xref: /freebsd/sys/powerpc/aim/mmu_radix.c (revision a3557ef0)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2018 Matthew Macy
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  *
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26  */
27 
28 
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD$");
31 
32 
33 #include <sys/param.h>
34 #include <sys/kernel.h>
35 #include <sys/systm.h>
36 #include <sys/conf.h>
37 #include <sys/bitstring.h>
38 #include <sys/queue.h>
39 #include <sys/cpuset.h>
40 #include <sys/endian.h>
41 #include <sys/kerneldump.h>
42 #include <sys/ktr.h>
43 #include <sys/lock.h>
44 #include <sys/syslog.h>
45 #include <sys/msgbuf.h>
46 #include <sys/malloc.h>
47 #include <sys/mman.h>
48 #include <sys/mutex.h>
49 #include <sys/proc.h>
50 #include <sys/rwlock.h>
51 #include <sys/sched.h>
52 #include <sys/sysctl.h>
53 #include <sys/systm.h>
54 #include <sys/vmem.h>
55 #include <sys/vmmeter.h>
56 #include <sys/smp.h>
57 
58 #include <sys/kdb.h>
59 
60 #include <dev/ofw/openfirm.h>
61 
62 #include <vm/vm.h>
63 #include <vm/pmap.h>
64 #include <vm/vm_param.h>
65 #include <vm/vm_kern.h>
66 #include <vm/vm_page.h>
67 #include <vm/vm_map.h>
68 #include <vm/vm_object.h>
69 #include <vm/vm_extern.h>
70 #include <vm/vm_pageout.h>
71 #include <vm/vm_phys.h>
72 #include <vm/vm_reserv.h>
73 #include <vm/uma.h>
74 
75 #include <machine/_inttypes.h>
76 #include <machine/cpu.h>
77 #include <machine/platform.h>
78 #include <machine/frame.h>
79 #include <machine/md_var.h>
80 #include <machine/psl.h>
81 #include <machine/bat.h>
82 #include <machine/hid.h>
83 #include <machine/pte.h>
84 #include <machine/sr.h>
85 #include <machine/trap.h>
86 #include <machine/mmuvar.h>
87 
88 #ifdef INVARIANTS
89 #include <vm/uma_dbg.h>
90 #endif
91 
92 #define PPC_BITLSHIFT(bit)	(sizeof(long)*NBBY - 1 - (bit))
93 #define PPC_BIT(bit)		(1UL << PPC_BITLSHIFT(bit))
94 #define PPC_BITLSHIFT_VAL(val, bit) ((val) << PPC_BITLSHIFT(bit))
95 
96 #include "opt_ddb.h"
97 #ifdef DDB
98 static void pmap_pte_walk(pml1_entry_t *l1, vm_offset_t va);
99 #endif
100 
101 #define PG_W	RPTE_WIRED
102 #define PG_V	RPTE_VALID
103 #define PG_MANAGED	RPTE_MANAGED
104 #define PG_PROMOTED	RPTE_PROMOTED
105 #define PG_M	RPTE_C
106 #define PG_A	RPTE_R
107 #define PG_X	RPTE_EAA_X
108 #define PG_RW	RPTE_EAA_W
109 #define PG_PTE_CACHE RPTE_ATTR_MASK
110 
111 #define RPTE_SHIFT 9
112 #define NLS_MASK ((1UL<<5)-1)
113 #define RPTE_ENTRIES (1UL<<RPTE_SHIFT)
114 #define RPTE_MASK (RPTE_ENTRIES-1)
115 
116 #define NLB_SHIFT 0
117 #define NLB_MASK (((1UL<<52)-1) << 8)
118 
119 extern int nkpt;
120 extern caddr_t crashdumpmap;
121 
122 #define RIC_FLUSH_TLB 0
123 #define RIC_FLUSH_PWC 1
124 #define RIC_FLUSH_ALL 2
125 
126 #define POWER9_TLB_SETS_RADIX	128	/* # sets in POWER9 TLB Radix mode */
127 
128 #define PPC_INST_TLBIE			0x7c000264
129 #define PPC_INST_TLBIEL			0x7c000224
130 #define PPC_INST_SLBIA			0x7c0003e4
131 
132 #define ___PPC_RA(a)	(((a) & 0x1f) << 16)
133 #define ___PPC_RB(b)	(((b) & 0x1f) << 11)
134 #define ___PPC_RS(s)	(((s) & 0x1f) << 21)
135 #define ___PPC_RT(t)	___PPC_RS(t)
136 #define ___PPC_R(r)	(((r) & 0x1) << 16)
137 #define ___PPC_PRS(prs)	(((prs) & 0x1) << 17)
138 #define ___PPC_RIC(ric)	(((ric) & 0x3) << 18)
139 
140 #define PPC_SLBIA(IH)	__XSTRING(.long PPC_INST_SLBIA | \
141 				       ((IH & 0x7) << 21))
142 #define	PPC_TLBIE_5(rb,rs,ric,prs,r)				\
143 	__XSTRING(.long PPC_INST_TLBIE |			\
144 			  ___PPC_RB(rb) | ___PPC_RS(rs) |	\
145 			  ___PPC_RIC(ric) | ___PPC_PRS(prs) |	\
146 			  ___PPC_R(r))
147 
148 #define	PPC_TLBIEL(rb,rs,ric,prs,r) \
149 	 __XSTRING(.long PPC_INST_TLBIEL | \
150 			   ___PPC_RB(rb) | ___PPC_RS(rs) |	\
151 			   ___PPC_RIC(ric) | ___PPC_PRS(prs) |	\
152 			   ___PPC_R(r))
153 
154 #define PPC_INVALIDATE_ERAT		PPC_SLBIA(7)
155 
156 static __inline void
157 ttusync(void)
158 {
159 	__asm __volatile("eieio; tlbsync; ptesync" ::: "memory");
160 }
161 
162 #define TLBIEL_INVAL_SEL_MASK	0xc00	/* invalidation selector */
163 #define  TLBIEL_INVAL_PAGE	0x000	/* invalidate a single page */
164 #define  TLBIEL_INVAL_SET_PID	0x400	/* invalidate a set for the current PID */
165 #define  TLBIEL_INVAL_SET_LPID	0x800	/* invalidate a set for current LPID */
166 #define  TLBIEL_INVAL_SET	0xc00	/* invalidate a set for all LPIDs */
167 
168 #define TLBIE_ACTUAL_PAGE_MASK		0xe0
169 #define  TLBIE_ACTUAL_PAGE_4K		0x00
170 #define  TLBIE_ACTUAL_PAGE_64K		0xa0
171 #define  TLBIE_ACTUAL_PAGE_2M		0x20
172 #define  TLBIE_ACTUAL_PAGE_1G		0x40
173 
174 #define TLBIE_PRS_PARTITION_SCOPE	0x0
175 #define TLBIE_PRS_PROCESS_SCOPE	0x1
176 
177 #define TLBIE_RIC_INVALIDATE_TLB	0x0	/* Invalidate just TLB */
178 #define TLBIE_RIC_INVALIDATE_PWC	0x1	/* Invalidate just PWC */
179 #define TLBIE_RIC_INVALIDATE_ALL	0x2	/* Invalidate TLB, PWC,
180 						 * cached {proc, part}tab entries
181 						 */
182 #define TLBIE_RIC_INVALIDATE_SEQ	0x3	/* HPT - only:
183 						 * Invalidate a range of translations
184 						 */
185 
186 static __inline void
187 radix_tlbie(uint8_t ric, uint8_t prs, uint16_t is, uint32_t pid, uint32_t lpid,
188 			vm_offset_t va, uint16_t ap)
189 {
190 	uint64_t rb, rs;
191 
192 	MPASS((va & PAGE_MASK) == 0);
193 
194 	rs = ((uint64_t)pid << 32) | lpid;
195 	rb = va | is | ap;
196 	__asm __volatile(PPC_TLBIE_5(%0, %1, %2, %3, 1) : :
197 		"r" (rb), "r" (rs), "i" (ric), "i" (prs));
198 }
199 
200 static __inline void
201 radix_tlbie_invlpg_user_4k(uint32_t pid, vm_offset_t va)
202 {
203 
204 	radix_tlbie(TLBIE_RIC_INVALIDATE_TLB, TLBIE_PRS_PROCESS_SCOPE,
205 		TLBIEL_INVAL_PAGE, pid, 0, va, TLBIE_ACTUAL_PAGE_4K);
206 }
207 
208 static __inline void
209 radix_tlbie_invlpg_user_2m(uint32_t pid, vm_offset_t va)
210 {
211 
212 	radix_tlbie(TLBIE_RIC_INVALIDATE_TLB, TLBIE_PRS_PROCESS_SCOPE,
213 		TLBIEL_INVAL_PAGE, pid, 0, va, TLBIE_ACTUAL_PAGE_2M);
214 }
215 
216 static __inline void
217 radix_tlbie_invlpwc_user(uint32_t pid)
218 {
219 
220 	radix_tlbie(TLBIE_RIC_INVALIDATE_PWC, TLBIE_PRS_PROCESS_SCOPE,
221 		TLBIEL_INVAL_SET_PID, pid, 0, 0, 0);
222 }
223 
224 static __inline void
225 radix_tlbie_flush_user(uint32_t pid)
226 {
227 
228 	radix_tlbie(TLBIE_RIC_INVALIDATE_ALL, TLBIE_PRS_PROCESS_SCOPE,
229 		TLBIEL_INVAL_SET_PID, pid, 0, 0, 0);
230 }
231 
232 static __inline void
233 radix_tlbie_invlpg_kernel_4k(vm_offset_t va)
234 {
235 
236 	radix_tlbie(TLBIE_RIC_INVALIDATE_TLB, TLBIE_PRS_PROCESS_SCOPE,
237 	    TLBIEL_INVAL_PAGE, 0, 0, va, TLBIE_ACTUAL_PAGE_4K);
238 }
239 
240 static __inline void
241 radix_tlbie_invlpg_kernel_2m(vm_offset_t va)
242 {
243 
244 	radix_tlbie(TLBIE_RIC_INVALIDATE_TLB, TLBIE_PRS_PROCESS_SCOPE,
245 	    TLBIEL_INVAL_PAGE, 0, 0, va, TLBIE_ACTUAL_PAGE_2M);
246 }
247 
248 /* 1GB pages aren't currently supported. */
249 static __inline __unused void
250 radix_tlbie_invlpg_kernel_1g(vm_offset_t va)
251 {
252 
253 	radix_tlbie(TLBIE_RIC_INVALIDATE_TLB, TLBIE_PRS_PROCESS_SCOPE,
254 	    TLBIEL_INVAL_PAGE, 0, 0, va, TLBIE_ACTUAL_PAGE_1G);
255 }
256 
257 static __inline void
258 radix_tlbie_invlpwc_kernel(void)
259 {
260 
261 	radix_tlbie(TLBIE_RIC_INVALIDATE_PWC, TLBIE_PRS_PROCESS_SCOPE,
262 	    TLBIEL_INVAL_SET_LPID, 0, 0, 0, 0);
263 }
264 
265 static __inline void
266 radix_tlbie_flush_kernel(void)
267 {
268 
269 	radix_tlbie(TLBIE_RIC_INVALIDATE_ALL, TLBIE_PRS_PROCESS_SCOPE,
270 	    TLBIEL_INVAL_SET_LPID, 0, 0, 0, 0);
271 }
272 
273 static __inline vm_pindex_t
274 pmap_l3e_pindex(vm_offset_t va)
275 {
276 	return ((va & PG_FRAME) >> L3_PAGE_SIZE_SHIFT);
277 }
278 
279 static __inline vm_pindex_t
280 pmap_pml3e_index(vm_offset_t va)
281 {
282 
283 	return ((va >> L3_PAGE_SIZE_SHIFT) & RPTE_MASK);
284 }
285 
286 static __inline vm_pindex_t
287 pmap_pml2e_index(vm_offset_t va)
288 {
289 	return ((va >> L2_PAGE_SIZE_SHIFT) & RPTE_MASK);
290 }
291 
292 static __inline vm_pindex_t
293 pmap_pml1e_index(vm_offset_t va)
294 {
295 	return ((va & PG_FRAME) >> L1_PAGE_SIZE_SHIFT);
296 }
297 
298 /* Return various clipped indexes for a given VA */
299 static __inline vm_pindex_t
300 pmap_pte_index(vm_offset_t va)
301 {
302 
303 	return ((va >> PAGE_SHIFT) & RPTE_MASK);
304 }
305 
306 /* Return a pointer to the PT slot that corresponds to a VA */
307 static __inline pt_entry_t *
308 pmap_l3e_to_pte(pt_entry_t *l3e, vm_offset_t va)
309 {
310 	pt_entry_t *pte;
311 	vm_paddr_t ptepa;
312 
313 	ptepa = (*l3e & NLB_MASK);
314 	pte = (pt_entry_t *)PHYS_TO_DMAP(ptepa);
315 	return (&pte[pmap_pte_index(va)]);
316 }
317 
318 /* Return a pointer to the PD slot that corresponds to a VA */
319 static __inline pt_entry_t *
320 pmap_l2e_to_l3e(pt_entry_t *l2e, vm_offset_t va)
321 {
322 	pt_entry_t *l3e;
323 	vm_paddr_t l3pa;
324 
325 	l3pa = (*l2e & NLB_MASK);
326 	l3e = (pml3_entry_t *)PHYS_TO_DMAP(l3pa);
327 	return (&l3e[pmap_pml3e_index(va)]);
328 }
329 
330 /* Return a pointer to the PD slot that corresponds to a VA */
331 static __inline pt_entry_t *
332 pmap_l1e_to_l2e(pt_entry_t *l1e, vm_offset_t va)
333 {
334 	pt_entry_t *l2e;
335 	vm_paddr_t l2pa;
336 
337 	l2pa = (*l1e & NLB_MASK);
338 
339 	l2e = (pml2_entry_t *)PHYS_TO_DMAP(l2pa);
340 	return (&l2e[pmap_pml2e_index(va)]);
341 }
342 
343 static __inline pml1_entry_t *
344 pmap_pml1e(pmap_t pmap, vm_offset_t va)
345 {
346 
347 	return (&pmap->pm_pml1[pmap_pml1e_index(va)]);
348 }
349 
350 static pt_entry_t *
351 pmap_pml2e(pmap_t pmap, vm_offset_t va)
352 {
353 	pt_entry_t *l1e;
354 
355 	l1e = pmap_pml1e(pmap, va);
356 	if (l1e == NULL || (*l1e & RPTE_VALID) == 0)
357 		return (NULL);
358 	return (pmap_l1e_to_l2e(l1e, va));
359 }
360 
361 static __inline pt_entry_t *
362 pmap_pml3e(pmap_t pmap, vm_offset_t va)
363 {
364 	pt_entry_t *l2e;
365 
366 	l2e = pmap_pml2e(pmap, va);
367 	if (l2e == NULL || (*l2e & RPTE_VALID) == 0)
368 		return (NULL);
369 	return (pmap_l2e_to_l3e(l2e, va));
370 }
371 
372 static __inline pt_entry_t *
373 pmap_pte(pmap_t pmap, vm_offset_t va)
374 {
375 	pt_entry_t *l3e;
376 
377 	l3e = pmap_pml3e(pmap, va);
378 	if (l3e == NULL || (*l3e & RPTE_VALID) == 0)
379 		return (NULL);
380 	return (pmap_l3e_to_pte(l3e, va));
381 }
382 
383 int nkpt = 64;
384 SYSCTL_INT(_machdep, OID_AUTO, nkpt, CTLFLAG_RD, &nkpt, 0,
385     "Number of kernel page table pages allocated on bootup");
386 
387 vm_paddr_t dmaplimit;
388 
389 SYSCTL_NODE(_vm, OID_AUTO, pmap, CTLFLAG_RD, 0, "VM/pmap parameters");
390 
391 static int pg_ps_enabled = 1;
392 SYSCTL_INT(_vm_pmap, OID_AUTO, pg_ps_enabled, CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
393     &pg_ps_enabled, 0, "Are large page mappings enabled?");
394 #ifdef INVARIANTS
395 #define VERBOSE_PMAP 0
396 #define VERBOSE_PROTECT 0
397 static int pmap_logging;
398 SYSCTL_INT(_vm_pmap, OID_AUTO, pmap_logging, CTLFLAG_RWTUN,
399     &pmap_logging, 0, "verbose debug logging");
400 #endif
401 
402 static u_int64_t	KPTphys;	/* phys addr of kernel level 1 */
403 
404 //static vm_paddr_t	KERNend;	/* phys addr of end of bootstrap data */
405 
406 static vm_offset_t qframe = 0;
407 static struct mtx qframe_mtx;
408 
409 void mmu_radix_activate(struct thread *);
410 void mmu_radix_advise(pmap_t, vm_offset_t, vm_offset_t, int);
411 void mmu_radix_align_superpage(vm_object_t, vm_ooffset_t, vm_offset_t *,
412     vm_size_t);
413 void mmu_radix_clear_modify(vm_page_t);
414 void mmu_radix_copy(pmap_t, pmap_t, vm_offset_t, vm_size_t, vm_offset_t);
415 int mmu_radix_decode_kernel_ptr(vm_offset_t, int *, vm_offset_t *);
416 int mmu_radix_enter(pmap_t, vm_offset_t, vm_page_t, vm_prot_t, u_int, int8_t);
417 void mmu_radix_enter_object(pmap_t, vm_offset_t, vm_offset_t, vm_page_t,
418 	vm_prot_t);
419 void mmu_radix_enter_quick(pmap_t, vm_offset_t, vm_page_t, vm_prot_t);
420 vm_paddr_t mmu_radix_extract(pmap_t pmap, vm_offset_t va);
421 vm_page_t mmu_radix_extract_and_hold(pmap_t, vm_offset_t, vm_prot_t);
422 void mmu_radix_kenter(vm_offset_t, vm_paddr_t);
423 vm_paddr_t mmu_radix_kextract(vm_offset_t);
424 void mmu_radix_kremove(vm_offset_t);
425 boolean_t mmu_radix_is_modified(vm_page_t);
426 boolean_t mmu_radix_is_prefaultable(pmap_t, vm_offset_t);
427 boolean_t mmu_radix_is_referenced(vm_page_t);
428 void mmu_radix_object_init_pt(pmap_t, vm_offset_t, vm_object_t,
429 	vm_pindex_t, vm_size_t);
430 boolean_t mmu_radix_page_exists_quick(pmap_t, vm_page_t);
431 void mmu_radix_page_init(vm_page_t);
432 boolean_t mmu_radix_page_is_mapped(vm_page_t m);
433 void mmu_radix_page_set_memattr(vm_page_t, vm_memattr_t);
434 int mmu_radix_page_wired_mappings(vm_page_t);
435 int mmu_radix_pinit(pmap_t);
436 void mmu_radix_protect(pmap_t, vm_offset_t, vm_offset_t, vm_prot_t);
437 bool mmu_radix_ps_enabled(pmap_t);
438 void mmu_radix_qenter(vm_offset_t, vm_page_t *, int);
439 void mmu_radix_qremove(vm_offset_t, int);
440 vm_offset_t mmu_radix_quick_enter_page(vm_page_t);
441 void mmu_radix_quick_remove_page(vm_offset_t);
442 boolean_t mmu_radix_ts_referenced(vm_page_t);
443 void mmu_radix_release(pmap_t);
444 void mmu_radix_remove(pmap_t, vm_offset_t, vm_offset_t);
445 void mmu_radix_remove_all(vm_page_t);
446 void mmu_radix_remove_pages(pmap_t);
447 void mmu_radix_remove_write(vm_page_t);
448 void mmu_radix_unwire(pmap_t, vm_offset_t, vm_offset_t);
449 void mmu_radix_zero_page(vm_page_t);
450 void mmu_radix_zero_page_area(vm_page_t, int, int);
451 int mmu_radix_change_attr(vm_offset_t, vm_size_t, vm_memattr_t);
452 void mmu_radix_page_array_startup(long pages);
453 
454 #include "mmu_oea64.h"
455 
456 /*
457  * Kernel MMU interface
458  */
459 
460 static void	mmu_radix_bootstrap(vm_offset_t, vm_offset_t);
461 
462 static void mmu_radix_copy_page(vm_page_t, vm_page_t);
463 static void mmu_radix_copy_pages(vm_page_t *ma, vm_offset_t a_offset,
464     vm_page_t *mb, vm_offset_t b_offset, int xfersize);
465 static void mmu_radix_growkernel(vm_offset_t);
466 static void mmu_radix_init(void);
467 static int mmu_radix_mincore(pmap_t, vm_offset_t, vm_paddr_t *);
468 static vm_offset_t mmu_radix_map(vm_offset_t *, vm_paddr_t, vm_paddr_t, int);
469 static void mmu_radix_pinit0(pmap_t);
470 
471 static void *mmu_radix_mapdev(vm_paddr_t, vm_size_t);
472 static void *mmu_radix_mapdev_attr(vm_paddr_t, vm_size_t, vm_memattr_t);
473 static void mmu_radix_unmapdev(vm_offset_t, vm_size_t);
474 static void mmu_radix_kenter_attr(vm_offset_t, vm_paddr_t, vm_memattr_t ma);
475 static boolean_t mmu_radix_dev_direct_mapped(vm_paddr_t, vm_size_t);
476 static void mmu_radix_dumpsys_map(vm_paddr_t pa, size_t sz, void **va);
477 static void mmu_radix_scan_init(void);
478 static void	mmu_radix_cpu_bootstrap(int ap);
479 static void	mmu_radix_tlbie_all(void);
480 
481 static struct pmap_funcs mmu_radix_methods = {
482 	.bootstrap = mmu_radix_bootstrap,
483 	.copy_page = mmu_radix_copy_page,
484 	.copy_pages = mmu_radix_copy_pages,
485 	.cpu_bootstrap = mmu_radix_cpu_bootstrap,
486 	.growkernel = mmu_radix_growkernel,
487 	.init = mmu_radix_init,
488 	.map =      		mmu_radix_map,
489 	.mincore =      	mmu_radix_mincore,
490 	.pinit = mmu_radix_pinit,
491 	.pinit0 = mmu_radix_pinit0,
492 
493 	.mapdev = mmu_radix_mapdev,
494 	.mapdev_attr = mmu_radix_mapdev_attr,
495 	.unmapdev = mmu_radix_unmapdev,
496 	.kenter_attr = mmu_radix_kenter_attr,
497 	.dev_direct_mapped = mmu_radix_dev_direct_mapped,
498 	.dumpsys_pa_init = mmu_radix_scan_init,
499 	.dumpsys_map_chunk = mmu_radix_dumpsys_map,
500 	.page_is_mapped = mmu_radix_page_is_mapped,
501 	.ps_enabled = mmu_radix_ps_enabled,
502 	.object_init_pt = mmu_radix_object_init_pt,
503 	.protect = mmu_radix_protect,
504 	/* pmap dispatcher interface */
505 	.clear_modify = mmu_radix_clear_modify,
506 	.copy = mmu_radix_copy,
507 	.enter = mmu_radix_enter,
508 	.enter_object = mmu_radix_enter_object,
509 	.enter_quick = mmu_radix_enter_quick,
510 	.extract = mmu_radix_extract,
511 	.extract_and_hold = mmu_radix_extract_and_hold,
512 	.is_modified = mmu_radix_is_modified,
513 	.is_prefaultable = mmu_radix_is_prefaultable,
514 	.is_referenced = mmu_radix_is_referenced,
515 	.ts_referenced = mmu_radix_ts_referenced,
516 	.page_exists_quick = mmu_radix_page_exists_quick,
517 	.page_init = mmu_radix_page_init,
518 	.page_wired_mappings =  mmu_radix_page_wired_mappings,
519 	.qenter = mmu_radix_qenter,
520 	.qremove = mmu_radix_qremove,
521 	.release = mmu_radix_release,
522 	.remove = mmu_radix_remove,
523 	.remove_all = mmu_radix_remove_all,
524 	.remove_write = mmu_radix_remove_write,
525 	.unwire = mmu_radix_unwire,
526 	.zero_page = mmu_radix_zero_page,
527 	.zero_page_area = mmu_radix_zero_page_area,
528 	.activate = mmu_radix_activate,
529 	.quick_enter_page =  mmu_radix_quick_enter_page,
530 	.quick_remove_page =  mmu_radix_quick_remove_page,
531 	.page_set_memattr = mmu_radix_page_set_memattr,
532 	.page_array_startup =  mmu_radix_page_array_startup,
533 
534 	/* Internal interfaces */
535 	.kenter = mmu_radix_kenter,
536 	.kextract = mmu_radix_kextract,
537 	.kremove = mmu_radix_kremove,
538 	.change_attr = mmu_radix_change_attr,
539 	.decode_kernel_ptr =  mmu_radix_decode_kernel_ptr,
540 
541 	.tlbie_all = mmu_radix_tlbie_all,
542 };
543 
544 MMU_DEF(mmu_radix, MMU_TYPE_RADIX, mmu_radix_methods);
545 
546 static boolean_t pmap_demote_l3e_locked(pmap_t pmap, pml3_entry_t *l3e, vm_offset_t va,
547 	struct rwlock **lockp);
548 static boolean_t pmap_demote_l3e(pmap_t pmap, pml3_entry_t *pde, vm_offset_t va);
549 static int pmap_unuse_pt(pmap_t, vm_offset_t, pml3_entry_t, struct spglist *);
550 static int pmap_remove_l3e(pmap_t pmap, pml3_entry_t *pdq, vm_offset_t sva,
551     struct spglist *free, struct rwlock **lockp);
552 static int pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t sva,
553     pml3_entry_t ptepde, struct spglist *free, struct rwlock **lockp);
554 static vm_page_t pmap_remove_pt_page(pmap_t pmap, vm_offset_t va);
555 static bool pmap_remove_page(pmap_t pmap, vm_offset_t va, pml3_entry_t *pde,
556     struct spglist *free);
557 static bool	pmap_remove_ptes(pmap_t pmap, vm_offset_t sva, vm_offset_t eva,
558 	pml3_entry_t *l3e, struct spglist *free, struct rwlock **lockp);
559 
560 static bool	pmap_pv_insert_l3e(pmap_t pmap, vm_offset_t va, pml3_entry_t l3e,
561 		    u_int flags, struct rwlock **lockp);
562 #if VM_NRESERVLEVEL > 0
563 static void	pmap_pv_promote_l3e(pmap_t pmap, vm_offset_t va, vm_paddr_t pa,
564 	struct rwlock **lockp);
565 #endif
566 static void	pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va);
567 static int pmap_insert_pt_page(pmap_t pmap, vm_page_t mpte);
568 static vm_page_t mmu_radix_enter_quick_locked(pmap_t pmap, vm_offset_t va, vm_page_t m,
569 	vm_prot_t prot, vm_page_t mpte, struct rwlock **lockp, bool *invalidate);
570 
571 static bool	pmap_enter_2mpage(pmap_t pmap, vm_offset_t va, vm_page_t m,
572 	vm_prot_t prot, struct rwlock **lockp);
573 static int	pmap_enter_l3e(pmap_t pmap, vm_offset_t va, pml3_entry_t newpde,
574 	u_int flags, vm_page_t m, struct rwlock **lockp);
575 
576 static vm_page_t reclaim_pv_chunk(pmap_t locked_pmap, struct rwlock **lockp);
577 static void free_pv_chunk(struct pv_chunk *pc);
578 static vm_page_t _pmap_allocpte(pmap_t pmap, vm_pindex_t ptepindex, struct rwlock **lockp);
579 static vm_page_t pmap_allocl3e(pmap_t pmap, vm_offset_t va,
580 	struct rwlock **lockp);
581 static vm_page_t pmap_allocpte(pmap_t pmap, vm_offset_t va,
582 	struct rwlock **lockp);
583 static void _pmap_unwire_ptp(pmap_t pmap, vm_offset_t va, vm_page_t m,
584     struct spglist *free);
585 static boolean_t pmap_unwire_ptp(pmap_t pmap, vm_offset_t va, vm_page_t m, struct spglist *free);
586 
587 static void pmap_invalidate_page(pmap_t pmap, vm_offset_t start);
588 static void pmap_invalidate_all(pmap_t pmap);
589 static int pmap_change_attr_locked(vm_offset_t va, vm_size_t size, int mode, bool flush);
590 
591 /*
592  * Internal flags for pmap_enter()'s helper functions.
