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
5618 		pmap = PV_PMAP(pv);
5619 		if (!PMAP_TRYLOCK(pmap)) {
5620 			pvh_gen = pvh->pv_gen;
5621 			md_gen = m->md.pv_gen;
5622 			rw_wunlock(lock);
5623 			PMAP_LOCK(pmap);
5624 			rw_wlock(lock);
5625 			if (pvh_gen != pvh->pv_gen ||
5626 			    md_gen != m->md.pv_gen) {
5627 				PMAP_UNLOCK(pmap);
5628 				rw_wunlock(lock);
5629 				goto retry_pv_loop;
5630 			}
5631 		}
5632 		l3e = pmap_pml3e(pmap, pv->pv_va);
5633 		KASSERT((be64toh(*l3e) & RPTE_LEAF) == 0,
5634 		    ("pmap_remove_write: found a 2mpage in page %p's pv list",
5635 		    m));
5636 		pte = pmap_l3e_to_pte(l3e, pv->pv_va);
5637 retry:
5638 		oldpte = be64toh(*pte);
5639 		if (oldpte & PG_RW) {
5640 			if (!atomic_cmpset_long(pte, htobe64(oldpte),
5641 			    htobe64((oldpte | RPTE_EAA_R) & ~(PG_RW | PG_M))))
5642 				goto retry;
5643 			if ((oldpte & PG_M) != 0)
5644 				vm_page_dirty(m);
5645 			pmap_invalidate_page(pmap, pv->pv_va);
5646 		}
5647 		PMAP_UNLOCK(pmap);
5648 	}
5649 	rw_wunlock(lock);
5650 	vm_page_aflag_clear(m, PGA_WRITEABLE);
5651 }
5652 
5653 /*
5654  *	Clear the wired attribute from the mappings for the specified range of
5655  *	addresses in the given pmap.  Every valid mapping within that range
5656  *	must have the wired attribute set.  In contrast, invalid mappings
5657  *	cannot have the wired attribute set, so they are ignored.
5658  *
5659  *	The wired attribute of the page table entry is not a hardware
5660  *	feature, so there is no need to invalidate any TLB entries.
5661  *	Since pmap_demote_l3e() for the wired entry must never fail,
5662  *	pmap_delayed_invl_started()/finished() calls around the
5663  *	function are not needed.
5664  */
5665 void
5666 mmu_radix_unwire(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
5667 {
5668 	vm_offset_t va_next;
5669 	pml1_entry_t *l1e;
5670 	pml2_entry_t *l2e;
5671 	pml3_entry_t *l3e;
5672 	pt_entry_t *pte;
5673 
5674 	CTR4(KTR_PMAP, "%s(%p, %#x, %#x)", __func__, pmap, sva, eva);
5675 	PMAP_LOCK(pmap);
5676 	for (; sva < eva; sva = va_next) {
5677 		l1e = pmap_pml1e(pmap, sva);
5678 		if ((be64toh(*l1e) & PG_V) == 0) {
5679 			va_next = (sva + L1_PAGE_SIZE) & ~L1_PAGE_MASK;
5680 			if (va_next < sva)
5681 				va_next = eva;
5682 			continue;
5683 		}
5684 		l2e = pmap_l1e_to_l2e(l1e, sva);
5685 		if ((be64toh(*l2e) & PG_V) == 0) {
5686 			va_next = (sva + L2_PAGE_SIZE) & ~L2_PAGE_MASK;
5687 			if (va_next < sva)
5688 				va_next = eva;
5689 			continue;
5690 		}
5691 		va_next = (sva + L3_PAGE_SIZE) & ~L3_PAGE_MASK;
5692 		if (va_next < sva)
5693 			va_next = eva;
5694 		l3e = pmap_l2e_to_l3e(l2e, sva);
5695 		if ((be64toh(*l3e) & PG_V) == 0)
5696 			continue;
5697 		if ((be64toh(*l3e) & RPTE_LEAF) != 0) {
5698 			if ((be64toh(*l3e) & PG_W) == 0)
5699 				panic("pmap_unwire: pde %#jx is missing PG_W",
5700 				    (uintmax_t)(be64toh(*l3e)));
5701 
5702 			/*
5703 			 * Are we unwiring the entire large page?  If not,
5704 			 * demote the mapping and fall through.
