xref: /freebsd/sys/powerpc/aim/mmu_radix.c (revision 7cc42f6d)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2018 Matthew Macy
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  *
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26  */
27 
28 #include <sys/cdefs.h>
29 __FBSDID("$FreeBSD$");
30 
31 #include <sys/param.h>
32 #include <sys/kernel.h>
33 #include <sys/systm.h>
34 #include <sys/conf.h>
35 #include <sys/bitstring.h>
36 #include <sys/queue.h>
37 #include <sys/cpuset.h>
38 #include <sys/endian.h>
39 #include <sys/kerneldump.h>
40 #include <sys/ktr.h>
41 #include <sys/lock.h>
42 #include <sys/syslog.h>
43 #include <sys/msgbuf.h>
44 #include <sys/malloc.h>
45 #include <sys/mman.h>
46 #include <sys/mutex.h>
47 #include <sys/proc.h>
48 #include <sys/rwlock.h>
49 #include <sys/sched.h>
50 #include <sys/sysctl.h>
51 #include <sys/systm.h>
52 #include <sys/vmem.h>
53 #include <sys/vmmeter.h>
54 #include <sys/smp.h>
55 
56 #include <sys/kdb.h>
57 
58 #include <dev/ofw/openfirm.h>
59 
60 #include <vm/vm.h>
61 #include <vm/pmap.h>
62 #include <vm/vm_param.h>
63 #include <vm/vm_kern.h>
64 #include <vm/vm_page.h>
65 #include <vm/vm_map.h>
66 #include <vm/vm_object.h>
67 #include <vm/vm_extern.h>
68 #include <vm/vm_pageout.h>
69 #include <vm/vm_phys.h>
70 #include <vm/vm_reserv.h>
71 #include <vm/uma.h>
72 
73 #include <machine/_inttypes.h>
74 #include <machine/cpu.h>
75 #include <machine/platform.h>
76 #include <machine/frame.h>
77 #include <machine/md_var.h>
78 #include <machine/psl.h>
79 #include <machine/bat.h>
80 #include <machine/hid.h>
81 #include <machine/pte.h>
82 #include <machine/sr.h>
83 #include <machine/trap.h>
84 #include <machine/mmuvar.h>
85 
86 #ifdef INVARIANTS
87 #include <vm/uma_dbg.h>
88 #endif
89 
90 #define PPC_BITLSHIFT(bit)	(sizeof(long)*NBBY - 1 - (bit))
91 #define PPC_BIT(bit)		(1UL << PPC_BITLSHIFT(bit))
92 #define PPC_BITLSHIFT_VAL(val, bit) ((val) << PPC_BITLSHIFT(bit))
93 
94 #include "opt_ddb.h"
95 #ifdef DDB
96 static void pmap_pte_walk(pml1_entry_t *l1, vm_offset_t va);
97 #endif
98 
99 #define PG_W	RPTE_WIRED
100 #define PG_V	RPTE_VALID
101 #define PG_MANAGED	RPTE_MANAGED
102 #define PG_PROMOTED	RPTE_PROMOTED
103 #define PG_M	RPTE_C
104 #define PG_A	RPTE_R
105 #define PG_X	RPTE_EAA_X
106 #define PG_RW	RPTE_EAA_W
107 #define PG_PTE_CACHE RPTE_ATTR_MASK
108 
109 #define RPTE_SHIFT 9
110 #define NLS_MASK ((1UL<<5)-1)
111 #define RPTE_ENTRIES (1UL<<RPTE_SHIFT)
112 #define RPTE_MASK (RPTE_ENTRIES-1)
113 
114 #define NLB_SHIFT 0
115 #define NLB_MASK (((1UL<<52)-1) << 8)
116 
117 extern int nkpt;
118 extern caddr_t crashdumpmap;
119 
120 #define RIC_FLUSH_TLB 0
121 #define RIC_FLUSH_PWC 1
122 #define RIC_FLUSH_ALL 2
123 
124 #define POWER9_TLB_SETS_RADIX	128	/* # sets in POWER9 TLB Radix mode */
125 
126 #define PPC_INST_TLBIE			0x7c000264
127 #define PPC_INST_TLBIEL			0x7c000224
128 #define PPC_INST_SLBIA			0x7c0003e4
129 
130 #define ___PPC_RA(a)	(((a) & 0x1f) << 16)
131 #define ___PPC_RB(b)	(((b) & 0x1f) << 11)
132 #define ___PPC_RS(s)	(((s) & 0x1f) << 21)
133 #define ___PPC_RT(t)	___PPC_RS(t)
134 #define ___PPC_R(r)	(((r) & 0x1) << 16)
135 #define ___PPC_PRS(prs)	(((prs) & 0x1) << 17)
136 #define ___PPC_RIC(ric)	(((ric) & 0x3) << 18)
137 
138 #define PPC_SLBIA(IH)	__XSTRING(.long PPC_INST_SLBIA | \
139 				       ((IH & 0x7) << 21))
140 #define	PPC_TLBIE_5(rb,rs,ric,prs,r)				\
141 	__XSTRING(.long PPC_INST_TLBIE |			\
142 			  ___PPC_RB(rb) | ___PPC_RS(rs) |	\
143 			  ___PPC_RIC(ric) | ___PPC_PRS(prs) |	\
144 			  ___PPC_R(r))
145 
146 #define	PPC_TLBIEL(rb,rs,ric,prs,r) \
147 	 __XSTRING(.long PPC_INST_TLBIEL | \
148 			   ___PPC_RB(rb) | ___PPC_RS(rs) |	\
149 			   ___PPC_RIC(ric) | ___PPC_PRS(prs) |	\
150 			   ___PPC_R(r))
151 
152 #define PPC_INVALIDATE_ERAT		PPC_SLBIA(7)
153 
154 static __inline void
155 ttusync(void)
156 {
157 	__asm __volatile("eieio; tlbsync; ptesync" ::: "memory");
158 }
159 
160 #define TLBIEL_INVAL_SEL_MASK	0xc00	/* invalidation selector */
161 #define  TLBIEL_INVAL_PAGE	0x000	/* invalidate a single page */
162 #define  TLBIEL_INVAL_SET_PID	0x400	/* invalidate a set for the current PID */
163 #define  TLBIEL_INVAL_SET_LPID	0x800	/* invalidate a set for current LPID */
164 #define  TLBIEL_INVAL_SET	0xc00	/* invalidate a set for all LPIDs */
165 
166 #define TLBIE_ACTUAL_PAGE_MASK		0xe0
167 #define  TLBIE_ACTUAL_PAGE_4K		0x00
168 #define  TLBIE_ACTUAL_PAGE_64K		0xa0
169 #define  TLBIE_ACTUAL_PAGE_2M		0x20
170 #define  TLBIE_ACTUAL_PAGE_1G		0x40
171 
172 #define TLBIE_PRS_PARTITION_SCOPE	0x0
173 #define TLBIE_PRS_PROCESS_SCOPE	0x1
174 
175 #define TLBIE_RIC_INVALIDATE_TLB	0x0	/* Invalidate just TLB */
176 #define TLBIE_RIC_INVALIDATE_PWC	0x1	/* Invalidate just PWC */
177 #define TLBIE_RIC_INVALIDATE_ALL	0x2	/* Invalidate TLB, PWC,
178 						 * cached {proc, part}tab entries
179 						 */
180 #define TLBIE_RIC_INVALIDATE_SEQ	0x3	/* HPT - only:
181 						 * Invalidate a range of translations
182 						 */
183 
184 static __always_inline void
185 radix_tlbie(uint8_t ric, uint8_t prs, uint16_t is, uint32_t pid, uint32_t lpid,
186 			vm_offset_t va, uint16_t ap)
187 {
188 	uint64_t rb, rs;
189 
190 	MPASS((va & PAGE_MASK) == 0);
191 
192 	rs = ((uint64_t)pid << 32) | lpid;
193 	rb = va | is | ap;
194 	__asm __volatile(PPC_TLBIE_5(%0, %1, %2, %3, 1) : :
195 		"r" (rb), "r" (rs), "i" (ric), "i" (prs));
196 }
197 
198 static __inline void
199 radix_tlbie_invlpg_user_4k(uint32_t pid, vm_offset_t va)
200 {
201 
202 	radix_tlbie(TLBIE_RIC_INVALIDATE_TLB, TLBIE_PRS_PROCESS_SCOPE,
203 		TLBIEL_INVAL_PAGE, pid, 0, va, TLBIE_ACTUAL_PAGE_4K);
204 }
205 
206 static __inline void
207 radix_tlbie_invlpg_user_2m(uint32_t pid, vm_offset_t va)
208 {
209 
210 	radix_tlbie(TLBIE_RIC_INVALIDATE_TLB, TLBIE_PRS_PROCESS_SCOPE,
211 		TLBIEL_INVAL_PAGE, pid, 0, va, TLBIE_ACTUAL_PAGE_2M);
212 }
213 
214 static __inline void
215 radix_tlbie_invlpwc_user(uint32_t pid)
216 {
217 
218 	radix_tlbie(TLBIE_RIC_INVALIDATE_PWC, TLBIE_PRS_PROCESS_SCOPE,
219 		TLBIEL_INVAL_SET_PID, pid, 0, 0, 0);
220 }
221 
222 static __inline void
223 radix_tlbie_flush_user(uint32_t pid)
224 {
225 
226 	radix_tlbie(TLBIE_RIC_INVALIDATE_ALL, TLBIE_PRS_PROCESS_SCOPE,
227 		TLBIEL_INVAL_SET_PID, pid, 0, 0, 0);
228 }
229 
230 static __inline void
231 radix_tlbie_invlpg_kernel_4k(vm_offset_t va)
232 {
233 
234 	radix_tlbie(TLBIE_RIC_INVALIDATE_TLB, TLBIE_PRS_PROCESS_SCOPE,
235 	    TLBIEL_INVAL_PAGE, 0, 0, va, TLBIE_ACTUAL_PAGE_4K);
236 }
237 
238 static __inline void
239 radix_tlbie_invlpg_kernel_2m(vm_offset_t va)
240 {
241 
242 	radix_tlbie(TLBIE_RIC_INVALIDATE_TLB, TLBIE_PRS_PROCESS_SCOPE,
243 	    TLBIEL_INVAL_PAGE, 0, 0, va, TLBIE_ACTUAL_PAGE_2M);
244 }
245 
246 /* 1GB pages aren't currently supported. */
247 static __inline __unused void
248 radix_tlbie_invlpg_kernel_1g(vm_offset_t va)
249 {
250 
251 	radix_tlbie(TLBIE_RIC_INVALIDATE_TLB, TLBIE_PRS_PROCESS_SCOPE,
252 	    TLBIEL_INVAL_PAGE, 0, 0, va, TLBIE_ACTUAL_PAGE_1G);
253 }
254 
255 static __inline void
256 radix_tlbie_invlpwc_kernel(void)
257 {
258 
259 	radix_tlbie(TLBIE_RIC_INVALIDATE_PWC, TLBIE_PRS_PROCESS_SCOPE,
260 	    TLBIEL_INVAL_SET_LPID, 0, 0, 0, 0);
261 }
262 
263 static __inline void
264 radix_tlbie_flush_kernel(void)
265 {
266 
267 	radix_tlbie(TLBIE_RIC_INVALIDATE_ALL, TLBIE_PRS_PROCESS_SCOPE,
268 	    TLBIEL_INVAL_SET_LPID, 0, 0, 0, 0);
269 }
270 
271 static __inline vm_pindex_t
272 pmap_l3e_pindex(vm_offset_t va)
273 {
274 	return ((va & PG_FRAME) >> L3_PAGE_SIZE_SHIFT);
275 }
276 
277 static __inline vm_pindex_t
278 pmap_pml3e_index(vm_offset_t va)
279 {
280 
281 	return ((va >> L3_PAGE_SIZE_SHIFT) & RPTE_MASK);
282 }
283 
284 static __inline vm_pindex_t
285 pmap_pml2e_index(vm_offset_t va)
286 {
287 	return ((va >> L2_PAGE_SIZE_SHIFT) & RPTE_MASK);
288 }
289 
290 static __inline vm_pindex_t
291 pmap_pml1e_index(vm_offset_t va)
292 {
293 	return ((va & PG_FRAME) >> L1_PAGE_SIZE_SHIFT);
294 }
295 
296 /* Return various clipped indexes for a given VA */
297 static __inline vm_pindex_t
298 pmap_pte_index(vm_offset_t va)
299 {
300 
301 	return ((va >> PAGE_SHIFT) & RPTE_MASK);
302 }
303 
304 /* Return a pointer to the PT slot that corresponds to a VA */
305 static __inline pt_entry_t *
306 pmap_l3e_to_pte(pt_entry_t *l3e, vm_offset_t va)
307 {
308 	pt_entry_t *pte;
309 	vm_paddr_t ptepa;
310 
311 	ptepa = (*l3e & NLB_MASK);
312 	pte = (pt_entry_t *)PHYS_TO_DMAP(ptepa);
313 	return (&pte[pmap_pte_index(va)]);
314 }
315 
316 /* Return a pointer to the PD slot that corresponds to a VA */
317 static __inline pt_entry_t *
318 pmap_l2e_to_l3e(pt_entry_t *l2e, vm_offset_t va)
319 {
320 	pt_entry_t *l3e;
321 	vm_paddr_t l3pa;
322 
323 	l3pa = (*l2e & NLB_MASK);
324 	l3e = (pml3_entry_t *)PHYS_TO_DMAP(l3pa);
325 	return (&l3e[pmap_pml3e_index(va)]);
326 }
327 
328 /* Return a pointer to the PD slot that corresponds to a VA */
329 static __inline pt_entry_t *
330 pmap_l1e_to_l2e(pt_entry_t *l1e, vm_offset_t va)
331 {
332 	pt_entry_t *l2e;
333 	vm_paddr_t l2pa;
334 
335 	l2pa = (*l1e & NLB_MASK);
336 
337 	l2e = (pml2_entry_t *)PHYS_TO_DMAP(l2pa);
338 	return (&l2e[pmap_pml2e_index(va)]);
339 }
340 
341 static __inline pml1_entry_t *
342 pmap_pml1e(pmap_t pmap, vm_offset_t va)
343 {
344 
345 	return (&pmap->pm_pml1[pmap_pml1e_index(va)]);
346 }
347 
348 static pt_entry_t *
349 pmap_pml2e(pmap_t pmap, vm_offset_t va)
350 {
351 	pt_entry_t *l1e;
352 
353 	l1e = pmap_pml1e(pmap, va);
354 	if (l1e == NULL || (*l1e & RPTE_VALID) == 0)
355 		return (NULL);
356 	return (pmap_l1e_to_l2e(l1e, va));
357 }
358 
359 static __inline pt_entry_t *
360 pmap_pml3e(pmap_t pmap, vm_offset_t va)
361 {
362 	pt_entry_t *l2e;
363 
364 	l2e = pmap_pml2e(pmap, va);
365 	if (l2e == NULL || (*l2e & RPTE_VALID) == 0)
366 		return (NULL);
367 	return (pmap_l2e_to_l3e(l2e, va));
368 }
369 
370 static __inline pt_entry_t *
371 pmap_pte(pmap_t pmap, vm_offset_t va)
372 {
373 	pt_entry_t *l3e;
374 
375 	l3e = pmap_pml3e(pmap, va);
376 	if (l3e == NULL || (*l3e & RPTE_VALID) == 0)
377 		return (NULL);
378 	return (pmap_l3e_to_pte(l3e, va));
379 }
380 
381 int nkpt = 64;
382 SYSCTL_INT(_machdep, OID_AUTO, nkpt, CTLFLAG_RD, &nkpt, 0,
383     "Number of kernel page table pages allocated on bootup");
384 
385 vm_paddr_t dmaplimit;
386 
387 SYSCTL_NODE(_vm, OID_AUTO, pmap, CTLFLAG_RD, 0, "VM/pmap parameters");
388 
389 static int pg_ps_enabled = 1;
390 SYSCTL_INT(_vm_pmap, OID_AUTO, pg_ps_enabled, CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
391     &pg_ps_enabled, 0, "Are large page mappings enabled?");
392 #ifdef INVARIANTS
393 #define VERBOSE_PMAP 0
394 #define VERBOSE_PROTECT 0
395 static int pmap_logging;
396 SYSCTL_INT(_vm_pmap, OID_AUTO, pmap_logging, CTLFLAG_RWTUN,
397     &pmap_logging, 0, "verbose debug logging");
398 #endif
399 
400 static u_int64_t	KPTphys;	/* phys addr of kernel level 1 */
401 
402 //static vm_paddr_t	KERNend;	/* phys addr of end of bootstrap data */
403 
404 static vm_offset_t qframe = 0;
405 static struct mtx qframe_mtx;
406 
407 void mmu_radix_activate(struct thread *);
408 void mmu_radix_advise(pmap_t, vm_offset_t, vm_offset_t, int);
409 void mmu_radix_align_superpage(vm_object_t, vm_ooffset_t, vm_offset_t *,
410     vm_size_t);
411 void mmu_radix_clear_modify(vm_page_t);
412 void mmu_radix_copy(pmap_t, pmap_t, vm_offset_t, vm_size_t, vm_offset_t);
413 int mmu_radix_decode_kernel_ptr(vm_offset_t, int *, vm_offset_t *);
414 int mmu_radix_enter(pmap_t, vm_offset_t, vm_page_t, vm_prot_t, u_int, int8_t);
415 void mmu_radix_enter_object(pmap_t, vm_offset_t, vm_offset_t, vm_page_t,
416 	vm_prot_t);
417 void mmu_radix_enter_quick(pmap_t, vm_offset_t, vm_page_t, vm_prot_t);
418 vm_paddr_t mmu_radix_extract(pmap_t pmap, vm_offset_t va);
419 vm_page_t mmu_radix_extract_and_hold(pmap_t, vm_offset_t, vm_prot_t);
420 void mmu_radix_kenter(vm_offset_t, vm_paddr_t);
421 vm_paddr_t mmu_radix_kextract(vm_offset_t);
422 void mmu_radix_kremove(vm_offset_t);
423 boolean_t mmu_radix_is_modified(vm_page_t);
424 boolean_t mmu_radix_is_prefaultable(pmap_t, vm_offset_t);
425 boolean_t mmu_radix_is_referenced(vm_page_t);
426 void mmu_radix_object_init_pt(pmap_t, vm_offset_t, vm_object_t,
427 	vm_pindex_t, vm_size_t);
428 boolean_t mmu_radix_page_exists_quick(pmap_t, vm_page_t);
429 void mmu_radix_page_init(vm_page_t);
430 boolean_t mmu_radix_page_is_mapped(vm_page_t m);
431 void mmu_radix_page_set_memattr(vm_page_t, vm_memattr_t);
432 int mmu_radix_page_wired_mappings(vm_page_t);
433 int mmu_radix_pinit(pmap_t);
434 void mmu_radix_protect(pmap_t, vm_offset_t, vm_offset_t, vm_prot_t);
435 bool mmu_radix_ps_enabled(pmap_t);
436 void mmu_radix_qenter(vm_offset_t, vm_page_t *, int);
437 void mmu_radix_qremove(vm_offset_t, int);
438 vm_offset_t mmu_radix_quick_enter_page(vm_page_t);
439 void mmu_radix_quick_remove_page(vm_offset_t);
440 boolean_t mmu_radix_ts_referenced(vm_page_t);
441 void mmu_radix_release(pmap_t);
442 void mmu_radix_remove(pmap_t, vm_offset_t, vm_offset_t);
443 void mmu_radix_remove_all(vm_page_t);
444 void mmu_radix_remove_pages(pmap_t);
445 void mmu_radix_remove_write(vm_page_t);
446 void mmu_radix_unwire(pmap_t, vm_offset_t, vm_offset_t);
447 void mmu_radix_zero_page(vm_page_t);
448 void mmu_radix_zero_page_area(vm_page_t, int, int);
449 int mmu_radix_change_attr(vm_offset_t, vm_size_t, vm_memattr_t);
450 void mmu_radix_page_array_startup(long pages);
451 
452 #include "mmu_oea64.h"
453 
454 /*
455  * Kernel MMU interface
456  */
457 
458 static void	mmu_radix_bootstrap(vm_offset_t, vm_offset_t);
459 
460 static void mmu_radix_copy_page(vm_page_t, vm_page_t);
461 static void mmu_radix_copy_pages(vm_page_t *ma, vm_offset_t a_offset,
462     vm_page_t *mb, vm_offset_t b_offset, int xfersize);
463 static void mmu_radix_growkernel(vm_offset_t);
464 static void mmu_radix_init(void);
465 static int mmu_radix_mincore(pmap_t, vm_offset_t, vm_paddr_t *);
466 static vm_offset_t mmu_radix_map(vm_offset_t *, vm_paddr_t, vm_paddr_t, int);
467 static void mmu_radix_pinit0(pmap_t);
468 
469 static void *mmu_radix_mapdev(vm_paddr_t, vm_size_t);
470 static void *mmu_radix_mapdev_attr(vm_paddr_t, vm_size_t, vm_memattr_t);
471 static void mmu_radix_unmapdev(vm_offset_t, vm_size_t);
472 static void mmu_radix_kenter_attr(vm_offset_t, vm_paddr_t, vm_memattr_t ma);
473 static boolean_t mmu_radix_dev_direct_mapped(vm_paddr_t, vm_size_t);
474 static void mmu_radix_dumpsys_map(vm_paddr_t pa, size_t sz, void **va);
475 static void mmu_radix_scan_init(void);
476 static void	mmu_radix_cpu_bootstrap(int ap);
477 static void	mmu_radix_tlbie_all(void);
478 
479 static struct pmap_funcs mmu_radix_methods = {
480 	.bootstrap = mmu_radix_bootstrap,
481 	.copy_page = mmu_radix_copy_page,
482 	.copy_pages = mmu_radix_copy_pages,
483 	.cpu_bootstrap = mmu_radix_cpu_bootstrap,
484 	.growkernel = mmu_radix_growkernel,
485 	.init = mmu_radix_init,
486 	.map =      		mmu_radix_map,
487 	.mincore =      	mmu_radix_mincore,
488 	.pinit = mmu_radix_pinit,
489 	.pinit0 = mmu_radix_pinit0,
490 
491 	.mapdev = mmu_radix_mapdev,
492 	.mapdev_attr = mmu_radix_mapdev_attr,
493 	.unmapdev = mmu_radix_unmapdev,
494 	.kenter_attr = mmu_radix_kenter_attr,
495 	.dev_direct_mapped = mmu_radix_dev_direct_mapped,
496 	.dumpsys_pa_init = mmu_radix_scan_init,
497 	.dumpsys_map_chunk = mmu_radix_dumpsys_map,
498 	.page_is_mapped = mmu_radix_page_is_mapped,
499 	.ps_enabled = mmu_radix_ps_enabled,
500 	.object_init_pt = mmu_radix_object_init_pt,
501 	.protect = mmu_radix_protect,
502 	/* pmap dispatcher interface */
503 	.clear_modify = mmu_radix_clear_modify,
504 	.copy = mmu_radix_copy,
505 	.enter = mmu_radix_enter,
506 	.enter_object = mmu_radix_enter_object,
507 	.enter_quick = mmu_radix_enter_quick,
508 	.extract = mmu_radix_extract,
509 	.extract_and_hold = mmu_radix_extract_and_hold,
510 	.is_modified = mmu_radix_is_modified,
511 	.is_prefaultable = mmu_radix_is_prefaultable,
512 	.is_referenced = mmu_radix_is_referenced,
513 	.ts_referenced = mmu_radix_ts_referenced,
514 	.page_exists_quick = mmu_radix_page_exists_quick,
515 	.page_init = mmu_radix_page_init,
516 	.page_wired_mappings =  mmu_radix_page_wired_mappings,
517 	.qenter = mmu_radix_qenter,
518 	.qremove = mmu_radix_qremove,
519 	.release = mmu_radix_release,
520 	.remove = mmu_radix_remove,
521 	.remove_all = mmu_radix_remove_all,
522 	.remove_write = mmu_radix_remove_write,
523 	.unwire = mmu_radix_unwire,
524 	.zero_page = mmu_radix_zero_page,
525 	.zero_page_area = mmu_radix_zero_page_area,
526 	.activate = mmu_radix_activate,
527 	.quick_enter_page =  mmu_radix_quick_enter_page,
528 	.quick_remove_page =  mmu_radix_quick_remove_page,
529 	.page_set_memattr = mmu_radix_page_set_memattr,
530 	.page_array_startup =  mmu_radix_page_array_startup,
531 
532 	/* Internal interfaces */
533 	.kenter = mmu_radix_kenter,
534 	.kextract = mmu_radix_kextract,
535 	.kremove = mmu_radix_kremove,
536 	.change_attr = mmu_radix_change_attr,
537 	.decode_kernel_ptr =  mmu_radix_decode_kernel_ptr,
538 
539 	.tlbie_all = mmu_radix_tlbie_all,
540 };
541 
542 MMU_DEF(mmu_radix, MMU_TYPE_RADIX, mmu_radix_methods);
543 
544 static boolean_t pmap_demote_l3e_locked(pmap_t pmap, pml3_entry_t *l3e, vm_offset_t va,
545 	struct rwlock **lockp);
546 static boolean_t pmap_demote_l3e(pmap_t pmap, pml3_entry_t *pde, vm_offset_t va);
547 static int pmap_unuse_pt(pmap_t, vm_offset_t, pml3_entry_t, struct spglist *);
548 static int pmap_remove_l3e(pmap_t pmap, pml3_entry_t *pdq, vm_offset_t sva,
549     struct spglist *free, struct rwlock **lockp);
550 static int pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t sva,
551     pml3_entry_t ptepde, struct spglist *free, struct rwlock **lockp);
552 static vm_page_t pmap_remove_pt_page(pmap_t pmap, vm_offset_t va);
553 static bool pmap_remove_page(pmap_t pmap, vm_offset_t va, pml3_entry_t *pde,
554     struct spglist *free);
555 static bool	pmap_remove_ptes(pmap_t pmap, vm_offset_t sva, vm_offset_t eva,
556 	pml3_entry_t *l3e, struct spglist *free, struct rwlock **lockp);
557 
558 static bool	pmap_pv_insert_l3e(pmap_t pmap, vm_offset_t va, pml3_entry_t l3e,
559 		    u_int flags, struct rwlock **lockp);
560 #if VM_NRESERVLEVEL > 0
561 static void	pmap_pv_promote_l3e(pmap_t pmap, vm_offset_t va, vm_paddr_t pa,
562 	struct rwlock **lockp);
563 #endif
564 static void	pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va);
565 static int pmap_insert_pt_page(pmap_t pmap, vm_page_t mpte);
566 static vm_page_t mmu_radix_enter_quick_locked(pmap_t pmap, vm_offset_t va, vm_page_t m,
567 	vm_prot_t prot, vm_page_t mpte, struct rwlock **lockp, bool *invalidate);
568 
569 static bool	pmap_enter_2mpage(pmap_t pmap, vm_offset_t va, vm_page_t m,
570 	vm_prot_t prot, struct rwlock **lockp);
571 static int	pmap_enter_l3e(pmap_t pmap, vm_offset_t va, pml3_entry_t newpde,
572 	u_int flags, vm_page_t m, struct rwlock **lockp);
573 
574 static vm_page_t reclaim_pv_chunk(pmap_t locked_pmap, struct rwlock **lockp);
575 static void free_pv_chunk(struct pv_chunk *pc);
576 static vm_page_t _pmap_allocpte(pmap_t pmap, vm_pindex_t ptepindex, struct rwlock **lockp);
577 static vm_page_t pmap_allocl3e(pmap_t pmap, vm_offset_t va,
578 	struct rwlock **lockp);
579 static vm_page_t pmap_allocpte(pmap_t pmap, vm_offset_t va,
580 	struct rwlock **lockp);
581 static void _pmap_unwire_ptp(pmap_t pmap, vm_offset_t va, vm_page_t m,
582     struct spglist *free);
583 static boolean_t pmap_unwire_ptp(pmap_t pmap, vm_offset_t va, vm_page_t m, struct spglist *free);
584 
585 static void pmap_invalidate_page(pmap_t pmap, vm_offset_t start);
586 static void pmap_invalidate_all(pmap_t pmap);
587 static int pmap_change_attr_locked(vm_offset_t va, vm_size_t size, int mode, bool flush);
588 
589 /*
590  * Internal flags for pmap_enter()'s helper functions.
591  */
592 #define	PMAP_ENTER_NORECLAIM	0x1000000	/* Don't reclaim PV entries. */
593 #define	PMAP_ENTER_NOREPLACE	0x2000000	/* Don't replace mappings. */
594 
595 #define UNIMPLEMENTED() panic("%s not implemented", __func__)
596 #define UNTESTED() panic("%s not yet tested", __func__)
597 
598 /* Number of supported PID bits */
599 static unsigned int isa3_pid_bits;
600 
601 /* PID to start allocating from */
602 static unsigned int isa3_base_pid;
603 
604 #define PROCTAB_SIZE_SHIFT	(isa3_pid_bits + 4)
605 #define PROCTAB_ENTRIES	(1ul << isa3_pid_bits)
606 
607 /*
608  * Map of physical memory regions.
609  */
610 static struct	mem_region *regions, *pregions;
611 static struct	numa_mem_region *numa_pregions;
612 static u_int	phys_avail_count;
613 static int	regions_sz, pregions_sz, numa_pregions_sz;
614 static struct pate *isa3_parttab;
615 static struct prte *isa3_proctab;
616 static vmem_t *asid_arena;
617 
618 extern void bs_remap_earlyboot(void);
619 
620 #define	RADIX_PGD_SIZE_SHIFT	16
621 #define RADIX_PGD_SIZE	(1UL << RADIX_PGD_SIZE_SHIFT)
622 
623 #define	RADIX_PGD_INDEX_SHIFT	(RADIX_PGD_SIZE_SHIFT-3)
624 #define NL2EPG (PAGE_SIZE/sizeof(pml2_entry_t))
625 #define NL3EPG (PAGE_SIZE/sizeof(pml3_entry_t))
626 
627 #define	NUPML1E		(RADIX_PGD_SIZE/sizeof(uint64_t))	/* number of userland PML1 pages */
628 #define	NUPDPE		(NUPML1E * NL2EPG)/* number of userland PDP pages */
629 #define	NUPDE		(NUPDPE * NL3EPG)	/* number of userland PD entries */
630 
631 /* POWER9 only permits a 64k partition table size. */
632 #define	PARTTAB_SIZE_SHIFT	16
633 #define PARTTAB_SIZE	(1UL << PARTTAB_SIZE_SHIFT)
634 
635 #define PARTTAB_HR		(1UL << 63) /* host uses radix */
636 #define PARTTAB_GR		(1UL << 63) /* guest uses radix must match host */
637 
638 /* TLB flush actions. Used as argument to tlbiel_all() */
639 enum {
640 	TLB_INVAL_SCOPE_LPID = 0,	/* invalidate TLBs for current LPID */
641 	TLB_INVAL_SCOPE_GLOBAL = 1,	/* invalidate all TLBs */
642 };
643 
644 #define	NPV_LIST_LOCKS	MAXCPU
645 static int pmap_initialized;
646 static vm_paddr_t proctab0pa;
647 static vm_paddr_t parttab_phys;
648 CTASSERT(sizeof(struct pv_chunk) == PAGE_SIZE);
649 
650 /*
651  * Data for the pv entry allocation mechanism.
652  * Updates to pv_invl_gen are protected by the pv_list_locks[]
653  * elements, but reads are not.
654  */
655 static TAILQ_HEAD(pch, pv_chunk) pv_chunks = TAILQ_HEAD_INITIALIZER(pv_chunks);
656 static struct mtx __exclusive_cache_line pv_chunks_mutex;
657 static struct rwlock __exclusive_cache_line pv_list_locks[NPV_LIST_LOCKS];
658 static struct md_page *pv_table;
659 static struct md_page pv_dummy;
660 
661 #ifdef PV_STATS
662 #define PV_STAT(x)	do { x ; } while (0)
663 #else
664 #define PV_STAT(x)	do { } while (0)
665 #endif
666 
667 #define	pa_radix_index(pa)	((pa) >> L3_PAGE_SIZE_SHIFT)
668 #define	pa_to_pvh(pa)	(&pv_table[pa_radix_index(pa)])
669 
670 #define	PHYS_TO_PV_LIST_LOCK(pa)	\
671 			(&pv_list_locks[pa_radix_index(pa) % NPV_LIST_LOCKS])
672 
673 #define	CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, pa)	do {	\
674 	struct rwlock **_lockp = (lockp);		\
675 	struct rwlock *_new_lock;			\
676 							\
677 	_new_lock = PHYS_TO_PV_LIST_LOCK(pa);		\
678 	if (_new_lock != *_lockp) {			\
679 		if (*_lockp != NULL)			\
680 			rw_wunlock(*_lockp);		\
681 		*_lockp = _new_lock;			\
682 		rw_wlock(*_lockp);			\
683 	}						\
684 } while (0)
685 
686 #define	CHANGE_PV_LIST_LOCK_TO_VM_PAGE(lockp, m)	\
687 	CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, VM_PAGE_TO_PHYS(m))
688 
689 #define	RELEASE_PV_LIST_LOCK(lockp)		do {	\
690 	struct rwlock **_lockp = (lockp);		\
691 							\
692 	if (*_lockp != NULL) {				\
693 		rw_wunlock(*_lockp);			\
694 		*_lockp = NULL;				\
695 	}						\
696 } while (0)
697 
698 #define	VM_PAGE_TO_PV_LIST_LOCK(m)	\
699 	PHYS_TO_PV_LIST_LOCK(VM_PAGE_TO_PHYS(m))
700 
701 /*
702  * We support 52 bits, hence:
703  * bits 52 - 31 = 21, 0b10101
704  * RTS encoding details
705  * bits 0 - 3 of rts -> bits 6 - 8 unsigned long
706  * bits 4 - 5 of rts -> bits 62 - 63 of unsigned long
707  */
708 #define RTS_SIZE ((0x2UL << 61) | (0x5UL << 5))
709 
710 static int powernv_enabled = 1;
711 
712 static __always_inline void
713 tlbiel_radix_set_isa300(uint32_t set, uint32_t is,
714 	uint32_t pid, uint32_t ric, uint32_t prs)
715 {
716 	uint64_t rb;
717 	uint64_t rs;
718 
719 	rb = PPC_BITLSHIFT_VAL(set, 51) | PPC_BITLSHIFT_VAL(is, 53);
720 	rs = PPC_BITLSHIFT_VAL((uint64_t)pid, 31);
721 
722 	__asm __volatile(PPC_TLBIEL(%0, %1, %2, %3, 1)
723 		     : : "r"(rb), "r"(rs), "i"(ric), "i"(prs)
724 		     : "memory");
725 }
726 
727 static void
728 tlbiel_flush_isa3(uint32_t num_sets, uint32_t is)
729 {
730 	uint32_t set;
731 
732 	__asm __volatile("ptesync": : :"memory");
733 
734 	/*
735 	 * Flush the first set of the TLB, and the entire Page Walk Cache
736 	 * and partition table entries. Then flush the remaining sets of the
737 	 * TLB.
