xref: /freebsd/sys/powerpc/aim/mmu_radix.c (revision 61e21613)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2018 Matthew Macy
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  *
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26  */
27 
28 #include "opt_platform.h"
29 
30 #include <sys/param.h>
31 #include <sys/kernel.h>
32 #include <sys/systm.h>
33 #include <sys/conf.h>
34 #include <sys/bitstring.h>
35 #include <sys/queue.h>
36 #include <sys/cpuset.h>
37 #include <sys/endian.h>
38 #include <sys/kerneldump.h>
39 #include <sys/ktr.h>
40 #include <sys/lock.h>
41 #include <sys/syslog.h>
42 #include <sys/msgbuf.h>
43 #include <sys/malloc.h>
44 #include <sys/mman.h>
45 #include <sys/mutex.h>
46 #include <sys/proc.h>
47 #include <sys/rwlock.h>
48 #include <sys/sched.h>
49 #include <sys/sysctl.h>
50 #include <sys/systm.h>
51 #include <sys/vmem.h>
52 #include <sys/vmmeter.h>
53 #include <sys/smp.h>
54 
55 #include <sys/kdb.h>
56 
57 #include <dev/ofw/openfirm.h>
58 
59 #include <vm/vm.h>
60 #include <vm/pmap.h>
61 #include <vm/vm_param.h>
62 #include <vm/vm_kern.h>
63 #include <vm/vm_page.h>
64 #include <vm/vm_map.h>
65 #include <vm/vm_object.h>
66 #include <vm/vm_extern.h>
67 #include <vm/vm_pageout.h>
68 #include <vm/vm_phys.h>
69 #include <vm/vm_radix.h>
70 #include <vm/vm_reserv.h>
71 #include <vm/vm_dumpset.h>
72 #include <vm/uma.h>
73 
74 #include <machine/_inttypes.h>
75 #include <machine/cpu.h>
76 #include <machine/platform.h>
77 #include <machine/frame.h>
78 #include <machine/md_var.h>
79 #include <machine/psl.h>
80 #include <machine/bat.h>
81 #include <machine/hid.h>
82 #include <machine/pte.h>
83 #include <machine/sr.h>
84 #include <machine/trap.h>
85 #include <machine/mmuvar.h>
86 
87 /* For pseries bit. */
88 #include <powerpc/pseries/phyp-hvcall.h>
89 
90 #ifdef INVARIANTS
91 #include <vm/uma_dbg.h>
92 #endif
93 
94 #define PPC_BITLSHIFT(bit)	(sizeof(long)*NBBY - 1 - (bit))
95 #define PPC_BIT(bit)		(1UL << PPC_BITLSHIFT(bit))
96 #define PPC_BITLSHIFT_VAL(val, bit) ((val) << PPC_BITLSHIFT(bit))
97 
98 #include "opt_ddb.h"
99 
100 #ifdef DDB
101 static void pmap_pte_walk(pml1_entry_t *l1, vm_offset_t va);
102 #endif
103 
104 #define PG_W	RPTE_WIRED
105 #define PG_V	RPTE_VALID
106 #define PG_MANAGED	RPTE_MANAGED
107 #define PG_PROMOTED	RPTE_PROMOTED
108 #define PG_M	RPTE_C
109 #define PG_A	RPTE_R
110 #define PG_X	RPTE_EAA_X
111 #define PG_RW	RPTE_EAA_W
112 #define PG_PTE_CACHE RPTE_ATTR_MASK
113 
114 #define RPTE_SHIFT 9
115 #define NLS_MASK ((1UL<<5)-1)
116 #define RPTE_ENTRIES (1UL<<RPTE_SHIFT)
117 #define RPTE_MASK (RPTE_ENTRIES-1)
118 
119 #define NLB_SHIFT 0
120 #define NLB_MASK (((1UL<<52)-1) << 8)
121 
122 extern int nkpt;
123 extern caddr_t crashdumpmap;
124 
125 #define RIC_FLUSH_TLB 0
126 #define RIC_FLUSH_PWC 1
127 #define RIC_FLUSH_ALL 2
128 
129 #define POWER9_TLB_SETS_RADIX	128	/* # sets in POWER9 TLB Radix mode */
130 
131 #define PPC_INST_TLBIE			0x7c000264
132 #define PPC_INST_TLBIEL			0x7c000224
133 #define PPC_INST_SLBIA			0x7c0003e4
134 
135 #define ___PPC_RA(a)	(((a) & 0x1f) << 16)
136 #define ___PPC_RB(b)	(((b) & 0x1f) << 11)
137 #define ___PPC_RS(s)	(((s) & 0x1f) << 21)
138 #define ___PPC_RT(t)	___PPC_RS(t)
139 #define ___PPC_R(r)	(((r) & 0x1) << 16)
140 #define ___PPC_PRS(prs)	(((prs) & 0x1) << 17)
141 #define ___PPC_RIC(ric)	(((ric) & 0x3) << 18)
142 
143 #define PPC_SLBIA(IH)	__XSTRING(.long PPC_INST_SLBIA | \
144 				       ((IH & 0x7) << 21))
145 #define	PPC_TLBIE_5(rb,rs,ric,prs,r)				\
146 	__XSTRING(.long PPC_INST_TLBIE |			\
147 			  ___PPC_RB(rb) | ___PPC_RS(rs) |	\
148 			  ___PPC_RIC(ric) | ___PPC_PRS(prs) |	\
149 			  ___PPC_R(r))
150 
151 #define	PPC_TLBIEL(rb,rs,ric,prs,r) \
152 	 __XSTRING(.long PPC_INST_TLBIEL | \
153 			   ___PPC_RB(rb) | ___PPC_RS(rs) |	\
154 			   ___PPC_RIC(ric) | ___PPC_PRS(prs) |	\
155 			   ___PPC_R(r))
156 
157 #define PPC_INVALIDATE_ERAT		PPC_SLBIA(7)
158 
159 static __inline void
160 ttusync(void)
161 {
162 	__asm __volatile("eieio; tlbsync; ptesync" ::: "memory");
163 }
164 
165 #define TLBIEL_INVAL_SEL_MASK	0xc00	/* invalidation selector */
166 #define  TLBIEL_INVAL_PAGE	0x000	/* invalidate a single page */
167 #define  TLBIEL_INVAL_SET_PID	0x400	/* invalidate a set for the current PID */
168 #define  TLBIEL_INVAL_SET_LPID	0x800	/* invalidate a set for current LPID */
169 #define  TLBIEL_INVAL_SET	0xc00	/* invalidate a set for all LPIDs */
170 
171 #define TLBIE_ACTUAL_PAGE_MASK		0xe0
172 #define  TLBIE_ACTUAL_PAGE_4K		0x00
173 #define  TLBIE_ACTUAL_PAGE_64K		0xa0
174 #define  TLBIE_ACTUAL_PAGE_2M		0x20
175 #define  TLBIE_ACTUAL_PAGE_1G		0x40
176 
177 #define TLBIE_PRS_PARTITION_SCOPE	0x0
178 #define TLBIE_PRS_PROCESS_SCOPE	0x1
179 
180 #define TLBIE_RIC_INVALIDATE_TLB	0x0	/* Invalidate just TLB */
181 #define TLBIE_RIC_INVALIDATE_PWC	0x1	/* Invalidate just PWC */
182 #define TLBIE_RIC_INVALIDATE_ALL	0x2	/* Invalidate TLB, PWC,
183 						 * cached {proc, part}tab entries
184 						 */
185 #define TLBIE_RIC_INVALIDATE_SEQ	0x3	/* HPT - only:
186 						 * Invalidate a range of translations
187 						 */
188 
189 static __always_inline void
190 radix_tlbie(uint8_t ric, uint8_t prs, uint16_t is, uint32_t pid, uint32_t lpid,
191 			vm_offset_t va, uint16_t ap)
192 {
193 	uint64_t rb, rs;
194 
195 	MPASS((va & PAGE_MASK) == 0);
196 
197 	rs = ((uint64_t)pid << 32) | lpid;
198 	rb = va | is | ap;
199 	__asm __volatile(PPC_TLBIE_5(%0, %1, %2, %3, 1) : :
200 		"r" (rb), "r" (rs), "i" (ric), "i" (prs) : "memory");
201 }
202 
203 static __inline void
204 radix_tlbie_fixup(uint32_t pid, vm_offset_t va, int ap)
205 {
206 
207 	__asm __volatile("ptesync" ::: "memory");
208 	radix_tlbie(TLBIE_RIC_INVALIDATE_TLB, TLBIE_PRS_PROCESS_SCOPE,
209 	    TLBIEL_INVAL_PAGE, 0, 0, va, ap);
210 	__asm __volatile("ptesync" ::: "memory");
211 	radix_tlbie(TLBIE_RIC_INVALIDATE_TLB, TLBIE_PRS_PROCESS_SCOPE,
212 	    TLBIEL_INVAL_PAGE, pid, 0, va, ap);
213 }
214 
215 static __inline void
216 radix_tlbie_invlpg_user_4k(uint32_t pid, vm_offset_t va)
217 {
218 
219 	radix_tlbie(TLBIE_RIC_INVALIDATE_TLB, TLBIE_PRS_PROCESS_SCOPE,
220 		TLBIEL_INVAL_PAGE, pid, 0, va, TLBIE_ACTUAL_PAGE_4K);
221 	radix_tlbie_fixup(pid, va, TLBIE_ACTUAL_PAGE_4K);
222 }
223 
224 static __inline void
225 radix_tlbie_invlpg_user_2m(uint32_t pid, vm_offset_t va)
226 {
227 
228 	radix_tlbie(TLBIE_RIC_INVALIDATE_TLB, TLBIE_PRS_PROCESS_SCOPE,
229 		TLBIEL_INVAL_PAGE, pid, 0, va, TLBIE_ACTUAL_PAGE_2M);
230 	radix_tlbie_fixup(pid, va, TLBIE_ACTUAL_PAGE_2M);
231 }
232 
233 static __inline void
234 radix_tlbie_invlpwc_user(uint32_t pid)
235 {
236 
237 	radix_tlbie(TLBIE_RIC_INVALIDATE_PWC, TLBIE_PRS_PROCESS_SCOPE,
238 		TLBIEL_INVAL_SET_PID, pid, 0, 0, 0);
239 }
240 
241 static __inline void
242 radix_tlbie_flush_user(uint32_t pid)
243 {
244 
245 	radix_tlbie(TLBIE_RIC_INVALIDATE_ALL, TLBIE_PRS_PROCESS_SCOPE,
246 		TLBIEL_INVAL_SET_PID, pid, 0, 0, 0);
247 }
248 
249 static __inline void
250 radix_tlbie_invlpg_kernel_4k(vm_offset_t va)
251 {
252 
253 	radix_tlbie(TLBIE_RIC_INVALIDATE_TLB, TLBIE_PRS_PROCESS_SCOPE,
254 	    TLBIEL_INVAL_PAGE, 0, 0, va, TLBIE_ACTUAL_PAGE_4K);
255 	radix_tlbie_fixup(0, va, TLBIE_ACTUAL_PAGE_4K);
256 }
257 
258 static __inline void
259 radix_tlbie_invlpg_kernel_2m(vm_offset_t va)
260 {
261 
262 	radix_tlbie(TLBIE_RIC_INVALIDATE_TLB, TLBIE_PRS_PROCESS_SCOPE,
263 	    TLBIEL_INVAL_PAGE, 0, 0, va, TLBIE_ACTUAL_PAGE_2M);
264 	radix_tlbie_fixup(0, va, TLBIE_ACTUAL_PAGE_2M);
265 }
266 
267 /* 1GB pages aren't currently supported. */
268 static __inline __unused void
269 radix_tlbie_invlpg_kernel_1g(vm_offset_t va)
270 {
271 
272 	radix_tlbie(TLBIE_RIC_INVALIDATE_TLB, TLBIE_PRS_PROCESS_SCOPE,
273 	    TLBIEL_INVAL_PAGE, 0, 0, va, TLBIE_ACTUAL_PAGE_1G);
274 	radix_tlbie_fixup(0, va, TLBIE_ACTUAL_PAGE_1G);
275 }
276 
277 static __inline void
278 radix_tlbie_invlpwc_kernel(void)
279 {
280 
281 	radix_tlbie(TLBIE_RIC_INVALIDATE_PWC, TLBIE_PRS_PROCESS_SCOPE,
282 	    TLBIEL_INVAL_SET_LPID, 0, 0, 0, 0);
283 }
284 
285 static __inline void
286 radix_tlbie_flush_kernel(void)
287 {
288 
289 	radix_tlbie(TLBIE_RIC_INVALIDATE_ALL, TLBIE_PRS_PROCESS_SCOPE,
290 	    TLBIEL_INVAL_SET_LPID, 0, 0, 0, 0);
291 }
292 
293 static __inline vm_pindex_t
294 pmap_l3e_pindex(vm_offset_t va)
295 {
296 	return ((va & PG_FRAME) >> L3_PAGE_SIZE_SHIFT);
297 }
298 
299 static __inline vm_pindex_t
300 pmap_pml3e_index(vm_offset_t va)
301 {
302 
303 	return ((va >> L3_PAGE_SIZE_SHIFT) & RPTE_MASK);
304 }
305 
306 static __inline vm_pindex_t
307 pmap_pml2e_index(vm_offset_t va)
308 {
309 	return ((va >> L2_PAGE_SIZE_SHIFT) & RPTE_MASK);
310 }
311 
312 static __inline vm_pindex_t
313 pmap_pml1e_index(vm_offset_t va)
314 {
315 	return ((va & PG_FRAME) >> L1_PAGE_SIZE_SHIFT);
316 }
317 
318 /* Return various clipped indexes for a given VA */
319 static __inline vm_pindex_t
320 pmap_pte_index(vm_offset_t va)
321 {
322 
323 	return ((va >> PAGE_SHIFT) & RPTE_MASK);
324 }
325 
326 /* Return a pointer to the PT slot that corresponds to a VA */
327 static __inline pt_entry_t *
328 pmap_l3e_to_pte(pt_entry_t *l3e, vm_offset_t va)
329 {
330 	pt_entry_t *pte;
331 	vm_paddr_t ptepa;
332 
333 	ptepa = (be64toh(*l3e) & NLB_MASK);
334 	pte = (pt_entry_t *)PHYS_TO_DMAP(ptepa);
335 	return (&pte[pmap_pte_index(va)]);
336 }
337 
338 /* Return a pointer to the PD slot that corresponds to a VA */
339 static __inline pt_entry_t *
340 pmap_l2e_to_l3e(pt_entry_t *l2e, vm_offset_t va)
341 {
342 	pt_entry_t *l3e;
343 	vm_paddr_t l3pa;
344 
345 	l3pa = (be64toh(*l2e) & NLB_MASK);
346 	l3e = (pml3_entry_t *)PHYS_TO_DMAP(l3pa);
347 	return (&l3e[pmap_pml3e_index(va)]);
348 }
349 
350 /* Return a pointer to the PD slot that corresponds to a VA */
351 static __inline pt_entry_t *
352 pmap_l1e_to_l2e(pt_entry_t *l1e, vm_offset_t va)
353 {
354 	pt_entry_t *l2e;
355 	vm_paddr_t l2pa;
356 
357 	l2pa = (be64toh(*l1e) & NLB_MASK);
358 
359 	l2e = (pml2_entry_t *)PHYS_TO_DMAP(l2pa);
360 	return (&l2e[pmap_pml2e_index(va)]);
361 }
362 
363 static __inline pml1_entry_t *
364 pmap_pml1e(pmap_t pmap, vm_offset_t va)
365 {
366 
367 	return (&pmap->pm_pml1[pmap_pml1e_index(va)]);
368 }
369 
370 static pt_entry_t *
371 pmap_pml2e(pmap_t pmap, vm_offset_t va)
372 {
373 	pt_entry_t *l1e;
374 
375 	l1e = pmap_pml1e(pmap, va);
376 	if (l1e == NULL || (be64toh(*l1e) & RPTE_VALID) == 0)
377 		return (NULL);
378 	return (pmap_l1e_to_l2e(l1e, va));
379 }
380 
381 static __inline pt_entry_t *
382 pmap_pml3e(pmap_t pmap, vm_offset_t va)
383 {
384 	pt_entry_t *l2e;
385 
386 	l2e = pmap_pml2e(pmap, va);
387 	if (l2e == NULL || (be64toh(*l2e) & RPTE_VALID) == 0)
388 		return (NULL);
389 	return (pmap_l2e_to_l3e(l2e, va));
390 }
391 
392 static __inline pt_entry_t *
393 pmap_pte(pmap_t pmap, vm_offset_t va)
394 {
395 	pt_entry_t *l3e;
396 
397 	l3e = pmap_pml3e(pmap, va);
398 	if (l3e == NULL || (be64toh(*l3e) & RPTE_VALID) == 0)
399 		return (NULL);
400 	return (pmap_l3e_to_pte(l3e, va));
401 }
402 
403 int nkpt = 64;
404 SYSCTL_INT(_machdep, OID_AUTO, nkpt, CTLFLAG_RD, &nkpt, 0,
405     "Number of kernel page table pages allocated on bootup");
406 
407 vm_paddr_t dmaplimit;
408 
409 SYSCTL_DECL(_vm_pmap);
410 
411 #ifdef INVARIANTS
412 #define VERBOSE_PMAP 0
413 #define VERBOSE_PROTECT 0
414 static int pmap_logging;
415 SYSCTL_INT(_vm_pmap, OID_AUTO, pmap_logging, CTLFLAG_RWTUN,
416     &pmap_logging, 0, "verbose debug logging");
417 #endif
418 
419 static u_int64_t	KPTphys;	/* phys addr of kernel level 1 */
420 
421 //static vm_paddr_t	KERNend;	/* phys addr of end of bootstrap data */
422 
423 static vm_offset_t qframe = 0;
424 static struct mtx qframe_mtx;
425 
426 void mmu_radix_activate(struct thread *);
427 void mmu_radix_advise(pmap_t, vm_offset_t, vm_offset_t, int);
428 void mmu_radix_align_superpage(vm_object_t, vm_ooffset_t, vm_offset_t *,
429     vm_size_t);
430 void mmu_radix_clear_modify(vm_page_t);
431 void mmu_radix_copy(pmap_t, pmap_t, vm_offset_t, vm_size_t, vm_offset_t);
432 int mmu_radix_decode_kernel_ptr(vm_offset_t, int *, vm_offset_t *);
433 int mmu_radix_enter(pmap_t, vm_offset_t, vm_page_t, vm_prot_t, u_int, int8_t);
434 void mmu_radix_enter_object(pmap_t, vm_offset_t, vm_offset_t, vm_page_t,
435 	vm_prot_t);
436 void mmu_radix_enter_quick(pmap_t, vm_offset_t, vm_page_t, vm_prot_t);
437 vm_paddr_t mmu_radix_extract(pmap_t pmap, vm_offset_t va);
438 vm_page_t mmu_radix_extract_and_hold(pmap_t, vm_offset_t, vm_prot_t);
439 void mmu_radix_kenter(vm_offset_t, vm_paddr_t);
440 vm_paddr_t mmu_radix_kextract(vm_offset_t);
441 void mmu_radix_kremove(vm_offset_t);
442 boolean_t mmu_radix_is_modified(vm_page_t);
443 boolean_t mmu_radix_is_prefaultable(pmap_t, vm_offset_t);
444 boolean_t mmu_radix_is_referenced(vm_page_t);
445 void mmu_radix_object_init_pt(pmap_t, vm_offset_t, vm_object_t,
446 	vm_pindex_t, vm_size_t);
447 boolean_t mmu_radix_page_exists_quick(pmap_t, vm_page_t);
448 void mmu_radix_page_init(vm_page_t);
449 boolean_t mmu_radix_page_is_mapped(vm_page_t m);
450 void mmu_radix_page_set_memattr(vm_page_t, vm_memattr_t);
451 int mmu_radix_page_wired_mappings(vm_page_t);
452 int mmu_radix_pinit(pmap_t);
453 void mmu_radix_protect(pmap_t, vm_offset_t, vm_offset_t, vm_prot_t);
454 bool mmu_radix_ps_enabled(pmap_t);
455 void mmu_radix_qenter(vm_offset_t, vm_page_t *, int);
456 void mmu_radix_qremove(vm_offset_t, int);
457 vm_offset_t mmu_radix_quick_enter_page(vm_page_t);
458 void mmu_radix_quick_remove_page(vm_offset_t);
459 int mmu_radix_ts_referenced(vm_page_t);
460 void mmu_radix_release(pmap_t);
461 void mmu_radix_remove(pmap_t, vm_offset_t, vm_offset_t);
462 void mmu_radix_remove_all(vm_page_t);
463 void mmu_radix_remove_pages(pmap_t);
464 void mmu_radix_remove_write(vm_page_t);
465 void mmu_radix_sync_icache(pmap_t pm, vm_offset_t va, vm_size_t sz);
466 void mmu_radix_unwire(pmap_t, vm_offset_t, vm_offset_t);
467 void mmu_radix_zero_page(vm_page_t);
468 void mmu_radix_zero_page_area(vm_page_t, int, int);
469 int mmu_radix_change_attr(vm_offset_t, vm_size_t, vm_memattr_t);
470 void mmu_radix_page_array_startup(long pages);
471 
472 #include "mmu_oea64.h"
473 
474 /*
475  * Kernel MMU interface
476  */
477 
478 static void	mmu_radix_bootstrap(vm_offset_t, vm_offset_t);
479 
480 static void mmu_radix_copy_page(vm_page_t, vm_page_t);
481 static void mmu_radix_copy_pages(vm_page_t *ma, vm_offset_t a_offset,
482     vm_page_t *mb, vm_offset_t b_offset, int xfersize);
483 static void mmu_radix_growkernel(vm_offset_t);
484 static void mmu_radix_init(void);
485 static int mmu_radix_mincore(pmap_t, vm_offset_t, vm_paddr_t *);
486 static vm_offset_t mmu_radix_map(vm_offset_t *, vm_paddr_t, vm_paddr_t, int);
487 static void mmu_radix_pinit0(pmap_t);
488 
489 static void *mmu_radix_mapdev(vm_paddr_t, vm_size_t);
490 static void *mmu_radix_mapdev_attr(vm_paddr_t, vm_size_t, vm_memattr_t);
491 static void mmu_radix_unmapdev(void *, vm_size_t);
492 static void mmu_radix_kenter_attr(vm_offset_t, vm_paddr_t, vm_memattr_t ma);
493 static int mmu_radix_dev_direct_mapped(vm_paddr_t, vm_size_t);
494 static void mmu_radix_dumpsys_map(vm_paddr_t pa, size_t sz, void **va);
495 static void mmu_radix_scan_init(void);
496 static void	mmu_radix_cpu_bootstrap(int ap);
497 static void	mmu_radix_tlbie_all(void);
498 
499 static struct pmap_funcs mmu_radix_methods = {
500 	.bootstrap = mmu_radix_bootstrap,
501 	.copy_page = mmu_radix_copy_page,
502 	.copy_pages = mmu_radix_copy_pages,
503 	.cpu_bootstrap = mmu_radix_cpu_bootstrap,
504 	.growkernel = mmu_radix_growkernel,
505 	.init = mmu_radix_init,
506 	.map =      		mmu_radix_map,
507 	.mincore =      	mmu_radix_mincore,
508 	.pinit = mmu_radix_pinit,
509 	.pinit0 = mmu_radix_pinit0,
510 
511 	.mapdev = mmu_radix_mapdev,
512 	.mapdev_attr = mmu_radix_mapdev_attr,
513 	.unmapdev = mmu_radix_unmapdev,
514 	.kenter_attr = mmu_radix_kenter_attr,
515 	.dev_direct_mapped = mmu_radix_dev_direct_mapped,
516 	.dumpsys_pa_init = mmu_radix_scan_init,
517 	.dumpsys_map_chunk = mmu_radix_dumpsys_map,
518 	.page_is_mapped = mmu_radix_page_is_mapped,
519 	.ps_enabled = mmu_radix_ps_enabled,
520 	.align_superpage = mmu_radix_align_superpage,
521 	.object_init_pt = mmu_radix_object_init_pt,
522 	.protect = mmu_radix_protect,
523 	/* pmap dispatcher interface */
524 	.clear_modify = mmu_radix_clear_modify,
525 	.copy = mmu_radix_copy,
526 	.enter = mmu_radix_enter,
527 	.enter_object = mmu_radix_enter_object,
528 	.enter_quick = mmu_radix_enter_quick,
529 	.extract = mmu_radix_extract,
530 	.extract_and_hold = mmu_radix_extract_and_hold,
531 	.is_modified = mmu_radix_is_modified,
532 	.is_prefaultable = mmu_radix_is_prefaultable,
533 	.is_referenced = mmu_radix_is_referenced,
534 	.ts_referenced = mmu_radix_ts_referenced,
535 	.page_exists_quick = mmu_radix_page_exists_quick,
536 	.page_init = mmu_radix_page_init,
537 	.page_wired_mappings =  mmu_radix_page_wired_mappings,
538 	.qenter = mmu_radix_qenter,
539 	.qremove = mmu_radix_qremove,
540 	.release = mmu_radix_release,
541 	.remove = mmu_radix_remove,
542 	.remove_all = mmu_radix_remove_all,
543 	.remove_write = mmu_radix_remove_write,
544 	.sync_icache = mmu_radix_sync_icache,
545 	.unwire = mmu_radix_unwire,
546 	.zero_page = mmu_radix_zero_page,
547 	.zero_page_area = mmu_radix_zero_page_area,
548 	.activate = mmu_radix_activate,
549 	.quick_enter_page =  mmu_radix_quick_enter_page,
550 	.quick_remove_page =  mmu_radix_quick_remove_page,
551 	.page_set_memattr = mmu_radix_page_set_memattr,
552 	.page_array_startup =  mmu_radix_page_array_startup,
553 
554 	/* Internal interfaces */
555 	.kenter = mmu_radix_kenter,
556 	.kextract = mmu_radix_kextract,
557 	.kremove = mmu_radix_kremove,
558 	.change_attr = mmu_radix_change_attr,
559 	.decode_kernel_ptr =  mmu_radix_decode_kernel_ptr,
560 
561 	.tlbie_all = mmu_radix_tlbie_all,
562 };
563 
564 MMU_DEF(mmu_radix, MMU_TYPE_RADIX, mmu_radix_methods);
565 
566 static boolean_t pmap_demote_l3e_locked(pmap_t pmap, pml3_entry_t *l3e, vm_offset_t va,
567 	struct rwlock **lockp);
568 static boolean_t pmap_demote_l3e(pmap_t pmap, pml3_entry_t *pde, vm_offset_t va);
569 static int pmap_unuse_pt(pmap_t, vm_offset_t, pml3_entry_t, struct spglist *);
570 static int pmap_remove_l3e(pmap_t pmap, pml3_entry_t *pdq, vm_offset_t sva,
571     struct spglist *free, struct rwlock **lockp);
572 static int pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t sva,
573     pml3_entry_t ptepde, struct spglist *free, struct rwlock **lockp);
574 static vm_page_t pmap_remove_pt_page(pmap_t pmap, vm_offset_t va);
575 static bool pmap_remove_page(pmap_t pmap, vm_offset_t va, pml3_entry_t *pde,
576     struct spglist *free);
577 static bool	pmap_remove_ptes(pmap_t pmap, vm_offset_t sva, vm_offset_t eva,
578 	pml3_entry_t *l3e, struct spglist *free, struct rwlock **lockp);
579 
580 static bool	pmap_pv_insert_l3e(pmap_t pmap, vm_offset_t va, pml3_entry_t l3e,
581 		    u_int flags, struct rwlock **lockp);
582 #if VM_NRESERVLEVEL > 0
583 static void	pmap_pv_promote_l3e(pmap_t pmap, vm_offset_t va, vm_paddr_t pa,
584 	struct rwlock **lockp);
585 #endif
586 static void	pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va);
587 static int pmap_insert_pt_page(pmap_t pmap, vm_page_t mpte);
588 static vm_page_t mmu_radix_enter_quick_locked(pmap_t pmap, vm_offset_t va, vm_page_t m,
589 	vm_prot_t prot, vm_page_t mpte, struct rwlock **lockp, bool *invalidate);
590 
591 static bool	pmap_enter_2mpage(pmap_t pmap, vm_offset_t va, vm_page_t m,
592 	vm_prot_t prot, struct rwlock **lockp);
593 static int	pmap_enter_l3e(pmap_t pmap, vm_offset_t va, pml3_entry_t newpde,
594 	u_int flags, vm_page_t m, struct rwlock **lockp);
595 
596 static vm_page_t reclaim_pv_chunk(pmap_t locked_pmap, struct rwlock **lockp);
597 static void free_pv_chunk(struct pv_chunk *pc);
598 static vm_page_t _pmap_allocpte(pmap_t pmap, vm_pindex_t ptepindex, struct rwlock **lockp);
599 static vm_page_t pmap_allocl3e(pmap_t pmap, vm_offset_t va,
600 	struct rwlock **lockp);
601 static vm_page_t pmap_allocpte(pmap_t pmap, vm_offset_t va,
602 	struct rwlock **lockp);
603 static void _pmap_unwire_ptp(pmap_t pmap, vm_offset_t va, vm_page_t m,
604     struct spglist *free);
605 static boolean_t pmap_unwire_ptp(pmap_t pmap, vm_offset_t va, vm_page_t m, struct spglist *free);
606 
607 static void pmap_invalidate_page(pmap_t pmap, vm_offset_t start);
608 static void pmap_invalidate_all(pmap_t pmap);
609 static int pmap_change_attr_locked(vm_offset_t va, vm_size_t size, int mode, bool flush);
610 
611 /*
612  * Internal flags for pmap_enter()'s helper functions.
613  */
614 #define	PMAP_ENTER_NORECLAIM	0x1000000	/* Don't reclaim PV entries. */
615 #define	PMAP_ENTER_NOREPLACE	0x2000000	/* Don't replace mappings. */
616 
617 #define UNIMPLEMENTED() panic("%s not implemented", __func__)
618 #define UNTESTED() panic("%s not yet tested", __func__)
619 
620 /* Number of supported PID bits */
621 static unsigned int isa3_pid_bits;
622 
623 /* PID to start allocating from */
624 static unsigned int isa3_base_pid;
625 
626 #define PROCTAB_SIZE_SHIFT	(isa3_pid_bits + 4)
627 #define PROCTAB_ENTRIES	(1ul << isa3_pid_bits)
628 
629 /*
630  * Map of physical memory regions.
631  */
632 static struct	mem_region *regions, *pregions;
633 static struct	numa_mem_region *numa_pregions;
634 static u_int	phys_avail_count;
635 static int	regions_sz, pregions_sz, numa_pregions_sz;
636 static struct pate *isa3_parttab;
637 static struct prte *isa3_proctab;
638 static vmem_t *asid_arena;
639 
640 extern void bs_remap_earlyboot(void);
641 
642 #define	RADIX_PGD_SIZE_SHIFT	16
643 #define RADIX_PGD_SIZE	(1UL << RADIX_PGD_SIZE_SHIFT)
644 
645 #define	RADIX_PGD_INDEX_SHIFT	(RADIX_PGD_SIZE_SHIFT-3)
646 #define NL2EPG (PAGE_SIZE/sizeof(pml2_entry_t))
647 #define NL3EPG (PAGE_SIZE/sizeof(pml3_entry_t))
648 
649 #define	NUPML1E		(RADIX_PGD_SIZE/sizeof(uint64_t))	/* number of userland PML1 pages */
650 #define	NUPDPE		(NUPML1E * NL2EPG)/* number of userland PDP pages */
651 #define	NUPDE		(NUPDPE * NL3EPG)	/* number of userland PD entries */
652 
653 /* POWER9 only permits a 64k partition table size. */
654 #define	PARTTAB_SIZE_SHIFT	16
655 #define PARTTAB_SIZE	(1UL << PARTTAB_SIZE_SHIFT)
656 
657 #define PARTTAB_HR		(1UL << 63) /* host uses radix */
658 #define PARTTAB_GR		(1UL << 63) /* guest uses radix must match host */
659 
660 /* TLB flush actions. Used as argument to tlbiel_flush() */
661 enum {
662 	TLB_INVAL_SCOPE_LPID = 2,	/* invalidate TLBs for current LPID */
663 	TLB_INVAL_SCOPE_GLOBAL = 3,	/* invalidate all TLBs */
664 };
665 
666 #define	NPV_LIST_LOCKS	MAXCPU
667 static int pmap_initialized;
668 static vm_paddr_t proctab0pa;
669 static vm_paddr_t parttab_phys;
670 CTASSERT(sizeof(struct pv_chunk) == PAGE_SIZE);
671 
672 /*
673  * Data for the pv entry allocation mechanism.
674  * Updates to pv_invl_gen are protected by the pv_list_locks[]
675  * elements, but reads are not.
676  */
677 static TAILQ_HEAD(pch, pv_chunk) pv_chunks = TAILQ_HEAD_INITIALIZER(pv_chunks);
678 static struct mtx __exclusive_cache_line pv_chunks_mutex;
679 static struct rwlock __exclusive_cache_line pv_list_locks[NPV_LIST_LOCKS];
680 static struct md_page *pv_table;
681 static struct md_page pv_dummy;
682 
683 #ifdef PV_STATS
684 #define PV_STAT(x)	do { x ; } while (0)
685 #else
686 #define PV_STAT(x)	do { } while (0)
687 #endif
688 
689 #define	pa_radix_index(pa)	((pa) >> L3_PAGE_SIZE_SHIFT)
690 #define	pa_to_pvh(pa)	(&pv_table[pa_radix_index(pa)])
691 
692 #define	PHYS_TO_PV_LIST_LOCK(pa)	\
693 			(&pv_list_locks[pa_radix_index(pa) % NPV_LIST_LOCKS])
694 
695 #define	CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, pa)	do {	\
696 	struct rwlock **_lockp = (lockp);		\
697 	struct rwlock *_new_lock;			\
698 							\
699 	_new_lock = PHYS_TO_PV_LIST_LOCK(pa);		\
700 	if (_new_lock != *_lockp) {			\
701 		if (*_lockp != NULL)			\
702 			rw_wunlock(*_lockp);		\
703 		*_lockp = _new_lock;			\
704 		rw_wlock(*_lockp);			\
705 	}						\
706 } while (0)
707 
708 #define	CHANGE_PV_LIST_LOCK_TO_VM_PAGE(lockp, m)	\
709 	CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, VM_PAGE_TO_PHYS(m))
710 
711 #define	RELEASE_PV_LIST_LOCK(lockp)		do {	\
712 	struct rwlock **_lockp = (lockp);		\
713 							\
714 	if (*_lockp != NULL) {				\
715 		rw_wunlock(*_lockp);			\
716 		*_lockp = NULL;				\
717 	}						\
718 } while (0)
719 
720 #define	VM_PAGE_TO_PV_LIST_LOCK(m)	\
721 	PHYS_TO_PV_LIST_LOCK(VM_PAGE_TO_PHYS(m))
722 
723 /*
724  * We support 52 bits, hence:
725  * bits 52 - 31 = 21, 0b10101
726  * RTS encoding details
727  * bits 0 - 3 of rts -> bits 6 - 8 unsigned long
728  * bits 4 - 5 of rts -> bits 62 - 63 of unsigned long
729  */
730 #define RTS_SIZE ((0x2UL << 61) | (0x5UL << 5))
731 
732 static int powernv_enabled = 1;
733 
734 static __always_inline void
735 tlbiel_radix_set_isa300(uint32_t set, uint32_t is,
736 	uint32_t pid, uint32_t ric, uint32_t prs)
737 {
738 	uint64_t rb;
739 	uint64_t rs;
740 
741 	rb = PPC_BITLSHIFT_VAL(set, 51) | PPC_BITLSHIFT_VAL(is, 53);
742 	rs = PPC_BITLSHIFT_VAL((uint64_t)pid, 31);
743 
744 	__asm __volatile(PPC_TLBIEL(%0, %1, %2, %3, 1)
745 		     : : "r"(rb), "r"(rs), "i"(ric), "i"(prs)
746 		     : "memory");
747 }
748 
749 static void
750 tlbiel_flush_isa3(uint32_t num_sets, uint32_t is)
751 {
752 	uint32_t set;
753 
754 	__asm __volatile("ptesync": : :"memory");
755 
756 	/*
757 	 * Flush the first set of the TLB, and the entire Page Walk Cache
758 	 * and partition table entries. Then flush the remaining sets of the
759 	 * TLB.