5705 			 */
5706 			if (sva + L3_PAGE_SIZE == va_next && eva >= va_next) {
5707 				atomic_clear_long(l3e, htobe64(PG_W));
5708 				pmap->pm_stats.wired_count -= L3_PAGE_SIZE /
5709 				    PAGE_SIZE;
5710 				continue;
5711 			} else if (!pmap_demote_l3e(pmap, l3e, sva))
5712 				panic("pmap_unwire: demotion failed");
5713 		}
5714 		if (va_next > eva)
5715 			va_next = eva;
5716 		for (pte = pmap_l3e_to_pte(l3e, sva); sva != va_next; pte++,
5717 		    sva += PAGE_SIZE) {
5718 			MPASS(pte == pmap_pte(pmap, sva));
5719 			if ((be64toh(*pte) & PG_V) == 0)
5720 				continue;
5721 			if ((be64toh(*pte) & PG_W) == 0)
5722 				panic("pmap_unwire: pte %#jx is missing PG_W",
5723 				    (uintmax_t)(be64toh(*pte)));
5724 
5725 			/*
5726 			 * PG_W must be cleared atomically.  Although the pmap
5727 			 * lock synchronizes access to PG_W, another processor
5728 			 * could be setting PG_M and/or PG_A concurrently.
5729 			 */
5730 			atomic_clear_long(pte, htobe64(PG_W));
5731 			pmap->pm_stats.wired_count--;
5732 		}
5733 	}
5734 	PMAP_UNLOCK(pmap);
5735 }
5736 
5737 void
5738 mmu_radix_zero_page(vm_page_t m)
5739 {
5740 	vm_offset_t addr;
5741 
5742 	CTR2(KTR_PMAP, "%s(%p)", __func__, m);
5743 	addr = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m));
5744 	pagezero(addr);
5745 }
5746 
5747 void
5748 mmu_radix_zero_page_area(vm_page_t m, int off, int size)
5749 {
5750 	caddr_t addr;
5751 
5752 	CTR4(KTR_PMAP, "%s(%p, %d, %d)", __func__, m, off, size);
5753 	MPASS(off + size <= PAGE_SIZE);
5754 	addr = (caddr_t)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m));
5755 	memset(addr + off, 0, size);
5756 }
5757 
5758 static int
5759 mmu_radix_mincore(pmap_t pmap, vm_offset_t addr, vm_paddr_t *locked_pa)
5760 {
5761 	pml3_entry_t *l3ep;
5762 	pt_entry_t pte;
5763 	vm_paddr_t pa;
5764 	int val;
5765 
5766 	CTR3(KTR_PMAP, "%s(%p, %#x)", __func__, pmap, addr);
5767 	PMAP_LOCK(pmap);
5768 
5769 	l3ep = pmap_pml3e(pmap, addr);
5770 	if (l3ep != NULL && (be64toh(*l3ep) & PG_V)) {
5771 		if (be64toh(*l3ep) & RPTE_LEAF) {
5772 			pte = be64toh(*l3ep);
5773 			/* Compute the physical address of the 4KB page. */
5774 			pa = ((be64toh(*l3ep) & PG_PS_FRAME) | (addr & L3_PAGE_MASK)) &
5775 			    PG_FRAME;
5776 			val = MINCORE_PSIND(1);
5777 		} else {
5778 			/* Native endian PTE, do not pass to functions */
5779 			pte = be64toh(*pmap_l3e_to_pte(l3ep, addr));
5780 			pa = pte & PG_FRAME;
5781 			val = 0;
5782 		}
5783 	} else {
5784 		pte = 0;
5785 		pa = 0;
5786 		val = 0;
5787 	}
5788 	if ((pte & PG_V) != 0) {
5789 		val |= MINCORE_INCORE;
5790 		if ((pte & (PG_M | PG_RW)) == (PG_M | PG_RW))
5791 			val |= MINCORE_MODIFIED | MINCORE_MODIFIED_OTHER;
5792 		if ((pte & PG_A) != 0)
5793 			val |= MINCORE_REFERENCED | MINCORE_REFERENCED_OTHER;
5794 	}
5795 	if ((val & (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER)) !=
5796 	    (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER) &&
5797 	    (pte & (PG_MANAGED | PG_V)) == (PG_MANAGED | PG_V)) {
5798 		*locked_pa = pa;
5799 	}
5800 	PMAP_UNLOCK(pmap);
5801 	return (val);
5802 }
5803 
5804 void
5805 mmu_radix_activate(struct thread *td)
5806 {
5807 	pmap_t pmap;
5808 	uint32_t curpid;
5809 
5810 	CTR2(KTR_PMAP, "%s(%p)", __func__, td);
5811 	critical_enter();
5812 	pmap = vmspace_pmap(td->td_proc->p_vmspace);
5813 	curpid = mfspr(SPR_PID);
5814 	if (pmap->pm_pid > isa3_base_pid &&
5815 		curpid != pmap->pm_pid) {
5816 		mmu_radix_pid_set(pmap);
5817 	}
5818 	critical_exit();
5819 }
5820 
5821 /*
5822  *	Increase the starting virtual address of the given mapping if a
5823  *	different alignment might result in more superpage mappings.