593  */
594 #define	PMAP_ENTER_NORECLAIM	0x1000000	/* Don't reclaim PV entries. */
595 #define	PMAP_ENTER_NOREPLACE	0x2000000	/* Don't replace mappings. */
596 
597 #define UNIMPLEMENTED() panic("%s not implemented", __func__)
598 #define UNTESTED() panic("%s not yet tested", __func__)
599 
600 
601 
602 /* Number of supported PID bits */
603 static unsigned int isa3_pid_bits;
604 
605 /* PID to start allocating from */
606 static unsigned int isa3_base_pid;
607 
608 #define PROCTAB_SIZE_SHIFT	(isa3_pid_bits + 4)
609 #define PROCTAB_ENTRIES	(1ul << isa3_pid_bits)
610 
611 
612 /*
613  * Map of physical memory regions.
614  */
615 static struct	mem_region *regions, *pregions;
616 static struct	numa_mem_region *numa_pregions;
617 static u_int	phys_avail_count;
618 static int	regions_sz, pregions_sz, numa_pregions_sz;
619 static struct pate *isa3_parttab;
620 static struct prte *isa3_proctab;
621 static vmem_t *asid_arena;
622 
623 extern void bs_remap_earlyboot(void);
624 
625 #define	RADIX_PGD_SIZE_SHIFT	16
626 #define RADIX_PGD_SIZE	(1UL << RADIX_PGD_SIZE_SHIFT)
627 
628 #define	RADIX_PGD_INDEX_SHIFT	(RADIX_PGD_SIZE_SHIFT-3)
629 #define NL2EPG (PAGE_SIZE/sizeof(pml2_entry_t))
630 #define NL3EPG (PAGE_SIZE/sizeof(pml3_entry_t))
631 
632 #define	NUPML1E		(RADIX_PGD_SIZE/sizeof(uint64_t))	/* number of userland PML1 pages */
633 #define	NUPDPE		(NUPML1E * NL2EPG)/* number of userland PDP pages */
634 #define	NUPDE		(NUPDPE * NL3EPG)	/* number of userland PD entries */
635 
636 /* POWER9 only permits a 64k partition table size. */
637 #define	PARTTAB_SIZE_SHIFT	16
638 #define PARTTAB_SIZE	(1UL << PARTTAB_SIZE_SHIFT)
639 
640 #define PARTTAB_HR		(1UL << 63) /* host uses radix */
641 #define PARTTAB_GR		(1UL << 63) /* guest uses radix must match host */
642 
643 /* TLB flush actions. Used as argument to tlbiel_all() */
644 enum {
645 	TLB_INVAL_SCOPE_LPID = 0,	/* invalidate TLBs for current LPID */
646 	TLB_INVAL_SCOPE_GLOBAL = 1,	/* invalidate all TLBs */
647 };
648 
649 #define	NPV_LIST_LOCKS	MAXCPU
650 static int pmap_initialized;
651 static vm_paddr_t proctab0pa;
652 static vm_paddr_t parttab_phys;
653 CTASSERT(sizeof(struct pv_chunk) == PAGE_SIZE);
654 
655 /*
656  * Data for the pv entry allocation mechanism.
657  * Updates to pv_invl_gen are protected by the pv_list_locks[]
658  * elements, but reads are not.
659  */
660 static TAILQ_HEAD(pch, pv_chunk) pv_chunks = TAILQ_HEAD_INITIALIZER(pv_chunks);
661 static struct mtx __exclusive_cache_line pv_chunks_mutex;
662 static struct rwlock __exclusive_cache_line pv_list_locks[NPV_LIST_LOCKS];
663 static struct md_page *pv_table;
664 static struct md_page pv_dummy;
665 
666 #ifdef PV_STATS
667 #define PV_STAT(x)	do { x ; } while (0)
668 #else
669 #define PV_STAT(x)	do { } while (0)
670 #endif
671 
672 #define	pa_radix_index(pa)	((pa) >> L3_PAGE_SIZE_SHIFT)
673 #define	pa_to_pvh(pa)	(&pv_table[pa_radix_index(pa)])
674 
675 #define	PHYS_TO_PV_LIST_LOCK(pa)	\
676 			(&pv_list_locks[pa_radix_index(pa) % NPV_LIST_LOCKS])
677 
678 #define	CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, pa)	do {	\
679 	struct rwlock **_lockp = (lockp);		\
680 	struct rwlock *_new_lock;			\
681 							\
682 	_new_lock = PHYS_TO_PV_LIST_LOCK(pa);		\
683 	if (_new_lock != *_lockp) {			\
684 		if (*_lockp != NULL)			\
685 			rw_wunlock(*_lockp);		\
686 		*_lockp = _new_lock;			\
687 		rw_wlock(*_lockp);			\
688 	}						\
689 } while (0)
690 
691 #define	CHANGE_PV_LIST_LOCK_TO_VM_PAGE(lockp, m)	\
692 	CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, VM_PAGE_TO_PHYS(m))
693 
694 #define	RELEASE_PV_LIST_LOCK(lockp)		do {	\
695 	struct rwlock **_lockp = (lockp);		\
696 							\
697 	if (*_lockp != NULL) {				\
698 		rw_wunlock(*_lockp);			\
699 		*_lockp = NULL;				\
700 	}						\
701 } while (0)
702 
703 #define	VM_PAGE_TO_PV_LIST_LOCK(m)	\
704 	PHYS_TO_PV_LIST_LOCK(VM_PAGE_TO_PHYS(m))
705 
706 /*
707  * We support 52 bits, hence:
708  * bits 52 - 31 = 21, 0b10101
709  * RTS encoding details
710  * bits 0 - 3 of rts -> bits 6 - 8 unsigned long
711  * bits 4 - 5 of rts -> bits 62 - 63 of unsigned long
712  */
713 #define RTS_SIZE ((0x2UL << 61) | (0x5UL << 5))
714 
715 
716 static int powernv_enabled = 1;
717 
718 static inline void
719 tlbiel_radix_set_isa300(uint32_t set, uint32_t is,
720 	uint32_t pid, uint32_t ric, uint32_t prs)
721 {
722 	uint64_t rb;
723 	uint64_t rs;
724 
725 	rb = PPC_BITLSHIFT_VAL(set, 51) | PPC_BITLSHIFT_VAL(is, 53);
726 	rs = PPC_BITLSHIFT_VAL((uint64_t)pid, 31);
727 
728 	__asm __volatile(PPC_TLBIEL(%0, %1, %2, %3, 1)
729 		     : : "r"(rb), "r"(rs), "i"(ric), "i"(prs)
730 		     : "memory");
731 }
732 
733 static void
734 tlbiel_flush_isa3(uint32_t num_sets, uint32_t is)
735 {
736 	uint32_t set;
737 
738 	__asm __volatile("ptesync": : :"memory");
739 
740 	/*
741 	 * Flush the first set of the TLB, and the entire Page Walk Cache
742 	 * and partition table entries. Then flush the remaining sets of the
743 	 * TLB.
744 	 */
745 	tlbiel_radix_set_isa300(0, is, 0, RIC_FLUSH_ALL, 0);
746 	for (set = 1; set < num_sets; set++)
747 		tlbiel_radix_set_isa300(set, is, 0, RIC_FLUSH_TLB, 0);
748 
749 	/* Do the same for process scoped entries. */
750 	tlbiel_radix_set_isa300(0, is, 0, RIC_FLUSH_ALL, 1);
751 	for (set = 1; set < num_sets; set++)
752 		tlbiel_radix_set_isa300(set, is, 0, RIC_FLUSH_TLB, 1);
753 
754 	__asm __volatile("ptesync": : :"memory");
755 }
756 
757 static void
758 mmu_radix_tlbiel_flush(int scope)
759 {
760 	int is;
761 
762 	MPASS(scope == TLB_INVAL_SCOPE_LPID ||
763 		  scope == TLB_INVAL_SCOPE_GLOBAL);
764 	is = scope + 2;
765 
766 	tlbiel_flush_isa3(POWER9_TLB_SETS_RADIX, is);
767 	__asm __volatile(PPC_INVALIDATE_ERAT "; isync" : : :"memory");
768 }
769 
770 static void
771 mmu_radix_tlbie_all()
772 {
773 	/* TODO: LPID invalidate */
774 	mmu_radix_tlbiel_flush(TLB_INVAL_SCOPE_GLOBAL);
775 }
776 
777 static void
778 mmu_radix_init_amor(void)
779 {
780 	/*
781 	* In HV mode, we init AMOR (Authority Mask Override Register) so that
782 	* the hypervisor and guest can setup IAMR (Instruction Authority Mask
783 	* Register), enable key 0 and set it to 1.
784 	*
785 	* AMOR = 0b1100 .... 0000 (Mask for key 0 is 11)
786 	*/
787 	mtspr(SPR_AMOR, (3ul << 62));
788 }
789 
790 static void
791 mmu_radix_init_iamr(void)
792 {
793 	/*
794 	 * Radix always uses key0 of the IAMR to determine if an access is
795 	 * allowed. We set bit 0 (IBM bit 1) of key0, to prevent instruction
796 	 * fetch.
797 	 */
798 	mtspr(SPR_IAMR, (1ul << 62));
799 }
800 
801 static void
802 mmu_radix_pid_set(pmap_t pmap)
803 {
804 
805 	mtspr(SPR_PID, pmap->pm_pid);
806 	isync();
807 }
808 
809 /* Quick sort callout for comparing physical addresses. */
810 static int
811 pa_cmp(const void *a, const void *b)
812 {
813 	const vm_paddr_t *pa = a, *pb = b;
814 
815 	if (*pa < *pb)
816 		return (-1);
817 	else if (*pa > *pb)
818 		return (1);
819 	else
820 		return (0);
821 }
822 
823 #define	pte_load_store(ptep, pte)	atomic_swap_long(ptep, pte)
824 #define	pte_load_clear(ptep)		atomic_swap_long(ptep, 0)
825 #define	pte_store(ptep, pte) do {	   \
826 	MPASS((pte) & (RPTE_EAA_R | RPTE_EAA_W | RPTE_EAA_X));	\
827 	*(u_long *)(ptep) = (u_long)((pte) | PG_V | RPTE_LEAF);	\
828 } while (0)
829 /*
830  * NB: should only be used for adding directories - not for direct mappings
831  */
832 #define	pde_store(ptep, pa) do {				\
833 	*(u_long *)(ptep) = (u_long)(pa|RPTE_VALID|RPTE_SHIFT); \
834 } while (0)
835 
836 #define	pte_clear(ptep) do {					\
837 		*(u_long *)(ptep) = (u_long)(0);		\
838 } while (0)
839 
840 #define	PMAP_PDE_SUPERPAGE	(1 << 8)	/* supports 2MB superpages */
841 
842 /*
843  * Promotion to a 2MB (PDE) page mapping requires that the corresponding 4KB
844  * (PTE) page mappings have identical settings for the following fields:
845  */
846 #define	PG_PTE_PROMOTE	(PG_X | PG_MANAGED | PG_W | PG_PTE_CACHE | \
847 	    PG_M | PG_A | RPTE_EAA_MASK | PG_V)
848 
849 
850 static __inline void
851 pmap_resident_count_inc(pmap_t pmap, int count)
852 {
853 
854 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
855 	pmap->pm_stats.resident_count += count;
856 }
857 
858 static __inline void
859 pmap_resident_count_dec(pmap_t pmap, int count)
860 {
861 
862 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
863 	KASSERT(pmap->pm_stats.resident_count >= count,
864 	    ("pmap %p resident count underflow %ld %d", pmap,
865 	    pmap->pm_stats.resident_count, count));
866 	pmap->pm_stats.resident_count -= count;
867 }
868 
869 static void
870 pagezero(vm_offset_t va)
871 {
872 	va = trunc_page(va);
873 
874 	bzero((void *)va, PAGE_SIZE);
875 }
876 
877 static uint64_t
878 allocpages(int n)
879 {
880 	u_int64_t ret;
881 
882 	ret = moea64_bootstrap_alloc(n * PAGE_SIZE, PAGE_SIZE);
883 	for (int i = 0; i < n; i++)
884 		pagezero(PHYS_TO_DMAP(ret + i * PAGE_SIZE));
885 	return (ret);
886 }
887 
888 static pt_entry_t *
889 kvtopte(vm_offset_t va)
890 {
891 	pt_entry_t *l3e;
892 
893 	l3e = pmap_pml3e(kernel_pmap, va);
894 	if ((*l3e & RPTE_VALID) == 0)
895 		return (NULL);
896 	return (pmap_l3e_to_pte(l3e, va));
897 }
898 
899 void
900 mmu_radix_kenter(vm_offset_t va, vm_paddr_t pa)
901 {
902 	pt_entry_t *pte;
903 
904 	pte = kvtopte(va);
905 	MPASS(pte != NULL);
906 	*pte = pa | RPTE_VALID | RPTE_LEAF | RPTE_EAA_R | RPTE_EAA_W | \
907 	    RPTE_EAA_P | PG_M | PG_A;
908 }
909 
910 bool
911 mmu_radix_ps_enabled(pmap_t pmap)
912 {
913 	return (pg_ps_enabled && (pmap->pm_flags & PMAP_PDE_SUPERPAGE) != 0);
914 }
915 
916 static pt_entry_t *
917 pmap_nofault_pte(pmap_t pmap, vm_offset_t va, int *is_l3e)
918 {
919 	pml3_entry_t *l3e;
920 	pt_entry_t *pte;
921 
922 	va &= PG_PS_FRAME;
923 	l3e = pmap_pml3e(pmap, va);
924 	if (l3e == NULL || (*l3e & PG_V) == 0)
925 		return (NULL);
926 
927 	if (*l3e & RPTE_LEAF) {
928 		*is_l3e = 1;
929 		return (l3e);
930 	}
931 	*is_l3e = 0;
932 	va &= PG_FRAME;
933 	pte = pmap_l3e_to_pte(l3e, va);
934 	if (pte == NULL || (*pte & PG_V) == 0)
935 		return (NULL);
936 	return (pte);
937 }
938 
939 int
940 pmap_nofault(pmap_t pmap, vm_offset_t va, vm_prot_t flags)
941 {
942 	pt_entry_t *pte;
943 	pt_entry_t startpte, origpte, newpte;
944 	vm_page_t m;
945 	int is_l3e;
946 
947 	startpte = 0;
948  retry:
949 	if ((pte = pmap_nofault_pte(pmap, va, &is_l3e)) == NULL)
950 		return (KERN_INVALID_ADDRESS);
951 	origpte = newpte = *pte;
952 	if (startpte == 0) {
953 		startpte = origpte;
954 		if (((flags & VM_PROT_WRITE) && (startpte & PG_M)) ||
955 		    ((flags & VM_PROT_READ) && (startpte & PG_A))) {
956 			pmap_invalidate_all(pmap);
957 #ifdef INVARIANTS
958 			if (VERBOSE_PMAP || pmap_logging)
959 				printf("%s(%p, %#lx, %#x) (%#lx) -- invalidate all\n",
960 				    __func__, pmap, va, flags, origpte);
961 #endif
962 			return (KERN_FAILURE);
963 		}
964 	}
965 #ifdef INVARIANTS
966 	if (VERBOSE_PMAP || pmap_logging)
967 		printf("%s(%p, %#lx, %#x) (%#lx)\n", __func__, pmap, va,
968 		    flags, origpte);
969 #endif
970 	PMAP_LOCK(pmap);
971 	if ((pte = pmap_nofault_pte(pmap, va, &is_l3e)) == NULL ||
972 	    *pte != origpte) {
973 		PMAP_UNLOCK(pmap);
974 		return (KERN_FAILURE);
975 	}
976 	m = PHYS_TO_VM_PAGE(newpte & PG_FRAME);
977 	MPASS(m != NULL);
978 	switch (flags) {
979 	case VM_PROT_READ:
980 		if ((newpte & (RPTE_EAA_R|RPTE_EAA_X)) == 0)
981 			goto protfail;
982 		newpte |= PG_A;
983 		vm_page_aflag_set(m, PGA_REFERENCED);
984 		break;
985 	case VM_PROT_WRITE:
986 		if ((newpte & RPTE_EAA_W) == 0)
987 			goto protfail;
988 		if (is_l3e)
989 			goto protfail;
990 		newpte |= PG_M;
991 		vm_page_dirty(m);
992 		break;
993 	case VM_PROT_EXECUTE:
994 		if ((newpte & RPTE_EAA_X) == 0)
995 			goto protfail;
996 		newpte |= PG_A;
997 		vm_page_aflag_set(m, PGA_REFERENCED);
998 		break;
999 	}
1000 
1001 	if (!atomic_cmpset_long(pte, origpte, newpte))
1002 		goto retry;
1003 	ptesync();
1004 	PMAP_UNLOCK(pmap);
1005 	if (startpte == newpte)
1006 		return (KERN_FAILURE);
1007 	return (0);
1008  protfail:
1009 	PMAP_UNLOCK(pmap);
1010 	return (KERN_PROTECTION_FAILURE);
1011 }
1012 
1013 /*
1014  * Returns TRUE if the given page is mapped individually or as part of
1015  * a 2mpage.  Otherwise, returns FALSE.