760 	 */
761 	if (is == TLB_INVAL_SCOPE_GLOBAL) {
762 		tlbiel_radix_set_isa300(0, is, 0, RIC_FLUSH_ALL, 0);
763 		for (set = 1; set < num_sets; set++)
764 			tlbiel_radix_set_isa300(set, is, 0, RIC_FLUSH_TLB, 0);
765 	}
766 
767 	/* Do the same for process scoped entries. */
768 	tlbiel_radix_set_isa300(0, is, 0, RIC_FLUSH_ALL, 1);
769 	for (set = 1; set < num_sets; set++)
770 		tlbiel_radix_set_isa300(set, is, 0, RIC_FLUSH_TLB, 1);
771 
772 	__asm __volatile("ptesync": : :"memory");
773 }
774 
775 static void
776 mmu_radix_tlbiel_flush(int scope)
777 {
778 	MPASS(scope == TLB_INVAL_SCOPE_LPID ||
779 		  scope == TLB_INVAL_SCOPE_GLOBAL);
780 
781 	tlbiel_flush_isa3(POWER9_TLB_SETS_RADIX, scope);
782 	__asm __volatile(PPC_INVALIDATE_ERAT "; isync" : : :"memory");
783 }
784 
785 static void
786 mmu_radix_tlbie_all(void)
787 {
788 	if (powernv_enabled)
789 		mmu_radix_tlbiel_flush(TLB_INVAL_SCOPE_GLOBAL);
790 	else
791 		mmu_radix_tlbiel_flush(TLB_INVAL_SCOPE_LPID);
792 }
793 
794 static void
795 mmu_radix_init_amor(void)
796 {
797 	/*
798 	* In HV mode, we init AMOR (Authority Mask Override Register) so that
799 	* the hypervisor and guest can setup IAMR (Instruction Authority Mask
800 	* Register), enable key 0 and set it to 1.
801 	*
802 	* AMOR = 0b1100 .... 0000 (Mask for key 0 is 11)
803 	*/
804 	mtspr(SPR_AMOR, (3ul << 62));
805 }
806 
807 static void
808 mmu_radix_init_iamr(void)
809 {
810 	/*
811 	 * Radix always uses key0 of the IAMR to determine if an access is
812 	 * allowed. We set bit 0 (IBM bit 1) of key0, to prevent instruction
813 	 * fetch.
814 	 */
815 	mtspr(SPR_IAMR, (1ul << 62));
816 }
817 
818 static void
819 mmu_radix_pid_set(pmap_t pmap)
820 {
821 
822 	mtspr(SPR_PID, pmap->pm_pid);
823 	isync();
824 }
825 
826 /* Quick sort callout for comparing physical addresses. */
827 static int
828 pa_cmp(const void *a, const void *b)
829 {
830 	const vm_paddr_t *pa = a, *pb = b;
831 
832 	if (*pa < *pb)
833 		return (-1);
834 	else if (*pa > *pb)
835 		return (1);
836 	else
837 		return (0);
838 }
839 
840 #define	pte_load_store(ptep, pte)	atomic_swap_long(ptep, pte)
841 #define	pte_load_clear(ptep)		atomic_swap_long(ptep, 0)
842 #define	pte_store(ptep, pte) do {	   \
843 	MPASS((pte) & (RPTE_EAA_R | RPTE_EAA_W | RPTE_EAA_X));	\
844 	*(u_long *)(ptep) = htobe64((u_long)((pte) | PG_V | RPTE_LEAF)); \
845 } while (0)
846 /*
847  * NB: should only be used for adding directories - not for direct mappings
848  */
849 #define	pde_store(ptep, pa) do {				\
850 	*(u_long *)(ptep) = htobe64((u_long)(pa|RPTE_VALID|RPTE_SHIFT)); \
851 } while (0)
852 
853 #define	pte_clear(ptep) do {					\
854 		*(u_long *)(ptep) = (u_long)(0);		\
855 } while (0)
856 
857 #define	PMAP_PDE_SUPERPAGE	(1 << 8)	/* supports 2MB superpages */
858 
859 /*
860  * Promotion to a 2MB (PDE) page mapping requires that the corresponding 4KB
861  * (PTE) page mappings have identical settings for the following fields:
862  */
863 #define	PG_PTE_PROMOTE	(PG_X | PG_MANAGED | PG_W | PG_PTE_CACHE | \
864 	    PG_M | PG_A | RPTE_EAA_MASK | PG_V)
865 
866 static __inline void
867 pmap_resident_count_inc(pmap_t pmap, int count)
868 {
869 
870 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
871 	pmap->pm_stats.resident_count += count;
872 }
873 
874 static __inline void
875 pmap_resident_count_dec(pmap_t pmap, int count)
876 {
877 
878 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
879 	KASSERT(pmap->pm_stats.resident_count >= count,
880 	    ("pmap %p resident count underflow %ld %d", pmap,
881 	    pmap->pm_stats.resident_count, count));
882 	pmap->pm_stats.resident_count -= count;
883 }
884 
885 static void
886 pagezero(vm_offset_t va)
887 {
888 	va = trunc_page(va);
889 
890 	bzero((void *)va, PAGE_SIZE);
891 }
892 
893 static uint64_t
894 allocpages(int n)
895 {
896 	u_int64_t ret;
897 
898 	ret = moea64_bootstrap_alloc(n * PAGE_SIZE, PAGE_SIZE);
899 	for (int i = 0; i < n; i++)
900 		pagezero(PHYS_TO_DMAP(ret + i * PAGE_SIZE));
901 	return (ret);
902 }
903 
904 static pt_entry_t *
905 kvtopte(vm_offset_t va)
906 {
907 	pt_entry_t *l3e;
908 
909 	l3e = pmap_pml3e(kernel_pmap, va);
910 	if (l3e == NULL || (be64toh(*l3e) & RPTE_VALID) == 0)
911 		return (NULL);
912 	return (pmap_l3e_to_pte(l3e, va));
913 }
914 
915 void
916 mmu_radix_kenter(vm_offset_t va, vm_paddr_t pa)
917 {
918 	pt_entry_t *pte;
919 
920 	pte = kvtopte(va);
921 	MPASS(pte != NULL);
922 	*pte = htobe64(pa | RPTE_VALID | RPTE_LEAF | RPTE_EAA_R | \
923 	    RPTE_EAA_W | RPTE_EAA_P | PG_M | PG_A);
924 }
925 
926 bool
927 mmu_radix_ps_enabled(pmap_t pmap)
928 {
929 	return (superpages_enabled && (pmap->pm_flags & PMAP_PDE_SUPERPAGE) != 0);
930 }
931 
932 static pt_entry_t *
933 pmap_nofault_pte(pmap_t pmap, vm_offset_t va, int *is_l3e)
934 {
935 	pml3_entry_t *l3e;
936 	pt_entry_t *pte;
937 
938 	va &= PG_PS_FRAME;
939 	l3e = pmap_pml3e(pmap, va);
940 	if (l3e == NULL || (be64toh(*l3e) & PG_V) == 0)
941 		return (NULL);
942 
943 	if (be64toh(*l3e) & RPTE_LEAF) {
944 		*is_l3e = 1;
945 		return (l3e);
946 	}
947 	*is_l3e = 0;
948 	va &= PG_FRAME;
949 	pte = pmap_l3e_to_pte(l3e, va);
950 	if (pte == NULL || (be64toh(*pte) & PG_V) == 0)
951 		return (NULL);
952 	return (pte);
953 }
954 
955 int
956 pmap_nofault(pmap_t pmap, vm_offset_t va, vm_prot_t flags)
957 {
958 	pt_entry_t *pte;
959 	pt_entry_t startpte, origpte, newpte;
960 	vm_page_t m;
961 	int is_l3e;
962 
963 	startpte = 0;
964  retry:
965 	if ((pte = pmap_nofault_pte(pmap, va, &is_l3e)) == NULL)
966 		return (KERN_INVALID_ADDRESS);
967 	origpte = newpte = be64toh(*pte);
968 	if (startpte == 0) {
969 		startpte = origpte;
970 		if (((flags & VM_PROT_WRITE) && (startpte & PG_M)) ||
971 		    ((flags & VM_PROT_READ) && (startpte & PG_A))) {
972 			pmap_invalidate_all(pmap);
973 #ifdef INVARIANTS
974 			if (VERBOSE_PMAP || pmap_logging)
975 				printf("%s(%p, %#lx, %#x) (%#lx) -- invalidate all\n",
976 				    __func__, pmap, va, flags, origpte);
977 #endif
978 			return (KERN_FAILURE);
979 		}
980 	}
981 #ifdef INVARIANTS
982 	if (VERBOSE_PMAP || pmap_logging)
983 		printf("%s(%p, %#lx, %#x) (%#lx)\n", __func__, pmap, va,
984 		    flags, origpte);
985 #endif
986 	PMAP_LOCK(pmap);
987 	if ((pte = pmap_nofault_pte(pmap, va, &is_l3e)) == NULL ||
988 	    be64toh(*pte) != origpte) {
989 		PMAP_UNLOCK(pmap);
990 		return (KERN_FAILURE);
991 	}
992 	m = PHYS_TO_VM_PAGE(newpte & PG_FRAME);
993 	MPASS(m != NULL);
994 	switch (flags) {
995 	case VM_PROT_READ:
996 		if ((newpte & (RPTE_EAA_R|RPTE_EAA_X)) == 0)
997 			goto protfail;
998 		newpte |= PG_A;
999 		vm_page_aflag_set(m, PGA_REFERENCED);
1000 		break;
1001 	case VM_PROT_WRITE:
1002 		if ((newpte & RPTE_EAA_W) == 0)
1003 			goto protfail;
1004 		if (is_l3e)
1005 			goto protfail;
1006 		newpte |= PG_M;
1007 		vm_page_dirty(m);
1008 		break;
1009 	case VM_PROT_EXECUTE:
1010 		if ((newpte & RPTE_EAA_X) == 0)
1011 			goto protfail;
1012 		newpte |= PG_A;
1013 		vm_page_aflag_set(m, PGA_REFERENCED);
1014 		break;
1015 	}
1016 
1017 	if (!atomic_cmpset_long(pte, htobe64(origpte), htobe64(newpte)))
1018 		goto retry;
1019 	ptesync();
1020 	PMAP_UNLOCK(pmap);
1021 	if (startpte == newpte)
1022 		return (KERN_FAILURE);
1023 	return (0);
1024  protfail:
1025 	PMAP_UNLOCK(pmap);
1026 	return (KERN_PROTECTION_FAILURE);
1027 }
1028 
1029 /*
1030  * Returns TRUE if the given page is mapped individually or as part of
1031  * a 2mpage.  Otherwise, returns FALSE.
1032  */
1033 boolean_t
1034 mmu_radix_page_is_mapped(vm_page_t m)
1035 {
1036 	struct rwlock *lock;
1037 	boolean_t rv;
1038 
1039 	if ((m->oflags & VPO_UNMANAGED) != 0)
1040 		return (FALSE);
1041 	lock = VM_PAGE_TO_PV_LIST_LOCK(m);
1042 	rw_rlock(lock);
1043 	rv = !TAILQ_EMPTY(&m->md.pv_list) ||
1044 	    ((m->flags & PG_FICTITIOUS) == 0 &&
1045 	    !TAILQ_EMPTY(&pa_to_pvh(VM_PAGE_TO_PHYS(m))->pv_list));
1046 	rw_runlock(lock);
1047 	return (rv);
1048 }
1049 
1050 /*
1051  * Determine the appropriate bits to set in a PTE or PDE for a specified
1052  * caching mode.
1053  */
1054 static int
1055 pmap_cache_bits(vm_memattr_t ma)
1056 {
1057 	if (ma != VM_MEMATTR_DEFAULT) {
1058 		switch (ma) {
1059 		case VM_MEMATTR_UNCACHEABLE:
1060 			return (RPTE_ATTR_GUARDEDIO);
1061 		case VM_MEMATTR_CACHEABLE:
1062 			return (RPTE_ATTR_MEM);
1063 		case VM_MEMATTR_WRITE_BACK:
1064 		case VM_MEMATTR_PREFETCHABLE:
1065 		case VM_MEMATTR_WRITE_COMBINING:
1066 			return (RPTE_ATTR_UNGUARDEDIO);
1067 		}
1068 	}
1069 	return (0);
1070 }
1071 
1072 static void
1073 pmap_invalidate_page(pmap_t pmap, vm_offset_t start)
1074 {
1075 	ptesync();
1076 	if (pmap == kernel_pmap)
1077 		radix_tlbie_invlpg_kernel_4k(start);
1078 	else
1079 		radix_tlbie_invlpg_user_4k(pmap->pm_pid, start);
1080 	ttusync();
1081 }
1082 
1083 static void
1084 pmap_invalidate_page_2m(pmap_t pmap, vm_offset_t start)
1085 {
1086 	ptesync();
1087 	if (pmap == kernel_pmap)
1088 		radix_tlbie_invlpg_kernel_2m(start);
1089 	else
1090 		radix_tlbie_invlpg_user_2m(pmap->pm_pid, start);
1091 	ttusync();
1092 }
1093 
1094 static void
1095 pmap_invalidate_pwc(pmap_t pmap)
1096 {
1097 	ptesync();
1098 	if (pmap == kernel_pmap)
1099 		radix_tlbie_invlpwc_kernel();
1100 	else
1101 		radix_tlbie_invlpwc_user(pmap->pm_pid);
1102 	ttusync();
1103 }
1104 
1105 static void
1106 pmap_invalidate_range(pmap_t pmap, vm_offset_t start, vm_offset_t end)
1107 {
1108 	if (((start - end) >> PAGE_SHIFT) > 8) {
1109 		pmap_invalidate_all(pmap);
1110 		return;
1111 	}
1112 	ptesync();
1113 	if (pmap == kernel_pmap) {
1114 		while (start < end) {
1115 			radix_tlbie_invlpg_kernel_4k(start);
1116 			start += PAGE_SIZE;
1117 		}
1118 	} else {
1119 		while (start < end) {
1120 			radix_tlbie_invlpg_user_4k(pmap->pm_pid, start);
1121 			start += PAGE_SIZE;
1122 		}
1123 	}
1124 	ttusync();
1125 }
1126 
1127 static void
1128 pmap_invalidate_all(pmap_t pmap)
1129 {
1130 	ptesync();
1131 	if (pmap == kernel_pmap)
1132 		radix_tlbie_flush_kernel();
1133 	else
1134 		radix_tlbie_flush_user(pmap->pm_pid);
1135 	ttusync();
1136 }
1137 
1138 static void
1139 pmap_invalidate_l3e_page(pmap_t pmap, vm_offset_t va, pml3_entry_t l3e)
1140 {
1141 
1142 	/*
1143 	 * When the PDE has PG_PROMOTED set, the 2MB page mapping was created
1144 	 * by a promotion that did not invalidate the 512 4KB page mappings
1145 	 * that might exist in the TLB.  Consequently, at this point, the TLB
1146 	 * may hold both 4KB and 2MB page mappings for the address range [va,
1147 	 * va + L3_PAGE_SIZE).  Therefore, the entire range must be invalidated here.
1148 	 * In contrast, when PG_PROMOTED is clear, the TLB will not hold any
1149 	 * 4KB page mappings for the address range [va, va + L3_PAGE_SIZE), and so a
1150 	 * single INVLPG suffices to invalidate the 2MB page mapping from the
1151 	 * TLB.
1152 	 */
1153 	ptesync();
1154 	if ((l3e & PG_PROMOTED) != 0)
1155 		pmap_invalidate_range(pmap, va, va + L3_PAGE_SIZE - 1);
1156 	else
1157 		pmap_invalidate_page_2m(pmap, va);
1158 
1159 	pmap_invalidate_pwc(pmap);
1160 }
1161 
1162 static __inline struct pv_chunk *
1163 pv_to_chunk(pv_entry_t pv)
1164 {
1165 
1166 	return ((struct pv_chunk *)((uintptr_t)pv & ~(uintptr_t)PAGE_MASK));
1167 }
1168 
1169 #define PV_PMAP(pv) (pv_to_chunk(pv)->pc_pmap)
1170 
1171 #define	PC_FREE0	0xfffffffffffffffful
1172 #define	PC_FREE1	((1ul << (_NPCPV % 64)) - 1)
1173 
1174 static const uint64_t pc_freemask[_NPCM] = { PC_FREE0, PC_FREE1 };
1175 
1176 /*
1177  * Ensure that the number of spare PV entries in the specified pmap meets or
1178  * exceeds the given count, "needed".
1179  *
1180  * The given PV list lock may be released.
1181  */
1182 static void
1183 reserve_pv_entries(pmap_t pmap, int needed, struct rwlock **lockp)
1184 {
1185 	struct pch new_tail;
1186 	struct pv_chunk *pc;
1187 	vm_page_t m;
1188 	int avail, free;
1189 	bool reclaimed;
1190 
1191 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1192 	KASSERT(lockp != NULL, ("reserve_pv_entries: lockp is NULL"));
1193 
1194 	/*
1195 	 * Newly allocated PV chunks must be stored in a private list until
1196 	 * the required number of PV chunks have been allocated.  Otherwise,
1197 	 * reclaim_pv_chunk() could recycle one of these chunks.  In
1198 	 * contrast, these chunks must be added to the pmap upon allocation.
1199 	 */
1200 	TAILQ_INIT(&new_tail);
1201 retry:
1202 	avail = 0;
1203 	TAILQ_FOREACH(pc, &pmap->pm_pvchunk, pc_list) {
1204 		//		if ((cpu_feature2 & CPUID2_POPCNT) == 0)
1205 		bit_count((bitstr_t *)pc->pc_map, 0,
1206 				  sizeof(pc->pc_map) * NBBY, &free);
1207 #if 0
1208 		free = popcnt_pc_map_pq(pc->pc_map);
1209 #endif
1210 		if (free == 0)
1211 			break;
1212 		avail += free;
1213 		if (avail >= needed)
1214 			break;
1215 	}
1216 	for (reclaimed = false; avail < needed; avail += _NPCPV) {
1217 		m = vm_page_alloc_noobj(VM_ALLOC_WIRED);
1218 		if (m == NULL) {
1219 			m = reclaim_pv_chunk(pmap, lockp);
1220 			if (m == NULL)
1221 				goto retry;
1222 			reclaimed = true;
1223 		}
1224 		PV_STAT(atomic_add_int(&pc_chunk_count, 1));
1225 		PV_STAT(atomic_add_int(&pc_chunk_allocs, 1));
1226 		dump_add_page(m->phys_addr);
1227 		pc = (void *)PHYS_TO_DMAP(m->phys_addr);
1228 		pc->pc_pmap = pmap;
1229 		pc->pc_map[0] = PC_FREE0;
1230 		pc->pc_map[1] = PC_FREE1;
1231 		TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
1232 		TAILQ_INSERT_TAIL(&new_tail, pc, pc_lru);
1233 		PV_STAT(atomic_add_int(&pv_entry_spare, _NPCPV));
1234 
1235 		/*
1236 		 * The reclaim might have freed a chunk from the current pmap.
1237 		 * If that chunk contained available entries, we need to
1238 		 * re-count the number of available entries.
1239 		 */
1240 		if (reclaimed)
1241 			goto retry;
1242 	}
1243 	if (!TAILQ_EMPTY(&new_tail)) {
1244 		mtx_lock(&pv_chunks_mutex);
1245 		TAILQ_CONCAT(&pv_chunks, &new_tail, pc_lru);
1246 		mtx_unlock(&pv_chunks_mutex);
1247 	}
1248 }
1249 
1250 /*
1251  * First find and then remove the pv entry for the specified pmap and virtual
1252  * address from the specified pv list.  Returns the pv entry if found and NULL
1253  * otherwise.  This operation can be performed on pv lists for either 4KB or
1254  * 2MB page mappings.
1255  */
1256 static __inline pv_entry_t
1257 pmap_pvh_remove(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
1258 {
1259 	pv_entry_t pv;
1260 
1261 	TAILQ_FOREACH(pv, &pvh->pv_list, pv_link) {
1262 #ifdef INVARIANTS
1263 		if (PV_PMAP(pv) == NULL) {
1264 			printf("corrupted pv_chunk/pv %p\n", pv);
1265 			printf("pv_chunk: %64D\n", pv_to_chunk(pv), ":");
1266 		}
1267 		MPASS(PV_PMAP(pv) != NULL);
1268 		MPASS(pv->pv_va != 0);
1269 #endif
1270 		if (pmap == PV_PMAP(pv) && va == pv->pv_va) {
1271 			TAILQ_REMOVE(&pvh->pv_list, pv, pv_link);
1272 			pvh->pv_gen++;
1273 			break;
1274 		}
1275 	}
1276 	return (pv);
1277 }
1278 
1279 /*
1280  * After demotion from a 2MB page mapping to 512 4KB page mappings,
1281  * destroy the pv entry for the 2MB page mapping and reinstantiate the pv
1282  * entries for each of the 4KB page mappings.
1283  */
1284 static void
1285 pmap_pv_demote_l3e(pmap_t pmap, vm_offset_t va, vm_paddr_t pa,
1286     struct rwlock **lockp)
1287 {
1288 	struct md_page *pvh;
1289 	struct pv_chunk *pc;
1290 	pv_entry_t pv;
1291 	vm_offset_t va_last;
1292 	vm_page_t m;
1293 	int bit, field;
1294 
1295 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1296 	KASSERT((pa & L3_PAGE_MASK) == 0,
1297 	    ("pmap_pv_demote_pde: pa is not 2mpage aligned"));
1298 	CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, pa);
1299 
1300 	/*
1301 	 * Transfer the 2mpage's pv entry for this mapping to the first
1302 	 * page's pv list.  Once this transfer begins, the pv list lock
1303 	 * must not be released until the last pv entry is reinstantiated.
1304 	 */
1305 	pvh = pa_to_pvh(pa);
1306 	va = trunc_2mpage(va);
1307 	pv = pmap_pvh_remove(pvh, pmap, va);
1308 	KASSERT(pv != NULL, ("pmap_pv_demote_pde: pv not found"));
1309 	m = PHYS_TO_VM_PAGE(pa);
1310 	TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_link);
1311 
1312 	m->md.pv_gen++;
1313 	/* Instantiate the remaining NPTEPG - 1 pv entries. */
1314 	PV_STAT(atomic_add_long(&pv_entry_allocs, NPTEPG - 1));
1315 	va_last = va + L3_PAGE_SIZE - PAGE_SIZE;
1316 	for (;;) {
1317 		pc = TAILQ_FIRST(&pmap->pm_pvchunk);
1318 		KASSERT(pc->pc_map[0] != 0 || pc->pc_map[1] != 0
1319 		    , ("pmap_pv_demote_pde: missing spare"));
1320 		for (field = 0; field < _NPCM; field++) {
1321 			while (pc->pc_map[field]) {
1322 				bit = cnttzd(pc->pc_map[field]);
1323 				pc->pc_map[field] &= ~(1ul << bit);
1324 				pv = &pc->pc_pventry[field * 64 + bit];
1325 				va += PAGE_SIZE;
1326 				pv->pv_va = va;
1327 				m++;
1328 				KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1329 			    ("pmap_pv_demote_pde: page %p is not managed", m));
1330 				TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_link);
1331 
1332 				m->md.pv_gen++;
1333 				if (va == va_last)
1334 					goto out;
1335 			}
1336 		}
1337 		TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
1338 		TAILQ_INSERT_TAIL(&pmap->pm_pvchunk, pc, pc_list);
1339 	}
1340 out:
1341 	if (pc->pc_map[0] == 0 && pc->pc_map[1] == 0) {
1342 		TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
1343 		TAILQ_INSERT_TAIL(&pmap->pm_pvchunk, pc, pc_list);
1344 	}
1345 	PV_STAT(atomic_add_long(&pv_entry_count, NPTEPG - 1));
1346 	PV_STAT(atomic_subtract_int(&pv_entry_spare, NPTEPG - 1));
1347 }
1348 
1349 static void
1350 reclaim_pv_chunk_leave_pmap(pmap_t pmap, pmap_t locked_pmap)
1351 {
1352 
1353 	if (pmap == NULL)
1354 		return;
1355 	pmap_invalidate_all(pmap);
1356 	if (pmap != locked_pmap)
1357 		PMAP_UNLOCK(pmap);
1358 }
1359 
1360 /*
1361  * We are in a serious low memory condition.  Resort to
1362  * drastic measures to free some pages so we can allocate
1363  * another pv entry chunk.
1364  *
1365  * Returns NULL if PV entries were reclaimed from the specified pmap.
1366  *
1367  * We do not, however, unmap 2mpages because subsequent accesses will
1368  * allocate per-page pv entries until repromotion occurs, thereby
1369  * exacerbating the shortage of free pv entries.
1370  */
1371 static int active_reclaims = 0;
1372 static vm_page_t
1373 reclaim_pv_chunk(pmap_t locked_pmap, struct rwlock **lockp)
1374 {
1375 	struct pv_chunk *pc, *pc_marker, *pc_marker_end;
1376 	struct pv_chunk_header pc_marker_b, pc_marker_end_b;
1377 	struct md_page *pvh;
1378 	pml3_entry_t *l3e;
1379 	pmap_t next_pmap, pmap;
1380 	pt_entry_t *pte, tpte;
1381 	pv_entry_t pv;
1382 	vm_offset_t va;
1383 	vm_page_t m, m_pc;
1384 	struct spglist free;
1385 	uint64_t inuse;
1386 	int bit, field, freed;
1387 
1388 	PMAP_LOCK_ASSERT(locked_pmap, MA_OWNED);
1389 	KASSERT(lockp != NULL, ("reclaim_pv_chunk: lockp is NULL"));
1390 	pmap = NULL;
1391 	m_pc = NULL;
1392 	SLIST_INIT(&free);
1393 	bzero(&pc_marker_b, sizeof(pc_marker_b));
1394 	bzero(&pc_marker_end_b, sizeof(pc_marker_end_b));
1395 	pc_marker = (struct pv_chunk *)&pc_marker_b;
1396 	pc_marker_end = (struct pv_chunk *)&pc_marker_end_b;
1397 
1398 	mtx_lock(&pv_chunks_mutex);
1399 	active_reclaims++;
1400 	TAILQ_INSERT_HEAD(&pv_chunks, pc_marker, pc_lru);
1401 	TAILQ_INSERT_TAIL(&pv_chunks, pc_marker_end, pc_lru);
1402 	while ((pc = TAILQ_NEXT(pc_marker, pc_lru)) != pc_marker_end &&
1403 	    SLIST_EMPTY(&free)) {
1404 		next_pmap = pc->pc_pmap;
1405 		if (next_pmap == NULL) {
1406 			/*
1407 			 * The next chunk is a marker.  However, it is
1408 			 * not our marker, so active_reclaims must be
1409 			 * > 1.  Consequently, the next_chunk code
1410 			 * will not rotate the pv_chunks list.
1411 			 */
1412 			goto next_chunk;
1413 		}
1414 		mtx_unlock(&pv_chunks_mutex);
1415 
1416 		/*
1417 		 * A pv_chunk can only be removed from the pc_lru list
1418 		 * when both pc_chunks_mutex is owned and the
1419 		 * corresponding pmap is locked.
1420 		 */
1421 		if (pmap != next_pmap) {
1422 			reclaim_pv_chunk_leave_pmap(pmap, locked_pmap);
1423 			pmap = next_pmap;
1424 			/* Avoid deadlock and lock recursion. */
1425 			if (pmap > locked_pmap) {
1426 				RELEASE_PV_LIST_LOCK(lockp);
1427 				PMAP_LOCK(pmap);
1428 				mtx_lock(&pv_chunks_mutex);
1429 				continue;
1430 			} else if (pmap != locked_pmap) {
1431 				if (PMAP_TRYLOCK(pmap)) {
1432 					mtx_lock(&pv_chunks_mutex);
1433 					continue;
1434 				} else {
1435 					pmap = NULL; /* pmap is not locked */
1436 					mtx_lock(&pv_chunks_mutex);
1437 					pc = TAILQ_NEXT(pc_marker, pc_lru);
1438 					if (pc == NULL ||
1439 					    pc->pc_pmap != next_pmap)
1440 						continue;
1441 					goto next_chunk;
1442 				}
1443 			}
1444 		}
1445 
1446 		/*
1447 		 * Destroy every non-wired, 4 KB page mapping in the chunk.
1448 		 */
1449 		freed = 0;
1450 		for (field = 0; field < _NPCM; field++) {
1451 			for (inuse = ~pc->pc_map[field] & pc_freemask[field];
1452 			    inuse != 0; inuse &= ~(1UL << bit)) {
1453 				bit = cnttzd(inuse);
1454 				pv = &pc->pc_pventry[field * 64 + bit];
1455 				va = pv->pv_va;
1456 				l3e = pmap_pml3e(pmap, va);
1457 				if ((be64toh(*l3e) & RPTE_LEAF) != 0)
1458 					continue;
1459 				pte = pmap_l3e_to_pte(l3e, va);
1460 				if ((be64toh(*pte) & PG_W) != 0)
1461 					continue;
1462 				tpte = be64toh(pte_load_clear(pte));
1463 				m = PHYS_TO_VM_PAGE(tpte & PG_FRAME);
1464 				if ((tpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
1465 					vm_page_dirty(m);
1466 				if ((tpte & PG_A) != 0)
1467 					vm_page_aflag_set(m, PGA_REFERENCED);
1468 				CHANGE_PV_LIST_LOCK_TO_VM_PAGE(lockp, m);
1469 				TAILQ_REMOVE(&m->md.pv_list, pv, pv_link);
1470 
1471 				m->md.pv_gen++;
1472 				if (TAILQ_EMPTY(&m->md.pv_list) &&
1473 				    (m->flags & PG_FICTITIOUS) == 0) {
1474 					pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
1475 					if (TAILQ_EMPTY(&pvh->pv_list)) {
1476 						vm_page_aflag_clear(m,
1477 						    PGA_WRITEABLE);
1478 					}
1479 				}
1480 				pc->pc_map[field] |= 1UL << bit;
1481 				pmap_unuse_pt(pmap, va, be64toh(*l3e), &free);
1482 				freed++;
1483 			}
1484 		}
1485 		if (freed == 0) {
1486 			mtx_lock(&pv_chunks_mutex);
1487 			goto next_chunk;
1488 		}
1489 		/* Every freed mapping is for a 4 KB page. */
1490 		pmap_resident_count_dec(pmap, freed);
1491 		PV_STAT(atomic_add_long(&pv_entry_frees, freed));
1492 		PV_STAT(atomic_add_int(&pv_entry_spare, freed));
1493 		PV_STAT(atomic_subtract_long(&pv_entry_count, freed));
1494 		TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
1495 		if (pc->pc_map[0] == PC_FREE0 && pc->pc_map[1] == PC_FREE1) {
1496 			PV_STAT(atomic_subtract_int(&pv_entry_spare, _NPCPV));
1497 			PV_STAT(atomic_subtract_int(&pc_chunk_count, 1));
1498 			PV_STAT(atomic_add_int(&pc_chunk_frees, 1));
1499 			/* Entire chunk is free; return it. */
1500 			m_pc = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t)pc));
1501 			dump_drop_page(m_pc->phys_addr);
1502 			mtx_lock(&pv_chunks_mutex);
1503 			TAILQ_REMOVE(&pv_chunks, pc, pc_lru);
1504 			break;
1505 		}
1506 		TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
1507 		mtx_lock(&pv_chunks_mutex);
1508 		/* One freed pv entry in locked_pmap is sufficient. */
1509 		if (pmap == locked_pmap)
1510 			break;
1511 next_chunk:
1512 		TAILQ_REMOVE(&pv_chunks, pc_marker, pc_lru);
1513 		TAILQ_INSERT_AFTER(&pv_chunks, pc, pc_marker, pc_lru);
1514 		if (active_reclaims == 1 && pmap != NULL) {
1515 			/*
1516 			 * Rotate the pv chunks list so that we do not
1517 			 * scan the same pv chunks that could not be
1518 			 * freed (because they contained a wired
1519 			 * and/or superpage mapping) on every
1520 			 * invocation of reclaim_pv_chunk().
1521 			 */
1522 			while ((pc = TAILQ_FIRST(&pv_chunks)) != pc_marker) {
1523 				MPASS(pc->pc_pmap != NULL);
1524 				TAILQ_REMOVE(&pv_chunks, pc, pc_lru);
1525 				TAILQ_INSERT_TAIL(&pv_chunks, pc, pc_lru);
1526 			}
1527 		}
1528 	}
1529 	TAILQ_REMOVE(&pv_chunks, pc_marker, pc_lru);
1530 	TAILQ_REMOVE(&pv_chunks, pc_marker_end, pc_lru);
1531 	active_reclaims--;
1532 	mtx_unlock(&pv_chunks_mutex);
1533 	reclaim_pv_chunk_leave_pmap(pmap, locked_pmap);
1534 	if (m_pc == NULL && !SLIST_EMPTY(&free)) {
1535 		m_pc = SLIST_FIRST(&free);
1536 		SLIST_REMOVE_HEAD(&free, plinks.s.ss);
1537 		/* Recycle a freed page table page. */
1538 		m_pc->ref_count = 1;
1539 	}
1540 	vm_page_free_pages_toq(&free, true);
1541 	return (m_pc);
1542 }
1543 
1544 /*
1545  * free the pv_entry back to the free list
1546  */
1547 static void
1548 free_pv_entry(pmap_t pmap, pv_entry_t pv)
1549 {
1550 	struct pv_chunk *pc;
1551 	int idx, field, bit;
1552 
1553 #ifdef VERBOSE_PV
1554 	if (pmap != kernel_pmap)
1555 		printf("%s(%p, %p)\n", __func__, pmap, pv);
1556 #endif
1557 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1558 	PV_STAT(atomic_add_long(&pv_entry_frees, 1));
1559 	PV_STAT(atomic_add_int(&pv_entry_spare, 1));
1560 	PV_STAT(atomic_subtract_long(&pv_entry_count, 1));
1561 	pc = pv_to_chunk(pv);
1562 	idx = pv - &pc->pc_pventry[0];
1563 	field = idx / 64;
1564 	bit = idx % 64;
1565 	pc->pc_map[field] |= 1ul << bit;
1566 	if (pc->pc_map[0] != PC_FREE0 || pc->pc_map[1] != PC_FREE1) {
1567 		/* 98% of the time, pc is already at the head of the list. */
1568 		if (__predict_false(pc != TAILQ_FIRST(&pmap->pm_pvchunk))) {
1569 			TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
1570 			TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
1571 		}
1572 		return;
1573 	}
1574 	TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
1575 	free_pv_chunk(pc);
1576 }
1577 
1578 static void
1579 free_pv_chunk(struct pv_chunk *pc)
1580 {
1581 	vm_page_t m;
1582 
1583 	mtx_lock(&pv_chunks_mutex);
1584  	TAILQ_REMOVE(&pv_chunks, pc, pc_lru);
1585 	mtx_unlock(&pv_chunks_mutex);
1586 	PV_STAT(atomic_subtract_int(&pv_entry_spare, _NPCPV));
1587 	PV_STAT(atomic_subtract_int(&pc_chunk_count, 1));
1588 	PV_STAT(atomic_add_int(&pc_chunk_frees, 1));
1589 	/* entire chunk is free, return it */
1590 	m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t)pc));
1591 	dump_drop_page(m->phys_addr);
1592 	vm_page_unwire_noq(m);
1593 	vm_page_free(m);
1594 }
1595 
1596 /*
1597  * Returns a new PV entry, allocating a new PV chunk from the system when
1598  * needed.  If this PV chunk allocation fails and a PV list lock pointer was
1599  * given, a PV chunk is reclaimed from an arbitrary pmap.  Otherwise, NULL is
1600  * returned.
1601  *
1602  * The given PV list lock may be released.