5824  */
5825 void
5826 mmu_radix_align_superpage(vm_object_t object, vm_ooffset_t offset,
5827     vm_offset_t *addr, vm_size_t size)
5828 {
5829 
5830 	CTR5(KTR_PMAP, "%s(%p, %#x, %p, %#x)", __func__, object, offset, addr,
5831 	    size);
5832 	vm_offset_t superpage_offset;
5833 
5834 	if (size < L3_PAGE_SIZE)
5835 		return;
5836 	if (object != NULL && (object->flags & OBJ_COLORED) != 0)
5837 		offset += ptoa(object->pg_color);
5838 	superpage_offset = offset & L3_PAGE_MASK;
5839 	if (size - ((L3_PAGE_SIZE - superpage_offset) & L3_PAGE_MASK) < L3_PAGE_SIZE ||
5840 	    (*addr & L3_PAGE_MASK) == superpage_offset)
5841 		return;
5842 	if ((*addr & L3_PAGE_MASK) < superpage_offset)
5843 		*addr = (*addr & ~L3_PAGE_MASK) + superpage_offset;
5844 	else
5845 		*addr = ((*addr + L3_PAGE_MASK) & ~L3_PAGE_MASK) + superpage_offset;
5846 }
5847 
5848 static void *
5849 mmu_radix_mapdev_attr(vm_paddr_t pa, vm_size_t size, vm_memattr_t attr)
5850 {
5851 	vm_offset_t va, tmpva, ppa, offset;
5852 
5853 	ppa = trunc_page(pa);
5854 	offset = pa & PAGE_MASK;
5855 	size = roundup2(offset + size, PAGE_SIZE);
5856 	if (pa < powerpc_ptob(Maxmem))
5857 		panic("bad pa: %#lx less than Maxmem %#lx\n",
5858 			  pa, powerpc_ptob(Maxmem));
5859 	va = kva_alloc(size);
5860 	if (bootverbose)
5861 		printf("%s(%#lx, %lu, %d)\n", __func__, pa, size, attr);
5862 	KASSERT(size > 0, ("%s(%#lx, %lu, %d)", __func__, pa, size, attr));
5863 
5864 	if (!va)
5865 		panic("%s: Couldn't alloc kernel virtual memory", __func__);
5866 
5867 	for (tmpva = va; size > 0;) {
5868 		mmu_radix_kenter_attr(tmpva, ppa, attr);
5869 		size -= PAGE_SIZE;
5870 		tmpva += PAGE_SIZE;
5871 		ppa += PAGE_SIZE;
5872 	}
5873 	ptesync();
5874 
5875 	return ((void *)(va + offset));
5876 }
5877 
5878 static void *
5879 mmu_radix_mapdev(vm_paddr_t pa, vm_size_t size)
5880 {
5881 
5882 	CTR3(KTR_PMAP, "%s(%#x, %#x)", __func__, pa, size);
5883 
5884 	return (mmu_radix_mapdev_attr(pa, size, VM_MEMATTR_DEFAULT));
5885 }
5886 
5887 void
5888 mmu_radix_page_set_memattr(vm_page_t m, vm_memattr_t ma)
5889 {
5890 
5891 	CTR3(KTR_PMAP, "%s(%p, %#x)", __func__, m, ma);
5892 	m->md.mdpg_cache_attrs = ma;
5893 
5894 	/*
5895 	 * If "m" is a normal page, update its direct mapping.  This update
5896 	 * can be relied upon to perform any cache operations that are
5897 	 * required for data coherence.
5898 	 */
5899 	if ((m->flags & PG_FICTITIOUS) == 0 &&
5900 	    mmu_radix_change_attr(PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m)),
5901 	    PAGE_SIZE, m->md.mdpg_cache_attrs))
5902 		panic("memory attribute change on the direct map failed");
5903 }
5904 
5905 static void
5906 mmu_radix_unmapdev(vm_offset_t va, vm_size_t size)
5907 {
5908 	vm_offset_t offset;
5909 
5910 	CTR3(KTR_PMAP, "%s(%#x, %#x)", __func__, va, size);
5911 	/* If we gave a direct map region in pmap_mapdev, do nothing */
5912 	if (va >= DMAP_MIN_ADDRESS && va < DMAP_MAX_ADDRESS)
5913 		return;
5914 
5915 	offset = va & PAGE_MASK;
5916 	size = round_page(offset + size);
5917 	va = trunc_page(va);
5918 
5919 	if (pmap_initialized) {
5920 		mmu_radix_qremove(va, atop(size));
5921 		kva_free(va, size);
5922 	}
5923 }
5924 
5925 static __inline void
5926 pmap_pte_attr(pt_entry_t *pte, uint64_t cache_bits, uint64_t mask)
5927 {
5928 	uint64_t opte, npte;
5929 
5930 	/*
5931 	 * The cache mode bits are all in the low 32-bits of the
5932 	 * PTE, so we can just spin on updating the low 32-bits.