1016  */
1017 boolean_t
1018 mmu_radix_page_is_mapped(vm_page_t m)
1019 {
1020 	struct rwlock *lock;
1021 	boolean_t rv;
1022 
1023 	if ((m->oflags & VPO_UNMANAGED) != 0)
1024 		return (FALSE);
1025 	lock = VM_PAGE_TO_PV_LIST_LOCK(m);
1026 	rw_rlock(lock);
1027 	rv = !TAILQ_EMPTY(&m->md.pv_list) ||
1028 	    ((m->flags & PG_FICTITIOUS) == 0 &&
1029 	    !TAILQ_EMPTY(&pa_to_pvh(VM_PAGE_TO_PHYS(m))->pv_list));
1030 	rw_runlock(lock);
1031 	return (rv);
1032 }
1033 
1034 /*
1035  * Determine the appropriate bits to set in a PTE or PDE for a specified
1036  * caching mode.
1037  */
1038 static int
1039 pmap_cache_bits(vm_memattr_t ma)
1040 {
1041 	if (ma != VM_MEMATTR_DEFAULT) {
1042 		switch (ma) {
1043 		case VM_MEMATTR_UNCACHEABLE:
1044 			return (RPTE_ATTR_GUARDEDIO);
1045 		case VM_MEMATTR_CACHEABLE:
1046 			return (RPTE_ATTR_MEM);
1047 		case VM_MEMATTR_WRITE_BACK:
1048 		case VM_MEMATTR_PREFETCHABLE:
1049 		case VM_MEMATTR_WRITE_COMBINING:
1050 			return (RPTE_ATTR_UNGUARDEDIO);
1051 		}
1052 	}
1053 	return (0);
1054 }
1055 
1056 static void
1057 pmap_invalidate_page(pmap_t pmap, vm_offset_t start)
1058 {
1059 	ptesync();
1060 	if (pmap == kernel_pmap)
1061 		radix_tlbie_invlpg_kernel_4k(start);
1062 	else
1063 		radix_tlbie_invlpg_user_4k(pmap->pm_pid, start);
1064 	ttusync();
1065 }
1066 
1067 static void
1068 pmap_invalidate_page_2m(pmap_t pmap, vm_offset_t start)
1069 {
1070 	ptesync();
1071 	if (pmap == kernel_pmap)
1072 		radix_tlbie_invlpg_kernel_2m(start);
1073 	else
1074 		radix_tlbie_invlpg_user_2m(pmap->pm_pid, start);
1075 	ttusync();
1076 }
1077 
1078 static void
1079 pmap_invalidate_pwc(pmap_t pmap)
1080 {
1081 	ptesync();
1082 	if (pmap == kernel_pmap)
1083 		radix_tlbie_invlpwc_kernel();
1084 	else
1085 		radix_tlbie_invlpwc_user(pmap->pm_pid);
1086 	ttusync();
1087 }
1088 
1089 static void
1090 pmap_invalidate_range(pmap_t pmap, vm_offset_t start, vm_offset_t end)
1091 {
1092 	if (((start - end) >> PAGE_SHIFT) > 8) {
1093 		pmap_invalidate_all(pmap);
1094 		return;
1095 	}
1096 	ptesync();
1097 	if (pmap == kernel_pmap) {
1098 		while (start < end) {
1099 			radix_tlbie_invlpg_kernel_4k(start);
1100 			start += PAGE_SIZE;
1101 		}
1102 	} else {
1103 		while (start < end) {
1104 			radix_tlbie_invlpg_user_4k(pmap->pm_pid, start);
1105 			start += PAGE_SIZE;
1106 		}
1107 	}
1108 	ttusync();
1109 }
1110 
1111 static void
1112 pmap_invalidate_all(pmap_t pmap)
1113 {
1114 	ptesync();
1115 	if (pmap == kernel_pmap)
1116 		radix_tlbie_flush_kernel();
1117 	else
1118 		radix_tlbie_flush_user(pmap->pm_pid);
1119 	ttusync();
1120 }
1121 
1122 static void
1123 pmap_invalidate_l3e_page(pmap_t pmap, vm_offset_t va, pml3_entry_t l3e)
1124 {
1125 
1126 	/*
1127 	 * When the PDE has PG_PROMOTED set, the 2MB page mapping was created
1128 	 * by a promotion that did not invalidate the 512 4KB page mappings
1129 	 * that might exist in the TLB.  Consequently, at this point, the TLB
1130 	 * may hold both 4KB and 2MB page mappings for the address range [va,
1131 	 * va + L3_PAGE_SIZE).  Therefore, the entire range must be invalidated here.
1132 	 * In contrast, when PG_PROMOTED is clear, the TLB will not hold any
1133 	 * 4KB page mappings for the address range [va, va + L3_PAGE_SIZE), and so a
1134 	 * single INVLPG suffices to invalidate the 2MB page mapping from the
1135 	 * TLB.
1136 	 */
1137 	ptesync();
1138 	if ((l3e & PG_PROMOTED) != 0)
1139 		pmap_invalidate_range(pmap, va, va + L3_PAGE_SIZE - 1);
1140 	else
1141 		pmap_invalidate_page_2m(pmap, va);
1142 
1143 	pmap_invalidate_pwc(pmap);
1144 }
1145 
1146 static __inline struct pv_chunk *
1147 pv_to_chunk(pv_entry_t pv)
1148 {
1149 
1150 	return ((struct pv_chunk *)((uintptr_t)pv & ~(uintptr_t)PAGE_MASK));
1151 }
1152 
1153 #define PV_PMAP(pv) (pv_to_chunk(pv)->pc_pmap)
1154 
1155 #define	PC_FREE0	0xfffffffffffffffful
1156 #define	PC_FREE1	0x3ffffffffffffffful
1157 
1158 static const uint64_t pc_freemask[_NPCM] = { PC_FREE0, PC_FREE1 };
1159 
1160 /*
1161  * Ensure that the number of spare PV entries in the specified pmap meets or
1162  * exceeds the given count, "needed".
1163  *
1164  * The given PV list lock may be released.
1165  */
1166 static void
1167 reserve_pv_entries(pmap_t pmap, int needed, struct rwlock **lockp)
1168 {
1169 	struct pch new_tail;
1170 	struct pv_chunk *pc;
1171 	vm_page_t m;
1172 	int avail, free;
1173 	bool reclaimed;
1174 
1175 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1176 	KASSERT(lockp != NULL, ("reserve_pv_entries: lockp is NULL"));
1177 
1178 	/*
1179 	 * Newly allocated PV chunks must be stored in a private list until
1180 	 * the required number of PV chunks have been allocated.  Otherwise,
1181 	 * reclaim_pv_chunk() could recycle one of these chunks.  In
1182 	 * contrast, these chunks must be added to the pmap upon allocation.
1183 	 */
1184 	TAILQ_INIT(&new_tail);
1185 retry:
1186 	avail = 0;
1187 	TAILQ_FOREACH(pc, &pmap->pm_pvchunk, pc_list) {
1188 		//		if ((cpu_feature2 & CPUID2_POPCNT) == 0)
1189 		bit_count((bitstr_t *)pc->pc_map, 0,
1190 				  sizeof(pc->pc_map) * NBBY, &free);
1191 #if 0
1192 		free = popcnt_pc_map_pq(pc->pc_map);
1193 #endif
1194 		if (free == 0)
1195 			break;
1196 		avail += free;
1197 		if (avail >= needed)
1198 			break;
1199 	}
1200 	for (reclaimed = false; avail < needed; avail += _NPCPV) {
1201 		m = vm_page_alloc(NULL, 0, VM_ALLOC_NORMAL | VM_ALLOC_NOOBJ |
1202 		    VM_ALLOC_WIRED);
1203 		if (m == NULL) {
1204 			m = reclaim_pv_chunk(pmap, lockp);
1205 			if (m == NULL)
1206 				goto retry;
1207 			reclaimed = true;
1208 		}
1209 		PV_STAT(atomic_add_int(&pc_chunk_count, 1));
1210 		PV_STAT(atomic_add_int(&pc_chunk_allocs, 1));
1211 		pc = (void *)PHYS_TO_DMAP(m->phys_addr);
1212 		pc->pc_pmap = pmap;
1213 		pc->pc_map[0] = PC_FREE0;
1214 		pc->pc_map[1] = PC_FREE1;
1215 		TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
1216 		TAILQ_INSERT_TAIL(&new_tail, pc, pc_lru);
1217 		PV_STAT(atomic_add_int(&pv_entry_spare, _NPCPV));
1218 
1219 		/*
1220 		 * The reclaim might have freed a chunk from the current pmap.
1221 		 * If that chunk contained available entries, we need to
1222 		 * re-count the number of available entries.
1223 		 */
1224 		if (reclaimed)
1225 			goto retry;
1226 	}
1227 	if (!TAILQ_EMPTY(&new_tail)) {
1228 		mtx_lock(&pv_chunks_mutex);
1229 		TAILQ_CONCAT(&pv_chunks, &new_tail, pc_lru);
1230 		mtx_unlock(&pv_chunks_mutex);
1231 	}
1232 }
1233 
1234 /*
1235  * First find and then remove the pv entry for the specified pmap and virtual
1236  * address from the specified pv list.  Returns the pv entry if found and NULL
1237  * otherwise.  This operation can be performed on pv lists for either 4KB or
1238  * 2MB page mappings.
1239  */
1240 static __inline pv_entry_t
1241 pmap_pvh_remove(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
1242 {
1243 	pv_entry_t pv;
1244 
1245 	TAILQ_FOREACH(pv, &pvh->pv_list, pv_link) {
1246 #ifdef INVARIANTS
1247 		if (PV_PMAP(pv) == NULL) {
1248 			printf("corrupted pv_chunk/pv %p\n", pv);
1249 			printf("pv_chunk: %64D\n", pv_to_chunk(pv), ":");
1250 		}
1251 		MPASS(PV_PMAP(pv) != NULL);
1252 		MPASS(pv->pv_va != 0);
1253 #endif
1254 		if (pmap == PV_PMAP(pv) && va == pv->pv_va) {
1255 			TAILQ_REMOVE(&pvh->pv_list, pv, pv_link);
1256 			pvh->pv_gen++;
1257 			break;
1258 		}
1259 	}
1260 	return (pv);
1261 }
1262 
1263 /*
1264  * After demotion from a 2MB page mapping to 512 4KB page mappings,
1265  * destroy the pv entry for the 2MB page mapping and reinstantiate the pv
1266  * entries for each of the 4KB page mappings.
1267  */
1268 static void
1269 pmap_pv_demote_l3e(pmap_t pmap, vm_offset_t va, vm_paddr_t pa,
1270     struct rwlock **lockp)
1271 {
1272 	struct md_page *pvh;
1273 	struct pv_chunk *pc;
1274 	pv_entry_t pv;
1275 	vm_offset_t va_last;
1276 	vm_page_t m;
1277 	int bit, field;
1278 
1279 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1280 	KASSERT((pa & L3_PAGE_MASK) == 0,
1281 	    ("pmap_pv_demote_pde: pa is not 2mpage aligned"));
1282 	CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, pa);
1283 
1284 	/*
1285 	 * Transfer the 2mpage's pv entry for this mapping to the first
1286 	 * page's pv list.  Once this transfer begins, the pv list lock
1287 	 * must not be released until the last pv entry is reinstantiated.
1288 	 */
1289 	pvh = pa_to_pvh(pa);
1290 	va = trunc_2mpage(va);
1291 	pv = pmap_pvh_remove(pvh, pmap, va);
1292 	KASSERT(pv != NULL, ("pmap_pv_demote_pde: pv not found"));
1293 	m = PHYS_TO_VM_PAGE(pa);
1294 	TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_link);
1295 
1296 	m->md.pv_gen++;
1297 	/* Instantiate the remaining NPTEPG - 1 pv entries. */
1298 	PV_STAT(atomic_add_long(&pv_entry_allocs, NPTEPG - 1));
1299 	va_last = va + L3_PAGE_SIZE - PAGE_SIZE;
1300 	for (;;) {
1301 		pc = TAILQ_FIRST(&pmap->pm_pvchunk);
1302 		KASSERT(pc->pc_map[0] != 0 || pc->pc_map[1] != 0
1303 		    , ("pmap_pv_demote_pde: missing spare"));
1304 		for (field = 0; field < _NPCM; field++) {
1305 			while (pc->pc_map[field]) {
1306 				bit = cnttzd(pc->pc_map[field]);
1307 				pc->pc_map[field] &= ~(1ul << bit);
1308 				pv = &pc->pc_pventry[field * 64 + bit];
1309 				va += PAGE_SIZE;
1310 				pv->pv_va = va;
1311 				m++;
1312 				KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1313 			    ("pmap_pv_demote_pde: page %p is not managed", m));
1314 				TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_link);
1315 
1316 				m->md.pv_gen++;
1317 				if (va == va_last)
1318 					goto out;
1319 			}
1320 		}
1321 		TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
1322 		TAILQ_INSERT_TAIL(&pmap->pm_pvchunk, pc, pc_list);
1323 	}
1324 out:
1325 	if (pc->pc_map[0] == 0 && pc->pc_map[1] == 0) {
1326 		TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
1327 		TAILQ_INSERT_TAIL(&pmap->pm_pvchunk, pc, pc_list);
1328 	}
1329 	PV_STAT(atomic_add_long(&pv_entry_count, NPTEPG - 1));
1330 	PV_STAT(atomic_subtract_int(&pv_entry_spare, NPTEPG - 1));
1331 }
1332 
1333 static void
1334 reclaim_pv_chunk_leave_pmap(pmap_t pmap, pmap_t locked_pmap)
1335 {
1336 
1337 	if (pmap == NULL)
1338 		return;
1339 	pmap_invalidate_all(pmap);
1340 	if (pmap != locked_pmap)
1341 		PMAP_UNLOCK(pmap);
1342 }
1343 
1344 /*
1345  * We are in a serious low memory condition.  Resort to
1346  * drastic measures to free some pages so we can allocate
1347  * another pv entry chunk.
1348  *
1349  * Returns NULL if PV entries were reclaimed from the specified pmap.
1350  *
1351  * We do not, however, unmap 2mpages because subsequent accesses will
1352  * allocate per-page pv entries until repromotion occurs, thereby
1353  * exacerbating the shortage of free pv entries.
1354  */
1355 static int active_reclaims = 0;
1356 static vm_page_t
1357 reclaim_pv_chunk(pmap_t locked_pmap, struct rwlock **lockp)
1358 {
1359 	struct pv_chunk *pc, *pc_marker, *pc_marker_end;
1360 	struct pv_chunk_header pc_marker_b, pc_marker_end_b;
1361 	struct md_page *pvh;
1362 	pml3_entry_t *l3e;
1363 	pmap_t next_pmap, pmap;
1364 	pt_entry_t *pte, tpte;
1365 	pv_entry_t pv;
1366 	vm_offset_t va;
1367 	vm_page_t m, m_pc;
1368 	struct spglist free;
1369 	uint64_t inuse;
1370 	int bit, field, freed;
1371 
1372 	PMAP_LOCK_ASSERT(locked_pmap, MA_OWNED);
1373 	KASSERT(lockp != NULL, ("reclaim_pv_chunk: lockp is NULL"));
1374 	pmap = NULL;
1375 	m_pc = NULL;
1376 	SLIST_INIT(&free);
1377 	bzero(&pc_marker_b, sizeof(pc_marker_b));
1378 	bzero(&pc_marker_end_b, sizeof(pc_marker_end_b));
1379 	pc_marker = (struct pv_chunk *)&pc_marker_b;
1380 	pc_marker_end = (struct pv_chunk *)&pc_marker_end_b;
1381 
1382 	mtx_lock(&pv_chunks_mutex);
1383 	active_reclaims++;
1384 	TAILQ_INSERT_HEAD(&pv_chunks, pc_marker, pc_lru);
1385 	TAILQ_INSERT_TAIL(&pv_chunks, pc_marker_end, pc_lru);
1386 	while ((pc = TAILQ_NEXT(pc_marker, pc_lru)) != pc_marker_end &&
1387 	    SLIST_EMPTY(&free)) {
1388 		next_pmap = pc->pc_pmap;
1389 		if (next_pmap == NULL) {
1390 			/*
1391 			 * The next chunk is a marker.  However, it is
1392 			 * not our marker, so active_reclaims must be
1393 			 * > 1.  Consequently, the next_chunk code
1394 			 * will not rotate the pv_chunks list.
1395 			 */
1396 			goto next_chunk;
1397 		}
1398 		mtx_unlock(&pv_chunks_mutex);
1399 
1400 		/*
1401 		 * A pv_chunk can only be removed from the pc_lru list
1402 		 * when both pc_chunks_mutex is owned and the
1403 		 * corresponding pmap is locked.
1404 		 */
1405 		if (pmap != next_pmap) {
1406 			reclaim_pv_chunk_leave_pmap(pmap, locked_pmap);
1407 			pmap = next_pmap;
1408 			/* Avoid deadlock and lock recursion. */
1409 			if (pmap > locked_pmap) {
1410 				RELEASE_PV_LIST_LOCK(lockp);
1411 				PMAP_LOCK(pmap);
1412 				mtx_lock(&pv_chunks_mutex);
1413 				continue;
1414 			} else if (pmap != locked_pmap) {
1415 				if (PMAP_TRYLOCK(pmap)) {
1416 					mtx_lock(&pv_chunks_mutex);
1417 					continue;
1418 				} else {
1419 					pmap = NULL; /* pmap is not locked */
1420 					mtx_lock(&pv_chunks_mutex);
1421 					pc = TAILQ_NEXT(pc_marker, pc_lru);
1422 					if (pc == NULL ||
1423 					    pc->pc_pmap != next_pmap)
1424 						continue;
1425 					goto next_chunk;
1426 				}
1427 			}
1428 		}
1429 
1430 		/*
1431 		 * Destroy every non-wired, 4 KB page mapping in the chunk.
1432 		 */
1433 		freed = 0;
1434 		for (field = 0; field < _NPCM; field++) {
1435 			for (inuse = ~pc->pc_map[field] & pc_freemask[field];
1436 			    inuse != 0; inuse &= ~(1UL << bit)) {
1437 				bit = cnttzd(inuse);
1438 				pv = &pc->pc_pventry[field * 64 + bit];
1439 				va = pv->pv_va;
1440 				l3e = pmap_pml3e(pmap, va);
1441 				if ((*l3e & RPTE_LEAF) != 0)
1442 					continue;
1443 				pte = pmap_l3e_to_pte(l3e, va);
1444 				if ((*pte & PG_W) != 0)
1445 					continue;
1446 				tpte = pte_load_clear(pte);
1447 				m = PHYS_TO_VM_PAGE(tpte & PG_FRAME);
1448 				if ((tpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
1449 					vm_page_dirty(m);
1450 				if ((tpte & PG_A) != 0)
1451 					vm_page_aflag_set(m, PGA_REFERENCED);
1452 				CHANGE_PV_LIST_LOCK_TO_VM_PAGE(lockp, m);
1453 				TAILQ_REMOVE(&m->md.pv_list, pv, pv_link);
1454 
1455 				m->md.pv_gen++;
1456 				if (TAILQ_EMPTY(&m->md.pv_list) &&
1457 				    (m->flags & PG_FICTITIOUS) == 0) {
1458 					pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
1459 					if (TAILQ_EMPTY(&pvh->pv_list)) {
1460 						vm_page_aflag_clear(m,
1461 						    PGA_WRITEABLE);
1462 					}
1463 				}
1464 				pc->pc_map[field] |= 1UL << bit;
1465 				pmap_unuse_pt(pmap, va, *l3e, &free);
1466 				freed++;
1467 			}
1468 		}
1469 		if (freed == 0) {
1470 			mtx_lock(&pv_chunks_mutex);
1471 			goto next_chunk;
1472 		}
1473 		/* Every freed mapping is for a 4 KB page. */
1474 		pmap_resident_count_dec(pmap, freed);
1475 		PV_STAT(atomic_add_long(&pv_entry_frees, freed));
1476 		PV_STAT(atomic_add_int(&pv_entry_spare, freed));
1477 		PV_STAT(atomic_subtract_long(&pv_entry_count, freed));
1478 		TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
1479 		if (pc->pc_map[0] == PC_FREE0 && pc->pc_map[1] == PC_FREE1) {
1480 			PV_STAT(atomic_subtract_int(&pv_entry_spare, _NPCPV));
1481 			PV_STAT(atomic_subtract_int(&pc_chunk_count, 1));
1482 			PV_STAT(atomic_add_int(&pc_chunk_frees, 1));
1483 			/* Entire chunk is free; return it. */
1484 			m_pc = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t)pc));
1485 			mtx_lock(&pv_chunks_mutex);
1486 			TAILQ_REMOVE(&pv_chunks, pc, pc_lru);
1487 			break;
1488 		}
1489 		TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
1490 		mtx_lock(&pv_chunks_mutex);
1491 		/* One freed pv entry in locked_pmap is sufficient. */
1492 		if (pmap == locked_pmap)
1493 			break;
1494 next_chunk:
1495 		TAILQ_REMOVE(&pv_chunks, pc_marker, pc_lru);
1496 		TAILQ_INSERT_AFTER(&pv_chunks, pc, pc_marker, pc_lru);
1497 		if (active_reclaims == 1 && pmap != NULL) {
1498 			/*
1499 			 * Rotate the pv chunks list so that we do not
1500 			 * scan the same pv chunks that could not be
1501 			 * freed (because they contained a wired
1502 			 * and/or superpage mapping) on every
1503 			 * invocation of reclaim_pv_chunk().