1603  */
1604 static pv_entry_t
1605 get_pv_entry(pmap_t pmap, struct rwlock **lockp)
1606 {
1607 	int bit, field;
1608 	pv_entry_t pv;
1609 	struct pv_chunk *pc;
1610 	vm_page_t m;
1611 
1612 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1613 	PV_STAT(atomic_add_long(&pv_entry_allocs, 1));
1614 retry:
1615 	pc = TAILQ_FIRST(&pmap->pm_pvchunk);
1616 	if (pc != NULL) {
1617 		for (field = 0; field < _NPCM; field++) {
1618 			if (pc->pc_map[field]) {
1619 				bit = cnttzd(pc->pc_map[field]);
1620 				break;
1621 			}
1622 		}
1623 		if (field < _NPCM) {
1624 			pv = &pc->pc_pventry[field * 64 + bit];
1625 			pc->pc_map[field] &= ~(1ul << bit);
1626 			/* If this was the last item, move it to tail */
1627 			if (pc->pc_map[0] == 0 && pc->pc_map[1] == 0) {
1628 				TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
1629 				TAILQ_INSERT_TAIL(&pmap->pm_pvchunk, pc,
1630 				    pc_list);
1631 			}
1632 			PV_STAT(atomic_add_long(&pv_entry_count, 1));
1633 			PV_STAT(atomic_subtract_int(&pv_entry_spare, 1));
1634 			MPASS(PV_PMAP(pv) != NULL);
1635 			return (pv);
1636 		}
1637 	}
1638 	/* No free items, allocate another chunk */
1639 	m = vm_page_alloc_noobj(VM_ALLOC_WIRED);
1640 	if (m == NULL) {
1641 		if (lockp == NULL) {
1642 			PV_STAT(pc_chunk_tryfail++);
1643 			return (NULL);
1644 		}
1645 		m = reclaim_pv_chunk(pmap, lockp);
1646 		if (m == NULL)
1647 			goto retry;
1648 	}
1649 	PV_STAT(atomic_add_int(&pc_chunk_count, 1));
1650 	PV_STAT(atomic_add_int(&pc_chunk_allocs, 1));
1651 	dump_add_page(m->phys_addr);
1652 	pc = (void *)PHYS_TO_DMAP(m->phys_addr);
1653 	pc->pc_pmap = pmap;
1654 	pc->pc_map[0] = PC_FREE0 & ~1ul;	/* preallocated bit 0 */
1655 	pc->pc_map[1] = PC_FREE1;
1656 	mtx_lock(&pv_chunks_mutex);
1657 	TAILQ_INSERT_TAIL(&pv_chunks, pc, pc_lru);
1658 	mtx_unlock(&pv_chunks_mutex);
1659 	pv = &pc->pc_pventry[0];
1660 	TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
1661 	PV_STAT(atomic_add_long(&pv_entry_count, 1));
1662 	PV_STAT(atomic_add_int(&pv_entry_spare, _NPCPV - 1));
1663 	MPASS(PV_PMAP(pv) != NULL);
1664 	return (pv);
1665 }
1666 
1667 #if VM_NRESERVLEVEL > 0
1668 /*
1669  * After promotion from 512 4KB page mappings to a single 2MB page mapping,
1670  * replace the many pv entries for the 4KB page mappings by a single pv entry
1671  * for the 2MB page mapping.
1672  */
1673 static void
1674 pmap_pv_promote_l3e(pmap_t pmap, vm_offset_t va, vm_paddr_t pa,
1675     struct rwlock **lockp)
1676 {
1677 	struct md_page *pvh;
1678 	pv_entry_t pv;
1679 	vm_offset_t va_last;
1680 	vm_page_t m;
1681 
1682 	KASSERT((pa & L3_PAGE_MASK) == 0,
1683 	    ("pmap_pv_promote_pde: pa is not 2mpage aligned"));
1684 	CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, pa);
1685 
1686 	/*
1687 	 * Transfer the first page's pv entry for this mapping to the 2mpage's
1688 	 * pv list.  Aside from avoiding the cost of a call to get_pv_entry(),
1689 	 * a transfer avoids the possibility that get_pv_entry() calls
1690 	 * reclaim_pv_chunk() and that reclaim_pv_chunk() removes one of the
1691 	 * mappings that is being promoted.
1692 	 */
1693 	m = PHYS_TO_VM_PAGE(pa);
1694 	va = trunc_2mpage(va);
1695 	pv = pmap_pvh_remove(&m->md, pmap, va);
1696 	KASSERT(pv != NULL, ("pmap_pv_promote_pde: pv not found"));
1697 	pvh = pa_to_pvh(pa);
1698 	TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_link);
1699 	pvh->pv_gen++;
1700 	/* Free the remaining NPTEPG - 1 pv entries. */
1701 	va_last = va + L3_PAGE_SIZE - PAGE_SIZE;
1702 	do {
1703 		m++;
1704 		va += PAGE_SIZE;
1705 		pmap_pvh_free(&m->md, pmap, va);
1706 	} while (va < va_last);
1707 }
1708 #endif /* VM_NRESERVLEVEL > 0 */
1709 
1710 /*
1711  * First find and then destroy the pv entry for the specified pmap and virtual
1712  * address.  This operation can be performed on pv lists for either 4KB or 2MB
1713  * page mappings.
1714  */
1715 static void
1716 pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
1717 {
1718 	pv_entry_t pv;
1719 
1720 	pv = pmap_pvh_remove(pvh, pmap, va);
1721 	KASSERT(pv != NULL, ("pmap_pvh_free: pv not found"));
1722 	free_pv_entry(pmap, pv);
1723 }
1724 
1725 /*
1726  * Conditionally create the PV entry for a 4KB page mapping if the required
1727  * memory can be allocated without resorting to reclamation.
1728  */
1729 static boolean_t
1730 pmap_try_insert_pv_entry(pmap_t pmap, vm_offset_t va, vm_page_t m,
1731     struct rwlock **lockp)
1732 {
1733 	pv_entry_t pv;
1734 
1735 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1736 	/* Pass NULL instead of the lock pointer to disable reclamation. */
1737 	if ((pv = get_pv_entry(pmap, NULL)) != NULL) {
1738 		pv->pv_va = va;
1739 		CHANGE_PV_LIST_LOCK_TO_VM_PAGE(lockp, m);
1740 		TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_link);
1741 		m->md.pv_gen++;
1742 		return (TRUE);
1743 	} else
1744 		return (FALSE);
1745 }
1746 
1747 vm_paddr_t phys_avail_debug[2 * VM_PHYSSEG_MAX];
1748 #ifdef INVARIANTS
1749 static void
1750 validate_addr(vm_paddr_t addr, vm_size_t size)
1751 {
1752 	vm_paddr_t end = addr + size;
1753 	bool found = false;
1754 
1755 	for (int i = 0; i < 2 * phys_avail_count; i += 2) {
1756 		if (addr >= phys_avail_debug[i] &&
1757 			end <= phys_avail_debug[i + 1]) {
1758 			found = true;
1759 			break;
1760 		}
1761 	}
1762 	KASSERT(found, ("%#lx-%#lx outside of initial phys_avail array",
1763 					addr, end));
1764 }
1765 #else
1766 static void validate_addr(vm_paddr_t addr, vm_size_t size) {}
1767 #endif
1768 #define DMAP_PAGE_BITS (RPTE_VALID | RPTE_LEAF | RPTE_EAA_MASK | PG_M | PG_A)
1769 
1770 static vm_paddr_t
1771 alloc_pt_page(void)
1772 {
1773 	vm_paddr_t page;
1774 
1775 	page = allocpages(1);
1776 	pagezero(PHYS_TO_DMAP(page));
1777 	return (page);
1778 }
1779 
1780 static void
1781 mmu_radix_dmap_range(vm_paddr_t start, vm_paddr_t end)
1782 {
1783 	pt_entry_t *pte, pteval;
1784 	vm_paddr_t page;
1785 
1786 	if (bootverbose)
1787 		printf("%s %lx -> %lx\n", __func__, start, end);
1788 	while (start < end) {
1789 		pteval = start | DMAP_PAGE_BITS;
1790 		pte = pmap_pml1e(kernel_pmap, PHYS_TO_DMAP(start));
1791 		if ((be64toh(*pte) & RPTE_VALID) == 0) {
1792 			page = alloc_pt_page();
1793 			pde_store(pte, page);
1794 		}
1795 		pte = pmap_l1e_to_l2e(pte, PHYS_TO_DMAP(start));
1796 		if ((start & L2_PAGE_MASK) == 0 &&
1797 			end - start >= L2_PAGE_SIZE) {
1798 			start += L2_PAGE_SIZE;
1799 			goto done;
1800 		} else if ((be64toh(*pte) & RPTE_VALID) == 0) {
1801 			page = alloc_pt_page();
1802 			pde_store(pte, page);
1803 		}
1804 
1805 		pte = pmap_l2e_to_l3e(pte, PHYS_TO_DMAP(start));
1806 		if ((start & L3_PAGE_MASK) == 0 &&
1807 			end - start >= L3_PAGE_SIZE) {
1808 			start += L3_PAGE_SIZE;
1809 			goto done;
1810 		} else if ((be64toh(*pte) & RPTE_VALID) == 0) {
1811 			page = alloc_pt_page();
1812 			pde_store(pte, page);
1813 		}
1814 		pte = pmap_l3e_to_pte(pte, PHYS_TO_DMAP(start));
1815 		start += PAGE_SIZE;
1816 	done:
1817 		pte_store(pte, pteval);
1818 	}
1819 }
1820 
1821 static void
1822 mmu_radix_dmap_populate(vm_size_t hwphyssz)
1823 {
1824 	vm_paddr_t start, end;
1825 
1826 	for (int i = 0; i < pregions_sz; i++) {
1827 		start = pregions[i].mr_start;
1828 		end = start + pregions[i].mr_size;
1829 		if (hwphyssz && start >= hwphyssz)
1830 			break;
1831 		if (hwphyssz && hwphyssz < end)
1832 			end = hwphyssz;
1833 		mmu_radix_dmap_range(start, end);
1834 	}
1835 }
1836 
1837 static void
1838 mmu_radix_setup_pagetables(vm_size_t hwphyssz)
1839 {
1840 	vm_paddr_t ptpages, pages;
1841 	pt_entry_t *pte;
1842 	vm_paddr_t l1phys;
1843 
1844 	bzero(kernel_pmap, sizeof(struct pmap));
1845 	PMAP_LOCK_INIT(kernel_pmap);
1846 	vm_radix_init(&kernel_pmap->pm_radix);
1847 
1848 	ptpages = allocpages(3);
1849 	l1phys = moea64_bootstrap_alloc(RADIX_PGD_SIZE, RADIX_PGD_SIZE);
1850 	validate_addr(l1phys, RADIX_PGD_SIZE);
1851 	if (bootverbose)
1852 		printf("l1phys=%lx\n", l1phys);
1853 	MPASS((l1phys & (RADIX_PGD_SIZE-1)) == 0);
1854 	for (int i = 0; i < RADIX_PGD_SIZE/PAGE_SIZE; i++)
1855 		pagezero(PHYS_TO_DMAP(l1phys + i * PAGE_SIZE));
1856 	kernel_pmap->pm_pml1 = (pml1_entry_t *)PHYS_TO_DMAP(l1phys);
1857 
1858 	mmu_radix_dmap_populate(hwphyssz);
1859 
1860 	/*
1861 	 * Create page tables for first 128MB of KVA
1862 	 */
1863 	pages = ptpages;
1864 	pte = pmap_pml1e(kernel_pmap, VM_MIN_KERNEL_ADDRESS);
1865 	*pte = htobe64(pages | RPTE_VALID | RPTE_SHIFT);
1866 	pages += PAGE_SIZE;
1867 	pte = pmap_l1e_to_l2e(pte, VM_MIN_KERNEL_ADDRESS);
1868 	*pte = htobe64(pages | RPTE_VALID | RPTE_SHIFT);
1869 	pages += PAGE_SIZE;
1870 	pte = pmap_l2e_to_l3e(pte, VM_MIN_KERNEL_ADDRESS);
1871 	/*
1872 	 * the kernel page table pages need to be preserved in
1873 	 * phys_avail and not overlap with previous  allocations
1874 	 */
1875 	pages = allocpages(nkpt);
1876 	if (bootverbose) {
1877 		printf("phys_avail after dmap populate and nkpt allocation\n");
1878 		for (int j = 0; j < 2 * phys_avail_count; j+=2)
1879 			printf("phys_avail[%d]=%08lx - phys_avail[%d]=%08lx\n",
1880 				   j, phys_avail[j], j + 1, phys_avail[j + 1]);
1881 	}
1882 	KPTphys = pages;
1883 	for (int i = 0; i < nkpt; i++, pte++, pages += PAGE_SIZE)
1884 		*pte = htobe64(pages | RPTE_VALID | RPTE_SHIFT);
1885 	kernel_vm_end = VM_MIN_KERNEL_ADDRESS + nkpt * L3_PAGE_SIZE;
1886 	if (bootverbose)
1887 		printf("kernel_pmap pml1 %p\n", kernel_pmap->pm_pml1);
1888 	/*
1889 	 * Add a physical memory segment (vm_phys_seg) corresponding to the
1890 	 * preallocated kernel page table pages so that vm_page structures
1891 	 * representing these pages will be created.  The vm_page structures
1892 	 * are required for promotion of the corresponding kernel virtual
1893 	 * addresses to superpage mappings.
1894 	 */
1895 	vm_phys_add_seg(KPTphys, KPTphys + ptoa(nkpt));
1896 }
1897 
1898 static void
1899 mmu_radix_early_bootstrap(vm_offset_t start, vm_offset_t end)
1900 {
1901 	vm_paddr_t	kpstart, kpend;
1902 	vm_size_t	physsz, hwphyssz;
1903 	//uint64_t	l2virt;
1904 	int		rm_pavail, proctab_size;
1905 	int		i, j;
1906 
1907 	kpstart = start & ~DMAP_BASE_ADDRESS;
1908 	kpend = end & ~DMAP_BASE_ADDRESS;
1909 
1910 	/* Get physical memory regions from firmware */
1911 	mem_regions(&pregions, &pregions_sz, &regions, &regions_sz);
1912 	CTR0(KTR_PMAP, "mmu_radix_early_bootstrap: physical memory");
1913 
1914 	if (2 * VM_PHYSSEG_MAX < regions_sz)
1915 		panic("mmu_radix_early_bootstrap: phys_avail too small");
1916 
1917 	if (bootverbose)
1918 		for (int i = 0; i < regions_sz; i++)
1919 			printf("regions[%d].mr_start=%lx regions[%d].mr_size=%lx\n",
1920 			    i, regions[i].mr_start, i, regions[i].mr_size);
1921 	/*
1922 	 * XXX workaround a simulator bug
1923 	 */
1924 	for (int i = 0; i < regions_sz; i++)
1925 		if (regions[i].mr_start & PAGE_MASK) {
1926 			regions[i].mr_start += PAGE_MASK;
1927 			regions[i].mr_start &= ~PAGE_MASK;
1928 			regions[i].mr_size &= ~PAGE_MASK;
1929 		}
1930 	if (bootverbose)
1931 		for (int i = 0; i < pregions_sz; i++)
1932 			printf("pregions[%d].mr_start=%lx pregions[%d].mr_size=%lx\n",
1933 			    i, pregions[i].mr_start, i, pregions[i].mr_size);
1934 
1935 	phys_avail_count = 0;
1936 	physsz = 0;
1937 	hwphyssz = 0;
1938 	TUNABLE_ULONG_FETCH("hw.physmem", (u_long *) &hwphyssz);
1939 	for (i = 0, j = 0; i < regions_sz; i++) {
1940 		if (bootverbose)
1941 			printf("regions[%d].mr_start=%016lx regions[%d].mr_size=%016lx\n",
1942 			    i, regions[i].mr_start, i, regions[i].mr_size);
1943 
1944 		if (regions[i].mr_size < PAGE_SIZE)
1945 			continue;
1946 
1947 		if (hwphyssz != 0 &&
1948 		    (physsz + regions[i].mr_size) >= hwphyssz) {
1949 			if (physsz < hwphyssz) {
1950 				phys_avail[j] = regions[i].mr_start;
1951 				phys_avail[j + 1] = regions[i].mr_start +
1952 				    (hwphyssz - physsz);
1953 				physsz = hwphyssz;
1954 				phys_avail_count++;
1955 				dump_avail[j] = phys_avail[j];
1956 				dump_avail[j + 1] = phys_avail[j + 1];
1957 			}
1958 			break;
1959 		}
1960 		phys_avail[j] = regions[i].mr_start;
1961 		phys_avail[j + 1] = regions[i].mr_start + regions[i].mr_size;
1962 		dump_avail[j] = phys_avail[j];
1963 		dump_avail[j + 1] = phys_avail[j + 1];
1964 
1965 		phys_avail_count++;
1966 		physsz += regions[i].mr_size;
1967 		j += 2;
1968 	}
1969 
1970 	/* Check for overlap with the kernel and exception vectors */
1971 	rm_pavail = 0;
1972 	for (j = 0; j < 2 * phys_avail_count; j+=2) {
1973 		if (phys_avail[j] < EXC_LAST)
1974 			phys_avail[j] += EXC_LAST;
1975 
1976 		if (phys_avail[j] >= kpstart &&
1977 		    phys_avail[j + 1] <= kpend) {
1978 			phys_avail[j] = phys_avail[j + 1] = ~0;
1979 			rm_pavail++;
1980 			continue;
1981 		}
1982 
1983 		if (kpstart >= phys_avail[j] &&
1984 		    kpstart < phys_avail[j + 1]) {
1985 			if (kpend < phys_avail[j + 1]) {
1986 				phys_avail[2 * phys_avail_count] =
1987 				    (kpend & ~PAGE_MASK) + PAGE_SIZE;
1988 				phys_avail[2 * phys_avail_count + 1] =
1989 				    phys_avail[j + 1];
1990 				phys_avail_count++;
1991 			}
1992 
1993 			phys_avail[j + 1] = kpstart & ~PAGE_MASK;
1994 		}
1995 
1996 		if (kpend >= phys_avail[j] &&
1997 		    kpend < phys_avail[j + 1]) {
1998 			if (kpstart > phys_avail[j]) {
1999 				phys_avail[2 * phys_avail_count] = phys_avail[j];
2000 				phys_avail[2 * phys_avail_count + 1] =
2001 				    kpstart & ~PAGE_MASK;
2002 				phys_avail_count++;
2003 			}
2004 
2005 			phys_avail[j] = (kpend & ~PAGE_MASK) +
2006 			    PAGE_SIZE;
2007 		}
2008 	}
2009 	qsort(phys_avail, 2 * phys_avail_count, sizeof(phys_avail[0]), pa_cmp);
2010 	for (i = 0; i < 2 * phys_avail_count; i++)
2011 		phys_avail_debug[i] = phys_avail[i];
2012 
2013 	/* Remove physical available regions marked for removal (~0) */
2014 	if (rm_pavail) {
2015 		phys_avail_count -= rm_pavail;
2016 		for (i = 2 * phys_avail_count;
2017 		     i < 2*(phys_avail_count + rm_pavail); i+=2)
2018 			phys_avail[i] = phys_avail[i + 1] = 0;
2019 	}
2020 	if (bootverbose) {
2021 		printf("phys_avail ranges after filtering:\n");
2022 		for (j = 0; j < 2 * phys_avail_count; j+=2)
2023 			printf("phys_avail[%d]=%08lx - phys_avail[%d]=%08lx\n",
2024 				   j, phys_avail[j], j + 1, phys_avail[j + 1]);
2025 	}
2026 	physmem = btoc(physsz);
2027 
2028 	/* XXX assume we're running non-virtualized and
2029 	 * we don't support BHYVE
2030 	 */
2031 	if (isa3_pid_bits == 0)
2032 		isa3_pid_bits = 20;
2033 	if (powernv_enabled) {
2034 		parttab_phys =
2035 		    moea64_bootstrap_alloc(PARTTAB_SIZE, PARTTAB_SIZE);
2036 		validate_addr(parttab_phys, PARTTAB_SIZE);
2037 		for (int i = 0; i < PARTTAB_SIZE/PAGE_SIZE; i++)
2038 			pagezero(PHYS_TO_DMAP(parttab_phys + i * PAGE_SIZE));
2039 
2040 	}
2041 	proctab_size = 1UL << PROCTAB_SIZE_SHIFT;
2042 	proctab0pa = moea64_bootstrap_alloc(proctab_size, proctab_size);
2043 	validate_addr(proctab0pa, proctab_size);
2044 	for (int i = 0; i < proctab_size/PAGE_SIZE; i++)
2045 		pagezero(PHYS_TO_DMAP(proctab0pa + i * PAGE_SIZE));
2046 
2047 	mmu_radix_setup_pagetables(hwphyssz);
2048 }
2049 
2050 static void
2051 mmu_radix_late_bootstrap(vm_offset_t start, vm_offset_t end)
2052 {
2053 	int		i;
2054 	vm_paddr_t	pa;
2055 	void		*dpcpu;
2056 	vm_offset_t va;
2057 
2058 	/*
2059 	 * Set up the Open Firmware pmap and add its mappings if not in real
2060 	 * mode.
2061 	 */
2062 	if (bootverbose)
2063 		printf("%s enter\n", __func__);
2064 
2065 	/*
2066 	 * Calculate the last available physical address, and reserve the
2067 	 * vm_page_array (upper bound).
2068 	 */
2069 	Maxmem = 0;
2070 	for (i = 0; phys_avail[i + 1] != 0; i += 2)
2071 		Maxmem = MAX(Maxmem, powerpc_btop(phys_avail[i + 1]));
2072 
2073 	/*
2074 	 * Remap any early IO mappings (console framebuffer, etc.)
2075 	 */
2076 	bs_remap_earlyboot();
2077 
2078 	/*
2079 	 * Allocate a kernel stack with a guard page for thread0 and map it
2080 	 * into the kernel page map.
2081 	 */
2082 	pa = allocpages(kstack_pages);
2083 	va = virtual_avail + KSTACK_GUARD_PAGES * PAGE_SIZE;
2084 	virtual_avail = va + kstack_pages * PAGE_SIZE;
2085 	CTR2(KTR_PMAP, "moea64_bootstrap: kstack0 at %#x (%#x)", pa, va);
2086 	thread0.td_kstack = va;
2087 	for (i = 0; i < kstack_pages; i++) {
2088 		mmu_radix_kenter(va, pa);
2089 		pa += PAGE_SIZE;
2090 		va += PAGE_SIZE;
2091 	}
2092 	thread0.td_kstack_pages = kstack_pages;
2093 
2094 	/*
2095 	 * Allocate virtual address space for the message buffer.
2096 	 */
2097 	pa = msgbuf_phys = allocpages((msgbufsize + PAGE_MASK)  >> PAGE_SHIFT);
2098 	msgbufp = (struct msgbuf *)PHYS_TO_DMAP(pa);
2099 
2100 	/*
2101 	 * Allocate virtual address space for the dynamic percpu area.
2102 	 */
2103 	pa = allocpages(DPCPU_SIZE >> PAGE_SHIFT);
2104 	dpcpu = (void *)PHYS_TO_DMAP(pa);
2105 	dpcpu_init(dpcpu, curcpu);
2106 
2107 	crashdumpmap = (caddr_t)virtual_avail;
2108 	virtual_avail += MAXDUMPPGS * PAGE_SIZE;
2109 
2110 	/*
2111 	 * Reserve some special page table entries/VA space for temporary
2112 	 * mapping of pages.
2113 	 */
2114 }
2115 
2116 static void
2117 mmu_parttab_init(void)
2118 {
2119 	uint64_t ptcr;
2120 
2121 	isa3_parttab = (struct pate *)PHYS_TO_DMAP(parttab_phys);
2122 
2123 	if (bootverbose)
2124 		printf("%s parttab: %p\n", __func__, isa3_parttab);
2125 	ptcr = parttab_phys | (PARTTAB_SIZE_SHIFT-12);
2126 	if (bootverbose)
2127 		printf("setting ptcr %lx\n", ptcr);
2128 	mtspr(SPR_PTCR, ptcr);
2129 }
2130 
2131 static void
2132 mmu_parttab_update(uint64_t lpid, uint64_t pagetab, uint64_t proctab)
2133 {
2134 	uint64_t prev;
2135 
2136 	if (bootverbose)
2137 		printf("%s isa3_parttab %p lpid %lx pagetab %lx proctab %lx\n", __func__, isa3_parttab,
2138 			   lpid, pagetab, proctab);
2139 	prev = be64toh(isa3_parttab[lpid].pagetab);
2140 	isa3_parttab[lpid].pagetab = htobe64(pagetab);
2141 	isa3_parttab[lpid].proctab = htobe64(proctab);
2142 
2143 	if (prev & PARTTAB_HR) {
2144 		__asm __volatile(PPC_TLBIE_5(%0,%1,2,0,1) : :
2145 			     "r" (TLBIEL_INVAL_SET_LPID), "r" (lpid));
2146 		__asm __volatile(PPC_TLBIE_5(%0,%1,2,1,1) : :
2147 			     "r" (TLBIEL_INVAL_SET_LPID), "r" (lpid));
2148 	} else {
2149 		__asm __volatile(PPC_TLBIE_5(%0,%1,2,0,0) : :
2150 			     "r" (TLBIEL_INVAL_SET_LPID), "r" (lpid));
2151 	}
2152 	ttusync();
2153 }
2154 
2155 static void
2156 mmu_radix_parttab_init(void)
2157 {
2158 	uint64_t pagetab;
2159 
2160 	mmu_parttab_init();
2161 	pagetab = RTS_SIZE | DMAP_TO_PHYS((vm_offset_t)kernel_pmap->pm_pml1) | \
2162 		         RADIX_PGD_INDEX_SHIFT | PARTTAB_HR;
2163 	mmu_parttab_update(0, pagetab, 0);
2164 }
2165 
2166 static void
2167 mmu_radix_proctab_register(vm_paddr_t proctabpa, uint64_t table_size)
2168 {
2169 	uint64_t pagetab, proctab;
2170 
2171 	pagetab = be64toh(isa3_parttab[0].pagetab);
2172 	proctab = proctabpa | table_size | PARTTAB_GR;
2173 	mmu_parttab_update(0, pagetab, proctab);
2174 }
2175 
2176 static void
2177 mmu_radix_proctab_init(void)
2178 {
2179 
2180 	isa3_base_pid = 1;
2181 
2182 	isa3_proctab = (void*)PHYS_TO_DMAP(proctab0pa);
2183 	isa3_proctab->proctab0 =
2184 	    htobe64(RTS_SIZE | DMAP_TO_PHYS((vm_offset_t)kernel_pmap->pm_pml1) |
2185 		RADIX_PGD_INDEX_SHIFT);
2186 
2187 	if (powernv_enabled) {
2188 		mmu_radix_proctab_register(proctab0pa, PROCTAB_SIZE_SHIFT - 12);
2189 		__asm __volatile("ptesync" : : : "memory");
2190 		__asm __volatile(PPC_TLBIE_5(%0,%1,2,1,1) : :
2191 			     "r" (TLBIEL_INVAL_SET_LPID), "r" (0));
2192 		__asm __volatile("eieio; tlbsync; ptesync" : : : "memory");
2193 #ifdef PSERIES
2194 	} else {
2195 		int64_t rc;
2196 
2197 		rc = phyp_hcall(H_REGISTER_PROC_TBL,
2198 		    PROC_TABLE_NEW | PROC_TABLE_RADIX | PROC_TABLE_GTSE,
2199 		    proctab0pa, 0, PROCTAB_SIZE_SHIFT - 12);
2200 		if (rc != H_SUCCESS)
2201 			panic("mmu_radix_proctab_init: "
2202 				"failed to register process table: rc=%jd",
2203 				(intmax_t)rc);
2204 #endif
2205 	}
2206 
2207 	if (bootverbose)
2208 		printf("process table %p and kernel radix PDE: %p\n",
2209 			   isa3_proctab, kernel_pmap->pm_pml1);
2210 	mtmsr(mfmsr() | PSL_DR );
2211 	mtmsr(mfmsr() &  ~PSL_DR);
2212 	kernel_pmap->pm_pid = isa3_base_pid;
2213 	isa3_base_pid++;
2214 }
2215 
2216 void
2217 mmu_radix_advise(pmap_t pmap, vm_offset_t sva, vm_offset_t eva,
2218     int advice)
2219 {
2220 	struct rwlock *lock;
2221 	pml1_entry_t *l1e;
2222 	pml2_entry_t *l2e;
2223 	pml3_entry_t oldl3e, *l3e;
2224 	pt_entry_t *pte;
2225 	vm_offset_t va, va_next;
2226 	vm_page_t m;
2227 	bool anychanged;
2228 
2229 	if (advice != MADV_DONTNEED && advice != MADV_FREE)
2230 		return;
2231 	anychanged = false;
2232 	PMAP_LOCK(pmap);
2233 	for (; sva < eva; sva = va_next) {
2234 		l1e = pmap_pml1e(pmap, sva);
2235 		if ((be64toh(*l1e) & PG_V) == 0) {
2236 			va_next = (sva + L1_PAGE_SIZE) & ~L1_PAGE_MASK;
2237 			if (va_next < sva)
2238 				va_next = eva;
2239 			continue;
2240 		}
2241 		l2e = pmap_l1e_to_l2e(l1e, sva);
2242 		if ((be64toh(*l2e) & PG_V) == 0) {
2243 			va_next = (sva + L2_PAGE_SIZE) & ~L2_PAGE_MASK;
2244 			if (va_next < sva)
2245 				va_next = eva;
2246 			continue;
2247 		}
2248 		va_next = (sva + L3_PAGE_SIZE) & ~L3_PAGE_MASK;
2249 		if (va_next < sva)
2250 			va_next = eva;
2251 		l3e = pmap_l2e_to_l3e(l2e, sva);
2252 		oldl3e = be64toh(*l3e);
2253 		if ((oldl3e & PG_V) == 0)
2254 			continue;
2255 		else if ((oldl3e & RPTE_LEAF) != 0) {
2256 			if ((oldl3e & PG_MANAGED) == 0)
2257 				continue;
2258 			lock = NULL;
2259 			if (!pmap_demote_l3e_locked(pmap, l3e, sva, &lock)) {
2260 				if (lock != NULL)
2261 					rw_wunlock(lock);
2262 
2263 				/*
2264 				 * The large page mapping was destroyed.
2265 				 */
2266 				continue;
2267 			}
2268 
2269 			/*
2270 			 * Unless the page mappings are wired, remove the
2271 			 * mapping to a single page so that a subsequent
2272 			 * access may repromote.  Choosing the last page
2273 			 * within the address range [sva, min(va_next, eva))
2274 			 * generally results in more repromotions.  Since the
2275 			 * underlying page table page is fully populated, this
2276 			 * removal never frees a page table page.
2277 			 */
2278 			if ((oldl3e & PG_W) == 0) {
2279 				va = eva;
2280 				if (va > va_next)
2281 					va = va_next;
2282 				va -= PAGE_SIZE;
2283 				KASSERT(va >= sva,
2284 				    ("mmu_radix_advise: no address gap"));
2285 				pte = pmap_l3e_to_pte(l3e, va);
2286 				KASSERT((be64toh(*pte) & PG_V) != 0,
2287 				    ("pmap_advise: invalid PTE"));
2288 				pmap_remove_pte(pmap, pte, va, be64toh(*l3e), NULL,
2289 				    &lock);
2290 				anychanged = true;
2291 			}
2292 			if (lock != NULL)
2293 				rw_wunlock(lock);
2294 		}
2295 		if (va_next > eva)
2296 			va_next = eva;
2297 		va = va_next;
2298 		for (pte = pmap_l3e_to_pte(l3e, sva); sva != va_next;
2299 			 pte++, sva += PAGE_SIZE) {
2300 			MPASS(pte == pmap_pte(pmap, sva));
2301 
2302 			if ((be64toh(*pte) & (PG_MANAGED | PG_V)) != (PG_MANAGED | PG_V))
2303 				goto maybe_invlrng;
2304 			else if ((be64toh(*pte) & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
2305 				if (advice == MADV_DONTNEED) {
2306 					/*
2307 					 * Future calls to pmap_is_modified()
2308 					 * can be avoided by making the page
2309 					 * dirty now.
2310 					 */
2311 					m = PHYS_TO_VM_PAGE(be64toh(*pte) & PG_FRAME);
2312 					vm_page_dirty(m);
2313 				}
2314 				atomic_clear_long(pte, htobe64(PG_M | PG_A));
2315 			} else if ((be64toh(*pte) & PG_A) != 0)
2316 				atomic_clear_long(pte, htobe64(PG_A));
2317 			else
2318 				goto maybe_invlrng;
2319 			anychanged = true;
2320 			continue;
2321 maybe_invlrng:
2322 			if (va != va_next) {
2323 				anychanged = true;
2324 				va = va_next;
2325 			}
2326 		}
2327 		if (va != va_next)
2328 			anychanged = true;
2329 	}
2330 	if (anychanged)
2331 		pmap_invalidate_all(pmap);
2332 	PMAP_UNLOCK(pmap);
2333 }
2334 
2335 /*
2336  * Routines used in machine-dependent code
2337  */
2338 static void
2339 mmu_radix_bootstrap(vm_offset_t start, vm_offset_t end)
2340 {
2341 	uint64_t lpcr;
2342 
2343 	if (bootverbose)
2344 		printf("%s\n", __func__);
2345 	hw_direct_map = 1;
2346 	powernv_enabled = (mfmsr() & PSL_HV) ? 1 : 0;
2347 	mmu_radix_early_bootstrap(start, end);
2348 	if (bootverbose)
2349 		printf("early bootstrap complete\n");
2350 	if (powernv_enabled) {
2351 		lpcr = mfspr(SPR_LPCR);
2352 		mtspr(SPR_LPCR, lpcr | LPCR_UPRT | LPCR_HR);
2353 		mmu_radix_parttab_init();
2354 		mmu_radix_init_amor();
2355 		if (bootverbose)
2356 			printf("powernv init complete\n");
2357 	}
2358 	mmu_radix_init_iamr();
2359 	mmu_radix_proctab_init();
2360 	mmu_radix_pid_set(kernel_pmap);
2361 	if (powernv_enabled)
2362 		mmu_radix_tlbiel_flush(TLB_INVAL_SCOPE_GLOBAL);
2363 	else
2364 		mmu_radix_tlbiel_flush(TLB_INVAL_SCOPE_LPID);
2365 
2366 	mmu_radix_late_bootstrap(start, end);
2367 	numa_mem_regions(&numa_pregions, &numa_pregions_sz);
2368 	if (bootverbose)
2369 		printf("%s done\n", __func__);
2370 	pmap_bootstrapped = 1;
2371 	dmaplimit = roundup2(powerpc_ptob(Maxmem), L2_PAGE_SIZE);
2372 	PCPU_SET(flags, PCPU_GET(flags) | PC_FLAG_NOSRS);
2373 }
2374 
2375 static void
2376 mmu_radix_cpu_bootstrap(int ap)
2377 {
2378 	uint64_t lpcr;
2379 	uint64_t ptcr;
2380 
2381 	if (powernv_enabled) {
2382 		lpcr = mfspr(SPR_LPCR);
2383 		mtspr(SPR_LPCR, lpcr | LPCR_UPRT | LPCR_HR);
2384 
2385 		ptcr = parttab_phys | (PARTTAB_SIZE_SHIFT-12);
2386 		mtspr(SPR_PTCR, ptcr);
2387 		mmu_radix_init_amor();
2388 	}
2389 	mmu_radix_init_iamr();
2390 	mmu_radix_pid_set(kernel_pmap);
2391 	if (powernv_enabled)
2392 		mmu_radix_tlbiel_flush(TLB_INVAL_SCOPE_GLOBAL);
2393 	else
2394 		mmu_radix_tlbiel_flush(TLB_INVAL_SCOPE_LPID);
2395 }
2396 
2397 static SYSCTL_NODE(_vm_pmap, OID_AUTO, l3e, CTLFLAG_RD, 0,
2398     "2MB page mapping counters");
2399 
2400 static COUNTER_U64_DEFINE_EARLY(pmap_l3e_demotions);
2401 SYSCTL_COUNTER_U64(_vm_pmap_l3e, OID_AUTO, demotions, CTLFLAG_RD,
2402     &pmap_l3e_demotions, "2MB page demotions");
2403 
2404 static COUNTER_U64_DEFINE_EARLY(pmap_l3e_mappings);
2405 SYSCTL_COUNTER_U64(_vm_pmap_l3e, OID_AUTO, mappings, CTLFLAG_RD,
2406     &pmap_l3e_mappings, "2MB page mappings");
2407 
2408 static COUNTER_U64_DEFINE_EARLY(pmap_l3e_p_failures);
2409 SYSCTL_COUNTER_U64(_vm_pmap_l3e, OID_AUTO, p_failures, CTLFLAG_RD,
2410     &pmap_l3e_p_failures, "2MB page promotion failures");
2411 
2412 static COUNTER_U64_DEFINE_EARLY(pmap_l3e_promotions);
2413 SYSCTL_COUNTER_U64(_vm_pmap_l3e, OID_AUTO, promotions, CTLFLAG_RD,
2414     &pmap_l3e_promotions, "2MB page promotions");
2415 
2416 static SYSCTL_NODE(_vm_pmap, OID_AUTO, l2e, CTLFLAG_RD, 0,
2417     "1GB page mapping counters");
2418 
2419 static COUNTER_U64_DEFINE_EARLY(pmap_l2e_demotions);
2420 SYSCTL_COUNTER_U64(_vm_pmap_l2e, OID_AUTO, demotions, CTLFLAG_RD,
2421     &pmap_l2e_demotions, "1GB page demotions");
2422 
2423 void
2424 mmu_radix_clear_modify(vm_page_t m)
2425 {
2426 	struct md_page *pvh;
2427 	pmap_t pmap;
2428 	pv_entry_t next_pv, pv;
2429 	pml3_entry_t oldl3e, *l3e;
2430 	pt_entry_t oldpte, *pte;
2431 	struct rwlock *lock;
2432 	vm_offset_t va;
2433 	int md_gen, pvh_gen;
2434 
2435 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2436 	    ("pmap_clear_modify: page %p is not managed", m));
2437 	vm_page_assert_busied(m);
2438 	CTR2(KTR_PMAP, "%s(%p)", __func__, m);
2439 
2440 	/*
2441 	 * If the page is not PGA_WRITEABLE, then no PTEs can have PG_M set.