738 	 */
739 	tlbiel_radix_set_isa300(0, is, 0, RIC_FLUSH_ALL, 0);
740 	for (set = 1; set < num_sets; set++)
741 		tlbiel_radix_set_isa300(set, is, 0, RIC_FLUSH_TLB, 0);
742 
743 	/* Do the same for process scoped entries. */
744 	tlbiel_radix_set_isa300(0, is, 0, RIC_FLUSH_ALL, 1);
745 	for (set = 1; set < num_sets; set++)
746 		tlbiel_radix_set_isa300(set, is, 0, RIC_FLUSH_TLB, 1);
747 
748 	__asm __volatile("ptesync": : :"memory");
749 }
750 
751 static void
752 mmu_radix_tlbiel_flush(int scope)
753 {
754 	int is;
755 
756 	MPASS(scope == TLB_INVAL_SCOPE_LPID ||
757 		  scope == TLB_INVAL_SCOPE_GLOBAL);
758 	is = scope + 2;
759 
760 	tlbiel_flush_isa3(POWER9_TLB_SETS_RADIX, is);
761 	__asm __volatile(PPC_INVALIDATE_ERAT "; isync" : : :"memory");
762 }
763 
764 static void
765 mmu_radix_tlbie_all()
766 {
767 	/* TODO: LPID invalidate */
768 	mmu_radix_tlbiel_flush(TLB_INVAL_SCOPE_GLOBAL);
769 }
770 
771 static void
772 mmu_radix_init_amor(void)
773 {
774 	/*
775 	* In HV mode, we init AMOR (Authority Mask Override Register) so that
776 	* the hypervisor and guest can setup IAMR (Instruction Authority Mask
777 	* Register), enable key 0 and set it to 1.
778 	*
779 	* AMOR = 0b1100 .... 0000 (Mask for key 0 is 11)
780 	*/
781 	mtspr(SPR_AMOR, (3ul << 62));
782 }
783 
784 static void
785 mmu_radix_init_iamr(void)
786 {
787 	/*
788 	 * Radix always uses key0 of the IAMR to determine if an access is
789 	 * allowed. We set bit 0 (IBM bit 1) of key0, to prevent instruction
790 	 * fetch.
791 	 */
792 	mtspr(SPR_IAMR, (1ul << 62));
793 }
794 
795 static void
796 mmu_radix_pid_set(pmap_t pmap)
797 {
798 
799 	mtspr(SPR_PID, pmap->pm_pid);
800 	isync();
801 }
802 
803 /* Quick sort callout for comparing physical addresses. */
804 static int
805 pa_cmp(const void *a, const void *b)
806 {
807 	const vm_paddr_t *pa = a, *pb = b;
808 
809 	if (*pa < *pb)
810 		return (-1);
811 	else if (*pa > *pb)
812 		return (1);
813 	else
814 		return (0);
815 }
816 
817 #define	pte_load_store(ptep, pte)	atomic_swap_long(ptep, pte)
818 #define	pte_load_clear(ptep)		atomic_swap_long(ptep, 0)
819 #define	pte_store(ptep, pte) do {	   \
820 	MPASS((pte) & (RPTE_EAA_R | RPTE_EAA_W | RPTE_EAA_X));	\
821 	*(u_long *)(ptep) = (u_long)((pte) | PG_V | RPTE_LEAF);	\
822 } while (0)
823 /*
824  * NB: should only be used for adding directories - not for direct mappings
825  */
826 #define	pde_store(ptep, pa) do {				\
827 	*(u_long *)(ptep) = (u_long)(pa|RPTE_VALID|RPTE_SHIFT); \
828 } while (0)
829 
830 #define	pte_clear(ptep) do {					\
831 		*(u_long *)(ptep) = (u_long)(0);		\
832 } while (0)
833 
834 #define	PMAP_PDE_SUPERPAGE	(1 << 8)	/* supports 2MB superpages */
835 
836 /*
837  * Promotion to a 2MB (PDE) page mapping requires that the corresponding 4KB
838  * (PTE) page mappings have identical settings for the following fields:
839  */
840 #define	PG_PTE_PROMOTE	(PG_X | PG_MANAGED | PG_W | PG_PTE_CACHE | \
841 	    PG_M | PG_A | RPTE_EAA_MASK | PG_V)
842 
843 static __inline void
844 pmap_resident_count_inc(pmap_t pmap, int count)
845 {
846 
847 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
848 	pmap->pm_stats.resident_count += count;
849 }
850 
851 static __inline void
852 pmap_resident_count_dec(pmap_t pmap, int count)
853 {
854 
855 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
856 	KASSERT(pmap->pm_stats.resident_count >= count,
857 	    ("pmap %p resident count underflow %ld %d", pmap,
858 	    pmap->pm_stats.resident_count, count));
859 	pmap->pm_stats.resident_count -= count;
860 }
861 
862 static void
863 pagezero(vm_offset_t va)
864 {
865 	va = trunc_page(va);
866 
867 	bzero((void *)va, PAGE_SIZE);
868 }
869 
870 static uint64_t
871 allocpages(int n)
872 {
873 	u_int64_t ret;
874 
875 	ret = moea64_bootstrap_alloc(n * PAGE_SIZE, PAGE_SIZE);
876 	for (int i = 0; i < n; i++)
877 		pagezero(PHYS_TO_DMAP(ret + i * PAGE_SIZE));
878 	return (ret);
879 }
880 
881 static pt_entry_t *
882 kvtopte(vm_offset_t va)
883 {
884 	pt_entry_t *l3e;
885 
886 	l3e = pmap_pml3e(kernel_pmap, va);
887 	if ((*l3e & RPTE_VALID) == 0)
888 		return (NULL);
889 	return (pmap_l3e_to_pte(l3e, va));
890 }
891 
892 void
893 mmu_radix_kenter(vm_offset_t va, vm_paddr_t pa)
894 {
895 	pt_entry_t *pte;
896 
897 	pte = kvtopte(va);
898 	MPASS(pte != NULL);
899 	*pte = pa | RPTE_VALID | RPTE_LEAF | RPTE_EAA_R | RPTE_EAA_W | \
900 	    RPTE_EAA_P | PG_M | PG_A;
901 }
902 
903 bool
904 mmu_radix_ps_enabled(pmap_t pmap)
905 {
906 	return (pg_ps_enabled && (pmap->pm_flags & PMAP_PDE_SUPERPAGE) != 0);
907 }
908 
909 static pt_entry_t *
910 pmap_nofault_pte(pmap_t pmap, vm_offset_t va, int *is_l3e)
911 {
912 	pml3_entry_t *l3e;
913 	pt_entry_t *pte;
914 
915 	va &= PG_PS_FRAME;
916 	l3e = pmap_pml3e(pmap, va);
917 	if (l3e == NULL || (*l3e & PG_V) == 0)
918 		return (NULL);
919 
920 	if (*l3e & RPTE_LEAF) {
921 		*is_l3e = 1;
922 		return (l3e);
923 	}
924 	*is_l3e = 0;
925 	va &= PG_FRAME;
926 	pte = pmap_l3e_to_pte(l3e, va);
927 	if (pte == NULL || (*pte & PG_V) == 0)
928 		return (NULL);
929 	return (pte);
930 }
931 
932 int
933 pmap_nofault(pmap_t pmap, vm_offset_t va, vm_prot_t flags)
934 {
935 	pt_entry_t *pte;
936 	pt_entry_t startpte, origpte, newpte;
937 	vm_page_t m;
938 	int is_l3e;
939 
940 	startpte = 0;
941  retry:
942 	if ((pte = pmap_nofault_pte(pmap, va, &is_l3e)) == NULL)
943 		return (KERN_INVALID_ADDRESS);
944 	origpte = newpte = *pte;
945 	if (startpte == 0) {
946 		startpte = origpte;
947 		if (((flags & VM_PROT_WRITE) && (startpte & PG_M)) ||
948 		    ((flags & VM_PROT_READ) && (startpte & PG_A))) {
949 			pmap_invalidate_all(pmap);
950 #ifdef INVARIANTS
951 			if (VERBOSE_PMAP || pmap_logging)
952 				printf("%s(%p, %#lx, %#x) (%#lx) -- invalidate all\n",
953 				    __func__, pmap, va, flags, origpte);
954 #endif
955 			return (KERN_FAILURE);
956 		}
957 	}
958 #ifdef INVARIANTS
959 	if (VERBOSE_PMAP || pmap_logging)
960 		printf("%s(%p, %#lx, %#x) (%#lx)\n", __func__, pmap, va,
961 		    flags, origpte);
962 #endif
963 	PMAP_LOCK(pmap);
964 	if ((pte = pmap_nofault_pte(pmap, va, &is_l3e)) == NULL ||
965 	    *pte != origpte) {
966 		PMAP_UNLOCK(pmap);
967 		return (KERN_FAILURE);
968 	}
969 	m = PHYS_TO_VM_PAGE(newpte & PG_FRAME);
970 	MPASS(m != NULL);
971 	switch (flags) {
972 	case VM_PROT_READ:
973 		if ((newpte & (RPTE_EAA_R|RPTE_EAA_X)) == 0)
974 			goto protfail;
975 		newpte |= PG_A;
976 		vm_page_aflag_set(m, PGA_REFERENCED);
977 		break;
978 	case VM_PROT_WRITE:
979 		if ((newpte & RPTE_EAA_W) == 0)
980 			goto protfail;
981 		if (is_l3e)
982 			goto protfail;
983 		newpte |= PG_M;
984 		vm_page_dirty(m);
985 		break;
986 	case VM_PROT_EXECUTE:
987 		if ((newpte & RPTE_EAA_X) == 0)
988 			goto protfail;
989 		newpte |= PG_A;
990 		vm_page_aflag_set(m, PGA_REFERENCED);
991 		break;
992 	}
993 
994 	if (!atomic_cmpset_long(pte, origpte, newpte))
995 		goto retry;
996 	ptesync();
997 	PMAP_UNLOCK(pmap);
998 	if (startpte == newpte)
999 		return (KERN_FAILURE);
1000 	return (0);
1001  protfail:
1002 	PMAP_UNLOCK(pmap);
1003 	return (KERN_PROTECTION_FAILURE);
1004 }
1005 
1006 /*
1007  * Returns TRUE if the given page is mapped individually or as part of
1008  * a 2mpage.  Otherwise, returns FALSE.
1009  */
1010 boolean_t
1011 mmu_radix_page_is_mapped(vm_page_t m)
1012 {
1013 	struct rwlock *lock;
1014 	boolean_t rv;
1015 
1016 	if ((m->oflags & VPO_UNMANAGED) != 0)
1017 		return (FALSE);
1018 	lock = VM_PAGE_TO_PV_LIST_LOCK(m);
1019 	rw_rlock(lock);
1020 	rv = !TAILQ_EMPTY(&m->md.pv_list) ||
1021 	    ((m->flags & PG_FICTITIOUS) == 0 &&
1022 	    !TAILQ_EMPTY(&pa_to_pvh(VM_PAGE_TO_PHYS(m))->pv_list));
1023 	rw_runlock(lock);
1024 	return (rv);
1025 }
1026 
1027 /*
1028  * Determine the appropriate bits to set in a PTE or PDE for a specified
1029  * caching mode.
1030  */
1031 static int
1032 pmap_cache_bits(vm_memattr_t ma)
1033 {
1034 	if (ma != VM_MEMATTR_DEFAULT) {
1035 		switch (ma) {
1036 		case VM_MEMATTR_UNCACHEABLE:
1037 			return (RPTE_ATTR_GUARDEDIO);
1038 		case VM_MEMATTR_CACHEABLE:
1039 			return (RPTE_ATTR_MEM);
1040 		case VM_MEMATTR_WRITE_BACK:
1041 		case VM_MEMATTR_PREFETCHABLE:
1042 		case VM_MEMATTR_WRITE_COMBINING:
1043 			return (RPTE_ATTR_UNGUARDEDIO);
1044 		}
1045 	}
1046 	return (0);
1047 }
1048 
1049 static void
1050 pmap_invalidate_page(pmap_t pmap, vm_offset_t start)
1051 {
1052 	ptesync();
1053 	if (pmap == kernel_pmap)
1054 		radix_tlbie_invlpg_kernel_4k(start);
1055 	else
1056 		radix_tlbie_invlpg_user_4k(pmap->pm_pid, start);
1057 	ttusync();
1058 }
1059 
1060 static void
1061 pmap_invalidate_page_2m(pmap_t pmap, vm_offset_t start)
1062 {
1063 	ptesync();
1064 	if (pmap == kernel_pmap)
1065 		radix_tlbie_invlpg_kernel_2m(start);
1066 	else
1067 		radix_tlbie_invlpg_user_2m(pmap->pm_pid, start);
1068 	ttusync();
1069 }
1070 
1071 static void
1072 pmap_invalidate_pwc(pmap_t pmap)
1073 {
1074 	ptesync();
1075 	if (pmap == kernel_pmap)
1076 		radix_tlbie_invlpwc_kernel();
1077 	else
1078 		radix_tlbie_invlpwc_user(pmap->pm_pid);
1079 	ttusync();
1080 }
1081 
1082 static void
1083 pmap_invalidate_range(pmap_t pmap, vm_offset_t start, vm_offset_t end)
1084 {
1085 	if (((start - end) >> PAGE_SHIFT) > 8) {
1086 		pmap_invalidate_all(pmap);
1087 		return;
1088 	}
1089 	ptesync();
1090 	if (pmap == kernel_pmap) {
1091 		while (start < end) {
1092 			radix_tlbie_invlpg_kernel_4k(start);
1093 			start += PAGE_SIZE;
1094 		}
1095 	} else {
1096 		while (start < end) {
1097 			radix_tlbie_invlpg_user_4k(pmap->pm_pid, start);
1098 			start += PAGE_SIZE;
1099 		}
1100 	}
1101 	ttusync();
1102 }
1103 
1104 static void
1105 pmap_invalidate_all(pmap_t pmap)
1106 {
1107 	ptesync();
1108 	if (pmap == kernel_pmap)
1109 		radix_tlbie_flush_kernel();
1110 	else
1111 		radix_tlbie_flush_user(pmap->pm_pid);
1112 	ttusync();
1113 }
1114 
1115 static void
1116 pmap_invalidate_l3e_page(pmap_t pmap, vm_offset_t va, pml3_entry_t l3e)
1117 {
1118 
1119 	/*
1120 	 * When the PDE has PG_PROMOTED set, the 2MB page mapping was created
1121 	 * by a promotion that did not invalidate the 512 4KB page mappings
1122 	 * that might exist in the TLB.  Consequently, at this point, the TLB
1123 	 * may hold both 4KB and 2MB page mappings for the address range [va,
1124 	 * va + L3_PAGE_SIZE).  Therefore, the entire range must be invalidated here.
1125 	 * In contrast, when PG_PROMOTED is clear, the TLB will not hold any
1126 	 * 4KB page mappings for the address range [va, va + L3_PAGE_SIZE), and so a
1127 	 * single INVLPG suffices to invalidate the 2MB page mapping from the
1128 	 * TLB.
1129 	 */
1130 	ptesync();
1131 	if ((l3e & PG_PROMOTED) != 0)
1132 		pmap_invalidate_range(pmap, va, va + L3_PAGE_SIZE - 1);
1133 	else
1134 		pmap_invalidate_page_2m(pmap, va);
1135 
1136 	pmap_invalidate_pwc(pmap);
1137 }
1138 
1139 static __inline struct pv_chunk *
1140 pv_to_chunk(pv_entry_t pv)
1141 {
1142 
1143 	return ((struct pv_chunk *)((uintptr_t)pv & ~(uintptr_t)PAGE_MASK));
1144 }
1145 
1146 #define PV_PMAP(pv) (pv_to_chunk(pv)->pc_pmap)
1147 
1148 #define	PC_FREE0	0xfffffffffffffffful
1149 #define	PC_FREE1	0x3ffffffffffffffful
1150 
1151 static const uint64_t pc_freemask[_NPCM] = { PC_FREE0, PC_FREE1 };
1152 
1153 /*
1154  * Ensure that the number of spare PV entries in the specified pmap meets or
1155  * exceeds the given count, "needed".
1156  *
1157  * The given PV list lock may be released.
1158  */
1159 static void
1160 reserve_pv_entries(pmap_t pmap, int needed, struct rwlock **lockp)
1161 {
1162 	struct pch new_tail;
1163 	struct pv_chunk *pc;
1164 	vm_page_t m;
1165 	int avail, free;
1166 	bool reclaimed;
1167 
1168 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1169 	KASSERT(lockp != NULL, ("reserve_pv_entries: lockp is NULL"));
1170 
1171 	/*
1172 	 * Newly allocated PV chunks must be stored in a private list until
1173 	 * the required number of PV chunks have been allocated.  Otherwise,
1174 	 * reclaim_pv_chunk() could recycle one of these chunks.  In
1175 	 * contrast, these chunks must be added to the pmap upon allocation.
1176 	 */
1177 	TAILQ_INIT(&new_tail);
1178 retry:
1179 	avail = 0;
1180 	TAILQ_FOREACH(pc, &pmap->pm_pvchunk, pc_list) {
1181 		//		if ((cpu_feature2 & CPUID2_POPCNT) == 0)
1182 		bit_count((bitstr_t *)pc->pc_map, 0,
1183 				  sizeof(pc->pc_map) * NBBY, &free);
1184 #if 0
1185 		free = popcnt_pc_map_pq(pc->pc_map);
1186 #endif
1187 		if (free == 0)
1188 			break;
1189 		avail += free;
1190 		if (avail >= needed)
1191 			break;
1192 	}
1193 	for (reclaimed = false; avail < needed; avail += _NPCPV) {
1194 		m = vm_page_alloc(NULL, 0, VM_ALLOC_NORMAL | VM_ALLOC_NOOBJ |
1195 		    VM_ALLOC_WIRED);
1196 		if (m == NULL) {
1197 			m = reclaim_pv_chunk(pmap, lockp);
1198 			if (m == NULL)
1199 				goto retry;
1200 			reclaimed = true;
1201 		}
1202 		PV_STAT(atomic_add_int(&pc_chunk_count, 1));
1203 		PV_STAT(atomic_add_int(&pc_chunk_allocs, 1));
1204 		pc = (void *)PHYS_TO_DMAP(m->phys_addr);
1205 		pc->pc_pmap = pmap;
1206 		pc->pc_map[0] = PC_FREE0;
1207 		pc->pc_map[1] = PC_FREE1;
1208 		TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
1209 		TAILQ_INSERT_TAIL(&new_tail, pc, pc_lru);
1210 		PV_STAT(atomic_add_int(&pv_entry_spare, _NPCPV));
1211 
1212 		/*
1213 		 * The reclaim might have freed a chunk from the current pmap.
1214 		 * If that chunk contained available entries, we need to
1215 		 * re-count the number of available entries.
1216 		 */
1217 		if (reclaimed)
1218 			goto retry;
1219 	}
1220 	if (!TAILQ_EMPTY(&new_tail)) {
1221 		mtx_lock(&pv_chunks_mutex);
1222 		TAILQ_CONCAT(&pv_chunks, &new_tail, pc_lru);
1223 		mtx_unlock(&pv_chunks_mutex);
1224 	}
1225 }
1226 
1227 /*
1228  * First find and then remove the pv entry for the specified pmap and virtual
1229  * address from the specified pv list.  Returns the pv entry if found and NULL
1230  * otherwise.  This operation can be performed on pv lists for either 4KB or
1231  * 2MB page mappings.
1232  */
1233 static __inline pv_entry_t
1234 pmap_pvh_remove(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
1235 {
1236 	pv_entry_t pv;
1237 
1238 	TAILQ_FOREACH(pv, &pvh->pv_list, pv_link) {
1239 #ifdef INVARIANTS
1240 		if (PV_PMAP(pv) == NULL) {
1241 			printf("corrupted pv_chunk/pv %p\n", pv);
1242 			printf("pv_chunk: %64D\n", pv_to_chunk(pv), ":");
1243 		}
1244 		MPASS(PV_PMAP(pv) != NULL);
1245 		MPASS(pv->pv_va != 0);
1246 #endif
1247 		if (pmap == PV_PMAP(pv) && va == pv->pv_va) {
1248 			TAILQ_REMOVE(&pvh->pv_list, pv, pv_link);
1249 			pvh->pv_gen++;
1250 			break;
1251 		}
1252 	}
1253 	return (pv);
1254 }
1255 
1256 /*
1257  * After demotion from a 2MB page mapping to 512 4KB page mappings,
1258  * destroy the pv entry for the 2MB page mapping and reinstantiate the pv
1259  * entries for each of the 4KB page mappings.
1260  */
1261 static void
1262 pmap_pv_demote_l3e(pmap_t pmap, vm_offset_t va, vm_paddr_t pa,
1263     struct rwlock **lockp)
1264 {
1265 	struct md_page *pvh;
1266 	struct pv_chunk *pc;
1267 	pv_entry_t pv;
1268 	vm_offset_t va_last;
1269 	vm_page_t m;
1270 	int bit, field;
1271 
1272 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1273 	KASSERT((pa & L3_PAGE_MASK) == 0,
1274 	    ("pmap_pv_demote_pde: pa is not 2mpage aligned"));
1275 	CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, pa);
1276 
1277 	/*
1278 	 * Transfer the 2mpage's pv entry for this mapping to the first
1279 	 * page's pv list.  Once this transfer begins, the pv list lock
1280 	 * must not be released until the last pv entry is reinstantiated.
1281 	 */
1282 	pvh = pa_to_pvh(pa);
1283 	va = trunc_2mpage(va);
1284 	pv = pmap_pvh_remove(pvh, pmap, va);
1285 	KASSERT(pv != NULL, ("pmap_pv_demote_pde: pv not found"));
1286 	m = PHYS_TO_VM_PAGE(pa);
1287 	TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_link);
1288 
1289 	m->md.pv_gen++;
1290 	/* Instantiate the remaining NPTEPG - 1 pv entries. */
1291 	PV_STAT(atomic_add_long(&pv_entry_allocs, NPTEPG - 1));
1292 	va_last = va + L3_PAGE_SIZE - PAGE_SIZE;
1293 	for (;;) {
1294 		pc = TAILQ_FIRST(&pmap->pm_pvchunk);
1295 		KASSERT(pc->pc_map[0] != 0 || pc->pc_map[1] != 0
1296 		    , ("pmap_pv_demote_pde: missing spare"));
1297 		for (field = 0; field < _NPCM; field++) {
1298 			while (pc->pc_map[field]) {
1299 				bit = cnttzd(pc->pc_map[field]);
1300 				pc->pc_map[field] &= ~(1ul << bit);
1301 				pv = &pc->pc_pventry[field * 64 + bit];
1302 				va += PAGE_SIZE;
1303 				pv->pv_va = va;
1304 				m++;
1305 				KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1306 			    ("pmap_pv_demote_pde: page %p is not managed", m));
1307 				TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_link);
1308 
1309 				m->md.pv_gen++;
1310 				if (va == va_last)
1311 					goto out;
1312 			}
1313 		}
1314 		TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
1315 		TAILQ_INSERT_TAIL(&pmap->pm_pvchunk, pc, pc_list);
1316 	}
1317 out:
1318 	if (pc->pc_map[0] == 0 && pc->pc_map[1] == 0) {
1319 		TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
1320 		TAILQ_INSERT_TAIL(&pmap->pm_pvchunk, pc, pc_list);
1321 	}
1322 	PV_STAT(atomic_add_long(&pv_entry_count, NPTEPG - 1));
1323 	PV_STAT(atomic_subtract_int(&pv_entry_spare, NPTEPG - 1));
1324 }
1325 
1326 static void
1327 reclaim_pv_chunk_leave_pmap(pmap_t pmap, pmap_t locked_pmap)
1328 {
1329 
1330 	if (pmap == NULL)
1331 		return;
1332 	pmap_invalidate_all(pmap);
1333 	if (pmap != locked_pmap)
1334 		PMAP_UNLOCK(pmap);
1335 }
1336 
1337 /*
1338  * We are in a serious low memory condition.  Resort to
1339  * drastic measures to free some pages so we can allocate
1340  * another pv entry chunk.
1341  *
1342  * Returns NULL if PV entries were reclaimed from the specified pmap.
1343  *
1344  * We do not, however, unmap 2mpages because subsequent accesses will
1345  * allocate per-page pv entries until repromotion occurs, thereby
1346  * exacerbating the shortage of free pv entries.
1347  */
1348 static int active_reclaims = 0;
1349 static vm_page_t
1350 reclaim_pv_chunk(pmap_t locked_pmap, struct rwlock **lockp)
1351 {
1352 	struct pv_chunk *pc, *pc_marker, *pc_marker_end;
1353 	struct pv_chunk_header pc_marker_b, pc_marker_end_b;
1354 	struct md_page *pvh;
1355 	pml3_entry_t *l3e;
1356 	pmap_t next_pmap, pmap;
1357 	pt_entry_t *pte, tpte;
1358 	pv_entry_t pv;
1359 	vm_offset_t va;
1360 	vm_page_t m, m_pc;
1361 	struct spglist free;
1362 	uint64_t inuse;
1363 	int bit, field, freed;
1364 
1365 	PMAP_LOCK_ASSERT(locked_pmap, MA_OWNED);
1366 	KASSERT(lockp != NULL, ("reclaim_pv_chunk: lockp is NULL"));
1367 	pmap = NULL;
1368 	m_pc = NULL;
1369 	SLIST_INIT(&free);
1370 	bzero(&pc_marker_b, sizeof(pc_marker_b));
1371 	bzero(&pc_marker_end_b, sizeof(pc_marker_end_b));
1372 	pc_marker = (struct pv_chunk *)&pc_marker_b;
1373 	pc_marker_end = (struct pv_chunk *)&pc_marker_end_b;
1374 
1375 	mtx_lock(&pv_chunks_mutex);
1376 	active_reclaims++;
1377 	TAILQ_INSERT_HEAD(&pv_chunks, pc_marker, pc_lru);
1378 	TAILQ_INSERT_TAIL(&pv_chunks, pc_marker_end, pc_lru);
1379 	while ((pc = TAILQ_NEXT(pc_marker, pc_lru)) != pc_marker_end &&
1380 	    SLIST_EMPTY(&free)) {
1381 		next_pmap = pc->pc_pmap;
1382 		if (next_pmap == NULL) {
1383 			/*
1384 			 * The next chunk is a marker.  However, it is
1385 			 * not our marker, so active_reclaims must be
1386 			 * > 1.  Consequently, the next_chunk code
1387 			 * will not rotate the pv_chunks list.
1388 			 */
1389 			goto next_chunk;
1390 		}
1391 		mtx_unlock(&pv_chunks_mutex);
1392 
1393 		/*
1394 		 * A pv_chunk can only be removed from the pc_lru list
1395 		 * when both pc_chunks_mutex is owned and the
1396 		 * corresponding pmap is locked.
1397 		 */
1398 		if (pmap != next_pmap) {
1399 			reclaim_pv_chunk_leave_pmap(pmap, locked_pmap);
1400 			pmap = next_pmap;
1401 			/* Avoid deadlock and lock recursion. */
1402 			if (pmap > locked_pmap) {
1403 				RELEASE_PV_LIST_LOCK(lockp);
1404 				PMAP_LOCK(pmap);
1405 				mtx_lock(&pv_chunks_mutex);
1406 				continue;
1407 			} else if (pmap != locked_pmap) {
1408 				if (PMAP_TRYLOCK(pmap)) {
1409 					mtx_lock(&pv_chunks_mutex);
1410 					continue;
1411 				} else {
1412 					pmap = NULL; /* pmap is not locked */
1413 					mtx_lock(&pv_chunks_mutex);
1414 					pc = TAILQ_NEXT(pc_marker, pc_lru);
1415 					if (pc == NULL ||
1416 					    pc->pc_pmap != next_pmap)
1417 						continue;
1418 					goto next_chunk;
1419 				}
1420 			}
1421 		}
1422 
1423 		/*
1424 		 * Destroy every non-wired, 4 KB page mapping in the chunk.
1425 		 */
1426 		freed = 0;
1427 		for (field = 0; field < _NPCM; field++) {
1428 			for (inuse = ~pc->pc_map[field] & pc_freemask[field];
1429 			    inuse != 0; inuse &= ~(1UL << bit)) {
1430 				bit = cnttzd(inuse);
1431 				pv = &pc->pc_pventry[field * 64 + bit];
1432 				va = pv->pv_va;
1433 				l3e = pmap_pml3e(pmap, va);
1434 				if ((*l3e & RPTE_LEAF) != 0)
1435 					continue;
1436 				pte = pmap_l3e_to_pte(l3e, va);
1437 				if ((*pte & PG_W) != 0)
1438 					continue;
1439 				tpte = pte_load_clear(pte);
1440 				m = PHYS_TO_VM_PAGE(tpte & PG_FRAME);
1441 				if ((tpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
1442 					vm_page_dirty(m);
1443 				if ((tpte & PG_A) != 0)
1444 					vm_page_aflag_set(m, PGA_REFERENCED);
1445 				CHANGE_PV_LIST_LOCK_TO_VM_PAGE(lockp, m);
1446 				TAILQ_REMOVE(&m->md.pv_list, pv, pv_link);
1447 
1448 				m->md.pv_gen++;
1449 				if (TAILQ_EMPTY(&m->md.pv_list) &&
1450 				    (m->flags & PG_FICTITIOUS) == 0) {
1451 					pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
1452 					if (TAILQ_EMPTY(&pvh->pv_list)) {
1453 						vm_page_aflag_clear(m,
1454 						    PGA_WRITEABLE);
1455 					}
1456 				}
1457 				pc->pc_map[field] |= 1UL << bit;
1458 				pmap_unuse_pt(pmap, va, *l3e, &free);
1459 				freed++;
1460 			}
1461 		}
1462 		if (freed == 0) {
1463 			mtx_lock(&pv_chunks_mutex);
1464 			goto next_chunk;
1465 		}
1466 		/* Every freed mapping is for a 4 KB page. */
1467 		pmap_resident_count_dec(pmap, freed);
1468 		PV_STAT(atomic_add_long(&pv_entry_frees, freed));
1469 		PV_STAT(atomic_add_int(&pv_entry_spare, freed));
1470 		PV_STAT(atomic_subtract_long(&pv_entry_count, freed));
1471 		TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
1472 		if (pc->pc_map[0] == PC_FREE0 && pc->pc_map[1] == PC_FREE1) {
1473 			PV_STAT(atomic_subtract_int(&pv_entry_spare, _NPCPV));
1474 			PV_STAT(atomic_subtract_int(&pc_chunk_count, 1));
1475 			PV_STAT(atomic_add_int(&pc_chunk_frees, 1));
1476 			/* Entire chunk is free; return it. */
1477 			m_pc = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t)pc));
1478 			mtx_lock(&pv_chunks_mutex);
1479 			TAILQ_REMOVE(&pv_chunks, pc, pc_lru);
1480 			break;
1481 		}
1482 		TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
1483 		mtx_lock(&pv_chunks_mutex);
1484 		/* One freed pv entry in locked_pmap is sufficient. */
1485 		if (pmap == locked_pmap)
1486 			break;
1487 next_chunk:
1488 		TAILQ_REMOVE(&pv_chunks, pc_marker, pc_lru);
1489 		TAILQ_INSERT_AFTER(&pv_chunks, pc, pc_marker, pc_lru);
1490 		if (active_reclaims == 1 && pmap != NULL) {
1491 			/*
1492 			 * Rotate the pv chunks list so that we do not
1493 			 * scan the same pv chunks that could not be
1494 			 * freed (because they contained a wired
1495 			 * and/or superpage mapping) on every
1496 			 * invocation of reclaim_pv_chunk().
1497 			 */
1498 			while ((pc = TAILQ_FIRST(&pv_chunks)) != pc_marker) {
1499 				MPASS(pc->pc_pmap != NULL);
1500 				TAILQ_REMOVE(&pv_chunks, pc, pc_lru);
1501 				TAILQ_INSERT_TAIL(&pv_chunks, pc, pc_lru);
1502 			}
1503 		}
1504 	}
1505 	TAILQ_REMOVE(&pv_chunks, pc_marker, pc_lru);
1506 	TAILQ_REMOVE(&pv_chunks, pc_marker_end, pc_lru);
1507 	active_reclaims--;
1508 	mtx_unlock(&pv_chunks_mutex);
1509 	reclaim_pv_chunk_leave_pmap(pmap, locked_pmap);
1510 	if (m_pc == NULL && !SLIST_EMPTY(&free)) {
1511 		m_pc = SLIST_FIRST(&free);
1512 		SLIST_REMOVE_HEAD(&free, plinks.s.ss);
1513 		/* Recycle a freed page table page. */
1514 		m_pc->ref_count = 1;
1515 	}
1516 	vm_page_free_pages_toq(&free, true);
1517 	return (m_pc);
1518 }
1519 
1520 /*
1521  * free the pv_entry back to the free list
1522  */
1523 static void
1524 free_pv_entry(pmap_t pmap, pv_entry_t pv)
1525 {
1526 	struct pv_chunk *pc;
1527 	int idx, field, bit;
1528 
1529 #ifdef VERBOSE_PV
1530 	if (pmap != kernel_pmap)
1531 		printf("%s(%p, %p)\n", __func__, pmap, pv);
1532 #endif
1533 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1534 	PV_STAT(atomic_add_long(&pv_entry_frees, 1));
1535 	PV_STAT(atomic_add_int(&pv_entry_spare, 1));
1536 	PV_STAT(atomic_subtract_long(&pv_entry_count, 1));
1537 	pc = pv_to_chunk(pv);
1538 	idx = pv - &pc->pc_pventry[0];
1539 	field = idx / 64;
1540 	bit = idx % 64;
1541 	pc->pc_map[field] |= 1ul << bit;
1542 	if (pc->pc_map[0] != PC_FREE0 || pc->pc_map[1] != PC_FREE1) {
1543 		/* 98% of the time, pc is already at the head of the list. */
1544 		if (__predict_false(pc != TAILQ_FIRST(&pmap->pm_pvchunk))) {
1545 			TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
1546 			TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
1547 		}
1548 		return;
1549 	}
1550 	TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
1551 	free_pv_chunk(pc);
1552 }
1553 
1554 static void
1555 free_pv_chunk(struct pv_chunk *pc)
1556 {
1557 	vm_page_t m;
1558 
1559 	mtx_lock(&pv_chunks_mutex);
1560  	TAILQ_REMOVE(&pv_chunks, pc, pc_lru);
1561 	mtx_unlock(&pv_chunks_mutex);
1562 	PV_STAT(atomic_subtract_int(&pv_entry_spare, _NPCPV));
1563 	PV_STAT(atomic_subtract_int(&pc_chunk_count, 1));
1564 	PV_STAT(atomic_add_int(&pc_chunk_frees, 1));
1565 	/* entire chunk is free, return it */
1566 	m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t)pc));
1567 	vm_page_unwire_noq(m);
1568 	vm_page_free(m);
1569 }
1570 
1571 /*
1572  * Returns a new PV entry, allocating a new PV chunk from the system when
1573  * needed.  If this PV chunk allocation fails and a PV list lock pointer was
1574  * given, a PV chunk is reclaimed from an arbitrary pmap.  Otherwise, NULL is
1575  * returned.