1504 			 */
1505 			while ((pc = TAILQ_FIRST(&pv_chunks)) != pc_marker) {
1506 				MPASS(pc->pc_pmap != NULL);
1507 				TAILQ_REMOVE(&pv_chunks, pc, pc_lru);
1508 				TAILQ_INSERT_TAIL(&pv_chunks, pc, pc_lru);
1509 			}
1510 		}
1511 	}
1512 	TAILQ_REMOVE(&pv_chunks, pc_marker, pc_lru);
1513 	TAILQ_REMOVE(&pv_chunks, pc_marker_end, pc_lru);
1514 	active_reclaims--;
1515 	mtx_unlock(&pv_chunks_mutex);
1516 	reclaim_pv_chunk_leave_pmap(pmap, locked_pmap);
1517 	if (m_pc == NULL && !SLIST_EMPTY(&free)) {
1518 		m_pc = SLIST_FIRST(&free);
1519 		SLIST_REMOVE_HEAD(&free, plinks.s.ss);
1520 		/* Recycle a freed page table page. */
1521 		m_pc->ref_count = 1;
1522 	}
1523 	vm_page_free_pages_toq(&free, true);
1524 	return (m_pc);
1525 }
1526 
1527 /*
1528  * free the pv_entry back to the free list
1529  */
1530 static void
1531 free_pv_entry(pmap_t pmap, pv_entry_t pv)
1532 {
1533 	struct pv_chunk *pc;
1534 	int idx, field, bit;
1535 
1536 #ifdef VERBOSE_PV
1537 	if (pmap != kernel_pmap)
1538 		printf("%s(%p, %p)\n", __func__, pmap, pv);
1539 #endif
1540 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1541 	PV_STAT(atomic_add_long(&pv_entry_frees, 1));
1542 	PV_STAT(atomic_add_int(&pv_entry_spare, 1));
1543 	PV_STAT(atomic_subtract_long(&pv_entry_count, 1));
1544 	pc = pv_to_chunk(pv);
1545 	idx = pv - &pc->pc_pventry[0];
1546 	field = idx / 64;
1547 	bit = idx % 64;
1548 	pc->pc_map[field] |= 1ul << bit;
1549 	if (pc->pc_map[0] != PC_FREE0 || pc->pc_map[1] != PC_FREE1) {
1550 		/* 98% of the time, pc is already at the head of the list. */
1551 		if (__predict_false(pc != TAILQ_FIRST(&pmap->pm_pvchunk))) {
1552 			TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
1553 			TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
1554 		}
1555 		return;
1556 	}
1557 	TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
1558 	free_pv_chunk(pc);
1559 }
1560 
1561 static void
1562 free_pv_chunk(struct pv_chunk *pc)
1563 {
1564 	vm_page_t m;
1565 
1566 	mtx_lock(&pv_chunks_mutex);
1567  	TAILQ_REMOVE(&pv_chunks, pc, pc_lru);
1568 	mtx_unlock(&pv_chunks_mutex);
1569 	PV_STAT(atomic_subtract_int(&pv_entry_spare, _NPCPV));
1570 	PV_STAT(atomic_subtract_int(&pc_chunk_count, 1));
1571 	PV_STAT(atomic_add_int(&pc_chunk_frees, 1));
1572 	/* entire chunk is free, return it */
1573 	m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t)pc));
1574 	vm_page_unwire_noq(m);
1575 	vm_page_free(m);
1576 }
1577 
1578 /*
1579  * Returns a new PV entry, allocating a new PV chunk from the system when
1580  * needed.  If this PV chunk allocation fails and a PV list lock pointer was
1581  * given, a PV chunk is reclaimed from an arbitrary pmap.  Otherwise, NULL is
1582  * returned.
1583  *
1584  * The given PV list lock may be released.
1585  */
1586 static pv_entry_t
1587 get_pv_entry(pmap_t pmap, struct rwlock **lockp)
1588 {
1589 	int bit, field;
1590 	pv_entry_t pv;
1591 	struct pv_chunk *pc;
1592 	vm_page_t m;
1593 
1594 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1595 	PV_STAT(atomic_add_long(&pv_entry_allocs, 1));
1596 retry:
1597 	pc = TAILQ_FIRST(&pmap->pm_pvchunk);
1598 	if (pc != NULL) {
1599 		for (field = 0; field < _NPCM; field++) {
1600 			if (pc->pc_map[field]) {
1601 				bit = cnttzd(pc->pc_map[field]);
1602 				break;
1603 			}
1604 		}
1605 		if (field < _NPCM) {
1606 			pv = &pc->pc_pventry[field * 64 + bit];
1607 			pc->pc_map[field] &= ~(1ul << bit);
1608 			/* If this was the last item, move it to tail */
1609 			if (pc->pc_map[0] == 0 && pc->pc_map[1] == 0) {
1610 				TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
1611 				TAILQ_INSERT_TAIL(&pmap->pm_pvchunk, pc,
1612 				    pc_list);
1613 			}
1614 			PV_STAT(atomic_add_long(&pv_entry_count, 1));
1615 			PV_STAT(atomic_subtract_int(&pv_entry_spare, 1));
1616 			MPASS(PV_PMAP(pv) != NULL);
1617 			return (pv);
1618 		}
1619 	}
1620 	/* No free items, allocate another chunk */
1621 	m = vm_page_alloc(NULL, 0, VM_ALLOC_NORMAL | VM_ALLOC_NOOBJ |
1622 	    VM_ALLOC_WIRED);
1623 	if (m == NULL) {
1624 		if (lockp == NULL) {
1625 			PV_STAT(pc_chunk_tryfail++);
1626 			return (NULL);
1627 		}
1628 		m = reclaim_pv_chunk(pmap, lockp);
1629 		if (m == NULL)
1630 			goto retry;
1631 	}
1632 	PV_STAT(atomic_add_int(&pc_chunk_count, 1));
1633 	PV_STAT(atomic_add_int(&pc_chunk_allocs, 1));
1634 	pc = (void *)PHYS_TO_DMAP(m->phys_addr);
1635 	pc->pc_pmap = pmap;
1636 	pc->pc_map[0] = PC_FREE0 & ~1ul;	/* preallocated bit 0 */
1637 	pc->pc_map[1] = PC_FREE1;
1638 	mtx_lock(&pv_chunks_mutex);
1639 	TAILQ_INSERT_TAIL(&pv_chunks, pc, pc_lru);
1640 	mtx_unlock(&pv_chunks_mutex);
1641 	pv = &pc->pc_pventry[0];
1642 	TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
1643 	PV_STAT(atomic_add_long(&pv_entry_count, 1));
1644 	PV_STAT(atomic_add_int(&pv_entry_spare, _NPCPV - 1));
1645 	MPASS(PV_PMAP(pv) != NULL);
1646 	return (pv);
1647 }
1648 
1649 #if VM_NRESERVLEVEL > 0
1650 /*
1651  * After promotion from 512 4KB page mappings to a single 2MB page mapping,
1652  * replace the many pv entries for the 4KB page mappings by a single pv entry
1653  * for the 2MB page mapping.
1654  */
1655 static void
1656 pmap_pv_promote_l3e(pmap_t pmap, vm_offset_t va, vm_paddr_t pa,
1657     struct rwlock **lockp)
1658 {
1659 	struct md_page *pvh;
1660 	pv_entry_t pv;
1661 	vm_offset_t va_last;
1662 	vm_page_t m;
1663 
1664 	KASSERT((pa & L3_PAGE_MASK) == 0,
1665 	    ("pmap_pv_promote_pde: pa is not 2mpage aligned"));
1666 	CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, pa);
1667 
1668 	/*
1669 	 * Transfer the first page's pv entry for this mapping to the 2mpage's
1670 	 * pv list.  Aside from avoiding the cost of a call to get_pv_entry(),
1671 	 * a transfer avoids the possibility that get_pv_entry() calls
1672 	 * reclaim_pv_chunk() and that reclaim_pv_chunk() removes one of the
1673 	 * mappings that is being promoted.
1674 	 */
1675 	m = PHYS_TO_VM_PAGE(pa);
1676 	va = trunc_2mpage(va);
1677 	pv = pmap_pvh_remove(&m->md, pmap, va);
1678 	KASSERT(pv != NULL, ("pmap_pv_promote_pde: pv not found"));
1679 	pvh = pa_to_pvh(pa);
1680 	TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_link);
1681 	pvh->pv_gen++;
1682 	/* Free the remaining NPTEPG - 1 pv entries. */
1683 	va_last = va + L3_PAGE_SIZE - PAGE_SIZE;
1684 	do {
1685 		m++;
1686 		va += PAGE_SIZE;
1687 		pmap_pvh_free(&m->md, pmap, va);
1688 	} while (va < va_last);
1689 }
1690 #endif /* VM_NRESERVLEVEL > 0 */
1691 
1692 /*
1693  * First find and then destroy the pv entry for the specified pmap and virtual
1694  * address.  This operation can be performed on pv lists for either 4KB or 2MB
1695  * page mappings.
1696  */
1697 static void
1698 pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
1699 {
1700 	pv_entry_t pv;
1701 
1702 	pv = pmap_pvh_remove(pvh, pmap, va);
1703 	KASSERT(pv != NULL, ("pmap_pvh_free: pv not found"));
1704 	free_pv_entry(pmap, pv);
1705 }
1706 
1707 /*
1708  * Conditionally create the PV entry for a 4KB page mapping if the required
1709  * memory can be allocated without resorting to reclamation.
1710  */
1711 static boolean_t
1712 pmap_try_insert_pv_entry(pmap_t pmap, vm_offset_t va, vm_page_t m,
1713     struct rwlock **lockp)
1714 {
1715 	pv_entry_t pv;
1716 
1717 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1718 	/* Pass NULL instead of the lock pointer to disable reclamation. */
1719 	if ((pv = get_pv_entry(pmap, NULL)) != NULL) {
1720 		pv->pv_va = va;
1721 		CHANGE_PV_LIST_LOCK_TO_VM_PAGE(lockp, m);
1722 		TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_link);
1723 		m->md.pv_gen++;
1724 		return (TRUE);
1725 	} else
1726 		return (FALSE);
1727 }
1728 
1729 vm_paddr_t phys_avail_debug[2 * VM_PHYSSEG_MAX];
1730 #ifdef INVARIANTS
1731 static void
1732 validate_addr(vm_paddr_t addr, vm_size_t size)
1733 {
1734 	vm_paddr_t end = addr + size;
1735 	bool found = false;
1736 
1737 	for (int i = 0; i < 2 * phys_avail_count; i += 2) {
1738 		if (addr >= phys_avail_debug[i] &&
1739 			end <= phys_avail_debug[i + 1]) {
1740 			found = true;
1741 			break;
1742 		}
1743 	}
1744 	KASSERT(found, ("%#lx-%#lx outside of initial phys_avail array",
1745 					addr, end));
1746 }
1747 #else
1748 static void validate_addr(vm_paddr_t addr, vm_size_t size) {}
1749 #endif
1750 #define DMAP_PAGE_BITS (RPTE_VALID | RPTE_LEAF | RPTE_EAA_MASK | PG_M | PG_A)
1751 
1752 static vm_paddr_t
1753 alloc_pt_page(void)
1754 {
1755 	vm_paddr_t page;
1756 
1757 	page = allocpages(1);
1758 	pagezero(PHYS_TO_DMAP(page));
1759 	return (page);
1760 }
1761 
1762 static void
1763 mmu_radix_dmap_range(vm_paddr_t start, vm_paddr_t end)
1764 {
1765 	pt_entry_t *pte, pteval;
1766 	vm_paddr_t page;
1767 
1768 	if (bootverbose)
1769 		printf("%s %lx -> %lx\n", __func__, start, end);
1770 	while (start < end) {
1771 		pteval = start | DMAP_PAGE_BITS;
1772 		pte = pmap_pml1e(kernel_pmap, PHYS_TO_DMAP(start));
1773 		if ((*pte & RPTE_VALID) == 0) {
1774 			page = alloc_pt_page();
1775 			pde_store(pte, page);
1776 		}
1777 		pte = pmap_l1e_to_l2e(pte, PHYS_TO_DMAP(start));
1778 		if ((start & L2_PAGE_MASK) == 0 &&
1779 			end - start >= L2_PAGE_SIZE) {
1780 			start += L2_PAGE_SIZE;
1781 			goto done;
1782 		} else if ((*pte & RPTE_VALID) == 0) {
1783 			page = alloc_pt_page();
1784 			pde_store(pte, page);
1785 		}
1786 
1787 		pte = pmap_l2e_to_l3e(pte, PHYS_TO_DMAP(start));
1788 		if ((start & L3_PAGE_MASK) == 0 &&
1789 			end - start >= L3_PAGE_SIZE) {
1790 			start += L3_PAGE_SIZE;
1791 			goto done;
1792 		} else if ((*pte & RPTE_VALID) == 0) {
1793 			page = alloc_pt_page();
1794 			pde_store(pte, page);
1795 		}
1796 		pte = pmap_l3e_to_pte(pte, PHYS_TO_DMAP(start));
1797 		start += PAGE_SIZE;
1798 	done:
1799 		pte_store(pte, pteval);
1800 	}
1801 }
1802 
1803 static void
1804 mmu_radix_dmap_populate(vm_size_t hwphyssz)
1805 {
1806 	vm_paddr_t start, end;
1807 
1808 	for (int i = 0; i < pregions_sz; i++) {
1809 		start = pregions[i].mr_start;
1810 		end = start + pregions[i].mr_size;
1811 		if (hwphyssz && start >= hwphyssz)
1812 			break;
1813 		if (hwphyssz && hwphyssz < end)
1814 			end = hwphyssz;
1815 		mmu_radix_dmap_range(start, end);
1816 	}
1817 }
1818 
1819 static void
1820 mmu_radix_setup_pagetables(vm_size_t hwphyssz)
1821 {
1822 	vm_paddr_t ptpages, pages;
1823 	pt_entry_t *pte;
1824 	vm_paddr_t l1phys;
1825 
1826 	bzero(kernel_pmap, sizeof(struct pmap));
1827 	PMAP_LOCK_INIT(kernel_pmap);
1828 
1829 	ptpages = allocpages(2);
1830 	l1phys = moea64_bootstrap_alloc(RADIX_PGD_SIZE, RADIX_PGD_SIZE);
1831 	validate_addr(l1phys, RADIX_PGD_SIZE);
1832 	if (bootverbose)
1833 		printf("l1phys=%lx\n", l1phys);
1834 	MPASS((l1phys & (RADIX_PGD_SIZE-1)) == 0);
1835 	for (int i = 0; i < RADIX_PGD_SIZE/PAGE_SIZE; i++)
1836 		pagezero(PHYS_TO_DMAP(l1phys + i * PAGE_SIZE));
1837 	kernel_pmap->pm_pml1 = (pml1_entry_t *)PHYS_TO_DMAP(l1phys);
1838 
1839 	mmu_radix_dmap_populate(hwphyssz);
1840 
1841 	/*
1842 	 * Create page tables for first 128MB of KVA
1843 	 */
1844 	pages = ptpages;
1845 	pte = pmap_pml1e(kernel_pmap, VM_MIN_KERNEL_ADDRESS);
1846 	*pte = (pages | RPTE_VALID | RPTE_SHIFT);
1847 	pages += PAGE_SIZE;
1848 	pte = pmap_l1e_to_l2e(pte, VM_MIN_KERNEL_ADDRESS);
1849 	*pte = (pages | RPTE_VALID | RPTE_SHIFT);
1850 	pages += PAGE_SIZE;
1851 	pte = pmap_l2e_to_l3e(pte, VM_MIN_KERNEL_ADDRESS);
1852 	/*
1853 	 * the kernel page table pages need to be preserved in
1854 	 * phys_avail and not overlap with previous  allocations
1855 	 */
1856 	pages = allocpages(nkpt);
1857 	if (bootverbose) {
1858 		printf("phys_avail after dmap populate and nkpt allocation\n");
1859 		for (int j = 0; j < 2 * phys_avail_count; j+=2)
1860 			printf("phys_avail[%d]=%08lx - phys_avail[%d]=%08lx\n",
1861 				   j, phys_avail[j], j + 1, phys_avail[j + 1]);
1862 	}
1863 	KPTphys = pages;
1864 	for (int i = 0; i < nkpt; i++, pte++, pages += PAGE_SIZE)
1865 		*pte = (pages | RPTE_VALID | RPTE_SHIFT);
1866 	kernel_vm_end = VM_MIN_KERNEL_ADDRESS + nkpt * L3_PAGE_SIZE;
1867 	if (bootverbose)
1868 		printf("kernel_pmap pml1 %p\n", kernel_pmap->pm_pml1);
1869 	/*
1870 	 * Add a physical memory segment (vm_phys_seg) corresponding to the
1871 	 * preallocated kernel page table pages so that vm_page structures
1872 	 * representing these pages will be created.  The vm_page structures
1873 	 * are required for promotion of the corresponding kernel virtual
1874 	 * addresses to superpage mappings.
1875 	 */
1876 	vm_phys_add_seg(KPTphys, KPTphys + ptoa(nkpt));
1877 }
1878 
1879 static void
1880 mmu_radix_early_bootstrap(vm_offset_t start, vm_offset_t end)
1881 {
1882 	vm_paddr_t	kpstart, kpend;
1883 	vm_size_t	physsz, hwphyssz;
1884 	//uint64_t	l2virt;
1885 	int		rm_pavail, proctab_size;
1886 	int		i, j;
1887 
1888 	kpstart = start & ~DMAP_BASE_ADDRESS;
1889 	kpend = end & ~DMAP_BASE_ADDRESS;
1890 
1891 	/* Get physical memory regions from firmware */
1892 	mem_regions(&pregions, &pregions_sz, &regions, &regions_sz);
1893 	CTR0(KTR_PMAP, "mmu_radix_early_bootstrap: physical memory");
1894 
1895 	if (2 * VM_PHYSSEG_MAX < regions_sz)
1896 		panic("mmu_radix_early_bootstrap: phys_avail too small");
1897 
1898 	if (bootverbose)
1899 		for (int i = 0; i < regions_sz; i++)
1900 			printf("regions[%d].mr_start=%lx regions[%d].mr_size=%lx\n",
1901 			    i, regions[i].mr_start, i, regions[i].mr_size);
1902 	/*
1903 	 * XXX workaround a simulator bug
1904 	 */
1905 	for (int i = 0; i < regions_sz; i++)
1906 		if (regions[i].mr_start & PAGE_MASK) {
1907 			regions[i].mr_start += PAGE_MASK;
1908 			regions[i].mr_start &= ~PAGE_MASK;
1909 			regions[i].mr_size &= ~PAGE_MASK;
1910 		}
1911 	if (bootverbose)
1912 		for (int i = 0; i < pregions_sz; i++)
1913 			printf("pregions[%d].mr_start=%lx pregions[%d].mr_size=%lx\n",
1914 			    i, pregions[i].mr_start, i, pregions[i].mr_size);
1915 
1916 	phys_avail_count = 0;
1917 	physsz = 0;
1918 	hwphyssz = 0;
1919 	TUNABLE_ULONG_FETCH("hw.physmem", (u_long *) &hwphyssz);
1920 	for (i = 0, j = 0; i < regions_sz; i++) {
1921 		if (bootverbose)
1922 			printf("regions[%d].mr_start=%016lx regions[%d].mr_size=%016lx\n",
1923 			    i, regions[i].mr_start, i, regions[i].mr_size);
1924 
1925 		if (regions[i].mr_size < PAGE_SIZE)
1926 			continue;
1927 
1928 		if (hwphyssz != 0 &&
1929 		    (physsz + regions[i].mr_size) >= hwphyssz) {
1930 			if (physsz < hwphyssz) {
1931 				phys_avail[j] = regions[i].mr_start;
1932 				phys_avail[j + 1] = regions[i].mr_start +
1933 				    (hwphyssz - physsz);
1934 				physsz = hwphyssz;
1935 				phys_avail_count++;
1936 				dump_avail[j] = phys_avail[j];
1937 				dump_avail[j + 1] = phys_avail[j + 1];
1938 			}
1939 			break;
1940 		}
1941 		phys_avail[j] = regions[i].mr_start;
1942 		phys_avail[j + 1] = regions[i].mr_start + regions[i].mr_size;
1943 		dump_avail[j] = phys_avail[j];
1944 		dump_avail[j + 1] = phys_avail[j + 1];
1945 
1946 		phys_avail_count++;
1947 		physsz += regions[i].mr_size;
1948 		j += 2;
1949 	}
1950 
1951 	/* Check for overlap with the kernel and exception vectors */
1952 	rm_pavail = 0;
1953 	for (j = 0; j < 2 * phys_avail_count; j+=2) {
1954 		if (phys_avail[j] < EXC_LAST)
1955 			phys_avail[j] += EXC_LAST;
1956 
1957 		if (phys_avail[j] >= kpstart &&
1958 		    phys_avail[j + 1] <= kpend) {
1959 			phys_avail[j] = phys_avail[j + 1] = ~0;
1960 			rm_pavail++;
1961 			continue;
1962 		}
1963 
1964 		if (kpstart >= phys_avail[j] &&
1965 		    kpstart < phys_avail[j + 1]) {
1966 			if (kpend < phys_avail[j + 1]) {
1967 				phys_avail[2 * phys_avail_count] =
1968 				    (kpend & ~PAGE_MASK) + PAGE_SIZE;
1969 				phys_avail[2 * phys_avail_count + 1] =
1970 				    phys_avail[j + 1];
1971 				phys_avail_count++;
1972 			}
1973 
1974 			phys_avail[j + 1] = kpstart & ~PAGE_MASK;
1975 		}
1976 
1977 		if (kpend >= phys_avail[j] &&
1978 		    kpend < phys_avail[j + 1]) {
1979 			if (kpstart > phys_avail[j]) {
1980 				phys_avail[2 * phys_avail_count] = phys_avail[j];
1981 				phys_avail[2 * phys_avail_count + 1] =
1982 				    kpstart & ~PAGE_MASK;
1983 				phys_avail_count++;
1984 			}
1985 
1986 			phys_avail[j] = (kpend & ~PAGE_MASK) +
1987 			    PAGE_SIZE;
1988 		}
1989 	}
1990 	qsort(phys_avail, 2 * phys_avail_count, sizeof(phys_avail[0]), pa_cmp);
1991 	for (i = 0; i < 2 * phys_avail_count; i++)
1992 		phys_avail_debug[i] = phys_avail[i];
1993 
1994 	/* Remove physical available regions marked for removal (~0) */
1995 	if (rm_pavail) {
1996 		phys_avail_count -= rm_pavail;
1997 		for (i = 2 * phys_avail_count;
1998 		     i < 2*(phys_avail_count + rm_pavail); i+=2)
1999 			phys_avail[i] = phys_avail[i + 1] = 0;
2000 	}
2001 	if (bootverbose) {
2002 		printf("phys_avail ranges after filtering:\n");
2003 		for (j = 0; j < 2 * phys_avail_count; j+=2)
2004 			printf("phys_avail[%d]=%08lx - phys_avail[%d]=%08lx\n",
2005 				   j, phys_avail[j], j + 1, phys_avail[j + 1]);
2006 	}
2007 	physmem = btoc(physsz);
2008 
2009 	/* XXX assume we're running non-virtualized and
2010 	 * we don't support BHYVE
2011 	 */
2012 	if (isa3_pid_bits == 0)
2013 		isa3_pid_bits = 20;
2014 	parttab_phys = moea64_bootstrap_alloc(PARTTAB_SIZE, PARTTAB_SIZE);
2015 	validate_addr(parttab_phys, PARTTAB_SIZE);
2016 	for (int i = 0; i < PARTTAB_SIZE/PAGE_SIZE; i++)
2017 		pagezero(PHYS_TO_DMAP(parttab_phys + i * PAGE_SIZE));
2018 
2019 	proctab_size = 1UL << PROCTAB_SIZE_SHIFT;
2020 	proctab0pa = moea64_bootstrap_alloc(proctab_size, proctab_size);
2021 	validate_addr(proctab0pa, proctab_size);
2022 	for (int i = 0; i < proctab_size/PAGE_SIZE; i++)
2023 		pagezero(PHYS_TO_DMAP(proctab0pa + i * PAGE_SIZE));
2024 
2025 	mmu_radix_setup_pagetables(hwphyssz);
2026 }
2027 
2028 static void
2029 mmu_radix_late_bootstrap(vm_offset_t start, vm_offset_t end)
2030 {
2031 	int		i;
2032 	vm_paddr_t	pa;
2033 	void		*dpcpu;
2034 	vm_offset_t va;
2035 
2036 	/*
2037 	 * Set up the Open Firmware pmap and add its mappings if not in real
2038 	 * mode.