2442 	 * If the object containing the page is locked and the page is not
2443 	 * exclusive busied, then PGA_WRITEABLE cannot be concurrently set.
2444 	 */
2445 	if ((m->a.flags & PGA_WRITEABLE) == 0)
2446 		return;
2447 	pvh = (m->flags & PG_FICTITIOUS) != 0 ? &pv_dummy :
2448 	    pa_to_pvh(VM_PAGE_TO_PHYS(m));
2449 	lock = VM_PAGE_TO_PV_LIST_LOCK(m);
2450 	rw_wlock(lock);
2451 restart:
2452 	TAILQ_FOREACH_SAFE(pv, &pvh->pv_list, pv_link, next_pv) {
2453 		pmap = PV_PMAP(pv);
2454 		if (!PMAP_TRYLOCK(pmap)) {
2455 			pvh_gen = pvh->pv_gen;
2456 			rw_wunlock(lock);
2457 			PMAP_LOCK(pmap);
2458 			rw_wlock(lock);
2459 			if (pvh_gen != pvh->pv_gen) {
2460 				PMAP_UNLOCK(pmap);
2461 				goto restart;
2462 			}
2463 		}
2464 		va = pv->pv_va;
2465 		l3e = pmap_pml3e(pmap, va);
2466 		oldl3e = be64toh(*l3e);
2467 		if ((oldl3e & PG_RW) != 0 &&
2468 		    pmap_demote_l3e_locked(pmap, l3e, va, &lock) &&
2469 		    (oldl3e & PG_W) == 0) {
2470 			/*
2471 			 * Write protect the mapping to a
2472 			 * single page so that a subsequent
2473 			 * write access may repromote.
2474 			 */
2475 			va += VM_PAGE_TO_PHYS(m) - (oldl3e &
2476 			    PG_PS_FRAME);
2477 			pte = pmap_l3e_to_pte(l3e, va);
2478 			oldpte = be64toh(*pte);
2479 			while (!atomic_cmpset_long(pte,
2480 			    htobe64(oldpte),
2481 				htobe64((oldpte | RPTE_EAA_R) & ~(PG_M | PG_RW))))
2482 				   oldpte = be64toh(*pte);
2483 			vm_page_dirty(m);
2484 			pmap_invalidate_page(pmap, va);
2485 		}
2486 		PMAP_UNLOCK(pmap);
2487 	}
2488 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2489 		pmap = PV_PMAP(pv);
2490 		if (!PMAP_TRYLOCK(pmap)) {
2491 			md_gen = m->md.pv_gen;
2492 			pvh_gen = pvh->pv_gen;
2493 			rw_wunlock(lock);
2494 			PMAP_LOCK(pmap);
2495 			rw_wlock(lock);
2496 			if (pvh_gen != pvh->pv_gen || md_gen != m->md.pv_gen) {
2497 				PMAP_UNLOCK(pmap);
2498 				goto restart;
2499 			}
2500 		}
2501 		l3e = pmap_pml3e(pmap, pv->pv_va);
2502 		KASSERT((be64toh(*l3e) & RPTE_LEAF) == 0, ("pmap_clear_modify: found"
2503 		    " a 2mpage in page %p's pv list", m));
2504 		pte = pmap_l3e_to_pte(l3e, pv->pv_va);
2505 		if ((be64toh(*pte) & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
2506 			atomic_clear_long(pte, htobe64(PG_M));
2507 			pmap_invalidate_page(pmap, pv->pv_va);
2508 		}
2509 		PMAP_UNLOCK(pmap);
2510 	}
2511 	rw_wunlock(lock);
2512 }
2513 
2514 void
2515 mmu_radix_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr,
2516     vm_size_t len, vm_offset_t src_addr)
2517 {
2518 	struct rwlock *lock;
2519 	struct spglist free;
2520 	vm_offset_t addr;
2521 	vm_offset_t end_addr = src_addr + len;
2522 	vm_offset_t va_next;
2523 	vm_page_t dst_pdpg, dstmpte, srcmpte;
2524 	bool invalidate_all;
2525 
2526 	CTR6(KTR_PMAP,
2527 	    "%s(dst_pmap=%p, src_pmap=%p, dst_addr=%lx, len=%lu, src_addr=%lx)\n",
2528 	    __func__, dst_pmap, src_pmap, dst_addr, len, src_addr);
2529 
2530 	if (dst_addr != src_addr)
2531 		return;
2532 	lock = NULL;
2533 	invalidate_all = false;
2534 	if (dst_pmap < src_pmap) {
2535 		PMAP_LOCK(dst_pmap);
2536 		PMAP_LOCK(src_pmap);
2537 	} else {
2538 		PMAP_LOCK(src_pmap);
2539 		PMAP_LOCK(dst_pmap);
2540 	}
2541 
2542 	for (addr = src_addr; addr < end_addr; addr = va_next) {
2543 		pml1_entry_t *l1e;
2544 		pml2_entry_t *l2e;
2545 		pml3_entry_t srcptepaddr, *l3e;
2546 		pt_entry_t *src_pte, *dst_pte;
2547 
2548 		l1e = pmap_pml1e(src_pmap, addr);
2549 		if ((be64toh(*l1e) & PG_V) == 0) {
2550 			va_next = (addr + L1_PAGE_SIZE) & ~L1_PAGE_MASK;
2551 			if (va_next < addr)
2552 				va_next = end_addr;
2553 			continue;
2554 		}
2555 
2556 		l2e = pmap_l1e_to_l2e(l1e, addr);
2557 		if ((be64toh(*l2e) & PG_V) == 0) {
2558 			va_next = (addr + L2_PAGE_SIZE) & ~L2_PAGE_MASK;
2559 			if (va_next < addr)
2560 				va_next = end_addr;
2561 			continue;
2562 		}
2563 
2564 		va_next = (addr + L3_PAGE_SIZE) & ~L3_PAGE_MASK;
2565 		if (va_next < addr)
2566 			va_next = end_addr;
2567 
2568 		l3e = pmap_l2e_to_l3e(l2e, addr);
2569 		srcptepaddr = be64toh(*l3e);
2570 		if (srcptepaddr == 0)
2571 			continue;
2572 
2573 		if (srcptepaddr & RPTE_LEAF) {
2574 			if ((addr & L3_PAGE_MASK) != 0 ||
2575 			    addr + L3_PAGE_SIZE > end_addr)
2576 				continue;
2577 			dst_pdpg = pmap_allocl3e(dst_pmap, addr, NULL);
2578 			if (dst_pdpg == NULL)
2579 				break;
2580 			l3e = (pml3_entry_t *)
2581 			    PHYS_TO_DMAP(VM_PAGE_TO_PHYS(dst_pdpg));
2582 			l3e = &l3e[pmap_pml3e_index(addr)];
2583 			if (be64toh(*l3e) == 0 && ((srcptepaddr & PG_MANAGED) == 0 ||
2584 			    pmap_pv_insert_l3e(dst_pmap, addr, srcptepaddr,
2585 			    PMAP_ENTER_NORECLAIM, &lock))) {
2586 				*l3e = htobe64(srcptepaddr & ~PG_W);
2587 				pmap_resident_count_inc(dst_pmap,
2588 				    L3_PAGE_SIZE / PAGE_SIZE);
2589 				counter_u64_add(pmap_l3e_mappings, 1);
2590 			} else
2591 				dst_pdpg->ref_count--;
2592 			continue;
2593 		}
2594 
2595 		srcptepaddr &= PG_FRAME;
2596 		srcmpte = PHYS_TO_VM_PAGE(srcptepaddr);
2597 		KASSERT(srcmpte->ref_count > 0,
2598 		    ("pmap_copy: source page table page is unused"));
2599 
2600 		if (va_next > end_addr)
2601 			va_next = end_addr;
2602 
2603 		src_pte = (pt_entry_t *)PHYS_TO_DMAP(srcptepaddr);
2604 		src_pte = &src_pte[pmap_pte_index(addr)];
2605 		dstmpte = NULL;
2606 		while (addr < va_next) {
2607 			pt_entry_t ptetemp;
2608 			ptetemp = be64toh(*src_pte);
2609 			/*
2610 			 * we only virtual copy managed pages
2611 			 */
2612 			if ((ptetemp & PG_MANAGED) != 0) {
2613 				if (dstmpte != NULL &&
2614 				    dstmpte->pindex == pmap_l3e_pindex(addr))
2615 					dstmpte->ref_count++;
2616 				else if ((dstmpte = pmap_allocpte(dst_pmap,
2617 				    addr, NULL)) == NULL)
2618 					goto out;
2619 				dst_pte = (pt_entry_t *)
2620 				    PHYS_TO_DMAP(VM_PAGE_TO_PHYS(dstmpte));
2621 				dst_pte = &dst_pte[pmap_pte_index(addr)];
2622 				if (be64toh(*dst_pte) == 0 &&
2623 				    pmap_try_insert_pv_entry(dst_pmap, addr,
2624 				    PHYS_TO_VM_PAGE(ptetemp & PG_FRAME),
2625 				    &lock)) {
2626 					/*
2627 					 * Clear the wired, modified, and
2628 					 * accessed (referenced) bits
2629 					 * during the copy.
2630 					 */
2631 					*dst_pte = htobe64(ptetemp & ~(PG_W | PG_M |
2632 					    PG_A));
2633 					pmap_resident_count_inc(dst_pmap, 1);
2634 				} else {
2635 					SLIST_INIT(&free);
2636 					if (pmap_unwire_ptp(dst_pmap, addr,
2637 					    dstmpte, &free)) {
2638 						/*
2639 						 * Although "addr" is not
2640 						 * mapped, paging-structure
2641 						 * caches could nonetheless
2642 						 * have entries that refer to
2643 						 * the freed page table pages.
2644 						 * Invalidate those entries.
2645 						 */
2646 						invalidate_all = true;
2647 						vm_page_free_pages_toq(&free,
2648 						    true);
2649 					}
2650 					goto out;
2651 				}
2652 				if (dstmpte->ref_count >= srcmpte->ref_count)
2653 					break;
2654 			}
2655 			addr += PAGE_SIZE;
2656 			if (__predict_false((addr & L3_PAGE_MASK) == 0))
2657 				src_pte = pmap_pte(src_pmap, addr);
2658 			else
2659 				src_pte++;
2660 		}
2661 	}
2662 out:
2663 	if (invalidate_all)
2664 		pmap_invalidate_all(dst_pmap);
2665 	if (lock != NULL)
2666 		rw_wunlock(lock);
2667 	PMAP_UNLOCK(src_pmap);
2668 	PMAP_UNLOCK(dst_pmap);
2669 }
2670 
2671 static void
2672 mmu_radix_copy_page(vm_page_t msrc, vm_page_t mdst)
2673 {
2674 	vm_offset_t src = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(msrc));
2675 	vm_offset_t dst = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(mdst));
2676 
2677 	CTR3(KTR_PMAP, "%s(%p, %p)", __func__, src, dst);
2678 	/*
2679 	 * XXX slow
2680 	 */
2681 	bcopy((void *)src, (void *)dst, PAGE_SIZE);
2682 }
2683 
2684 static void
2685 mmu_radix_copy_pages(vm_page_t ma[], vm_offset_t a_offset, vm_page_t mb[],
2686     vm_offset_t b_offset, int xfersize)
2687 {
2688         void *a_cp, *b_cp;
2689         vm_offset_t a_pg_offset, b_pg_offset;
2690         int cnt;
2691 
2692 	CTR6(KTR_PMAP, "%s(%p, %#x, %p, %#x, %#x)", __func__, ma,
2693 	    a_offset, mb, b_offset, xfersize);
2694 
2695         while (xfersize > 0) {
2696                 a_pg_offset = a_offset & PAGE_MASK;
2697                 cnt = min(xfersize, PAGE_SIZE - a_pg_offset);
2698                 a_cp = (char *)(uintptr_t)PHYS_TO_DMAP(
2699                     VM_PAGE_TO_PHYS(ma[a_offset >> PAGE_SHIFT])) +
2700                     a_pg_offset;
2701                 b_pg_offset = b_offset & PAGE_MASK;
2702                 cnt = min(cnt, PAGE_SIZE - b_pg_offset);
2703                 b_cp = (char *)(uintptr_t)PHYS_TO_DMAP(
2704                     VM_PAGE_TO_PHYS(mb[b_offset >> PAGE_SHIFT])) +
2705                     b_pg_offset;
2706                 bcopy(a_cp, b_cp, cnt);
2707                 a_offset += cnt;
2708                 b_offset += cnt;
2709                 xfersize -= cnt;
2710         }
2711 }
2712 
2713 #if VM_NRESERVLEVEL > 0
2714 /*
2715  * Tries to promote the 512, contiguous 4KB page mappings that are within a
2716  * single page table page (PTP) to a single 2MB page mapping.  For promotion
2717  * to occur, two conditions must be met: (1) the 4KB page mappings must map
2718  * aligned, contiguous physical memory and (2) the 4KB page mappings must have
2719  * identical characteristics.
2720  */
2721 static int
2722 pmap_promote_l3e(pmap_t pmap, pml3_entry_t *pde, vm_offset_t va,
2723     struct rwlock **lockp)
2724 {
2725 	pml3_entry_t newpde;
2726 	pt_entry_t *firstpte, oldpte, pa, *pte;
2727 	vm_page_t mpte;
2728 
2729 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2730 
2731 	/*
2732 	 * Examine the first PTE in the specified PTP.  Abort if this PTE is
2733 	 * either invalid, unused, or does not map the first 4KB physical page
2734 	 * within a 2MB page.
2735 	 */
2736 	firstpte = (pt_entry_t *)PHYS_TO_DMAP(be64toh(*pde) & PG_FRAME);
2737 setpde:
2738 	newpde = be64toh(*firstpte);
2739 	if ((newpde & ((PG_FRAME & L3_PAGE_MASK) | PG_A | PG_V)) != (PG_A | PG_V)) {
2740 		CTR2(KTR_PMAP, "pmap_promote_l3e: failure for va %#lx"
2741 		    " in pmap %p", va, pmap);
2742 		goto fail;
2743 	}
2744 	if ((newpde & (PG_M | PG_RW)) == PG_RW) {
2745 		/*
2746 		 * When PG_M is already clear, PG_RW can be cleared without
2747 		 * a TLB invalidation.
2748 		 */
2749 		if (!atomic_cmpset_long(firstpte, htobe64(newpde), htobe64((newpde | RPTE_EAA_R) & ~RPTE_EAA_W)))
2750 			goto setpde;
2751 		newpde &= ~RPTE_EAA_W;
2752 	}
2753 
2754 	/*
2755 	 * Examine each of the other PTEs in the specified PTP.  Abort if this
2756 	 * PTE maps an unexpected 4KB physical page or does not have identical
2757 	 * characteristics to the first PTE.
2758 	 */
2759 	pa = (newpde & (PG_PS_FRAME | PG_A | PG_V)) + L3_PAGE_SIZE - PAGE_SIZE;
2760 	for (pte = firstpte + NPTEPG - 1; pte > firstpte; pte--) {
2761 setpte:
2762 		oldpte = be64toh(*pte);
2763 		if ((oldpte & (PG_FRAME | PG_A | PG_V)) != pa) {
2764 			CTR2(KTR_PMAP, "pmap_promote_l3e: failure for va %#lx"
2765 			    " in pmap %p", va, pmap);
2766 			goto fail;
2767 		}
2768 		if ((oldpte & (PG_M | PG_RW)) == PG_RW) {
2769 			/*
2770 			 * When PG_M is already clear, PG_RW can be cleared
2771 			 * without a TLB invalidation.
2772 			 */
2773 			if (!atomic_cmpset_long(pte, htobe64(oldpte), htobe64((oldpte | RPTE_EAA_R) & ~RPTE_EAA_W)))
2774 				goto setpte;
2775 			oldpte &= ~RPTE_EAA_W;
2776 			CTR2(KTR_PMAP, "pmap_promote_l3e: protect for va %#lx"
2777 			    " in pmap %p", (oldpte & PG_FRAME & L3_PAGE_MASK) |
2778 			    (va & ~L3_PAGE_MASK), pmap);
2779 		}
2780 		if ((oldpte & PG_PTE_PROMOTE) != (newpde & PG_PTE_PROMOTE)) {
2781 			CTR2(KTR_PMAP, "pmap_promote_l3e: failure for va %#lx"
2782 			    " in pmap %p", va, pmap);
2783 			goto fail;
2784 		}
2785 		pa -= PAGE_SIZE;
2786 	}
2787 
2788 	/*
2789 	 * Save the page table page in its current state until the PDE
2790 	 * mapping the superpage is demoted by pmap_demote_pde() or
2791 	 * destroyed by pmap_remove_pde().
2792 	 */
2793 	mpte = PHYS_TO_VM_PAGE(be64toh(*pde) & PG_FRAME);
2794 	KASSERT(mpte >= vm_page_array &&
2795 	    mpte < &vm_page_array[vm_page_array_size],
2796 	    ("pmap_promote_l3e: page table page is out of range"));
2797 	KASSERT(mpte->pindex == pmap_l3e_pindex(va),
2798 	    ("pmap_promote_l3e: page table page's pindex is wrong"));
2799 	if (pmap_insert_pt_page(pmap, mpte)) {
2800 		CTR2(KTR_PMAP,
2801 		    "pmap_promote_l3e: failure for va %#lx in pmap %p", va,
2802 		    pmap);
2803 		goto fail;
2804 	}
2805 
2806 	/*
2807 	 * Promote the pv entries.
2808 	 */
2809 	if ((newpde & PG_MANAGED) != 0)
2810 		pmap_pv_promote_l3e(pmap, va, newpde & PG_PS_FRAME, lockp);
2811 
2812 	pte_store(pde, PG_PROMOTED | newpde);
2813 	ptesync();
2814 	counter_u64_add(pmap_l3e_promotions, 1);
2815 	CTR2(KTR_PMAP, "pmap_promote_l3e: success for va %#lx"
2816 	    " in pmap %p", va, pmap);
2817 	return (0);
2818  fail:
2819 	counter_u64_add(pmap_l3e_p_failures, 1);
2820 	return (KERN_FAILURE);
2821 }
2822 #endif /* VM_NRESERVLEVEL > 0 */
2823 
2824 int
2825 mmu_radix_enter(pmap_t pmap, vm_offset_t va, vm_page_t m,
2826     vm_prot_t prot, u_int flags, int8_t psind)
2827 {
2828 	struct rwlock *lock;
2829 	pml3_entry_t *l3e;
2830 	pt_entry_t *pte;
2831 	pt_entry_t newpte, origpte;
2832 	pv_entry_t pv;
2833 	vm_paddr_t opa, pa;
2834 	vm_page_t mpte, om;
2835 	int rv, retrycount;
2836 	boolean_t nosleep, invalidate_all, invalidate_page;
2837 
2838 	va = trunc_page(va);
2839 	retrycount = 0;
2840 	invalidate_page = invalidate_all = false;
2841 	CTR6(KTR_PMAP, "pmap_enter(%p, %#lx, %p, %#x, %#x, %d)", pmap, va,
2842 	    m, prot, flags, psind);
2843 	KASSERT(va <= VM_MAX_KERNEL_ADDRESS, ("pmap_enter: toobig"));
2844 	KASSERT((m->oflags & VPO_UNMANAGED) != 0 || !VA_IS_CLEANMAP(va),
2845 	    ("pmap_enter: managed mapping within the clean submap"));
2846 	if ((m->oflags & VPO_UNMANAGED) == 0)
2847 		VM_PAGE_OBJECT_BUSY_ASSERT(m);
2848 
2849 	KASSERT((flags & PMAP_ENTER_RESERVED) == 0,
2850 	    ("pmap_enter: flags %u has reserved bits set", flags));
2851 	pa = VM_PAGE_TO_PHYS(m);
2852 	newpte = (pt_entry_t)(pa | PG_A | PG_V | RPTE_LEAF);
2853 	if ((flags & VM_PROT_WRITE) != 0)
2854 		newpte |= PG_M;
2855 	if ((flags & VM_PROT_READ) != 0)
2856 		newpte |= PG_A;
2857 	if (prot & VM_PROT_READ)
2858 		newpte |= RPTE_EAA_R;
2859 	if ((prot & VM_PROT_WRITE) != 0)
2860 		newpte |= RPTE_EAA_W;
2861 	KASSERT((newpte & (PG_M | PG_RW)) != PG_M,
2862 	    ("pmap_enter: flags includes VM_PROT_WRITE but prot doesn't"));
2863 
2864 	if (prot & VM_PROT_EXECUTE)
2865 		newpte |= PG_X;
2866 	if ((flags & PMAP_ENTER_WIRED) != 0)
2867 		newpte |= PG_W;
2868 	if (va >= DMAP_MIN_ADDRESS)
2869 		newpte |= RPTE_EAA_P;
2870 	newpte |= pmap_cache_bits(m->md.mdpg_cache_attrs);
2871 	/*
2872 	 * Set modified bit gratuitously for writeable mappings if
2873 	 * the page is unmanaged. We do not want to take a fault
2874 	 * to do the dirty bit accounting for these mappings.
2875 	 */
2876 	if ((m->oflags & VPO_UNMANAGED) != 0) {
2877 		if ((newpte & PG_RW) != 0)
2878 			newpte |= PG_M;
2879 	} else
2880 		newpte |= PG_MANAGED;
2881 
2882 	lock = NULL;
2883 	PMAP_LOCK(pmap);
2884 	if (psind == 1) {
2885 		/* Assert the required virtual and physical alignment. */
2886 		KASSERT((va & L3_PAGE_MASK) == 0, ("pmap_enter: va unaligned"));
2887 		KASSERT(m->psind > 0, ("pmap_enter: m->psind < psind"));
2888 		rv = pmap_enter_l3e(pmap, va, newpte | RPTE_LEAF, flags, m, &lock);
2889 		goto out;
2890 	}
2891 	mpte = NULL;
2892 
2893 	/*
2894 	 * In the case that a page table page is not
2895 	 * resident, we are creating it here.
2896 	 */
2897 retry:
2898 	l3e = pmap_pml3e(pmap, va);
2899 	if (l3e != NULL && (be64toh(*l3e) & PG_V) != 0 && ((be64toh(*l3e) & RPTE_LEAF) == 0 ||
2900 	    pmap_demote_l3e_locked(pmap, l3e, va, &lock))) {
2901 		pte = pmap_l3e_to_pte(l3e, va);
2902 		if (va < VM_MAXUSER_ADDRESS && mpte == NULL) {
2903 			mpte = PHYS_TO_VM_PAGE(be64toh(*l3e) & PG_FRAME);
2904 			mpte->ref_count++;
2905 		}
2906 	} else if (va < VM_MAXUSER_ADDRESS) {
2907 		/*
2908 		 * Here if the pte page isn't mapped, or if it has been
2909 		 * deallocated.
2910 		 */
2911 		nosleep = (flags & PMAP_ENTER_NOSLEEP) != 0;
2912 		mpte = _pmap_allocpte(pmap, pmap_l3e_pindex(va),
2913 		    nosleep ? NULL : &lock);
2914 		if (mpte == NULL && nosleep) {
2915 			rv = KERN_RESOURCE_SHORTAGE;
2916 			goto out;
2917 		}
2918 		if (__predict_false(retrycount++ == 6))
2919 			panic("too many retries");
2920 		invalidate_all = true;
2921 		goto retry;
2922 	} else
2923 		panic("pmap_enter: invalid page directory va=%#lx", va);
2924 
2925 	origpte = be64toh(*pte);
2926 	pv = NULL;
2927 
2928 	/*
2929 	 * Is the specified virtual address already mapped?
2930 	 */
2931 	if ((origpte & PG_V) != 0) {
2932 #ifdef INVARIANTS
2933 		if (VERBOSE_PMAP || pmap_logging) {
2934 			printf("cow fault pmap_enter(%p, %#lx, %p, %#x, %x, %d) --"
2935 			    " asid=%lu curpid=%d name=%s origpte0x%lx\n",
2936 			    pmap, va, m, prot, flags, psind, pmap->pm_pid,
2937 			    curproc->p_pid, curproc->p_comm, origpte);
2938 #ifdef DDB
2939 			pmap_pte_walk(pmap->pm_pml1, va);
2940 #endif
2941 		}
2942 #endif
2943 		/*
2944 		 * Wiring change, just update stats. We don't worry about
2945 		 * wiring PT pages as they remain resident as long as there
2946 		 * are valid mappings in them. Hence, if a user page is wired,
2947 		 * the PT page will be also.
2948 		 */
2949 		if ((newpte & PG_W) != 0 && (origpte & PG_W) == 0)
2950 			pmap->pm_stats.wired_count++;
2951 		else if ((newpte & PG_W) == 0 && (origpte & PG_W) != 0)
2952 			pmap->pm_stats.wired_count--;
2953 
2954 		/*
2955 		 * Remove the extra PT page reference.
2956 		 */
2957 		if (mpte != NULL) {
2958 			mpte->ref_count--;
2959 			KASSERT(mpte->ref_count > 0,
2960 			    ("pmap_enter: missing reference to page table page,"
2961 			     " va: 0x%lx", va));
2962 		}
2963 
2964 		/*
2965 		 * Has the physical page changed?
2966 		 */
2967 		opa = origpte & PG_FRAME;
2968 		if (opa == pa) {
2969 			/*
2970 			 * No, might be a protection or wiring change.
2971 			 */
2972 			if ((origpte & PG_MANAGED) != 0 &&
2973 			    (newpte & PG_RW) != 0)
2974 				vm_page_aflag_set(m, PGA_WRITEABLE);
2975 			if (((origpte ^ newpte) & ~(PG_M | PG_A)) == 0) {
2976 				if ((newpte & (PG_A|PG_M)) != (origpte & (PG_A|PG_M))) {
2977 					if (!atomic_cmpset_long(pte, htobe64(origpte), htobe64(newpte)))
2978 						goto retry;
2979 					if ((newpte & PG_M) != (origpte & PG_M))
2980 						vm_page_dirty(m);
2981 					if ((newpte & PG_A) != (origpte & PG_A))
2982 						vm_page_aflag_set(m, PGA_REFERENCED);
2983 					ptesync();
2984 				} else
2985 					invalidate_all = true;
2986 				if (((origpte ^ newpte) & ~(PG_M | PG_A)) == 0)
2987 					goto unchanged;
2988 			}
2989 			goto validate;
2990 		}
2991 
2992 		/*
2993 		 * The physical page has changed.  Temporarily invalidate
2994 		 * the mapping.  This ensures that all threads sharing the
2995 		 * pmap keep a consistent view of the mapping, which is
2996 		 * necessary for the correct handling of COW faults.  It
2997 		 * also permits reuse of the old mapping's PV entry,
2998 		 * avoiding an allocation.
2999 		 *
3000 		 * For consistency, handle unmanaged mappings the same way.
3001 		 */
3002 		origpte = be64toh(pte_load_clear(pte));
3003 		KASSERT((origpte & PG_FRAME) == opa,
3004 		    ("pmap_enter: unexpected pa update for %#lx", va));
3005 		if ((origpte & PG_MANAGED) != 0) {
3006 			om = PHYS_TO_VM_PAGE(opa);
3007 
3008 			/*
3009 			 * The pmap lock is sufficient to synchronize with
3010 			 * concurrent calls to pmap_page_test_mappings() and
3011 			 * pmap_ts_referenced().
3012 			 */
3013 			if ((origpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
3014 				vm_page_dirty(om);
3015 			if ((origpte & PG_A) != 0)
3016 				vm_page_aflag_set(om, PGA_REFERENCED);
3017 			CHANGE_PV_LIST_LOCK_TO_PHYS(&lock, opa);
3018 			pv = pmap_pvh_remove(&om->md, pmap, va);
3019 			if ((newpte & PG_MANAGED) == 0)
3020 				free_pv_entry(pmap, pv);
3021 #ifdef INVARIANTS
3022 			else if (origpte & PG_MANAGED) {
3023 				if (pv == NULL) {
3024 #ifdef DDB
3025 					pmap_page_print_mappings(om);
3026 #endif
3027 					MPASS(pv != NULL);
3028 				}
3029 			}
3030 #endif
3031 			if ((om->a.flags & PGA_WRITEABLE) != 0 &&
3032 			    TAILQ_EMPTY(&om->md.pv_list) &&
3033 			    ((om->flags & PG_FICTITIOUS) != 0 ||
3034 			    TAILQ_EMPTY(&pa_to_pvh(opa)->pv_list)))
3035 				vm_page_aflag_clear(om, PGA_WRITEABLE);
3036 		}
3037 		if ((origpte & PG_A) != 0)
3038 			invalidate_page = true;
3039 		origpte = 0;
3040 	} else {
3041 		if (pmap != kernel_pmap) {
3042 #ifdef INVARIANTS
3043 			if (VERBOSE_PMAP || pmap_logging)
3044 				printf("pmap_enter(%p, %#lx, %p, %#x, %x, %d) -- asid=%lu curpid=%d name=%s\n",
3045 				    pmap, va, m, prot, flags, psind,
3046 				    pmap->pm_pid, curproc->p_pid,
3047 				    curproc->p_comm);
3048 #endif
3049 		}
3050 
3051 		/*
3052 		 * Increment the counters.
3053 		 */
3054 		if ((newpte & PG_W) != 0)
3055 			pmap->pm_stats.wired_count++;
3056 		pmap_resident_count_inc(pmap, 1);
3057 	}
3058 
3059 	/*
3060 	 * Enter on the PV list if part of our managed memory.
3061 	 */
3062 	if ((newpte & PG_MANAGED) != 0) {
3063 		if (pv == NULL) {
3064 			pv = get_pv_entry(pmap, &lock);
3065 			pv->pv_va = va;
3066 		}
3067 #ifdef VERBOSE_PV
3068 		else
3069 			printf("reassigning pv: %p to pmap: %p\n",
3070 				   pv, pmap);
3071 #endif
3072 		CHANGE_PV_LIST_LOCK_TO_PHYS(&lock, pa);
3073 		TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_link);
3074 		m->md.pv_gen++;
3075 		if ((newpte & PG_RW) != 0)
3076 			vm_page_aflag_set(m, PGA_WRITEABLE);
3077 	}
3078 
3079 	/*
3080 	 * Update the PTE.
3081 	 */
3082 	if ((origpte & PG_V) != 0) {
3083 validate:
3084 		origpte = be64toh(pte_load_store(pte, htobe64(newpte)));
3085 		KASSERT((origpte & PG_FRAME) == pa,
3086 		    ("pmap_enter: unexpected pa update for %#lx", va));
3087 		if ((newpte & PG_M) == 0 && (origpte & (PG_M | PG_RW)) ==
3088 		    (PG_M | PG_RW)) {
3089 			if ((origpte & PG_MANAGED) != 0)
3090 				vm_page_dirty(m);
3091 			invalidate_page = true;
3092 
3093 			/*
3094 			 * Although the PTE may still have PG_RW set, TLB
3095 			 * invalidation may nonetheless be required because
3096 			 * the PTE no longer has PG_M set.
3097 			 */
3098 		} else if ((origpte & PG_X) != 0 || (newpte & PG_X) == 0) {
3099 			/*
3100 			 * Removing capabilities requires invalidation on POWER
3101 			 */
3102 			invalidate_page = true;
3103 			goto unchanged;
3104 		}
3105 		if ((origpte & PG_A) != 0)
3106 			invalidate_page = true;
3107 	} else {
3108 		pte_store(pte, newpte);
3109 		ptesync();
3110 	}
3111 unchanged:
3112 
3113 #if VM_NRESERVLEVEL > 0
3114 	/*
3115 	 * If both the page table page and the reservation are fully
3116 	 * populated, then attempt promotion.
3117 	 */
3118 	if ((mpte == NULL || mpte->ref_count == NPTEPG) &&
3119 	    mmu_radix_ps_enabled(pmap) &&
3120 	    (m->flags & PG_FICTITIOUS) == 0 &&
3121 	    vm_reserv_level_iffullpop(m) == 0 &&
3122 		pmap_promote_l3e(pmap, l3e, va, &lock) == 0)
3123 		invalidate_all = true;
3124 #endif
3125 	if (invalidate_all)
3126 		pmap_invalidate_all(pmap);
3127 	else if (invalidate_page)
3128 		pmap_invalidate_page(pmap, va);
3129 
3130 	rv = KERN_SUCCESS;
3131 out:
3132 	if (lock != NULL)
3133 		rw_wunlock(lock);
3134 	PMAP_UNLOCK(pmap);
3135 
3136 	return (rv);
3137 }
3138 
3139 /*
3140  * Tries to create a read- and/or execute-only 2MB page mapping.  Returns true
3141  * if successful.  Returns false if (1) a page table page cannot be allocated
3142  * without sleeping, (2) a mapping already exists at the specified virtual
3143  * address, or (3) a PV entry cannot be allocated without reclaiming another
3144  * PV entry.
3145  */
3146 static bool
3147 pmap_enter_2mpage(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
3148     struct rwlock **lockp)
3149 {
3150 	pml3_entry_t newpde;
3151 
3152 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3153 	newpde = VM_PAGE_TO_PHYS(m) | pmap_cache_bits(m->md.mdpg_cache_attrs) |
3154 	    RPTE_LEAF | PG_V;
3155 	if ((m->oflags & VPO_UNMANAGED) == 0)
3156 		newpde |= PG_MANAGED;
3157 	if (prot & VM_PROT_EXECUTE)
3158 		newpde |= PG_X;
3159 	if (prot & VM_PROT_READ)
3160 		newpde |= RPTE_EAA_R;
3161 	if (va >= DMAP_MIN_ADDRESS)
3162 		newpde |= RPTE_EAA_P;
3163 	return (pmap_enter_l3e(pmap, va, newpde, PMAP_ENTER_NOSLEEP |
3164 	    PMAP_ENTER_NOREPLACE | PMAP_ENTER_NORECLAIM, NULL, lockp) ==
3165 	    KERN_SUCCESS);
3166 }
3167 
3168 /*
3169  * Tries to create the specified 2MB page mapping.  Returns KERN_SUCCESS if
3170  * the mapping was created, and either KERN_FAILURE or KERN_RESOURCE_SHORTAGE
3171  * otherwise.  Returns KERN_FAILURE if PMAP_ENTER_NOREPLACE was specified and
3172  * a mapping already exists at the specified virtual address.  Returns
3173  * KERN_RESOURCE_SHORTAGE if PMAP_ENTER_NOSLEEP was specified and a page table
3174  * page allocation failed.  Returns KERN_RESOURCE_SHORTAGE if
3175  * PMAP_ENTER_NORECLAIM was specified and a PV entry allocation failed.