1576  *
1577  * The given PV list lock may be released.
1578  */
1579 static pv_entry_t
1580 get_pv_entry(pmap_t pmap, struct rwlock **lockp)
1581 {
1582 	int bit, field;
1583 	pv_entry_t pv;
1584 	struct pv_chunk *pc;
1585 	vm_page_t m;
1586 
1587 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1588 	PV_STAT(atomic_add_long(&pv_entry_allocs, 1));
1589 retry:
1590 	pc = TAILQ_FIRST(&pmap->pm_pvchunk);
1591 	if (pc != NULL) {
1592 		for (field = 0; field < _NPCM; field++) {
1593 			if (pc->pc_map[field]) {
1594 				bit = cnttzd(pc->pc_map[field]);
1595 				break;
1596 			}
1597 		}
1598 		if (field < _NPCM) {
1599 			pv = &pc->pc_pventry[field * 64 + bit];
1600 			pc->pc_map[field] &= ~(1ul << bit);
1601 			/* If this was the last item, move it to tail */
1602 			if (pc->pc_map[0] == 0 && pc->pc_map[1] == 0) {
1603 				TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
1604 				TAILQ_INSERT_TAIL(&pmap->pm_pvchunk, pc,
1605 				    pc_list);
1606 			}
1607 			PV_STAT(atomic_add_long(&pv_entry_count, 1));
1608 			PV_STAT(atomic_subtract_int(&pv_entry_spare, 1));
1609 			MPASS(PV_PMAP(pv) != NULL);
1610 			return (pv);
1611 		}
1612 	}
1613 	/* No free items, allocate another chunk */
1614 	m = vm_page_alloc(NULL, 0, VM_ALLOC_NORMAL | VM_ALLOC_NOOBJ |
1615 	    VM_ALLOC_WIRED);
1616 	if (m == NULL) {
1617 		if (lockp == NULL) {
1618 			PV_STAT(pc_chunk_tryfail++);
1619 			return (NULL);
1620 		}
1621 		m = reclaim_pv_chunk(pmap, lockp);
1622 		if (m == NULL)
1623 			goto retry;
1624 	}
1625 	PV_STAT(atomic_add_int(&pc_chunk_count, 1));
1626 	PV_STAT(atomic_add_int(&pc_chunk_allocs, 1));
1627 	pc = (void *)PHYS_TO_DMAP(m->phys_addr);
1628 	pc->pc_pmap = pmap;
1629 	pc->pc_map[0] = PC_FREE0 & ~1ul;	/* preallocated bit 0 */
1630 	pc->pc_map[1] = PC_FREE1;
1631 	mtx_lock(&pv_chunks_mutex);
1632 	TAILQ_INSERT_TAIL(&pv_chunks, pc, pc_lru);
1633 	mtx_unlock(&pv_chunks_mutex);
1634 	pv = &pc->pc_pventry[0];
1635 	TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
1636 	PV_STAT(atomic_add_long(&pv_entry_count, 1));
1637 	PV_STAT(atomic_add_int(&pv_entry_spare, _NPCPV - 1));
1638 	MPASS(PV_PMAP(pv) != NULL);
1639 	return (pv);
1640 }
1641 
1642 #if VM_NRESERVLEVEL > 0
1643 /*
1644  * After promotion from 512 4KB page mappings to a single 2MB page mapping,
1645  * replace the many pv entries for the 4KB page mappings by a single pv entry
1646  * for the 2MB page mapping.
1647  */
1648 static void
1649 pmap_pv_promote_l3e(pmap_t pmap, vm_offset_t va, vm_paddr_t pa,
1650     struct rwlock **lockp)
1651 {
1652 	struct md_page *pvh;
1653 	pv_entry_t pv;
1654 	vm_offset_t va_last;
1655 	vm_page_t m;
1656 
1657 	KASSERT((pa & L3_PAGE_MASK) == 0,
1658 	    ("pmap_pv_promote_pde: pa is not 2mpage aligned"));
1659 	CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, pa);
1660 
1661 	/*
1662 	 * Transfer the first page's pv entry for this mapping to the 2mpage's
1663 	 * pv list.  Aside from avoiding the cost of a call to get_pv_entry(),
1664 	 * a transfer avoids the possibility that get_pv_entry() calls
1665 	 * reclaim_pv_chunk() and that reclaim_pv_chunk() removes one of the
1666 	 * mappings that is being promoted.
1667 	 */
1668 	m = PHYS_TO_VM_PAGE(pa);
1669 	va = trunc_2mpage(va);
1670 	pv = pmap_pvh_remove(&m->md, pmap, va);
1671 	KASSERT(pv != NULL, ("pmap_pv_promote_pde: pv not found"));
1672 	pvh = pa_to_pvh(pa);
1673 	TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_link);
1674 	pvh->pv_gen++;
1675 	/* Free the remaining NPTEPG - 1 pv entries. */
1676 	va_last = va + L3_PAGE_SIZE - PAGE_SIZE;
1677 	do {
1678 		m++;
1679 		va += PAGE_SIZE;
1680 		pmap_pvh_free(&m->md, pmap, va);
1681 	} while (va < va_last);
1682 }
1683 #endif /* VM_NRESERVLEVEL > 0 */
1684 
1685 /*
1686  * First find and then destroy the pv entry for the specified pmap and virtual
1687  * address.  This operation can be performed on pv lists for either 4KB or 2MB
1688  * page mappings.
1689  */
1690 static void
1691 pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
1692 {
1693 	pv_entry_t pv;
1694 
1695 	pv = pmap_pvh_remove(pvh, pmap, va);
1696 	KASSERT(pv != NULL, ("pmap_pvh_free: pv not found"));
1697 	free_pv_entry(pmap, pv);
1698 }
1699 
1700 /*
1701  * Conditionally create the PV entry for a 4KB page mapping if the required
1702  * memory can be allocated without resorting to reclamation.
1703  */
1704 static boolean_t
1705 pmap_try_insert_pv_entry(pmap_t pmap, vm_offset_t va, vm_page_t m,
1706     struct rwlock **lockp)
1707 {
1708 	pv_entry_t pv;
1709 
1710 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1711 	/* Pass NULL instead of the lock pointer to disable reclamation. */
1712 	if ((pv = get_pv_entry(pmap, NULL)) != NULL) {
1713 		pv->pv_va = va;
1714 		CHANGE_PV_LIST_LOCK_TO_VM_PAGE(lockp, m);
1715 		TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_link);
1716 		m->md.pv_gen++;
1717 		return (TRUE);
1718 	} else
1719 		return (FALSE);
1720 }
1721 
1722 vm_paddr_t phys_avail_debug[2 * VM_PHYSSEG_MAX];
1723 #ifdef INVARIANTS
1724 static void
1725 validate_addr(vm_paddr_t addr, vm_size_t size)
1726 {
1727 	vm_paddr_t end = addr + size;
1728 	bool found = false;
1729 
1730 	for (int i = 0; i < 2 * phys_avail_count; i += 2) {
1731 		if (addr >= phys_avail_debug[i] &&
1732 			end <= phys_avail_debug[i + 1]) {
1733 			found = true;
1734 			break;
1735 		}
1736 	}
1737 	KASSERT(found, ("%#lx-%#lx outside of initial phys_avail array",
1738 					addr, end));
1739 }
1740 #else
1741 static void validate_addr(vm_paddr_t addr, vm_size_t size) {}
1742 #endif
1743 #define DMAP_PAGE_BITS (RPTE_VALID | RPTE_LEAF | RPTE_EAA_MASK | PG_M | PG_A)
1744 
1745 static vm_paddr_t
1746 alloc_pt_page(void)
1747 {
1748 	vm_paddr_t page;
1749 
1750 	page = allocpages(1);
1751 	pagezero(PHYS_TO_DMAP(page));
1752 	return (page);
1753 }
1754 
1755 static void
1756 mmu_radix_dmap_range(vm_paddr_t start, vm_paddr_t end)
1757 {
1758 	pt_entry_t *pte, pteval;
1759 	vm_paddr_t page;
1760 
1761 	if (bootverbose)
1762 		printf("%s %lx -> %lx\n", __func__, start, end);
1763 	while (start < end) {
1764 		pteval = start | DMAP_PAGE_BITS;
1765 		pte = pmap_pml1e(kernel_pmap, PHYS_TO_DMAP(start));
1766 		if ((*pte & RPTE_VALID) == 0) {
1767 			page = alloc_pt_page();
1768 			pde_store(pte, page);
1769 		}
1770 		pte = pmap_l1e_to_l2e(pte, PHYS_TO_DMAP(start));
1771 		if ((start & L2_PAGE_MASK) == 0 &&
1772 			end - start >= L2_PAGE_SIZE) {
1773 			start += L2_PAGE_SIZE;
1774 			goto done;
1775 		} else if ((*pte & RPTE_VALID) == 0) {
1776 			page = alloc_pt_page();
1777 			pde_store(pte, page);
1778 		}
1779 
1780 		pte = pmap_l2e_to_l3e(pte, PHYS_TO_DMAP(start));
1781 		if ((start & L3_PAGE_MASK) == 0 &&
1782 			end - start >= L3_PAGE_SIZE) {
1783 			start += L3_PAGE_SIZE;
1784 			goto done;
1785 		} else if ((*pte & RPTE_VALID) == 0) {
1786 			page = alloc_pt_page();
1787 			pde_store(pte, page);
1788 		}
1789 		pte = pmap_l3e_to_pte(pte, PHYS_TO_DMAP(start));
1790 		start += PAGE_SIZE;
1791 	done:
1792 		pte_store(pte, pteval);
1793 	}
1794 }
1795 
1796 static void
1797 mmu_radix_dmap_populate(vm_size_t hwphyssz)
1798 {
1799 	vm_paddr_t start, end;
1800 
1801 	for (int i = 0; i < pregions_sz; i++) {
1802 		start = pregions[i].mr_start;
1803 		end = start + pregions[i].mr_size;
1804 		if (hwphyssz && start >= hwphyssz)
1805 			break;
1806 		if (hwphyssz && hwphyssz < end)
1807 			end = hwphyssz;
1808 		mmu_radix_dmap_range(start, end);
1809 	}
1810 }
1811 
1812 static void
1813 mmu_radix_setup_pagetables(vm_size_t hwphyssz)
1814 {
1815 	vm_paddr_t ptpages, pages;
1816 	pt_entry_t *pte;
1817 	vm_paddr_t l1phys;
1818 
1819 	bzero(kernel_pmap, sizeof(struct pmap));
1820 	PMAP_LOCK_INIT(kernel_pmap);
1821 
1822 	ptpages = allocpages(2);
1823 	l1phys = moea64_bootstrap_alloc(RADIX_PGD_SIZE, RADIX_PGD_SIZE);
1824 	validate_addr(l1phys, RADIX_PGD_SIZE);
1825 	if (bootverbose)
1826 		printf("l1phys=%lx\n", l1phys);
1827 	MPASS((l1phys & (RADIX_PGD_SIZE-1)) == 0);
1828 	for (int i = 0; i < RADIX_PGD_SIZE/PAGE_SIZE; i++)
1829 		pagezero(PHYS_TO_DMAP(l1phys + i * PAGE_SIZE));
1830 	kernel_pmap->pm_pml1 = (pml1_entry_t *)PHYS_TO_DMAP(l1phys);
1831 
1832 	mmu_radix_dmap_populate(hwphyssz);
1833 
1834 	/*
1835 	 * Create page tables for first 128MB of KVA
1836 	 */
1837 	pages = ptpages;
1838 	pte = pmap_pml1e(kernel_pmap, VM_MIN_KERNEL_ADDRESS);
1839 	*pte = (pages | RPTE_VALID | RPTE_SHIFT);
1840 	pages += PAGE_SIZE;
1841 	pte = pmap_l1e_to_l2e(pte, VM_MIN_KERNEL_ADDRESS);
1842 	*pte = (pages | RPTE_VALID | RPTE_SHIFT);
1843 	pages += PAGE_SIZE;
1844 	pte = pmap_l2e_to_l3e(pte, VM_MIN_KERNEL_ADDRESS);
1845 	/*
1846 	 * the kernel page table pages need to be preserved in
1847 	 * phys_avail and not overlap with previous  allocations
1848 	 */
1849 	pages = allocpages(nkpt);
1850 	if (bootverbose) {
1851 		printf("phys_avail after dmap populate and nkpt allocation\n");
1852 		for (int j = 0; j < 2 * phys_avail_count; j+=2)
1853 			printf("phys_avail[%d]=%08lx - phys_avail[%d]=%08lx\n",
1854 				   j, phys_avail[j], j + 1, phys_avail[j + 1]);
1855 	}
1856 	KPTphys = pages;
1857 	for (int i = 0; i < nkpt; i++, pte++, pages += PAGE_SIZE)
1858 		*pte = (pages | RPTE_VALID | RPTE_SHIFT);
1859 	kernel_vm_end = VM_MIN_KERNEL_ADDRESS + nkpt * L3_PAGE_SIZE;
1860 	if (bootverbose)
1861 		printf("kernel_pmap pml1 %p\n", kernel_pmap->pm_pml1);
1862 	/*
1863 	 * Add a physical memory segment (vm_phys_seg) corresponding to the
1864 	 * preallocated kernel page table pages so that vm_page structures
1865 	 * representing these pages will be created.  The vm_page structures
1866 	 * are required for promotion of the corresponding kernel virtual
1867 	 * addresses to superpage mappings.
1868 	 */
1869 	vm_phys_add_seg(KPTphys, KPTphys + ptoa(nkpt));
1870 }
1871 
1872 static void
1873 mmu_radix_early_bootstrap(vm_offset_t start, vm_offset_t end)
1874 {
1875 	vm_paddr_t	kpstart, kpend;
1876 	vm_size_t	physsz, hwphyssz;
1877 	//uint64_t	l2virt;
1878 	int		rm_pavail, proctab_size;
1879 	int		i, j;
1880 
1881 	kpstart = start & ~DMAP_BASE_ADDRESS;
1882 	kpend = end & ~DMAP_BASE_ADDRESS;
1883 
1884 	/* Get physical memory regions from firmware */
1885 	mem_regions(&pregions, &pregions_sz, &regions, &regions_sz);
1886 	CTR0(KTR_PMAP, "mmu_radix_early_bootstrap: physical memory");
1887 
1888 	if (2 * VM_PHYSSEG_MAX < regions_sz)
1889 		panic("mmu_radix_early_bootstrap: phys_avail too small");
1890 
1891 	if (bootverbose)
1892 		for (int i = 0; i < regions_sz; i++)
1893 			printf("regions[%d].mr_start=%lx regions[%d].mr_size=%lx\n",
1894 			    i, regions[i].mr_start, i, regions[i].mr_size);
1895 	/*
1896 	 * XXX workaround a simulator bug
1897 	 */
1898 	for (int i = 0; i < regions_sz; i++)
1899 		if (regions[i].mr_start & PAGE_MASK) {
1900 			regions[i].mr_start += PAGE_MASK;
1901 			regions[i].mr_start &= ~PAGE_MASK;
1902 			regions[i].mr_size &= ~PAGE_MASK;
1903 		}
1904 	if (bootverbose)
1905 		for (int i = 0; i < pregions_sz; i++)
1906 			printf("pregions[%d].mr_start=%lx pregions[%d].mr_size=%lx\n",
1907 			    i, pregions[i].mr_start, i, pregions[i].mr_size);
1908 
1909 	phys_avail_count = 0;
1910 	physsz = 0;
1911 	hwphyssz = 0;
1912 	TUNABLE_ULONG_FETCH("hw.physmem", (u_long *) &hwphyssz);
1913 	for (i = 0, j = 0; i < regions_sz; i++) {
1914 		if (bootverbose)
1915 			printf("regions[%d].mr_start=%016lx regions[%d].mr_size=%016lx\n",
1916 			    i, regions[i].mr_start, i, regions[i].mr_size);
1917 
1918 		if (regions[i].mr_size < PAGE_SIZE)
1919 			continue;
1920 
1921 		if (hwphyssz != 0 &&
1922 		    (physsz + regions[i].mr_size) >= hwphyssz) {
1923 			if (physsz < hwphyssz) {
1924 				phys_avail[j] = regions[i].mr_start;
1925 				phys_avail[j + 1] = regions[i].mr_start +
1926 				    (hwphyssz - physsz);
1927 				physsz = hwphyssz;
1928 				phys_avail_count++;
1929 				dump_avail[j] = phys_avail[j];
1930 				dump_avail[j + 1] = phys_avail[j + 1];
1931 			}
1932 			break;
1933 		}
1934 		phys_avail[j] = regions[i].mr_start;
1935 		phys_avail[j + 1] = regions[i].mr_start + regions[i].mr_size;
1936 		dump_avail[j] = phys_avail[j];
1937 		dump_avail[j + 1] = phys_avail[j + 1];
1938 
1939 		phys_avail_count++;
1940 		physsz += regions[i].mr_size;
1941 		j += 2;
1942 	}
1943 
1944 	/* Check for overlap with the kernel and exception vectors */
1945 	rm_pavail = 0;
1946 	for (j = 0; j < 2 * phys_avail_count; j+=2) {
1947 		if (phys_avail[j] < EXC_LAST)
1948 			phys_avail[j] += EXC_LAST;
1949 
1950 		if (phys_avail[j] >= kpstart &&
1951 		    phys_avail[j + 1] <= kpend) {
1952 			phys_avail[j] = phys_avail[j + 1] = ~0;
1953 			rm_pavail++;
1954 			continue;
1955 		}
1956 
1957 		if (kpstart >= phys_avail[j] &&
1958 		    kpstart < phys_avail[j + 1]) {
1959 			if (kpend < phys_avail[j + 1]) {
1960 				phys_avail[2 * phys_avail_count] =
1961 				    (kpend & ~PAGE_MASK) + PAGE_SIZE;
1962 				phys_avail[2 * phys_avail_count + 1] =
1963 				    phys_avail[j + 1];
1964 				phys_avail_count++;
1965 			}
1966 
1967 			phys_avail[j + 1] = kpstart & ~PAGE_MASK;
1968 		}
1969 
1970 		if (kpend >= phys_avail[j] &&
1971 		    kpend < phys_avail[j + 1]) {
1972 			if (kpstart > phys_avail[j]) {
1973 				phys_avail[2 * phys_avail_count] = phys_avail[j];
1974 				phys_avail[2 * phys_avail_count + 1] =
1975 				    kpstart & ~PAGE_MASK;
1976 				phys_avail_count++;
1977 			}
1978 
1979 			phys_avail[j] = (kpend & ~PAGE_MASK) +
1980 			    PAGE_SIZE;
1981 		}
1982 	}
1983 	qsort(phys_avail, 2 * phys_avail_count, sizeof(phys_avail[0]), pa_cmp);
1984 	for (i = 0; i < 2 * phys_avail_count; i++)
1985 		phys_avail_debug[i] = phys_avail[i];
1986 
1987 	/* Remove physical available regions marked for removal (~0) */
1988 	if (rm_pavail) {
1989 		phys_avail_count -= rm_pavail;
1990 		for (i = 2 * phys_avail_count;
1991 		     i < 2*(phys_avail_count + rm_pavail); i+=2)
1992 			phys_avail[i] = phys_avail[i + 1] = 0;
1993 	}
1994 	if (bootverbose) {
1995 		printf("phys_avail ranges after filtering:\n");
1996 		for (j = 0; j < 2 * phys_avail_count; j+=2)
1997 			printf("phys_avail[%d]=%08lx - phys_avail[%d]=%08lx\n",
1998 				   j, phys_avail[j], j + 1, phys_avail[j + 1]);
1999 	}
2000 	physmem = btoc(physsz);
2001 
2002 	/* XXX assume we're running non-virtualized and
2003 	 * we don't support BHYVE
2004 	 */
2005 	if (isa3_pid_bits == 0)
2006 		isa3_pid_bits = 20;
2007 	parttab_phys = moea64_bootstrap_alloc(PARTTAB_SIZE, PARTTAB_SIZE);
2008 	validate_addr(parttab_phys, PARTTAB_SIZE);
2009 	for (int i = 0; i < PARTTAB_SIZE/PAGE_SIZE; i++)
2010 		pagezero(PHYS_TO_DMAP(parttab_phys + i * PAGE_SIZE));
2011 
2012 	proctab_size = 1UL << PROCTAB_SIZE_SHIFT;
2013 	proctab0pa = moea64_bootstrap_alloc(proctab_size, proctab_size);
2014 	validate_addr(proctab0pa, proctab_size);
2015 	for (int i = 0; i < proctab_size/PAGE_SIZE; i++)
2016 		pagezero(PHYS_TO_DMAP(proctab0pa + i * PAGE_SIZE));
2017 
2018 	mmu_radix_setup_pagetables(hwphyssz);
2019 }
2020 
2021 static void
2022 mmu_radix_late_bootstrap(vm_offset_t start, vm_offset_t end)
2023 {
2024 	int		i;
2025 	vm_paddr_t	pa;
2026 	void		*dpcpu;
2027 	vm_offset_t va;
2028 
2029 	/*
2030 	 * Set up the Open Firmware pmap and add its mappings if not in real
2031 	 * mode.
2032 	 */
2033 	if (bootverbose)
2034 		printf("%s enter\n", __func__);
2035 
2036 	/*
2037 	 * Calculate the last available physical address, and reserve the
2038 	 * vm_page_array (upper bound).
2039 	 */
2040 	Maxmem = 0;
2041 	for (i = 0; phys_avail[i + 2] != 0; i += 2)
2042 		Maxmem = MAX(Maxmem, powerpc_btop(phys_avail[i + 1]));
2043 
2044 	/*
2045 	 * Set the start and end of kva.
2046 	 */
2047 	virtual_avail = VM_MIN_KERNEL_ADDRESS;
2048 	virtual_end = VM_MAX_SAFE_KERNEL_ADDRESS;
2049 
2050 	/*
2051 	 * Remap any early IO mappings (console framebuffer, etc.)
2052 	 */
2053 	bs_remap_earlyboot();
2054 
2055 	/*
2056 	 * Allocate a kernel stack with a guard page for thread0 and map it
2057 	 * into the kernel page map.
2058 	 */
2059 	pa = allocpages(kstack_pages);
2060 	va = virtual_avail + KSTACK_GUARD_PAGES * PAGE_SIZE;
2061 	virtual_avail = va + kstack_pages * PAGE_SIZE;
2062 	CTR2(KTR_PMAP, "moea64_bootstrap: kstack0 at %#x (%#x)", pa, va);
2063 	thread0.td_kstack = va;
2064 	for (i = 0; i < kstack_pages; i++) {
2065 		mmu_radix_kenter(va, pa);
2066 		pa += PAGE_SIZE;
2067 		va += PAGE_SIZE;
2068 	}
2069 	thread0.td_kstack_pages = kstack_pages;
2070 
2071 	/*
2072 	 * Allocate virtual address space for the message buffer.
2073 	 */
2074 	pa = msgbuf_phys = allocpages((msgbufsize + PAGE_MASK)  >> PAGE_SHIFT);
2075 	msgbufp = (struct msgbuf *)PHYS_TO_DMAP(pa);
2076 
2077 	/*
2078 	 * Allocate virtual address space for the dynamic percpu area.
2079 	 */
2080 	pa = allocpages(DPCPU_SIZE >> PAGE_SHIFT);
2081 	dpcpu = (void *)PHYS_TO_DMAP(pa);
2082 	dpcpu_init(dpcpu, curcpu);
2083 	/*
2084 	 * Reserve some special page table entries/VA space for temporary
2085 	 * mapping of pages.
2086 	 */
2087 }
2088 
2089 static void
2090 mmu_parttab_init(void)
2091 {
2092 	uint64_t ptcr;
2093 
2094 	isa3_parttab = (struct pate *)PHYS_TO_DMAP(parttab_phys);
2095 
2096 	if (bootverbose)
2097 		printf("%s parttab: %p\n", __func__, isa3_parttab);
2098 	ptcr = parttab_phys | (PARTTAB_SIZE_SHIFT-12);
2099 	if (bootverbose)
2100 		printf("setting ptcr %lx\n", ptcr);
2101 	mtspr(SPR_PTCR, ptcr);
2102 }
2103 
2104 static void
2105 mmu_parttab_update(uint64_t lpid, uint64_t pagetab, uint64_t proctab)
2106 {
2107 	uint64_t prev;
2108 
2109 	if (bootverbose)
2110 		printf("%s isa3_parttab %p lpid %lx pagetab %lx proctab %lx\n", __func__, isa3_parttab,
2111 			   lpid, pagetab, proctab);
2112 	prev = be64toh(isa3_parttab[lpid].pagetab);
2113 	isa3_parttab[lpid].pagetab = htobe64(pagetab);
2114 	isa3_parttab[lpid].proctab = htobe64(proctab);
2115 
2116 	if (prev & PARTTAB_HR) {
2117 		__asm __volatile(PPC_TLBIE_5(%0,%1,2,0,1) : :
2118 			     "r" (TLBIEL_INVAL_SET_LPID), "r" (lpid));
2119 		__asm __volatile(PPC_TLBIE_5(%0,%1,2,1,1) : :
2120 			     "r" (TLBIEL_INVAL_SET_LPID), "r" (lpid));
2121 	} else {
2122 		__asm __volatile(PPC_TLBIE_5(%0,%1,2,0,0) : :
2123 			     "r" (TLBIEL_INVAL_SET_LPID), "r" (lpid));
2124 	}
2125 	ttusync();
2126 }
2127 
2128 static void
2129 mmu_radix_parttab_init(void)
2130 {
2131 	uint64_t pagetab;
2132 
2133 	mmu_parttab_init();
2134 	pagetab = RTS_SIZE | DMAP_TO_PHYS((vm_offset_t)kernel_pmap->pm_pml1) | \
2135 		         RADIX_PGD_INDEX_SHIFT | PARTTAB_HR;
2136 	mmu_parttab_update(0, pagetab, 0);
2137 }
2138 
2139 static void
2140 mmu_radix_proctab_register(vm_paddr_t proctabpa, uint64_t table_size)
2141 {
2142 	uint64_t pagetab, proctab;
2143 
2144 	pagetab = be64toh(isa3_parttab[0].pagetab);
2145 	proctab = proctabpa | table_size | PARTTAB_GR;
2146 	mmu_parttab_update(0, pagetab, proctab);
2147 }
2148 
2149 static void
2150 mmu_radix_proctab_init(void)
2151 {
2152 
2153 	isa3_base_pid = 1;
2154 
2155 	isa3_proctab = (void*)PHYS_TO_DMAP(proctab0pa);
2156 	isa3_proctab->proctab0 =
2157 	    htobe64(RTS_SIZE | DMAP_TO_PHYS((vm_offset_t)kernel_pmap->pm_pml1) |
2158 		RADIX_PGD_INDEX_SHIFT);
2159 
2160 	mmu_radix_proctab_register(proctab0pa, PROCTAB_SIZE_SHIFT - 12);
2161 
2162 	__asm __volatile("ptesync" : : : "memory");
2163 	__asm __volatile(PPC_TLBIE_5(%0,%1,2,1,1) : :
2164 		     "r" (TLBIEL_INVAL_SET_LPID), "r" (0));
2165 	__asm __volatile("eieio; tlbsync; ptesync" : : : "memory");
2166 	if (bootverbose)
2167 		printf("process table %p and kernel radix PDE: %p\n",
2168 			   isa3_proctab, kernel_pmap->pm_pml1);
2169 	mtmsr(mfmsr() | PSL_DR );
2170 	mtmsr(mfmsr() &  ~PSL_DR);
2171 	kernel_pmap->pm_pid = isa3_base_pid;
2172 	isa3_base_pid++;
2173 }
2174 
2175 void
2176 mmu_radix_advise(pmap_t pmap, vm_offset_t sva, vm_offset_t eva,
2177     int advice)
2178 {
2179 	struct rwlock *lock;
2180 	pml1_entry_t *l1e;
2181 	pml2_entry_t *l2e;
2182 	pml3_entry_t oldl3e, *l3e;
2183 	pt_entry_t *pte;
2184 	vm_offset_t va, va_next;
2185 	vm_page_t m;
2186 	boolean_t anychanged;
2187 
2188 	if (advice != MADV_DONTNEED && advice != MADV_FREE)
2189 		return;
2190 	anychanged = FALSE;
2191 	PMAP_LOCK(pmap);
2192 	for (; sva < eva; sva = va_next) {
2193 		l1e = pmap_pml1e(pmap, sva);
2194 		if ((*l1e & PG_V) == 0) {
2195 			va_next = (sva + L1_PAGE_SIZE) & ~L1_PAGE_MASK;
2196 			if (va_next < sva)
2197 				va_next = eva;
2198 			continue;
2199 		}
2200 		l2e = pmap_l1e_to_l2e(l1e, sva);
2201 		if ((*l2e & PG_V) == 0) {
2202 			va_next = (sva + L2_PAGE_SIZE) & ~L2_PAGE_MASK;
2203 			if (va_next < sva)
2204 				va_next = eva;
2205 			continue;
2206 		}
2207 		va_next = (sva + L3_PAGE_SIZE) & ~L3_PAGE_MASK;
2208 		if (va_next < sva)
2209 			va_next = eva;
2210 		l3e = pmap_l2e_to_l3e(l2e, sva);
2211 		oldl3e = *l3e;
2212 		if ((oldl3e & PG_V) == 0)
2213 			continue;
2214 		else if ((oldl3e & RPTE_LEAF) != 0) {
2215 			if ((oldl3e & PG_MANAGED) == 0)
2216 				continue;
2217 			lock = NULL;
2218 			if (!pmap_demote_l3e_locked(pmap, l3e, sva, &lock)) {
2219 				if (lock != NULL)
2220 					rw_wunlock(lock);
2221 
2222 				/*
2223 				 * The large page mapping was destroyed.
2224 				 */
2225 				continue;
2226 			}
2227 
2228 			/*
2229 			 * Unless the page mappings are wired, remove the
2230 			 * mapping to a single page so that a subsequent
2231 			 * access may repromote.  Since the underlying page
2232 			 * table page is fully populated, this removal never
2233 			 * frees a page table page.
2234 			 */
2235 			if ((oldl3e & PG_W) == 0) {
2236 				pte = pmap_l3e_to_pte(l3e, sva);
2237 				KASSERT((*pte & PG_V) != 0,
2238 				    ("pmap_advise: invalid PTE"));
2239 				pmap_remove_pte(pmap, pte, sva, *l3e, NULL,
2240 				    &lock);
2241 				anychanged = TRUE;
2242 			}
2243 			if (lock != NULL)
2244 				rw_wunlock(lock);
2245 		}
2246 		if (va_next > eva)
2247 			va_next = eva;
2248 		va = va_next;
2249 		for (pte = pmap_l3e_to_pte(l3e, sva); sva != va_next;
2250 			 pte++, sva += PAGE_SIZE) {
2251 			MPASS(pte == pmap_pte(pmap, sva));
2252 
2253 			if ((*pte & (PG_MANAGED | PG_V)) != (PG_MANAGED | PG_V))
2254 				goto maybe_invlrng;
2255 			else if ((*pte & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
2256 				if (advice == MADV_DONTNEED) {
2257 					/*
2258 					 * Future calls to pmap_is_modified()
2259 					 * can be avoided by making the page
2260 					 * dirty now.
2261 					 */
2262 					m = PHYS_TO_VM_PAGE(*pte & PG_FRAME);
2263 					vm_page_dirty(m);
2264 				}
2265 				atomic_clear_long(pte, PG_M | PG_A);
2266 			} else if ((*pte & PG_A) != 0)
2267 				atomic_clear_long(pte, PG_A);
2268 			else
2269 				goto maybe_invlrng;
2270 			anychanged = TRUE;
2271 			continue;
2272 maybe_invlrng:
2273 			if (va != va_next) {
2274 				anychanged = true;
2275 				va = va_next;
2276 			}
2277 		}
2278 		if (va != va_next)
2279 			anychanged = true;
2280 	}
2281 	if (anychanged)
2282 		pmap_invalidate_all(pmap);
2283 	PMAP_UNLOCK(pmap);
2284 }
2285 
2286 /*
2287  * Routines used in machine-dependent code
2288  */
2289 static void
2290 mmu_radix_bootstrap(vm_offset_t start, vm_offset_t end)
2291 {
2292 	uint64_t lpcr;
2293 
2294 	if (bootverbose)
2295 		printf("%s\n", __func__);
2296 	hw_direct_map = 1;
2297 	mmu_radix_early_bootstrap(start, end);
2298 	if (bootverbose)
2299 		printf("early bootstrap complete\n");
2300 	if (powernv_enabled) {
2301 		lpcr = mfspr(SPR_LPCR);
2302 		mtspr(SPR_LPCR, lpcr | LPCR_UPRT | LPCR_HR);
2303 		mmu_radix_parttab_init();
2304 		mmu_radix_init_amor();
2305 		if (bootverbose)
2306 			printf("powernv init complete\n");
2307 	}
2308 	mmu_radix_init_iamr();
2309 	mmu_radix_proctab_init();
2310 	mmu_radix_pid_set(kernel_pmap);
2311 	/* XXX assume CPU_FTR_HVMODE */
2312 	mmu_radix_tlbiel_flush(TLB_INVAL_SCOPE_GLOBAL);
2313 
2314 	mmu_radix_late_bootstrap(start, end);
2315 	numa_mem_regions(&numa_pregions, &numa_pregions_sz);
2316 	if (bootverbose)
2317 		printf("%s done\n", __func__);
2318 	pmap_bootstrapped = 1;
2319 	dmaplimit = roundup2(powerpc_ptob(Maxmem), L2_PAGE_SIZE);
2320 	PCPU_SET(flags, PCPU_GET(flags) | PC_FLAG_NOSRS);
2321 }
2322 
2323 static void
2324 mmu_radix_cpu_bootstrap(int ap)
2325 {
2326 	uint64_t lpcr;
2327 	uint64_t ptcr;
2328 
2329 	if (powernv_enabled) {
2330 		lpcr = mfspr(SPR_LPCR);
2331 		mtspr(SPR_LPCR, lpcr | LPCR_UPRT | LPCR_HR);
2332 
2333 		ptcr = parttab_phys | (PARTTAB_SIZE_SHIFT-12);
2334 		mtspr(SPR_PTCR, ptcr);
2335 		mmu_radix_init_amor();
2336 	}
2337 	mmu_radix_init_iamr();
2338 	mmu_radix_pid_set(kernel_pmap);
2339 	mmu_radix_tlbiel_flush(TLB_INVAL_SCOPE_GLOBAL);
2340 }
2341 
2342 static SYSCTL_NODE(_vm_pmap, OID_AUTO, l3e, CTLFLAG_RD, 0,
2343     "2MB page mapping counters");
2344 
2345 static u_long pmap_l3e_demotions;
2346 SYSCTL_ULONG(_vm_pmap_l3e, OID_AUTO, demotions, CTLFLAG_RD,
2347     &pmap_l3e_demotions, 0, "2MB page demotions");
2348 
2349 static u_long pmap_l3e_mappings;
2350 SYSCTL_ULONG(_vm_pmap_l3e, OID_AUTO, mappings, CTLFLAG_RD,
2351     &pmap_l3e_mappings, 0, "2MB page mappings");
2352 
2353 static u_long pmap_l3e_p_failures;
2354 SYSCTL_ULONG(_vm_pmap_l3e, OID_AUTO, p_failures, CTLFLAG_RD,
2355     &pmap_l3e_p_failures, 0, "2MB page promotion failures");
2356 
2357 static u_long pmap_l3e_promotions;
2358 SYSCTL_ULONG(_vm_pmap_l3e, OID_AUTO, promotions, CTLFLAG_RD,
2359     &pmap_l3e_promotions, 0, "2MB page promotions");
2360 
2361 static SYSCTL_NODE(_vm_pmap, OID_AUTO, l2e, CTLFLAG_RD, 0,
2362     "1GB page mapping counters");
2363 
2364 static u_long pmap_l2e_demotions;
2365 SYSCTL_ULONG(_vm_pmap_l2e, OID_AUTO, demotions, CTLFLAG_RD,
2366     &pmap_l2e_demotions, 0, "1GB page demotions");
2367 
2368 void
2369 mmu_radix_clear_modify(vm_page_t m)
2370 {
2371 	struct md_page *pvh;
2372 	pmap_t pmap;
2373 	pv_entry_t next_pv, pv;
2374 	pml3_entry_t oldl3e, *l3e;
2375 	pt_entry_t oldpte, *pte;
2376 	struct rwlock *lock;
2377 	vm_offset_t va;
2378 	int md_gen, pvh_gen;
2379 
2380 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2381 	    ("pmap_clear_modify: page %p is not managed", m));
2382 	vm_page_assert_busied(m);
2383 	CTR2(KTR_PMAP, "%s(%p)", __func__, m);
2384 
2385 	/*
2386 	 * If the page is not PGA_WRITEABLE, then no PTEs can have PG_M set.