2039 	 */
2040 	if (bootverbose)
2041 		printf("%s enter\n", __func__);
2042 
2043 	/*
2044 	 * Calculate the last available physical address, and reserve the
2045 	 * vm_page_array (upper bound).
2046 	 */
2047 	Maxmem = 0;
2048 	for (i = 0; phys_avail[i + 2] != 0; i += 2)
2049 		Maxmem = MAX(Maxmem, powerpc_btop(phys_avail[i + 1]));
2050 
2051 	/*
2052 	 * Set the start and end of kva.
2053 	 */
2054 	virtual_avail = VM_MIN_KERNEL_ADDRESS;
2055 	virtual_end = VM_MAX_SAFE_KERNEL_ADDRESS;
2056 
2057 	/*
2058 	 * Remap any early IO mappings (console framebuffer, etc.)
2059 	 */
2060 	bs_remap_earlyboot();
2061 
2062 	/*
2063 	 * Allocate a kernel stack with a guard page for thread0 and map it
2064 	 * into the kernel page map.
2065 	 */
2066 	pa = allocpages(kstack_pages);
2067 	va = virtual_avail + KSTACK_GUARD_PAGES * PAGE_SIZE;
2068 	virtual_avail = va + kstack_pages * PAGE_SIZE;
2069 	CTR2(KTR_PMAP, "moea64_bootstrap: kstack0 at %#x (%#x)", pa, va);
2070 	thread0.td_kstack = va;
2071 	for (i = 0; i < kstack_pages; i++) {
2072 		mmu_radix_kenter(va, pa);
2073 		pa += PAGE_SIZE;
2074 		va += PAGE_SIZE;
2075 	}
2076 	thread0.td_kstack_pages = kstack_pages;
2077 
2078 	/*
2079 	 * Allocate virtual address space for the message buffer.
2080 	 */
2081 	pa = msgbuf_phys = allocpages((msgbufsize + PAGE_MASK)  >> PAGE_SHIFT);
2082 	msgbufp = (struct msgbuf *)PHYS_TO_DMAP(pa);
2083 
2084 	/*
2085 	 * Allocate virtual address space for the dynamic percpu area.
2086 	 */
2087 	pa = allocpages(DPCPU_SIZE >> PAGE_SHIFT);
2088 	dpcpu = (void *)PHYS_TO_DMAP(pa);
2089 	dpcpu_init(dpcpu, curcpu);
2090 	/*
2091 	 * Reserve some special page table entries/VA space for temporary
2092 	 * mapping of pages.
2093 	 */
2094 }
2095 
2096 static void
2097 mmu_parttab_init(void)
2098 {
2099 	uint64_t ptcr;
2100 
2101 	isa3_parttab = (struct pate *)PHYS_TO_DMAP(parttab_phys);
2102 
2103 	if (bootverbose)
2104 		printf("%s parttab: %p\n", __func__, isa3_parttab);
2105 	ptcr = parttab_phys | (PARTTAB_SIZE_SHIFT-12);
2106 	if (bootverbose)
2107 		printf("setting ptcr %lx\n", ptcr);
2108 	mtspr(SPR_PTCR, ptcr);
2109 }
2110 
2111 static void
2112 mmu_parttab_update(uint64_t lpid, uint64_t pagetab, uint64_t proctab)
2113 {
2114 	uint64_t prev;
2115 
2116 	if (bootverbose)
2117 		printf("%s isa3_parttab %p lpid %lx pagetab %lx proctab %lx\n", __func__, isa3_parttab,
2118 			   lpid, pagetab, proctab);
2119 	prev = be64toh(isa3_parttab[lpid].pagetab);
2120 	isa3_parttab[lpid].pagetab = htobe64(pagetab);
2121 	isa3_parttab[lpid].proctab = htobe64(proctab);
2122 
2123 	if (prev & PARTTAB_HR) {
2124 		__asm __volatile(PPC_TLBIE_5(%0,%1,2,0,1) : :
2125 			     "r" (TLBIEL_INVAL_SET_LPID), "r" (lpid));
2126 		__asm __volatile(PPC_TLBIE_5(%0,%1,2,1,1) : :
2127 			     "r" (TLBIEL_INVAL_SET_LPID), "r" (lpid));
2128 	} else {
2129 		__asm __volatile(PPC_TLBIE_5(%0,%1,2,0,0) : :
2130 			     "r" (TLBIEL_INVAL_SET_LPID), "r" (lpid));
2131 	}
2132 	ttusync();
2133 }
2134 
2135 static void
2136 mmu_radix_parttab_init(void)
2137 {
2138 	uint64_t pagetab;
2139 
2140 	mmu_parttab_init();
2141 	pagetab = RTS_SIZE | DMAP_TO_PHYS((vm_offset_t)kernel_pmap->pm_pml1) | \
2142 		         RADIX_PGD_INDEX_SHIFT | PARTTAB_HR;
2143 	mmu_parttab_update(0, pagetab, 0);
2144 }
2145 
2146 static void
2147 mmu_radix_proctab_register(vm_paddr_t proctabpa, uint64_t table_size)
2148 {
2149 	uint64_t pagetab, proctab;
2150 
2151 	pagetab = be64toh(isa3_parttab[0].pagetab);
2152 	proctab = proctabpa | table_size | PARTTAB_GR;
2153 	mmu_parttab_update(0, pagetab, proctab);
2154 }
2155 
2156 static void
2157 mmu_radix_proctab_init(void)
2158 {
2159 
2160 	isa3_base_pid = 1;
2161 
2162 	isa3_proctab = (void*)PHYS_TO_DMAP(proctab0pa);
2163 	isa3_proctab->proctab0 =
2164 	    htobe64(RTS_SIZE | DMAP_TO_PHYS((vm_offset_t)kernel_pmap->pm_pml1) |
2165 		RADIX_PGD_INDEX_SHIFT);
2166 
2167 	mmu_radix_proctab_register(proctab0pa, PROCTAB_SIZE_SHIFT - 12);
2168 
2169 	__asm __volatile("ptesync" : : : "memory");
2170 	__asm __volatile(PPC_TLBIE_5(%0,%1,2,1,1) : :
2171 		     "r" (TLBIEL_INVAL_SET_LPID), "r" (0));
2172 	__asm __volatile("eieio; tlbsync; ptesync" : : : "memory");
2173 	if (bootverbose)
2174 		printf("process table %p and kernel radix PDE: %p\n",
2175 			   isa3_proctab, kernel_pmap->pm_pml1);
2176 	mtmsr(mfmsr() | PSL_DR );
2177 	mtmsr(mfmsr() &  ~PSL_DR);
2178 	kernel_pmap->pm_pid = isa3_base_pid;
2179 	isa3_base_pid++;
2180 }
2181 
2182 void
2183 mmu_radix_advise(pmap_t pmap, vm_offset_t sva, vm_offset_t eva,
2184     int advice)
2185 {
2186 	struct rwlock *lock;
2187 	pml1_entry_t *l1e;
2188 	pml2_entry_t *l2e;
2189 	pml3_entry_t oldl3e, *l3e;
2190 	pt_entry_t *pte;
2191 	vm_offset_t va, va_next;
2192 	vm_page_t m;
2193 	boolean_t anychanged;
2194 
2195 	if (advice != MADV_DONTNEED && advice != MADV_FREE)
2196 		return;
2197 	anychanged = FALSE;
2198 	PMAP_LOCK(pmap);
2199 	for (; sva < eva; sva = va_next) {
2200 		l1e = pmap_pml1e(pmap, sva);
2201 		if ((*l1e & PG_V) == 0) {
2202 			va_next = (sva + L1_PAGE_SIZE) & ~L1_PAGE_MASK;
2203 			if (va_next < sva)
2204 				va_next = eva;
2205 			continue;
2206 		}
2207 		l2e = pmap_l1e_to_l2e(l1e, sva);
2208 		if ((*l2e & PG_V) == 0) {
2209 			va_next = (sva + L2_PAGE_SIZE) & ~L2_PAGE_MASK;
2210 			if (va_next < sva)
2211 				va_next = eva;
2212 			continue;
2213 		}
2214 		va_next = (sva + L3_PAGE_SIZE) & ~L3_PAGE_MASK;
2215 		if (va_next < sva)
2216 			va_next = eva;
2217 		l3e = pmap_l2e_to_l3e(l2e, sva);
2218 		oldl3e = *l3e;
2219 		if ((oldl3e & PG_V) == 0)
2220 			continue;
2221 		else if ((oldl3e & RPTE_LEAF) != 0) {
2222 			if ((oldl3e & PG_MANAGED) == 0)
2223 				continue;
2224 			lock = NULL;
2225 			if (!pmap_demote_l3e_locked(pmap, l3e, sva, &lock)) {
2226 				if (lock != NULL)
2227 					rw_wunlock(lock);
2228 
2229 				/*
2230 				 * The large page mapping was destroyed.
2231 				 */
2232 				continue;
2233 			}
2234 
2235 			/*
2236 			 * Unless the page mappings are wired, remove the
2237 			 * mapping to a single page so that a subsequent
2238 			 * access may repromote.  Since the underlying page
2239 			 * table page is fully populated, this removal never
2240 			 * frees a page table page.
2241 			 */
2242 			if ((oldl3e & PG_W) == 0) {
2243 				pte = pmap_l3e_to_pte(l3e, sva);
2244 				KASSERT((*pte & PG_V) != 0,
2245 				    ("pmap_advise: invalid PTE"));
2246 				pmap_remove_pte(pmap, pte, sva, *l3e, NULL,
2247 				    &lock);
2248 				anychanged = TRUE;
2249 			}
2250 			if (lock != NULL)
2251 				rw_wunlock(lock);
2252 		}
2253 		if (va_next > eva)
2254 			va_next = eva;
2255 		va = va_next;
2256 		for (pte = pmap_l3e_to_pte(l3e, sva); sva != va_next;
2257 			 pte++, sva += PAGE_SIZE) {
2258 			MPASS(pte == pmap_pte(pmap, sva));
2259 
2260 			if ((*pte & (PG_MANAGED | PG_V)) != (PG_MANAGED | PG_V))
2261 				goto maybe_invlrng;
2262 			else if ((*pte & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
2263 				if (advice == MADV_DONTNEED) {
2264 					/*
2265 					 * Future calls to pmap_is_modified()
2266 					 * can be avoided by making the page
2267 					 * dirty now.
2268 					 */
2269 					m = PHYS_TO_VM_PAGE(*pte & PG_FRAME);
2270 					vm_page_dirty(m);
2271 				}
2272 				atomic_clear_long(pte, PG_M | PG_A);
2273 			} else if ((*pte & PG_A) != 0)
2274 				atomic_clear_long(pte, PG_A);
2275 			else
2276 				goto maybe_invlrng;
2277 			anychanged = TRUE;
2278 			continue;
2279 maybe_invlrng:
2280 			if (va != va_next) {
2281 				anychanged = true;
2282 				va = va_next;
2283 			}
2284 		}
2285 		if (va != va_next)
2286 			anychanged = true;
2287 	}
2288 	if (anychanged)
2289 		pmap_invalidate_all(pmap);
2290 	PMAP_UNLOCK(pmap);
2291 }
2292 
2293 /*
2294  * Routines used in machine-dependent code
2295  */
2296 static void
2297 mmu_radix_bootstrap(vm_offset_t start, vm_offset_t end)
2298 {
2299 	uint64_t lpcr;
2300 
2301 	if (bootverbose)
2302 		printf("%s\n", __func__);
2303 	hw_direct_map = 1;
2304 	mmu_radix_early_bootstrap(start, end);
2305 	if (bootverbose)
2306 		printf("early bootstrap complete\n");
2307 	if (powernv_enabled) {
2308 		lpcr = mfspr(SPR_LPCR);
2309 		mtspr(SPR_LPCR, lpcr | LPCR_UPRT | LPCR_HR);
2310 		mmu_radix_parttab_init();
2311 		mmu_radix_init_amor();
2312 		if (bootverbose)
2313 			printf("powernv init complete\n");
2314 	}
2315 	mmu_radix_init_iamr();
2316 	mmu_radix_proctab_init();
2317 	mmu_radix_pid_set(kernel_pmap);
2318 	/* XXX assume CPU_FTR_HVMODE */
2319 	mmu_radix_tlbiel_flush(TLB_INVAL_SCOPE_GLOBAL);
2320 
2321 	mmu_radix_late_bootstrap(start, end);
2322 	numa_mem_regions(&numa_pregions, &numa_pregions_sz);
2323 	if (bootverbose)
2324 		printf("%s done\n", __func__);
2325 	pmap_bootstrapped = 1;
2326 	dmaplimit = roundup2(powerpc_ptob(Maxmem), L2_PAGE_SIZE);
2327 	PCPU_SET(flags, PCPU_GET(flags) | PC_FLAG_NOSRS);
2328 }
2329 
2330 static void
2331 mmu_radix_cpu_bootstrap(int ap)
2332 {
2333 	uint64_t lpcr;
2334 	uint64_t ptcr;
2335 
2336 	if (powernv_enabled) {
2337 		lpcr = mfspr(SPR_LPCR);
2338 		mtspr(SPR_LPCR, lpcr | LPCR_UPRT | LPCR_HR);
2339 
2340 		ptcr = parttab_phys | (PARTTAB_SIZE_SHIFT-12);
2341 		mtspr(SPR_PTCR, ptcr);
2342 		mmu_radix_init_amor();
2343 	}
2344 	mmu_radix_init_iamr();
2345 	mmu_radix_pid_set(kernel_pmap);
2346 	mmu_radix_tlbiel_flush(TLB_INVAL_SCOPE_GLOBAL);
2347 }
2348 
2349 static SYSCTL_NODE(_vm_pmap, OID_AUTO, l3e, CTLFLAG_RD, 0,
2350     "2MB page mapping counters");
2351 
2352 static u_long pmap_l3e_demotions;
2353 SYSCTL_ULONG(_vm_pmap_l3e, OID_AUTO, demotions, CTLFLAG_RD,
2354     &pmap_l3e_demotions, 0, "2MB page demotions");
2355 
2356 static u_long pmap_l3e_mappings;
2357 SYSCTL_ULONG(_vm_pmap_l3e, OID_AUTO, mappings, CTLFLAG_RD,
2358     &pmap_l3e_mappings, 0, "2MB page mappings");
2359 
2360 static u_long pmap_l3e_p_failures;
2361 SYSCTL_ULONG(_vm_pmap_l3e, OID_AUTO, p_failures, CTLFLAG_RD,
2362     &pmap_l3e_p_failures, 0, "2MB page promotion failures");
2363 
2364 static u_long pmap_l3e_promotions;
2365 SYSCTL_ULONG(_vm_pmap_l3e, OID_AUTO, promotions, CTLFLAG_RD,
2366     &pmap_l3e_promotions, 0, "2MB page promotions");
2367 
2368 static SYSCTL_NODE(_vm_pmap, OID_AUTO, l2e, CTLFLAG_RD, 0,
2369     "1GB page mapping counters");
2370 
2371 static u_long pmap_l2e_demotions;
2372 SYSCTL_ULONG(_vm_pmap_l2e, OID_AUTO, demotions, CTLFLAG_RD,
2373     &pmap_l2e_demotions, 0, "1GB page demotions");
2374 
2375 void
2376 mmu_radix_clear_modify(vm_page_t m)
2377 {
2378 	struct md_page *pvh;
2379 	pmap_t pmap;
2380 	pv_entry_t next_pv, pv;
2381 	pml3_entry_t oldl3e, *l3e;
2382 	pt_entry_t oldpte, *pte;
2383 	struct rwlock *lock;
2384 	vm_offset_t va;
2385 	int md_gen, pvh_gen;
2386 
2387 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2388 	    ("pmap_clear_modify: page %p is not managed", m));
2389 	vm_page_assert_busied(m);
2390 	CTR2(KTR_PMAP, "%s(%p)", __func__, m);
2391 
2392 	/*
2393 	 * If the page is not PGA_WRITEABLE, then no PTEs can have PG_M set.
2394 	 * If the object containing the page is locked and the page is not
2395 	 * exclusive busied, then PGA_WRITEABLE cannot be concurrently set.
2396 	 */
2397 	if ((m->a.flags & PGA_WRITEABLE) == 0)
2398 		return;
2399 	pvh = (m->flags & PG_FICTITIOUS) != 0 ? &pv_dummy :
2400 	    pa_to_pvh(VM_PAGE_TO_PHYS(m));
2401 	lock = VM_PAGE_TO_PV_LIST_LOCK(m);
2402 	rw_wlock(lock);
2403 restart:
2404 	TAILQ_FOREACH_SAFE(pv, &pvh->pv_list, pv_link, next_pv) {
2405 		pmap = PV_PMAP(pv);
2406 		if (!PMAP_TRYLOCK(pmap)) {
2407 			pvh_gen = pvh->pv_gen;
2408 			rw_wunlock(lock);
2409 			PMAP_LOCK(pmap);
2410 			rw_wlock(lock);
2411 			if (pvh_gen != pvh->pv_gen) {
2412 				PMAP_UNLOCK(pmap);
2413 				goto restart;
2414 			}
2415 		}
2416 		va = pv->pv_va;
2417 		l3e = pmap_pml3e(pmap, va);
2418 		oldl3e = *l3e;
2419 		if ((oldl3e & PG_RW) != 0) {
2420 			if (pmap_demote_l3e_locked(pmap, l3e, va, &lock)) {
2421 				if ((oldl3e & PG_W) == 0) {
2422 					/*
2423 					 * Write protect the mapping to a
2424 					 * single page so that a subsequent
2425 					 * write access may repromote.