5933 	 */
5934 	do {
5935 		opte = be64toh(*pte);
5936 		npte = opte & ~mask;
5937 		npte |= cache_bits;
5938 	} while (npte != opte && !atomic_cmpset_long(pte, htobe64(opte), htobe64(npte)));
5939 }
5940 
5941 /*
5942  * Tries to demote a 1GB page mapping.
5943  */
5944 static boolean_t
5945 pmap_demote_l2e(pmap_t pmap, pml2_entry_t *l2e, vm_offset_t va)
5946 {
5947 	pml2_entry_t oldpdpe;
5948 	pml3_entry_t *firstpde, newpde, *pde;
5949 	vm_paddr_t pdpgpa;
5950 	vm_page_t pdpg;
5951 
5952 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
5953 	oldpdpe = be64toh(*l2e);
5954 	KASSERT((oldpdpe & (RPTE_LEAF | PG_V)) == (RPTE_LEAF | PG_V),
5955 	    ("pmap_demote_pdpe: oldpdpe is missing PG_PS and/or PG_V"));
5956 	pdpg = vm_page_alloc(NULL, va >> L2_PAGE_SIZE_SHIFT,
5957 	    VM_ALLOC_INTERRUPT | VM_ALLOC_NOOBJ | VM_ALLOC_WIRED);
5958 	if (pdpg == NULL) {
5959 		CTR2(KTR_PMAP, "pmap_demote_pdpe: failure for va %#lx"
5960 		    " in pmap %p", va, pmap);
5961 		return (FALSE);
5962 	}
5963 	pdpgpa = VM_PAGE_TO_PHYS(pdpg);
5964 	firstpde = (pml3_entry_t *)PHYS_TO_DMAP(pdpgpa);
5965 	KASSERT((oldpdpe & PG_A) != 0,
5966 	    ("pmap_demote_pdpe: oldpdpe is missing PG_A"));
5967 	KASSERT((oldpdpe & (PG_M | PG_RW)) != PG_RW,
5968 	    ("pmap_demote_pdpe: oldpdpe is missing PG_M"));
5969 	newpde = oldpdpe;
5970 
5971 	/*
5972 	 * Initialize the page directory page.
5973 	 */
5974 	for (pde = firstpde; pde < firstpde + NPDEPG; pde++) {
5975 		*pde = htobe64(newpde);
5976 		newpde += L3_PAGE_SIZE;
5977 	}
5978 
5979 	/*
5980 	 * Demote the mapping.
5981 	 */
5982 	pde_store(l2e, pdpgpa);
5983 
5984 	/*
5985 	 * Flush PWC --- XXX revisit
5986 	 */
5987 	pmap_invalidate_all(pmap);
5988 
5989 	counter_u64_add(pmap_l2e_demotions, 1);
5990 	CTR2(KTR_PMAP, "pmap_demote_pdpe: success for va %#lx"
5991 	    " in pmap %p", va, pmap);
5992 	return (TRUE);
5993 }
5994 
5995 vm_paddr_t
5996 mmu_radix_kextract(vm_offset_t va)
5997 {
5998 	pml3_entry_t l3e;
5999 	vm_paddr_t pa;
6000 
6001 	CTR2(KTR_PMAP, "%s(%#x)", __func__, va);
6002 	if (va >= DMAP_MIN_ADDRESS && va < DMAP_MAX_ADDRESS) {
6003 		pa = DMAP_TO_PHYS(va);
6004 	} else {
6005 		/* Big-endian PTE on stack */
6006 		l3e = *pmap_pml3e(kernel_pmap, va);
6007 		if (be64toh(l3e) & RPTE_LEAF) {
6008 			pa = (be64toh(l3e) & PG_PS_FRAME) | (va & L3_PAGE_MASK);
6009 			pa |= (va & L3_PAGE_MASK);
6010 		} else {
6011 			/*
6012 			 * Beware of a concurrent promotion that changes the
6013 			 * PDE at this point!  For example, vtopte() must not
6014 			 * be used to access the PTE because it would use the
6015 			 * new PDE.  It is, however, safe to use the old PDE
6016 			 * because the page table page is preserved by the
6017 			 * promotion.
6018 			 */
6019 			pa = be64toh(*pmap_l3e_to_pte(&l3e, va));
6020 			pa = (pa & PG_FRAME) | (va & PAGE_MASK);
6021 			pa |= (va & PAGE_MASK);
6022 		}
6023 	}
6024 	return (pa);
6025 }
6026 
6027 static pt_entry_t
6028 mmu_radix_calc_wimg(vm_paddr_t pa, vm_memattr_t ma)
6029 {
6030 
6031 	if (ma != VM_MEMATTR_DEFAULT) {
6032 		return pmap_cache_bits(ma);
6033 	}
6034 
6035 	/*
6036 	 * Assume the page is cache inhibited and access is guarded unless
6037 	 * it's in our available memory array.