2387 	 * If the object containing the page is locked and the page is not
2388 	 * exclusive busied, then PGA_WRITEABLE cannot be concurrently set.
2389 	 */
2390 	if ((m->a.flags & PGA_WRITEABLE) == 0)
2391 		return;
2392 	pvh = (m->flags & PG_FICTITIOUS) != 0 ? &pv_dummy :
2393 	    pa_to_pvh(VM_PAGE_TO_PHYS(m));
2394 	lock = VM_PAGE_TO_PV_LIST_LOCK(m);
2395 	rw_wlock(lock);
2396 restart:
2397 	TAILQ_FOREACH_SAFE(pv, &pvh->pv_list, pv_link, next_pv) {
2398 		pmap = PV_PMAP(pv);
2399 		if (!PMAP_TRYLOCK(pmap)) {
2400 			pvh_gen = pvh->pv_gen;
2401 			rw_wunlock(lock);
2402 			PMAP_LOCK(pmap);
2403 			rw_wlock(lock);
2404 			if (pvh_gen != pvh->pv_gen) {
2405 				PMAP_UNLOCK(pmap);
2406 				goto restart;
2407 			}
2408 		}
2409 		va = pv->pv_va;
2410 		l3e = pmap_pml3e(pmap, va);
2411 		oldl3e = *l3e;
2412 		if ((oldl3e & PG_RW) != 0) {
2413 			if (pmap_demote_l3e_locked(pmap, l3e, va, &lock)) {
2414 				if ((oldl3e & PG_W) == 0) {
2415 					/*
2416 					 * Write protect the mapping to a
2417 					 * single page so that a subsequent
2418 					 * write access may repromote.
2419 					 */
2420 					va += VM_PAGE_TO_PHYS(m) - (oldl3e &
2421 					    PG_PS_FRAME);
2422 					pte = pmap_l3e_to_pte(l3e, va);
2423 					oldpte = *pte;
2424 					if ((oldpte & PG_V) != 0) {
2425 						while (!atomic_cmpset_long(pte,
2426 						    oldpte,
2427 							(oldpte | RPTE_EAA_R) & ~(PG_M | PG_RW)))
2428 							   oldpte = *pte;
2429 						vm_page_dirty(m);
2430 						pmap_invalidate_page(pmap, va);
2431 					}
2432 				}
2433 			}
2434 		}
2435 		PMAP_UNLOCK(pmap);
2436 	}
2437 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2438 		pmap = PV_PMAP(pv);
2439 		if (!PMAP_TRYLOCK(pmap)) {
2440 			md_gen = m->md.pv_gen;
2441 			pvh_gen = pvh->pv_gen;
2442 			rw_wunlock(lock);
2443 			PMAP_LOCK(pmap);
2444 			rw_wlock(lock);
2445 			if (pvh_gen != pvh->pv_gen || md_gen != m->md.pv_gen) {
2446 				PMAP_UNLOCK(pmap);
2447 				goto restart;
2448 			}
2449 		}
2450 		l3e = pmap_pml3e(pmap, pv->pv_va);
2451 		KASSERT((*l3e & RPTE_LEAF) == 0, ("pmap_clear_modify: found"
2452 		    " a 2mpage in page %p's pv list", m));
2453 		pte = pmap_l3e_to_pte(l3e, pv->pv_va);
2454 		if ((*pte & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
2455 			atomic_clear_long(pte, PG_M);
2456 			pmap_invalidate_page(pmap, pv->pv_va);
2457 		}
2458 		PMAP_UNLOCK(pmap);
2459 	}
2460 	rw_wunlock(lock);
2461 }
2462 
2463 void
2464 mmu_radix_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr,
2465     vm_size_t len, vm_offset_t src_addr)
2466 {
2467 	struct rwlock *lock;
2468 	struct spglist free;
2469 	vm_offset_t addr;
2470 	vm_offset_t end_addr = src_addr + len;
2471 	vm_offset_t va_next;
2472 	vm_page_t dst_pdpg, dstmpte, srcmpte;
2473 	bool invalidate_all;
2474 
2475 	CTR6(KTR_PMAP,
2476 	    "%s(dst_pmap=%p, src_pmap=%p, dst_addr=%lx, len=%lu, src_addr=%lx)\n",
2477 	    __func__, dst_pmap, src_pmap, dst_addr, len, src_addr);
2478 
2479 	if (dst_addr != src_addr)
2480 		return;
2481 	lock = NULL;
2482 	invalidate_all = false;
2483 	if (dst_pmap < src_pmap) {
2484 		PMAP_LOCK(dst_pmap);
2485 		PMAP_LOCK(src_pmap);
2486 	} else {
2487 		PMAP_LOCK(src_pmap);
2488 		PMAP_LOCK(dst_pmap);
2489 	}
2490 
2491 	for (addr = src_addr; addr < end_addr; addr = va_next) {
2492 		pml1_entry_t *l1e;
2493 		pml2_entry_t *l2e;
2494 		pml3_entry_t srcptepaddr, *l3e;
2495 		pt_entry_t *src_pte, *dst_pte;
2496 
2497 		l1e = pmap_pml1e(src_pmap, addr);
2498 		if ((*l1e & PG_V) == 0) {
2499 			va_next = (addr + L1_PAGE_SIZE) & ~L1_PAGE_MASK;
2500 			if (va_next < addr)
2501 				va_next = end_addr;
2502 			continue;
2503 		}
2504 
2505 		l2e = pmap_l1e_to_l2e(l1e, addr);
2506 		if ((*l2e & PG_V) == 0) {
2507 			va_next = (addr + L2_PAGE_SIZE) & ~L2_PAGE_MASK;
2508 			if (va_next < addr)
2509 				va_next = end_addr;
2510 			continue;
2511 		}
2512 
2513 		va_next = (addr + L3_PAGE_SIZE) & ~L3_PAGE_MASK;
2514 		if (va_next < addr)
2515 			va_next = end_addr;
2516 
2517 		l3e = pmap_l2e_to_l3e(l2e, addr);
2518 		srcptepaddr = *l3e;
2519 		if (srcptepaddr == 0)
2520 			continue;
2521 
2522 		if (srcptepaddr & RPTE_LEAF) {
2523 			if ((addr & L3_PAGE_MASK) != 0 ||
2524 			    addr + L3_PAGE_SIZE > end_addr)
2525 				continue;
2526 			dst_pdpg = pmap_allocl3e(dst_pmap, addr, NULL);
2527 			if (dst_pdpg == NULL)
2528 				break;
2529 			l3e = (pml3_entry_t *)
2530 			    PHYS_TO_DMAP(VM_PAGE_TO_PHYS(dst_pdpg));
2531 			l3e = &l3e[pmap_pml3e_index(addr)];
2532 			if (*l3e == 0 && ((srcptepaddr & PG_MANAGED) == 0 ||
2533 			    pmap_pv_insert_l3e(dst_pmap, addr, srcptepaddr,
2534 			    PMAP_ENTER_NORECLAIM, &lock))) {
2535 				*l3e = srcptepaddr & ~PG_W;
2536 				pmap_resident_count_inc(dst_pmap,
2537 				    L3_PAGE_SIZE / PAGE_SIZE);
2538 				atomic_add_long(&pmap_l3e_mappings, 1);
2539 			} else
2540 				dst_pdpg->ref_count--;
2541 			continue;
2542 		}
2543 
2544 		srcptepaddr &= PG_FRAME;
2545 		srcmpte = PHYS_TO_VM_PAGE(srcptepaddr);
2546 		KASSERT(srcmpte->ref_count > 0,
2547 		    ("pmap_copy: source page table page is unused"));
2548 
2549 		if (va_next > end_addr)
2550 			va_next = end_addr;
2551 
2552 		src_pte = (pt_entry_t *)PHYS_TO_DMAP(srcptepaddr);
2553 		src_pte = &src_pte[pmap_pte_index(addr)];
2554 		dstmpte = NULL;
2555 		while (addr < va_next) {
2556 			pt_entry_t ptetemp;
2557 			ptetemp = *src_pte;
2558 			/*
2559 			 * we only virtual copy managed pages
2560 			 */
2561 			if ((ptetemp & PG_MANAGED) != 0) {
2562 				if (dstmpte != NULL &&
2563 				    dstmpte->pindex == pmap_l3e_pindex(addr))
2564 					dstmpte->ref_count++;
2565 				else if ((dstmpte = pmap_allocpte(dst_pmap,
2566 				    addr, NULL)) == NULL)
2567 					goto out;
2568 				dst_pte = (pt_entry_t *)
2569 				    PHYS_TO_DMAP(VM_PAGE_TO_PHYS(dstmpte));
2570 				dst_pte = &dst_pte[pmap_pte_index(addr)];
2571 				if (*dst_pte == 0 &&
2572 				    pmap_try_insert_pv_entry(dst_pmap, addr,
2573 				    PHYS_TO_VM_PAGE(ptetemp & PG_FRAME),
2574 				    &lock)) {
2575 					/*
2576 					 * Clear the wired, modified, and
2577 					 * accessed (referenced) bits
2578 					 * during the copy.
2579 					 */
2580 					*dst_pte = ptetemp & ~(PG_W | PG_M |
2581 					    PG_A);
2582 					pmap_resident_count_inc(dst_pmap, 1);
2583 				} else {
2584 					SLIST_INIT(&free);
2585 					if (pmap_unwire_ptp(dst_pmap, addr,
2586 					    dstmpte, &free)) {
2587 						/*
2588 						 * Although "addr" is not
2589 						 * mapped, paging-structure
2590 						 * caches could nonetheless
2591 						 * have entries that refer to
2592 						 * the freed page table pages.
2593 						 * Invalidate those entries.
2594 						 */
2595 						invalidate_all = true;
2596 						vm_page_free_pages_toq(&free,
2597 						    true);
2598 					}
2599 					goto out;
2600 				}
2601 				if (dstmpte->ref_count >= srcmpte->ref_count)
2602 					break;
2603 			}
2604 			addr += PAGE_SIZE;
2605 			if (__predict_false((addr & L3_PAGE_MASK) == 0))
2606 				src_pte = pmap_pte(src_pmap, addr);
2607 			else
2608 				src_pte++;
2609 		}
2610 	}
2611 out:
2612 	if (invalidate_all)
2613 		pmap_invalidate_all(dst_pmap);
2614 	if (lock != NULL)
2615 		rw_wunlock(lock);
2616 	PMAP_UNLOCK(src_pmap);
2617 	PMAP_UNLOCK(dst_pmap);
2618 }
2619 
2620 static void
2621 mmu_radix_copy_page(vm_page_t msrc, vm_page_t mdst)
2622 {
2623 	vm_offset_t src = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(msrc));
2624 	vm_offset_t dst = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(mdst));
2625 
2626 	CTR3(KTR_PMAP, "%s(%p, %p)", __func__, src, dst);
2627 	/*
2628 	 * XXX slow
2629 	 */
2630 	bcopy((void *)src, (void *)dst, PAGE_SIZE);
2631 }
2632 
2633 static void
2634 mmu_radix_copy_pages(vm_page_t ma[], vm_offset_t a_offset, vm_page_t mb[],
2635     vm_offset_t b_offset, int xfersize)
2636 {
2637 
2638 	CTR6(KTR_PMAP, "%s(%p, %#x, %p, %#x, %#x)", __func__, ma,
2639 	    a_offset, mb, b_offset, xfersize);
2640 	UNIMPLEMENTED();
2641 }
2642 
2643 #if VM_NRESERVLEVEL > 0
2644 /*
2645  * Tries to promote the 512, contiguous 4KB page mappings that are within a
2646  * single page table page (PTP) to a single 2MB page mapping.  For promotion
2647  * to occur, two conditions must be met: (1) the 4KB page mappings must map
2648  * aligned, contiguous physical memory and (2) the 4KB page mappings must have
2649  * identical characteristics.
2650  */
2651 static int
2652 pmap_promote_l3e(pmap_t pmap, pml3_entry_t *pde, vm_offset_t va,
2653     struct rwlock **lockp)
2654 {
2655 	pml3_entry_t newpde;
2656 	pt_entry_t *firstpte, oldpte, pa, *pte;
2657 	vm_page_t mpte;
2658 
2659 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2660 
2661 	/*
2662 	 * Examine the first PTE in the specified PTP.  Abort if this PTE is
2663 	 * either invalid, unused, or does not map the first 4KB physical page
2664 	 * within a 2MB page.
2665 	 */
2666 	firstpte = (pt_entry_t *)PHYS_TO_DMAP(*pde & PG_FRAME);
2667 setpde:
2668 	newpde = *firstpte;
2669 	if ((newpde & ((PG_FRAME & L3_PAGE_MASK) | PG_A | PG_V)) != (PG_A | PG_V)) {
2670 		CTR2(KTR_PMAP, "pmap_promote_l3e: failure for va %#lx"
2671 		    " in pmap %p", va, pmap);
2672 		goto fail;
2673 	}
2674 	if ((newpde & (PG_M | PG_RW)) == PG_RW) {
2675 		/*
2676 		 * When PG_M is already clear, PG_RW can be cleared without
2677 		 * a TLB invalidation.
2678 		 */
2679 		if (!atomic_cmpset_long(firstpte, newpde, (newpde | RPTE_EAA_R) & ~RPTE_EAA_W))
2680 			goto setpde;
2681 		newpde &= ~RPTE_EAA_W;
2682 	}
2683 
2684 	/*
2685 	 * Examine each of the other PTEs in the specified PTP.  Abort if this
2686 	 * PTE maps an unexpected 4KB physical page or does not have identical
2687 	 * characteristics to the first PTE.
2688 	 */
2689 	pa = (newpde & (PG_PS_FRAME | PG_A | PG_V)) + L3_PAGE_SIZE - PAGE_SIZE;
2690 	for (pte = firstpte + NPTEPG - 1; pte > firstpte; pte--) {
2691 setpte:
2692 		oldpte = *pte;
2693 		if ((oldpte & (PG_FRAME | PG_A | PG_V)) != pa) {
2694 			CTR2(KTR_PMAP, "pmap_promote_l3e: failure for va %#lx"
2695 			    " in pmap %p", va, pmap);
2696 			goto fail;
2697 		}
2698 		if ((oldpte & (PG_M | PG_RW)) == PG_RW) {
2699 			/*
2700 			 * When PG_M is already clear, PG_RW can be cleared
2701 			 * without a TLB invalidation.
2702 			 */
2703 			if (!atomic_cmpset_long(pte, oldpte, (oldpte | RPTE_EAA_R) & ~RPTE_EAA_W))
2704 				goto setpte;
2705 			oldpte &= ~RPTE_EAA_W;
2706 			CTR2(KTR_PMAP, "pmap_promote_l3e: protect for va %#lx"
2707 			    " in pmap %p", (oldpte & PG_FRAME & L3_PAGE_MASK) |
2708 			    (va & ~L3_PAGE_MASK), pmap);
2709 		}
2710 		if ((oldpte & PG_PTE_PROMOTE) != (newpde & PG_PTE_PROMOTE)) {
2711 			CTR2(KTR_PMAP, "pmap_promote_l3e: failure for va %#lx"
2712 			    " in pmap %p", va, pmap);
2713 			goto fail;
2714 		}
2715 		pa -= PAGE_SIZE;
2716 	}
2717 
2718 	/*
2719 	 * Save the page table page in its current state until the PDE
2720 	 * mapping the superpage is demoted by pmap_demote_pde() or
2721 	 * destroyed by pmap_remove_pde().
2722 	 */
2723 	mpte = PHYS_TO_VM_PAGE(*pde & PG_FRAME);
2724 	KASSERT(mpte >= vm_page_array &&
2725 	    mpte < &vm_page_array[vm_page_array_size],
2726 	    ("pmap_promote_l3e: page table page is out of range"));
2727 	KASSERT(mpte->pindex == pmap_l3e_pindex(va),
2728 	    ("pmap_promote_l3e: page table page's pindex is wrong"));
2729 	if (pmap_insert_pt_page(pmap, mpte)) {
2730 		CTR2(KTR_PMAP,
2731 		    "pmap_promote_l3e: failure for va %#lx in pmap %p", va,
2732 		    pmap);
2733 		goto fail;
2734 	}
2735 
2736 	/*
2737 	 * Promote the pv entries.
2738 	 */
2739 	if ((newpde & PG_MANAGED) != 0)
2740 		pmap_pv_promote_l3e(pmap, va, newpde & PG_PS_FRAME, lockp);
2741 
2742 	pte_store(pde, PG_PROMOTED | newpde);
2743 	atomic_add_long(&pmap_l3e_promotions, 1);
2744 	CTR2(KTR_PMAP, "pmap_promote_l3e: success for va %#lx"
2745 	    " in pmap %p", va, pmap);
2746 	return (0);
2747  fail:
2748 	atomic_add_long(&pmap_l3e_p_failures, 1);
2749 	return (KERN_FAILURE);
2750 }
2751 #endif /* VM_NRESERVLEVEL > 0 */
2752 
2753 int
2754 mmu_radix_enter(pmap_t pmap, vm_offset_t va, vm_page_t m,
2755     vm_prot_t prot, u_int flags, int8_t psind)
2756 {
2757 	struct rwlock *lock;
2758 	pml3_entry_t *l3e;
2759 	pt_entry_t *pte;
2760 	pt_entry_t newpte, origpte;
2761 	pv_entry_t pv;
2762 	vm_paddr_t opa, pa;
2763 	vm_page_t mpte, om;
2764 	int rv, retrycount;
2765 	boolean_t nosleep, invalidate_all, invalidate_page;
2766 
2767 	va = trunc_page(va);
2768 	retrycount = 0;
2769 	invalidate_page = invalidate_all = false;
2770 	CTR6(KTR_PMAP, "pmap_enter(%p, %#lx, %p, %#x, %#x, %d)", pmap, va,
2771 	    m, prot, flags, psind);
2772 	KASSERT(va <= VM_MAX_KERNEL_ADDRESS, ("pmap_enter: toobig"));
2773 	KASSERT((m->oflags & VPO_UNMANAGED) != 0 || va < kmi.clean_sva ||
2774 	    va >= kmi.clean_eva,
2775 	    ("pmap_enter: managed mapping within the clean submap"));
2776 	if ((m->oflags & VPO_UNMANAGED) == 0)
2777 		VM_PAGE_OBJECT_BUSY_ASSERT(m);
2778 
2779 	KASSERT((flags & PMAP_ENTER_RESERVED) == 0,
2780 	    ("pmap_enter: flags %u has reserved bits set", flags));
2781 	pa = VM_PAGE_TO_PHYS(m);
2782 	newpte = (pt_entry_t)(pa | PG_A | PG_V | RPTE_LEAF);
2783 	if ((flags & VM_PROT_WRITE) != 0)
2784 		newpte |= PG_M;
2785 	if ((flags & VM_PROT_READ) != 0)
2786 		newpte |= PG_A;
2787 	if (prot & VM_PROT_READ)
2788 		newpte |= RPTE_EAA_R;
2789 	if ((prot & VM_PROT_WRITE) != 0)
2790 		newpte |= RPTE_EAA_W;
2791 	KASSERT((newpte & (PG_M | PG_RW)) != PG_M,
2792 	    ("pmap_enter: flags includes VM_PROT_WRITE but prot doesn't"));
2793 
2794 	if (prot & VM_PROT_EXECUTE)
2795 		newpte |= PG_X;
2796 	if ((flags & PMAP_ENTER_WIRED) != 0)
2797 		newpte |= PG_W;
2798 	if (va >= DMAP_MIN_ADDRESS)
2799 		newpte |= RPTE_EAA_P;
2800 	newpte |= pmap_cache_bits(m->md.mdpg_cache_attrs);
2801 	/*
2802 	 * Set modified bit gratuitously for writeable mappings if
2803 	 * the page is unmanaged. We do not want to take a fault
2804 	 * to do the dirty bit accounting for these mappings.
2805 	 */
2806 	if ((m->oflags & VPO_UNMANAGED) != 0) {
2807 		if ((newpte & PG_RW) != 0)
2808 			newpte |= PG_M;
2809 	} else
2810 		newpte |= PG_MANAGED;
2811 
2812 	lock = NULL;
2813 	PMAP_LOCK(pmap);
2814 	if (psind == 1) {
2815 		/* Assert the required virtual and physical alignment. */
2816 		KASSERT((va & L3_PAGE_MASK) == 0, ("pmap_enter: va unaligned"));
2817 		KASSERT(m->psind > 0, ("pmap_enter: m->psind < psind"));
2818 		rv = pmap_enter_l3e(pmap, va, newpte | RPTE_LEAF, flags, m, &lock);
2819 		goto out;
2820 	}
2821 	mpte = NULL;
2822 
2823 	/*
2824 	 * In the case that a page table page is not
2825 	 * resident, we are creating it here.
2826 	 */
2827 retry:
2828 	l3e = pmap_pml3e(pmap, va);
2829 	if (l3e != NULL && (*l3e & PG_V) != 0 && ((*l3e & RPTE_LEAF) == 0 ||
2830 	    pmap_demote_l3e_locked(pmap, l3e, va, &lock))) {
2831 		pte = pmap_l3e_to_pte(l3e, va);
2832 		if (va < VM_MAXUSER_ADDRESS && mpte == NULL) {
2833 			mpte = PHYS_TO_VM_PAGE(*l3e & PG_FRAME);
2834 			mpte->ref_count++;
2835 		}
2836 	} else if (va < VM_MAXUSER_ADDRESS) {
2837 		/*
2838 		 * Here if the pte page isn't mapped, or if it has been
2839 		 * deallocated.
2840 		 */
2841 		nosleep = (flags & PMAP_ENTER_NOSLEEP) != 0;
2842 		mpte = _pmap_allocpte(pmap, pmap_l3e_pindex(va),
2843 		    nosleep ? NULL : &lock);
2844 		if (mpte == NULL && nosleep) {
2845 			rv = KERN_RESOURCE_SHORTAGE;
2846 			goto out;
2847 		}
2848 		if (__predict_false(retrycount++ == 6))
2849 			panic("too many retries");
2850 		invalidate_all = true;
2851 		goto retry;
2852 	} else
2853 		panic("pmap_enter: invalid page directory va=%#lx", va);
2854 
2855 	origpte = *pte;
2856 	pv = NULL;
2857 
2858 	/*
2859 	 * Is the specified virtual address already mapped?
2860 	 */
2861 	if ((origpte & PG_V) != 0) {
2862 #ifdef INVARIANTS
2863 		if (VERBOSE_PMAP || pmap_logging) {
2864 			printf("cow fault pmap_enter(%p, %#lx, %p, %#x, %x, %d) --"
2865 			    " asid=%lu curpid=%d name=%s origpte0x%lx\n",
2866 			    pmap, va, m, prot, flags, psind, pmap->pm_pid,
2867 			    curproc->p_pid, curproc->p_comm, origpte);
2868 			pmap_pte_walk(pmap->pm_pml1, va);
2869 		}
2870 #endif
2871 		/*
2872 		 * Wiring change, just update stats. We don't worry about
2873 		 * wiring PT pages as they remain resident as long as there
2874 		 * are valid mappings in them. Hence, if a user page is wired,
2875 		 * the PT page will be also.
2876 		 */
2877 		if ((newpte & PG_W) != 0 && (origpte & PG_W) == 0)
2878 			pmap->pm_stats.wired_count++;
2879 		else if ((newpte & PG_W) == 0 && (origpte & PG_W) != 0)
2880 			pmap->pm_stats.wired_count--;
2881 
2882 		/*
2883 		 * Remove the extra PT page reference.
2884 		 */
2885 		if (mpte != NULL) {
2886 			mpte->ref_count--;
2887 			KASSERT(mpte->ref_count > 0,
2888 			    ("pmap_enter: missing reference to page table page,"
2889 			     " va: 0x%lx", va));
2890 		}
2891 
2892 		/*
2893 		 * Has the physical page changed?
2894 		 */
2895 		opa = origpte & PG_FRAME;
2896 		if (opa == pa) {
2897 			/*
2898 			 * No, might be a protection or wiring change.
2899 			 */
2900 			if ((origpte & PG_MANAGED) != 0 &&
2901 			    (newpte & PG_RW) != 0)
2902 				vm_page_aflag_set(m, PGA_WRITEABLE);
2903 			if (((origpte ^ newpte) & ~(PG_M | PG_A)) == 0) {
2904 				if ((newpte & (PG_A|PG_M)) != (origpte & (PG_A|PG_M))) {
2905 					if (!atomic_cmpset_long(pte, origpte, newpte))
2906 						goto retry;
2907 					if ((newpte & PG_M) != (origpte & PG_M))
2908 						vm_page_dirty(m);
2909 					if ((newpte & PG_A) != (origpte & PG_A))
2910 						vm_page_aflag_set(m, PGA_REFERENCED);
2911 					ptesync();
2912 				} else
2913 					invalidate_all = true;
2914 				if (((origpte ^ newpte) & ~(PG_M | PG_A)) == 0)
2915 					goto unchanged;
2916 			}
2917 			goto validate;
2918 		}
2919 
2920 		/*
2921 		 * The physical page has changed.  Temporarily invalidate
2922 		 * the mapping.  This ensures that all threads sharing the
2923 		 * pmap keep a consistent view of the mapping, which is
2924 		 * necessary for the correct handling of COW faults.  It
2925 		 * also permits reuse of the old mapping's PV entry,
2926 		 * avoiding an allocation.
2927 		 *
2928 		 * For consistency, handle unmanaged mappings the same way.
2929 		 */
2930 		origpte = pte_load_clear(pte);
2931 		KASSERT((origpte & PG_FRAME) == opa,
2932 		    ("pmap_enter: unexpected pa update for %#lx", va));
2933 		if ((origpte & PG_MANAGED) != 0) {
2934 			om = PHYS_TO_VM_PAGE(opa);
2935 
2936 			/*
2937 			 * The pmap lock is sufficient to synchronize with
2938 			 * concurrent calls to pmap_page_test_mappings() and
2939 			 * pmap_ts_referenced().
2940 			 */
2941 			if ((origpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
2942 				vm_page_dirty(om);
2943 			if ((origpte & PG_A) != 0)
2944 				vm_page_aflag_set(om, PGA_REFERENCED);
2945 			CHANGE_PV_LIST_LOCK_TO_PHYS(&lock, opa);
2946 			pv = pmap_pvh_remove(&om->md, pmap, va);
2947 			if ((newpte & PG_MANAGED) == 0)
2948 				free_pv_entry(pmap, pv);
2949 #ifdef INVARIANTS
2950 			else if (origpte & PG_MANAGED) {
2951 				if (pv == NULL) {
2952 					pmap_page_print_mappings(om);
2953 					MPASS(pv != NULL);
2954 				}
2955 			}
2956 #endif
2957 			if ((om->a.flags & PGA_WRITEABLE) != 0 &&
2958 			    TAILQ_EMPTY(&om->md.pv_list) &&
2959 			    ((om->flags & PG_FICTITIOUS) != 0 ||
2960 			    TAILQ_EMPTY(&pa_to_pvh(opa)->pv_list)))
2961 				vm_page_aflag_clear(om, PGA_WRITEABLE);
2962 		}
2963 		if ((origpte & PG_A) != 0)
2964 			invalidate_page = true;
2965 		origpte = 0;
2966 	} else {
2967 		if (pmap != kernel_pmap) {
2968 #ifdef INVARIANTS
2969 			if (VERBOSE_PMAP || pmap_logging)
2970 				printf("pmap_enter(%p, %#lx, %p, %#x, %x, %d) -- asid=%lu curpid=%d name=%s\n",
2971 				    pmap, va, m, prot, flags, psind,
2972 				    pmap->pm_pid, curproc->p_pid,
2973 				    curproc->p_comm);
2974 #endif
2975 		}
2976 
2977 		/*
2978 		 * Increment the counters.
2979 		 */
2980 		if ((newpte & PG_W) != 0)
2981 			pmap->pm_stats.wired_count++;
2982 		pmap_resident_count_inc(pmap, 1);
2983 	}
2984 
2985 	/*
2986 	 * Enter on the PV list if part of our managed memory.
2987 	 */
2988 	if ((newpte & PG_MANAGED) != 0) {
2989 		if (pv == NULL) {
2990 			pv = get_pv_entry(pmap, &lock);
2991 			pv->pv_va = va;
2992 		}
2993 #ifdef VERBOSE_PV
2994 		else
2995 			printf("reassigning pv: %p to pmap: %p\n",
2996 				   pv, pmap);
2997 #endif
2998 		CHANGE_PV_LIST_LOCK_TO_PHYS(&lock, pa);
2999 		TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_link);
3000 		m->md.pv_gen++;
3001 		if ((newpte & PG_RW) != 0)
3002 			vm_page_aflag_set(m, PGA_WRITEABLE);
3003 	}
3004 
3005 	/*
3006 	 * Update the PTE.
3007 	 */
3008 	if ((origpte & PG_V) != 0) {
3009 validate:
3010 		origpte = pte_load_store(pte, newpte);
3011 		KASSERT((origpte & PG_FRAME) == pa,
3012 		    ("pmap_enter: unexpected pa update for %#lx", va));
3013 		if ((newpte & PG_M) == 0 && (origpte & (PG_M | PG_RW)) ==
3014 		    (PG_M | PG_RW)) {
3015 			if ((origpte & PG_MANAGED) != 0)
3016 				vm_page_dirty(m);
3017 			invalidate_page = true;
3018 
3019 			/*
3020 			 * Although the PTE may still have PG_RW set, TLB
3021 			 * invalidation may nonetheless be required because
3022 			 * the PTE no longer has PG_M set.
3023 			 */
3024 		} else if ((origpte & PG_X) != 0 || (newpte & PG_X) == 0) {
3025 			/*
3026 			 * Removing capabilities requires invalidation on POWER
3027 			 */
3028 			invalidate_page = true;
3029 			goto unchanged;
3030 		}
3031 		if ((origpte & PG_A) != 0)
3032 			invalidate_page = true;
3033 	} else {
3034 		pte_store(pte, newpte);
3035 		ptesync();
3036 	}
3037 unchanged:
3038 
3039 #if VM_NRESERVLEVEL > 0
3040 	/*
3041 	 * If both the page table page and the reservation are fully
3042 	 * populated, then attempt promotion.
3043 	 */
3044 	if ((mpte == NULL || mpte->ref_count == NPTEPG) &&
3045 	    mmu_radix_ps_enabled(pmap) &&
3046 	    (m->flags & PG_FICTITIOUS) == 0 &&
3047 	    vm_reserv_level_iffullpop(m) == 0 &&
3048 		pmap_promote_l3e(pmap, l3e, va, &lock) == 0)
3049 		invalidate_all = true;
3050 #endif
3051 	if (invalidate_all)
3052 		pmap_invalidate_all(pmap);
3053 	else if (invalidate_page)
3054 		pmap_invalidate_page(pmap, va);
3055 
3056 	rv = KERN_SUCCESS;
3057 out:
3058 	if (lock != NULL)
3059 		rw_wunlock(lock);
3060 	PMAP_UNLOCK(pmap);
3061 
3062 	return (rv);
3063 }
3064 
3065 /*
3066  * Tries to create a read- and/or execute-only 2MB page mapping.  Returns true
3067  * if successful.  Returns false if (1) a page table page cannot be allocated
3068  * without sleeping, (2) a mapping already exists at the specified virtual
3069  * address, or (3) a PV entry cannot be allocated without reclaiming another
3070  * PV entry.
3071  */
3072 static bool
3073 pmap_enter_2mpage(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
3074     struct rwlock **lockp)
3075 {
3076 	pml3_entry_t newpde;
3077 
3078 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3079 	newpde = VM_PAGE_TO_PHYS(m) | pmap_cache_bits(m->md.mdpg_cache_attrs) |
3080 	    RPTE_LEAF | PG_V;
3081 	if ((m->oflags & VPO_UNMANAGED) == 0)
3082 		newpde |= PG_MANAGED;
3083 	if (prot & VM_PROT_EXECUTE)
3084 		newpde |= PG_X;
3085 	if (prot & VM_PROT_READ)
3086 		newpde |= RPTE_EAA_R;
3087 	if (va >= DMAP_MIN_ADDRESS)
3088 		newpde |= RPTE_EAA_P;
3089 	return (pmap_enter_l3e(pmap, va, newpde, PMAP_ENTER_NOSLEEP |
3090 	    PMAP_ENTER_NOREPLACE | PMAP_ENTER_NORECLAIM, NULL, lockp) ==
3091 	    KERN_SUCCESS);
3092 }
3093 
3094 /*
3095  * Tries to create the specified 2MB page mapping.  Returns KERN_SUCCESS if
3096  * the mapping was created, and either KERN_FAILURE or KERN_RESOURCE_SHORTAGE
3097  * otherwise.  Returns KERN_FAILURE if PMAP_ENTER_NOREPLACE was specified and
3098  * a mapping already exists at the specified virtual address.  Returns
3099  * KERN_RESOURCE_SHORTAGE if PMAP_ENTER_NOSLEEP was specified and a page table
3100  * page allocation failed.  Returns KERN_RESOURCE_SHORTAGE if
3101  * PMAP_ENTER_NORECLAIM was specified and a PV entry allocation failed.
3102  *
3103  * The parameter "m" is only used when creating a managed, writeable mapping.
3104  */
3105 static int
3106 pmap_enter_l3e(pmap_t pmap, vm_offset_t va, pml3_entry_t newpde, u_int flags,
3107     vm_page_t m, struct rwlock **lockp)
3108 {
3109 	struct spglist free;
3110 	pml3_entry_t oldl3e, *l3e;
3111 	vm_page_t mt, pdpg;
3112 
3113 	KASSERT((newpde & (PG_M | PG_RW)) != PG_RW,
3114 	    ("pmap_enter_pde: newpde is missing PG_M"));
3115 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3116 
3117 	if ((pdpg = pmap_allocl3e(pmap, va, (flags & PMAP_ENTER_NOSLEEP) != 0 ?