2426 					 */
2427 					va += VM_PAGE_TO_PHYS(m) - (oldl3e &
2428 					    PG_PS_FRAME);
2429 					pte = pmap_l3e_to_pte(l3e, va);
2430 					oldpte = *pte;
2431 					if ((oldpte & PG_V) != 0) {
2432 						while (!atomic_cmpset_long(pte,
2433 						    oldpte,
2434 							(oldpte | RPTE_EAA_R) & ~(PG_M | PG_RW)))
2435 							   oldpte = *pte;
2436 						vm_page_dirty(m);
2437 						pmap_invalidate_page(pmap, va);
2438 					}
2439 				}
2440 			}
2441 		}
2442 		PMAP_UNLOCK(pmap);
2443 	}
2444 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2445 		pmap = PV_PMAP(pv);
2446 		if (!PMAP_TRYLOCK(pmap)) {
2447 			md_gen = m->md.pv_gen;
2448 			pvh_gen = pvh->pv_gen;
2449 			rw_wunlock(lock);
2450 			PMAP_LOCK(pmap);
2451 			rw_wlock(lock);
2452 			if (pvh_gen != pvh->pv_gen || md_gen != m->md.pv_gen) {
2453 				PMAP_UNLOCK(pmap);
2454 				goto restart;
2455 			}
2456 		}
2457 		l3e = pmap_pml3e(pmap, pv->pv_va);
2458 		KASSERT((*l3e & RPTE_LEAF) == 0, ("pmap_clear_modify: found"
2459 		    " a 2mpage in page %p's pv list", m));
2460 		pte = pmap_l3e_to_pte(l3e, pv->pv_va);
2461 		if ((*pte & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
2462 			atomic_clear_long(pte, PG_M);
2463 			pmap_invalidate_page(pmap, pv->pv_va);
2464 		}
2465 		PMAP_UNLOCK(pmap);
2466 	}
2467 	rw_wunlock(lock);
2468 }
2469 
2470 void
2471 mmu_radix_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr,
2472     vm_size_t len, vm_offset_t src_addr)
2473 {
2474 	struct rwlock *lock;
2475 	struct spglist free;
2476 	vm_offset_t addr;
2477 	vm_offset_t end_addr = src_addr + len;
2478 	vm_offset_t va_next;
2479 	vm_page_t dst_pdpg, dstmpte, srcmpte;
2480 	bool invalidate_all;
2481 
2482 	CTR6(KTR_PMAP,
2483 	    "%s(dst_pmap=%p, src_pmap=%p, dst_addr=%lx, len=%lu, src_addr=%lx)\n",
2484 	    __func__, dst_pmap, src_pmap, dst_addr, len, src_addr);
2485 
2486 	if (dst_addr != src_addr)
2487 		return;
2488 	lock = NULL;
2489 	invalidate_all = false;
2490 	if (dst_pmap < src_pmap) {
2491 		PMAP_LOCK(dst_pmap);
2492 		PMAP_LOCK(src_pmap);
2493 	} else {
2494 		PMAP_LOCK(src_pmap);
2495 		PMAP_LOCK(dst_pmap);
2496 	}
2497 
2498 	for (addr = src_addr; addr < end_addr; addr = va_next) {
2499 		pml1_entry_t *l1e;
2500 		pml2_entry_t *l2e;
2501 		pml3_entry_t srcptepaddr, *l3e;
2502 		pt_entry_t *src_pte, *dst_pte;
2503 
2504 		l1e = pmap_pml1e(src_pmap, addr);
2505 		if ((*l1e & PG_V) == 0) {
2506 			va_next = (addr + L1_PAGE_SIZE) & ~L1_PAGE_MASK;
2507 			if (va_next < addr)
2508 				va_next = end_addr;
2509 			continue;
2510 		}
2511 
2512 		l2e = pmap_l1e_to_l2e(l1e, addr);
2513 		if ((*l2e & PG_V) == 0) {
2514 			va_next = (addr + L2_PAGE_SIZE) & ~L2_PAGE_MASK;
2515 			if (va_next < addr)
2516 				va_next = end_addr;
2517 			continue;
2518 		}
2519 
2520 		va_next = (addr + L3_PAGE_SIZE) & ~L3_PAGE_MASK;
2521 		if (va_next < addr)
2522 			va_next = end_addr;
2523 
2524 		l3e = pmap_l2e_to_l3e(l2e, addr);
2525 		srcptepaddr = *l3e;
2526 		if (srcptepaddr == 0)
2527 			continue;
2528 
2529 		if (srcptepaddr & RPTE_LEAF) {
2530 			if ((addr & L3_PAGE_MASK) != 0 ||
2531 			    addr + L3_PAGE_SIZE > end_addr)
2532 				continue;
2533 			dst_pdpg = pmap_allocl3e(dst_pmap, addr, NULL);
2534 			if (dst_pdpg == NULL)
2535 				break;
2536 			l3e = (pml3_entry_t *)
2537 			    PHYS_TO_DMAP(VM_PAGE_TO_PHYS(dst_pdpg));
2538 			l3e = &l3e[pmap_pml3e_index(addr)];
2539 			if (*l3e == 0 && ((srcptepaddr & PG_MANAGED) == 0 ||
2540 			    pmap_pv_insert_l3e(dst_pmap, addr, srcptepaddr,
2541 			    PMAP_ENTER_NORECLAIM, &lock))) {
2542 				*l3e = srcptepaddr & ~PG_W;
2543 				pmap_resident_count_inc(dst_pmap,
2544 				    L3_PAGE_SIZE / PAGE_SIZE);
2545 				atomic_add_long(&pmap_l3e_mappings, 1);
2546 			} else
2547 				dst_pdpg->ref_count--;
2548 			continue;
2549 		}
2550 
2551 		srcptepaddr &= PG_FRAME;
2552 		srcmpte = PHYS_TO_VM_PAGE(srcptepaddr);
2553 		KASSERT(srcmpte->ref_count > 0,
2554 		    ("pmap_copy: source page table page is unused"));
2555 
2556 		if (va_next > end_addr)
2557 			va_next = end_addr;
2558 
2559 		src_pte = (pt_entry_t *)PHYS_TO_DMAP(srcptepaddr);
2560 		src_pte = &src_pte[pmap_pte_index(addr)];
2561 		dstmpte = NULL;
2562 		while (addr < va_next) {
2563 			pt_entry_t ptetemp;
2564 			ptetemp = *src_pte;
2565 			/*
2566 			 * we only virtual copy managed pages
2567 			 */
2568 			if ((ptetemp & PG_MANAGED) != 0) {
2569 				if (dstmpte != NULL &&
2570 				    dstmpte->pindex == pmap_l3e_pindex(addr))
2571 					dstmpte->ref_count++;
2572 				else if ((dstmpte = pmap_allocpte(dst_pmap,
2573 				    addr, NULL)) == NULL)
2574 					goto out;
2575 				dst_pte = (pt_entry_t *)
2576 				    PHYS_TO_DMAP(VM_PAGE_TO_PHYS(dstmpte));
2577 				dst_pte = &dst_pte[pmap_pte_index(addr)];
2578 				if (*dst_pte == 0 &&
2579 				    pmap_try_insert_pv_entry(dst_pmap, addr,
2580 				    PHYS_TO_VM_PAGE(ptetemp & PG_FRAME),
2581 				    &lock)) {
2582 					/*
2583 					 * Clear the wired, modified, and
2584 					 * accessed (referenced) bits
2585 					 * during the copy.
2586 					 */
2587 					*dst_pte = ptetemp & ~(PG_W | PG_M |
2588 					    PG_A);
2589 					pmap_resident_count_inc(dst_pmap, 1);
2590 				} else {
2591 					SLIST_INIT(&free);
2592 					if (pmap_unwire_ptp(dst_pmap, addr,
2593 					    dstmpte, &free)) {
2594 						/*
2595 						 * Although "addr" is not
2596 						 * mapped, paging-structure
2597 						 * caches could nonetheless
2598 						 * have entries that refer to
2599 						 * the freed page table pages.
2600 						 * Invalidate those entries.
2601 						 */
2602 						invalidate_all = true;
2603 						vm_page_free_pages_toq(&free,
2604 						    true);
2605 					}
2606 					goto out;
2607 				}
2608 				if (dstmpte->ref_count >= srcmpte->ref_count)
2609 					break;
2610 			}
2611 			addr += PAGE_SIZE;
2612 			if (__predict_false((addr & L3_PAGE_MASK) == 0))
2613 				src_pte = pmap_pte(src_pmap, addr);
2614 			else
2615 				src_pte++;
2616 		}
2617 	}
2618 out:
2619 	if (invalidate_all)
2620 		pmap_invalidate_all(dst_pmap);
2621 	if (lock != NULL)
2622 		rw_wunlock(lock);
2623 	PMAP_UNLOCK(src_pmap);
2624 	PMAP_UNLOCK(dst_pmap);
2625 }
2626 
2627 static void
2628 mmu_radix_copy_page(vm_page_t msrc, vm_page_t mdst)
2629 {
2630 	vm_offset_t src = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(msrc));
2631 	vm_offset_t dst = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(mdst));
2632 
2633 	CTR3(KTR_PMAP, "%s(%p, %p)", __func__, src, dst);
2634 	/*
2635 	 * XXX slow
2636 	 */
2637 	bcopy((void *)src, (void *)dst, PAGE_SIZE);
2638 }
2639 
2640 static void
2641 mmu_radix_copy_pages(vm_page_t ma[], vm_offset_t a_offset, vm_page_t mb[],
2642     vm_offset_t b_offset, int xfersize)
2643 {
2644 
2645 	CTR6(KTR_PMAP, "%s(%p, %#x, %p, %#x, %#x)", __func__, ma,
2646 	    a_offset, mb, b_offset, xfersize);
2647 	UNIMPLEMENTED();
2648 }
2649 
2650 #if VM_NRESERVLEVEL > 0
2651 /*
2652  * Tries to promote the 512, contiguous 4KB page mappings that are within a
2653  * single page table page (PTP) to a single 2MB page mapping.  For promotion
2654  * to occur, two conditions must be met: (1) the 4KB page mappings must map
2655  * aligned, contiguous physical memory and (2) the 4KB page mappings must have
2656  * identical characteristics.
2657  */
2658 static int
2659 pmap_promote_l3e(pmap_t pmap, pml3_entry_t *pde, vm_offset_t va,
2660     struct rwlock **lockp)
2661 {
2662 	pml3_entry_t newpde;
2663 	pt_entry_t *firstpte, oldpte, pa, *pte;
2664 	vm_page_t mpte;
2665 
2666 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2667 
2668 	/*
2669 	 * Examine the first PTE in the specified PTP.  Abort if this PTE is
2670 	 * either invalid, unused, or does not map the first 4KB physical page
2671 	 * within a 2MB page.
2672 	 */
2673 	firstpte = (pt_entry_t *)PHYS_TO_DMAP(*pde & PG_FRAME);
2674 setpde:
2675 	newpde = *firstpte;
2676 	if ((newpde & ((PG_FRAME & L3_PAGE_MASK) | PG_A | PG_V)) != (PG_A | PG_V)) {
2677 		CTR2(KTR_PMAP, "pmap_promote_l3e: failure for va %#lx"
2678 		    " in pmap %p", va, pmap);
2679 		goto fail;
2680 	}
2681 	if ((newpde & (PG_M | PG_RW)) == PG_RW) {
2682 		/*
2683 		 * When PG_M is already clear, PG_RW can be cleared without
2684 		 * a TLB invalidation.
2685 		 */
2686 		if (!atomic_cmpset_long(firstpte, newpde, (newpde | RPTE_EAA_R) & ~RPTE_EAA_W))
2687 			goto setpde;
2688 		newpde &= ~RPTE_EAA_W;
2689 	}
2690 
2691 	/*
2692 	 * Examine each of the other PTEs in the specified PTP.  Abort if this
2693 	 * PTE maps an unexpected 4KB physical page or does not have identical
2694 	 * characteristics to the first PTE.
2695 	 */
2696 	pa = (newpde & (PG_PS_FRAME | PG_A | PG_V)) + L3_PAGE_SIZE - PAGE_SIZE;
2697 	for (pte = firstpte + NPTEPG - 1; pte > firstpte; pte--) {
2698 setpte:
2699 		oldpte = *pte;
2700 		if ((oldpte & (PG_FRAME | PG_A | PG_V)) != pa) {
2701 			CTR2(KTR_PMAP, "pmap_promote_l3e: failure for va %#lx"
2702 			    " in pmap %p", va, pmap);
2703 			goto fail;
2704 		}
2705 		if ((oldpte & (PG_M | PG_RW)) == PG_RW) {
2706 			/*
2707 			 * When PG_M is already clear, PG_RW can be cleared
2708 			 * without a TLB invalidation.
2709 			 */
2710 			if (!atomic_cmpset_long(pte, oldpte, (oldpte | RPTE_EAA_R) & ~RPTE_EAA_W))
2711 				goto setpte;
2712 			oldpte &= ~RPTE_EAA_W;
2713 			CTR2(KTR_PMAP, "pmap_promote_l3e: protect for va %#lx"
2714 			    " in pmap %p", (oldpte & PG_FRAME & L3_PAGE_MASK) |
2715 			    (va & ~L3_PAGE_MASK), pmap);
2716 		}
2717 		if ((oldpte & PG_PTE_PROMOTE) != (newpde & PG_PTE_PROMOTE)) {
2718 			CTR2(KTR_PMAP, "pmap_promote_l3e: failure for va %#lx"
2719 			    " in pmap %p", va, pmap);
2720 			goto fail;
2721 		}
2722 		pa -= PAGE_SIZE;
2723 	}
2724 
2725 	/*
2726 	 * Save the page table page in its current state until the PDE
2727 	 * mapping the superpage is demoted by pmap_demote_pde() or
2728 	 * destroyed by pmap_remove_pde().
2729 	 */
2730 	mpte = PHYS_TO_VM_PAGE(*pde & PG_FRAME);
2731 	KASSERT(mpte >= vm_page_array &&
2732 	    mpte < &vm_page_array[vm_page_array_size],
2733 	    ("pmap_promote_l3e: page table page is out of range"));
2734 	KASSERT(mpte->pindex == pmap_l3e_pindex(va),
2735 	    ("pmap_promote_l3e: page table page's pindex is wrong"));
2736 	if (pmap_insert_pt_page(pmap, mpte)) {
2737 		CTR2(KTR_PMAP,
2738 		    "pmap_promote_l3e: failure for va %#lx in pmap %p", va,
2739 		    pmap);
2740 		goto fail;
2741 	}
2742 
2743 	/*
2744 	 * Promote the pv entries.
2745 	 */
2746 	if ((newpde & PG_MANAGED) != 0)
2747 		pmap_pv_promote_l3e(pmap, va, newpde & PG_PS_FRAME, lockp);
2748 
2749 	pte_store(pde, PG_PROMOTED | newpde);
2750 	atomic_add_long(&pmap_l3e_promotions, 1);
2751 	CTR2(KTR_PMAP, "pmap_promote_l3e: success for va %#lx"
2752 	    " in pmap %p", va, pmap);
2753 	return (0);
2754  fail:
2755 	atomic_add_long(&pmap_l3e_p_failures, 1);
2756 	return (KERN_FAILURE);
2757 }
2758 #endif /* VM_NRESERVLEVEL > 0 */
2759 
2760 int
2761 mmu_radix_enter(pmap_t pmap, vm_offset_t va, vm_page_t m,
2762     vm_prot_t prot, u_int flags, int8_t psind)
2763 {
2764 	struct rwlock *lock;
2765 	pml3_entry_t *l3e;
2766 	pt_entry_t *pte;
2767 	pt_entry_t newpte, origpte;
2768 	pv_entry_t pv;
2769 	vm_paddr_t opa, pa;
2770 	vm_page_t mpte, om;
2771 	int rv, retrycount;
2772 	boolean_t nosleep, invalidate_all, invalidate_page;
2773 
2774 	va = trunc_page(va);
2775 	retrycount = 0;
2776 	invalidate_page = invalidate_all = false;
2777 	CTR6(KTR_PMAP, "pmap_enter(%p, %#lx, %p, %#x, %#x, %d)", pmap, va,
2778 	    m, prot, flags, psind);
2779 	KASSERT(va <= VM_MAX_KERNEL_ADDRESS, ("pmap_enter: toobig"));
2780 	KASSERT((m->oflags & VPO_UNMANAGED) != 0 || va < kmi.clean_sva ||
2781 	    va >= kmi.clean_eva,
2782 	    ("pmap_enter: managed mapping within the clean submap"));
2783 	if ((m->oflags & VPO_UNMANAGED) == 0)
2784 		VM_PAGE_OBJECT_BUSY_ASSERT(m);
2785 
2786 	KASSERT((flags & PMAP_ENTER_RESERVED) == 0,
2787 	    ("pmap_enter: flags %u has reserved bits set", flags));
2788 	pa = VM_PAGE_TO_PHYS(m);
2789 	newpte = (pt_entry_t)(pa | PG_A | PG_V | RPTE_LEAF);
2790 	if ((flags & VM_PROT_WRITE) != 0)
2791 		newpte |= PG_M;
2792 	if ((flags & VM_PROT_READ) != 0)
2793 		newpte |= PG_A;
2794 	if (prot & VM_PROT_READ)
2795 		newpte |= RPTE_EAA_R;
2796 	if ((prot & VM_PROT_WRITE) != 0)
2797 		newpte |= RPTE_EAA_W;
2798 	KASSERT((newpte & (PG_M | PG_RW)) != PG_M,
2799 	    ("pmap_enter: flags includes VM_PROT_WRITE but prot doesn't"));
2800 
2801 	if (prot & VM_PROT_EXECUTE)
2802 		newpte |= PG_X;
2803 	if ((flags & PMAP_ENTER_WIRED) != 0)
2804 		newpte |= PG_W;
2805 	if (va >= DMAP_MIN_ADDRESS)
2806 		newpte |= RPTE_EAA_P;
2807 	newpte |= pmap_cache_bits(m->md.mdpg_cache_attrs);
2808 	/*
2809 	 * Set modified bit gratuitously for writeable mappings if
2810 	 * the page is unmanaged. We do not want to take a fault
2811 	 * to do the dirty bit accounting for these mappings.
2812 	 */
2813 	if ((m->oflags & VPO_UNMANAGED) != 0) {
2814 		if ((newpte & PG_RW) != 0)
2815 			newpte |= PG_M;
2816 	} else
2817 		newpte |= PG_MANAGED;
2818 
2819 	lock = NULL;
2820 	PMAP_LOCK(pmap);
2821 	if (psind == 1) {
2822 		/* Assert the required virtual and physical alignment. */
2823 		KASSERT((va & L3_PAGE_MASK) == 0, ("pmap_enter: va unaligned"));
2824 		KASSERT(m->psind > 0, ("pmap_enter: m->psind < psind"));
2825 		rv = pmap_enter_l3e(pmap, va, newpte | RPTE_LEAF, flags, m, &lock);
2826 		goto out;
2827 	}
2828 	mpte = NULL;
2829 
2830 	/*
2831 	 * In the case that a page table page is not
2832 	 * resident, we are creating it here.
2833 	 */
2834 retry:
2835 	l3e = pmap_pml3e(pmap, va);
2836 	if (l3e != NULL && (*l3e & PG_V) != 0 && ((*l3e & RPTE_LEAF) == 0 ||
2837 	    pmap_demote_l3e_locked(pmap, l3e, va, &lock))) {
2838 		pte = pmap_l3e_to_pte(l3e, va);
2839 		if (va < VM_MAXUSER_ADDRESS && mpte == NULL) {
2840 			mpte = PHYS_TO_VM_PAGE(*l3e & PG_FRAME);
2841 			mpte->ref_count++;
2842 		}
2843 	} else if (va < VM_MAXUSER_ADDRESS) {
2844 		/*
2845 		 * Here if the pte page isn't mapped, or if it has been
2846 		 * deallocated.
2847 		 */
2848 		nosleep = (flags & PMAP_ENTER_NOSLEEP) != 0;
2849 		mpte = _pmap_allocpte(pmap, pmap_l3e_pindex(va),
2850 		    nosleep ? NULL : &lock);
2851 		if (mpte == NULL && nosleep) {
2852 			rv = KERN_RESOURCE_SHORTAGE;
2853 			goto out;
2854 		}
2855 		if (__predict_false(retrycount++ == 6))
2856 			panic("too many retries");
2857 		invalidate_all = true;
2858 		goto retry;
2859 	} else
2860 		panic("pmap_enter: invalid page directory va=%#lx", va);
2861 
2862 	origpte = *pte;
2863 	pv = NULL;
2864 
2865 	/*
2866 	 * Is the specified virtual address already mapped?
2867 	 */
2868 	if ((origpte & PG_V) != 0) {
2869 #ifdef INVARIANTS
2870 		if (VERBOSE_PMAP || pmap_logging) {
2871 			printf("cow fault pmap_enter(%p, %#lx, %p, %#x, %x, %d) --"
2872 			    " asid=%lu curpid=%d name=%s origpte0x%lx\n",
2873 			    pmap, va, m, prot, flags, psind, pmap->pm_pid,
2874 			    curproc->p_pid, curproc->p_comm, origpte);
2875 			pmap_pte_walk(pmap->pm_pml1, va);
2876 		}
2877 #endif
2878 		/*
2879 		 * Wiring change, just update stats. We don't worry about
2880 		 * wiring PT pages as they remain resident as long as there
2881 		 * are valid mappings in them. Hence, if a user page is wired,
2882 		 * the PT page will be also.
2883 		 */
2884 		if ((newpte & PG_W) != 0 && (origpte & PG_W) == 0)
2885 			pmap->pm_stats.wired_count++;
2886 		else if ((newpte & PG_W) == 0 && (origpte & PG_W) != 0)
2887 			pmap->pm_stats.wired_count--;
2888 
2889 		/*
2890 		 * Remove the extra PT page reference.
2891 		 */
2892 		if (mpte != NULL) {
2893 			mpte->ref_count--;
2894 			KASSERT(mpte->ref_count > 0,
2895 			    ("pmap_enter: missing reference to page table page,"
2896 			     " va: 0x%lx", va));
2897 		}
2898 
2899 		/*
2900 		 * Has the physical page changed?
2901 		 */
2902 		opa = origpte & PG_FRAME;
2903 		if (opa == pa) {
2904 			/*
2905 			 * No, might be a protection or wiring change.
2906 			 */
2907 			if ((origpte & PG_MANAGED) != 0 &&
2908 			    (newpte & PG_RW) != 0)
2909 				vm_page_aflag_set(m, PGA_WRITEABLE);
2910 			if (((origpte ^ newpte) & ~(PG_M | PG_A)) == 0) {
2911 				if ((newpte & (PG_A|PG_M)) != (origpte & (PG_A|PG_M))) {
2912 					if (!atomic_cmpset_long(pte, origpte, newpte))
2913 						goto retry;
2914 					if ((newpte & PG_M) != (origpte & PG_M))
2915 						vm_page_dirty(m);
2916 					if ((newpte & PG_A) != (origpte & PG_A))
2917 						vm_page_aflag_set(m, PGA_REFERENCED);
2918 					ptesync();
2919 				} else
2920 					invalidate_all = true;
2921 				if (((origpte ^ newpte) & ~(PG_M | PG_A)) == 0)
2922 					goto unchanged;
2923 			}
2924 			goto validate;
2925 		}
2926 
2927 		/*
2928 		 * The physical page has changed.  Temporarily invalidate
2929 		 * the mapping.  This ensures that all threads sharing the
2930 		 * pmap keep a consistent view of the mapping, which is
2931 		 * necessary for the correct handling of COW faults.  It
2932 		 * also permits reuse of the old mapping's PV entry,
2933 		 * avoiding an allocation.