6038 	 */
6039 	for (int i = 0; i < pregions_sz; i++) {
6040 		if ((pa >= pregions[i].mr_start) &&
6041 		    (pa < (pregions[i].mr_start + pregions[i].mr_size)))
6042 			return (RPTE_ATTR_MEM);
6043 	}
6044 	return (RPTE_ATTR_GUARDEDIO);
6045 }
6046 
6047 static void
6048 mmu_radix_kenter_attr(vm_offset_t va, vm_paddr_t pa, vm_memattr_t ma)
6049 {
6050 	pt_entry_t *pte, pteval;
6051 	uint64_t cache_bits;
6052 
6053 	pte = kvtopte(va);
6054 	MPASS(pte != NULL);
6055 	pteval = pa | RPTE_EAA_R | RPTE_EAA_W | RPTE_EAA_P | PG_M | PG_A;
6056 	cache_bits = mmu_radix_calc_wimg(pa, ma);
6057 	pte_store(pte, pteval | cache_bits);
6058 }
6059 
6060 void
6061 mmu_radix_kremove(vm_offset_t va)
6062 {
6063 	pt_entry_t *pte;
6064 
6065 	CTR2(KTR_PMAP, "%s(%#x)", __func__, va);
6066 
6067 	pte = kvtopte(va);
6068 	pte_clear(pte);
6069 }
6070 
6071 int
6072 mmu_radix_decode_kernel_ptr(vm_offset_t addr,
6073     int *is_user, vm_offset_t *decoded)
6074 {
6075 
6076 	CTR2(KTR_PMAP, "%s(%#jx)", __func__, (uintmax_t)addr);
6077 	*decoded = addr;
6078 	*is_user = (addr < VM_MAXUSER_ADDRESS);
6079 	return (0);
6080 }
6081 
6082 static boolean_t
6083 mmu_radix_dev_direct_mapped(vm_paddr_t pa, vm_size_t size)
6084 {
6085 
6086 	CTR3(KTR_PMAP, "%s(%#x, %#x)", __func__, pa, size);
6087 	return (mem_valid(pa, size));
6088 }
6089 
6090 static void
6091 mmu_radix_scan_init()
6092 {
6093 
6094 	CTR1(KTR_PMAP, "%s()", __func__);
6095 	UNIMPLEMENTED();
6096 }
6097 
6098 static void
6099 mmu_radix_dumpsys_map(vm_paddr_t pa, size_t sz,
6100 	void **va)
6101 {
6102 	CTR4(KTR_PMAP, "%s(%#jx, %#zx, %p)", __func__, (uintmax_t)pa, sz, va);
6103 	UNIMPLEMENTED();
6104 }
6105 
6106 vm_offset_t
6107 mmu_radix_quick_enter_page(vm_page_t m)
6108 {
6109 	vm_paddr_t paddr;
6110 
6111 	CTR2(KTR_PMAP, "%s(%p)", __func__, m);
6112 	paddr = VM_PAGE_TO_PHYS(m);
6113 	return (PHYS_TO_DMAP(paddr));
6114 }
6115 
6116 void
6117 mmu_radix_quick_remove_page(vm_offset_t addr __unused)
6118 {
6119 	/* no work to do here */
6120 	CTR2(KTR_PMAP, "%s(%#x)", __func__, addr);
6121 }
6122 
6123 static void
6124 pmap_invalidate_cache_range(vm_offset_t sva, vm_offset_t eva)
6125 {
6126 	cpu_flush_dcache((void *)sva, eva - sva);
6127 }
6128 
6129 int
6130 mmu_radix_change_attr(vm_offset_t va, vm_size_t size,
6131     vm_memattr_t mode)
6132 {
6133 	int error;
6134 
6135 	CTR4(KTR_PMAP, "%s(%#x, %#zx, %d)", __func__, va, size, mode);
6136 	PMAP_LOCK(kernel_pmap);
6137 	error = pmap_change_attr_locked(va, size, mode, true);
6138 	PMAP_UNLOCK(kernel_pmap);
6139 	return (error);
6140 }
6141 
6142 static int
6143 pmap_change_attr_locked(vm_offset_t va, vm_size_t size, int mode, bool flush)
6144 {
6145 	vm_offset_t base, offset, tmpva;
6146 	vm_paddr_t pa_start, pa_end, pa_end1;
6147 	pml2_entry_t *l2e;
6148 	pml3_entry_t *l3e;
6149 	pt_entry_t *pte;
6150 	int cache_bits, error;
6151 	boolean_t changed;
6152 
6153 	PMAP_LOCK_ASSERT(kernel_pmap, MA_OWNED);
6154 	base = trunc_page(va);
6155 	offset = va & PAGE_MASK;
6156 	size = round_page(offset + size);
6157 
6158 	/*
6159 	 * Only supported on kernel virtual addresses, including the direct
6160 	 * map but excluding the recursive map.