3118 	    NULL : lockp)) == NULL) {
3119 		CTR2(KTR_PMAP, "pmap_enter_pde: failure for va %#lx"
3120 		    " in pmap %p", va, pmap);
3121 		return (KERN_RESOURCE_SHORTAGE);
3122 	}
3123 	l3e = (pml3_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pdpg));
3124 	l3e = &l3e[pmap_pml3e_index(va)];
3125 	oldl3e = *l3e;
3126 	if ((oldl3e & PG_V) != 0) {
3127 		KASSERT(pdpg->ref_count > 1,
3128 		    ("pmap_enter_pde: pdpg's wire count is too low"));
3129 		if ((flags & PMAP_ENTER_NOREPLACE) != 0) {
3130 			pdpg->ref_count--;
3131 			CTR2(KTR_PMAP, "pmap_enter_pde: failure for va %#lx"
3132 			    " in pmap %p", va, pmap);
3133 			return (KERN_FAILURE);
3134 		}
3135 		/* Break the existing mapping(s). */
3136 		SLIST_INIT(&free);
3137 		if ((oldl3e & RPTE_LEAF) != 0) {
3138 			/*
3139 			 * The reference to the PD page that was acquired by
3140 			 * pmap_allocl3e() ensures that it won't be freed.
3141 			 * However, if the PDE resulted from a promotion, then
3142 			 * a reserved PT page could be freed.
3143 			 */
3144 			(void)pmap_remove_l3e(pmap, l3e, va, &free, lockp);
3145 		} else {
3146 			if (pmap_remove_ptes(pmap, va, va + L3_PAGE_SIZE, l3e,
3147 			    &free, lockp))
3148 		               pmap_invalidate_all(pmap);
3149 		}
3150 		vm_page_free_pages_toq(&free, true);
3151 		if (va >= VM_MAXUSER_ADDRESS) {
3152 			mt = PHYS_TO_VM_PAGE(*l3e & PG_FRAME);
3153 			if (pmap_insert_pt_page(pmap, mt)) {
3154 				/*
3155 				 * XXX Currently, this can't happen because
3156 				 * we do not perform pmap_enter(psind == 1)
3157 				 * on the kernel pmap.
3158 				 */
3159 				panic("pmap_enter_pde: trie insert failed");
3160 			}
3161 		} else
3162 			KASSERT(*l3e == 0, ("pmap_enter_pde: non-zero pde %p",
3163 			    l3e));
3164 	}
3165 	if ((newpde & PG_MANAGED) != 0) {
3166 		/*
3167 		 * Abort this mapping if its PV entry could not be created.
3168 		 */
3169 		if (!pmap_pv_insert_l3e(pmap, va, newpde, flags, lockp)) {
3170 			SLIST_INIT(&free);
3171 			if (pmap_unwire_ptp(pmap, va, pdpg, &free)) {
3172 				/*
3173 				 * Although "va" is not mapped, paging-
3174 				 * structure caches could nonetheless have
3175 				 * entries that refer to the freed page table
3176 				 * pages.  Invalidate those entries.
3177 				 */
3178 				pmap_invalidate_page(pmap, va);
3179 				vm_page_free_pages_toq(&free, true);
3180 			}
3181 			CTR2(KTR_PMAP, "pmap_enter_pde: failure for va %#lx"
3182 			    " in pmap %p", va, pmap);
3183 			return (KERN_RESOURCE_SHORTAGE);
3184 		}
3185 		if ((newpde & PG_RW) != 0) {
3186 			for (mt = m; mt < &m[L3_PAGE_SIZE / PAGE_SIZE]; mt++)
3187 				vm_page_aflag_set(mt, PGA_WRITEABLE);
3188 		}
3189 	}
3190 
3191 	/*
3192 	 * Increment counters.
3193 	 */
3194 	if ((newpde & PG_W) != 0)
3195 		pmap->pm_stats.wired_count += L3_PAGE_SIZE / PAGE_SIZE;
3196 	pmap_resident_count_inc(pmap, L3_PAGE_SIZE / PAGE_SIZE);
3197 
3198 	/*
3199 	 * Map the superpage.  (This is not a promoted mapping; there will not
3200 	 * be any lingering 4KB page mappings in the TLB.)
3201 	 */
3202 	pte_store(l3e, newpde);
3203 
3204 	atomic_add_long(&pmap_l3e_mappings, 1);
3205 	CTR2(KTR_PMAP, "pmap_enter_pde: success for va %#lx"
3206 	    " in pmap %p", va, pmap);
3207 	return (KERN_SUCCESS);
3208 }
3209 
3210 void
3211 mmu_radix_enter_object(pmap_t pmap, vm_offset_t start,
3212     vm_offset_t end, vm_page_t m_start, vm_prot_t prot)
3213 {
3214 
3215 	struct rwlock *lock;
3216 	vm_offset_t va;
3217 	vm_page_t m, mpte;
3218 	vm_pindex_t diff, psize;
3219 	bool invalidate;
3220 	VM_OBJECT_ASSERT_LOCKED(m_start->object);
3221 
3222 	CTR6(KTR_PMAP, "%s(%p, %#x, %#x, %p, %#x)", __func__, pmap, start,
3223 	    end, m_start, prot);
3224 
3225 	invalidate = false;
3226 	psize = atop(end - start);
3227 	mpte = NULL;
3228 	m = m_start;
3229 	lock = NULL;
3230 	PMAP_LOCK(pmap);
3231 	while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
3232 		va = start + ptoa(diff);
3233 		if ((va & L3_PAGE_MASK) == 0 && va + L3_PAGE_SIZE <= end &&
3234 		    m->psind == 1 && mmu_radix_ps_enabled(pmap) &&
3235 		    pmap_enter_2mpage(pmap, va, m, prot, &lock))
3236 			m = &m[L3_PAGE_SIZE / PAGE_SIZE - 1];
3237 		else
3238 			mpte = mmu_radix_enter_quick_locked(pmap, va, m, prot,
3239 			    mpte, &lock, &invalidate);
3240 		m = TAILQ_NEXT(m, listq);
3241 	}
3242 	ptesync();
3243 	if (lock != NULL)
3244 		rw_wunlock(lock);
3245 	if (invalidate)
3246 		pmap_invalidate_all(pmap);
3247 	PMAP_UNLOCK(pmap);
3248 }
3249 
3250 static vm_page_t
3251 mmu_radix_enter_quick_locked(pmap_t pmap, vm_offset_t va, vm_page_t m,
3252     vm_prot_t prot, vm_page_t mpte, struct rwlock **lockp, bool *invalidate)
3253 {
3254 	struct spglist free;
3255 	pt_entry_t *pte;
3256 	vm_paddr_t pa;
3257 
3258 	KASSERT(va < kmi.clean_sva || va >= kmi.clean_eva ||
3259 	    (m->oflags & VPO_UNMANAGED) != 0,
3260 	    ("mmu_radix_enter_quick_locked: managed mapping within the clean submap"));
3261 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3262 
3263 	/*
3264 	 * In the case that a page table page is not
3265 	 * resident, we are creating it here.
3266 	 */
3267 	if (va < VM_MAXUSER_ADDRESS) {
3268 		vm_pindex_t ptepindex;
3269 		pml3_entry_t *ptepa;
3270 
3271 		/*
3272 		 * Calculate pagetable page index
3273 		 */
3274 		ptepindex = pmap_l3e_pindex(va);
3275 		if (mpte && (mpte->pindex == ptepindex)) {
3276 			mpte->ref_count++;
3277 		} else {
3278 			/*
3279 			 * Get the page directory entry
3280 			 */
3281 			ptepa = pmap_pml3e(pmap, va);
3282 
3283 			/*
3284 			 * If the page table page is mapped, we just increment
3285 			 * the hold count, and activate it.  Otherwise, we
3286 			 * attempt to allocate a page table page.  If this
3287 			 * attempt fails, we don't retry.  Instead, we give up.
3288 			 */
3289 			if (ptepa && (*ptepa & PG_V) != 0) {
3290 				if (*ptepa & RPTE_LEAF)
3291 					return (NULL);
3292 				mpte = PHYS_TO_VM_PAGE(*ptepa & PG_FRAME);
3293 				mpte->ref_count++;
3294 			} else {
3295 				/*
3296 				 * Pass NULL instead of the PV list lock
3297 				 * pointer, because we don't intend to sleep.
3298 				 */
3299 				mpte = _pmap_allocpte(pmap, ptepindex, NULL);
3300 				if (mpte == NULL)
3301 					return (mpte);
3302 			}
3303 		}
3304 		pte = (pt_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(mpte));
3305 		pte = &pte[pmap_pte_index(va)];
3306 	} else {
3307 		mpte = NULL;
3308 		pte = pmap_pte(pmap, va);
3309 	}
3310 	if (*pte) {
3311 		if (mpte != NULL) {
3312 			mpte->ref_count--;
3313 			mpte = NULL;
3314 		}
3315 		return (mpte);
3316 	}
3317 
3318 	/*
3319 	 * Enter on the PV list if part of our managed memory.
3320 	 */
3321 	if ((m->oflags & VPO_UNMANAGED) == 0 &&
3322 	    !pmap_try_insert_pv_entry(pmap, va, m, lockp)) {
3323 		if (mpte != NULL) {
3324 			SLIST_INIT(&free);
3325 			if (pmap_unwire_ptp(pmap, va, mpte, &free)) {
3326 				/*
3327 				 * Although "va" is not mapped, paging-
3328 				 * structure caches could nonetheless have
3329 				 * entries that refer to the freed page table
3330 				 * pages.  Invalidate those entries.
3331 				 */
3332 				*invalidate = true;
3333 				vm_page_free_pages_toq(&free, true);
3334 			}
3335 			mpte = NULL;
3336 		}
3337 		return (mpte);
3338 	}
3339 
3340 	/*
3341 	 * Increment counters
3342 	 */
3343 	pmap_resident_count_inc(pmap, 1);
3344 
3345 	pa = VM_PAGE_TO_PHYS(m) | pmap_cache_bits(m->md.mdpg_cache_attrs);
3346 	if (prot & VM_PROT_EXECUTE)
3347 		pa |= PG_X;
3348 	else
3349 		pa |= RPTE_EAA_R;
3350 	if ((m->oflags & VPO_UNMANAGED) == 0)
3351 		pa |= PG_MANAGED;
3352 
3353 	pte_store(pte, pa);
3354 	return (mpte);
3355 }
3356 
3357 void
3358 mmu_radix_enter_quick(pmap_t pmap, vm_offset_t va, vm_page_t m,
3359     vm_prot_t prot)
3360 {
3361 	struct rwlock *lock;
3362 	bool invalidate;
3363 
3364 	lock = NULL;
3365 	invalidate = false;
3366 	PMAP_LOCK(pmap);
3367 	mmu_radix_enter_quick_locked(pmap, va, m, prot, NULL, &lock,
3368 	    &invalidate);
3369 	ptesync();
3370 	if (lock != NULL)
3371 		rw_wunlock(lock);
3372 	if (invalidate)
3373 		pmap_invalidate_all(pmap);
3374 	PMAP_UNLOCK(pmap);
3375 }
3376 
3377 vm_paddr_t
3378 mmu_radix_extract(pmap_t pmap, vm_offset_t va)
3379 {
3380 	pml3_entry_t *l3e;
3381 	pt_entry_t *pte;
3382 	vm_paddr_t pa;
3383 
3384 	l3e = pmap_pml3e(pmap, va);
3385 	if (__predict_false(l3e == NULL))
3386 		return (0);
3387 	if (*l3e & RPTE_LEAF) {
3388 		pa = (*l3e & PG_PS_FRAME) | (va & L3_PAGE_MASK);
3389 		pa |= (va & L3_PAGE_MASK);
3390 	} else {
3391 		/*
3392 		 * Beware of a concurrent promotion that changes the
3393 		 * PDE at this point!  For example, vtopte() must not
3394 		 * be used to access the PTE because it would use the
3395 		 * new PDE.  It is, however, safe to use the old PDE
3396 		 * because the page table page is preserved by the
3397 		 * promotion.
3398 		 */
3399 		pte = pmap_l3e_to_pte(l3e, va);
3400 		if (__predict_false(pte == NULL))
3401 			return (0);
3402 		pa = *pte;
3403 		pa = (pa & PG_FRAME) | (va & PAGE_MASK);
3404 		pa |= (va & PAGE_MASK);
3405 	}
3406 	return (pa);
3407 }
3408 
3409 vm_page_t
3410 mmu_radix_extract_and_hold(pmap_t pmap, vm_offset_t va, vm_prot_t prot)
3411 {
3412 	pml3_entry_t l3e, *l3ep;
3413 	pt_entry_t pte;
3414 	vm_paddr_t pa;
3415 	vm_page_t m;
3416 
3417 	pa = 0;
3418 	m = NULL;
3419 	CTR4(KTR_PMAP, "%s(%p, %#x, %#x)", __func__, pmap, va, prot);
3420 	PMAP_LOCK(pmap);
3421 	l3ep = pmap_pml3e(pmap, va);
3422 	if (l3ep != NULL && (l3e = *l3ep)) {
3423 		if (l3e & RPTE_LEAF) {
3424 			if ((l3e & PG_RW) || (prot & VM_PROT_WRITE) == 0)
3425 				m = PHYS_TO_VM_PAGE((l3e & PG_PS_FRAME) |
3426 				    (va & L3_PAGE_MASK));
3427 		} else {
3428 			pte = *pmap_l3e_to_pte(l3ep, va);
3429 			if ((pte & PG_V) &&
3430 			    ((pte & PG_RW) || (prot & VM_PROT_WRITE) == 0))
3431 				m = PHYS_TO_VM_PAGE(pte & PG_FRAME);
3432 		}
3433 		if (m != NULL && !vm_page_wire_mapped(m))
3434 			m = NULL;
3435 	}
3436 	PMAP_UNLOCK(pmap);
3437 	return (m);
3438 }
3439 
3440 static void
3441 mmu_radix_growkernel(vm_offset_t addr)
3442 {
3443 	vm_paddr_t paddr;
3444 	vm_page_t nkpg;
3445 	pml3_entry_t *l3e;
3446 	pml2_entry_t *l2e;
3447 
3448 	CTR2(KTR_PMAP, "%s(%#x)", __func__, addr);
3449 	if (VM_MIN_KERNEL_ADDRESS < addr &&
3450 		addr < (VM_MIN_KERNEL_ADDRESS + nkpt * L3_PAGE_SIZE))
3451 		return;
3452 
3453 	addr = roundup2(addr, L3_PAGE_SIZE);
3454 	if (addr - 1 >= vm_map_max(kernel_map))
3455 		addr = vm_map_max(kernel_map);
3456 	while (kernel_vm_end < addr) {
3457 		l2e = pmap_pml2e(kernel_pmap, kernel_vm_end);
3458 		if ((*l2e & PG_V) == 0) {
3459 			/* We need a new PDP entry */
3460 			nkpg = vm_page_alloc(NULL, kernel_vm_end >> L2_PAGE_SIZE_SHIFT,
3461 			    VM_ALLOC_INTERRUPT | VM_ALLOC_NOOBJ |
3462 			    VM_ALLOC_WIRED | VM_ALLOC_ZERO);
3463 			if (nkpg == NULL)
3464 				panic("pmap_growkernel: no memory to grow kernel");
3465 			if ((nkpg->flags & PG_ZERO) == 0)
3466 				mmu_radix_zero_page(nkpg);
3467 			paddr = VM_PAGE_TO_PHYS(nkpg);
3468 			pde_store(l2e, paddr);
3469 			continue; /* try again */
3470 		}
3471 		l3e = pmap_l2e_to_l3e(l2e, kernel_vm_end);
3472 		if ((*l3e & PG_V) != 0) {
3473 			kernel_vm_end = (kernel_vm_end + L3_PAGE_SIZE) & ~L3_PAGE_MASK;
3474 			if (kernel_vm_end - 1 >= vm_map_max(kernel_map)) {
3475 				kernel_vm_end = vm_map_max(kernel_map);
3476 				break;
3477 			}
3478 			continue;
3479 		}
3480 
3481 		nkpg = vm_page_alloc(NULL, pmap_l3e_pindex(kernel_vm_end),
3482 		    VM_ALLOC_INTERRUPT | VM_ALLOC_NOOBJ | VM_ALLOC_WIRED |
3483 		    VM_ALLOC_ZERO);
3484 		if (nkpg == NULL)
3485 			panic("pmap_growkernel: no memory to grow kernel");
3486 		if ((nkpg->flags & PG_ZERO) == 0)
3487 			mmu_radix_zero_page(nkpg);
3488 		paddr = VM_PAGE_TO_PHYS(nkpg);
3489 		pde_store(l3e, paddr);
3490 
3491 		kernel_vm_end = (kernel_vm_end + L3_PAGE_SIZE) & ~L3_PAGE_MASK;
3492 		if (kernel_vm_end - 1 >= vm_map_max(kernel_map)) {
3493 			kernel_vm_end = vm_map_max(kernel_map);
3494 			break;
3495 		}
3496 	}
3497 	ptesync();
3498 }
3499 
3500 static MALLOC_DEFINE(M_RADIX_PGD, "radix_pgd", "radix page table root directory");
3501 static uma_zone_t zone_radix_pgd;
3502 
3503 static int
3504 radix_pgd_import(void *arg __unused, void **store, int count, int domain __unused,
3505     int flags)
3506 {
3507 
3508 	for (int i = 0; i < count; i++) {
3509 		vm_page_t m = vm_page_alloc_contig(NULL, 0,
3510 		    VM_ALLOC_NORMAL | VM_ALLOC_NOOBJ | VM_ALLOC_WIRED |
3511 		    VM_ALLOC_ZERO | VM_ALLOC_WAITOK, RADIX_PGD_SIZE/PAGE_SIZE,
3512 		    0, (vm_paddr_t)-1, RADIX_PGD_SIZE, L1_PAGE_SIZE,
3513 		    VM_MEMATTR_DEFAULT);
3514 		/* XXX zero on alloc here so we don't have to later */
3515 		store[i] = (void *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m));
3516 	}
3517 	return (count);
3518 }
3519 
3520 static void
3521 radix_pgd_release(void *arg __unused, void **store, int count)
3522 {
3523 	vm_page_t m;
3524 	struct spglist free;
3525 	int page_count;
3526 
3527 	SLIST_INIT(&free);
3528 	page_count = RADIX_PGD_SIZE/PAGE_SIZE;
3529 
3530 	for (int i = 0; i < count; i++) {
3531 		/*
3532 		 * XXX selectively remove dmap and KVA entries so we don't
3533 		 * need to bzero
3534 		 */
3535 		m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t)store[i]));
3536 		for (int j = page_count-1; j >= 0; j--) {
3537 			vm_page_unwire_noq(&m[j]);
3538 			SLIST_INSERT_HEAD(&free, &m[j], plinks.s.ss);
3539 		}
3540 		vm_page_free_pages_toq(&free, false);
3541 	}
3542 }
3543 
3544 static void
3545 mmu_radix_init()
3546 {
3547 	vm_page_t mpte;
3548 	vm_size_t s;
3549 	int error, i, pv_npg;
3550 
3551 	/* L1TF, reserve page @0 unconditionally */
3552 	vm_page_blacklist_add(0, bootverbose);
3553 
3554 	zone_radix_pgd = uma_zcache_create("radix_pgd_cache",
3555 		RADIX_PGD_SIZE, NULL, NULL,
3556 #ifdef INVARIANTS
3557 	    trash_init, trash_fini,
3558 #else
3559 	    NULL, NULL,
3560 #endif
3561 		radix_pgd_import, radix_pgd_release,
3562 		NULL, UMA_ZONE_NOBUCKET);
3563 
3564 	/*
3565 	 * Initialize the vm page array entries for the kernel pmap's
3566 	 * page table pages.
3567 	 */
3568 	PMAP_LOCK(kernel_pmap);
3569 	for (i = 0; i < nkpt; i++) {
3570 		mpte = PHYS_TO_VM_PAGE(KPTphys + (i << PAGE_SHIFT));
3571 		KASSERT(mpte >= vm_page_array &&
3572 		    mpte < &vm_page_array[vm_page_array_size],
3573 		    ("pmap_init: page table page is out of range size: %lu",
3574 		     vm_page_array_size));
3575 		mpte->pindex = pmap_l3e_pindex(VM_MIN_KERNEL_ADDRESS) + i;
3576 		mpte->phys_addr = KPTphys + (i << PAGE_SHIFT);
3577 		MPASS(PHYS_TO_VM_PAGE(mpte->phys_addr) == mpte);
3578 		//pmap_insert_pt_page(kernel_pmap, mpte);
3579 		mpte->ref_count = 1;
3580 	}
3581 	PMAP_UNLOCK(kernel_pmap);
3582 	vm_wire_add(nkpt);
3583 
3584 	CTR1(KTR_PMAP, "%s()", __func__);
3585 	TAILQ_INIT(&pv_dummy.pv_list);
3586 
3587 	/*
3588 	 * Are large page mappings enabled?
3589 	 */
3590 	TUNABLE_INT_FETCH("vm.pmap.pg_ps_enabled", &pg_ps_enabled);
3591 	if (pg_ps_enabled) {
3592 		KASSERT(MAXPAGESIZES > 1 && pagesizes[1] == 0,
3593 		    ("pmap_init: can't assign to pagesizes[1]"));
3594 		pagesizes[1] = L3_PAGE_SIZE;
3595 	}
3596 
3597 	/*
3598 	 * Initialize the pv chunk list mutex.
3599 	 */
3600 	mtx_init(&pv_chunks_mutex, "pmap pv chunk list", NULL, MTX_DEF);
3601 
3602 	/*
3603 	 * Initialize the pool of pv list locks.
3604 	 */
3605 	for (i = 0; i < NPV_LIST_LOCKS; i++)
3606 		rw_init(&pv_list_locks[i], "pmap pv list");
3607 
3608 	/*
3609 	 * Calculate the size of the pv head table for superpages.
3610 	 */
3611 	pv_npg = howmany(vm_phys_segs[vm_phys_nsegs - 1].end, L3_PAGE_SIZE);
3612 
3613 	/*
3614 	 * Allocate memory for the pv head table for superpages.
3615 	 */
3616 	s = (vm_size_t)(pv_npg * sizeof(struct md_page));
3617 	s = round_page(s);
3618 	pv_table = (struct md_page *)kmem_malloc(s, M_WAITOK | M_ZERO);
3619 	for (i = 0; i < pv_npg; i++)
3620 		TAILQ_INIT(&pv_table[i].pv_list);
3621 	TAILQ_INIT(&pv_dummy.pv_list);
3622 
3623 	pmap_initialized = 1;
3624 	mtx_init(&qframe_mtx, "qfrmlk", NULL, MTX_SPIN);
3625 	error = vmem_alloc(kernel_arena, PAGE_SIZE, M_BESTFIT | M_WAITOK,
3626 	    (vmem_addr_t *)&qframe);
3627 
3628 	if (error != 0)
3629 		panic("qframe allocation failed");
3630 	asid_arena = vmem_create("ASID", isa3_base_pid + 1, (1<<isa3_pid_bits),
3631 	    1, 1, M_WAITOK);
3632 }
3633 
3634 static boolean_t
3635 pmap_page_test_mappings(vm_page_t m, boolean_t accessed, boolean_t modified)
3636 {
3637 	struct rwlock *lock;
3638 	pv_entry_t pv;
3639 	struct md_page *pvh;
3640 	pt_entry_t *pte, mask;
3641 	pmap_t pmap;
3642 	int md_gen, pvh_gen;
3643 	boolean_t rv;
3644 
3645 	rv = FALSE;
3646 	lock = VM_PAGE_TO_PV_LIST_LOCK(m);
3647 	rw_rlock(lock);
3648 restart:
3649 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
3650 		pmap = PV_PMAP(pv);
3651 		if (!PMAP_TRYLOCK(pmap)) {
3652 			md_gen = m->md.pv_gen;
3653 			rw_runlock(lock);
3654 			PMAP_LOCK(pmap);
3655 			rw_rlock(lock);
3656 			if (md_gen != m->md.pv_gen) {
3657 				PMAP_UNLOCK(pmap);
3658 				goto restart;
3659 			}
3660 		}
3661 		pte = pmap_pte(pmap, pv->pv_va);
3662 		mask = 0;
3663 		if (modified)
3664 			mask |= PG_RW | PG_M;
3665 		if (accessed)
3666 			mask |= PG_V | PG_A;
3667 		rv = (*pte & mask) == mask;
3668 		PMAP_UNLOCK(pmap);
3669 		if (rv)
3670 			goto out;
3671 	}
3672 	if ((m->flags & PG_FICTITIOUS) == 0) {
3673 		pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
3674 		TAILQ_FOREACH(pv, &pvh->pv_list, pv_link) {
3675 			pmap = PV_PMAP(pv);
3676 			if (!PMAP_TRYLOCK(pmap)) {
3677 				md_gen = m->md.pv_gen;
3678 				pvh_gen = pvh->pv_gen;
3679 				rw_runlock(lock);
3680 				PMAP_LOCK(pmap);
3681 				rw_rlock(lock);
3682 				if (md_gen != m->md.pv_gen ||
3683 				    pvh_gen != pvh->pv_gen) {
3684 					PMAP_UNLOCK(pmap);
3685 					goto restart;
3686 				}
3687 			}
3688 			pte = pmap_pml3e(pmap, pv->pv_va);
3689 			mask = 0;
3690 			if (modified)
3691 				mask |= PG_RW | PG_M;
3692 			if (accessed)
3693 				mask |= PG_V | PG_A;
3694 			rv = (*pte & mask) == mask;
3695 			PMAP_UNLOCK(pmap);
3696 			if (rv)
3697 				goto out;
3698 		}
3699 	}
3700 out:
3701 	rw_runlock(lock);
3702 	return (rv);
3703 }
3704 
3705 /*
3706  *	pmap_is_modified:
3707  *
3708  *	Return whether or not the specified physical page was modified
3709  *	in any physical maps.
3710  */
3711 boolean_t
3712 mmu_radix_is_modified(vm_page_t m)
3713 {
3714 
3715 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
3716 	    ("pmap_is_modified: page %p is not managed", m));
3717 
3718 	CTR2(KTR_PMAP, "%s(%p)", __func__, m);
3719 	/*
3720 	 * If the page is not busied then this check is racy.
3721 	 */
3722 	if (!pmap_page_is_write_mapped(m))
3723 		return (FALSE);
3724 	return (pmap_page_test_mappings(m, FALSE, TRUE));
3725 }
3726 
3727 boolean_t
3728 mmu_radix_is_prefaultable(pmap_t pmap, vm_offset_t addr)
3729 {
3730 	pml3_entry_t *l3e;
3731 	pt_entry_t *pte;
3732 	boolean_t rv;
3733 
3734 	CTR3(KTR_PMAP, "%s(%p, %#x)", __func__, pmap, addr);
3735 	rv = FALSE;
3736 	PMAP_LOCK(pmap);
3737 	l3e = pmap_pml3e(pmap, addr);
3738 	if (l3e != NULL && (*l3e & (RPTE_LEAF | PG_V)) == PG_V) {
3739 		pte = pmap_l3e_to_pte(l3e, addr);
3740 		rv = (*pte & PG_V) == 0;
3741 	}
3742 	PMAP_UNLOCK(pmap);
3743 	return (rv);
3744 }
3745 
3746 boolean_t
3747 mmu_radix_is_referenced(vm_page_t m)
3748 {
3749 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
3750 	    ("pmap_is_referenced: page %p is not managed", m));
3751 	CTR2(KTR_PMAP, "%s(%p)", __func__, m);
3752 	return (pmap_page_test_mappings(m, TRUE, FALSE));
3753 }
3754 
3755 /*
3756  *	pmap_ts_referenced:
3757  *
3758  *	Return a count of reference bits for a page, clearing those bits.
3759  *	It is not necessary for every reference bit to be cleared, but it
3760  *	is necessary that 0 only be returned when there are truly no
3761  *	reference bits set.
3762  *
3763  *	As an optimization, update the page's dirty field if a modified bit is
3764  *	found while counting reference bits.  This opportunistic update can be
3765  *	performed at low cost and can eliminate the need for some future calls
3766  *	to pmap_is_modified().  However, since this function stops after
3767  *	finding PMAP_TS_REFERENCED_MAX reference bits, it may not detect some
3768  *	dirty pages.  Those dirty pages will only be detected by a future call
3769  *	to pmap_is_modified().
3770  *
3771  *	A DI block is not needed within this function, because
3772  *	invalidations are performed before the PV list lock is
3773  *	released.
3774  */
3775 boolean_t
3776 mmu_radix_ts_referenced(vm_page_t m)
3777 {
3778 	struct md_page *pvh;
3779 	pv_entry_t pv, pvf;
3780 	pmap_t pmap;
3781 	struct rwlock *lock;
3782 	pml3_entry_t oldl3e, *l3e;
3783 	pt_entry_t *pte;
3784 	vm_paddr_t pa;
3785 	int cleared, md_gen, not_cleared, pvh_gen;
3786 	struct spglist free;
3787 
3788 	CTR2(KTR_PMAP, "%s(%p)", __func__, m);
3789 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
3790 	    ("pmap_ts_referenced: page %p is not managed", m));
3791 	SLIST_INIT(&free);
3792 	cleared = 0;
3793 	pa = VM_PAGE_TO_PHYS(m);
3794 	lock = PHYS_TO_PV_LIST_LOCK(pa);
3795 	pvh = (m->flags & PG_FICTITIOUS) != 0 ? &pv_dummy : pa_to_pvh(pa);
3796 	rw_wlock(lock);
3797 retry:
3798 	not_cleared = 0;
3799 	if ((pvf = TAILQ_FIRST(&pvh->pv_list)) == NULL)
3800 		goto small_mappings;
3801 	pv = pvf;
3802 	do {
3803 		if (pvf == NULL)
3804 			pvf = pv;
3805 		pmap = PV_PMAP(pv);
3806 		if (!PMAP_TRYLOCK(pmap)) {
3807 			pvh_gen = pvh->pv_gen;
3808 			rw_wunlock(lock);
3809 			PMAP_LOCK(pmap);
3810 			rw_wlock(lock);
3811 			if (pvh_gen != pvh->pv_gen) {
3812 				PMAP_UNLOCK(pmap);
3813 				goto retry;
3814 			}
3815 		}
3816 		l3e = pmap_pml3e(pmap, pv->pv_va);
3817 		oldl3e = *l3e;
3818 		if ((oldl3e & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
3819 			/*
3820 			 * Although "oldpde" is mapping a 2MB page, because
3821 			 * this function is called at a 4KB page granularity,
3822 			 * we only update the 4KB page under test.
3823 			 */
3824 			vm_page_dirty(m);
3825 		}
3826 		if ((oldl3e & PG_A) != 0) {
3827 			/*
3828 			 * Since this reference bit is shared by 512 4KB
3829 			 * pages, it should not be cleared every time it is
3830 			 * tested.  Apply a simple "hash" function on the
3831 			 * physical page number, the virtual superpage number,
3832 			 * and the pmap address to select one 4KB page out of
3833 			 * the 512 on which testing the reference bit will
3834 			 * result in clearing that reference bit.  This
3835 			 * function is designed to avoid the selection of the
3836 			 * same 4KB page for every 2MB page mapping.
3837 			 *
3838 			 * On demotion, a mapping that hasn't been referenced
3839 			 * is simply destroyed.  To avoid the possibility of a
3840 			 * subsequent page fault on a demoted wired mapping,
3841 			 * always leave its reference bit set.  Moreover,
3842 			 * since the superpage is wired, the current state of
3843 			 * its reference bit won't affect page replacement.
3844 			 */
3845 			if ((((pa >> PAGE_SHIFT) ^ (pv->pv_va >> L3_PAGE_SIZE_SHIFT) ^
3846 			    (uintptr_t)pmap) & (NPTEPG - 1)) == 0 &&
3847 			    (oldl3e & PG_W) == 0) {
3848 				atomic_clear_long(l3e, PG_A);
3849 				pmap_invalidate_page(pmap, pv->pv_va);
3850 				cleared++;
3851 				KASSERT(lock == VM_PAGE_TO_PV_LIST_LOCK(m),
3852 				    ("inconsistent pv lock %p %p for page %p",
3853 				    lock, VM_PAGE_TO_PV_LIST_LOCK(m), m));
3854 			} else
3855 				not_cleared++;
3856 		}
3857 		PMAP_UNLOCK(pmap);
3858 		/* Rotate the PV list if it has more than one entry. */
3859 		if (pv != NULL && TAILQ_NEXT(pv, pv_link) != NULL) {
3860 			TAILQ_REMOVE(&pvh->pv_list, pv, pv_link);
3861 			TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_link);
3862 			pvh->pv_gen++;
3863 		}
3864 		if (cleared + not_cleared >= PMAP_TS_REFERENCED_MAX)
3865 			goto out;
3866 	} while ((pv = TAILQ_FIRST(&pvh->pv_list)) != pvf);
3867 small_mappings:
3868 	if ((pvf = TAILQ_FIRST(&m->md.pv_list)) == NULL)
3869 		goto out;
3870 	pv = pvf;
3871 	do {
3872 		if (pvf == NULL)
3873 			pvf = pv;
3874 		pmap = PV_PMAP(pv);
3875 		if (!PMAP_TRYLOCK(pmap)) {
3876 			pvh_gen = pvh->pv_gen;
3877 			md_gen = m->md.pv_gen;
3878 			rw_wunlock(lock);
3879 			PMAP_LOCK(pmap);
3880 			rw_wlock(lock);
3881 			if (pvh_gen != pvh->pv_gen || md_gen != m->md.pv_gen) {
3882 				PMAP_UNLOCK(pmap);
3883 				goto retry;
3884 			}
3885 		}
3886 		l3e = pmap_pml3e(pmap, pv->pv_va);
3887 		KASSERT((*l3e & RPTE_LEAF) == 0,
3888 		    ("pmap_ts_referenced: found a 2mpage in page %p's pv list",
3889 		    m));
3890 		pte = pmap_l3e_to_pte(l3e, pv->pv_va);
3891 		if ((*pte & (PG_M | PG_RW)) == (PG_M | PG_RW))
3892 			vm_page_dirty(m);
3893 		if ((*pte & PG_A) != 0) {
3894 			atomic_clear_long(pte, PG_A);
3895 			pmap_invalidate_page(pmap, pv->pv_va);
3896 			cleared++;
3897 		}
3898 		PMAP_UNLOCK(pmap);
3899 		/* Rotate the PV list if it has more than one entry. */
3900 		if (pv != NULL && TAILQ_NEXT(pv, pv_link) != NULL) {
3901 			TAILQ_REMOVE(&m->md.pv_list, pv, pv_link);
3902 			TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_link);
3903 			m->md.pv_gen++;
3904 		}
3905 	} while ((pv = TAILQ_FIRST(&m->md.pv_list)) != pvf && cleared +
3906 	    not_cleared < PMAP_TS_REFERENCED_MAX);
3907 out:
3908 	rw_wunlock(lock);
3909 	vm_page_free_pages_toq(&free, true);
3910 	return (cleared + not_cleared);
3911 }
3912 
3913 static vm_offset_t
3914 mmu_radix_map(vm_offset_t *virt __unused, vm_paddr_t start,
3915     vm_paddr_t end, int prot __unused)
3916 {
3917 
3918 	CTR5(KTR_PMAP, "%s(%p, %#x, %#x, %#x)", __func__, virt, start, end,
3919 		 prot);
3920 	return (PHYS_TO_DMAP(start));
3921 }
3922 
3923 void
3924 mmu_radix_object_init_pt(pmap_t pmap, vm_offset_t addr,
3925     vm_object_t object, vm_pindex_t pindex, vm_size_t size)
3926 {
3927 	pml3_entry_t *l3e;
3928 	vm_paddr_t pa, ptepa;
3929 	vm_page_t p, pdpg;
3930 	vm_memattr_t ma;
3931 
3932 	CTR6(KTR_PMAP, "%s(%p, %#x, %p, %u, %#x)", __func__, pmap, addr,
3933 	    object, pindex, size);
3934 	VM_OBJECT_ASSERT_WLOCKED(object);
3935 	KASSERT(object->type == OBJT_DEVICE || object->type == OBJT_SG,
3936 			("pmap_object_init_pt: non-device object"));
3937 	/* NB: size can be logically ored with addr here */
3938 	if ((addr & L3_PAGE_MASK) == 0 && (size & L3_PAGE_MASK) == 0) {
3939 		if (!mmu_radix_ps_enabled(pmap))
3940 			return;
3941 		if (!vm_object_populate(object, pindex, pindex + atop(size)))
3942 			return;
3943 		p = vm_page_lookup(object, pindex);
3944 		KASSERT(p->valid == VM_PAGE_BITS_ALL,
3945 		    ("pmap_object_init_pt: invalid page %p", p));
3946 		ma = p->md.mdpg_cache_attrs;
3947 
3948 		/*
3949 		 * Abort the mapping if the first page is not physically
3950 		 * aligned to a 2MB page boundary.