2934 		 *
2935 		 * For consistency, handle unmanaged mappings the same way.
2936 		 */
2937 		origpte = pte_load_clear(pte);
2938 		KASSERT((origpte & PG_FRAME) == opa,
2939 		    ("pmap_enter: unexpected pa update for %#lx", va));
2940 		if ((origpte & PG_MANAGED) != 0) {
2941 			om = PHYS_TO_VM_PAGE(opa);
2942 
2943 			/*
2944 			 * The pmap lock is sufficient to synchronize with
2945 			 * concurrent calls to pmap_page_test_mappings() and
2946 			 * pmap_ts_referenced().
2947 			 */
2948 			if ((origpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
2949 				vm_page_dirty(om);
2950 			if ((origpte & PG_A) != 0)
2951 				vm_page_aflag_set(om, PGA_REFERENCED);
2952 			CHANGE_PV_LIST_LOCK_TO_PHYS(&lock, opa);
2953 			pv = pmap_pvh_remove(&om->md, pmap, va);
2954 			if ((newpte & PG_MANAGED) == 0)
2955 				free_pv_entry(pmap, pv);
2956 #ifdef INVARIANTS
2957 			else if (origpte & PG_MANAGED) {
2958 				if (pv == NULL) {
2959 					pmap_page_print_mappings(om);
2960 					MPASS(pv != NULL);
2961 				}
2962 			}
2963 #endif
2964 			if ((om->a.flags & PGA_WRITEABLE) != 0 &&
2965 			    TAILQ_EMPTY(&om->md.pv_list) &&
2966 			    ((om->flags & PG_FICTITIOUS) != 0 ||
2967 			    TAILQ_EMPTY(&pa_to_pvh(opa)->pv_list)))
2968 				vm_page_aflag_clear(om, PGA_WRITEABLE);
2969 		}
2970 		if ((origpte & PG_A) != 0)
2971 			invalidate_page = true;
2972 		origpte = 0;
2973 	} else {
2974 		if (pmap != kernel_pmap) {
2975 #ifdef INVARIANTS
2976 			if (VERBOSE_PMAP || pmap_logging)
2977 				printf("pmap_enter(%p, %#lx, %p, %#x, %x, %d) -- asid=%lu curpid=%d name=%s\n",
2978 				    pmap, va, m, prot, flags, psind,
2979 				    pmap->pm_pid, curproc->p_pid,
2980 				    curproc->p_comm);
2981 #endif
2982 		}
2983 
2984 		/*
2985 		 * Increment the counters.
2986 		 */
2987 		if ((newpte & PG_W) != 0)
2988 			pmap->pm_stats.wired_count++;
2989 		pmap_resident_count_inc(pmap, 1);
2990 	}
2991 
2992 	/*
2993 	 * Enter on the PV list if part of our managed memory.
2994 	 */
2995 	if ((newpte & PG_MANAGED) != 0) {
2996 		if (pv == NULL) {
2997 			pv = get_pv_entry(pmap, &lock);
2998 			pv->pv_va = va;
2999 		}
3000 #ifdef VERBOSE_PV
3001 		else
3002 			printf("reassigning pv: %p to pmap: %p\n",
3003 				   pv, pmap);
3004 #endif
3005 		CHANGE_PV_LIST_LOCK_TO_PHYS(&lock, pa);
3006 		TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_link);
3007 		m->md.pv_gen++;
3008 		if ((newpte & PG_RW) != 0)
3009 			vm_page_aflag_set(m, PGA_WRITEABLE);
3010 	}
3011 
3012 	/*
3013 	 * Update the PTE.
3014 	 */
3015 	if ((origpte & PG_V) != 0) {
3016 validate:
3017 		origpte = pte_load_store(pte, newpte);
3018 		KASSERT((origpte & PG_FRAME) == pa,
3019 		    ("pmap_enter: unexpected pa update for %#lx", va));
3020 		if ((newpte & PG_M) == 0 && (origpte & (PG_M | PG_RW)) ==
3021 		    (PG_M | PG_RW)) {
3022 			if ((origpte & PG_MANAGED) != 0)
3023 				vm_page_dirty(m);
3024 			invalidate_page = true;
3025 
3026 			/*
3027 			 * Although the PTE may still have PG_RW set, TLB
3028 			 * invalidation may nonetheless be required because
3029 			 * the PTE no longer has PG_M set.
3030 			 */
3031 		} else if ((origpte & PG_X) != 0 || (newpte & PG_X) == 0) {
3032 			/*
3033 			 * Removing capabilities requires invalidation on POWER
3034 			 */
3035 			invalidate_page = true;
3036 			goto unchanged;
3037 		}
3038 		if ((origpte & PG_A) != 0)
3039 			invalidate_page = true;
3040 	} else {
3041 		pte_store(pte, newpte);
3042 		ptesync();
3043 	}
3044 unchanged:
3045 
3046 #if VM_NRESERVLEVEL > 0
3047 	/*
3048 	 * If both the page table page and the reservation are fully
3049 	 * populated, then attempt promotion.
3050 	 */
3051 	if ((mpte == NULL || mpte->ref_count == NPTEPG) &&
3052 	    mmu_radix_ps_enabled(pmap) &&
3053 	    (m->flags & PG_FICTITIOUS) == 0 &&
3054 	    vm_reserv_level_iffullpop(m) == 0 &&
3055 		pmap_promote_l3e(pmap, l3e, va, &lock) == 0)
3056 		invalidate_all = true;
3057 #endif
3058 	if (invalidate_all)
3059 		pmap_invalidate_all(pmap);
3060 	else if (invalidate_page)
3061 		pmap_invalidate_page(pmap, va);
3062 
3063 	rv = KERN_SUCCESS;
3064 out:
3065 	if (lock != NULL)
3066 		rw_wunlock(lock);
3067 	PMAP_UNLOCK(pmap);
3068 
3069 	return (rv);
3070 }
3071 
3072 
3073 /*
3074  * Tries to create a read- and/or execute-only 2MB page mapping.  Returns true
3075  * if successful.  Returns false if (1) a page table page cannot be allocated
3076  * without sleeping, (2) a mapping already exists at the specified virtual
3077  * address, or (3) a PV entry cannot be allocated without reclaiming another
3078  * PV entry.
3079  */
3080 static bool
3081 pmap_enter_2mpage(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
3082     struct rwlock **lockp)
3083 {
3084 	pml3_entry_t newpde;
3085 
3086 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3087 	newpde = VM_PAGE_TO_PHYS(m) | pmap_cache_bits(m->md.mdpg_cache_attrs) |
3088 	    RPTE_LEAF | PG_V;
3089 	if ((m->oflags & VPO_UNMANAGED) == 0)
3090 		newpde |= PG_MANAGED;
3091 	if (prot & VM_PROT_EXECUTE)
3092 		newpde |= PG_X;
3093 	if (prot & VM_PROT_READ)
3094 		newpde |= RPTE_EAA_R;
3095 	if (va >= DMAP_MIN_ADDRESS)
3096 		newpde |= RPTE_EAA_P;
3097 	return (pmap_enter_l3e(pmap, va, newpde, PMAP_ENTER_NOSLEEP |
3098 	    PMAP_ENTER_NOREPLACE | PMAP_ENTER_NORECLAIM, NULL, lockp) ==
3099 	    KERN_SUCCESS);
3100 }
3101 
3102 /*
3103  * Tries to create the specified 2MB page mapping.  Returns KERN_SUCCESS if
3104  * the mapping was created, and either KERN_FAILURE or KERN_RESOURCE_SHORTAGE
3105  * otherwise.  Returns KERN_FAILURE if PMAP_ENTER_NOREPLACE was specified and
3106  * a mapping already exists at the specified virtual address.  Returns
3107  * KERN_RESOURCE_SHORTAGE if PMAP_ENTER_NOSLEEP was specified and a page table
3108  * page allocation failed.  Returns KERN_RESOURCE_SHORTAGE if
3109  * PMAP_ENTER_NORECLAIM was specified and a PV entry allocation failed.
3110  *
3111  * The parameter "m" is only used when creating a managed, writeable mapping.
3112  */
3113 static int
3114 pmap_enter_l3e(pmap_t pmap, vm_offset_t va, pml3_entry_t newpde, u_int flags,
3115     vm_page_t m, struct rwlock **lockp)
3116 {
3117 	struct spglist free;
3118 	pml3_entry_t oldl3e, *l3e;
3119 	vm_page_t mt, pdpg;
3120 
3121 	KASSERT((newpde & (PG_M | PG_RW)) != PG_RW,
3122 	    ("pmap_enter_pde: newpde is missing PG_M"));
3123 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3124 
3125 	if ((pdpg = pmap_allocl3e(pmap, va, (flags & PMAP_ENTER_NOSLEEP) != 0 ?
3126 	    NULL : lockp)) == NULL) {
3127 		CTR2(KTR_PMAP, "pmap_enter_pde: failure for va %#lx"
3128 		    " in pmap %p", va, pmap);
3129 		return (KERN_RESOURCE_SHORTAGE);
3130 	}
3131 	l3e = (pml3_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pdpg));
3132 	l3e = &l3e[pmap_pml3e_index(va)];
3133 	oldl3e = *l3e;
3134 	if ((oldl3e & PG_V) != 0) {
3135 		KASSERT(pdpg->ref_count > 1,
3136 		    ("pmap_enter_pde: pdpg's wire count is too low"));
3137 		if ((flags & PMAP_ENTER_NOREPLACE) != 0) {
3138 			pdpg->ref_count--;
3139 			CTR2(KTR_PMAP, "pmap_enter_pde: failure for va %#lx"
3140 			    " in pmap %p", va, pmap);
3141 			return (KERN_FAILURE);
3142 		}
3143 		/* Break the existing mapping(s). */
3144 		SLIST_INIT(&free);
3145 		if ((oldl3e & RPTE_LEAF) != 0) {
3146 			/*
3147 			 * The reference to the PD page that was acquired by
3148 			 * pmap_allocl3e() ensures that it won't be freed.
3149 			 * However, if the PDE resulted from a promotion, then
3150 			 * a reserved PT page could be freed.
3151 			 */
3152 			(void)pmap_remove_l3e(pmap, l3e, va, &free, lockp);
3153 		} else {
3154 			if (pmap_remove_ptes(pmap, va, va + L3_PAGE_SIZE, l3e,
3155 			    &free, lockp))
3156 		               pmap_invalidate_all(pmap);
3157 		}
3158 		vm_page_free_pages_toq(&free, true);
3159 		if (va >= VM_MAXUSER_ADDRESS) {
3160 			mt = PHYS_TO_VM_PAGE(*l3e & PG_FRAME);
3161 			if (pmap_insert_pt_page(pmap, mt)) {
3162 				/*
3163 				 * XXX Currently, this can't happen because
3164 				 * we do not perform pmap_enter(psind == 1)
3165 				 * on the kernel pmap.
3166 				 */
3167 				panic("pmap_enter_pde: trie insert failed");
3168 			}
3169 		} else
3170 			KASSERT(*l3e == 0, ("pmap_enter_pde: non-zero pde %p",
3171 			    l3e));
3172 	}
3173 	if ((newpde & PG_MANAGED) != 0) {
3174 		/*
3175 		 * Abort this mapping if its PV entry could not be created.
3176 		 */
3177 		if (!pmap_pv_insert_l3e(pmap, va, newpde, flags, lockp)) {
3178 			SLIST_INIT(&free);
3179 			if (pmap_unwire_ptp(pmap, va, pdpg, &free)) {
3180 				/*
3181 				 * Although "va" is not mapped, paging-
3182 				 * structure caches could nonetheless have
3183 				 * entries that refer to the freed page table
3184 				 * pages.  Invalidate those entries.
3185 				 */
3186 				pmap_invalidate_page(pmap, va);
3187 				vm_page_free_pages_toq(&free, true);
3188 			}
3189 			CTR2(KTR_PMAP, "pmap_enter_pde: failure for va %#lx"
3190 			    " in pmap %p", va, pmap);
3191 			return (KERN_RESOURCE_SHORTAGE);
3192 		}
3193 		if ((newpde & PG_RW) != 0) {
3194 			for (mt = m; mt < &m[L3_PAGE_SIZE / PAGE_SIZE]; mt++)
3195 				vm_page_aflag_set(mt, PGA_WRITEABLE);
3196 		}
3197 	}
3198 
3199 	/*
3200 	 * Increment counters.
3201 	 */
3202 	if ((newpde & PG_W) != 0)
3203 		pmap->pm_stats.wired_count += L3_PAGE_SIZE / PAGE_SIZE;
3204 	pmap_resident_count_inc(pmap, L3_PAGE_SIZE / PAGE_SIZE);
3205 
3206 	/*
3207 	 * Map the superpage.  (This is not a promoted mapping; there will not
3208 	 * be any lingering 4KB page mappings in the TLB.)
3209 	 */
3210 	pte_store(l3e, newpde);
3211 
3212 	atomic_add_long(&pmap_l3e_mappings, 1);
3213 	CTR2(KTR_PMAP, "pmap_enter_pde: success for va %#lx"
3214 	    " in pmap %p", va, pmap);
3215 	return (KERN_SUCCESS);
3216 }
3217 
3218 void
3219 mmu_radix_enter_object(pmap_t pmap, vm_offset_t start,
3220     vm_offset_t end, vm_page_t m_start, vm_prot_t prot)
3221 {
3222 
3223 	struct rwlock *lock;
3224 	vm_offset_t va;
3225 	vm_page_t m, mpte;
3226 	vm_pindex_t diff, psize;
3227 	bool invalidate;
3228 	VM_OBJECT_ASSERT_LOCKED(m_start->object);
3229 
3230 	CTR6(KTR_PMAP, "%s(%p, %#x, %#x, %p, %#x)", __func__, pmap, start,
3231 	    end, m_start, prot);
3232 
3233 	invalidate = false;
3234 	psize = atop(end - start);
3235 	mpte = NULL;
3236 	m = m_start;
3237 	lock = NULL;
3238 	PMAP_LOCK(pmap);
3239 	while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
3240 		va = start + ptoa(diff);
3241 		if ((va & L3_PAGE_MASK) == 0 && va + L3_PAGE_SIZE <= end &&
3242 		    m->psind == 1 && mmu_radix_ps_enabled(pmap) &&
3243 		    pmap_enter_2mpage(pmap, va, m, prot, &lock))
3244 			m = &m[L3_PAGE_SIZE / PAGE_SIZE - 1];
3245 		else
3246 			mpte = mmu_radix_enter_quick_locked(pmap, va, m, prot,
3247 			    mpte, &lock, &invalidate);
3248 		m = TAILQ_NEXT(m, listq);
3249 	}
3250 	ptesync();
3251 	if (lock != NULL)
3252 		rw_wunlock(lock);
3253 	if (invalidate)
3254 		pmap_invalidate_all(pmap);
3255 	PMAP_UNLOCK(pmap);
3256 }
3257 
3258 static vm_page_t
3259 mmu_radix_enter_quick_locked(pmap_t pmap, vm_offset_t va, vm_page_t m,
3260     vm_prot_t prot, vm_page_t mpte, struct rwlock **lockp, bool *invalidate)
3261 {
3262 	struct spglist free;
3263 	pt_entry_t *pte;
3264 	vm_paddr_t pa;
3265 
3266 	KASSERT(va < kmi.clean_sva || va >= kmi.clean_eva ||
3267 	    (m->oflags & VPO_UNMANAGED) != 0,
3268 	    ("mmu_radix_enter_quick_locked: managed mapping within the clean submap"));
3269 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3270 
3271 	/*
3272 	 * In the case that a page table page is not
3273 	 * resident, we are creating it here.
3274 	 */
3275 	if (va < VM_MAXUSER_ADDRESS) {
3276 		vm_pindex_t ptepindex;
3277 		pml3_entry_t *ptepa;
3278 
3279 		/*
3280 		 * Calculate pagetable page index
3281 		 */
3282 		ptepindex = pmap_l3e_pindex(va);
3283 		if (mpte && (mpte->pindex == ptepindex)) {
3284 			mpte->ref_count++;
3285 		} else {
3286 			/*
3287 			 * Get the page directory entry
3288 			 */
3289 			ptepa = pmap_pml3e(pmap, va);
3290 
3291 			/*
3292 			 * If the page table page is mapped, we just increment
3293 			 * the hold count, and activate it.  Otherwise, we
3294 			 * attempt to allocate a page table page.  If this
3295 			 * attempt fails, we don't retry.  Instead, we give up.
3296 			 */
3297 			if (ptepa && (*ptepa & PG_V) != 0) {
3298 				if (*ptepa & RPTE_LEAF)
3299 					return (NULL);
3300 				mpte = PHYS_TO_VM_PAGE(*ptepa & PG_FRAME);
3301 				mpte->ref_count++;
3302 			} else {
3303 				/*
3304 				 * Pass NULL instead of the PV list lock
3305 				 * pointer, because we don't intend to sleep.
3306 				 */
3307 				mpte = _pmap_allocpte(pmap, ptepindex, NULL);
3308 				if (mpte == NULL)
3309 					return (mpte);
3310 			}
3311 		}
3312 		pte = (pt_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(mpte));
3313 		pte = &pte[pmap_pte_index(va)];
3314 	} else {
3315 		mpte = NULL;
3316 		pte = pmap_pte(pmap, va);
3317 	}
3318 	if (*pte) {
3319 		if (mpte != NULL) {
3320 			mpte->ref_count--;
3321 			mpte = NULL;
3322 		}
3323 		return (mpte);
3324 	}
3325 
3326 	/*
3327 	 * Enter on the PV list if part of our managed memory.
3328 	 */
3329 	if ((m->oflags & VPO_UNMANAGED) == 0 &&
3330 	    !pmap_try_insert_pv_entry(pmap, va, m, lockp)) {
3331 		if (mpte != NULL) {
3332 			SLIST_INIT(&free);
3333 			if (pmap_unwire_ptp(pmap, va, mpte, &free)) {
3334 				/*
3335 				 * Although "va" is not mapped, paging-
3336 				 * structure caches could nonetheless have
3337 				 * entries that refer to the freed page table
3338 				 * pages.  Invalidate those entries.
3339 				 */
3340 				*invalidate = true;
3341 				vm_page_free_pages_toq(&free, true);
3342 			}
3343 			mpte = NULL;
3344 		}
3345 		return (mpte);
3346 	}
3347 
3348 	/*
3349 	 * Increment counters
3350 	 */
3351 	pmap_resident_count_inc(pmap, 1);
3352 
3353 	pa = VM_PAGE_TO_PHYS(m) | pmap_cache_bits(m->md.mdpg_cache_attrs);
3354 	if (prot & VM_PROT_EXECUTE)
3355 		pa |= PG_X;
3356 	else
3357 		pa |= RPTE_EAA_R;
3358 	if ((m->oflags & VPO_UNMANAGED) == 0)
3359 		pa |= PG_MANAGED;
3360 
3361 	pte_store(pte, pa);
3362 	return (mpte);
3363 }
3364 
3365 void
3366 mmu_radix_enter_quick(pmap_t pmap, vm_offset_t va, vm_page_t m,
3367     vm_prot_t prot)
3368 {
3369 	struct rwlock *lock;
3370 	bool invalidate;
3371 
3372 	lock = NULL;
3373 	invalidate = false;
3374 	PMAP_LOCK(pmap);
3375 	mmu_radix_enter_quick_locked(pmap, va, m, prot, NULL, &lock,
3376 	    &invalidate);
3377 	ptesync();
3378 	if (lock != NULL)
3379 		rw_wunlock(lock);
3380 	if (invalidate)
3381 		pmap_invalidate_all(pmap);
3382 	PMAP_UNLOCK(pmap);
3383 }
3384 
3385 vm_paddr_t
3386 mmu_radix_extract(pmap_t pmap, vm_offset_t va)
3387 {
3388 	pml3_entry_t *l3e;
3389 	pt_entry_t *pte;
3390 	vm_paddr_t pa;
3391 
3392 	l3e = pmap_pml3e(pmap, va);
3393 	if (__predict_false(l3e == NULL))
3394 		return (0);
3395 	if (*l3e & RPTE_LEAF) {
3396 		pa = (*l3e & PG_PS_FRAME) | (va & L3_PAGE_MASK);
3397 		pa |= (va & L3_PAGE_MASK);
3398 	} else {
3399 		/*
3400 		 * Beware of a concurrent promotion that changes the
3401 		 * PDE at this point!  For example, vtopte() must not
3402 		 * be used to access the PTE because it would use the
3403 		 * new PDE.  It is, however, safe to use the old PDE
3404 		 * because the page table page is preserved by the
3405 		 * promotion.