6161 	 */
6162 	if (base < DMAP_MIN_ADDRESS)
6163 		return (EINVAL);
6164 
6165 	cache_bits = pmap_cache_bits(mode);
6166 	changed = FALSE;
6167 
6168 	/*
6169 	 * Pages that aren't mapped aren't supported.  Also break down 2MB pages
6170 	 * into 4KB pages if required.
6171 	 */
6172 	for (tmpva = base; tmpva < base + size; ) {
6173 		l2e = pmap_pml2e(kernel_pmap, tmpva);
6174 		if (l2e == NULL || *l2e == 0)
6175 			return (EINVAL);
6176 		if (be64toh(*l2e) & RPTE_LEAF) {
6177 			/*
6178 			 * If the current 1GB page already has the required
6179 			 * memory type, then we need not demote this page. Just
6180 			 * increment tmpva to the next 1GB page frame.
6181 			 */
6182 			if ((be64toh(*l2e) & RPTE_ATTR_MASK) == cache_bits) {
6183 				tmpva = trunc_1gpage(tmpva) + L2_PAGE_SIZE;
6184 				continue;
6185 			}
6186 
6187 			/*
6188 			 * If the current offset aligns with a 1GB page frame
6189 			 * and there is at least 1GB left within the range, then
6190 			 * we need not break down this page into 2MB pages.
6191 			 */
6192 			if ((tmpva & L2_PAGE_MASK) == 0 &&
6193 			    tmpva + L2_PAGE_MASK < base + size) {
6194 				tmpva += L2_PAGE_MASK;
6195 				continue;
6196 			}
6197 			if (!pmap_demote_l2e(kernel_pmap, l2e, tmpva))
6198 				return (ENOMEM);
6199 		}
6200 		l3e = pmap_l2e_to_l3e(l2e, tmpva);
6201 		KASSERT(l3e != NULL, ("no l3e entry for %#lx in %p\n",
6202 		    tmpva, l2e));
6203 		if (*l3e == 0)
6204 			return (EINVAL);
6205 		if (be64toh(*l3e) & RPTE_LEAF) {
6206 			/*
6207 			 * If the current 2MB page already has the required
6208 			 * memory type, then we need not demote this page. Just
6209 			 * increment tmpva to the next 2MB page frame.
6210 			 */
6211 			if ((be64toh(*l3e) & RPTE_ATTR_MASK) == cache_bits) {
6212 				tmpva = trunc_2mpage(tmpva) + L3_PAGE_SIZE;
6213 				continue;
6214 			}
6215 
6216 			/*
6217 			 * If the current offset aligns with a 2MB page frame
6218 			 * and there is at least 2MB left within the range, then
6219 			 * we need not break down this page into 4KB pages.
6220 			 */
6221 			if ((tmpva & L3_PAGE_MASK) == 0 &&
6222 			    tmpva + L3_PAGE_MASK < base + size) {
6223 				tmpva += L3_PAGE_SIZE;
6224 				continue;
6225 			}
6226 			if (!pmap_demote_l3e(kernel_pmap, l3e, tmpva))
6227 				return (ENOMEM);
6228 		}
6229 		pte = pmap_l3e_to_pte(l3e, tmpva);
6230 		if (*pte == 0)
6231 			return (EINVAL);
6232 		tmpva += PAGE_SIZE;
6233 	}
6234 	error = 0;
6235 
6236 	/*
6237 	 * Ok, all the pages exist, so run through them updating their
6238 	 * cache mode if required.