3951 		 */
3952 		ptepa = VM_PAGE_TO_PHYS(p);
3953 		if (ptepa & L3_PAGE_MASK)
3954 			return;
3955 
3956 		/*
3957 		 * Skip the first page.  Abort the mapping if the rest of
3958 		 * the pages are not physically contiguous or have differing
3959 		 * memory attributes.
3960 		 */
3961 		p = TAILQ_NEXT(p, listq);
3962 		for (pa = ptepa + PAGE_SIZE; pa < ptepa + size;
3963 		    pa += PAGE_SIZE) {
3964 			KASSERT(p->valid == VM_PAGE_BITS_ALL,
3965 			    ("pmap_object_init_pt: invalid page %p", p));
3966 			if (pa != VM_PAGE_TO_PHYS(p) ||
3967 			    ma != p->md.mdpg_cache_attrs)
3968 				return;
3969 			p = TAILQ_NEXT(p, listq);
3970 		}
3971 
3972 		PMAP_LOCK(pmap);
3973 		for (pa = ptepa | pmap_cache_bits(ma);
3974 		    pa < ptepa + size; pa += L3_PAGE_SIZE) {
3975 			pdpg = pmap_allocl3e(pmap, addr, NULL);
3976 			if (pdpg == NULL) {
3977 				/*
3978 				 * The creation of mappings below is only an
3979 				 * optimization.  If a page directory page
3980 				 * cannot be allocated without blocking,
3981 				 * continue on to the next mapping rather than
3982 				 * blocking.
3983 				 */
3984 				addr += L3_PAGE_SIZE;
3985 				continue;
3986 			}
3987 			l3e = (pml3_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pdpg));
3988 			l3e = &l3e[pmap_pml3e_index(addr)];
3989 			if ((*l3e & PG_V) == 0) {
3990 				pa |= PG_M | PG_A | PG_RW;
3991 				pte_store(l3e, pa);
3992 				pmap_resident_count_inc(pmap, L3_PAGE_SIZE / PAGE_SIZE);
3993 				atomic_add_long(&pmap_l3e_mappings, 1);
3994 			} else {
3995 				/* Continue on if the PDE is already valid. */
3996 				pdpg->ref_count--;
3997 				KASSERT(pdpg->ref_count > 0,
3998 				    ("pmap_object_init_pt: missing reference "
3999 				    "to page directory page, va: 0x%lx", addr));
4000 			}
4001 			addr += L3_PAGE_SIZE;
4002 		}
4003 		ptesync();
4004 		PMAP_UNLOCK(pmap);
4005 	}
4006 }
4007 
4008 boolean_t
4009 mmu_radix_page_exists_quick(pmap_t pmap, vm_page_t m)
4010 {
4011 	struct md_page *pvh;
4012 	struct rwlock *lock;
4013 	pv_entry_t pv;
4014 	int loops = 0;
4015 	boolean_t rv;
4016 
4017 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4018 	    ("pmap_page_exists_quick: page %p is not managed", m));
4019 	CTR3(KTR_PMAP, "%s(%p, %p)", __func__, pmap, m);
4020 	rv = FALSE;
4021 	lock = VM_PAGE_TO_PV_LIST_LOCK(m);
4022 	rw_rlock(lock);
4023 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
4024 		if (PV_PMAP(pv) == pmap) {
4025 			rv = TRUE;
4026 			break;
4027 		}
4028 		loops++;
4029 		if (loops >= 16)
4030 			break;
4031 	}
4032 	if (!rv && loops < 16 && (m->flags & PG_FICTITIOUS) == 0) {
4033 		pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
4034 		TAILQ_FOREACH(pv, &pvh->pv_list, pv_link) {
4035 			if (PV_PMAP(pv) == pmap) {
4036 				rv = TRUE;
4037 				break;
4038 			}
4039 			loops++;
4040 			if (loops >= 16)
4041 				break;
4042 		}
4043 	}
4044 	rw_runlock(lock);
4045 	return (rv);
4046 }
4047 
4048 void
4049 mmu_radix_page_init(vm_page_t m)
4050 {
4051 
4052 	CTR2(KTR_PMAP, "%s(%p)", __func__, m);
4053 	TAILQ_INIT(&m->md.pv_list);
4054 	m->md.mdpg_cache_attrs = VM_MEMATTR_DEFAULT;
4055 }
4056 
4057 int
4058 mmu_radix_page_wired_mappings(vm_page_t m)
4059 {
4060 	struct rwlock *lock;
4061 	struct md_page *pvh;
4062 	pmap_t pmap;
4063 	pt_entry_t *pte;
4064 	pv_entry_t pv;
4065 	int count, md_gen, pvh_gen;
4066 
4067 	if ((m->oflags & VPO_UNMANAGED) != 0)
4068 		return (0);
4069 	CTR2(KTR_PMAP, "%s(%p)", __func__, m);
4070 	lock = VM_PAGE_TO_PV_LIST_LOCK(m);
4071 	rw_rlock(lock);
4072 restart:
4073 	count = 0;
4074 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
4075 		pmap = PV_PMAP(pv);
4076 		if (!PMAP_TRYLOCK(pmap)) {
4077 			md_gen = m->md.pv_gen;
4078 			rw_runlock(lock);
4079 			PMAP_LOCK(pmap);
4080 			rw_rlock(lock);
4081 			if (md_gen != m->md.pv_gen) {
4082 				PMAP_UNLOCK(pmap);
4083 				goto restart;
4084 			}
4085 		}
4086 		pte = pmap_pte(pmap, pv->pv_va);
4087 		if ((*pte & PG_W) != 0)
4088 			count++;
4089 		PMAP_UNLOCK(pmap);
4090 	}
4091 	if ((m->flags & PG_FICTITIOUS) == 0) {
4092 		pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
4093 		TAILQ_FOREACH(pv, &pvh->pv_list, pv_link) {
4094 			pmap = PV_PMAP(pv);
4095 			if (!PMAP_TRYLOCK(pmap)) {
4096 				md_gen = m->md.pv_gen;
4097 				pvh_gen = pvh->pv_gen;
4098 				rw_runlock(lock);
4099 				PMAP_LOCK(pmap);
4100 				rw_rlock(lock);
4101 				if (md_gen != m->md.pv_gen ||
4102 				    pvh_gen != pvh->pv_gen) {
4103 					PMAP_UNLOCK(pmap);
4104 					goto restart;
4105 				}
4106 			}
4107 			pte = pmap_pml3e(pmap, pv->pv_va);
4108 			if ((*pte & PG_W) != 0)
4109 				count++;
4110 			PMAP_UNLOCK(pmap);
4111 		}
4112 	}
4113 	rw_runlock(lock);
4114 	return (count);
4115 }
4116 
4117 static void
4118 mmu_radix_update_proctab(int pid, pml1_entry_t l1pa)
4119 {
4120 	isa3_proctab[pid].proctab0 = htobe64(RTS_SIZE |  l1pa | RADIX_PGD_INDEX_SHIFT);
4121 }
4122 
4123 int
4124 mmu_radix_pinit(pmap_t pmap)
4125 {
4126 	vmem_addr_t pid;
4127 	vm_paddr_t l1pa;
4128 
4129 	CTR2(KTR_PMAP, "%s(%p)", __func__, pmap);
4130 
4131 	/*
4132 	 * allocate the page directory page
4133 	 */
4134 	pmap->pm_pml1 = uma_zalloc(zone_radix_pgd, M_WAITOK);
4135 
4136 	for (int j = 0; j <  RADIX_PGD_SIZE_SHIFT; j++)
4137 		pagezero((vm_offset_t)pmap->pm_pml1 + j * PAGE_SIZE);
4138 	pmap->pm_radix.rt_root = 0;
4139 	TAILQ_INIT(&pmap->pm_pvchunk);
4140 	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
4141 	pmap->pm_flags = PMAP_PDE_SUPERPAGE;
4142 	vmem_alloc(asid_arena, 1, M_FIRSTFIT|M_WAITOK, &pid);
4143 
4144 	pmap->pm_pid = pid;
4145 	l1pa = DMAP_TO_PHYS((vm_offset_t)pmap->pm_pml1);
4146 	mmu_radix_update_proctab(pid, l1pa);
4147 	__asm __volatile("ptesync;isync" : : : "memory");
4148 
4149 	return (1);
4150 }
4151 
4152 /*
4153  * This routine is called if the desired page table page does not exist.
4154  *
4155  * If page table page allocation fails, this routine may sleep before
4156  * returning NULL.  It sleeps only if a lock pointer was given.
4157  *
4158  * Note: If a page allocation fails at page table level two or three,
4159  * one or two pages may be held during the wait, only to be released
4160  * afterwards.  This conservative approach is easily argued to avoid
4161  * race conditions.
4162  */
4163 static vm_page_t
4164 _pmap_allocpte(pmap_t pmap, vm_pindex_t ptepindex, struct rwlock **lockp)
4165 {
4166 	vm_page_t m, pdppg, pdpg;
4167 
4168 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
4169 
4170 	/*
4171 	 * Allocate a page table page.
4172 	 */
4173 	if ((m = vm_page_alloc(NULL, ptepindex, VM_ALLOC_NOOBJ |
4174 	    VM_ALLOC_WIRED | VM_ALLOC_ZERO)) == NULL) {
4175 		if (lockp != NULL) {
4176 			RELEASE_PV_LIST_LOCK(lockp);
4177 			PMAP_UNLOCK(pmap);
4178 			vm_wait(NULL);
4179 			PMAP_LOCK(pmap);
4180 		}
4181 		/*
4182 		 * Indicate the need to retry.  While waiting, the page table
4183 		 * page may have been allocated.
4184 		 */
4185 		return (NULL);
4186 	}
4187 	if ((m->flags & PG_ZERO) == 0)
4188 		mmu_radix_zero_page(m);
4189 
4190 	/*
4191 	 * Map the pagetable page into the process address space, if
4192 	 * it isn't already there.
4193 	 */
4194 
4195 	if (ptepindex >= (NUPDE + NUPDPE)) {
4196 		pml1_entry_t *l1e;
4197 		vm_pindex_t pml1index;
4198 
4199 		/* Wire up a new PDPE page */
4200 		pml1index = ptepindex - (NUPDE + NUPDPE);
4201 		l1e = &pmap->pm_pml1[pml1index];
4202 		pde_store(l1e, VM_PAGE_TO_PHYS(m));
4203 
4204 	} else if (ptepindex >= NUPDE) {
4205 		vm_pindex_t pml1index;
4206 		vm_pindex_t pdpindex;
4207 		pml1_entry_t *l1e;
4208 		pml2_entry_t *l2e;
4209 
4210 		/* Wire up a new l2e page */
4211 		pdpindex = ptepindex - NUPDE;
4212 		pml1index = pdpindex >> RPTE_SHIFT;
4213 
4214 		l1e = &pmap->pm_pml1[pml1index];
4215 		if ((*l1e & PG_V) == 0) {
4216 			/* Have to allocate a new pdp, recurse */
4217 			if (_pmap_allocpte(pmap, NUPDE + NUPDPE + pml1index,
4218 				lockp) == NULL) {
4219 				vm_page_unwire_noq(m);
4220 				vm_page_free_zero(m);
4221 				return (NULL);
4222 			}
4223 		} else {
4224 			/* Add reference to l2e page */
4225 			pdppg = PHYS_TO_VM_PAGE(*l1e & PG_FRAME);
4226 			pdppg->ref_count++;
4227 		}
4228 		l2e = (pml2_entry_t *)PHYS_TO_DMAP(*l1e & PG_FRAME);
4229 
4230 		/* Now find the pdp page */
4231 		l2e = &l2e[pdpindex & RPTE_MASK];
4232 		pde_store(l2e, VM_PAGE_TO_PHYS(m));
4233 
4234 	} else {
4235 		vm_pindex_t pml1index;
4236 		vm_pindex_t pdpindex;
4237 		pml1_entry_t *l1e;
4238 		pml2_entry_t *l2e;
4239 		pml3_entry_t *l3e;
4240 
4241 		/* Wire up a new PTE page */
4242 		pdpindex = ptepindex >> RPTE_SHIFT;
4243 		pml1index = pdpindex >> RPTE_SHIFT;
4244 
4245 		/* First, find the pdp and check that its valid. */
4246 		l1e = &pmap->pm_pml1[pml1index];
4247 		if ((*l1e & PG_V) == 0) {
4248 			/* Have to allocate a new pd, recurse */
4249 			if (_pmap_allocpte(pmap, NUPDE + pdpindex,
4250 			    lockp) == NULL) {
4251 				vm_page_unwire_noq(m);
4252 				vm_page_free_zero(m);
4253 				return (NULL);
4254 			}
4255 			l2e = (pml2_entry_t *)PHYS_TO_DMAP(*l1e & PG_FRAME);
4256 			l2e = &l2e[pdpindex & RPTE_MASK];
4257 		} else {
4258 			l2e = (pml2_entry_t *)PHYS_TO_DMAP(*l1e & PG_FRAME);
4259 			l2e = &l2e[pdpindex & RPTE_MASK];
4260 			if ((*l2e & PG_V) == 0) {
4261 				/* Have to allocate a new pd, recurse */
4262 				if (_pmap_allocpte(pmap, NUPDE + pdpindex,
4263 				    lockp) == NULL) {
4264 					vm_page_unwire_noq(m);
4265 					vm_page_free_zero(m);
4266 					return (NULL);
4267 				}
4268 			} else {
4269 				/* Add reference to the pd page */
4270 				pdpg = PHYS_TO_VM_PAGE(*l2e & PG_FRAME);
4271 				pdpg->ref_count++;
4272 			}
4273 		}
4274 		l3e = (pml3_entry_t *)PHYS_TO_DMAP(*l2e & PG_FRAME);
4275 
4276 		/* Now we know where the page directory page is */
4277 		l3e = &l3e[ptepindex & RPTE_MASK];
4278 		pde_store(l3e, VM_PAGE_TO_PHYS(m));
4279 	}
4280 
4281 	pmap_resident_count_inc(pmap, 1);
4282 	return (m);
4283 }
4284 static vm_page_t
4285 pmap_allocl3e(pmap_t pmap, vm_offset_t va, struct rwlock **lockp)
4286 {
4287 	vm_pindex_t pdpindex, ptepindex;
4288 	pml2_entry_t *pdpe;
4289 	vm_page_t pdpg;
4290 
4291 retry:
4292 	pdpe = pmap_pml2e(pmap, va);
4293 	if (pdpe != NULL && (*pdpe & PG_V) != 0) {
4294 		/* Add a reference to the pd page. */
4295 		pdpg = PHYS_TO_VM_PAGE(*pdpe & PG_FRAME);
4296 		pdpg->ref_count++;
4297 	} else {
4298 		/* Allocate a pd page. */
4299 		ptepindex = pmap_l3e_pindex(va);
4300 		pdpindex = ptepindex >> RPTE_SHIFT;
4301 		pdpg = _pmap_allocpte(pmap, NUPDE + pdpindex, lockp);
4302 		if (pdpg == NULL && lockp != NULL)
4303 			goto retry;
4304 	}
4305 	return (pdpg);
4306 }
4307 
4308 static vm_page_t
4309 pmap_allocpte(pmap_t pmap, vm_offset_t va, struct rwlock **lockp)
4310 {
4311 	vm_pindex_t ptepindex;
4312 	pml3_entry_t *pd;
4313 	vm_page_t m;
4314 
4315 	/*
4316 	 * Calculate pagetable page index
4317 	 */
4318 	ptepindex = pmap_l3e_pindex(va);
4319 retry:
4320 	/*
4321 	 * Get the page directory entry
4322 	 */
4323 	pd = pmap_pml3e(pmap, va);
4324 
4325 	/*
4326 	 * This supports switching from a 2MB page to a
4327 	 * normal 4K page.
4328 	 */
4329 	if (pd != NULL && (*pd & (RPTE_LEAF | PG_V)) == (RPTE_LEAF | PG_V)) {
4330 		if (!pmap_demote_l3e_locked(pmap, pd, va, lockp)) {
4331 			/*
4332 			 * Invalidation of the 2MB page mapping may have caused
4333 			 * the deallocation of the underlying PD page.
4334 			 */
4335 			pd = NULL;
4336 		}
4337 	}
4338 
4339 	/*
4340 	 * If the page table page is mapped, we just increment the
4341 	 * hold count, and activate it.
4342 	 */
4343 	if (pd != NULL && (*pd & PG_V) != 0) {
4344 		m = PHYS_TO_VM_PAGE(*pd & PG_FRAME);
4345 		m->ref_count++;
4346 	} else {
4347 		/*
4348 		 * Here if the pte page isn't mapped, or if it has been
4349 		 * deallocated.
4350 		 */
4351 		m = _pmap_allocpte(pmap, ptepindex, lockp);
4352 		if (m == NULL && lockp != NULL)
4353 			goto retry;
4354 	}
4355 	return (m);
4356 }
4357 
4358 static void
4359 mmu_radix_pinit0(pmap_t pmap)
4360 {
4361 
4362 	CTR2(KTR_PMAP, "%s(%p)", __func__, pmap);
4363 	PMAP_LOCK_INIT(pmap);
4364 	pmap->pm_pml1 = kernel_pmap->pm_pml1;
4365 	pmap->pm_pid = kernel_pmap->pm_pid;
4366 
4367 	pmap->pm_radix.rt_root = 0;
4368 	TAILQ_INIT(&pmap->pm_pvchunk);
4369 	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
4370 	kernel_pmap->pm_flags =
4371 		pmap->pm_flags = PMAP_PDE_SUPERPAGE;
4372 }
4373 /*
4374  * pmap_protect_l3e: do the things to protect a 2mpage in a process
4375  */
4376 static boolean_t
4377 pmap_protect_l3e(pmap_t pmap, pt_entry_t *l3e, vm_offset_t sva, vm_prot_t prot)
4378 {
4379 	pt_entry_t newpde, oldpde;
4380 	vm_offset_t eva, va;
4381 	vm_page_t m;
4382 	boolean_t anychanged;
4383 
4384 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
4385 	KASSERT((sva & L3_PAGE_MASK) == 0,
4386 	    ("pmap_protect_l3e: sva is not 2mpage aligned"));
4387 	anychanged = FALSE;
4388 retry:
4389 	oldpde = newpde = *l3e;
4390 	if ((oldpde & (PG_MANAGED | PG_M | PG_RW)) ==
4391 	    (PG_MANAGED | PG_M | PG_RW)) {
4392 		eva = sva + L3_PAGE_SIZE;
4393 		for (va = sva, m = PHYS_TO_VM_PAGE(oldpde & PG_PS_FRAME);
4394 		    va < eva; va += PAGE_SIZE, m++)
4395 			vm_page_dirty(m);
4396 	}
4397 	if ((prot & VM_PROT_WRITE) == 0) {
4398 		newpde &= ~(PG_RW | PG_M);
4399 		newpde |= RPTE_EAA_R;
4400 	}
4401 	if (prot & VM_PROT_EXECUTE)
4402 		newpde |= PG_X;
4403 	if (newpde != oldpde) {
4404 		/*
4405 		 * As an optimization to future operations on this PDE, clear
4406 		 * PG_PROMOTED.  The impending invalidation will remove any
4407 		 * lingering 4KB page mappings from the TLB.
4408 		 */
4409 		if (!atomic_cmpset_long(l3e, oldpde, newpde & ~PG_PROMOTED))
4410 			goto retry;
4411 		anychanged = TRUE;
4412 	}
4413 	return (anychanged);
4414 }
4415 
4416 void
4417 mmu_radix_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva,
4418     vm_prot_t prot)
4419 {
4420 	vm_offset_t va_next;
4421 	pml1_entry_t *l1e;
4422 	pml2_entry_t *l2e;
4423 	pml3_entry_t ptpaddr, *l3e;
4424 	pt_entry_t *pte;
4425 	boolean_t anychanged;
4426 
4427 	CTR5(KTR_PMAP, "%s(%p, %#x, %#x, %#x)", __func__, pmap, sva, eva,
4428 	    prot);
4429 
4430 	KASSERT((prot & ~VM_PROT_ALL) == 0, ("invalid prot %x", prot));
4431 	if (prot == VM_PROT_NONE) {
4432 		mmu_radix_remove(pmap, sva, eva);
4433 		return;
4434 	}
4435 
4436 	if ((prot & (VM_PROT_WRITE|VM_PROT_EXECUTE)) ==
4437 	    (VM_PROT_WRITE|VM_PROT_EXECUTE))
4438 		return;
4439 
4440 #ifdef INVARIANTS
4441 	if (VERBOSE_PROTECT || pmap_logging)
4442 		printf("pmap_protect(%p, %#lx, %#lx, %x) - asid: %lu\n",
4443 			   pmap, sva, eva, prot, pmap->pm_pid);
4444 #endif
4445 	anychanged = FALSE;
4446 
4447 	PMAP_LOCK(pmap);
4448 	for (; sva < eva; sva = va_next) {
4449 		l1e = pmap_pml1e(pmap, sva);
4450 		if ((*l1e & PG_V) == 0) {
4451 			va_next = (sva + L1_PAGE_SIZE) & ~L1_PAGE_MASK;
4452 			if (va_next < sva)
4453 				va_next = eva;
4454 			continue;
4455 		}
4456 
4457 		l2e = pmap_l1e_to_l2e(l1e, sva);
4458 		if ((*l2e & PG_V) == 0) {
4459 			va_next = (sva + L2_PAGE_SIZE) & ~L2_PAGE_MASK;
4460 			if (va_next < sva)
4461 				va_next = eva;
4462 			continue;
4463 		}
4464 
4465 		va_next = (sva + L3_PAGE_SIZE) & ~L3_PAGE_MASK;
4466 		if (va_next < sva)
4467 			va_next = eva;
4468 
4469 		l3e = pmap_l2e_to_l3e(l2e, sva);
4470 		ptpaddr = *l3e;
4471 
4472 		/*
4473 		 * Weed out invalid mappings.
4474 		 */
4475 		if (ptpaddr == 0)
4476 			continue;
4477 
4478 		/*
4479 		 * Check for large page.
4480 		 */
4481 		if ((ptpaddr & RPTE_LEAF) != 0) {
4482 			/*
4483 			 * Are we protecting the entire large page?  If not,
4484 			 * demote the mapping and fall through.
4485 			 */
4486 			if (sva + L3_PAGE_SIZE == va_next && eva >= va_next) {
4487 				if (pmap_protect_l3e(pmap, l3e, sva, prot))
4488 					anychanged = TRUE;
4489 				continue;
4490 			} else if (!pmap_demote_l3e(pmap, l3e, sva)) {
4491 				/*
4492 				 * The large page mapping was destroyed.
4493 				 */
4494 				continue;
4495 			}
4496 		}
4497 
4498 		if (va_next > eva)
4499 			va_next = eva;
4500 
4501 		for (pte = pmap_l3e_to_pte(l3e, sva); sva != va_next; pte++,
4502 		    sva += PAGE_SIZE) {
4503 			pt_entry_t obits, pbits;
4504 			vm_page_t m;
4505 
4506 retry:
4507 			MPASS(pte == pmap_pte(pmap, sva));
4508 			obits = pbits = *pte;
4509 			if ((pbits & PG_V) == 0)
4510 				continue;
4511 
4512 			if ((prot & VM_PROT_WRITE) == 0) {
4513 				if ((pbits & (PG_MANAGED | PG_M | PG_RW)) ==
4514 				    (PG_MANAGED | PG_M | PG_RW)) {
4515 					m = PHYS_TO_VM_PAGE(pbits & PG_FRAME);
4516 					vm_page_dirty(m);
4517 				}
4518 				pbits &= ~(PG_RW | PG_M);
4519 				pbits |= RPTE_EAA_R;
4520 			}
4521 			if (prot & VM_PROT_EXECUTE)
4522 				pbits |= PG_X;
4523 
4524 			if (pbits != obits) {
4525 				if (!atomic_cmpset_long(pte, obits, pbits))
4526 					goto retry;
4527 				if (obits & (PG_A|PG_M)) {
4528 					anychanged = TRUE;
4529 #ifdef INVARIANTS
4530 					if (VERBOSE_PROTECT || pmap_logging)
4531 						printf("%#lx %#lx -> %#lx\n",
4532 						    sva, obits, pbits);
4533 #endif
4534 				}
4535 			}
4536 		}
4537 	}
4538 	if (anychanged)
4539 		pmap_invalidate_all(pmap);
4540 	PMAP_UNLOCK(pmap);
4541 }
4542 
4543 void
4544 mmu_radix_qenter(vm_offset_t sva, vm_page_t *ma, int count)
4545 {
4546 
4547 	CTR4(KTR_PMAP, "%s(%#x, %p, %d)", __func__, sva, ma, count);
4548 	pt_entry_t oldpte, pa, *pte;
4549 	vm_page_t m;
4550 	uint64_t cache_bits, attr_bits;
4551 	vm_offset_t va;
4552 
4553 	oldpte = 0;
4554 	attr_bits = RPTE_EAA_R | RPTE_EAA_W | RPTE_EAA_P | PG_M | PG_A;
4555 	va = sva;
4556 	pte = kvtopte(va);
4557 	while (va < sva + PAGE_SIZE * count) {
4558 		if (__predict_false((va & L3_PAGE_MASK) == 0))
4559 			pte = kvtopte(va);
4560 		MPASS(pte == pmap_pte(kernel_pmap, va));
4561 
4562 		/*
4563 		 * XXX there has to be a more efficient way than traversing
4564 		 * the page table every time - but go for correctness for
4565 		 * today
4566 		 */
4567 
4568 		m = *ma++;
4569 		cache_bits = pmap_cache_bits(m->md.mdpg_cache_attrs);
4570 		pa = VM_PAGE_TO_PHYS(m) | cache_bits | attr_bits;
4571 		if (*pte != pa) {
4572 			oldpte |= *pte;
4573 			pte_store(pte, pa);
4574 		}
4575 		va += PAGE_SIZE;
4576 		pte++;
4577 	}
4578 	if (__predict_false((oldpte & RPTE_VALID) != 0))
4579 		pmap_invalidate_range(kernel_pmap, sva, sva + count *
4580 		    PAGE_SIZE);
4581 	else
4582 		ptesync();
4583 }
4584 
4585 void
4586 mmu_radix_qremove(vm_offset_t sva, int count)
4587 {
4588 	vm_offset_t va;
4589 	pt_entry_t *pte;
4590 
4591 	CTR3(KTR_PMAP, "%s(%#x, %d)", __func__, sva, count);
4592 	KASSERT(sva >= VM_MIN_KERNEL_ADDRESS, ("usermode or dmap va %lx", sva));
4593 
4594 	va = sva;
4595 	pte = kvtopte(va);
4596 	while (va < sva + PAGE_SIZE * count) {
4597 		if (__predict_false((va & L3_PAGE_MASK) == 0))
4598 			pte = kvtopte(va);
4599 		pte_clear(pte);
4600 		pte++;
4601 		va += PAGE_SIZE;
4602 	}
4603 	pmap_invalidate_range(kernel_pmap, sva, va);
4604 }
4605 
4606 /***************************************************
4607  * Page table page management routines.....
4608  ***************************************************/
4609 /*
4610  * Schedule the specified unused page table page to be freed.  Specifically,
4611  * add the page to the specified list of pages that will be released to the
4612  * physical memory manager after the TLB has been updated.
4613  */
4614 static __inline void
4615 pmap_add_delayed_free_list(vm_page_t m, struct spglist *free,
4616     boolean_t set_PG_ZERO)
4617 {
4618 
4619 	if (set_PG_ZERO)
4620 		m->flags |= PG_ZERO;
4621 	else
4622 		m->flags &= ~PG_ZERO;
4623 	SLIST_INSERT_HEAD(free, m, plinks.s.ss);
4624 }
4625 
4626 /*
4627  * Inserts the specified page table page into the specified pmap's collection
4628  * of idle page table pages.  Each of a pmap's page table pages is responsible
4629  * for mapping a distinct range of virtual addresses.  The pmap's collection is
4630  * ordered by this virtual address range.
4631  */
4632 static __inline int
4633 pmap_insert_pt_page(pmap_t pmap, vm_page_t mpte)
4634 {
4635 
4636 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
4637 	return (vm_radix_insert(&pmap->pm_radix, mpte));
4638 }
4639 
4640 /*
4641  * Removes the page table page mapping the specified virtual address from the
4642  * specified pmap's collection of idle page table pages, and returns it.
4643  * Otherwise, returns NULL if there is no page table page corresponding to the
4644  * specified virtual address.
4645  */
4646 static __inline vm_page_t
4647 pmap_remove_pt_page(pmap_t pmap, vm_offset_t va)
4648 {
4649 
4650 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
4651 	return (vm_radix_remove(&pmap->pm_radix, pmap_l3e_pindex(va)));
4652 }
4653 
4654 /*
4655  * Decrements a page table page's wire count, which is used to record the
4656  * number of valid page table entries within the page.  If the wire count
4657  * drops to zero, then the page table page is unmapped.  Returns TRUE if the
4658  * page table page was unmapped and FALSE otherwise.
4659  */
4660 static inline boolean_t
4661 pmap_unwire_ptp(pmap_t pmap, vm_offset_t va, vm_page_t m, struct spglist *free)
4662 {
4663 
4664 	--m->ref_count;
4665 	if (m->ref_count == 0) {
4666 		_pmap_unwire_ptp(pmap, va, m, free);
4667 		return (TRUE);
4668 	} else
4669 		return (FALSE);
4670 }
4671 
4672 static void
4673 _pmap_unwire_ptp(pmap_t pmap, vm_offset_t va, vm_page_t m, struct spglist *free)
4674 {
4675 
4676 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
4677 	/*
4678 	 * unmap the page table page
4679 	 */
4680 	if (m->pindex >= (NUPDE + NUPDPE)) {
4681 		/* PDP page */
4682 		pml1_entry_t *pml1;
4683 		pml1 = pmap_pml1e(pmap, va);
4684 		*pml1 = 0;
4685 	} else if (m->pindex >= NUPDE) {
4686 		/* PD page */
4687 		pml2_entry_t *l2e;
4688 		l2e = pmap_pml2e(pmap, va);
4689 		*l2e = 0;
4690 	} else {
4691 		/* PTE page */
4692 		pml3_entry_t *l3e;
4693 		l3e = pmap_pml3e(pmap, va);
4694 		*l3e = 0;
4695 	}
4696 	pmap_resident_count_dec(pmap, 1);
4697 	if (m->pindex < NUPDE) {
4698 		/* We just released a PT, unhold the matching PD */
4699 		vm_page_t pdpg;
4700 
4701 		pdpg = PHYS_TO_VM_PAGE(*pmap_pml2e(pmap, va) & PG_FRAME);
4702 		pmap_unwire_ptp(pmap, va, pdpg, free);
4703 	}
4704 	if (m->pindex >= NUPDE && m->pindex < (NUPDE + NUPDPE)) {
4705 		/* We just released a PD, unhold the matching PDP */
4706 		vm_page_t pdppg;
4707 
4708 		pdppg = PHYS_TO_VM_PAGE(*pmap_pml1e(pmap, va) & PG_FRAME);
4709 		pmap_unwire_ptp(pmap, va, pdppg, free);
4710 	}
4711 
4712 	/*
4713 	 * Put page on a list so that it is released after
4714 	 * *ALL* TLB shootdown is done
4715 	 */
4716 	pmap_add_delayed_free_list(m, free, TRUE);
4717 }
4718 
4719 /*
4720  * After removing a page table entry, this routine is used to
4721  * conditionally free the page, and manage the hold/wire counts.
4722  */
4723 static int
4724 pmap_unuse_pt(pmap_t pmap, vm_offset_t va, pml3_entry_t ptepde,
4725     struct spglist *free)
4726 {
4727 	vm_page_t mpte;
4728 
4729 	if (va >= VM_MAXUSER_ADDRESS)
4730 		return (0);
4731 	KASSERT(ptepde != 0, ("pmap_unuse_pt: ptepde != 0"));
4732 	mpte = PHYS_TO_VM_PAGE(ptepde & PG_FRAME);
4733 	return (pmap_unwire_ptp(pmap, va, mpte, free));
4734 }
4735 
4736 void
4737 mmu_radix_release(pmap_t pmap)
4738 {
4739 
4740 	CTR2(KTR_PMAP, "%s(%p)", __func__, pmap);
4741 	KASSERT(pmap->pm_stats.resident_count == 0,
4742 	    ("pmap_release: pmap resident count %ld != 0",
4743 	    pmap->pm_stats.resident_count));
4744 	KASSERT(vm_radix_is_empty(&pmap->pm_radix),
4745 	    ("pmap_release: pmap has reserved page table page(s)"));
4746 
4747 	pmap_invalidate_all(pmap);
4748 	isa3_proctab[pmap->pm_pid].proctab0 = 0;
4749 	uma_zfree(zone_radix_pgd, pmap->pm_pml1);
4750 	vmem_free(asid_arena, pmap->pm_pid, 1);
4751 }
4752 
4753 /*
4754  * Create the PV entry for a 2MB page mapping.  Always returns true unless the
4755  * flag PMAP_ENTER_NORECLAIM is specified.  If that flag is specified, returns
4756  * false if the PV entry cannot be allocated without resorting to reclamation.