3176  *
3177  * The parameter "m" is only used when creating a managed, writeable mapping.
3178  */
3179 static int
3180 pmap_enter_l3e(pmap_t pmap, vm_offset_t va, pml3_entry_t newpde, u_int flags,
3181     vm_page_t m, struct rwlock **lockp)
3182 {
3183 	struct spglist free;
3184 	pml3_entry_t oldl3e, *l3e;
3185 	vm_page_t mt, pdpg;
3186 
3187 	KASSERT((newpde & (PG_M | PG_RW)) != PG_RW,
3188 	    ("pmap_enter_pde: newpde is missing PG_M"));
3189 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3190 
3191 	if ((pdpg = pmap_allocl3e(pmap, va, (flags & PMAP_ENTER_NOSLEEP) != 0 ?
3192 	    NULL : lockp)) == NULL) {
3193 		CTR2(KTR_PMAP, "pmap_enter_pde: failure for va %#lx"
3194 		    " in pmap %p", va, pmap);
3195 		return (KERN_RESOURCE_SHORTAGE);
3196 	}
3197 	l3e = (pml3_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pdpg));
3198 	l3e = &l3e[pmap_pml3e_index(va)];
3199 	oldl3e = be64toh(*l3e);
3200 	if ((oldl3e & PG_V) != 0) {
3201 		KASSERT(pdpg->ref_count > 1,
3202 		    ("pmap_enter_pde: pdpg's wire count is too low"));
3203 		if ((flags & PMAP_ENTER_NOREPLACE) != 0) {
3204 			pdpg->ref_count--;
3205 			CTR2(KTR_PMAP, "pmap_enter_pde: failure for va %#lx"
3206 			    " in pmap %p", va, pmap);
3207 			return (KERN_FAILURE);
3208 		}
3209 		/* Break the existing mapping(s). */
3210 		SLIST_INIT(&free);
3211 		if ((oldl3e & RPTE_LEAF) != 0) {
3212 			/*
3213 			 * The reference to the PD page that was acquired by
3214 			 * pmap_allocl3e() ensures that it won't be freed.
3215 			 * However, if the PDE resulted from a promotion, then
3216 			 * a reserved PT page could be freed.
3217 			 */
3218 			(void)pmap_remove_l3e(pmap, l3e, va, &free, lockp);
3219 			pmap_invalidate_l3e_page(pmap, va, oldl3e);
3220 		} else {
3221 			if (pmap_remove_ptes(pmap, va, va + L3_PAGE_SIZE, l3e,
3222 			    &free, lockp))
3223 		               pmap_invalidate_all(pmap);
3224 		}
3225 		vm_page_free_pages_toq(&free, true);
3226 		if (va >= VM_MAXUSER_ADDRESS) {
3227 			mt = PHYS_TO_VM_PAGE(be64toh(*l3e) & PG_FRAME);
3228 			if (pmap_insert_pt_page(pmap, mt)) {
3229 				/*
3230 				 * XXX Currently, this can't happen because
3231 				 * we do not perform pmap_enter(psind == 1)
3232 				 * on the kernel pmap.
3233 				 */
3234 				panic("pmap_enter_pde: trie insert failed");
3235 			}
3236 		} else
3237 			KASSERT(be64toh(*l3e) == 0, ("pmap_enter_pde: non-zero pde %p",
3238 			    l3e));
3239 	}
3240 	if ((newpde & PG_MANAGED) != 0) {
3241 		/*
3242 		 * Abort this mapping if its PV entry could not be created.
3243 		 */
3244 		if (!pmap_pv_insert_l3e(pmap, va, newpde, flags, lockp)) {
3245 			SLIST_INIT(&free);
3246 			if (pmap_unwire_ptp(pmap, va, pdpg, &free)) {
3247 				/*
3248 				 * Although "va" is not mapped, paging-
3249 				 * structure caches could nonetheless have
3250 				 * entries that refer to the freed page table
3251 				 * pages.  Invalidate those entries.
3252 				 */
3253 				pmap_invalidate_page(pmap, va);
3254 				vm_page_free_pages_toq(&free, true);
3255 			}
3256 			CTR2(KTR_PMAP, "pmap_enter_pde: failure for va %#lx"
3257 			    " in pmap %p", va, pmap);
3258 			return (KERN_RESOURCE_SHORTAGE);
3259 		}
3260 		if ((newpde & PG_RW) != 0) {
3261 			for (mt = m; mt < &m[L3_PAGE_SIZE / PAGE_SIZE]; mt++)
3262 				vm_page_aflag_set(mt, PGA_WRITEABLE);
3263 		}
3264 	}
3265 
3266 	/*
3267 	 * Increment counters.
3268 	 */
3269 	if ((newpde & PG_W) != 0)
3270 		pmap->pm_stats.wired_count += L3_PAGE_SIZE / PAGE_SIZE;
3271 	pmap_resident_count_inc(pmap, L3_PAGE_SIZE / PAGE_SIZE);
3272 
3273 	/*
3274 	 * Map the superpage.  (This is not a promoted mapping; there will not
3275 	 * be any lingering 4KB page mappings in the TLB.)
3276 	 */
3277 	pte_store(l3e, newpde);
3278 	ptesync();
3279 
3280 	counter_u64_add(pmap_l3e_mappings, 1);
3281 	CTR2(KTR_PMAP, "pmap_enter_pde: success for va %#lx"
3282 	    " in pmap %p", va, pmap);
3283 	return (KERN_SUCCESS);
3284 }
3285 
3286 void
3287 mmu_radix_enter_object(pmap_t pmap, vm_offset_t start,
3288     vm_offset_t end, vm_page_t m_start, vm_prot_t prot)
3289 {
3290 
3291 	struct rwlock *lock;
3292 	vm_offset_t va;
3293 	vm_page_t m, mpte;
3294 	vm_pindex_t diff, psize;
3295 	bool invalidate;
3296 	VM_OBJECT_ASSERT_LOCKED(m_start->object);
3297 
3298 	CTR6(KTR_PMAP, "%s(%p, %#x, %#x, %p, %#x)", __func__, pmap, start,
3299 	    end, m_start, prot);
3300 
3301 	invalidate = false;
3302 	psize = atop(end - start);
3303 	mpte = NULL;
3304 	m = m_start;
3305 	lock = NULL;
3306 	PMAP_LOCK(pmap);
3307 	while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
3308 		va = start + ptoa(diff);
3309 		if ((va & L3_PAGE_MASK) == 0 && va + L3_PAGE_SIZE <= end &&
3310 		    m->psind == 1 && mmu_radix_ps_enabled(pmap) &&
3311 		    pmap_enter_2mpage(pmap, va, m, prot, &lock))
3312 			m = &m[L3_PAGE_SIZE / PAGE_SIZE - 1];
3313 		else
3314 			mpte = mmu_radix_enter_quick_locked(pmap, va, m, prot,
3315 			    mpte, &lock, &invalidate);
3316 		m = TAILQ_NEXT(m, listq);
3317 	}
3318 	ptesync();
3319 	if (lock != NULL)
3320 		rw_wunlock(lock);
3321 	if (invalidate)
3322 		pmap_invalidate_all(pmap);
3323 	PMAP_UNLOCK(pmap);
3324 }
3325 
3326 static vm_page_t
3327 mmu_radix_enter_quick_locked(pmap_t pmap, vm_offset_t va, vm_page_t m,
3328     vm_prot_t prot, vm_page_t mpte, struct rwlock **lockp, bool *invalidate)
3329 {
3330 	struct spglist free;
3331 	pt_entry_t *pte;
3332 	vm_paddr_t pa;
3333 
3334 	KASSERT(!VA_IS_CLEANMAP(va) ||
3335 	    (m->oflags & VPO_UNMANAGED) != 0,
3336 	    ("mmu_radix_enter_quick_locked: managed mapping within the clean submap"));
3337 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3338 
3339 	/*
3340 	 * In the case that a page table page is not
3341 	 * resident, we are creating it here.
3342 	 */
3343 	if (va < VM_MAXUSER_ADDRESS) {
3344 		vm_pindex_t ptepindex;
3345 		pml3_entry_t *ptepa;
3346 
3347 		/*
3348 		 * Calculate pagetable page index
3349 		 */
3350 		ptepindex = pmap_l3e_pindex(va);
3351 		if (mpte && (mpte->pindex == ptepindex)) {
3352 			mpte->ref_count++;
3353 		} else {
3354 			/*
3355 			 * Get the page directory entry
3356 			 */
3357 			ptepa = pmap_pml3e(pmap, va);
3358 
3359 			/*
3360 			 * If the page table page is mapped, we just increment
3361 			 * the hold count, and activate it.  Otherwise, we
3362 			 * attempt to allocate a page table page.  If this
3363 			 * attempt fails, we don't retry.  Instead, we give up.
3364 			 */
3365 			if (ptepa && (be64toh(*ptepa) & PG_V) != 0) {
3366 				if (be64toh(*ptepa) & RPTE_LEAF)
3367 					return (NULL);
3368 				mpte = PHYS_TO_VM_PAGE(be64toh(*ptepa) & PG_FRAME);
3369 				mpte->ref_count++;
3370 			} else {
3371 				/*
3372 				 * Pass NULL instead of the PV list lock
3373 				 * pointer, because we don't intend to sleep.
3374 				 */
3375 				mpte = _pmap_allocpte(pmap, ptepindex, NULL);
3376 				if (mpte == NULL)
3377 					return (mpte);
3378 			}
3379 		}
3380 		pte = (pt_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(mpte));
3381 		pte = &pte[pmap_pte_index(va)];
3382 	} else {
3383 		mpte = NULL;
3384 		pte = pmap_pte(pmap, va);
3385 	}
3386 	if (be64toh(*pte)) {
3387 		if (mpte != NULL) {
3388 			mpte->ref_count--;
3389 			mpte = NULL;
3390 		}
3391 		return (mpte);
3392 	}
3393 
3394 	/*
3395 	 * Enter on the PV list if part of our managed memory.
3396 	 */
3397 	if ((m->oflags & VPO_UNMANAGED) == 0 &&
3398 	    !pmap_try_insert_pv_entry(pmap, va, m, lockp)) {
3399 		if (mpte != NULL) {
3400 			SLIST_INIT(&free);
3401 			if (pmap_unwire_ptp(pmap, va, mpte, &free)) {
3402 				/*
3403 				 * Although "va" is not mapped, paging-
3404 				 * structure caches could nonetheless have
3405 				 * entries that refer to the freed page table
3406 				 * pages.  Invalidate those entries.
3407 				 */
3408 				*invalidate = true;
3409 				vm_page_free_pages_toq(&free, true);
3410 			}
3411 			mpte = NULL;
3412 		}
3413 		return (mpte);
3414 	}
3415 
3416 	/*
3417 	 * Increment counters
3418 	 */
3419 	pmap_resident_count_inc(pmap, 1);
3420 
3421 	pa = VM_PAGE_TO_PHYS(m) | pmap_cache_bits(m->md.mdpg_cache_attrs);
3422 	if (prot & VM_PROT_EXECUTE)
3423 		pa |= PG_X;
3424 	else
3425 		pa |= RPTE_EAA_R;
3426 	if ((m->oflags & VPO_UNMANAGED) == 0)
3427 		pa |= PG_MANAGED;
3428 
3429 	pte_store(pte, pa);
3430 	return (mpte);
3431 }
3432 
3433 void
3434 mmu_radix_enter_quick(pmap_t pmap, vm_offset_t va, vm_page_t m,
3435     vm_prot_t prot)
3436 {
3437 	struct rwlock *lock;
3438 	bool invalidate;
3439 
3440 	lock = NULL;
3441 	invalidate = false;
3442 	PMAP_LOCK(pmap);
3443 	mmu_radix_enter_quick_locked(pmap, va, m, prot, NULL, &lock,
3444 	    &invalidate);
3445 	ptesync();
3446 	if (lock != NULL)
3447 		rw_wunlock(lock);
3448 	if (invalidate)
3449 		pmap_invalidate_all(pmap);
3450 	PMAP_UNLOCK(pmap);
3451 }
3452 
3453 vm_paddr_t
3454 mmu_radix_extract(pmap_t pmap, vm_offset_t va)
3455 {
3456 	pml3_entry_t *l3e;
3457 	pt_entry_t *pte;
3458 	vm_paddr_t pa;
3459 
3460 	l3e = pmap_pml3e(pmap, va);
3461 	if (__predict_false(l3e == NULL))
3462 		return (0);
3463 	if (be64toh(*l3e) & RPTE_LEAF) {
3464 		pa = (be64toh(*l3e) & PG_PS_FRAME) | (va & L3_PAGE_MASK);
3465 		pa |= (va & L3_PAGE_MASK);
3466 	} else {
3467 		/*
3468 		 * Beware of a concurrent promotion that changes the
3469 		 * PDE at this point!  For example, vtopte() must not
3470 		 * be used to access the PTE because it would use the
3471 		 * new PDE.  It is, however, safe to use the old PDE
3472 		 * because the page table page is preserved by the
3473 		 * promotion.
3474 		 */
3475 		pte = pmap_l3e_to_pte(l3e, va);
3476 		if (__predict_false(pte == NULL))
3477 			return (0);
3478 		pa = be64toh(*pte);
3479 		pa = (pa & PG_FRAME) | (va & PAGE_MASK);
3480 		pa |= (va & PAGE_MASK);
3481 	}
3482 	return (pa);
3483 }
3484 
3485 vm_page_t
3486 mmu_radix_extract_and_hold(pmap_t pmap, vm_offset_t va, vm_prot_t prot)
3487 {
3488 	pml3_entry_t l3e, *l3ep;
3489 	pt_entry_t pte;
3490 	vm_page_t m;
3491 
3492 	m = NULL;
3493 	CTR4(KTR_PMAP, "%s(%p, %#x, %#x)", __func__, pmap, va, prot);
3494 	PMAP_LOCK(pmap);
3495 	l3ep = pmap_pml3e(pmap, va);
3496 	if (l3ep != NULL && (l3e = be64toh(*l3ep))) {
3497 		if (l3e & RPTE_LEAF) {
3498 			if ((l3e & PG_RW) || (prot & VM_PROT_WRITE) == 0)
3499 				m = PHYS_TO_VM_PAGE((l3e & PG_PS_FRAME) |
3500 				    (va & L3_PAGE_MASK));
3501 		} else {
3502 			/* Native endian PTE, do not pass to pmap functions */
3503 			pte = be64toh(*pmap_l3e_to_pte(l3ep, va));
3504 			if ((pte & PG_V) &&
3505 			    ((pte & PG_RW) || (prot & VM_PROT_WRITE) == 0))
3506 				m = PHYS_TO_VM_PAGE(pte & PG_FRAME);
3507 		}
3508 		if (m != NULL && !vm_page_wire_mapped(m))
3509 			m = NULL;
3510 	}
3511 	PMAP_UNLOCK(pmap);
3512 	return (m);
3513 }
3514 
3515 static void
3516 mmu_radix_growkernel(vm_offset_t addr)
3517 {
3518 	vm_paddr_t paddr;
3519 	vm_page_t nkpg;
3520 	pml3_entry_t *l3e;
3521 	pml2_entry_t *l2e;
3522 
3523 	CTR2(KTR_PMAP, "%s(%#x)", __func__, addr);
3524 	if (VM_MIN_KERNEL_ADDRESS < addr &&
3525 		addr < (VM_MIN_KERNEL_ADDRESS + nkpt * L3_PAGE_SIZE))
3526 		return;
3527 
3528 	addr = roundup2(addr, L3_PAGE_SIZE);
3529 	if (addr - 1 >= vm_map_max(kernel_map))
3530 		addr = vm_map_max(kernel_map);
3531 	while (kernel_vm_end < addr) {
3532 		l2e = pmap_pml2e(kernel_pmap, kernel_vm_end);
3533 		if ((be64toh(*l2e) & PG_V) == 0) {
3534 			/* We need a new PDP entry */
3535 			nkpg = vm_page_alloc_noobj(VM_ALLOC_INTERRUPT |
3536 			    VM_ALLOC_WIRED | VM_ALLOC_ZERO);
3537 			if (nkpg == NULL)
3538 				panic("pmap_growkernel: no memory to grow kernel");
3539 			nkpg->pindex = kernel_vm_end >> L2_PAGE_SIZE_SHIFT;
3540 			paddr = VM_PAGE_TO_PHYS(nkpg);
3541 			pde_store(l2e, paddr);
3542 			continue; /* try again */
3543 		}
3544 		l3e = pmap_l2e_to_l3e(l2e, kernel_vm_end);
3545 		if ((be64toh(*l3e) & PG_V) != 0) {
3546 			kernel_vm_end = (kernel_vm_end + L3_PAGE_SIZE) & ~L3_PAGE_MASK;
3547 			if (kernel_vm_end - 1 >= vm_map_max(kernel_map)) {
3548 				kernel_vm_end = vm_map_max(kernel_map);
3549 				break;
3550 			}
3551 			continue;
3552 		}
3553 
3554 		nkpg = vm_page_alloc_noobj(VM_ALLOC_INTERRUPT | VM_ALLOC_WIRED |
3555 		    VM_ALLOC_ZERO);
3556 		if (nkpg == NULL)
3557 			panic("pmap_growkernel: no memory to grow kernel");
3558 		nkpg->pindex = pmap_l3e_pindex(kernel_vm_end);
3559 		paddr = VM_PAGE_TO_PHYS(nkpg);
3560 		pde_store(l3e, paddr);
3561 
3562 		kernel_vm_end = (kernel_vm_end + L3_PAGE_SIZE) & ~L3_PAGE_MASK;
3563 		if (kernel_vm_end - 1 >= vm_map_max(kernel_map)) {
3564 			kernel_vm_end = vm_map_max(kernel_map);
3565 			break;
3566 		}
3567 	}
3568 	ptesync();
3569 }
3570 
3571 static MALLOC_DEFINE(M_RADIX_PGD, "radix_pgd", "radix page table root directory");
3572 static uma_zone_t zone_radix_pgd;
3573 
3574 static int
3575 radix_pgd_import(void *arg __unused, void **store, int count, int domain __unused,
3576     int flags)
3577 {
3578 	int req;
3579 
3580 	req = VM_ALLOC_WIRED | malloc2vm_flags(flags);
3581 	for (int i = 0; i < count; i++) {
3582 		vm_page_t m = vm_page_alloc_noobj_contig(req,
3583 		    RADIX_PGD_SIZE / PAGE_SIZE,
3584 		    0, (vm_paddr_t)-1, RADIX_PGD_SIZE, L1_PAGE_SIZE,
3585 		    VM_MEMATTR_DEFAULT);
3586 		store[i] = (void *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m));
3587 	}
3588 	return (count);
3589 }
3590 
3591 static void
3592 radix_pgd_release(void *arg __unused, void **store, int count)
3593 {
3594 	vm_page_t m;
3595 	struct spglist free;
3596 	int page_count;
3597 
3598 	SLIST_INIT(&free);
3599 	page_count = RADIX_PGD_SIZE/PAGE_SIZE;
3600 
3601 	for (int i = 0; i < count; i++) {
3602 		/*
3603 		 * XXX selectively remove dmap and KVA entries so we don't
3604 		 * need to bzero
3605 		 */
3606 		m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t)store[i]));
3607 		for (int j = page_count-1; j >= 0; j--) {
3608 			vm_page_unwire_noq(&m[j]);
3609 			SLIST_INSERT_HEAD(&free, &m[j], plinks.s.ss);
3610 		}
3611 		vm_page_free_pages_toq(&free, false);
3612 	}
3613 }
3614 
3615 static void
3616 mmu_radix_init(void)
3617 {
3618 	vm_page_t mpte;
3619 	vm_size_t s;
3620 	int error, i, pv_npg;
3621 
3622 	/* XXX is this really needed for POWER? */
3623 	/* L1TF, reserve page @0 unconditionally */
3624 	vm_page_blacklist_add(0, bootverbose);
3625 
3626 	zone_radix_pgd = uma_zcache_create("radix_pgd_cache",
3627 		RADIX_PGD_SIZE, NULL, NULL,
3628 #ifdef INVARIANTS
3629 	    trash_init, trash_fini,
3630 #else
3631 	    NULL, NULL,
3632 #endif
3633 		radix_pgd_import, radix_pgd_release,
3634 		NULL, UMA_ZONE_NOBUCKET);
3635 
3636 	/*
3637 	 * Initialize the vm page array entries for the kernel pmap's
3638 	 * page table pages.
3639 	 */
3640 	PMAP_LOCK(kernel_pmap);
3641 	for (i = 0; i < nkpt; i++) {
3642 		mpte = PHYS_TO_VM_PAGE(KPTphys + (i << PAGE_SHIFT));
3643 		KASSERT(mpte >= vm_page_array &&
3644 		    mpte < &vm_page_array[vm_page_array_size],
3645 		    ("pmap_init: page table page is out of range size: %lu",
3646 		     vm_page_array_size));
3647 		mpte->pindex = pmap_l3e_pindex(VM_MIN_KERNEL_ADDRESS) + i;
3648 		mpte->phys_addr = KPTphys + (i << PAGE_SHIFT);
3649 		MPASS(PHYS_TO_VM_PAGE(mpte->phys_addr) == mpte);
3650 		//pmap_insert_pt_page(kernel_pmap, mpte);
3651 		mpte->ref_count = 1;
3652 	}
3653 	PMAP_UNLOCK(kernel_pmap);
3654 	vm_wire_add(nkpt);
3655 
3656 	CTR1(KTR_PMAP, "%s()", __func__);
3657 	TAILQ_INIT(&pv_dummy.pv_list);
3658 
3659 	/*
3660 	 * Are large page mappings enabled?
3661 	 */
3662 	TUNABLE_INT_FETCH("vm.pmap.superpages_enabled", &superpages_enabled);
3663 	if (superpages_enabled) {
3664 		KASSERT(MAXPAGESIZES > 1 && pagesizes[1] == 0,
3665 		    ("pmap_init: can't assign to pagesizes[1]"));
3666 		pagesizes[1] = L3_PAGE_SIZE;
3667 	}
3668 
3669 	/*
3670 	 * Initialize the pv chunk list mutex.
3671 	 */
3672 	mtx_init(&pv_chunks_mutex, "pmap pv chunk list", NULL, MTX_DEF);
3673 
3674 	/*
3675 	 * Initialize the pool of pv list locks.
3676 	 */
3677 	for (i = 0; i < NPV_LIST_LOCKS; i++)
3678 		rw_init(&pv_list_locks[i], "pmap pv list");
3679 
3680 	/*
3681 	 * Calculate the size of the pv head table for superpages.
3682 	 */
3683 	pv_npg = howmany(vm_phys_segs[vm_phys_nsegs - 1].end, L3_PAGE_SIZE);
3684 
3685 	/*
3686 	 * Allocate memory for the pv head table for superpages.
3687 	 */
3688 	s = (vm_size_t)(pv_npg * sizeof(struct md_page));
3689 	s = round_page(s);
3690 	pv_table = kmem_malloc(s, M_WAITOK | M_ZERO);
3691 	for (i = 0; i < pv_npg; i++)
3692 		TAILQ_INIT(&pv_table[i].pv_list);
3693 	TAILQ_INIT(&pv_dummy.pv_list);
3694 
3695 	pmap_initialized = 1;
3696 	mtx_init(&qframe_mtx, "qfrmlk", NULL, MTX_SPIN);
3697 	error = vmem_alloc(kernel_arena, PAGE_SIZE, M_BESTFIT | M_WAITOK,
3698 	    (vmem_addr_t *)&qframe);
3699 
3700 	if (error != 0)
3701 		panic("qframe allocation failed");
3702 	asid_arena = vmem_create("ASID", isa3_base_pid + 1, (1<<isa3_pid_bits),
3703 	    1, 1, M_WAITOK);
3704 }
3705 
3706 static boolean_t
3707 pmap_page_test_mappings(vm_page_t m, boolean_t accessed, boolean_t modified)
3708 {
3709 	struct rwlock *lock;
3710 	pv_entry_t pv;
3711 	struct md_page *pvh;
3712 	pt_entry_t *pte, mask;
3713 	pmap_t pmap;
3714 	int md_gen, pvh_gen;
3715 	boolean_t rv;
3716 
3717 	rv = FALSE;
3718 	lock = VM_PAGE_TO_PV_LIST_LOCK(m);
3719 	rw_rlock(lock);
3720 restart:
3721 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
3722 		pmap = PV_PMAP(pv);
3723 		if (!PMAP_TRYLOCK(pmap)) {
3724 			md_gen = m->md.pv_gen;
3725 			rw_runlock(lock);
3726 			PMAP_LOCK(pmap);
3727 			rw_rlock(lock);
3728 			if (md_gen != m->md.pv_gen) {
3729 				PMAP_UNLOCK(pmap);
3730 				goto restart;
3731 			}
3732 		}
3733 		pte = pmap_pte(pmap, pv->pv_va);
3734 		mask = 0;
3735 		if (modified)
3736 			mask |= PG_RW | PG_M;
3737 		if (accessed)
3738 			mask |= PG_V | PG_A;
3739 		rv = (be64toh(*pte) & mask) == mask;
3740 		PMAP_UNLOCK(pmap);
3741 		if (rv)
3742 			goto out;
3743 	}
3744 	if ((m->flags & PG_FICTITIOUS) == 0) {
3745 		pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
3746 		TAILQ_FOREACH(pv, &pvh->pv_list, pv_link) {
3747 			pmap = PV_PMAP(pv);
3748 			if (!PMAP_TRYLOCK(pmap)) {
3749 				md_gen = m->md.pv_gen;
3750 				pvh_gen = pvh->pv_gen;
3751 				rw_runlock(lock);
3752 				PMAP_LOCK(pmap);
3753 				rw_rlock(lock);
3754 				if (md_gen != m->md.pv_gen ||
3755 				    pvh_gen != pvh->pv_gen) {
3756 					PMAP_UNLOCK(pmap);
3757 					goto restart;
3758 				}
3759 			}
3760 			pte = pmap_pml3e(pmap, pv->pv_va);
3761 			mask = 0;
3762 			if (modified)
3763 				mask |= PG_RW | PG_M;
3764 			if (accessed)
3765 				mask |= PG_V | PG_A;
3766 			rv = (be64toh(*pte) & mask) == mask;
3767 			PMAP_UNLOCK(pmap);
3768 			if (rv)
3769 				goto out;
3770 		}
3771 	}
3772 out:
3773 	rw_runlock(lock);
3774 	return (rv);
3775 }
3776 
3777 /*
3778  *	pmap_is_modified:
3779  *
3780  *	Return whether or not the specified physical page was modified
3781  *	in any physical maps.
3782  */
3783 boolean_t
3784 mmu_radix_is_modified(vm_page_t m)
3785 {
3786 
3787 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
3788 	    ("pmap_is_modified: page %p is not managed", m));
3789 
3790 	CTR2(KTR_PMAP, "%s(%p)", __func__, m);
3791 	/*
3792 	 * If the page is not busied then this check is racy.
3793 	 */
3794 	if (!pmap_page_is_write_mapped(m))
3795 		return (FALSE);
3796 	return (pmap_page_test_mappings(m, FALSE, TRUE));
3797 }
3798 
3799 boolean_t
3800 mmu_radix_is_prefaultable(pmap_t pmap, vm_offset_t addr)
3801 {
3802 	pml3_entry_t *l3e;
3803 	pt_entry_t *pte;
3804 	boolean_t rv;
3805 
3806 	CTR3(KTR_PMAP, "%s(%p, %#x)", __func__, pmap, addr);
3807 	rv = FALSE;
3808 	PMAP_LOCK(pmap);
3809 	l3e = pmap_pml3e(pmap, addr);
3810 	if (l3e != NULL && (be64toh(*l3e) & (RPTE_LEAF | PG_V)) == PG_V) {
3811 		pte = pmap_l3e_to_pte(l3e, addr);
3812 		rv = (be64toh(*pte) & PG_V) == 0;
3813 	}
3814 	PMAP_UNLOCK(pmap);
3815 	return (rv);
3816 }
3817 
3818 boolean_t
3819 mmu_radix_is_referenced(vm_page_t m)
3820 {
3821 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
3822 	    ("pmap_is_referenced: page %p is not managed", m));
3823 	CTR2(KTR_PMAP, "%s(%p)", __func__, m);
3824 	return (pmap_page_test_mappings(m, TRUE, FALSE));
3825 }
3826 
3827 /*
3828  *	pmap_ts_referenced:
3829  *
3830  *	Return a count of reference bits for a page, clearing those bits.
3831  *	It is not necessary for every reference bit to be cleared, but it
3832  *	is necessary that 0 only be returned when there are truly no
3833  *	reference bits set.
3834  *
3835  *	As an optimization, update the page's dirty field if a modified bit is
3836  *	found while counting reference bits.  This opportunistic update can be
3837  *	performed at low cost and can eliminate the need for some future calls
3838  *	to pmap_is_modified().  However, since this function stops after
3839  *	finding PMAP_TS_REFERENCED_MAX reference bits, it may not detect some
3840  *	dirty pages.  Those dirty pages will only be detected by a future call
3841  *	to pmap_is_modified().
3842  *
3843  *	A DI block is not needed within this function, because
3844  *	invalidations are performed before the PV list lock is
3845  *	released.
3846  */
3847 int
3848 mmu_radix_ts_referenced(vm_page_t m)
3849 {
3850 	struct md_page *pvh;
3851 	pv_entry_t pv, pvf;
3852 	pmap_t pmap;
3853 	struct rwlock *lock;
3854 	pml3_entry_t oldl3e, *l3e;
3855 	pt_entry_t *pte;
3856 	vm_paddr_t pa;
3857 	int cleared, md_gen, not_cleared, pvh_gen;
3858 	struct spglist free;
3859 
3860 	CTR2(KTR_PMAP, "%s(%p)", __func__, m);
3861 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
3862 	    ("pmap_ts_referenced: page %p is not managed", m));
3863 	SLIST_INIT(&free);
3864 	cleared = 0;
3865 	pa = VM_PAGE_TO_PHYS(m);
3866 	lock = PHYS_TO_PV_LIST_LOCK(pa);
3867 	pvh = (m->flags & PG_FICTITIOUS) != 0 ? &pv_dummy : pa_to_pvh(pa);
3868 	rw_wlock(lock);
3869 retry:
3870 	not_cleared = 0;
3871 	if ((pvf = TAILQ_FIRST(&pvh->pv_list)) == NULL)
3872 		goto small_mappings;
3873 	pv = pvf;
3874 	do {
3875 		if (pvf == NULL)
3876 			pvf = pv;
3877 		pmap = PV_PMAP(pv);
3878 		if (!PMAP_TRYLOCK(pmap)) {
3879 			pvh_gen = pvh->pv_gen;
3880 			rw_wunlock(lock);
3881 			PMAP_LOCK(pmap);
3882 			rw_wlock(lock);
3883 			if (pvh_gen != pvh->pv_gen) {
3884 				PMAP_UNLOCK(pmap);
3885 				goto retry;
3886 			}
3887 		}
3888 		l3e = pmap_pml3e(pmap, pv->pv_va);
3889 		oldl3e = be64toh(*l3e);
3890 		if ((oldl3e & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
3891 			/*
3892 			 * Although "oldpde" is mapping a 2MB page, because
3893 			 * this function is called at a 4KB page granularity,
3894 			 * we only update the 4KB page under test.
3895 			 */
3896 			vm_page_dirty(m);
3897 		}
3898 		if ((oldl3e & PG_A) != 0) {
3899 			/*
3900 			 * Since this reference bit is shared by 512 4KB
3901 			 * pages, it should not be cleared every time it is
3902 			 * tested.  Apply a simple "hash" function on the
3903 			 * physical page number, the virtual superpage number,
3904 			 * and the pmap address to select one 4KB page out of
3905 			 * the 512 on which testing the reference bit will
3906 			 * result in clearing that reference bit.  This
3907 			 * function is designed to avoid the selection of the
3908 			 * same 4KB page for every 2MB page mapping.
3909 			 *
3910 			 * On demotion, a mapping that hasn't been referenced
3911 			 * is simply destroyed.  To avoid the possibility of a
3912 			 * subsequent page fault on a demoted wired mapping,
3913 			 * always leave its reference bit set.  Moreover,
3914 			 * since the superpage is wired, the current state of
3915 			 * its reference bit won't affect page replacement.
3916 			 */
3917 			if ((((pa >> PAGE_SHIFT) ^ (pv->pv_va >> L3_PAGE_SIZE_SHIFT) ^
3918 			    (uintptr_t)pmap) & (NPTEPG - 1)) == 0 &&
3919 			    (oldl3e & PG_W) == 0) {
3920 				atomic_clear_long(l3e, htobe64(PG_A));
3921 				pmap_invalidate_page(pmap, pv->pv_va);
3922 				cleared++;
3923 				KASSERT(lock == VM_PAGE_TO_PV_LIST_LOCK(m),
3924 				    ("inconsistent pv lock %p %p for page %p",
3925 				    lock, VM_PAGE_TO_PV_LIST_LOCK(m), m));
3926 			} else
3927 				not_cleared++;
3928 		}
3929 		PMAP_UNLOCK(pmap);
3930 		/* Rotate the PV list if it has more than one entry. */
3931 		if (pv != NULL && TAILQ_NEXT(pv, pv_link) != NULL) {
3932 			TAILQ_REMOVE(&pvh->pv_list, pv, pv_link);
3933 			TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_link);
3934 			pvh->pv_gen++;
3935 		}
3936 		if (cleared + not_cleared >= PMAP_TS_REFERENCED_MAX)
3937 			goto out;
3938 	} while ((pv = TAILQ_FIRST(&pvh->pv_list)) != pvf);
3939 small_mappings:
3940 	if ((pvf = TAILQ_FIRST(&m->md.pv_list)) == NULL)
3941 		goto out;
3942 	pv = pvf;
3943 	do {
3944 		if (pvf == NULL)
3945 			pvf = pv;
3946 		pmap = PV_PMAP(pv);
3947 		if (!PMAP_TRYLOCK(pmap)) {
3948 			pvh_gen = pvh->pv_gen;
3949 			md_gen = m->md.pv_gen;
3950 			rw_wunlock(lock);
3951 			PMAP_LOCK(pmap);
3952 			rw_wlock(lock);
3953 			if (pvh_gen != pvh->pv_gen || md_gen != m->md.pv_gen) {
3954 				PMAP_UNLOCK(pmap);
3955 				goto retry;
3956 			}
3957 		}
3958 		l3e = pmap_pml3e(pmap, pv->pv_va);
3959 		KASSERT((be64toh(*l3e) & RPTE_LEAF) == 0,
3960 		    ("pmap_ts_referenced: found a 2mpage in page %p's pv list",
3961 		    m));
3962 		pte = pmap_l3e_to_pte(l3e, pv->pv_va);
3963 		if ((be64toh(*pte) & (PG_M | PG_RW)) == (PG_M | PG_RW))
3964 			vm_page_dirty(m);
3965 		if ((be64toh(*pte) & PG_A) != 0) {
3966 			atomic_clear_long(pte, htobe64(PG_A));
3967 			pmap_invalidate_page(pmap, pv->pv_va);
3968 			cleared++;
3969 		}
3970 		PMAP_UNLOCK(pmap);
3971 		/* Rotate the PV list if it has more than one entry. */
3972 		if (pv != NULL && TAILQ_NEXT(pv, pv_link) != NULL) {
3973 			TAILQ_REMOVE(&m->md.pv_list, pv, pv_link);
3974 			TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_link);
3975 			m->md.pv_gen++;
3976 		}
3977 	} while ((pv = TAILQ_FIRST(&m->md.pv_list)) != pvf && cleared +
3978 	    not_cleared < PMAP_TS_REFERENCED_MAX);
3979 out:
3980 	rw_wunlock(lock);
3981 	vm_page_free_pages_toq(&free, true);
3982 	return (cleared + not_cleared);
3983 }
3984 
3985 static vm_offset_t
3986 mmu_radix_map(vm_offset_t *virt __unused, vm_paddr_t start,
3987     vm_paddr_t end, int prot __unused)
3988 {
3989 
3990 	CTR5(KTR_PMAP, "%s(%p, %#x, %#x, %#x)", __func__, virt, start, end,
3991 		 prot);
3992 	return (PHYS_TO_DMAP(start));
3993 }
3994 
3995 void
3996 mmu_radix_object_init_pt(pmap_t pmap, vm_offset_t addr,
3997     vm_object_t object, vm_pindex_t pindex, vm_size_t size)
3998 {
3999 	pml3_entry_t *l3e;
4000 	vm_paddr_t pa, ptepa;
4001 	vm_page_t p, pdpg;
4002 	vm_memattr_t ma;
4003 
4004 	CTR6(KTR_PMAP, "%s(%p, %#x, %p, %u, %#x)", __func__, pmap, addr,
4005 	    object, pindex, size);
4006 	VM_OBJECT_ASSERT_WLOCKED(object);
4007 	KASSERT(object->type == OBJT_DEVICE || object->type == OBJT_SG,
4008 			("pmap_object_init_pt: non-device object"));
4009 	/* NB: size can be logically ored with addr here */
4010 	if ((addr & L3_PAGE_MASK) == 0 && (size & L3_PAGE_MASK) == 0) {
4011 		if (!mmu_radix_ps_enabled(pmap))
4012 			return;
4013 		if (!vm_object_populate(object, pindex, pindex + atop(size)))
4014 			return;
4015 		p = vm_page_lookup(object, pindex);
4016 		KASSERT(p->valid == VM_PAGE_BITS_ALL,
4017 		    ("pmap_object_init_pt: invalid page %p", p));
4018 		ma = p->md.mdpg_cache_attrs;
4019 
4020 		/*
4021 		 * Abort the mapping if the first page is not physically
4022 		 * aligned to a 2MB page boundary.