6239 	 */
6240 	pa_start = pa_end = 0;
6241 	for (tmpva = base; tmpva < base + size; ) {
6242 		l2e = pmap_pml2e(kernel_pmap, tmpva);
6243 		if (be64toh(*l2e) & RPTE_LEAF) {
6244 			if ((be64toh(*l2e) & RPTE_ATTR_MASK) != cache_bits) {
6245 				pmap_pte_attr(l2e, cache_bits,
6246 				    RPTE_ATTR_MASK);
6247 				changed = TRUE;
6248 			}
6249 			if (tmpva >= VM_MIN_KERNEL_ADDRESS &&
6250 			    (*l2e & PG_PS_FRAME) < dmaplimit) {
6251 				if (pa_start == pa_end) {
6252 					/* Start physical address run. */
6253 					pa_start = be64toh(*l2e) & PG_PS_FRAME;
6254 					pa_end = pa_start + L2_PAGE_SIZE;
6255 				} else if (pa_end == (be64toh(*l2e) & PG_PS_FRAME))
6256 					pa_end += L2_PAGE_SIZE;
6257 				else {
6258 					/* Run ended, update direct map. */
6259 					error = pmap_change_attr_locked(
6260 					    PHYS_TO_DMAP(pa_start),
6261 					    pa_end - pa_start, mode, flush);
6262 					if (error != 0)
6263 						break;
6264 					/* Start physical address run. */
6265 					pa_start = be64toh(*l2e) & PG_PS_FRAME;
6266 					pa_end = pa_start + L2_PAGE_SIZE;
6267 				}
6268 			}
6269 			tmpva = trunc_1gpage(tmpva) + L2_PAGE_SIZE;
6270 			continue;
6271 		}
6272 		l3e = pmap_l2e_to_l3e(l2e, tmpva);
6273 		if (be64toh(*l3e) & RPTE_LEAF) {
6274 			if ((be64toh(*l3e) & RPTE_ATTR_MASK) != cache_bits) {
6275 				pmap_pte_attr(l3e, cache_bits,
6276 				    RPTE_ATTR_MASK);
6277 				changed = TRUE;
6278 			}
6279 			if (tmpva >= VM_MIN_KERNEL_ADDRESS &&
6280 			    (be64toh(*l3e) & PG_PS_FRAME) < dmaplimit) {
6281 				if (pa_start == pa_end) {
6282 					/* Start physical address run. */
6283 					pa_start = be64toh(*l3e) & PG_PS_FRAME;
6284 					pa_end = pa_start + L3_PAGE_SIZE;
6285 				} else if (pa_end == (be64toh(*l3e) & PG_PS_FRAME))
6286 					pa_end += L3_PAGE_SIZE;
6287 				else {
6288 					/* Run ended, update direct map. */
6289 					error = pmap_change_attr_locked(
6290 					    PHYS_TO_DMAP(pa_start),
6291 					    pa_end - pa_start, mode, flush);
6292 					if (error != 0)
6293 						break;
6294 					/* Start physical address run. */
6295 					pa_start = be64toh(*l3e) & PG_PS_FRAME;
6296 					pa_end = pa_start + L3_PAGE_SIZE;
6297 				}
6298 			}
6299 			tmpva = trunc_2mpage(tmpva) + L3_PAGE_SIZE;
6300 		} else {
6301 			pte = pmap_l3e_to_pte(l3e, tmpva);
6302 			if ((be64toh(*pte) & RPTE_ATTR_MASK) != cache_bits) {
6303 				pmap_pte_attr(pte, cache_bits,
6304 				    RPTE_ATTR_MASK);
6305 				changed = TRUE;
6306 			}
6307 			if (tmpva >= VM_MIN_KERNEL_ADDRESS &&
6308 			    (be64toh(*pte) & PG_FRAME) < dmaplimit) {
6309 				if (pa_start == pa_end) {
6310 					/* Start physical address run. */
6311 					pa_start = be64toh(*pte) & PG_FRAME;
6312 					pa_end = pa_start + PAGE_SIZE;
6313 				} else if (pa_end == (be64toh(*pte) & PG_FRAME))
6314 					pa_end += PAGE_SIZE;
6315 				else {
6316 					/* Run ended, update direct map. */
6317 					error = pmap_change_attr_locked(
6318 					    PHYS_TO_DMAP(pa_start),
6319 					    pa_end - pa_start, mode, flush);
6320 					if (error != 0)
6321 						break;
6322 					/* Start physical address run. */
6323 					pa_start = be64toh(*pte) & PG_FRAME;
6324 					pa_end = pa_start + PAGE_SIZE;
6325 				}
6326 			}
6327 			tmpva += PAGE_SIZE;
6328 		}
6329 	}
6330 	if (error == 0 && pa_start != pa_end && pa_start < dmaplimit) {
6331 		pa_end1 = MIN(pa_end, dmaplimit);
6332 		if (pa_start != pa_end1)
6333 			error = pmap_change_attr_locked(PHYS_TO_DMAP(pa_start),
6334 			    pa_end1 - pa_start, mode, flush);
6335 	}
6336 
6337 	/*
6338 	 * Flush CPU caches if required to make sure any data isn't cached that
6339 	 * shouldn't be, etc.
6340 	 */
6341 	if (changed) {
6342 		pmap_invalidate_all(kernel_pmap);
6343 
6344 		if (flush)
6345 			pmap_invalidate_cache_range(base, tmpva);
6346 	}
6347 	return (error);
6348 }
6349 
6350 /*
6351  * Allocate physical memory for the vm_page array and map it into KVA,
6352  * attempting to back the vm_pages with domain-local memory.