4757  */
4758 static bool
4759 pmap_pv_insert_l3e(pmap_t pmap, vm_offset_t va, pml3_entry_t pde, u_int flags,
4760     struct rwlock **lockp)
4761 {
4762 	struct md_page *pvh;
4763 	pv_entry_t pv;
4764 	vm_paddr_t pa;
4765 
4766 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
4767 	/* Pass NULL instead of the lock pointer to disable reclamation. */
4768 	if ((pv = get_pv_entry(pmap, (flags & PMAP_ENTER_NORECLAIM) != 0 ?
4769 	    NULL : lockp)) == NULL)
4770 		return (false);
4771 	pv->pv_va = va;
4772 	pa = pde & PG_PS_FRAME;
4773 	CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, pa);
4774 	pvh = pa_to_pvh(pa);
4775 	TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_link);
4776 	pvh->pv_gen++;
4777 	return (true);
4778 }
4779 
4780 /*
4781  * Fills a page table page with mappings to consecutive physical pages.
4782  */
4783 static void
4784 pmap_fill_ptp(pt_entry_t *firstpte, pt_entry_t newpte)
4785 {
4786 	pt_entry_t *pte;
4787 
4788 	for (pte = firstpte; pte < firstpte + NPTEPG; pte++) {
4789 		*pte = newpte;
4790 		newpte += PAGE_SIZE;
4791 	}
4792 }
4793 
4794 static boolean_t
4795 pmap_demote_l3e(pmap_t pmap, pml3_entry_t *pde, vm_offset_t va)
4796 {
4797 	struct rwlock *lock;
4798 	boolean_t rv;
4799 
4800 	lock = NULL;
4801 	rv = pmap_demote_l3e_locked(pmap, pde, va, &lock);
4802 	if (lock != NULL)
4803 		rw_wunlock(lock);
4804 	return (rv);
4805 }
4806 
4807 static boolean_t
4808 pmap_demote_l3e_locked(pmap_t pmap, pml3_entry_t *l3e, vm_offset_t va,
4809     struct rwlock **lockp)
4810 {
4811 	pml3_entry_t oldpde;
4812 	pt_entry_t *firstpte;
4813 	vm_paddr_t mptepa;
4814 	vm_page_t mpte;
4815 	struct spglist free;
4816 	vm_offset_t sva;
4817 
4818 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
4819 	oldpde = *l3e;
4820 	KASSERT((oldpde & (RPTE_LEAF | PG_V)) == (RPTE_LEAF | PG_V),
4821 	    ("pmap_demote_l3e: oldpde is missing RPTE_LEAF and/or PG_V %lx",
4822 	    oldpde));
4823 	if ((oldpde & PG_A) == 0 || (mpte = pmap_remove_pt_page(pmap, va)) ==
4824 	    NULL) {
4825 		KASSERT((oldpde & PG_W) == 0,
4826 		    ("pmap_demote_l3e: page table page for a wired mapping"
4827 		    " is missing"));
4828 
4829 		/*
4830 		 * Invalidate the 2MB page mapping and return "failure" if the
4831 		 * mapping was never accessed or the allocation of the new
4832 		 * page table page fails.  If the 2MB page mapping belongs to
4833 		 * the direct map region of the kernel's address space, then
4834 		 * the page allocation request specifies the highest possible
4835 		 * priority (VM_ALLOC_INTERRUPT).  Otherwise, the priority is
4836 		 * normal.  Page table pages are preallocated for every other
4837 		 * part of the kernel address space, so the direct map region
4838 		 * is the only part of the kernel address space that must be
4839 		 * handled here.
4840 		 */
4841 		if ((oldpde & PG_A) == 0 || (mpte = vm_page_alloc(NULL,
4842 		    pmap_l3e_pindex(va), (va >= DMAP_MIN_ADDRESS && va <
4843 		    DMAP_MAX_ADDRESS ? VM_ALLOC_INTERRUPT : VM_ALLOC_NORMAL) |
4844 		    VM_ALLOC_NOOBJ | VM_ALLOC_WIRED)) == NULL) {
4845 			SLIST_INIT(&free);
4846 			sva = trunc_2mpage(va);
4847 			pmap_remove_l3e(pmap, l3e, sva, &free, lockp);
4848 			pmap_invalidate_l3e_page(pmap, sva, oldpde);
4849 			vm_page_free_pages_toq(&free, true);
4850 			CTR2(KTR_PMAP, "pmap_demote_l3e: failure for va %#lx"
4851 			    " in pmap %p", va, pmap);
4852 			return (FALSE);
4853 		}
4854 		if (va < VM_MAXUSER_ADDRESS)
4855 			pmap_resident_count_inc(pmap, 1);
4856 	}
4857 	mptepa = VM_PAGE_TO_PHYS(mpte);
4858 	firstpte = (pt_entry_t *)PHYS_TO_DMAP(mptepa);
4859 	KASSERT((oldpde & PG_A) != 0,
4860 	    ("pmap_demote_l3e: oldpde is missing PG_A"));
4861 	KASSERT((oldpde & (PG_M | PG_RW)) != PG_RW,
4862 	    ("pmap_demote_l3e: oldpde is missing PG_M"));
4863 
4864 	/*
4865 	 * If the page table page is new, initialize it.
4866 	 */
4867 	if (mpte->ref_count == 1) {
4868 		mpte->ref_count = NPTEPG;
4869 		pmap_fill_ptp(firstpte, oldpde);
4870 	}
4871 
4872 	KASSERT((*firstpte & PG_FRAME) == (oldpde & PG_FRAME),
4873 	    ("pmap_demote_l3e: firstpte and newpte map different physical"
4874 	    " addresses"));
4875 
4876 	/*
4877 	 * If the mapping has changed attributes, update the page table
4878 	 * entries.
4879 	 */
4880 	if ((*firstpte & PG_PTE_PROMOTE) != (oldpde & PG_PTE_PROMOTE))
4881 		pmap_fill_ptp(firstpte, oldpde);
4882 
4883 	/*
4884 	 * The spare PV entries must be reserved prior to demoting the
4885 	 * mapping, that is, prior to changing the PDE.  Otherwise, the state
4886 	 * of the PDE and the PV lists will be inconsistent, which can result
4887 	 * in reclaim_pv_chunk() attempting to remove a PV entry from the
4888 	 * wrong PV list and pmap_pv_demote_l3e() failing to find the expected
4889 	 * PV entry for the 2MB page mapping that is being demoted.
4890 	 */
4891 	if ((oldpde & PG_MANAGED) != 0)
4892 		reserve_pv_entries(pmap, NPTEPG - 1, lockp);
4893 
4894 	/*
4895 	 * Demote the mapping.  This pmap is locked.  The old PDE has
4896 	 * PG_A set.  If the old PDE has PG_RW set, it also has PG_M
4897 	 * set.  Thus, there is no danger of a race with another
4898 	 * processor changing the setting of PG_A and/or PG_M between
4899 	 * the read above and the store below.
4900 	 */
4901 	pde_store(l3e, mptepa);
4902 	ptesync();
4903 	/*
4904 	 * Demote the PV entry.
4905 	 */
4906 	if ((oldpde & PG_MANAGED) != 0)
4907 		pmap_pv_demote_l3e(pmap, va, oldpde & PG_PS_FRAME, lockp);
4908 
4909 	atomic_add_long(&pmap_l3e_demotions, 1);
4910 	CTR2(KTR_PMAP, "pmap_demote_l3e: success for va %#lx"
4911 	    " in pmap %p", va, pmap);
4912 	return (TRUE);
4913 }
4914 
4915 /*
4916  * pmap_remove_kernel_pde: Remove a kernel superpage mapping.
4917  */
4918 static void
4919 pmap_remove_kernel_l3e(pmap_t pmap, pml3_entry_t *l3e, vm_offset_t va)
4920 {
4921 	vm_paddr_t mptepa;
4922 	vm_page_t mpte;
4923 
4924 	KASSERT(pmap == kernel_pmap, ("pmap %p is not kernel_pmap", pmap));
4925 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
4926 	mpte = pmap_remove_pt_page(pmap, va);
4927 	if (mpte == NULL)
4928 		panic("pmap_remove_kernel_pde: Missing pt page.");
4929 
4930 	mptepa = VM_PAGE_TO_PHYS(mpte);
4931 
4932 	/*
4933 	 * Initialize the page table page.
4934 	 */
4935 	pagezero(PHYS_TO_DMAP(mptepa));
4936 
4937 	/*
4938 	 * Demote the mapping.
4939 	 */
4940 	pde_store(l3e, mptepa);
4941 	ptesync();
4942 }
4943 
4944 /*
4945  * pmap_remove_l3e: do the things to unmap a superpage in a process
4946  */
4947 static int
4948 pmap_remove_l3e(pmap_t pmap, pml3_entry_t *pdq, vm_offset_t sva,
4949     struct spglist *free, struct rwlock **lockp)
4950 {
4951 	struct md_page *pvh;
4952 	pml3_entry_t oldpde;
4953 	vm_offset_t eva, va;
4954 	vm_page_t m, mpte;
4955 
4956 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
4957 	KASSERT((sva & L3_PAGE_MASK) == 0,
4958 	    ("pmap_remove_l3e: sva is not 2mpage aligned"));
4959 	oldpde = pte_load_clear(pdq);
4960 	if (oldpde & PG_W)
4961 		pmap->pm_stats.wired_count -= (L3_PAGE_SIZE / PAGE_SIZE);
4962 	pmap_resident_count_dec(pmap, L3_PAGE_SIZE / PAGE_SIZE);
4963 	if (oldpde & PG_MANAGED) {
4964 		CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, oldpde & PG_PS_FRAME);
4965 		pvh = pa_to_pvh(oldpde & PG_PS_FRAME);
4966 		pmap_pvh_free(pvh, pmap, sva);
4967 		eva = sva + L3_PAGE_SIZE;
4968 		for (va = sva, m = PHYS_TO_VM_PAGE(oldpde & PG_PS_FRAME);
4969 		    va < eva; va += PAGE_SIZE, m++) {
4970 			if ((oldpde & (PG_M | PG_RW)) == (PG_M | PG_RW))
4971 				vm_page_dirty(m);
4972 			if (oldpde & PG_A)
4973 				vm_page_aflag_set(m, PGA_REFERENCED);
4974 			if (TAILQ_EMPTY(&m->md.pv_list) &&
4975 			    TAILQ_EMPTY(&pvh->pv_list))
4976 				vm_page_aflag_clear(m, PGA_WRITEABLE);
4977 		}
4978 	}
4979 	if (pmap == kernel_pmap) {
4980 		pmap_remove_kernel_l3e(pmap, pdq, sva);
4981 	} else {
4982 		mpte = pmap_remove_pt_page(pmap, sva);
4983 		if (mpte != NULL) {
4984 			pmap_resident_count_dec(pmap, 1);
4985 			KASSERT(mpte->ref_count == NPTEPG,
4986 			    ("pmap_remove_l3e: pte page wire count error"));
4987 			mpte->ref_count = 0;
4988 			pmap_add_delayed_free_list(mpte, free, FALSE);
4989 		}
4990 	}
4991 	return (pmap_unuse_pt(pmap, sva, *pmap_pml2e(pmap, sva), free));
4992 }
4993 
4994 /*
4995  * pmap_remove_pte: do the things to unmap a page in a process
4996  */
4997 static int
4998 pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t va,
4999     pml3_entry_t ptepde, struct spglist *free, struct rwlock **lockp)
5000 {
5001 	struct md_page *pvh;
5002 	pt_entry_t oldpte;
5003 	vm_page_t m;
5004 
5005 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
5006 	oldpte = pte_load_clear(ptq);
5007 	if (oldpte & RPTE_WIRED)
5008 		pmap->pm_stats.wired_count -= 1;
5009 	pmap_resident_count_dec(pmap, 1);
5010 	if (oldpte & RPTE_MANAGED) {
5011 		m = PHYS_TO_VM_PAGE(oldpte & PG_FRAME);
5012 		if ((oldpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
5013 			vm_page_dirty(m);
5014 		if (oldpte & PG_A)
5015 			vm_page_aflag_set(m, PGA_REFERENCED);
5016 		CHANGE_PV_LIST_LOCK_TO_VM_PAGE(lockp, m);
5017 		pmap_pvh_free(&m->md, pmap, va);
5018 		if (TAILQ_EMPTY(&m->md.pv_list) &&
5019 		    (m->flags & PG_FICTITIOUS) == 0) {
5020 			pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
5021 			if (TAILQ_EMPTY(&pvh->pv_list))
5022 				vm_page_aflag_clear(m, PGA_WRITEABLE);
5023 		}
5024 	}
5025 	return (pmap_unuse_pt(pmap, va, ptepde, free));
5026 }
5027 
5028 /*
5029  * Remove a single page from a process address space
5030  */
5031 static bool
5032 pmap_remove_page(pmap_t pmap, vm_offset_t va, pml3_entry_t *l3e,
5033     struct spglist *free)
5034 {
5035 	struct rwlock *lock;
5036 	pt_entry_t *pte;
5037 	bool invalidate_all;
5038 
5039 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
5040 	if ((*l3e & RPTE_VALID) == 0) {
5041 		return (false);
5042 	}
5043 	pte = pmap_l3e_to_pte(l3e, va);
5044 	if ((*pte & RPTE_VALID) == 0) {
5045 		return (false);
5046 	}
5047 	lock = NULL;
5048 
5049 	invalidate_all = pmap_remove_pte(pmap, pte, va, *l3e, free, &lock);
5050 	if (lock != NULL)
5051 		rw_wunlock(lock);
5052 	if (!invalidate_all)
5053 		pmap_invalidate_page(pmap, va);
5054 	return (invalidate_all);
5055 }
5056 
5057 /*
5058  * Removes the specified range of addresses from the page table page.
5059  */
5060 static bool
5061 pmap_remove_ptes(pmap_t pmap, vm_offset_t sva, vm_offset_t eva,
5062     pml3_entry_t *l3e, struct spglist *free, struct rwlock **lockp)
5063 {
5064 	pt_entry_t *pte;
5065 	vm_offset_t va;
5066 	bool anyvalid;
5067 
5068 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
5069 	anyvalid = false;
5070 	va = eva;
5071 	for (pte = pmap_l3e_to_pte(l3e, sva); sva != eva; pte++,
5072 	    sva += PAGE_SIZE) {
5073 		MPASS(pte == pmap_pte(pmap, sva));
5074 		if (*pte == 0) {
5075 			if (va != eva) {
5076 				anyvalid = true;
5077 				va = eva;
5078 			}
5079 			continue;
5080 		}
5081 		if (va == eva)
5082 			va = sva;
5083 		if (pmap_remove_pte(pmap, pte, sva, *l3e, free, lockp)) {
5084 			anyvalid = true;
5085 			sva += PAGE_SIZE;
5086 			break;
5087 		}
5088 	}
5089 	if (anyvalid)
5090 		pmap_invalidate_all(pmap);
5091 	else if (va != eva)
5092 		pmap_invalidate_range(pmap, va, sva);
5093 	return (anyvalid);
5094 }
5095 
5096 void
5097 mmu_radix_remove(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
5098 {
5099 	struct rwlock *lock;
5100 	vm_offset_t va_next;
5101 	pml1_entry_t *l1e;
5102 	pml2_entry_t *l2e;
5103 	pml3_entry_t ptpaddr, *l3e;
5104 	struct spglist free;
5105 	bool anyvalid;
5106 
5107 	CTR4(KTR_PMAP, "%s(%p, %#x, %#x)", __func__, pmap, sva, eva);
5108 
5109 	/*
5110 	 * Perform an unsynchronized read.  This is, however, safe.
5111 	 */
5112 	if (pmap->pm_stats.resident_count == 0)
5113 		return;
5114 
5115 	anyvalid = false;
5116 	SLIST_INIT(&free);
5117 
5118 	/* XXX something fishy here */
5119 	sva = (sva + PAGE_MASK) & ~PAGE_MASK;
5120 	eva = (eva + PAGE_MASK) & ~PAGE_MASK;
5121 
5122 	PMAP_LOCK(pmap);
5123 
5124 	/*
5125 	 * special handling of removing one page.  a very
5126 	 * common operation and easy to short circuit some
5127 	 * code.
5128 	 */
5129 	if (sva + PAGE_SIZE == eva) {
5130 		l3e = pmap_pml3e(pmap, sva);
5131 		if (l3e && (*l3e & RPTE_LEAF) == 0) {
5132 			anyvalid = pmap_remove_page(pmap, sva, l3e, &free);
5133 			goto out;
5134 		}
5135 	}
5136 
5137 	lock = NULL;
5138 	for (; sva < eva; sva = va_next) {
5139 		if (pmap->pm_stats.resident_count == 0)
5140 			break;
5141 		l1e = pmap_pml1e(pmap, sva);
5142 		if (l1e == NULL || (*l1e & PG_V) == 0) {
5143 			va_next = (sva + L1_PAGE_SIZE) & ~L1_PAGE_MASK;
5144 			if (va_next < sva)
5145 				va_next = eva;
5146 			continue;
5147 		}
5148 
5149 		l2e = pmap_l1e_to_l2e(l1e, sva);
5150 		if (l2e == NULL || (*l2e & PG_V) == 0) {
5151 			va_next = (sva + L2_PAGE_SIZE) & ~L2_PAGE_MASK;
5152 			if (va_next < sva)
5153 				va_next = eva;
5154 			continue;
5155 		}
5156 
5157 		/*
5158 		 * Calculate index for next page table.
5159 		 */
5160 		va_next = (sva + L3_PAGE_SIZE) & ~L3_PAGE_MASK;
5161 		if (va_next < sva)
5162 			va_next = eva;
5163 
5164 		l3e = pmap_l2e_to_l3e(l2e, sva);
5165 		ptpaddr = *l3e;
5166 
5167 		/*
5168 		 * Weed out invalid mappings.
5169 		 */
5170 		if (ptpaddr == 0)
5171 			continue;
5172 
5173 		/*
5174 		 * Check for large page.
5175 		 */
5176 		if ((ptpaddr & RPTE_LEAF) != 0) {
5177 			/*
5178 			 * Are we removing the entire large page?  If not,
5179 			 * demote the mapping and fall through.
5180 			 */
5181 			if (sva + L3_PAGE_SIZE == va_next && eva >= va_next) {
5182 				pmap_remove_l3e(pmap, l3e, sva, &free, &lock);
5183 				continue;
5184 			} else if (!pmap_demote_l3e_locked(pmap, l3e, sva,
5185 			    &lock)) {
5186 				/* The large page mapping was destroyed. */
5187 				continue;
5188 			} else
5189 				ptpaddr = *l3e;
5190 		}
5191 
5192 		/*
5193 		 * Limit our scan to either the end of the va represented
5194 		 * by the current page table page, or to the end of the
5195 		 * range being removed.
5196 		 */
5197 		if (va_next > eva)
5198 			va_next = eva;
5199 
5200 		if (pmap_remove_ptes(pmap, sva, va_next, l3e, &free, &lock))
5201 			anyvalid = true;
5202 	}
5203 	if (lock != NULL)
5204 		rw_wunlock(lock);
5205 out:
5206 	if (anyvalid)
5207 		pmap_invalidate_all(pmap);
5208 	PMAP_UNLOCK(pmap);
5209 	vm_page_free_pages_toq(&free, true);
5210 }
5211 
5212 void
5213 mmu_radix_remove_all(vm_page_t m)
5214 {
5215 	struct md_page *pvh;
5216 	pv_entry_t pv;
5217 	pmap_t pmap;
5218 	struct rwlock *lock;
5219 	pt_entry_t *pte, tpte;
5220 	pml3_entry_t *l3e;
5221 	vm_offset_t va;
5222 	struct spglist free;
5223 	int pvh_gen, md_gen;
5224 
5225 	CTR2(KTR_PMAP, "%s(%p)", __func__, m);
5226 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
5227 	    ("pmap_remove_all: page %p is not managed", m));
5228 	SLIST_INIT(&free);
5229 	lock = VM_PAGE_TO_PV_LIST_LOCK(m);
5230 	pvh = (m->flags & PG_FICTITIOUS) != 0 ? &pv_dummy :
5231 	    pa_to_pvh(VM_PAGE_TO_PHYS(m));
5232 retry:
5233 	rw_wlock(lock);
5234 	while ((pv = TAILQ_FIRST(&pvh->pv_list)) != NULL) {
5235 		pmap = PV_PMAP(pv);
5236 		if (!PMAP_TRYLOCK(pmap)) {
5237 			pvh_gen = pvh->pv_gen;
5238 			rw_wunlock(lock);
5239 			PMAP_LOCK(pmap);
5240 			rw_wlock(lock);
5241 			if (pvh_gen != pvh->pv_gen) {
5242 				rw_wunlock(lock);
5243 				PMAP_UNLOCK(pmap);
5244 				goto retry;
5245 			}
5246 		}
5247 		va = pv->pv_va;
5248 		l3e = pmap_pml3e(pmap, va);
5249 		(void)pmap_demote_l3e_locked(pmap, l3e, va, &lock);
5250 		PMAP_UNLOCK(pmap);
5251 	}
5252 	while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
5253 		pmap = PV_PMAP(pv);
5254 		if (!PMAP_TRYLOCK(pmap)) {
5255 			pvh_gen = pvh->pv_gen;
5256 			md_gen = m->md.pv_gen;
5257 			rw_wunlock(lock);
5258 			PMAP_LOCK(pmap);
5259 			rw_wlock(lock);
5260 			if (pvh_gen != pvh->pv_gen || md_gen != m->md.pv_gen) {
5261 				rw_wunlock(lock);
5262 				PMAP_UNLOCK(pmap);
5263 				goto retry;
5264 			}
5265 		}
5266 		pmap_resident_count_dec(pmap, 1);
5267 		l3e = pmap_pml3e(pmap, pv->pv_va);
5268 		KASSERT((*l3e & RPTE_LEAF) == 0, ("pmap_remove_all: found"
5269 		    " a 2mpage in page %p's pv list", m));
5270 		pte = pmap_l3e_to_pte(l3e, pv->pv_va);
5271 		tpte = pte_load_clear(pte);
5272 		if (tpte & PG_W)
5273 			pmap->pm_stats.wired_count--;
5274 		if (tpte & PG_A)
5275 			vm_page_aflag_set(m, PGA_REFERENCED);
5276 
5277 		/*
5278 		 * Update the vm_page_t clean and reference bits.
5279 		 */
5280 		if ((tpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
5281 			vm_page_dirty(m);
5282 		pmap_unuse_pt(pmap, pv->pv_va, *l3e, &free);
5283 		pmap_invalidate_page(pmap, pv->pv_va);
5284 		TAILQ_REMOVE(&m->md.pv_list, pv, pv_link);
5285 		m->md.pv_gen++;
5286 		free_pv_entry(pmap, pv);
5287 		PMAP_UNLOCK(pmap);
5288 	}
5289 	vm_page_aflag_clear(m, PGA_WRITEABLE);
5290 	rw_wunlock(lock);
5291 	vm_page_free_pages_toq(&free, true);
5292 }
5293 
5294 /*
5295  * Destroy all managed, non-wired mappings in the given user-space
5296  * pmap.  This pmap cannot be active on any processor besides the
5297  * caller.
5298  *
5299  * This function cannot be applied to the kernel pmap.  Moreover, it
5300  * is not intended for general use.  It is only to be used during
5301  * process termination.  Consequently, it can be implemented in ways
5302  * that make it faster than pmap_remove().  First, it can more quickly
5303  * destroy mappings by iterating over the pmap's collection of PV
5304  * entries, rather than searching the page table.  Second, it doesn't
5305  * have to test and clear the page table entries atomically, because
5306  * no processor is currently accessing the user address space.  In
5307  * particular, a page table entry's dirty bit won't change state once
5308  * this function starts.
5309  *
5310  * Although this function destroys all of the pmap's managed,
5311  * non-wired mappings, it can delay and batch the invalidation of TLB
5312  * entries without calling pmap_delayed_invl_started() and
5313  * pmap_delayed_invl_finished().  Because the pmap is not active on
5314  * any other processor, none of these TLB entries will ever be used
5315  * before their eventual invalidation.  Consequently, there is no need
5316  * for either pmap_remove_all() or pmap_remove_write() to wait for
5317  * that eventual TLB invalidation.
5318  */
5319 
5320 void
5321 mmu_radix_remove_pages(pmap_t pmap)
5322 {
5323 
5324 	CTR2(KTR_PMAP, "%s(%p)", __func__, pmap);
5325 	pml3_entry_t ptel3e;
5326 	pt_entry_t *pte, tpte;
5327 	struct spglist free;
5328 	vm_page_t m, mpte, mt;
5329 	pv_entry_t pv;
5330 	struct md_page *pvh;
5331 	struct pv_chunk *pc, *npc;
5332 	struct rwlock *lock;
5333 	int64_t bit;
5334 	uint64_t inuse, bitmask;
5335 	int allfree, field, freed, idx;
5336 	boolean_t superpage;
5337 	vm_paddr_t pa;
5338 
5339 	/*
5340 	 * Assert that the given pmap is only active on the current
5341 	 * CPU.  Unfortunately, we cannot block another CPU from
5342 	 * activating the pmap while this function is executing.
5343 	 */
5344 	KASSERT(pmap->pm_pid == mfspr(SPR_PID),
5345 	    ("non-current asid %lu - expected %lu", pmap->pm_pid,
5346 	    mfspr(SPR_PID)));
5347 
5348 	lock = NULL;
5349 
5350 	SLIST_INIT(&free);
5351 	PMAP_LOCK(pmap);
5352 	TAILQ_FOREACH_SAFE(pc, &pmap->pm_pvchunk, pc_list, npc) {
5353 		allfree = 1;
5354 		freed = 0;
5355 		for (field = 0; field < _NPCM; field++) {
5356 			inuse = ~pc->pc_map[field] & pc_freemask[field];
5357 			while (inuse != 0) {
5358 				bit = cnttzd(inuse);
5359 				bitmask = 1UL << bit;
5360 				idx = field * 64 + bit;
5361 				pv = &pc->pc_pventry[idx];
5362 				inuse &= ~bitmask;
5363 
5364 				pte = pmap_pml2e(pmap, pv->pv_va);
5365 				ptel3e = *pte;
5366 				pte = pmap_l2e_to_l3e(pte, pv->pv_va);
5367 				tpte = *pte;
5368 				if ((tpte & (RPTE_LEAF | PG_V)) == PG_V) {
5369 					superpage = FALSE;
5370 					ptel3e = tpte;
5371 					pte = (pt_entry_t *)PHYS_TO_DMAP(tpte &
5372 					    PG_FRAME);
5373 					pte = &pte[pmap_pte_index(pv->pv_va)];
5374 					tpte = *pte;
5375 				} else {
5376 					/*
5377 					 * Keep track whether 'tpte' is a
5378 					 * superpage explicitly instead of
5379 					 * relying on RPTE_LEAF being set.
5380 					 *
5381 					 * This is because RPTE_LEAF is numerically
5382 					 * identical to PG_PTE_PAT and thus a
5383 					 * regular page could be mistaken for
5384 					 * a superpage.
5385 					 */
5386 					superpage = TRUE;
5387 				}
5388 
5389 				if ((tpte & PG_V) == 0) {
5390 					panic("bad pte va %lx pte %lx",
5391 					    pv->pv_va, tpte);
5392 				}
5393 
5394 /*
5395  * We cannot remove wired pages from a process' mapping at this time
5396  */
5397 				if (tpte & PG_W) {
5398 					allfree = 0;
5399 					continue;
5400 				}
5401 
5402 				if (superpage)
5403 					pa = tpte & PG_PS_FRAME;
5404 				else
5405 					pa = tpte & PG_FRAME;
5406 
5407 				m = PHYS_TO_VM_PAGE(pa);
5408 				KASSERT(m->phys_addr == pa,
5409 				    ("vm_page_t %p phys_addr mismatch %016jx %016jx",
5410 				    m, (uintmax_t)m->phys_addr,
5411 				    (uintmax_t)tpte));
5412 
5413 				KASSERT((m->flags & PG_FICTITIOUS) != 0 ||
5414 				    m < &vm_page_array[vm_page_array_size],
5415 				    ("pmap_remove_pages: bad tpte %#jx",
5416 				    (uintmax_t)tpte));
5417 
5418 				pte_clear(pte);
5419 
5420 				/*
5421 				 * Update the vm_page_t clean/reference bits.
5422 				 */
5423 				if ((tpte & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
5424 					if (superpage) {
5425 						for (mt = m; mt < &m[L3_PAGE_SIZE / PAGE_SIZE]; mt++)
5426 							vm_page_dirty(mt);
5427 					} else
5428 						vm_page_dirty(m);
5429 				}
5430 
5431 				CHANGE_PV_LIST_LOCK_TO_VM_PAGE(&lock, m);
5432 
5433 				/* Mark free */
5434 				pc->pc_map[field] |= bitmask;
5435 				if (superpage) {
5436 					pmap_resident_count_dec(pmap, L3_PAGE_SIZE / PAGE_SIZE);
5437 					pvh = pa_to_pvh(tpte & PG_PS_FRAME);
5438 					TAILQ_REMOVE(&pvh->pv_list, pv, pv_link);
5439 					pvh->pv_gen++;
5440 					if (TAILQ_EMPTY(&pvh->pv_list)) {
5441 						for (mt = m; mt < &m[L3_PAGE_SIZE / PAGE_SIZE]; mt++)
5442 							if ((mt->a.flags & PGA_WRITEABLE) != 0 &&
5443 							    TAILQ_EMPTY(&mt->md.pv_list))
5444 								vm_page_aflag_clear(mt, PGA_WRITEABLE);
5445 					}
5446 					mpte = pmap_remove_pt_page(pmap, pv->pv_va);
5447 					if (mpte != NULL) {
5448 						pmap_resident_count_dec(pmap, 1);
5449 						KASSERT(mpte->ref_count == NPTEPG,
5450 						    ("pmap_remove_pages: pte page wire count error"));
5451 						mpte->ref_count = 0;
5452 						pmap_add_delayed_free_list(mpte, &free, FALSE);
5453 					}
5454 				} else {
5455 					pmap_resident_count_dec(pmap, 1);
5456 #ifdef VERBOSE_PV
5457 					printf("freeing pv (%p, %p)\n",
5458 						   pmap, pv);
5459 #endif
5460 					TAILQ_REMOVE(&m->md.pv_list, pv, pv_link);
5461 					m->md.pv_gen++;
5462 					if ((m->a.flags & PGA_WRITEABLE) != 0 &&
5463 					    TAILQ_EMPTY(&m->md.pv_list) &&
5464 					    (m->flags & PG_FICTITIOUS) == 0) {
5465 						pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
5466 						if (TAILQ_EMPTY(&pvh->pv_list))
5467 							vm_page_aflag_clear(m, PGA_WRITEABLE);
5468 					}
5469 				}
5470 				pmap_unuse_pt(pmap, pv->pv_va, ptel3e, &free);
5471 				freed++;
5472 			}
5473 		}
5474 		PV_STAT(atomic_add_long(&pv_entry_frees, freed));
5475 		PV_STAT(atomic_add_int(&pv_entry_spare, freed));
5476 		PV_STAT(atomic_subtract_long(&pv_entry_count, freed));
5477 		if (allfree) {
5478 			TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
5479 			free_pv_chunk(pc);
5480 		}
5481 	}
5482 	if (lock != NULL)
5483 		rw_wunlock(lock);
5484 	pmap_invalidate_all(pmap);
5485 	PMAP_UNLOCK(pmap);
5486 	vm_page_free_pages_toq(&free, true);
5487 }
5488 
5489 void
5490 mmu_radix_remove_write(vm_page_t m)
5491 {
5492 	struct md_page *pvh;
5493 	pmap_t pmap;
5494 	struct rwlock *lock;
5495 	pv_entry_t next_pv, pv;
5496 	pml3_entry_t *l3e;
5497 	pt_entry_t oldpte, *pte;
5498 	int pvh_gen, md_gen;
5499 
5500 	CTR2(KTR_PMAP, "%s(%p)", __func__, m);
5501 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
5502 	    ("pmap_remove_write: page %p is not managed", m));
5503 	vm_page_assert_busied(m);
5504 
5505 	if (!pmap_page_is_write_mapped(m))
5506 		return;
5507 	lock = VM_PAGE_TO_PV_LIST_LOCK(m);
5508 	pvh = (m->flags & PG_FICTITIOUS) != 0 ? &pv_dummy :
5509 	    pa_to_pvh(VM_PAGE_TO_PHYS(m));
5510 retry_pv_loop:
5511 	rw_wlock(lock);
5512 	TAILQ_FOREACH_SAFE(pv, &pvh->pv_list, pv_link, next_pv) {
5513 		pmap = PV_PMAP(pv);
5514 		if (!PMAP_TRYLOCK(pmap)) {
5515 			pvh_gen = pvh->pv_gen;
5516 			rw_wunlock(lock);
5517 			PMAP_LOCK(pmap);
5518 			rw_wlock(lock);
5519 			if (pvh_gen != pvh->pv_gen) {
5520 				PMAP_UNLOCK(pmap);
5521 				rw_wunlock(lock);
5522 				goto retry_pv_loop;
5523 			}
5524 		}
5525 		l3e = pmap_pml3e(pmap, pv->pv_va);
5526 		if ((*l3e & PG_RW) != 0)
5527 			(void)pmap_demote_l3e_locked(pmap, l3e, pv->pv_va, &lock);
5528 		KASSERT(lock == VM_PAGE_TO_PV_LIST_LOCK(m),
5529 		    ("inconsistent pv lock %p %p for page %p",
5530 		    lock, VM_PAGE_TO_PV_LIST_LOCK(m), m));
5531 		PMAP_UNLOCK(pmap);
5532 	}
5533 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
5534 		pmap = PV_PMAP(pv);
5535 		if (!PMAP_TRYLOCK(pmap)) {
5536 			pvh_gen = pvh->pv_gen;
5537 			md_gen = m->md.pv_gen;
5538 			rw_wunlock(lock);
5539 			PMAP_LOCK(pmap);
5540 			rw_wlock(lock);
5541 			if (pvh_gen != pvh->pv_gen ||
5542 			    md_gen != m->md.pv_gen) {
5543 				PMAP_UNLOCK(pmap);
5544 				rw_wunlock(lock);
5545 				goto retry_pv_loop;
5546 			}
5547 		}
5548 		l3e = pmap_pml3e(pmap, pv->pv_va);
5549 		KASSERT((*l3e & RPTE_LEAF) == 0,
5550 		    ("pmap_remove_write: found a 2mpage in page %p's pv list",
5551 		    m));
5552 		pte = pmap_l3e_to_pte(l3e, pv->pv_va);
5553 retry:
5554 		oldpte = *pte;
5555 		if (oldpte & PG_RW) {
5556 			if (!atomic_cmpset_long(pte, oldpte,
5557 			    (oldpte | RPTE_EAA_R) & ~(PG_RW | PG_M)))
5558 				goto retry;
5559 			if ((oldpte & PG_M) != 0)
5560 				vm_page_dirty(m);
5561 			pmap_invalidate_page(pmap, pv->pv_va);
5562 		}
5563 		PMAP_UNLOCK(pmap);
5564 	}
5565 	rw_wunlock(lock);
5566 	vm_page_aflag_clear(m, PGA_WRITEABLE);
5567 }
5568 
5569 /*
5570  *	Clear the wired attribute from the mappings for the specified range of
5571  *	addresses in the given pmap.  Every valid mapping within that range
5572  *	must have the wired attribute set.  In contrast, invalid mappings
5573  *	cannot have the wired attribute set, so they are ignored.