4023 		 */
4024 		ptepa = VM_PAGE_TO_PHYS(p);
4025 		if (ptepa & L3_PAGE_MASK)
4026 			return;
4027 
4028 		/*
4029 		 * Skip the first page.  Abort the mapping if the rest of
4030 		 * the pages are not physically contiguous or have differing
4031 		 * memory attributes.
4032 		 */
4033 		p = TAILQ_NEXT(p, listq);
4034 		for (pa = ptepa + PAGE_SIZE; pa < ptepa + size;
4035 		    pa += PAGE_SIZE) {
4036 			KASSERT(p->valid == VM_PAGE_BITS_ALL,
4037 			    ("pmap_object_init_pt: invalid page %p", p));
4038 			if (pa != VM_PAGE_TO_PHYS(p) ||
4039 			    ma != p->md.mdpg_cache_attrs)
4040 				return;
4041 			p = TAILQ_NEXT(p, listq);
4042 		}
4043 
4044 		PMAP_LOCK(pmap);
4045 		for (pa = ptepa | pmap_cache_bits(ma);
4046 		    pa < ptepa + size; pa += L3_PAGE_SIZE) {
4047 			pdpg = pmap_allocl3e(pmap, addr, NULL);
4048 			if (pdpg == NULL) {
4049 				/*
4050 				 * The creation of mappings below is only an
4051 				 * optimization.  If a page directory page
4052 				 * cannot be allocated without blocking,
4053 				 * continue on to the next mapping rather than
4054 				 * blocking.
4055 				 */
4056 				addr += L3_PAGE_SIZE;
4057 				continue;
4058 			}
4059 			l3e = (pml3_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pdpg));
4060 			l3e = &l3e[pmap_pml3e_index(addr)];
4061 			if ((be64toh(*l3e) & PG_V) == 0) {
4062 				pa |= PG_M | PG_A | PG_RW;
4063 				pte_store(l3e, pa);
4064 				pmap_resident_count_inc(pmap, L3_PAGE_SIZE / PAGE_SIZE);
4065 				counter_u64_add(pmap_l3e_mappings, 1);
4066 			} else {
4067 				/* Continue on if the PDE is already valid. */
4068 				pdpg->ref_count--;
4069 				KASSERT(pdpg->ref_count > 0,
4070 				    ("pmap_object_init_pt: missing reference "
4071 				    "to page directory page, va: 0x%lx", addr));
4072 			}
4073 			addr += L3_PAGE_SIZE;
4074 		}
4075 		ptesync();
4076 		PMAP_UNLOCK(pmap);
4077 	}
4078 }
4079 
4080 boolean_t
4081 mmu_radix_page_exists_quick(pmap_t pmap, vm_page_t m)
4082 {
4083 	struct md_page *pvh;
4084 	struct rwlock *lock;
4085 	pv_entry_t pv;
4086 	int loops = 0;
4087 	boolean_t rv;
4088 
4089 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4090 	    ("pmap_page_exists_quick: page %p is not managed", m));
4091 	CTR3(KTR_PMAP, "%s(%p, %p)", __func__, pmap, m);
4092 	rv = FALSE;
4093 	lock = VM_PAGE_TO_PV_LIST_LOCK(m);
4094 	rw_rlock(lock);
4095 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
4096 		if (PV_PMAP(pv) == pmap) {
4097 			rv = TRUE;
4098 			break;
4099 		}
4100 		loops++;
4101 		if (loops >= 16)
4102 			break;
4103 	}
4104 	if (!rv && loops < 16 && (m->flags & PG_FICTITIOUS) == 0) {
4105 		pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
4106 		TAILQ_FOREACH(pv, &pvh->pv_list, pv_link) {
4107 			if (PV_PMAP(pv) == pmap) {
4108 				rv = TRUE;
4109 				break;
4110 			}
4111 			loops++;
4112 			if (loops >= 16)
4113 				break;
4114 		}
4115 	}
4116 	rw_runlock(lock);
4117 	return (rv);
4118 }
4119 
4120 void
4121 mmu_radix_page_init(vm_page_t m)
4122 {
4123 
4124 	CTR2(KTR_PMAP, "%s(%p)", __func__, m);
4125 	TAILQ_INIT(&m->md.pv_list);
4126 	m->md.mdpg_cache_attrs = VM_MEMATTR_DEFAULT;
4127 }
4128 
4129 int
4130 mmu_radix_page_wired_mappings(vm_page_t m)
4131 {
4132 	struct rwlock *lock;
4133 	struct md_page *pvh;
4134 	pmap_t pmap;
4135 	pt_entry_t *pte;
4136 	pv_entry_t pv;
4137 	int count, md_gen, pvh_gen;
4138 
4139 	if ((m->oflags & VPO_UNMANAGED) != 0)
4140 		return (0);
4141 	CTR2(KTR_PMAP, "%s(%p)", __func__, m);
4142 	lock = VM_PAGE_TO_PV_LIST_LOCK(m);
4143 	rw_rlock(lock);
4144 restart:
4145 	count = 0;
4146 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
4147 		pmap = PV_PMAP(pv);
4148 		if (!PMAP_TRYLOCK(pmap)) {
4149 			md_gen = m->md.pv_gen;
4150 			rw_runlock(lock);
4151 			PMAP_LOCK(pmap);
4152 			rw_rlock(lock);
4153 			if (md_gen != m->md.pv_gen) {
4154 				PMAP_UNLOCK(pmap);
4155 				goto restart;
4156 			}
4157 		}
4158 		pte = pmap_pte(pmap, pv->pv_va);
4159 		if ((be64toh(*pte) & PG_W) != 0)
4160 			count++;
4161 		PMAP_UNLOCK(pmap);
4162 	}
4163 	if ((m->flags & PG_FICTITIOUS) == 0) {
4164 		pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
4165 		TAILQ_FOREACH(pv, &pvh->pv_list, pv_link) {
4166 			pmap = PV_PMAP(pv);
4167 			if (!PMAP_TRYLOCK(pmap)) {
4168 				md_gen = m->md.pv_gen;
4169 				pvh_gen = pvh->pv_gen;
4170 				rw_runlock(lock);
4171 				PMAP_LOCK(pmap);
4172 				rw_rlock(lock);
4173 				if (md_gen != m->md.pv_gen ||
4174 				    pvh_gen != pvh->pv_gen) {
4175 					PMAP_UNLOCK(pmap);
4176 					goto restart;
4177 				}
4178 			}
4179 			pte = pmap_pml3e(pmap, pv->pv_va);
4180 			if ((be64toh(*pte) & PG_W) != 0)
4181 				count++;
4182 			PMAP_UNLOCK(pmap);
4183 		}
4184 	}
4185 	rw_runlock(lock);
4186 	return (count);
4187 }
4188 
4189 static void
4190 mmu_radix_update_proctab(int pid, pml1_entry_t l1pa)
4191 {
4192 	isa3_proctab[pid].proctab0 = htobe64(RTS_SIZE |  l1pa | RADIX_PGD_INDEX_SHIFT);
4193 }
4194 
4195 int
4196 mmu_radix_pinit(pmap_t pmap)
4197 {
4198 	vmem_addr_t pid;
4199 	vm_paddr_t l1pa;
4200 
4201 	CTR2(KTR_PMAP, "%s(%p)", __func__, pmap);
4202 
4203 	/*
4204 	 * allocate the page directory page
4205 	 */
4206 	pmap->pm_pml1 = uma_zalloc(zone_radix_pgd, M_WAITOK);
4207 
4208 	for (int j = 0; j <  RADIX_PGD_SIZE_SHIFT; j++)
4209 		pagezero((vm_offset_t)pmap->pm_pml1 + j * PAGE_SIZE);
4210 	vm_radix_init(&pmap->pm_radix);
4211 	TAILQ_INIT(&pmap->pm_pvchunk);
4212 	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
4213 	pmap->pm_flags = PMAP_PDE_SUPERPAGE;
4214 	vmem_alloc(asid_arena, 1, M_FIRSTFIT|M_WAITOK, &pid);
4215 
4216 	pmap->pm_pid = pid;
4217 	l1pa = DMAP_TO_PHYS((vm_offset_t)pmap->pm_pml1);
4218 	mmu_radix_update_proctab(pid, l1pa);
4219 	__asm __volatile("ptesync;isync" : : : "memory");
4220 
4221 	return (1);
4222 }
4223 
4224 /*
4225  * This routine is called if the desired page table page does not exist.
4226  *
4227  * If page table page allocation fails, this routine may sleep before
4228  * returning NULL.  It sleeps only if a lock pointer was given.
4229  *
4230  * Note: If a page allocation fails at page table level two or three,
4231  * one or two pages may be held during the wait, only to be released
4232  * afterwards.  This conservative approach is easily argued to avoid
4233  * race conditions.
4234  */
4235 static vm_page_t
4236 _pmap_allocpte(pmap_t pmap, vm_pindex_t ptepindex, struct rwlock **lockp)
4237 {
4238 	vm_page_t m, pdppg, pdpg;
4239 
4240 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
4241 
4242 	/*
4243 	 * Allocate a page table page.
4244 	 */
4245 	if ((m = vm_page_alloc_noobj(VM_ALLOC_WIRED | VM_ALLOC_ZERO)) == NULL) {
4246 		if (lockp != NULL) {
4247 			RELEASE_PV_LIST_LOCK(lockp);
4248 			PMAP_UNLOCK(pmap);
4249 			vm_wait(NULL);
4250 			PMAP_LOCK(pmap);
4251 		}
4252 		/*
4253 		 * Indicate the need to retry.  While waiting, the page table
4254 		 * page may have been allocated.
4255 		 */
4256 		return (NULL);
4257 	}
4258 	m->pindex = ptepindex;
4259 
4260 	/*
4261 	 * Map the pagetable page into the process address space, if
4262 	 * it isn't already there.
4263 	 */
4264 
4265 	if (ptepindex >= (NUPDE + NUPDPE)) {
4266 		pml1_entry_t *l1e;
4267 		vm_pindex_t pml1index;
4268 
4269 		/* Wire up a new PDPE page */
4270 		pml1index = ptepindex - (NUPDE + NUPDPE);
4271 		l1e = &pmap->pm_pml1[pml1index];
4272 		KASSERT((be64toh(*l1e) & PG_V) == 0,
4273 		    ("%s: L1 entry %#lx is valid", __func__, *l1e));
4274 		pde_store(l1e, VM_PAGE_TO_PHYS(m));
4275 	} else if (ptepindex >= NUPDE) {
4276 		vm_pindex_t pml1index;
4277 		vm_pindex_t pdpindex;
4278 		pml1_entry_t *l1e;
4279 		pml2_entry_t *l2e;
4280 
4281 		/* Wire up a new l2e page */
4282 		pdpindex = ptepindex - NUPDE;
4283 		pml1index = pdpindex >> RPTE_SHIFT;
4284 
4285 		l1e = &pmap->pm_pml1[pml1index];
4286 		if ((be64toh(*l1e) & PG_V) == 0) {
4287 			/* Have to allocate a new pdp, recurse */
4288 			if (_pmap_allocpte(pmap, NUPDE + NUPDPE + pml1index,
4289 				lockp) == NULL) {
4290 				vm_page_unwire_noq(m);
4291 				vm_page_free_zero(m);
4292 				return (NULL);
4293 			}
4294 		} else {
4295 			/* Add reference to l2e page */
4296 			pdppg = PHYS_TO_VM_PAGE(be64toh(*l1e) & PG_FRAME);
4297 			pdppg->ref_count++;
4298 		}
4299 		l2e = (pml2_entry_t *)PHYS_TO_DMAP(be64toh(*l1e) & PG_FRAME);
4300 
4301 		/* Now find the pdp page */
4302 		l2e = &l2e[pdpindex & RPTE_MASK];
4303 		KASSERT((be64toh(*l2e) & PG_V) == 0,
4304 		    ("%s: L2 entry %#lx is valid", __func__, *l2e));
4305 		pde_store(l2e, VM_PAGE_TO_PHYS(m));
4306 	} else {
4307 		vm_pindex_t pml1index;
4308 		vm_pindex_t pdpindex;
4309 		pml1_entry_t *l1e;
4310 		pml2_entry_t *l2e;
4311 		pml3_entry_t *l3e;
4312 
4313 		/* Wire up a new PTE page */
4314 		pdpindex = ptepindex >> RPTE_SHIFT;
4315 		pml1index = pdpindex >> RPTE_SHIFT;
4316 
4317 		/* First, find the pdp and check that its valid. */
4318 		l1e = &pmap->pm_pml1[pml1index];
4319 		if ((be64toh(*l1e) & PG_V) == 0) {
4320 			/* Have to allocate a new pd, recurse */
4321 			if (_pmap_allocpte(pmap, NUPDE + pdpindex,
4322 			    lockp) == NULL) {
4323 				vm_page_unwire_noq(m);
4324 				vm_page_free_zero(m);
4325 				return (NULL);
4326 			}
4327 			l2e = (pml2_entry_t *)PHYS_TO_DMAP(be64toh(*l1e) & PG_FRAME);
4328 			l2e = &l2e[pdpindex & RPTE_MASK];
4329 		} else {
4330 			l2e = (pml2_entry_t *)PHYS_TO_DMAP(be64toh(*l1e) & PG_FRAME);
4331 			l2e = &l2e[pdpindex & RPTE_MASK];
4332 			if ((be64toh(*l2e) & PG_V) == 0) {
4333 				/* Have to allocate a new pd, recurse */
4334 				if (_pmap_allocpte(pmap, NUPDE + pdpindex,
4335 				    lockp) == NULL) {
4336 					vm_page_unwire_noq(m);
4337 					vm_page_free_zero(m);
4338 					return (NULL);
4339 				}
4340 			} else {
4341 				/* Add reference to the pd page */
4342 				pdpg = PHYS_TO_VM_PAGE(be64toh(*l2e) & PG_FRAME);
4343 				pdpg->ref_count++;
4344 			}
4345 		}
4346 		l3e = (pml3_entry_t *)PHYS_TO_DMAP(be64toh(*l2e) & PG_FRAME);
4347 
4348 		/* Now we know where the page directory page is */
4349 		l3e = &l3e[ptepindex & RPTE_MASK];
4350 		KASSERT((be64toh(*l3e) & PG_V) == 0,
4351 		    ("%s: L3 entry %#lx is valid", __func__, *l3e));
4352 		pde_store(l3e, VM_PAGE_TO_PHYS(m));
4353 	}
4354 
4355 	pmap_resident_count_inc(pmap, 1);
4356 	return (m);
4357 }
4358 static vm_page_t
4359 pmap_allocl3e(pmap_t pmap, vm_offset_t va, struct rwlock **lockp)
4360 {
4361 	vm_pindex_t pdpindex, ptepindex;
4362 	pml2_entry_t *pdpe;
4363 	vm_page_t pdpg;
4364 
4365 retry:
4366 	pdpe = pmap_pml2e(pmap, va);
4367 	if (pdpe != NULL && (be64toh(*pdpe) & PG_V) != 0) {
4368 		/* Add a reference to the pd page. */
4369 		pdpg = PHYS_TO_VM_PAGE(be64toh(*pdpe) & PG_FRAME);
4370 		pdpg->ref_count++;
4371 	} else {
4372 		/* Allocate a pd page. */
4373 		ptepindex = pmap_l3e_pindex(va);
4374 		pdpindex = ptepindex >> RPTE_SHIFT;
4375 		pdpg = _pmap_allocpte(pmap, NUPDE + pdpindex, lockp);
4376 		if (pdpg == NULL && lockp != NULL)
4377 			goto retry;
4378 	}
4379 	return (pdpg);
4380 }
4381 
4382 static vm_page_t
4383 pmap_allocpte(pmap_t pmap, vm_offset_t va, struct rwlock **lockp)
4384 {
4385 	vm_pindex_t ptepindex;
4386 	pml3_entry_t *pd;
4387 	vm_page_t m;
4388 
4389 	/*
4390 	 * Calculate pagetable page index
4391 	 */
4392 	ptepindex = pmap_l3e_pindex(va);
4393 retry:
4394 	/*
4395 	 * Get the page directory entry
4396 	 */
4397 	pd = pmap_pml3e(pmap, va);
4398 
4399 	/*
4400 	 * This supports switching from a 2MB page to a
4401 	 * normal 4K page.
4402 	 */
4403 	if (pd != NULL && (be64toh(*pd) & (RPTE_LEAF | PG_V)) == (RPTE_LEAF | PG_V)) {
4404 		if (!pmap_demote_l3e_locked(pmap, pd, va, lockp)) {
4405 			/*
4406 			 * Invalidation of the 2MB page mapping may have caused
4407 			 * the deallocation of the underlying PD page.
4408 			 */
4409 			pd = NULL;
4410 		}
4411 	}
4412 
4413 	/*
4414 	 * If the page table page is mapped, we just increment the
4415 	 * hold count, and activate it.
4416 	 */
4417 	if (pd != NULL && (be64toh(*pd) & PG_V) != 0) {
4418 		m = PHYS_TO_VM_PAGE(be64toh(*pd) & PG_FRAME);
4419 		m->ref_count++;
4420 	} else {
4421 		/*
4422 		 * Here if the pte page isn't mapped, or if it has been
4423 		 * deallocated.
4424 		 */
4425 		m = _pmap_allocpte(pmap, ptepindex, lockp);
4426 		if (m == NULL && lockp != NULL)
4427 			goto retry;
4428 	}
4429 	return (m);
4430 }
4431 
4432 static void
4433 mmu_radix_pinit0(pmap_t pmap)
4434 {
4435 
4436 	CTR2(KTR_PMAP, "%s(%p)", __func__, pmap);
4437 	PMAP_LOCK_INIT(pmap);
4438 	pmap->pm_pml1 = kernel_pmap->pm_pml1;
4439 	pmap->pm_pid = kernel_pmap->pm_pid;
4440 
4441 	vm_radix_init(&pmap->pm_radix);
4442 	TAILQ_INIT(&pmap->pm_pvchunk);
4443 	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
4444 	kernel_pmap->pm_flags =
4445 		pmap->pm_flags = PMAP_PDE_SUPERPAGE;
4446 }
4447 /*
4448  * pmap_protect_l3e: do the things to protect a 2mpage in a process
4449  */
4450 static boolean_t
4451 pmap_protect_l3e(pmap_t pmap, pt_entry_t *l3e, vm_offset_t sva, vm_prot_t prot)
4452 {
4453 	pt_entry_t newpde, oldpde;
4454 	vm_offset_t eva, va;
4455 	vm_page_t m;
4456 	boolean_t anychanged;
4457 
4458 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
4459 	KASSERT((sva & L3_PAGE_MASK) == 0,
4460 	    ("pmap_protect_l3e: sva is not 2mpage aligned"));
4461 	anychanged = FALSE;
4462 retry:
4463 	oldpde = newpde = be64toh(*l3e);
4464 	if ((oldpde & (PG_MANAGED | PG_M | PG_RW)) ==
4465 	    (PG_MANAGED | PG_M | PG_RW)) {
4466 		eva = sva + L3_PAGE_SIZE;
4467 		for (va = sva, m = PHYS_TO_VM_PAGE(oldpde & PG_PS_FRAME);
4468 		    va < eva; va += PAGE_SIZE, m++)
4469 			vm_page_dirty(m);
4470 	}
4471 	if ((prot & VM_PROT_WRITE) == 0) {
4472 		newpde &= ~(PG_RW | PG_M);
4473 		newpde |= RPTE_EAA_R;
4474 	}
4475 	if (prot & VM_PROT_EXECUTE)
4476 		newpde |= PG_X;
4477 	if (newpde != oldpde) {
4478 		/*
4479 		 * As an optimization to future operations on this PDE, clear
4480 		 * PG_PROMOTED.  The impending invalidation will remove any
4481 		 * lingering 4KB page mappings from the TLB.
4482 		 */
4483 		if (!atomic_cmpset_long(l3e, htobe64(oldpde), htobe64(newpde & ~PG_PROMOTED)))
4484 			goto retry;
4485 		anychanged = TRUE;
4486 	}
4487 	return (anychanged);
4488 }
4489 
4490 void
4491 mmu_radix_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva,
4492     vm_prot_t prot)
4493 {
4494 	vm_offset_t va_next;
4495 	pml1_entry_t *l1e;
4496 	pml2_entry_t *l2e;
4497 	pml3_entry_t ptpaddr, *l3e;
4498 	pt_entry_t *pte;
4499 	boolean_t anychanged;
4500 
4501 	CTR5(KTR_PMAP, "%s(%p, %#x, %#x, %#x)", __func__, pmap, sva, eva,
4502 	    prot);
4503 
4504 	KASSERT((prot & ~VM_PROT_ALL) == 0, ("invalid prot %x", prot));
4505 	if (prot == VM_PROT_NONE) {
4506 		mmu_radix_remove(pmap, sva, eva);
4507 		return;
4508 	}
4509 
4510 	if ((prot & (VM_PROT_WRITE|VM_PROT_EXECUTE)) ==
4511 	    (VM_PROT_WRITE|VM_PROT_EXECUTE))
4512 		return;
4513 
4514 #ifdef INVARIANTS
4515 	if (VERBOSE_PROTECT || pmap_logging)
4516 		printf("pmap_protect(%p, %#lx, %#lx, %x) - asid: %lu\n",
4517 			   pmap, sva, eva, prot, pmap->pm_pid);
4518 #endif
4519 	anychanged = FALSE;
4520 
4521 	PMAP_LOCK(pmap);
4522 	for (; sva < eva; sva = va_next) {
4523 		l1e = pmap_pml1e(pmap, sva);
4524 		if ((be64toh(*l1e) & PG_V) == 0) {
4525 			va_next = (sva + L1_PAGE_SIZE) & ~L1_PAGE_MASK;
4526 			if (va_next < sva)
4527 				va_next = eva;
4528 			continue;
4529 		}
4530 
4531 		l2e = pmap_l1e_to_l2e(l1e, sva);
4532 		if ((be64toh(*l2e) & PG_V) == 0) {
4533 			va_next = (sva + L2_PAGE_SIZE) & ~L2_PAGE_MASK;
4534 			if (va_next < sva)
4535 				va_next = eva;
4536 			continue;
4537 		}
4538 
4539 		va_next = (sva + L3_PAGE_SIZE) & ~L3_PAGE_MASK;
4540 		if (va_next < sva)
4541 			va_next = eva;
4542 
4543 		l3e = pmap_l2e_to_l3e(l2e, sva);
4544 		ptpaddr = be64toh(*l3e);
4545 
4546 		/*
4547 		 * Weed out invalid mappings.
4548 		 */
4549 		if (ptpaddr == 0)
4550 			continue;
4551 
4552 		/*
4553 		 * Check for large page.
4554 		 */
4555 		if ((ptpaddr & RPTE_LEAF) != 0) {
4556 			/*
4557 			 * Are we protecting the entire large page?  If not,
4558 			 * demote the mapping and fall through.
4559 			 */
4560 			if (sva + L3_PAGE_SIZE == va_next && eva >= va_next) {
4561 				if (pmap_protect_l3e(pmap, l3e, sva, prot))
4562 					anychanged = TRUE;
4563 				continue;
4564 			} else if (!pmap_demote_l3e(pmap, l3e, sva)) {
4565 				/*
4566 				 * The large page mapping was destroyed.
4567 				 */
4568 				continue;
4569 			}
4570 		}
4571 
4572 		if (va_next > eva)
4573 			va_next = eva;
4574 
4575 		for (pte = pmap_l3e_to_pte(l3e, sva); sva != va_next; pte++,
4576 		    sva += PAGE_SIZE) {
4577 			pt_entry_t obits, pbits;
4578 			vm_page_t m;
4579 
4580 retry:
4581 			MPASS(pte == pmap_pte(pmap, sva));
4582 			obits = pbits = be64toh(*pte);
4583 			if ((pbits & PG_V) == 0)
4584 				continue;
4585 
4586 			if ((prot & VM_PROT_WRITE) == 0) {
4587 				if ((pbits & (PG_MANAGED | PG_M | PG_RW)) ==
4588 				    (PG_MANAGED | PG_M | PG_RW)) {
4589 					m = PHYS_TO_VM_PAGE(pbits & PG_FRAME);
4590 					vm_page_dirty(m);
4591 				}
4592 				pbits &= ~(PG_RW | PG_M);
4593 				pbits |= RPTE_EAA_R;
4594 			}
4595 			if (prot & VM_PROT_EXECUTE)
4596 				pbits |= PG_X;
4597 
4598 			if (pbits != obits) {
4599 				if (!atomic_cmpset_long(pte, htobe64(obits), htobe64(pbits)))
4600 					goto retry;
4601 				if (obits & (PG_A|PG_M)) {
4602 					anychanged = TRUE;
4603 #ifdef INVARIANTS
4604 					if (VERBOSE_PROTECT || pmap_logging)
4605 						printf("%#lx %#lx -> %#lx\n",
4606 						    sva, obits, pbits);
4607 #endif
4608 				}
4609 			}
4610 		}
4611 	}
4612 	if (anychanged)
4613 		pmap_invalidate_all(pmap);
4614 	PMAP_UNLOCK(pmap);
4615 }
4616 
4617 void
4618 mmu_radix_qenter(vm_offset_t sva, vm_page_t *ma, int count)
4619 {
4620 
4621 	CTR4(KTR_PMAP, "%s(%#x, %p, %d)", __func__, sva, ma, count);
4622 	pt_entry_t oldpte, pa, *pte;
4623 	vm_page_t m;
4624 	uint64_t cache_bits, attr_bits;
4625 	vm_offset_t va;
4626 
4627 	oldpte = 0;
4628 	attr_bits = RPTE_EAA_R | RPTE_EAA_W | RPTE_EAA_P | PG_M | PG_A;
4629 	va = sva;
4630 	pte = kvtopte(va);
4631 	while (va < sva + PAGE_SIZE * count) {
4632 		if (__predict_false((va & L3_PAGE_MASK) == 0))
4633 			pte = kvtopte(va);
4634 		MPASS(pte == pmap_pte(kernel_pmap, va));
4635 
4636 		/*
4637 		 * XXX there has to be a more efficient way than traversing
4638 		 * the page table every time - but go for correctness for
4639 		 * today
4640 		 */
4641 
4642 		m = *ma++;
4643 		cache_bits = pmap_cache_bits(m->md.mdpg_cache_attrs);
4644 		pa = VM_PAGE_TO_PHYS(m) | cache_bits | attr_bits;
4645 		if (be64toh(*pte) != pa) {
4646 			oldpte |= be64toh(*pte);
4647 			pte_store(pte, pa);
4648 		}
4649 		va += PAGE_SIZE;
4650 		pte++;
4651 	}
4652 	if (__predict_false((oldpte & RPTE_VALID) != 0))
4653 		pmap_invalidate_range(kernel_pmap, sva, sva + count *
4654 		    PAGE_SIZE);
4655 	else
4656 		ptesync();
4657 }
4658 
4659 void
4660 mmu_radix_qremove(vm_offset_t sva, int count)
4661 {
4662 	vm_offset_t va;
4663 	pt_entry_t *pte;
4664 
4665 	CTR3(KTR_PMAP, "%s(%#x, %d)", __func__, sva, count);
4666 	KASSERT(sva >= VM_MIN_KERNEL_ADDRESS, ("usermode or dmap va %lx", sva));
4667 
4668 	va = sva;
4669 	pte = kvtopte(va);
4670 	while (va < sva + PAGE_SIZE * count) {
4671 		if (__predict_false((va & L3_PAGE_MASK) == 0))
4672 			pte = kvtopte(va);
4673 		pte_clear(pte);
4674 		pte++;
4675 		va += PAGE_SIZE;
4676 	}
4677 	pmap_invalidate_range(kernel_pmap, sva, va);
4678 }
4679 
4680 /***************************************************
4681  * Page table page management routines.....
4682  ***************************************************/
4683 /*
4684  * Schedule the specified unused page table page to be freed.  Specifically,
4685  * add the page to the specified list of pages that will be released to the
4686  * physical memory manager after the TLB has been updated.
4687  */
4688 static __inline void
4689 pmap_add_delayed_free_list(vm_page_t m, struct spglist *free,
4690     boolean_t set_PG_ZERO)
4691 {
4692 
4693 	if (set_PG_ZERO)
4694 		m->flags |= PG_ZERO;
4695 	else
4696 		m->flags &= ~PG_ZERO;
4697 	SLIST_INSERT_HEAD(free, m, plinks.s.ss);
4698 }
4699 
4700 /*
4701  * Inserts the specified page table page into the specified pmap's collection
4702  * of idle page table pages.  Each of a pmap's page table pages is responsible
4703  * for mapping a distinct range of virtual addresses.  The pmap's collection is
4704  * ordered by this virtual address range.
4705  */
4706 static __inline int
4707 pmap_insert_pt_page(pmap_t pmap, vm_page_t mpte)
4708 {
4709 
4710 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
4711 	return (vm_radix_insert(&pmap->pm_radix, mpte));
4712 }
4713 
4714 /*
4715  * Removes the page table page mapping the specified virtual address from the
4716  * specified pmap's collection of idle page table pages, and returns it.
4717  * Otherwise, returns NULL if there is no page table page corresponding to the
4718  * specified virtual address.
4719  */
4720 static __inline vm_page_t
4721 pmap_remove_pt_page(pmap_t pmap, vm_offset_t va)
4722 {
4723 
4724 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
4725 	return (vm_radix_remove(&pmap->pm_radix, pmap_l3e_pindex(va)));
4726 }
4727 
4728 /*
4729  * Decrements a page table page's wire count, which is used to record the
4730  * number of valid page table entries within the page.  If the wire count
4731  * drops to zero, then the page table page is unmapped.  Returns TRUE if the
4732  * page table page was unmapped and FALSE otherwise.
4733  */
4734 static inline boolean_t
4735 pmap_unwire_ptp(pmap_t pmap, vm_offset_t va, vm_page_t m, struct spglist *free)
4736 {
4737 
4738 	--m->ref_count;
4739 	if (m->ref_count == 0) {
4740 		_pmap_unwire_ptp(pmap, va, m, free);
4741 		return (TRUE);
4742 	} else
4743 		return (FALSE);
4744 }
4745 
4746 static void
4747 _pmap_unwire_ptp(pmap_t pmap, vm_offset_t va, vm_page_t m, struct spglist *free)
4748 {
4749 
4750 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
4751 	/*
4752 	 * unmap the page table page
4753 	 */
4754 	if (m->pindex >= NUPDE + NUPDPE) {
4755 		/* PDP page */
4756 		pml1_entry_t *pml1;
4757 		pml1 = pmap_pml1e(pmap, va);
4758 		*pml1 = 0;
4759 	} else if (m->pindex >= NUPDE) {
4760 		/* PD page */
4761 		pml2_entry_t *l2e;
4762 		l2e = pmap_pml2e(pmap, va);
4763 		*l2e = 0;
4764 	} else {
4765 		/* PTE page */
4766 		pml3_entry_t *l3e;
4767 		l3e = pmap_pml3e(pmap, va);
4768 		*l3e = 0;
4769 	}
4770 	pmap_resident_count_dec(pmap, 1);
4771 	if (m->pindex < NUPDE) {
4772 		/* We just released a PT, unhold the matching PD */
4773 		vm_page_t pdpg;
4774 
4775 		pdpg = PHYS_TO_VM_PAGE(be64toh(*pmap_pml2e(pmap, va)) & PG_FRAME);
4776 		pmap_unwire_ptp(pmap, va, pdpg, free);
4777 	}
4778 	else if (m->pindex >= NUPDE && m->pindex < (NUPDE + NUPDPE)) {
4779 		/* We just released a PD, unhold the matching PDP */
4780 		vm_page_t pdppg;
4781 
4782 		pdppg = PHYS_TO_VM_PAGE(be64toh(*pmap_pml1e(pmap, va)) & PG_FRAME);
4783 		pmap_unwire_ptp(pmap, va, pdppg, free);
4784 	}
4785 
4786 	/*
4787 	 * Put page on a list so that it is released after
4788 	 * *ALL* TLB shootdown is done
4789 	 */
4790 	pmap_add_delayed_free_list(m, free, TRUE);
4791 }
4792 
4793 /*
4794  * After removing a page table entry, this routine is used to
4795  * conditionally free the page, and manage the hold/wire counts.
4796  */
4797 static int
4798 pmap_unuse_pt(pmap_t pmap, vm_offset_t va, pml3_entry_t ptepde,
4799     struct spglist *free)
4800 {
4801 	vm_page_t mpte;
4802 
4803 	if (va >= VM_MAXUSER_ADDRESS)
4804 		return (0);
4805 	KASSERT(ptepde != 0, ("pmap_unuse_pt: ptepde != 0"));
4806 	mpte = PHYS_TO_VM_PAGE(ptepde & PG_FRAME);
4807 	return (pmap_unwire_ptp(pmap, va, mpte, free));
4808 }
4809 
4810 void
4811 mmu_radix_release(pmap_t pmap)
4812 {
4813 
4814 	CTR2(KTR_PMAP, "%s(%p)", __func__, pmap);
4815 	KASSERT(pmap->pm_stats.resident_count == 0,
4816 	    ("pmap_release: pmap resident count %ld != 0",
4817 	    pmap->pm_stats.resident_count));
4818 	KASSERT(vm_radix_is_empty(&pmap->pm_radix),
4819 	    ("pmap_release: pmap has reserved page table page(s)"));
4820 
4821 	pmap_invalidate_all(pmap);
4822 	isa3_proctab[pmap->pm_pid].proctab0 = 0;
4823 	uma_zfree(zone_radix_pgd, pmap->pm_pml1);
4824 	vmem_free(asid_arena, pmap->pm_pid, 1);
4825 }
4826 
4827 /*
4828  * Create the PV entry for a 2MB page mapping.  Always returns true unless the
4829  * flag PMAP_ENTER_NORECLAIM is specified.  If that flag is specified, returns
4830  * false if the PV entry cannot be allocated without resorting to reclamation.