6353  */
6354 void
6355 mmu_radix_page_array_startup(long pages)
6356 {
6357 #ifdef notyet
6358 	pml2_entry_t *l2e;
6359 	pml3_entry_t *pde;
6360 	pml3_entry_t newl3;
6361 	vm_offset_t va;
6362 	long pfn;
6363 	int domain, i;
6364 #endif
6365 	vm_paddr_t pa;
6366 	vm_offset_t start, end;
6367 
6368 	vm_page_array_size = pages;
6369 
6370 	start = VM_MIN_KERNEL_ADDRESS;
6371 	end = start + pages * sizeof(struct vm_page);
6372 
6373 	pa = vm_phys_early_alloc(0, end - start);
6374 
6375 	start = mmu_radix_map(&start, pa, end - start, VM_MEMATTR_DEFAULT);
6376 #ifdef notyet
6377 	/* TODO: NUMA vm_page_array.  Blocked out until then (copied from amd64). */
6378 	for (va = start; va < end; va += L3_PAGE_SIZE) {
6379 		pfn = first_page + (va - start) / sizeof(struct vm_page);
6380 		domain = vm_phys_domain(ptoa(pfn));
6381 		l2e = pmap_pml2e(kernel_pmap, va);
6382 		if ((be64toh(*l2e) & PG_V) == 0) {
6383 			pa = vm_phys_early_alloc(domain, PAGE_SIZE);
6384 			dump_add_page(pa);
6385 			pagezero(PHYS_TO_DMAP(pa));
6386 			pde_store(l2e, (pml2_entry_t)pa);
6387 		}
6388 		pde = pmap_l2e_to_l3e(l2e, va);
6389 		if ((be64toh(*pde) & PG_V) != 0)
6390 			panic("Unexpected pde %p", pde);
6391 		pa = vm_phys_early_alloc(domain, L3_PAGE_SIZE);
6392 		for (i = 0; i < NPDEPG; i++)
6393 			dump_add_page(pa + i * PAGE_SIZE);
6394 		newl3 = (pml3_entry_t)(pa | RPTE_EAA_P | RPTE_EAA_R | RPTE_EAA_W);
6395 		pte_store(pde, newl3);
6396 	}
6397 #endif
6398 	vm_page_array = (vm_page_t)start;
6399 }
6400 
6401 #ifdef DDB
6402 #include <sys/kdb.h>
6403 #include <ddb/ddb.h>
6404 
6405 static void
6406 pmap_pte_walk(pml1_entry_t *l1, vm_offset_t va)
6407 {
6408 	pml1_entry_t *l1e;
6409 	pml2_entry_t *l2e;
6410 	pml3_entry_t *l3e;
6411 	pt_entry_t *pte;
6412 
6413 	l1e = &l1[pmap_pml1e_index(va)];
6414 	db_printf("VA %#016lx l1e %#016lx", va, be64toh(*l1e));
6415 	if ((be64toh(*l1e) & PG_V) == 0) {
6416 		db_printf("\n");
6417 		return;
6418 	}
6419 	l2e = pmap_l1e_to_l2e(l1e, va);
6420 	db_printf(" l2e %#016lx", be64toh(*l2e));
6421 	if ((be64toh(*l2e) & PG_V) == 0 || (be64toh(*l2e) & RPTE_LEAF) != 0) {
6422 		db_printf("\n");
6423 		return;
6424 	}
6425 	l3e = pmap_l2e_to_l3e(l2e, va);
6426 	db_printf(" l3e %#016lx", be64toh(*l3e));
6427 	if ((be64toh(*l3e) & PG_V) == 0 || (be64toh(*l3e) & RPTE_LEAF) != 0) {
6428 		db_printf("\n");
6429 		return;
6430 	}
6431 	pte = pmap_l3e_to_pte(l3e, va);
6432 	db_printf(" pte %#016lx\n", be64toh(*pte));
6433 }
6434 
6435 void
6436 pmap_page_print_mappings(vm_page_t m)
6437 {
6438 	pmap_t pmap;
6439 	pv_entry_t pv;
6440 
6441 	db_printf("page %p(%lx)\n", m, m->phys_addr);
6442 	/* need to elide locks if running in ddb */
6443 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
6444 		db_printf("pv: %p ", pv);
6445 		db_printf("va: %#016lx ", pv->pv_va);
6446 		pmap = PV_PMAP(pv);
6447 		db_printf("pmap %p  ", pmap);
6448 		if (pmap != NULL) {
6449 			db_printf("asid: %lu\n", pmap->pm_pid);
6450 			pmap_pte_walk(pmap->pm_pml1, pv->pv_va);
6451 		}
6452 	}
6453 }
6454 
6455 DB_SHOW_COMMAND(pte, pmap_print_pte)
6456 {
6457 	vm_offset_t va;
6458 	pmap_t pmap;
6459 
6460 	if (!have_addr) {
6461 		db_printf("show pte addr\n");
6462 		return;
6463 	}
6464 	va = (vm_offset_t)addr;
6465 
6466 	if (va >= DMAP_MIN_ADDRESS)
6467 		pmap = kernel_pmap;
6468 	else if (kdb_thread != NULL)
6469 		pmap = vmspace_pmap(kdb_thread->td_proc->p_vmspace);
6470 	else
6471 		pmap = vmspace_pmap(curthread->td_proc->p_vmspace);
6472 
6473 	pmap_pte_walk(pmap->pm_pml1, va);
6474 }
6475 
6476 #endif
6477