5574  *
5575  *	The wired attribute of the page table entry is not a hardware
5576  *	feature, so there is no need to invalidate any TLB entries.
5577  *	Since pmap_demote_l3e() for the wired entry must never fail,
5578  *	pmap_delayed_invl_started()/finished() calls around the
5579  *	function are not needed.
5580  */
5581 void
5582 mmu_radix_unwire(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
5583 {
5584 	vm_offset_t va_next;
5585 	pml1_entry_t *l1e;
5586 	pml2_entry_t *l2e;
5587 	pml3_entry_t *l3e;
5588 	pt_entry_t *pte;
5589 
5590 	CTR4(KTR_PMAP, "%s(%p, %#x, %#x)", __func__, pmap, sva, eva);
5591 	PMAP_LOCK(pmap);
5592 	for (; sva < eva; sva = va_next) {
5593 		l1e = pmap_pml1e(pmap, sva);
5594 		if ((*l1e & PG_V) == 0) {
5595 			va_next = (sva + L1_PAGE_SIZE) & ~L1_PAGE_MASK;
5596 			if (va_next < sva)
5597 				va_next = eva;
5598 			continue;
5599 		}
5600 		l2e = pmap_l1e_to_l2e(l1e, sva);
5601 		if ((*l2e & PG_V) == 0) {
5602 			va_next = (sva + L2_PAGE_SIZE) & ~L2_PAGE_MASK;
5603 			if (va_next < sva)
5604 				va_next = eva;
5605 			continue;
5606 		}
5607 		va_next = (sva + L3_PAGE_SIZE) & ~L3_PAGE_MASK;
5608 		if (va_next < sva)
5609 			va_next = eva;
5610 		l3e = pmap_l2e_to_l3e(l2e, sva);
5611 		if ((*l3e & PG_V) == 0)
5612 			continue;
5613 		if ((*l3e & RPTE_LEAF) != 0) {
5614 			if ((*l3e & PG_W) == 0)
5615 				panic("pmap_unwire: pde %#jx is missing PG_W",
5616 				    (uintmax_t)*l3e);
5617 
5618 			/*
5619 			 * Are we unwiring the entire large page?  If not,
5620 			 * demote the mapping and fall through.
5621 			 */
5622 			if (sva + L3_PAGE_SIZE == va_next && eva >= va_next) {
5623 				atomic_clear_long(l3e, PG_W);
5624 				pmap->pm_stats.wired_count -= L3_PAGE_SIZE /
5625 				    PAGE_SIZE;
5626 				continue;
5627 			} else if (!pmap_demote_l3e(pmap, l3e, sva))
5628 				panic("pmap_unwire: demotion failed");
5629 		}
5630 		if (va_next > eva)
5631 			va_next = eva;
5632 		for (pte = pmap_l3e_to_pte(l3e, sva); sva != va_next; pte++,
5633 		    sva += PAGE_SIZE) {
5634 			MPASS(pte == pmap_pte(pmap, sva));
5635 			if ((*pte & PG_V) == 0)
5636 				continue;
5637 			if ((*pte & PG_W) == 0)
5638 				panic("pmap_unwire: pte %#jx is missing PG_W",
5639 				    (uintmax_t)*pte);
5640 
5641 			/*
5642 			 * PG_W must be cleared atomically.  Although the pmap
5643 			 * lock synchronizes access to PG_W, another processor
5644 			 * could be setting PG_M and/or PG_A concurrently.
5645 			 */
5646 			atomic_clear_long(pte, PG_W);
5647 			pmap->pm_stats.wired_count--;
5648 		}
5649 	}
5650 	PMAP_UNLOCK(pmap);
5651 }
5652 
5653 void
5654 mmu_radix_zero_page(vm_page_t m)
5655 {
5656 	vm_offset_t addr;
5657 
5658 	CTR2(KTR_PMAP, "%s(%p)", __func__, m);
5659 	addr = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m));
5660 	pagezero(addr);
5661 }
5662 
5663 void
5664 mmu_radix_zero_page_area(vm_page_t m, int off, int size)
5665 {
5666 	caddr_t addr;
5667 
5668 	CTR4(KTR_PMAP, "%s(%p, %d, %d)", __func__, m, off, size);
5669 	MPASS(off + size <= PAGE_SIZE);
5670 	addr = (caddr_t)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m));
5671 	memset(addr + off, 0, size);
5672 }
5673 
5674 static int
5675 mmu_radix_mincore(pmap_t pmap, vm_offset_t addr, vm_paddr_t *locked_pa)
5676 {
5677 	pml3_entry_t *l3ep;
5678 	pt_entry_t pte;
5679 	vm_paddr_t pa;
5680 	int val;
5681 
5682 	CTR3(KTR_PMAP, "%s(%p, %#x)", __func__, pmap, addr);
5683 	PMAP_LOCK(pmap);
5684 
5685 	l3ep = pmap_pml3e(pmap, addr);
5686 	if (l3ep != NULL && (*l3ep & PG_V)) {
5687 		if (*l3ep & RPTE_LEAF) {
5688 			pte = *l3ep;
5689 			/* Compute the physical address of the 4KB page. */
5690 			pa = ((*l3ep & PG_PS_FRAME) | (addr & L3_PAGE_MASK)) &
5691 			    PG_FRAME;
5692 			val = MINCORE_PSIND(1);
5693 		} else {
5694 			pte = *pmap_l3e_to_pte(l3ep, addr);
5695 			pa = pte & PG_FRAME;
5696 			val = 0;
5697 		}
5698 	} else {
5699 		pte = 0;
5700 		pa = 0;
5701 		val = 0;
5702 	}
5703 	if ((pte & PG_V) != 0) {
5704 		val |= MINCORE_INCORE;
5705 		if ((pte & (PG_M | PG_RW)) == (PG_M | PG_RW))
5706 			val |= MINCORE_MODIFIED | MINCORE_MODIFIED_OTHER;
5707 		if ((pte & PG_A) != 0)
5708 			val |= MINCORE_REFERENCED | MINCORE_REFERENCED_OTHER;
5709 	}
5710 	if ((val & (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER)) !=
5711 	    (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER) &&
5712 	    (pte & (PG_MANAGED | PG_V)) == (PG_MANAGED | PG_V)) {
5713 		*locked_pa = pa;
5714 	}
5715 	PMAP_UNLOCK(pmap);
5716 	return (val);
5717 }
5718 
5719 void
5720 mmu_radix_activate(struct thread *td)
5721 {
5722 	pmap_t pmap;
5723 	uint32_t curpid;
5724 
5725 	CTR2(KTR_PMAP, "%s(%p)", __func__, td);
5726 	critical_enter();
5727 	pmap = vmspace_pmap(td->td_proc->p_vmspace);
5728 	curpid = mfspr(SPR_PID);
5729 	if (pmap->pm_pid > isa3_base_pid &&
5730 		curpid != pmap->pm_pid) {
5731 		mmu_radix_pid_set(pmap);
5732 	}
5733 	critical_exit();
5734 }
5735 
5736 /*
5737  *	Increase the starting virtual address of the given mapping if a
5738  *	different alignment might result in more superpage mappings.
5739  */
5740 void
5741 mmu_radix_align_superpage(vm_object_t object, vm_ooffset_t offset,
5742     vm_offset_t *addr, vm_size_t size)
5743 {
5744 
5745 	CTR5(KTR_PMAP, "%s(%p, %#x, %p, %#x)", __func__, object, offset, addr,
5746 	    size);
5747 	vm_offset_t superpage_offset;
5748 
5749 	if (size < L3_PAGE_SIZE)
5750 		return;
5751 	if (object != NULL && (object->flags & OBJ_COLORED) != 0)
5752 		offset += ptoa(object->pg_color);
5753 	superpage_offset = offset & L3_PAGE_MASK;
5754 	if (size - ((L3_PAGE_SIZE - superpage_offset) & L3_PAGE_MASK) < L3_PAGE_SIZE ||
5755 	    (*addr & L3_PAGE_MASK) == superpage_offset)
5756 		return;
5757 	if ((*addr & L3_PAGE_MASK) < superpage_offset)
5758 		*addr = (*addr & ~L3_PAGE_MASK) + superpage_offset;
5759 	else
5760 		*addr = ((*addr + L3_PAGE_MASK) & ~L3_PAGE_MASK) + superpage_offset;
5761 }
5762 
5763 static void *
5764 mmu_radix_mapdev_attr(vm_paddr_t pa, vm_size_t size, vm_memattr_t attr)
5765 {
5766 	vm_offset_t va, tmpva, ppa, offset;
5767 
5768 	ppa = trunc_page(pa);
5769 	offset = pa & PAGE_MASK;
5770 	size = roundup2(offset + size, PAGE_SIZE);
5771 	if (pa < powerpc_ptob(Maxmem))
5772 		panic("bad pa: %#lx less than Maxmem %#lx\n",
5773 			  pa, powerpc_ptob(Maxmem));
5774 	va = kva_alloc(size);
5775 	if (bootverbose)
5776 		printf("%s(%#lx, %lu, %d)\n", __func__, pa, size, attr);
5777 	KASSERT(size > 0, ("%s(%#lx, %lu, %d)", __func__, pa, size, attr));
5778 
5779 	if (!va)
5780 		panic("%s: Couldn't alloc kernel virtual memory", __func__);
5781 
5782 	for (tmpva = va; size > 0;) {
5783 		mmu_radix_kenter_attr(tmpva, ppa, attr);
5784 		size -= PAGE_SIZE;
5785 		tmpva += PAGE_SIZE;
5786 		ppa += PAGE_SIZE;
5787 	}
5788 	ptesync();
5789 
5790 	return ((void *)(va + offset));
5791 }
5792 
5793 static void *
5794 mmu_radix_mapdev(vm_paddr_t pa, vm_size_t size)
5795 {
5796 
5797 	CTR3(KTR_PMAP, "%s(%#x, %#x)", __func__, pa, size);
5798 
5799 	return (mmu_radix_mapdev_attr(pa, size, VM_MEMATTR_DEFAULT));
5800 }
5801 
5802 void
5803 mmu_radix_page_set_memattr(vm_page_t m, vm_memattr_t ma)
5804 {
5805 
5806 	CTR3(KTR_PMAP, "%s(%p, %#x)", __func__, m, ma);
5807 	m->md.mdpg_cache_attrs = ma;
5808 
5809 	/*
5810 	 * If "m" is a normal page, update its direct mapping.  This update
5811 	 * can be relied upon to perform any cache operations that are
5812 	 * required for data coherence.
5813 	 */
5814 	if ((m->flags & PG_FICTITIOUS) == 0 &&
5815 	    mmu_radix_change_attr(PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m)),
5816 	    PAGE_SIZE, m->md.mdpg_cache_attrs))
5817 		panic("memory attribute change on the direct map failed");
5818 }
5819 
5820 static void
5821 mmu_radix_unmapdev(vm_offset_t va, vm_size_t size)
5822 {
5823 	vm_offset_t offset;
5824 
5825 	CTR3(KTR_PMAP, "%s(%#x, %#x)", __func__, va, size);
5826 	/* If we gave a direct map region in pmap_mapdev, do nothing */
5827 	if (va >= DMAP_MIN_ADDRESS && va < DMAP_MAX_ADDRESS)
5828 		return;
5829 
5830 	offset = va & PAGE_MASK;
5831 	size = round_page(offset + size);
5832 	va = trunc_page(va);
5833 
5834 	if (pmap_initialized) {
5835 		mmu_radix_qremove(va, atop(size));
5836 		kva_free(va, size);
5837 	}
5838 }
5839 
5840 static __inline void
5841 pmap_pte_attr(pt_entry_t *pte, uint64_t cache_bits, uint64_t mask)
5842 {
5843 	uint64_t opte, npte;
5844 
5845 	/*
5846 	 * The cache mode bits are all in the low 32-bits of the
5847 	 * PTE, so we can just spin on updating the low 32-bits.
5848 	 */
5849 	do {
5850 		opte = *pte;
5851 		npte = opte & ~mask;
5852 		npte |= cache_bits;
5853 	} while (npte != opte && !atomic_cmpset_long(pte, opte, npte));
5854 }
5855 
5856 /*
5857  * Tries to demote a 1GB page mapping.
5858  */
5859 static boolean_t
5860 pmap_demote_l2e(pmap_t pmap, pml2_entry_t *l2e, vm_offset_t va)
5861 {
5862 	pml2_entry_t oldpdpe;
5863 	pml3_entry_t *firstpde, newpde, *pde;
5864 	vm_paddr_t pdpgpa;
5865 	vm_page_t pdpg;
5866 
5867 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
5868 	oldpdpe = *l2e;
5869 	KASSERT((oldpdpe & (RPTE_LEAF | PG_V)) == (RPTE_LEAF | PG_V),
5870 	    ("pmap_demote_pdpe: oldpdpe is missing PG_PS and/or PG_V"));
5871 	pdpg = vm_page_alloc(NULL, va >> L2_PAGE_SIZE_SHIFT,
5872 	    VM_ALLOC_INTERRUPT | VM_ALLOC_NOOBJ | VM_ALLOC_WIRED);
5873 	if (pdpg == NULL) {
5874 		CTR2(KTR_PMAP, "pmap_demote_pdpe: failure for va %#lx"
5875 		    " in pmap %p", va, pmap);
5876 		return (FALSE);
5877 	}
5878 	pdpgpa = VM_PAGE_TO_PHYS(pdpg);
5879 	firstpde = (pml3_entry_t *)PHYS_TO_DMAP(pdpgpa);
5880 	KASSERT((oldpdpe & PG_A) != 0,
5881 	    ("pmap_demote_pdpe: oldpdpe is missing PG_A"));
5882 	KASSERT((oldpdpe & (PG_M | PG_RW)) != PG_RW,
5883 	    ("pmap_demote_pdpe: oldpdpe is missing PG_M"));
5884 	newpde = oldpdpe;
5885 
5886 	/*
5887 	 * Initialize the page directory page.
5888 	 */
5889 	for (pde = firstpde; pde < firstpde + NPDEPG; pde++) {
5890 		*pde = newpde;
5891 		newpde += L3_PAGE_SIZE;
5892 	}
5893 
5894 	/*
5895 	 * Demote the mapping.
5896 	 */
5897 	pde_store(l2e, pdpgpa);
5898 
5899 	/*
5900 	 * Flush PWC --- XXX revisit
5901 	 */
5902 	pmap_invalidate_all(pmap);
5903 
5904 	pmap_l2e_demotions++;
5905 	CTR2(KTR_PMAP, "pmap_demote_pdpe: success for va %#lx"
5906 	    " in pmap %p", va, pmap);
5907 	return (TRUE);
5908 }
5909 
5910 vm_paddr_t
5911 mmu_radix_kextract(vm_offset_t va)
5912 {
5913 	pml3_entry_t l3e;
5914 	vm_paddr_t pa;
5915 
5916 	CTR2(KTR_PMAP, "%s(%#x)", __func__, va);
5917 	if (va >= DMAP_MIN_ADDRESS && va < DMAP_MAX_ADDRESS) {
5918 		pa = DMAP_TO_PHYS(va);
5919 	} else {
5920 		l3e = *pmap_pml3e(kernel_pmap, va);
5921 		if (l3e & RPTE_LEAF) {
5922 			pa = (l3e & PG_PS_FRAME) | (va & L3_PAGE_MASK);
5923 			pa |= (va & L3_PAGE_MASK);
5924 		} else {
5925 			/*
5926 			 * Beware of a concurrent promotion that changes the
5927 			 * PDE at this point!  For example, vtopte() must not
5928 			 * be used to access the PTE because it would use the
5929 			 * new PDE.  It is, however, safe to use the old PDE
5930 			 * because the page table page is preserved by the
5931 			 * promotion.
5932 			 */
5933 			pa = *pmap_l3e_to_pte(&l3e, va);
5934 			pa = (pa & PG_FRAME) | (va & PAGE_MASK);
5935 			pa |= (va & PAGE_MASK);
5936 		}
5937 	}
5938 	return (pa);
5939 }
5940 
5941 static pt_entry_t
5942 mmu_radix_calc_wimg(vm_paddr_t pa, vm_memattr_t ma)
5943 {
5944 
5945 	if (ma != VM_MEMATTR_DEFAULT) {
5946 		return pmap_cache_bits(ma);
5947 	}
5948 
5949 	/*
5950 	 * Assume the page is cache inhibited and access is guarded unless
5951 	 * it's in our available memory array.
5952 	 */
5953 	for (int i = 0; i < pregions_sz; i++) {
5954 		if ((pa >= pregions[i].mr_start) &&
5955 		    (pa < (pregions[i].mr_start + pregions[i].mr_size)))
5956 			return (RPTE_ATTR_MEM);
5957 	}
5958 	return (RPTE_ATTR_GUARDEDIO);
5959 }
5960 
5961 static void
5962 mmu_radix_kenter_attr(vm_offset_t va, vm_paddr_t pa, vm_memattr_t ma)
5963 {
5964 	pt_entry_t *pte, pteval;
5965 	uint64_t cache_bits;
5966 
5967 	pte = kvtopte(va);
5968 	MPASS(pte != NULL);
5969 	pteval = pa | RPTE_EAA_R | RPTE_EAA_W | RPTE_EAA_P | PG_M | PG_A;
5970 	cache_bits = mmu_radix_calc_wimg(pa, ma);
5971 	pte_store(pte, pteval | cache_bits);
5972 }
5973 
5974 void
5975 mmu_radix_kremove(vm_offset_t va)
5976 {
5977 	pt_entry_t *pte;
5978 
5979 	CTR2(KTR_PMAP, "%s(%#x)", __func__, va);
5980 
5981 	pte = kvtopte(va);
5982 	pte_clear(pte);
5983 }
5984 
5985 int
5986 mmu_radix_decode_kernel_ptr(vm_offset_t addr,
5987     int *is_user, vm_offset_t *decoded)
5988 {
5989 
5990 	CTR2(KTR_PMAP, "%s(%#jx)", __func__, (uintmax_t)addr);
5991 	*decoded = addr;
5992 	*is_user = (addr < VM_MAXUSER_ADDRESS);
5993 	return (0);
5994 }
5995 
5996 static boolean_t
5997 mmu_radix_dev_direct_mapped(vm_paddr_t pa, vm_size_t size)
5998 {
5999 
6000 	CTR3(KTR_PMAP, "%s(%#x, %#x)", __func__, pa, size);
6001 	return (mem_valid(pa, size));
6002 }
6003 
6004 static void
6005 mmu_radix_scan_init()
6006 {
6007 
6008 	CTR1(KTR_PMAP, "%s()", __func__);
6009 	UNIMPLEMENTED();
6010 }
6011 
6012 static void
6013 mmu_radix_dumpsys_map(vm_paddr_t pa, size_t sz,
6014 	void **va)
6015 {
6016 	CTR4(KTR_PMAP, "%s(%#jx, %#zx, %p)", __func__, (uintmax_t)pa, sz, va);
6017 	UNIMPLEMENTED();
6018 }
6019 
6020 vm_offset_t
6021 mmu_radix_quick_enter_page(vm_page_t m)
6022 {
6023 	vm_paddr_t paddr;
6024 
6025 	CTR2(KTR_PMAP, "%s(%p)", __func__, m);
6026 	paddr = VM_PAGE_TO_PHYS(m);
6027 	return (PHYS_TO_DMAP(paddr));
6028 }
6029 
6030 void
6031 mmu_radix_quick_remove_page(vm_offset_t addr __unused)
6032 {
6033 	/* no work to do here */
6034 	CTR2(KTR_PMAP, "%s(%#x)", __func__, addr);
6035 }
6036 
6037 static void
6038 pmap_invalidate_cache_range(vm_offset_t sva, vm_offset_t eva)
6039 {
6040 	cpu_flush_dcache((void *)sva, eva - sva);
6041 }
6042 
6043 int
6044 mmu_radix_change_attr(vm_offset_t va, vm_size_t size,
6045     vm_memattr_t mode)
6046 {
6047 	int error;
6048 
6049 	CTR4(KTR_PMAP, "%s(%#x, %#zx, %d)", __func__, va, size, mode);
6050 	PMAP_LOCK(kernel_pmap);
6051 	error = pmap_change_attr_locked(va, size, mode, true);
6052 	PMAP_UNLOCK(kernel_pmap);
6053 	return (error);
6054 }
6055 
6056 static int
6057 pmap_change_attr_locked(vm_offset_t va, vm_size_t size, int mode, bool flush)
6058 {
6059 	vm_offset_t base, offset, tmpva;
6060 	vm_paddr_t pa_start, pa_end, pa_end1;
6061 	pml2_entry_t *l2e;
6062 	pml3_entry_t *l3e;
6063 	pt_entry_t *pte;
6064 	int cache_bits, error;
6065 	boolean_t changed;
6066 
6067 	PMAP_LOCK_ASSERT(kernel_pmap, MA_OWNED);
6068 	base = trunc_page(va);
6069 	offset = va & PAGE_MASK;
6070 	size = round_page(offset + size);
6071 
6072 	/*
6073 	 * Only supported on kernel virtual addresses, including the direct
6074 	 * map but excluding the recursive map.
6075 	 */
6076 	if (base < DMAP_MIN_ADDRESS)
6077 		return (EINVAL);
6078 
6079 	cache_bits = pmap_cache_bits(mode);
6080 	changed = FALSE;
6081 
6082 	/*
6083 	 * Pages that aren't mapped aren't supported.  Also break down 2MB pages
6084 	 * into 4KB pages if required.
6085 	 */
6086 	for (tmpva = base; tmpva < base + size; ) {
6087 		l2e = pmap_pml2e(kernel_pmap, tmpva);
6088 		if (l2e == NULL || *l2e == 0)
6089 			return (EINVAL);
6090 		if (*l2e & RPTE_LEAF) {
6091 			/*
6092 			 * If the current 1GB page already has the required
6093 			 * memory type, then we need not demote this page. Just
6094 			 * increment tmpva to the next 1GB page frame.
6095 			 */
6096 			if ((*l2e & RPTE_ATTR_MASK) == cache_bits) {
6097 				tmpva = trunc_1gpage(tmpva) + L2_PAGE_SIZE;
6098 				continue;
6099 			}
6100 
6101 			/*
6102 			 * If the current offset aligns with a 1GB page frame
6103 			 * and there is at least 1GB left within the range, then
6104 			 * we need not break down this page into 2MB pages.
6105 			 */
6106 			if ((tmpva & L2_PAGE_MASK) == 0 &&
6107 			    tmpva + L2_PAGE_MASK < base + size) {
6108 				tmpva += L2_PAGE_MASK;
6109 				continue;
6110 			}
6111 			if (!pmap_demote_l2e(kernel_pmap, l2e, tmpva))
6112 				return (ENOMEM);
6113 		}
6114 		l3e = pmap_l2e_to_l3e(l2e, tmpva);
6115 		KASSERT(l3e != NULL, ("no l3e entry for %#lx in %p\n",
6116 		    tmpva, l2e));
6117 		if (*l3e == 0)
6118 			return (EINVAL);
6119 		if (*l3e & RPTE_LEAF) {
6120 			/*
6121 			 * If the current 2MB page already has the required
6122 			 * memory type, then we need not demote this page. Just
6123 			 * increment tmpva to the next 2MB page frame.
6124 			 */
6125 			if ((*l3e & RPTE_ATTR_MASK) == cache_bits) {
6126 				tmpva = trunc_2mpage(tmpva) + L3_PAGE_SIZE;
6127 				continue;
6128 			}
6129 
6130 			/*
6131 			 * If the current offset aligns with a 2MB page frame
6132 			 * and there is at least 2MB left within the range, then
6133 			 * we need not break down this page into 4KB pages.
6134 			 */
6135 			if ((tmpva & L3_PAGE_MASK) == 0 &&
6136 			    tmpva + L3_PAGE_MASK < base + size) {
6137 				tmpva += L3_PAGE_SIZE;
6138 				continue;
6139 			}
6140 			if (!pmap_demote_l3e(kernel_pmap, l3e, tmpva))
6141 				return (ENOMEM);
6142 		}
6143 		pte = pmap_l3e_to_pte(l3e, tmpva);
6144 		if (*pte == 0)
6145 			return (EINVAL);
6146 		tmpva += PAGE_SIZE;
6147 	}
6148 	error = 0;
6149 
6150 	/*
6151 	 * Ok, all the pages exist, so run through them updating their
6152 	 * cache mode if required.
6153 	 */
6154 	pa_start = pa_end = 0;
6155 	for (tmpva = base; tmpva < base + size; ) {
6156 		l2e = pmap_pml2e(kernel_pmap, tmpva);
6157 		if (*l2e & RPTE_LEAF) {
6158 			if ((*l2e & RPTE_ATTR_MASK) != cache_bits) {
6159 				pmap_pte_attr(l2e, cache_bits,
6160 				    RPTE_ATTR_MASK);
6161 				changed = TRUE;
6162 			}
6163 			if (tmpva >= VM_MIN_KERNEL_ADDRESS &&
6164 			    (*l2e & PG_PS_FRAME) < dmaplimit) {
6165 				if (pa_start == pa_end) {
6166 					/* Start physical address run. */
6167 					pa_start = *l2e & PG_PS_FRAME;
6168 					pa_end = pa_start + L2_PAGE_SIZE;
6169 				} else if (pa_end == (*l2e & PG_PS_FRAME))
6170 					pa_end += L2_PAGE_SIZE;
6171 				else {
6172 					/* Run ended, update direct map. */
6173 					error = pmap_change_attr_locked(
6174 					    PHYS_TO_DMAP(pa_start),
6175 					    pa_end - pa_start, mode, flush);
6176 					if (error != 0)
6177 						break;
6178 					/* Start physical address run. */
6179 					pa_start = *l2e & PG_PS_FRAME;
6180 					pa_end = pa_start + L2_PAGE_SIZE;
6181 				}
6182 			}
6183 			tmpva = trunc_1gpage(tmpva) + L2_PAGE_SIZE;
6184 			continue;
6185 		}
6186 		l3e = pmap_l2e_to_l3e(l2e, tmpva);
6187 		if (*l3e & RPTE_LEAF) {
6188 			if ((*l3e & RPTE_ATTR_MASK) != cache_bits) {
6189 				pmap_pte_attr(l3e, cache_bits,
6190 				    RPTE_ATTR_MASK);
6191 				changed = TRUE;
6192 			}
6193 			if (tmpva >= VM_MIN_KERNEL_ADDRESS &&
6194 			    (*l3e & PG_PS_FRAME) < dmaplimit) {
6195 				if (pa_start == pa_end) {
6196 					/* Start physical address run. */
6197 					pa_start = *l3e & PG_PS_FRAME;
6198 					pa_end = pa_start + L3_PAGE_SIZE;
6199 				} else if (pa_end == (*l3e & PG_PS_FRAME))
6200 					pa_end += L3_PAGE_SIZE;
6201 				else {
6202 					/* Run ended, update direct map. */
6203 					error = pmap_change_attr_locked(
6204 					    PHYS_TO_DMAP(pa_start),
6205 					    pa_end - pa_start, mode, flush);
6206 					if (error != 0)
6207 						break;
6208 					/* Start physical address run. */
6209 					pa_start = *l3e & PG_PS_FRAME;
6210 					pa_end = pa_start + L3_PAGE_SIZE;
6211 				}
6212 			}
6213 			tmpva = trunc_2mpage(tmpva) + L3_PAGE_SIZE;
6214 		} else {
6215 			pte = pmap_l3e_to_pte(l3e, tmpva);
6216 			if ((*pte & RPTE_ATTR_MASK) != cache_bits) {
6217 				pmap_pte_attr(pte, cache_bits,
6218 				    RPTE_ATTR_MASK);
6219 				changed = TRUE;
6220 			}
6221 			if (tmpva >= VM_MIN_KERNEL_ADDRESS &&
6222 			    (*pte & PG_FRAME) < dmaplimit) {
6223 				if (pa_start == pa_end) {
6224 					/* Start physical address run. */
6225 					pa_start = *pte & PG_FRAME;
6226 					pa_end = pa_start + PAGE_SIZE;
6227 				} else if (pa_end == (*pte & PG_FRAME))
6228 					pa_end += PAGE_SIZE;
6229 				else {
6230 					/* Run ended, update direct map. */
6231 					error = pmap_change_attr_locked(
6232 					    PHYS_TO_DMAP(pa_start),
6233 					    pa_end - pa_start, mode, flush);
6234 					if (error != 0)
6235 						break;
6236 					/* Start physical address run. */
6237 					pa_start = *pte & PG_FRAME;
6238 					pa_end = pa_start + PAGE_SIZE;
6239 				}
6240 			}
6241 			tmpva += PAGE_SIZE;
6242 		}
6243 	}
6244 	if (error == 0 && pa_start != pa_end && pa_start < dmaplimit) {
6245 		pa_end1 = MIN(pa_end, dmaplimit);
6246 		if (pa_start != pa_end1)
6247 			error = pmap_change_attr_locked(PHYS_TO_DMAP(pa_start),
6248 			    pa_end1 - pa_start, mode, flush);
6249 	}
6250 
6251 	/*
6252 	 * Flush CPU caches if required to make sure any data isn't cached that
6253 	 * shouldn't be, etc.
6254 	 */
6255 	if (changed) {
6256 		pmap_invalidate_all(kernel_pmap);
6257 
6258 		if (flush)
6259 			pmap_invalidate_cache_range(base, tmpva);
6260 	}
6261 	return (error);
6262 }
6263 
6264 /*
6265  * Allocate physical memory for the vm_page array and map it into KVA,
6266  * attempting to back the vm_pages with domain-local memory.
6267  */
6268 void
6269 mmu_radix_page_array_startup(long pages)
6270 {
6271 #ifdef notyet
6272 	pml2_entry_t *l2e;
6273 	pml3_entry_t *pde;
6274 	pml3_entry_t newl3;
6275 	vm_offset_t va;
6276 	long pfn;
6277 	int domain, i;
6278 #endif
6279 	vm_paddr_t pa;
6280 	vm_offset_t start, end;
6281 
6282 	vm_page_array_size = pages;
6283 
6284 	start = VM_MIN_KERNEL_ADDRESS;
6285 	end = start + pages * sizeof(struct vm_page);
6286 
6287 	pa = vm_phys_early_alloc(0, end - start);
6288 
6289 	start = mmu_radix_map(&start, pa, end - start, VM_MEMATTR_DEFAULT);
6290 #ifdef notyet
6291 	/* TODO: NUMA vm_page_array.  Blocked out until then (copied from amd64). */
6292 	for (va = start; va < end; va += L3_PAGE_SIZE) {
6293 		pfn = first_page + (va - start) / sizeof(struct vm_page);
6294 		domain = _vm_phys_domain(ptoa(pfn));
6295 		l2e = pmap_pml2e(kernel_pmap, va);
6296 		if ((*l2e & PG_V) == 0) {
6297 			pa = vm_phys_early_alloc(domain, PAGE_SIZE);
6298 			dump_add_page(pa);
6299 			pagezero(PHYS_TO_DMAP(pa));
6300 			pde_store(l2e, (pml2_entry_t)pa);
6301 		}
6302 		pde = pmap_l2e_to_l3e(l2e, va);
6303 		if ((*pde & PG_V) != 0)
6304 			panic("Unexpected pde %p", pde);
6305 		pa = vm_phys_early_alloc(domain, L3_PAGE_SIZE);
6306 		for (i = 0; i < NPDEPG; i++)
6307 			dump_add_page(pa + i * PAGE_SIZE);
6308 		newl3 = (pml3_entry_t)(pa | RPTE_EAA_P | RPTE_EAA_R | RPTE_EAA_W);
6309 		pte_store(pde, newl3);
6310 	}
6311 #endif
6312 	vm_page_array = (vm_page_t)start;
6313 }
6314 
6315 #ifdef DDB
6316 #include <sys/kdb.h>
6317 #include <ddb/ddb.h>
6318 
6319 static void
6320 pmap_pte_walk(pml1_entry_t *l1, vm_offset_t va)
6321 {
6322 	pml1_entry_t *l1e;
6323 	pml2_entry_t *l2e;
6324 	pml3_entry_t *l3e;
6325 	pt_entry_t *pte;
6326 
6327 	l1e = &l1[pmap_pml1e_index(va)];
6328 	db_printf("VA %#016lx l1e %#016lx", va, *l1e);
6329 	if ((*l1e & PG_V) == 0) {
6330 		db_printf("\n");
6331 		return;
6332 	}
6333 	l2e = pmap_l1e_to_l2e(l1e, va);
6334 	db_printf(" l2e %#016lx", *l2e);
6335 	if ((*l2e & PG_V) == 0 || (*l2e & RPTE_LEAF) != 0) {
6336 		db_printf("\n");
6337 		return;
6338 	}
6339 	l3e = pmap_l2e_to_l3e(l2e, va);
6340 	db_printf(" l3e %#016lx", *l3e);
6341 	if ((*l3e & PG_V) == 0 || (*l3e & RPTE_LEAF) != 0) {
6342 		db_printf("\n");
6343 		return;
6344 	}
6345 	pte = pmap_l3e_to_pte(l3e, va);
6346 	db_printf(" pte %#016lx\n", *pte);
6347 }
6348 
6349 void
6350 pmap_page_print_mappings(vm_page_t m)
6351 {
6352 	pmap_t pmap;
6353 	pv_entry_t pv;
6354 
6355 	db_printf("page %p(%lx)\n", m, m->phys_addr);
6356 	/* need to elide locks if running in ddb */
6357 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
6358 		db_printf("pv: %p ", pv);
6359 		db_printf("va: %#016lx ", pv->pv_va);
6360 		pmap = PV_PMAP(pv);
6361 		db_printf("pmap %p  ", pmap);
6362 		if (pmap != NULL) {
6363 			db_printf("asid: %lu\n", pmap->pm_pid);
6364 			pmap_pte_walk(pmap->pm_pml1, pv->pv_va);
6365 		}
6366 	}
6367 }
6368 
6369 DB_SHOW_COMMAND(pte, pmap_print_pte)
6370 {
6371 	vm_offset_t va;
6372 	pmap_t pmap;
6373 
6374 	if (!have_addr) {
6375 		db_printf("show pte addr\n");
6376 		return;
6377 	}
6378 	va = (vm_offset_t)addr;
6379 
6380 	if (va >= DMAP_MIN_ADDRESS)
6381 		pmap = kernel_pmap;
6382 	else if (kdb_thread != NULL)
6383 		pmap = vmspace_pmap(kdb_thread->td_proc->p_vmspace);
6384 	else
6385 		pmap = vmspace_pmap(curthread->td_proc->p_vmspace);
6386 
6387 	pmap_pte_walk(pmap->pm_pml1, va);
6388 }
6389 
6390 #endif
6391