4831  */
4832 static bool
4833 pmap_pv_insert_l3e(pmap_t pmap, vm_offset_t va, pml3_entry_t pde, u_int flags,
4834     struct rwlock **lockp)
4835 {
4836 	struct md_page *pvh;
4837 	pv_entry_t pv;
4838 	vm_paddr_t pa;
4839 
4840 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
4841 	/* Pass NULL instead of the lock pointer to disable reclamation. */
4842 	if ((pv = get_pv_entry(pmap, (flags & PMAP_ENTER_NORECLAIM) != 0 ?
4843 	    NULL : lockp)) == NULL)
4844 		return (false);
4845 	pv->pv_va = va;
4846 	pa = pde & PG_PS_FRAME;
4847 	CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, pa);
4848 	pvh = pa_to_pvh(pa);
4849 	TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_link);
4850 	pvh->pv_gen++;
4851 	return (true);
4852 }
4853 
4854 /*
4855  * Fills a page table page with mappings to consecutive physical pages.
4856  */
4857 static void
4858 pmap_fill_ptp(pt_entry_t *firstpte, pt_entry_t newpte)
4859 {
4860 	pt_entry_t *pte;
4861 
4862 	for (pte = firstpte; pte < firstpte + NPTEPG; pte++) {
4863 		*pte = htobe64(newpte);
4864 		newpte += PAGE_SIZE;
4865 	}
4866 }
4867 
4868 static boolean_t
4869 pmap_demote_l3e(pmap_t pmap, pml3_entry_t *pde, vm_offset_t va)
4870 {
4871 	struct rwlock *lock;
4872 	boolean_t rv;
4873 
4874 	lock = NULL;
4875 	rv = pmap_demote_l3e_locked(pmap, pde, va, &lock);
4876 	if (lock != NULL)
4877 		rw_wunlock(lock);
4878 	return (rv);
4879 }
4880 
4881 static boolean_t
4882 pmap_demote_l3e_locked(pmap_t pmap, pml3_entry_t *l3e, vm_offset_t va,
4883     struct rwlock **lockp)
4884 {
4885 	pml3_entry_t oldpde;
4886 	pt_entry_t *firstpte;
4887 	vm_paddr_t mptepa;
4888 	vm_page_t mpte;
4889 	struct spglist free;
4890 	vm_offset_t sva;
4891 
4892 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
4893 	oldpde = be64toh(*l3e);
4894 	KASSERT((oldpde & (RPTE_LEAF | PG_V)) == (RPTE_LEAF | PG_V),
4895 	    ("pmap_demote_l3e: oldpde is missing RPTE_LEAF and/or PG_V %lx",
4896 	    oldpde));
4897 	if ((oldpde & PG_A) == 0 || (mpte = pmap_remove_pt_page(pmap, va)) ==
4898 	    NULL) {
4899 		KASSERT((oldpde & PG_W) == 0,
4900 		    ("pmap_demote_l3e: page table page for a wired mapping"
4901 		    " is missing"));
4902 
4903 		/*
4904 		 * Invalidate the 2MB page mapping and return "failure" if the
4905 		 * mapping was never accessed or the allocation of the new
4906 		 * page table page fails.  If the 2MB page mapping belongs to
4907 		 * the direct map region of the kernel's address space, then
4908 		 * the page allocation request specifies the highest possible
4909 		 * priority (VM_ALLOC_INTERRUPT).  Otherwise, the priority is
4910 		 * normal.  Page table pages are preallocated for every other
4911 		 * part of the kernel address space, so the direct map region
4912 		 * is the only part of the kernel address space that must be
4913 		 * handled here.
4914 		 */
4915 		if ((oldpde & PG_A) == 0 || (mpte = vm_page_alloc_noobj(
4916 		    (va >= DMAP_MIN_ADDRESS && va < DMAP_MAX_ADDRESS ?
4917 		    VM_ALLOC_INTERRUPT : 0) | VM_ALLOC_WIRED)) == NULL) {
4918 			SLIST_INIT(&free);
4919 			sva = trunc_2mpage(va);
4920 			pmap_remove_l3e(pmap, l3e, sva, &free, lockp);
4921 			pmap_invalidate_l3e_page(pmap, sva, oldpde);
4922 			vm_page_free_pages_toq(&free, true);
4923 			CTR2(KTR_PMAP, "pmap_demote_l3e: failure for va %#lx"
4924 			    " in pmap %p", va, pmap);
4925 			return (FALSE);
4926 		}
4927 		mpte->pindex = pmap_l3e_pindex(va);
4928 		if (va < VM_MAXUSER_ADDRESS)
4929 			pmap_resident_count_inc(pmap, 1);
4930 	}
4931 	mptepa = VM_PAGE_TO_PHYS(mpte);
4932 	firstpte = (pt_entry_t *)PHYS_TO_DMAP(mptepa);
4933 	KASSERT((oldpde & PG_A) != 0,
4934 	    ("pmap_demote_l3e: oldpde is missing PG_A"));
4935 	KASSERT((oldpde & (PG_M | PG_RW)) != PG_RW,
4936 	    ("pmap_demote_l3e: oldpde is missing PG_M"));
4937 
4938 	/*
4939 	 * If the page table page is new, initialize it.
4940 	 */
4941 	if (mpte->ref_count == 1) {
4942 		mpte->ref_count = NPTEPG;
4943 		pmap_fill_ptp(firstpte, oldpde);
4944 	}
4945 
4946 	KASSERT((be64toh(*firstpte) & PG_FRAME) == (oldpde & PG_FRAME),
4947 	    ("pmap_demote_l3e: firstpte and newpte map different physical"
4948 	    " addresses"));
4949 
4950 	/*
4951 	 * If the mapping has changed attributes, update the page table
4952 	 * entries.
4953 	 */
4954 	if ((be64toh(*firstpte) & PG_PTE_PROMOTE) != (oldpde & PG_PTE_PROMOTE))
4955 		pmap_fill_ptp(firstpte, oldpde);
4956 
4957 	/*
4958 	 * The spare PV entries must be reserved prior to demoting the
4959 	 * mapping, that is, prior to changing the PDE.  Otherwise, the state
4960 	 * of the PDE and the PV lists will be inconsistent, which can result
4961 	 * in reclaim_pv_chunk() attempting to remove a PV entry from the
4962 	 * wrong PV list and pmap_pv_demote_l3e() failing to find the expected
4963 	 * PV entry for the 2MB page mapping that is being demoted.
4964 	 */
4965 	if ((oldpde & PG_MANAGED) != 0)
4966 		reserve_pv_entries(pmap, NPTEPG - 1, lockp);
4967 
4968 	/*
4969 	 * Demote the mapping.  This pmap is locked.  The old PDE has
4970 	 * PG_A set.  If the old PDE has PG_RW set, it also has PG_M
4971 	 * set.  Thus, there is no danger of a race with another
4972 	 * processor changing the setting of PG_A and/or PG_M between
4973 	 * the read above and the store below.
4974 	 */
4975 	pde_store(l3e, mptepa);
4976 	pmap_invalidate_l3e_page(pmap, trunc_2mpage(va), oldpde);
4977 	/*
4978 	 * Demote the PV entry.
4979 	 */
4980 	if ((oldpde & PG_MANAGED) != 0)
4981 		pmap_pv_demote_l3e(pmap, va, oldpde & PG_PS_FRAME, lockp);
4982 
4983 	counter_u64_add(pmap_l3e_demotions, 1);
4984 	CTR2(KTR_PMAP, "pmap_demote_l3e: success for va %#lx"
4985 	    " in pmap %p", va, pmap);
4986 	return (TRUE);
4987 }
4988 
4989 /*
4990  * pmap_remove_kernel_pde: Remove a kernel superpage mapping.
4991  */
4992 static void
4993 pmap_remove_kernel_l3e(pmap_t pmap, pml3_entry_t *l3e, vm_offset_t va)
4994 {
4995 	vm_paddr_t mptepa;
4996 	vm_page_t mpte;
4997 
4998 	KASSERT(pmap == kernel_pmap, ("pmap %p is not kernel_pmap", pmap));
4999 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
5000 	mpte = pmap_remove_pt_page(pmap, va);
5001 	if (mpte == NULL)
5002 		panic("pmap_remove_kernel_pde: Missing pt page.");
5003 
5004 	mptepa = VM_PAGE_TO_PHYS(mpte);
5005 
5006 	/*
5007 	 * Initialize the page table page.
5008 	 */
5009 	pagezero(PHYS_TO_DMAP(mptepa));
5010 
5011 	/*
5012 	 * Demote the mapping.
5013 	 */
5014 	pde_store(l3e, mptepa);
5015 	ptesync();
5016 }
5017 
5018 /*
5019  * pmap_remove_l3e: do the things to unmap a superpage in a process
5020  */
5021 static int
5022 pmap_remove_l3e(pmap_t pmap, pml3_entry_t *pdq, vm_offset_t sva,
5023     struct spglist *free, struct rwlock **lockp)
5024 {
5025 	struct md_page *pvh;
5026 	pml3_entry_t oldpde;
5027 	vm_offset_t eva, va;
5028 	vm_page_t m, mpte;
5029 
5030 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
5031 	KASSERT((sva & L3_PAGE_MASK) == 0,
5032 	    ("pmap_remove_l3e: sva is not 2mpage aligned"));
5033 	oldpde = be64toh(pte_load_clear(pdq));
5034 	if (oldpde & PG_W)
5035 		pmap->pm_stats.wired_count -= (L3_PAGE_SIZE / PAGE_SIZE);
5036 	pmap_resident_count_dec(pmap, L3_PAGE_SIZE / PAGE_SIZE);
5037 	if (oldpde & PG_MANAGED) {
5038 		CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, oldpde & PG_PS_FRAME);
5039 		pvh = pa_to_pvh(oldpde & PG_PS_FRAME);
5040 		pmap_pvh_free(pvh, pmap, sva);
5041 		eva = sva + L3_PAGE_SIZE;
5042 		for (va = sva, m = PHYS_TO_VM_PAGE(oldpde & PG_PS_FRAME);
5043 		    va < eva; va += PAGE_SIZE, m++) {
5044 			if ((oldpde & (PG_M | PG_RW)) == (PG_M | PG_RW))
5045 				vm_page_dirty(m);
5046 			if (oldpde & PG_A)
5047 				vm_page_aflag_set(m, PGA_REFERENCED);
5048 			if (TAILQ_EMPTY(&m->md.pv_list) &&
5049 			    TAILQ_EMPTY(&pvh->pv_list))
5050 				vm_page_aflag_clear(m, PGA_WRITEABLE);
5051 		}
5052 	}
5053 	if (pmap == kernel_pmap) {
5054 		pmap_remove_kernel_l3e(pmap, pdq, sva);
5055 	} else {
5056 		mpte = pmap_remove_pt_page(pmap, sva);
5057 		if (mpte != NULL) {
5058 			pmap_resident_count_dec(pmap, 1);
5059 			KASSERT(mpte->ref_count == NPTEPG,
5060 			    ("pmap_remove_l3e: pte page wire count error"));
5061 			mpte->ref_count = 0;
5062 			pmap_add_delayed_free_list(mpte, free, FALSE);
5063 		}
5064 	}
5065 	return (pmap_unuse_pt(pmap, sva, be64toh(*pmap_pml2e(pmap, sva)), free));
5066 }
5067 
5068 /*
5069  * pmap_remove_pte: do the things to unmap a page in a process
5070  */
5071 static int
5072 pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t va,
5073     pml3_entry_t ptepde, struct spglist *free, struct rwlock **lockp)
5074 {
5075 	struct md_page *pvh;
5076 	pt_entry_t oldpte;
5077 	vm_page_t m;
5078 
5079 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
5080 	oldpte = be64toh(pte_load_clear(ptq));
5081 	if (oldpte & RPTE_WIRED)
5082 		pmap->pm_stats.wired_count -= 1;
5083 	pmap_resident_count_dec(pmap, 1);
5084 	if (oldpte & RPTE_MANAGED) {
5085 		m = PHYS_TO_VM_PAGE(oldpte & PG_FRAME);
5086 		if ((oldpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
5087 			vm_page_dirty(m);
5088 		if (oldpte & PG_A)
5089 			vm_page_aflag_set(m, PGA_REFERENCED);
5090 		CHANGE_PV_LIST_LOCK_TO_VM_PAGE(lockp, m);
5091 		pmap_pvh_free(&m->md, pmap, va);
5092 		if (TAILQ_EMPTY(&m->md.pv_list) &&
5093 		    (m->flags & PG_FICTITIOUS) == 0) {
5094 			pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
5095 			if (TAILQ_EMPTY(&pvh->pv_list))
5096 				vm_page_aflag_clear(m, PGA_WRITEABLE);
5097 		}
5098 	}
5099 	return (pmap_unuse_pt(pmap, va, ptepde, free));
5100 }
5101 
5102 /*
5103  * Remove a single page from a process address space
5104  */
5105 static bool
5106 pmap_remove_page(pmap_t pmap, vm_offset_t va, pml3_entry_t *l3e,
5107     struct spglist *free)
5108 {
5109 	struct rwlock *lock;
5110 	pt_entry_t *pte;
5111 	bool invalidate_all;
5112 
5113 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
5114 	if ((be64toh(*l3e) & RPTE_VALID) == 0) {
5115 		return (false);
5116 	}
5117 	pte = pmap_l3e_to_pte(l3e, va);
5118 	if ((be64toh(*pte) & RPTE_VALID) == 0) {
5119 		return (false);
5120 	}
5121 	lock = NULL;
5122 
5123 	invalidate_all = pmap_remove_pte(pmap, pte, va, be64toh(*l3e), free, &lock);
5124 	if (lock != NULL)
5125 		rw_wunlock(lock);
5126 	if (!invalidate_all)
5127 		pmap_invalidate_page(pmap, va);
5128 	return (invalidate_all);
5129 }
5130 
5131 /*
5132  * Removes the specified range of addresses from the page table page.
5133  */
5134 static bool
5135 pmap_remove_ptes(pmap_t pmap, vm_offset_t sva, vm_offset_t eva,
5136     pml3_entry_t *l3e, struct spglist *free, struct rwlock **lockp)
5137 {
5138 	pt_entry_t *pte;
5139 	vm_offset_t va;
5140 	bool anyvalid;
5141 
5142 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
5143 	anyvalid = false;
5144 	va = eva;
5145 	for (pte = pmap_l3e_to_pte(l3e, sva); sva != eva; pte++,
5146 	    sva += PAGE_SIZE) {
5147 		MPASS(pte == pmap_pte(pmap, sva));
5148 		if (*pte == 0) {
5149 			if (va != eva) {
5150 				anyvalid = true;
5151 				va = eva;
5152 			}
5153 			continue;
5154 		}
5155 		if (va == eva)
5156 			va = sva;
5157 		if (pmap_remove_pte(pmap, pte, sva, be64toh(*l3e), free, lockp)) {
5158 			anyvalid = true;
5159 			sva += PAGE_SIZE;
5160 			break;
5161 		}
5162 	}
5163 	if (anyvalid)
5164 		pmap_invalidate_all(pmap);
5165 	else if (va != eva)
5166 		pmap_invalidate_range(pmap, va, sva);
5167 	return (anyvalid);
5168 }
5169 
5170 void
5171 mmu_radix_remove(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
5172 {
5173 	struct rwlock *lock;
5174 	vm_offset_t va_next;
5175 	pml1_entry_t *l1e;
5176 	pml2_entry_t *l2e;
5177 	pml3_entry_t ptpaddr, *l3e;
5178 	struct spglist free;
5179 	bool anyvalid;
5180 
5181 	CTR4(KTR_PMAP, "%s(%p, %#x, %#x)", __func__, pmap, sva, eva);
5182 
5183 	/*
5184 	 * Perform an unsynchronized read.  This is, however, safe.
5185 	 */
5186 	if (pmap->pm_stats.resident_count == 0)
5187 		return;
5188 
5189 	anyvalid = false;
5190 	SLIST_INIT(&free);
5191 
5192 	/* XXX something fishy here */
5193 	sva = (sva + PAGE_MASK) & ~PAGE_MASK;
5194 	eva = (eva + PAGE_MASK) & ~PAGE_MASK;
5195 
5196 	PMAP_LOCK(pmap);
5197 
5198 	/*
5199 	 * special handling of removing one page.  a very
5200 	 * common operation and easy to short circuit some
5201 	 * code.
5202 	 */
5203 	if (sva + PAGE_SIZE == eva) {
5204 		l3e = pmap_pml3e(pmap, sva);
5205 		if (l3e && (be64toh(*l3e) & RPTE_LEAF) == 0) {
5206 			anyvalid = pmap_remove_page(pmap, sva, l3e, &free);
5207 			goto out;
5208 		}
5209 	}
5210 
5211 	lock = NULL;
5212 	for (; sva < eva; sva = va_next) {
5213 		if (pmap->pm_stats.resident_count == 0)
5214 			break;
5215 		l1e = pmap_pml1e(pmap, sva);
5216 		if (l1e == NULL || (be64toh(*l1e) & PG_V) == 0) {
5217 			va_next = (sva + L1_PAGE_SIZE) & ~L1_PAGE_MASK;
5218 			if (va_next < sva)
5219 				va_next = eva;
5220 			continue;
5221 		}
5222 
5223 		l2e = pmap_l1e_to_l2e(l1e, sva);
5224 		if (l2e == NULL || (be64toh(*l2e) & PG_V) == 0) {
5225 			va_next = (sva + L2_PAGE_SIZE) & ~L2_PAGE_MASK;
5226 			if (va_next < sva)
5227 				va_next = eva;
5228 			continue;
5229 		}
5230 
5231 		/*
5232 		 * Calculate index for next page table.
5233 		 */
5234 		va_next = (sva + L3_PAGE_SIZE) & ~L3_PAGE_MASK;
5235 		if (va_next < sva)
5236 			va_next = eva;
5237 
5238 		l3e = pmap_l2e_to_l3e(l2e, sva);
5239 		ptpaddr = be64toh(*l3e);
5240 
5241 		/*
5242 		 * Weed out invalid mappings.
5243 		 */
5244 		if (ptpaddr == 0)
5245 			continue;
5246 
5247 		/*
5248 		 * Check for large page.
5249 		 */
5250 		if ((ptpaddr & RPTE_LEAF) != 0) {
5251 			/*
5252 			 * Are we removing the entire large page?  If not,
5253 			 * demote the mapping and fall through.
5254 			 */
5255 			if (sva + L3_PAGE_SIZE == va_next && eva >= va_next) {
5256 				pmap_remove_l3e(pmap, l3e, sva, &free, &lock);
5257 				anyvalid = true;
5258 				continue;
5259 			} else if (!pmap_demote_l3e_locked(pmap, l3e, sva,
5260 			    &lock)) {
5261 				/* The large page mapping was destroyed. */
5262 				continue;
5263 			} else
5264 				ptpaddr = be64toh(*l3e);
5265 		}
5266 
5267 		/*
5268 		 * Limit our scan to either the end of the va represented
5269 		 * by the current page table page, or to the end of the
5270 		 * range being removed.
5271 		 */
5272 		if (va_next > eva)
5273 			va_next = eva;
5274 
5275 		if (pmap_remove_ptes(pmap, sva, va_next, l3e, &free, &lock))
5276 			anyvalid = true;
5277 	}
5278 	if (lock != NULL)
5279 		rw_wunlock(lock);
5280 out:
5281 	if (anyvalid)
5282 		pmap_invalidate_all(pmap);
5283 	PMAP_UNLOCK(pmap);
5284 	vm_page_free_pages_toq(&free, true);
5285 }
5286 
5287 void
5288 mmu_radix_remove_all(vm_page_t m)
5289 {
5290 	struct md_page *pvh;
5291 	pv_entry_t pv;
5292 	pmap_t pmap;
5293 	struct rwlock *lock;
5294 	pt_entry_t *pte, tpte;
5295 	pml3_entry_t *l3e;
5296 	vm_offset_t va;
5297 	struct spglist free;
5298 	int pvh_gen, md_gen;
5299 
5300 	CTR2(KTR_PMAP, "%s(%p)", __func__, m);
5301 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
5302 	    ("pmap_remove_all: page %p is not managed", m));
5303 	SLIST_INIT(&free);
5304 	lock = VM_PAGE_TO_PV_LIST_LOCK(m);
5305 	pvh = (m->flags & PG_FICTITIOUS) != 0 ? &pv_dummy :
5306 	    pa_to_pvh(VM_PAGE_TO_PHYS(m));
5307 retry:
5308 	rw_wlock(lock);
5309 	while ((pv = TAILQ_FIRST(&pvh->pv_list)) != NULL) {
5310 		pmap = PV_PMAP(pv);
5311 		if (!PMAP_TRYLOCK(pmap)) {
5312 			pvh_gen = pvh->pv_gen;
5313 			rw_wunlock(lock);
5314 			PMAP_LOCK(pmap);
5315 			rw_wlock(lock);
5316 			if (pvh_gen != pvh->pv_gen) {
5317 				rw_wunlock(lock);
5318 				PMAP_UNLOCK(pmap);
5319 				goto retry;
5320 			}
5321 		}
5322 		va = pv->pv_va;
5323 		l3e = pmap_pml3e(pmap, va);
5324 		(void)pmap_demote_l3e_locked(pmap, l3e, va, &lock);
5325 		PMAP_UNLOCK(pmap);
5326 	}
5327 	while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
5328 		pmap = PV_PMAP(pv);
5329 		if (!PMAP_TRYLOCK(pmap)) {
5330 			pvh_gen = pvh->pv_gen;
5331 			md_gen = m->md.pv_gen;
5332 			rw_wunlock(lock);
5333 			PMAP_LOCK(pmap);
5334 			rw_wlock(lock);
5335 			if (pvh_gen != pvh->pv_gen || md_gen != m->md.pv_gen) {
5336 				rw_wunlock(lock);
5337 				PMAP_UNLOCK(pmap);
5338 				goto retry;
5339 			}
5340 		}
5341 		pmap_resident_count_dec(pmap, 1);
5342 		l3e = pmap_pml3e(pmap, pv->pv_va);
5343 		KASSERT((be64toh(*l3e) & RPTE_LEAF) == 0, ("pmap_remove_all: found"
5344 		    " a 2mpage in page %p's pv list", m));
5345 		pte = pmap_l3e_to_pte(l3e, pv->pv_va);
5346 		tpte = be64toh(pte_load_clear(pte));
5347 		if (tpte & PG_W)
5348 			pmap->pm_stats.wired_count--;
5349 		if (tpte & PG_A)
5350 			vm_page_aflag_set(m, PGA_REFERENCED);
5351 
5352 		/*
5353 		 * Update the vm_page_t clean and reference bits.
5354 		 */
5355 		if ((tpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
5356 			vm_page_dirty(m);
5357 		pmap_unuse_pt(pmap, pv->pv_va, be64toh(*l3e), &free);
5358 		pmap_invalidate_page(pmap, pv->pv_va);
5359 		TAILQ_REMOVE(&m->md.pv_list, pv, pv_link);
5360 		m->md.pv_gen++;
5361 		free_pv_entry(pmap, pv);
5362 		PMAP_UNLOCK(pmap);
5363 	}
5364 	vm_page_aflag_clear(m, PGA_WRITEABLE);
5365 	rw_wunlock(lock);
5366 	vm_page_free_pages_toq(&free, true);
5367 }
5368 
5369 /*
5370  * Destroy all managed, non-wired mappings in the given user-space
5371  * pmap.  This pmap cannot be active on any processor besides the
5372  * caller.
5373  *
5374  * This function cannot be applied to the kernel pmap.  Moreover, it
5375  * is not intended for general use.  It is only to be used during
5376  * process termination.  Consequently, it can be implemented in ways
5377  * that make it faster than pmap_remove().  First, it can more quickly
5378  * destroy mappings by iterating over the pmap's collection of PV
5379  * entries, rather than searching the page table.  Second, it doesn't
5380  * have to test and clear the page table entries atomically, because
5381  * no processor is currently accessing the user address space.  In
5382  * particular, a page table entry's dirty bit won't change state once
5383  * this function starts.
5384  *
5385  * Although this function destroys all of the pmap's managed,
5386  * non-wired mappings, it can delay and batch the invalidation of TLB
5387  * entries without calling pmap_delayed_invl_started() and
5388  * pmap_delayed_invl_finished().  Because the pmap is not active on
5389  * any other processor, none of these TLB entries will ever be used
5390  * before their eventual invalidation.  Consequently, there is no need
5391  * for either pmap_remove_all() or pmap_remove_write() to wait for
5392  * that eventual TLB invalidation.
5393  */
5394 
5395 void
5396 mmu_radix_remove_pages(pmap_t pmap)
5397 {
5398 
5399 	CTR2(KTR_PMAP, "%s(%p)", __func__, pmap);
5400 	pml3_entry_t ptel3e;
5401 	pt_entry_t *pte, tpte;
5402 	struct spglist free;
5403 	vm_page_t m, mpte, mt;
5404 	pv_entry_t pv;
5405 	struct md_page *pvh;
5406 	struct pv_chunk *pc, *npc;
5407 	struct rwlock *lock;
5408 	int64_t bit;
5409 	uint64_t inuse, bitmask;
5410 	int allfree, field, idx;
5411 #ifdef PV_STATS
5412 	int freed;
5413 #endif
5414 	boolean_t superpage;
5415 	vm_paddr_t pa;
5416 
5417 	/*
5418 	 * Assert that the given pmap is only active on the current
5419 	 * CPU.  Unfortunately, we cannot block another CPU from
5420 	 * activating the pmap while this function is executing.
5421 	 */
5422 	KASSERT(pmap->pm_pid == mfspr(SPR_PID),
5423 	    ("non-current asid %lu - expected %lu", pmap->pm_pid,
5424 	    mfspr(SPR_PID)));
5425 
5426 	lock = NULL;
5427 
5428 	SLIST_INIT(&free);
5429 	PMAP_LOCK(pmap);
5430 	TAILQ_FOREACH_SAFE(pc, &pmap->pm_pvchunk, pc_list, npc) {
5431 		allfree = 1;
5432 #ifdef PV_STATS
5433 		freed = 0;
5434 #endif
5435 		for (field = 0; field < _NPCM; field++) {
5436 			inuse = ~pc->pc_map[field] & pc_freemask[field];
5437 			while (inuse != 0) {
5438 				bit = cnttzd(inuse);
5439 				bitmask = 1UL << bit;
5440 				idx = field * 64 + bit;
5441 				pv = &pc->pc_pventry[idx];
5442 				inuse &= ~bitmask;
5443 
5444 				pte = pmap_pml2e(pmap, pv->pv_va);
5445 				ptel3e = be64toh(*pte);
5446 				pte = pmap_l2e_to_l3e(pte, pv->pv_va);
5447 				tpte = be64toh(*pte);
5448 				if ((tpte & (RPTE_LEAF | PG_V)) == PG_V) {
5449 					superpage = FALSE;
5450 					ptel3e = tpte;
5451 					pte = (pt_entry_t *)PHYS_TO_DMAP(tpte &
5452 					    PG_FRAME);
5453 					pte = &pte[pmap_pte_index(pv->pv_va)];
5454 					tpte = be64toh(*pte);
5455 				} else {
5456 					/*
5457 					 * Keep track whether 'tpte' is a
5458 					 * superpage explicitly instead of
5459 					 * relying on RPTE_LEAF being set.
5460 					 *
5461 					 * This is because RPTE_LEAF is numerically
5462 					 * identical to PG_PTE_PAT and thus a
5463 					 * regular page could be mistaken for
5464 					 * a superpage.
5465 					 */
5466 					superpage = TRUE;
5467 				}
5468 
5469 				if ((tpte & PG_V) == 0) {
5470 					panic("bad pte va %lx pte %lx",
5471 					    pv->pv_va, tpte);
5472 				}
5473 
5474 /*
5475  * We cannot remove wired pages from a process' mapping at this time
5476  */
5477 				if (tpte & PG_W) {
5478 					allfree = 0;
5479 					continue;
5480 				}
5481 
5482 				if (superpage)
5483 					pa = tpte & PG_PS_FRAME;
5484 				else
5485 					pa = tpte & PG_FRAME;
5486 
5487 				m = PHYS_TO_VM_PAGE(pa);
5488 				KASSERT(m->phys_addr == pa,
5489 				    ("vm_page_t %p phys_addr mismatch %016jx %016jx",
5490 				    m, (uintmax_t)m->phys_addr,
5491 				    (uintmax_t)tpte));
5492 
5493 				KASSERT((m->flags & PG_FICTITIOUS) != 0 ||
5494 				    m < &vm_page_array[vm_page_array_size],
5495 				    ("pmap_remove_pages: bad tpte %#jx",
5496 				    (uintmax_t)tpte));
5497 
5498 				pte_clear(pte);
5499 
5500 				/*
5501 				 * Update the vm_page_t clean/reference bits.
5502 				 */
5503 				if ((tpte & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
5504 					if (superpage) {
5505 						for (mt = m; mt < &m[L3_PAGE_SIZE / PAGE_SIZE]; mt++)
5506 							vm_page_dirty(mt);
5507 					} else
5508 						vm_page_dirty(m);
5509 				}
5510 
5511 				CHANGE_PV_LIST_LOCK_TO_VM_PAGE(&lock, m);
5512 
5513 				/* Mark free */
5514 				pc->pc_map[field] |= bitmask;
5515 				if (superpage) {
5516 					pmap_resident_count_dec(pmap, L3_PAGE_SIZE / PAGE_SIZE);
5517 					pvh = pa_to_pvh(tpte & PG_PS_FRAME);
5518 					TAILQ_REMOVE(&pvh->pv_list, pv, pv_link);
5519 					pvh->pv_gen++;
5520 					if (TAILQ_EMPTY(&pvh->pv_list)) {
5521 						for (mt = m; mt < &m[L3_PAGE_SIZE / PAGE_SIZE]; mt++)
5522 							if ((mt->a.flags & PGA_WRITEABLE) != 0 &&
5523 							    TAILQ_EMPTY(&mt->md.pv_list))
5524 								vm_page_aflag_clear(mt, PGA_WRITEABLE);
5525 					}
5526 					mpte = pmap_remove_pt_page(pmap, pv->pv_va);
5527 					if (mpte != NULL) {
5528 						pmap_resident_count_dec(pmap, 1);
5529 						KASSERT(mpte->ref_count == NPTEPG,
5530 						    ("pmap_remove_pages: pte page wire count error"));
5531 						mpte->ref_count = 0;
5532 						pmap_add_delayed_free_list(mpte, &free, FALSE);
5533 					}
5534 				} else {
5535 					pmap_resident_count_dec(pmap, 1);
5536 #ifdef VERBOSE_PV
5537 					printf("freeing pv (%p, %p)\n",
5538 						   pmap, pv);
5539 #endif
5540 					TAILQ_REMOVE(&m->md.pv_list, pv, pv_link);
5541 					m->md.pv_gen++;
5542 					if ((m->a.flags & PGA_WRITEABLE) != 0 &&
5543 					    TAILQ_EMPTY(&m->md.pv_list) &&
5544 					    (m->flags & PG_FICTITIOUS) == 0) {
5545 						pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
5546 						if (TAILQ_EMPTY(&pvh->pv_list))
5547 							vm_page_aflag_clear(m, PGA_WRITEABLE);
5548 					}
5549 				}
5550 				pmap_unuse_pt(pmap, pv->pv_va, ptel3e, &free);
5551 #ifdef PV_STATS
5552 				freed++;
5553 #endif
5554 			}
5555 		}
5556 		PV_STAT(atomic_add_long(&pv_entry_frees, freed));
5557 		PV_STAT(atomic_add_int(&pv_entry_spare, freed));
5558 		PV_STAT(atomic_subtract_long(&pv_entry_count, freed));
5559 		if (allfree) {
5560 			TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
5561 			free_pv_chunk(pc);
5562 		}
5563 	}
5564 	if (lock != NULL)
5565 		rw_wunlock(lock);
5566 	pmap_invalidate_all(pmap);
5567 	PMAP_UNLOCK(pmap);
5568 	vm_page_free_pages_toq(&free, true);
5569 }
5570 
5571 void
5572 mmu_radix_remove_write(vm_page_t m)
5573 {
5574 	struct md_page *pvh;
5575 	pmap_t pmap;
5576 	struct rwlock *lock;
5577 	pv_entry_t next_pv, pv;
5578 	pml3_entry_t *l3e;
5579 	pt_entry_t oldpte, *pte;
5580 	int pvh_gen, md_gen;
5581 
5582 	CTR2(KTR_PMAP, "%s(%p)", __func__, m);
5583 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
5584 	    ("pmap_remove_write: page %p is not managed", m));
5585 	vm_page_assert_busied(m);
5586 
5587 	if (!pmap_page_is_write_mapped(m))
5588 		return;
5589 	lock = VM_PAGE_TO_PV_LIST_LOCK(m);
5590 	pvh = (m->flags & PG_FICTITIOUS) != 0 ? &pv_dummy :
5591 	    pa_to_pvh(VM_PAGE_TO_PHYS(m));
5592 retry_pv_loop:
5593 	rw_wlock(lock);
5594 	TAILQ_FOREACH_SAFE(pv, &pvh->pv_list, pv_link, next_pv) {
5595 		pmap = PV_PMAP(pv);
5596 		if (!PMAP_TRYLOCK(pmap)) {
5597 			pvh_gen = pvh->pv_gen;
5598 			rw_wunlock(lock);
5599 			PMAP_LOCK(pmap);
5600 			rw_wlock(lock);
5601 			if (pvh_gen != pvh->pv_gen) {
5602 				PMAP_UNLOCK(pmap);
5603 				rw_wunlock(lock);
5604 				goto retry_pv_loop;
5605 			}
5606 		}
5607 		l3e = pmap_pml3e(pmap, pv->pv_va);
5608 		if ((be64toh(*l3e) & PG_RW) != 0)
5609 			(void)pmap_demote_l3e_locked(pmap, l3e, pv->pv_va, &lock);
5610 		KASSERT(lock == VM_PAGE_TO_PV_LIST_LOCK(m),
5611 		    ("inconsistent pv lock %p %p for page %p",
5612 		    lock, VM_PAGE_TO_PV_LIST_LOCK(m), m));
5613 		PMAP_UNLOCK(pmap);
5614 	}
5615 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
5616 		pmap = PV_PMAP(pv);
5617 		if (!PMAP_TRYLOCK(pmap)) {
5618 			pvh_gen = pvh->pv_gen;
5619 			md_gen = m->md.pv_gen;
5620 			rw_wunlock(lock);
5621 			PMAP_LOCK(pmap);
5622 			rw_wlock(lock);
5623 			if (pvh_gen != pvh->pv_gen ||
5624 			    md_gen != m->md.pv_gen) {
5625 				PMAP_UNLOCK(pmap);
5626 				rw_wunlock(lock);
5627 				goto retry_pv_loop;
5628 			}
5629 		}
5630 		l3e = pmap_pml3e(pmap, pv->pv_va);
5631 		KASSERT((be64toh(*l3e) & RPTE_LEAF) == 0,
5632 		    ("pmap_remove_write: found a 2mpage in page %p's pv list",
5633 		    m));
5634 		pte = pmap_l3e_to_pte(l3e, pv->pv_va);
5635 retry:
5636 		oldpte = be64toh(*pte);
5637 		if (oldpte & PG_RW) {
5638 			if (!atomic_cmpset_long(pte, htobe64(oldpte),
5639 			    htobe64((oldpte | RPTE_EAA_R) & ~(PG_RW | PG_M))))
5640 				goto retry;
5641 			if ((oldpte & PG_M) != 0)
5642 				vm_page_dirty(m);
5643 			pmap_invalidate_page(pmap, pv->pv_va);
5644 		}
5645 		PMAP_UNLOCK(pmap);
5646 	}
5647 	rw_wunlock(lock);
5648 	vm_page_aflag_clear(m, PGA_WRITEABLE);
5649 }
5650 
5651 /*
5652  *	Clear the wired attribute from the mappings for the specified range of
5653  *	addresses in the given pmap.  Every valid mapping within that range
5654  *	must have the wired attribute set.  In contrast, invalid mappings
5655  *	cannot have the wired attribute set, so they are ignored.
5656  *
5657  *	The wired attribute of the page table entry is not a hardware
5658  *	feature, so there is no need to invalidate any TLB entries.
5659  *	Since pmap_demote_l3e() for the wired entry must never fail,
5660  *	pmap_delayed_invl_started()/finished() calls around the
5661  *	function are not needed.
5662  */
5663 void
5664 mmu_radix_unwire(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
5665 {
5666 	vm_offset_t va_next;
5667 	pml1_entry_t *l1e;
5668 	pml2_entry_t *l2e;
5669 	pml3_entry_t *l3e;
5670 	pt_entry_t *pte;
5671 
5672 	CTR4(KTR_PMAP, "%s(%p, %#x, %#x)", __func__, pmap, sva, eva);
5673 	PMAP_LOCK(pmap);
5674 	for (; sva < eva; sva = va_next) {
5675 		l1e = pmap_pml1e(pmap, sva);
5676 		if ((be64toh(*l1e) & PG_V) == 0) {
5677 			va_next = (sva + L1_PAGE_SIZE) & ~L1_PAGE_MASK;
5678 			if (va_next < sva)
5679 				va_next = eva;
5680 			continue;
5681 		}
5682 		l2e = pmap_l1e_to_l2e(l1e, sva);
5683 		if ((be64toh(*l2e) & PG_V) == 0) {
5684 			va_next = (sva + L2_PAGE_SIZE) & ~L2_PAGE_MASK;
5685 			if (va_next < sva)
5686 				va_next = eva;
5687 			continue;
5688 		}
5689 		va_next = (sva + L3_PAGE_SIZE) & ~L3_PAGE_MASK;
5690 		if (va_next < sva)
5691 			va_next = eva;
5692 		l3e = pmap_l2e_to_l3e(l2e, sva);
5693 		if ((be64toh(*l3e) & PG_V) == 0)
5694 			continue;
5695 		if ((be64toh(*l3e) & RPTE_LEAF) != 0) {
5696 			if ((be64toh(*l3e) & PG_W) == 0)
5697 				panic("pmap_unwire: pde %#jx is missing PG_W",
5698 				    (uintmax_t)(be64toh(*l3e)));
5699 
5700 			/*
5701 			 * Are we unwiring the entire large page?  If not,
5702 			 * demote the mapping and fall through.
5703 			 */
5704 			if (sva + L3_PAGE_SIZE == va_next && eva >= va_next) {
5705 				atomic_clear_long(l3e, htobe64(PG_W));
5706 				pmap->pm_stats.wired_count -= L3_PAGE_SIZE /
5707 				    PAGE_SIZE;
5708 				continue;
5709 			} else if (!pmap_demote_l3e(pmap, l3e, sva))
5710 				panic("pmap_unwire: demotion failed");
5711 		}
5712 		if (va_next > eva)
5713 			va_next = eva;
5714 		for (pte = pmap_l3e_to_pte(l3e, sva); sva != va_next; pte++,
5715 		    sva += PAGE_SIZE) {
5716 			MPASS(pte == pmap_pte(pmap, sva));
5717 			if ((be64toh(*pte) & PG_V) == 0)
5718 				continue;
5719 			if ((be64toh(*pte) & PG_W) == 0)
5720 				panic("pmap_unwire: pte %#jx is missing PG_W",
5721 				    (uintmax_t)(be64toh(*pte)));
5722 
5723 			/*
5724 			 * PG_W must be cleared atomically.  Although the pmap
5725 			 * lock synchronizes access to PG_W, another processor
5726 			 * could be setting PG_M and/or PG_A concurrently.
5727 			 */
5728 			atomic_clear_long(pte, htobe64(PG_W));
5729 			pmap->pm_stats.wired_count--;
5730 		}
5731 	}
5732 	PMAP_UNLOCK(pmap);
5733 }
5734 
5735 void
5736 mmu_radix_zero_page(vm_page_t m)
5737 {
5738 	vm_offset_t addr;
5739 
5740 	CTR2(KTR_PMAP, "%s(%p)", __func__, m);
5741 	addr = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m));
5742 	pagezero(addr);
5743 }
5744 
5745 void
5746 mmu_radix_zero_page_area(vm_page_t m, int off, int size)
5747 {
5748 	caddr_t addr;
5749 
5750 	CTR4(KTR_PMAP, "%s(%p, %d, %d)", __func__, m, off, size);
5751 	MPASS(off + size <= PAGE_SIZE);
5752 	addr = (caddr_t)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m));
5753 	memset(addr + off, 0, size);
5754 }
5755 
5756 static int
5757 mmu_radix_mincore(pmap_t pmap, vm_offset_t addr, vm_paddr_t *locked_pa)
5758 {
5759 	pml3_entry_t *l3ep;
5760 	pt_entry_t pte;
5761 	vm_paddr_t pa;
5762 	int val;
5763 
5764 	CTR3(KTR_PMAP, "%s(%p, %#x)", __func__, pmap, addr);
5765 	PMAP_LOCK(pmap);
5766 
5767 	l3ep = pmap_pml3e(pmap, addr);
5768 	if (l3ep != NULL && (be64toh(*l3ep) & PG_V)) {
5769 		if (be64toh(*l3ep) & RPTE_LEAF) {
5770 			pte = be64toh(*l3ep);
5771 			/* Compute the physical address of the 4KB page. */
5772 			pa = ((be64toh(*l3ep) & PG_PS_FRAME) | (addr & L3_PAGE_MASK)) &
5773 			    PG_FRAME;
5774 			val = MINCORE_PSIND(1);
5775 		} else {
5776 			/* Native endian PTE, do not pass to functions */
5777 			pte = be64toh(*pmap_l3e_to_pte(l3ep, addr));
5778 			pa = pte & PG_FRAME;
5779 			val = 0;
5780 		}
5781 	} else {
5782 		pte = 0;
5783 		pa = 0;
5784 		val = 0;
5785 	}
5786 	if ((pte & PG_V) != 0) {
5787 		val |= MINCORE_INCORE;
5788 		if ((pte & (PG_M | PG_RW)) == (PG_M | PG_RW))
5789 			val |= MINCORE_MODIFIED | MINCORE_MODIFIED_OTHER;
5790 		if ((pte & PG_A) != 0)
5791 			val |= MINCORE_REFERENCED | MINCORE_REFERENCED_OTHER;
5792 	}
5793 	if ((val & (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER)) !=
5794 	    (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER) &&
5795 	    (pte & (PG_MANAGED | PG_V)) == (PG_MANAGED | PG_V)) {
5796 		*locked_pa = pa;
5797 	}
5798 	PMAP_UNLOCK(pmap);
5799 	return (val);
5800 }
5801 
5802 void
5803 mmu_radix_activate(struct thread *td)
5804 {
5805 	pmap_t pmap;
5806 	uint32_t curpid;
5807 
5808 	CTR2(KTR_PMAP, "%s(%p)", __func__, td);
5809 	critical_enter();
5810 	pmap = vmspace_pmap(td->td_proc->p_vmspace);
5811 	curpid = mfspr(SPR_PID);
5812 	if (pmap->pm_pid > isa3_base_pid &&
5813 		curpid != pmap->pm_pid) {
5814 		mmu_radix_pid_set(pmap);
5815 	}
5816 	critical_exit();
5817 }
5818 
5819 /*
5820  *	Increase the starting virtual address of the given mapping if a
5821  *	different alignment might result in more superpage mappings.
5822  */
5823 void
5824 mmu_radix_align_superpage(vm_object_t object, vm_ooffset_t offset,
5825     vm_offset_t *addr, vm_size_t size)
5826 {
5827 
5828 	CTR5(KTR_PMAP, "%s(%p, %#x, %p, %#x)", __func__, object, offset, addr,
5829 	    size);
5830 	vm_offset_t superpage_offset;
5831 
5832 	if (size < L3_PAGE_SIZE)
5833 		return;
5834 	if (object != NULL && (object->flags & OBJ_COLORED) != 0)
5835 		offset += ptoa(object->pg_color);
5836 	superpage_offset = offset & L3_PAGE_MASK;
5837 	if (size - ((L3_PAGE_SIZE - superpage_offset) & L3_PAGE_MASK) < L3_PAGE_SIZE ||
5838 	    (*addr & L3_PAGE_MASK) == superpage_offset)
5839 		return;
5840 	if ((*addr & L3_PAGE_MASK) < superpage_offset)
5841 		*addr = (*addr & ~L3_PAGE_MASK) + superpage_offset;
5842 	else
5843 		*addr = ((*addr + L3_PAGE_MASK) & ~L3_PAGE_MASK) + superpage_offset;
5844 }
5845 
5846 static void *
5847 mmu_radix_mapdev_attr(vm_paddr_t pa, vm_size_t size, vm_memattr_t attr)
5848 {
5849 	vm_offset_t va, tmpva, ppa, offset;
5850 
5851 	ppa = trunc_page(pa);
5852 	offset = pa & PAGE_MASK;
5853 	size = roundup2(offset + size, PAGE_SIZE);
5854 	if (pa < powerpc_ptob(Maxmem))
5855 		panic("bad pa: %#lx less than Maxmem %#lx\n",
5856 			  pa, powerpc_ptob(Maxmem));
5857 	va = kva_alloc(size);
5858 	if (bootverbose)
5859 		printf("%s(%#lx, %lu, %d)\n", __func__, pa, size, attr);
5860 	KASSERT(size > 0, ("%s(%#lx, %lu, %d)", __func__, pa, size, attr));
5861 
5862 	if (!va)
5863 		panic("%s: Couldn't alloc kernel virtual memory", __func__);
5864 
5865 	for (tmpva = va; size > 0;) {
5866 		mmu_radix_kenter_attr(tmpva, ppa, attr);
5867 		size -= PAGE_SIZE;
5868 		tmpva += PAGE_SIZE;
5869 		ppa += PAGE_SIZE;
5870 	}
5871 	ptesync();
5872 
5873 	return ((void *)(va + offset));
5874 }
5875 
5876 static void *
5877 mmu_radix_mapdev(vm_paddr_t pa, vm_size_t size)
5878 {
5879 
5880 	CTR3(KTR_PMAP, "%s(%#x, %#x)", __func__, pa, size);
5881 
5882 	return (mmu_radix_mapdev_attr(pa, size, VM_MEMATTR_DEFAULT));
5883 }
5884 
5885 void
5886 mmu_radix_page_set_memattr(vm_page_t m, vm_memattr_t ma)
5887 {
5888 
5889 	CTR3(KTR_PMAP, "%s(%p, %#x)", __func__, m, ma);
5890 	m->md.mdpg_cache_attrs = ma;
5891 
5892 	/*
5893 	 * If "m" is a normal page, update its direct mapping.  This update
5894 	 * can be relied upon to perform any cache operations that are
5895 	 * required for data coherence.
5896 	 */
5897 	if ((m->flags & PG_FICTITIOUS) == 0 &&
5898 	    mmu_radix_change_attr(PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m)),
5899 	    PAGE_SIZE, m->md.mdpg_cache_attrs))
5900 		panic("memory attribute change on the direct map failed");
5901 }
5902 
5903 static void
5904 mmu_radix_unmapdev(void *p, vm_size_t size)
5905 {
5906 	vm_offset_t offset, va;
5907 
5908 	CTR3(KTR_PMAP, "%s(%p, %#x)", __func__, p, size);
5909 
5910 	/* If we gave a direct map region in pmap_mapdev, do nothing */
5911 	va = (vm_offset_t)p;
5912 	if (va >= DMAP_MIN_ADDRESS && va < DMAP_MAX_ADDRESS)
5913 		return;
5914 
5915 	offset = va & PAGE_MASK;
5916 	size = round_page(offset + size);
5917 	va = trunc_page(va);
5918 
5919 	if (pmap_initialized) {
5920 		mmu_radix_qremove(va, atop(size));
5921 		kva_free(va, size);
5922 	}
5923 }
5924 
5925 void
5926 mmu_radix_sync_icache(pmap_t pm, vm_offset_t va, vm_size_t sz)
5927 {
5928 	vm_paddr_t pa = 0;
5929 	int sync_sz;
5930 
5931 	if (__predict_false(pm == NULL))
5932 		pm = &curthread->td_proc->p_vmspace->vm_pmap;
5933 
5934 	while (sz > 0) {
5935 		pa = pmap_extract(pm, va);
5936 		sync_sz = PAGE_SIZE - (va & PAGE_MASK);
5937 		sync_sz = min(sync_sz, sz);
5938 		if (pa != 0) {
5939 			pa += (va & PAGE_MASK);
5940 			__syncicache((void *)PHYS_TO_DMAP(pa), sync_sz);
5941 		}
5942 		va += sync_sz;
5943 		sz -= sync_sz;
5944 	}
5945 }
5946 
5947 static __inline void
5948 pmap_pte_attr(pt_entry_t *pte, uint64_t cache_bits, uint64_t mask)
5949 {
5950 	uint64_t opte, npte;
5951 
5952 	/*
5953 	 * The cache mode bits are all in the low 32-bits of the
5954 	 * PTE, so we can just spin on updating the low 32-bits.
5955 	 */
5956 	do {
5957 		opte = be64toh(*pte);
5958 		npte = opte & ~mask;
5959 		npte |= cache_bits;
5960 	} while (npte != opte && !atomic_cmpset_long(pte, htobe64(opte), htobe64(npte)));
5961 }
5962 
5963 /*
5964  * Tries to demote a 1GB page mapping.
5965  */
5966 static boolean_t
5967 pmap_demote_l2e(pmap_t pmap, pml2_entry_t *l2e, vm_offset_t va)
5968 {
5969 	pml2_entry_t oldpdpe;
5970 	pml3_entry_t *firstpde, newpde, *pde;
5971 	vm_paddr_t pdpgpa;
5972 	vm_page_t pdpg;
5973 
5974 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
5975 	oldpdpe = be64toh(*l2e);
5976 	KASSERT((oldpdpe & (RPTE_LEAF | PG_V)) == (RPTE_LEAF | PG_V),
5977 	    ("pmap_demote_pdpe: oldpdpe is missing PG_PS and/or PG_V"));
5978 	pdpg = vm_page_alloc_noobj(VM_ALLOC_INTERRUPT | VM_ALLOC_WIRED);
5979 	if (pdpg == NULL) {
5980 		CTR2(KTR_PMAP, "pmap_demote_pdpe: failure for va %#lx"
5981 		    " in pmap %p", va, pmap);
5982 		return (FALSE);
5983 	}
5984 	pdpg->pindex = va >> L2_PAGE_SIZE_SHIFT;
5985 	pdpgpa = VM_PAGE_TO_PHYS(pdpg);
5986 	firstpde = (pml3_entry_t *)PHYS_TO_DMAP(pdpgpa);
5987 	KASSERT((oldpdpe & PG_A) != 0,
5988 	    ("pmap_demote_pdpe: oldpdpe is missing PG_A"));
5989 	KASSERT((oldpdpe & (PG_M | PG_RW)) != PG_RW,
5990 	    ("pmap_demote_pdpe: oldpdpe is missing PG_M"));
5991 	newpde = oldpdpe;
5992 
5993 	/*
5994 	 * Initialize the page directory page.
5995 	 */
5996 	for (pde = firstpde; pde < firstpde + NPDEPG; pde++) {
5997 		*pde = htobe64(newpde);
5998 		newpde += L3_PAGE_SIZE;
5999 	}
6000 
6001 	/*
6002 	 * Demote the mapping.
6003 	 */
6004 	pde_store(l2e, pdpgpa);
6005 
6006 	/*
6007 	 * Flush PWC --- XXX revisit
6008 	 */
6009 	pmap_invalidate_all(pmap);
6010 
6011 	counter_u64_add(pmap_l2e_demotions, 1);
6012 	CTR2(KTR_PMAP, "pmap_demote_pdpe: success for va %#lx"
6013 	    " in pmap %p", va, pmap);
6014 	return (TRUE);
6015 }
6016 
6017 vm_paddr_t
6018 mmu_radix_kextract(vm_offset_t va)
6019 {
6020 	pml3_entry_t l3e;
6021 	vm_paddr_t pa;
6022 
6023 	CTR2(KTR_PMAP, "%s(%#x)", __func__, va);
6024 	if (va >= DMAP_MIN_ADDRESS && va < DMAP_MAX_ADDRESS) {
6025 		pa = DMAP_TO_PHYS(va);
6026 	} else {
6027 		/* Big-endian PTE on stack */
6028 		l3e = *pmap_pml3e(kernel_pmap, va);
6029 		if (be64toh(l3e) & RPTE_LEAF) {
6030 			pa = (be64toh(l3e) & PG_PS_FRAME) | (va & L3_PAGE_MASK);
6031 			pa |= (va & L3_PAGE_MASK);
6032 		} else {
6033 			/*
6034 			 * Beware of a concurrent promotion that changes the
6035 			 * PDE at this point!  For example, vtopte() must not
6036 			 * be used to access the PTE because it would use the
6037 			 * new PDE.  It is, however, safe to use the old PDE
6038 			 * because the page table page is preserved by the
6039 			 * promotion.
6040 			 */
6041 			pa = be64toh(*pmap_l3e_to_pte(&l3e, va));
6042 			pa = (pa & PG_FRAME) | (va & PAGE_MASK);
6043 			pa |= (va & PAGE_MASK);
6044 		}
6045 	}
6046 	return (pa);
6047 }
6048 
6049 static pt_entry_t
6050 mmu_radix_calc_wimg(vm_paddr_t pa, vm_memattr_t ma)
6051 {
6052 
6053 	if (ma != VM_MEMATTR_DEFAULT) {
6054 		return pmap_cache_bits(ma);
6055 	}
6056 
6057 	/*
6058 	 * Assume the page is cache inhibited and access is guarded unless
6059 	 * it's in our available memory array.
6060 	 */
6061 	for (int i = 0; i < pregions_sz; i++) {
6062 		if ((pa >= pregions[i].mr_start) &&
6063 		    (pa < (pregions[i].mr_start + pregions[i].mr_size)))
6064 			return (RPTE_ATTR_MEM);
6065 	}
6066 	return (RPTE_ATTR_GUARDEDIO);
6067 }
6068 
6069 static void
6070 mmu_radix_kenter_attr(vm_offset_t va, vm_paddr_t pa, vm_memattr_t ma)
6071 {
6072 	pt_entry_t *pte, pteval;
6073 	uint64_t cache_bits;
6074 
6075 	pte = kvtopte(va);
6076 	MPASS(pte != NULL);
6077 	pteval = pa | RPTE_EAA_R | RPTE_EAA_W | RPTE_EAA_P | PG_M | PG_A;
6078 	cache_bits = mmu_radix_calc_wimg(pa, ma);
6079 	pte_store(pte, pteval | cache_bits);
6080 }
6081 
6082 void
6083 mmu_radix_kremove(vm_offset_t va)
6084 {
6085 	pt_entry_t *pte;
6086 
6087 	CTR2(KTR_PMAP, "%s(%#x)", __func__, va);
6088 
6089 	pte = kvtopte(va);
6090 	pte_clear(pte);
6091 }
6092 
6093 int
6094 mmu_radix_decode_kernel_ptr(vm_offset_t addr,
6095     int *is_user, vm_offset_t *decoded)
6096 {
6097 
6098 	CTR2(KTR_PMAP, "%s(%#jx)", __func__, (uintmax_t)addr);
6099 	*decoded = addr;
6100 	*is_user = (addr < VM_MAXUSER_ADDRESS);
6101 	return (0);
6102 }
6103 
6104 static int
6105 mmu_radix_dev_direct_mapped(vm_paddr_t pa, vm_size_t size)
6106 {
6107 
6108 	CTR3(KTR_PMAP, "%s(%#x, %#x)", __func__, pa, size);
6109 	return (mem_valid(pa, size));
6110 }
6111 
6112 static void
6113 mmu_radix_scan_init(void)
6114 {
6115 
6116 	CTR1(KTR_PMAP, "%s()", __func__);
6117 	UNIMPLEMENTED();
6118 }
6119 
6120 static void
6121 mmu_radix_dumpsys_map(vm_paddr_t pa, size_t sz,
6122 	void **va)
6123 {
6124 	CTR4(KTR_PMAP, "%s(%#jx, %#zx, %p)", __func__, (uintmax_t)pa, sz, va);
6125 	UNIMPLEMENTED();
6126 }
6127 
6128 vm_offset_t
6129 mmu_radix_quick_enter_page(vm_page_t m)
6130 {
6131 	vm_paddr_t paddr;
6132 
6133 	CTR2(KTR_PMAP, "%s(%p)", __func__, m);
6134 	paddr = VM_PAGE_TO_PHYS(m);
6135 	return (PHYS_TO_DMAP(paddr));
6136 }
6137 
6138 void
6139 mmu_radix_quick_remove_page(vm_offset_t addr __unused)
6140 {
6141 	/* no work to do here */
6142 	CTR2(KTR_PMAP, "%s(%#x)", __func__, addr);
6143 }
6144 
6145 static void
6146 pmap_invalidate_cache_range(vm_offset_t sva, vm_offset_t eva)
6147 {
6148 	cpu_flush_dcache((void *)sva, eva - sva);
6149 }
6150 
6151 int
6152 mmu_radix_change_attr(vm_offset_t va, vm_size_t size,
6153     vm_memattr_t mode)
6154 {
6155 	int error;
6156 
6157 	CTR4(KTR_PMAP, "%s(%#x, %#zx, %d)", __func__, va, size, mode);
6158 	PMAP_LOCK(kernel_pmap);
6159 	error = pmap_change_attr_locked(va, size, mode, true);
6160 	PMAP_UNLOCK(kernel_pmap);
6161 	return (error);
6162 }
6163 
6164 static int
6165 pmap_change_attr_locked(vm_offset_t va, vm_size_t size, int mode, bool flush)
6166 {
6167 	vm_offset_t base, offset, tmpva;
6168 	vm_paddr_t pa_start, pa_end, pa_end1;
6169 	pml2_entry_t *l2e;
6170 	pml3_entry_t *l3e;
6171 	pt_entry_t *pte;
6172 	int cache_bits, error;
6173 	boolean_t changed;
6174 
6175 	PMAP_LOCK_ASSERT(kernel_pmap, MA_OWNED);
6176 	base = trunc_page(va);
6177 	offset = va & PAGE_MASK;
6178 	size = round_page(offset + size);
6179 
6180 	/*
6181 	 * Only supported on kernel virtual addresses, including the direct
6182 	 * map but excluding the recursive map.
6183 	 */
6184 	if (base < DMAP_MIN_ADDRESS)
6185 		return (EINVAL);
6186 
6187 	cache_bits = pmap_cache_bits(mode);
6188 	changed = FALSE;
6189 
6190 	/*
6191 	 * Pages that aren't mapped aren't supported.  Also break down 2MB pages
6192 	 * into 4KB pages if required.
6193 	 */
6194 	for (tmpva = base; tmpva < base + size; ) {
6195 		l2e = pmap_pml2e(kernel_pmap, tmpva);
6196 		if (l2e == NULL || *l2e == 0)
6197 			return (EINVAL);
6198 		if (be64toh(*l2e) & RPTE_LEAF) {
6199 			/*
6200 			 * If the current 1GB page already has the required
6201 			 * memory type, then we need not demote this page. Just
6202 			 * increment tmpva to the next 1GB page frame.
6203 			 */
6204 			if ((be64toh(*l2e) & RPTE_ATTR_MASK) == cache_bits) {
6205 				tmpva = trunc_1gpage(tmpva) + L2_PAGE_SIZE;
6206 				continue;
6207 			}
6208 
6209 			/*
6210 			 * If the current offset aligns with a 1GB page frame
6211 			 * and there is at least 1GB left within the range, then
6212 			 * we need not break down this page into 2MB pages.
6213 			 */
6214 			if ((tmpva & L2_PAGE_MASK) == 0 &&
6215 			    tmpva + L2_PAGE_MASK < base + size) {
6216 				tmpva += L2_PAGE_MASK;
6217 				continue;
6218 			}
6219 			if (!pmap_demote_l2e(kernel_pmap, l2e, tmpva))
6220 				return (ENOMEM);
6221 		}
6222 		l3e = pmap_l2e_to_l3e(l2e, tmpva);
6223 		KASSERT(l3e != NULL, ("no l3e entry for %#lx in %p\n",
6224 		    tmpva, l2e));
6225 		if (*l3e == 0)
6226 			return (EINVAL);
6227 		if (be64toh(*l3e) & RPTE_LEAF) {
6228 			/*
6229 			 * If the current 2MB page already has the required
6230 			 * memory type, then we need not demote this page. Just
6231 			 * increment tmpva to the next 2MB page frame.
6232 			 */
6233 			if ((be64toh(*l3e) & RPTE_ATTR_MASK) == cache_bits) {
6234 				tmpva = trunc_2mpage(tmpva) + L3_PAGE_SIZE;
6235 				continue;
6236 			}
6237 
6238 			/*
6239 			 * If the current offset aligns with a 2MB page frame
6240 			 * and there is at least 2MB left within the range, then
6241 			 * we need not break down this page into 4KB pages.
6242 			 */
6243 			if ((tmpva & L3_PAGE_MASK) == 0 &&
6244 			    tmpva + L3_PAGE_MASK < base + size) {
6245 				tmpva += L3_PAGE_SIZE;
6246 				continue;
6247 			}
6248 			if (!pmap_demote_l3e(kernel_pmap, l3e, tmpva))
6249 				return (ENOMEM);
6250 		}
6251 		pte = pmap_l3e_to_pte(l3e, tmpva);
6252 		if (*pte == 0)
6253 			return (EINVAL);
6254 		tmpva += PAGE_SIZE;
6255 	}
6256 	error = 0;
6257 
6258 	/*
6259 	 * Ok, all the pages exist, so run through them updating their
6260 	 * cache mode if required.
6261 	 */
6262 	pa_start = pa_end = 0;
6263 	for (tmpva = base; tmpva < base + size; ) {
6264 		l2e = pmap_pml2e(kernel_pmap, tmpva);
6265 		if (be64toh(*l2e) & RPTE_LEAF) {
6266 			if ((be64toh(*l2e) & RPTE_ATTR_MASK) != cache_bits) {
6267 				pmap_pte_attr(l2e, cache_bits,
6268 				    RPTE_ATTR_MASK);
6269 				changed = TRUE;
6270 			}
6271 			if (tmpva >= VM_MIN_KERNEL_ADDRESS &&
6272 			    (*l2e & PG_PS_FRAME) < dmaplimit) {
6273 				if (pa_start == pa_end) {
6274 					/* Start physical address run. */
6275 					pa_start = be64toh(*l2e) & PG_PS_FRAME;
6276 					pa_end = pa_start + L2_PAGE_SIZE;
6277 				} else if (pa_end == (be64toh(*l2e) & PG_PS_FRAME))
6278 					pa_end += L2_PAGE_SIZE;
6279 				else {
6280 					/* Run ended, update direct map. */
6281 					error = pmap_change_attr_locked(
6282 					    PHYS_TO_DMAP(pa_start),
6283 					    pa_end - pa_start, mode, flush);
6284 					if (error != 0)
6285 						break;
6286 					/* Start physical address run. */
6287 					pa_start = be64toh(*l2e) & PG_PS_FRAME;
6288 					pa_end = pa_start + L2_PAGE_SIZE;
6289 				}
6290 			}
6291 			tmpva = trunc_1gpage(tmpva) + L2_PAGE_SIZE;
6292 			continue;
6293 		}
6294 		l3e = pmap_l2e_to_l3e(l2e, tmpva);
6295 		if (be64toh(*l3e) & RPTE_LEAF) {
6296 			if ((be64toh(*l3e) & RPTE_ATTR_MASK) != cache_bits) {
6297 				pmap_pte_attr(l3e, cache_bits,
6298 				    RPTE_ATTR_MASK);
6299 				changed = TRUE;
6300 			}
6301 			if (tmpva >= VM_MIN_KERNEL_ADDRESS &&
6302 			    (be64toh(*l3e) & PG_PS_FRAME) < dmaplimit) {
6303 				if (pa_start == pa_end) {
6304 					/* Start physical address run. */
6305 					pa_start = be64toh(*l3e) & PG_PS_FRAME;
6306 					pa_end = pa_start + L3_PAGE_SIZE;
6307 				} else if (pa_end == (be64toh(*l3e) & PG_PS_FRAME))
6308 					pa_end += L3_PAGE_SIZE;
6309 				else {
6310 					/* Run ended, update direct map. */
6311 					error = pmap_change_attr_locked(
6312 					    PHYS_TO_DMAP(pa_start),
6313 					    pa_end - pa_start, mode, flush);
6314 					if (error != 0)
6315 						break;
6316 					/* Start physical address run. */
6317 					pa_start = be64toh(*l3e) & PG_PS_FRAME;
6318 					pa_end = pa_start + L3_PAGE_SIZE;
6319 				}
6320 			}
6321 			tmpva = trunc_2mpage(tmpva) + L3_PAGE_SIZE;
6322 		} else {
6323 			pte = pmap_l3e_to_pte(l3e, tmpva);
6324 			if ((be64toh(*pte) & RPTE_ATTR_MASK) != cache_bits) {
6325 				pmap_pte_attr(pte, cache_bits,
6326 				    RPTE_ATTR_MASK);
6327 				changed = TRUE;
6328 			}
6329 			if (tmpva >= VM_MIN_KERNEL_ADDRESS &&
6330 			    (be64toh(*pte) & PG_FRAME) < dmaplimit) {
6331 				if (pa_start == pa_end) {
6332 					/* Start physical address run. */
6333 					pa_start = be64toh(*pte) & PG_FRAME;
6334 					pa_end = pa_start + PAGE_SIZE;
6335 				} else if (pa_end == (be64toh(*pte) & PG_FRAME))
6336 					pa_end += PAGE_SIZE;
6337 				else {
6338 					/* Run ended, update direct map. */
6339 					error = pmap_change_attr_locked(
6340 					    PHYS_TO_DMAP(pa_start),
6341 					    pa_end - pa_start, mode, flush);
6342 					if (error != 0)
6343 						break;
6344 					/* Start physical address run. */
6345 					pa_start = be64toh(*pte) & PG_FRAME;
6346 					pa_end = pa_start + PAGE_SIZE;
6347 				}
6348 			}
6349 			tmpva += PAGE_SIZE;
6350 		}
6351 	}
6352 	if (error == 0 && pa_start != pa_end && pa_start < dmaplimit) {
6353 		pa_end1 = MIN(pa_end, dmaplimit);
6354 		if (pa_start != pa_end1)
6355 			error = pmap_change_attr_locked(PHYS_TO_DMAP(pa_start),
6356 			    pa_end1 - pa_start, mode, flush);
6357 	}
6358 
6359 	/*
6360 	 * Flush CPU caches if required to make sure any data isn't cached that
6361 	 * shouldn't be, etc.
6362 	 */
6363 	if (changed) {
6364 		pmap_invalidate_all(kernel_pmap);
6365 
6366 		if (flush)
6367 			pmap_invalidate_cache_range(base, tmpva);
6368 	}
6369 	return (error);
6370 }
6371 
6372 /*
6373  * Allocate physical memory for the vm_page array and map it into KVA,
6374  * attempting to back the vm_pages with domain-local memory.
6375  */
6376 void
6377 mmu_radix_page_array_startup(long pages)
6378 {
6379 #ifdef notyet
6380 	pml2_entry_t *l2e;
6381 	pml3_entry_t *pde;
6382 	pml3_entry_t newl3;
6383 	vm_offset_t va;
6384 	long pfn;
6385 	int domain, i;
6386 #endif
6387 	vm_paddr_t pa;
6388 	vm_offset_t start, end;
6389 
6390 	vm_page_array_size = pages;
6391 
6392 	start = VM_MIN_KERNEL_ADDRESS;
6393 	end = start + pages * sizeof(struct vm_page);
6394 
6395 	pa = vm_phys_early_alloc(0, end - start);
6396 
6397 	start = mmu_radix_map(&start, pa, end - start, VM_MEMATTR_DEFAULT);
6398 #ifdef notyet
6399 	/* TODO: NUMA vm_page_array.  Blocked out until then (copied from amd64). */
6400 	for (va = start; va < end; va += L3_PAGE_SIZE) {
6401 		pfn = first_page + (va - start) / sizeof(struct vm_page);
6402 		domain = vm_phys_domain(ptoa(pfn));
6403 		l2e = pmap_pml2e(kernel_pmap, va);
6404 		if ((be64toh(*l2e) & PG_V) == 0) {
6405 			pa = vm_phys_early_alloc(domain, PAGE_SIZE);
6406 			dump_add_page(pa);
6407 			pagezero(PHYS_TO_DMAP(pa));
6408 			pde_store(l2e, (pml2_entry_t)pa);
6409 		}
6410 		pde = pmap_l2e_to_l3e(l2e, va);
6411 		if ((be64toh(*pde) & PG_V) != 0)
6412 			panic("Unexpected pde %p", pde);
6413 		pa = vm_phys_early_alloc(domain, L3_PAGE_SIZE);
6414 		for (i = 0; i < NPDEPG; i++)
6415 			dump_add_page(pa + i * PAGE_SIZE);
6416 		newl3 = (pml3_entry_t)(pa | RPTE_EAA_P | RPTE_EAA_R | RPTE_EAA_W);
6417 		pte_store(pde, newl3);
6418 	}
6419 #endif
6420 	vm_page_array = (vm_page_t)start;
6421 }
6422 
6423 #ifdef DDB
6424 #include <sys/kdb.h>
6425 #include <ddb/ddb.h>
6426 
6427 static void
6428 pmap_pte_walk(pml1_entry_t *l1, vm_offset_t va)
6429 {
6430 	pml1_entry_t *l1e;
6431 	pml2_entry_t *l2e;
6432 	pml3_entry_t *l3e;
6433 	pt_entry_t *pte;
6434 
6435 	l1e = &l1[pmap_pml1e_index(va)];
6436 	db_printf("VA %#016lx l1e %#016lx", va, be64toh(*l1e));
6437 	if ((be64toh(*l1e) & PG_V) == 0) {
6438 		db_printf("\n");
6439 		return;
6440 	}
6441 	l2e = pmap_l1e_to_l2e(l1e, va);
6442 	db_printf(" l2e %#016lx", be64toh(*l2e));
6443 	if ((be64toh(*l2e) & PG_V) == 0 || (be64toh(*l2e) & RPTE_LEAF) != 0) {
6444 		db_printf("\n");
6445 		return;
6446 	}
6447 	l3e = pmap_l2e_to_l3e(l2e, va);
6448 	db_printf(" l3e %#016lx", be64toh(*l3e));
6449 	if ((be64toh(*l3e) & PG_V) == 0 || (be64toh(*l3e) & RPTE_LEAF) != 0) {
6450 		db_printf("\n");
6451 		return;
6452 	}
6453 	pte = pmap_l3e_to_pte(l3e, va);
6454 	db_printf(" pte %#016lx\n", be64toh(*pte));
6455 }
6456 
6457 void
6458 pmap_page_print_mappings(vm_page_t m)
6459 {
6460 	pmap_t pmap;
6461 	pv_entry_t pv;
6462 
6463 	db_printf("page %p(%lx)\n", m, m->phys_addr);
6464 	/* need to elide locks if running in ddb */
6465 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
6466 		db_printf("pv: %p ", pv);
6467 		db_printf("va: %#016lx ", pv->pv_va);
6468 		pmap = PV_PMAP(pv);
6469 		db_printf("pmap %p  ", pmap);
6470 		if (pmap != NULL) {
6471 			db_printf("asid: %lu\n", pmap->pm_pid);
6472 			pmap_pte_walk(pmap->pm_pml1, pv->pv_va);
6473 		}
6474 	}
6475 }
6476 
6477 DB_SHOW_COMMAND(pte, pmap_print_pte)
6478 {
6479 	vm_offset_t va;
6480 	pmap_t pmap;
6481 
6482 	if (!have_addr) {
6483 		db_printf("show pte addr\n");
6484 		return;
6485 	}
6486 	va = (vm_offset_t)addr;
6487 
6488 	if (va >= DMAP_MIN_ADDRESS)
6489 		pmap = kernel_pmap;
6490 	else if (kdb_thread != NULL)
6491 		pmap = vmspace_pmap(kdb_thread->td_proc->p_vmspace);
6492 	else
6493 		pmap = vmspace_pmap(curthread->td_proc->p_vmspace);
6494 
6495 	pmap_pte_walk(pmap->pm_pml1, va);
6496 }
6497 
6498 #endif
6499