3406 		 */
3407 		pte = pmap_l3e_to_pte(l3e, va);
3408 		if (__predict_false(pte == NULL))
3409 			return (0);
3410 		pa = *pte;
3411 		pa = (pa & PG_FRAME) | (va & PAGE_MASK);
3412 		pa |= (va & PAGE_MASK);
3413 	}
3414 	return (pa);
3415 }
3416 
3417 vm_page_t
3418 mmu_radix_extract_and_hold(pmap_t pmap, vm_offset_t va, vm_prot_t prot)
3419 {
3420 	pml3_entry_t l3e, *l3ep;
3421 	pt_entry_t pte;
3422 	vm_paddr_t pa;
3423 	vm_page_t m;
3424 
3425 	pa = 0;
3426 	m = NULL;
3427 	CTR4(KTR_PMAP, "%s(%p, %#x, %#x)", __func__, pmap, va, prot);
3428 	PMAP_LOCK(pmap);
3429 	l3ep = pmap_pml3e(pmap, va);
3430 	if (l3ep != NULL && (l3e = *l3ep)) {
3431 		if (l3e & RPTE_LEAF) {
3432 			if ((l3e & PG_RW) || (prot & VM_PROT_WRITE) == 0)
3433 				m = PHYS_TO_VM_PAGE((l3e & PG_PS_FRAME) |
3434 				    (va & L3_PAGE_MASK));
3435 		} else {
3436 			pte = *pmap_l3e_to_pte(l3ep, va);
3437 			if ((pte & PG_V) &&
3438 			    ((pte & PG_RW) || (prot & VM_PROT_WRITE) == 0))
3439 				m = PHYS_TO_VM_PAGE(pte & PG_FRAME);
3440 		}
3441 		if (m != NULL && !vm_page_wire_mapped(m))
3442 			m = NULL;
3443 	}
3444 	PMAP_UNLOCK(pmap);
3445 	return (m);
3446 }
3447 
3448 static void
3449 mmu_radix_growkernel(vm_offset_t addr)
3450 {
3451 	vm_paddr_t paddr;
3452 	vm_page_t nkpg;
3453 	pml3_entry_t *l3e;
3454 	pml2_entry_t *l2e;
3455 
3456 	CTR2(KTR_PMAP, "%s(%#x)", __func__, addr);
3457 	if (VM_MIN_KERNEL_ADDRESS < addr &&
3458 		addr < (VM_MIN_KERNEL_ADDRESS + nkpt * L3_PAGE_SIZE))
3459 		return;
3460 
3461 	addr = roundup2(addr, L3_PAGE_SIZE);
3462 	if (addr - 1 >= vm_map_max(kernel_map))
3463 		addr = vm_map_max(kernel_map);
3464 	while (kernel_vm_end < addr) {
3465 		l2e = pmap_pml2e(kernel_pmap, kernel_vm_end);
3466 		if ((*l2e & PG_V) == 0) {
3467 			/* We need a new PDP entry */
3468 			nkpg = vm_page_alloc(NULL, kernel_vm_end >> L2_PAGE_SIZE_SHIFT,
3469 			    VM_ALLOC_INTERRUPT | VM_ALLOC_NOOBJ |
3470 			    VM_ALLOC_WIRED | VM_ALLOC_ZERO);
3471 			if (nkpg == NULL)
3472 				panic("pmap_growkernel: no memory to grow kernel");
3473 			if ((nkpg->flags & PG_ZERO) == 0)
3474 				mmu_radix_zero_page(nkpg);
3475 			paddr = VM_PAGE_TO_PHYS(nkpg);
3476 			pde_store(l2e, paddr);
3477 			continue; /* try again */
3478 		}
3479 		l3e = pmap_l2e_to_l3e(l2e, kernel_vm_end);
3480 		if ((*l3e & PG_V) != 0) {
3481 			kernel_vm_end = (kernel_vm_end + L3_PAGE_SIZE) & ~L3_PAGE_MASK;
3482 			if (kernel_vm_end - 1 >= vm_map_max(kernel_map)) {
3483 				kernel_vm_end = vm_map_max(kernel_map);
3484 				break;
3485 			}
3486 			continue;
3487 		}
3488 
3489 		nkpg = vm_page_alloc(NULL, pmap_l3e_pindex(kernel_vm_end),
3490 		    VM_ALLOC_INTERRUPT | VM_ALLOC_NOOBJ | VM_ALLOC_WIRED |
3491 		    VM_ALLOC_ZERO);
3492 		if (nkpg == NULL)
3493 			panic("pmap_growkernel: no memory to grow kernel");
3494 		if ((nkpg->flags & PG_ZERO) == 0)
3495 			mmu_radix_zero_page(nkpg);
3496 		paddr = VM_PAGE_TO_PHYS(nkpg);
3497 		pde_store(l3e, paddr);
3498 
3499 		kernel_vm_end = (kernel_vm_end + L3_PAGE_SIZE) & ~L3_PAGE_MASK;
3500 		if (kernel_vm_end - 1 >= vm_map_max(kernel_map)) {
3501 			kernel_vm_end = vm_map_max(kernel_map);
3502 			break;
3503 		}
3504 	}
3505 	ptesync();
3506 }
3507 
3508 static MALLOC_DEFINE(M_RADIX_PGD, "radix_pgd", "radix page table root directory");
3509 static uma_zone_t zone_radix_pgd;
3510 
3511 static int
3512 radix_pgd_import(void *arg __unused, void **store, int count, int domain __unused,
3513     int flags)
3514 {
3515 
3516 	for (int i = 0; i < count; i++) {
3517 		vm_page_t m = vm_page_alloc_contig(NULL, 0,
3518 		    VM_ALLOC_NORMAL | VM_ALLOC_NOOBJ | VM_ALLOC_WIRED |
3519 		    VM_ALLOC_ZERO | VM_ALLOC_WAITOK, RADIX_PGD_SIZE/PAGE_SIZE,
3520 		    0, (vm_paddr_t)-1, RADIX_PGD_SIZE, L1_PAGE_SIZE,
3521 		    VM_MEMATTR_DEFAULT);
3522 		/* XXX zero on alloc here so we don't have to later */
3523 		store[i] = (void *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m));
3524 	}
3525 	return (count);
3526 }
3527 
3528 static void
3529 radix_pgd_release(void *arg __unused, void **store, int count)
3530 {
3531 	vm_page_t m;
3532 	struct spglist free;
3533 	int page_count;
3534 
3535 	SLIST_INIT(&free);
3536 	page_count = RADIX_PGD_SIZE/PAGE_SIZE;
3537 
3538 	for (int i = 0; i < count; i++) {
3539 		/*
3540 		 * XXX selectively remove dmap and KVA entries so we don't
3541 		 * need to bzero
3542 		 */
3543 		m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t)store[i]));
3544 		for (int j = page_count-1; j >= 0; j--) {
3545 			vm_page_unwire_noq(&m[j]);
3546 			SLIST_INSERT_HEAD(&free, &m[j], plinks.s.ss);
3547 		}
3548 		vm_page_free_pages_toq(&free, false);
3549 	}
3550 }
3551 
3552 static void
3553 mmu_radix_init()
3554 {
3555 	vm_page_t mpte;
3556 	vm_size_t s;
3557 	int error, i, pv_npg;
3558 
3559 	/* L1TF, reserve page @0 unconditionally */
3560 	vm_page_blacklist_add(0, bootverbose);
3561 
3562 	zone_radix_pgd = uma_zcache_create("radix_pgd_cache",
3563 		RADIX_PGD_SIZE, NULL, NULL,
3564 #ifdef INVARIANTS
3565 	    trash_init, trash_fini,
3566 #else
3567 	    NULL, NULL,
3568 #endif
3569 		radix_pgd_import, radix_pgd_release,
3570 		NULL, UMA_ZONE_NOBUCKET);
3571 
3572 	/*
3573 	 * Initialize the vm page array entries for the kernel pmap's
3574 	 * page table pages.
3575 	 */
3576 	PMAP_LOCK(kernel_pmap);
3577 	for (i = 0; i < nkpt; i++) {
3578 		mpte = PHYS_TO_VM_PAGE(KPTphys + (i << PAGE_SHIFT));
3579 		KASSERT(mpte >= vm_page_array &&
3580 		    mpte < &vm_page_array[vm_page_array_size],
3581 		    ("pmap_init: page table page is out of range size: %lu",
3582 		     vm_page_array_size));
3583 		mpte->pindex = pmap_l3e_pindex(VM_MIN_KERNEL_ADDRESS) + i;
3584 		mpte->phys_addr = KPTphys + (i << PAGE_SHIFT);
3585 		MPASS(PHYS_TO_VM_PAGE(mpte->phys_addr) == mpte);
3586 		//pmap_insert_pt_page(kernel_pmap, mpte);
3587 		mpte->ref_count = 1;
3588 	}
3589 	PMAP_UNLOCK(kernel_pmap);
3590 	vm_wire_add(nkpt);
3591 
3592 	CTR1(KTR_PMAP, "%s()", __func__);
3593 	TAILQ_INIT(&pv_dummy.pv_list);
3594 
3595 	/*
3596 	 * Are large page mappings enabled?
3597 	 */
3598 	TUNABLE_INT_FETCH("vm.pmap.pg_ps_enabled", &pg_ps_enabled);
3599 	if (pg_ps_enabled) {
3600 		KASSERT(MAXPAGESIZES > 1 && pagesizes[1] == 0,
3601 		    ("pmap_init: can't assign to pagesizes[1]"));
3602 		pagesizes[1] = L3_PAGE_SIZE;
3603 	}
3604 
3605 	/*
3606 	 * Initialize the pv chunk list mutex.
3607 	 */
3608 	mtx_init(&pv_chunks_mutex, "pmap pv chunk list", NULL, MTX_DEF);
3609 
3610 	/*
3611 	 * Initialize the pool of pv list locks.
3612 	 */
3613 	for (i = 0; i < NPV_LIST_LOCKS; i++)
3614 		rw_init(&pv_list_locks[i], "pmap pv list");
3615 
3616 	/*
3617 	 * Calculate the size of the pv head table for superpages.
3618 	 */
3619 	pv_npg = howmany(vm_phys_segs[vm_phys_nsegs - 1].end, L3_PAGE_SIZE);
3620 
3621 	/*
3622 	 * Allocate memory for the pv head table for superpages.
3623 	 */
3624 	s = (vm_size_t)(pv_npg * sizeof(struct md_page));
3625 	s = round_page(s);
3626 	pv_table = (struct md_page *)kmem_malloc(s, M_WAITOK | M_ZERO);
3627 	for (i = 0; i < pv_npg; i++)
3628 		TAILQ_INIT(&pv_table[i].pv_list);
3629 	TAILQ_INIT(&pv_dummy.pv_list);
3630 
3631 	pmap_initialized = 1;
3632 	mtx_init(&qframe_mtx, "qfrmlk", NULL, MTX_SPIN);
3633 	error = vmem_alloc(kernel_arena, PAGE_SIZE, M_BESTFIT | M_WAITOK,
3634 	    (vmem_addr_t *)&qframe);
3635 
3636 	if (error != 0)
3637 		panic("qframe allocation failed");
3638 	asid_arena = vmem_create("ASID", isa3_base_pid + 1, (1<<isa3_pid_bits),
3639 	    1, 1, M_WAITOK);
3640 }
3641 
3642 static boolean_t
3643 pmap_page_test_mappings(vm_page_t m, boolean_t accessed, boolean_t modified)
3644 {
3645 	struct rwlock *lock;
3646 	pv_entry_t pv;
3647 	struct md_page *pvh;
3648 	pt_entry_t *pte, mask;
3649 	pmap_t pmap;
3650 	int md_gen, pvh_gen;
3651 	boolean_t rv;
3652 
3653 	rv = FALSE;
3654 	lock = VM_PAGE_TO_PV_LIST_LOCK(m);
3655 	rw_rlock(lock);
3656 restart:
3657 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
3658 		pmap = PV_PMAP(pv);
3659 		if (!PMAP_TRYLOCK(pmap)) {
3660 			md_gen = m->md.pv_gen;
3661 			rw_runlock(lock);
3662 			PMAP_LOCK(pmap);
3663 			rw_rlock(lock);
3664 			if (md_gen != m->md.pv_gen) {
3665 				PMAP_UNLOCK(pmap);
3666 				goto restart;
3667 			}
3668 		}
3669 		pte = pmap_pte(pmap, pv->pv_va);
3670 		mask = 0;
3671 		if (modified)
3672 			mask |= PG_RW | PG_M;
3673 		if (accessed)
3674 			mask |= PG_V | PG_A;
3675 		rv = (*pte & mask) == mask;
3676 		PMAP_UNLOCK(pmap);
3677 		if (rv)
3678 			goto out;
3679 	}
3680 	if ((m->flags & PG_FICTITIOUS) == 0) {
3681 		pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
3682 		TAILQ_FOREACH(pv, &pvh->pv_list, pv_link) {
3683 			pmap = PV_PMAP(pv);
3684 			if (!PMAP_TRYLOCK(pmap)) {
3685 				md_gen = m->md.pv_gen;
3686 				pvh_gen = pvh->pv_gen;
3687 				rw_runlock(lock);
3688 				PMAP_LOCK(pmap);
3689 				rw_rlock(lock);
3690 				if (md_gen != m->md.pv_gen ||
3691 				    pvh_gen != pvh->pv_gen) {
3692 					PMAP_UNLOCK(pmap);
3693 					goto restart;
3694 				}
3695 			}
3696 			pte = pmap_pml3e(pmap, pv->pv_va);
3697 			mask = 0;
3698 			if (modified)
3699 				mask |= PG_RW | PG_M;
3700 			if (accessed)
3701 				mask |= PG_V | PG_A;
3702 			rv = (*pte & mask) == mask;
3703 			PMAP_UNLOCK(pmap);
3704 			if (rv)
3705 				goto out;
3706 		}
3707 	}
3708 out:
3709 	rw_runlock(lock);
3710 	return (rv);
3711 }
3712 
3713 /*
3714  *	pmap_is_modified:
3715  *
3716  *	Return whether or not the specified physical page was modified
3717  *	in any physical maps.
3718  */
3719 boolean_t
3720 mmu_radix_is_modified(vm_page_t m)
3721 {
3722 
3723 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
3724 	    ("pmap_is_modified: page %p is not managed", m));
3725 
3726 	CTR2(KTR_PMAP, "%s(%p)", __func__, m);
3727 	/*
3728 	 * If the page is not busied then this check is racy.
3729 	 */
3730 	if (!pmap_page_is_write_mapped(m))
3731 		return (FALSE);
3732 	return (pmap_page_test_mappings(m, FALSE, TRUE));
3733 }
3734 
3735 boolean_t
3736 mmu_radix_is_prefaultable(pmap_t pmap, vm_offset_t addr)
3737 {
3738 	pml3_entry_t *l3e;
3739 	pt_entry_t *pte;
3740 	boolean_t rv;
3741 
3742 	CTR3(KTR_PMAP, "%s(%p, %#x)", __func__, pmap, addr);
3743 	rv = FALSE;
3744 	PMAP_LOCK(pmap);
3745 	l3e = pmap_pml3e(pmap, addr);
3746 	if (l3e != NULL && (*l3e & (RPTE_LEAF | PG_V)) == PG_V) {
3747 		pte = pmap_l3e_to_pte(l3e, addr);
3748 		rv = (*pte & PG_V) == 0;
3749 	}
3750 	PMAP_UNLOCK(pmap);
3751 	return (rv);
3752 }
3753 
3754 boolean_t
3755 mmu_radix_is_referenced(vm_page_t m)
3756 {
3757 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
3758 	    ("pmap_is_referenced: page %p is not managed", m));
3759 	CTR2(KTR_PMAP, "%s(%p)", __func__, m);
3760 	return (pmap_page_test_mappings(m, TRUE, FALSE));
3761 }
3762 
3763 /*
3764  *	pmap_ts_referenced:
3765  *
3766  *	Return a count of reference bits for a page, clearing those bits.
3767  *	It is not necessary for every reference bit to be cleared, but it
3768  *	is necessary that 0 only be returned when there are truly no
3769  *	reference bits set.
3770  *
3771  *	As an optimization, update the page's dirty field if a modified bit is
3772  *	found while counting reference bits.  This opportunistic update can be
3773  *	performed at low cost and can eliminate the need for some future calls
3774  *	to pmap_is_modified().  However, since this function stops after
3775  *	finding PMAP_TS_REFERENCED_MAX reference bits, it may not detect some
3776  *	dirty pages.  Those dirty pages will only be detected by a future call
3777  *	to pmap_is_modified().
3778  *
3779  *	A DI block is not needed within this function, because
3780  *	invalidations are performed before the PV list lock is
3781  *	released.
3782  */
3783 boolean_t
3784 mmu_radix_ts_referenced(vm_page_t m)
3785 {
3786 	struct md_page *pvh;
3787 	pv_entry_t pv, pvf;
3788 	pmap_t pmap;
3789 	struct rwlock *lock;
3790 	pml3_entry_t oldl3e, *l3e;
3791 	pt_entry_t *pte;
3792 	vm_paddr_t pa;
3793 	int cleared, md_gen, not_cleared, pvh_gen;
3794 	struct spglist free;
3795 
3796 	CTR2(KTR_PMAP, "%s(%p)", __func__, m);
3797 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
3798 	    ("pmap_ts_referenced: page %p is not managed", m));
3799 	SLIST_INIT(&free);
3800 	cleared = 0;
3801 	pa = VM_PAGE_TO_PHYS(m);
3802 	lock = PHYS_TO_PV_LIST_LOCK(pa);
3803 	pvh = (m->flags & PG_FICTITIOUS) != 0 ? &pv_dummy : pa_to_pvh(pa);
3804 	rw_wlock(lock);
3805 retry:
3806 	not_cleared = 0;
3807 	if ((pvf = TAILQ_FIRST(&pvh->pv_list)) == NULL)
3808 		goto small_mappings;
3809 	pv = pvf;
3810 	do {
3811 		if (pvf == NULL)
3812 			pvf = pv;
3813 		pmap = PV_PMAP(pv);
3814 		if (!PMAP_TRYLOCK(pmap)) {
3815 			pvh_gen = pvh->pv_gen;
3816 			rw_wunlock(lock);
3817 			PMAP_LOCK(pmap);
3818 			rw_wlock(lock);
3819 			if (pvh_gen != pvh->pv_gen) {
3820 				PMAP_UNLOCK(pmap);
3821 				goto retry;
3822 			}
3823 		}
3824 		l3e = pmap_pml3e(pmap, pv->pv_va);
3825 		oldl3e = *l3e;
3826 		if ((oldl3e & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
3827 			/*
3828 			 * Although "oldpde" is mapping a 2MB page, because
3829 			 * this function is called at a 4KB page granularity,
3830 			 * we only update the 4KB page under test.
3831 			 */
3832 			vm_page_dirty(m);
3833 		}
3834 		if ((oldl3e & PG_A) != 0) {
3835 			/*
3836 			 * Since this reference bit is shared by 512 4KB
3837 			 * pages, it should not be cleared every time it is
3838 			 * tested.  Apply a simple "hash" function on the
3839 			 * physical page number, the virtual superpage number,
3840 			 * and the pmap address to select one 4KB page out of
3841 			 * the 512 on which testing the reference bit will
3842 			 * result in clearing that reference bit.  This
3843 			 * function is designed to avoid the selection of the
3844 			 * same 4KB page for every 2MB page mapping.
3845 			 *
3846 			 * On demotion, a mapping that hasn't been referenced
3847 			 * is simply destroyed.  To avoid the possibility of a
3848 			 * subsequent page fault on a demoted wired mapping,
3849 			 * always leave its reference bit set.  Moreover,
3850 			 * since the superpage is wired, the current state of
3851 			 * its reference bit won't affect page replacement.
3852 			 */
3853 			if ((((pa >> PAGE_SHIFT) ^ (pv->pv_va >> L3_PAGE_SIZE_SHIFT) ^
3854 			    (uintptr_t)pmap) & (NPTEPG - 1)) == 0 &&
3855 			    (oldl3e & PG_W) == 0) {
3856 				atomic_clear_long(l3e, PG_A);
3857 				pmap_invalidate_page(pmap, pv->pv_va);
3858 				cleared++;
3859 				KASSERT(lock == VM_PAGE_TO_PV_LIST_LOCK(m),
3860 				    ("inconsistent pv lock %p %p for page %p",
3861 				    lock, VM_PAGE_TO_PV_LIST_LOCK(m), m));
3862 			} else
3863 				not_cleared++;
3864 		}
3865 		PMAP_UNLOCK(pmap);
3866 		/* Rotate the PV list if it has more than one entry. */
3867 		if (pv != NULL && TAILQ_NEXT(pv, pv_link) != NULL) {
3868 			TAILQ_REMOVE(&pvh->pv_list, pv, pv_link);
3869 			TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_link);
3870 			pvh->pv_gen++;
3871 		}
3872 		if (cleared + not_cleared >= PMAP_TS_REFERENCED_MAX)
3873 			goto out;
3874 	} while ((pv = TAILQ_FIRST(&pvh->pv_list)) != pvf);
3875 small_mappings:
3876 	if ((pvf = TAILQ_FIRST(&m->md.pv_list)) == NULL)
3877 		goto out;
3878 	pv = pvf;
3879 	do {
3880 		if (pvf == NULL)
3881 			pvf = pv;
3882 		pmap = PV_PMAP(pv);
3883 		if (!PMAP_TRYLOCK(pmap)) {
3884 			pvh_gen = pvh->pv_gen;
3885 			md_gen = m->md.pv_gen;
3886 			rw_wunlock(lock);
3887 			PMAP_LOCK(pmap);
3888 			rw_wlock(lock);
3889 			if (pvh_gen != pvh->pv_gen || md_gen != m->md.pv_gen) {
3890 				PMAP_UNLOCK(pmap);
3891 				goto retry;
3892 			}
3893 		}
3894 		l3e = pmap_pml3e(pmap, pv->pv_va);
3895 		KASSERT((*l3e & RPTE_LEAF) == 0,
3896 		    ("pmap_ts_referenced: found a 2mpage in page %p's pv list",
3897 		    m));
3898 		pte = pmap_l3e_to_pte(l3e, pv->pv_va);
3899 		if ((*pte & (PG_M | PG_RW)) == (PG_M | PG_RW))
3900 			vm_page_dirty(m);
3901 		if ((*pte & PG_A) != 0) {
3902 			atomic_clear_long(pte, PG_A);
3903 			pmap_invalidate_page(pmap, pv->pv_va);
3904 			cleared++;
3905 		}
3906 		PMAP_UNLOCK(pmap);
3907 		/* Rotate the PV list if it has more than one entry. */
3908 		if (pv != NULL && TAILQ_NEXT(pv, pv_link) != NULL) {
3909 			TAILQ_REMOVE(&m->md.pv_list, pv, pv_link);
3910 			TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_link);
3911 			m->md.pv_gen++;
3912 		}
3913 	} while ((pv = TAILQ_FIRST(&m->md.pv_list)) != pvf && cleared +
3914 	    not_cleared < PMAP_TS_REFERENCED_MAX);
3915 out:
3916 	rw_wunlock(lock);
3917 	vm_page_free_pages_toq(&free, true);
3918 	return (cleared + not_cleared);
3919 }
3920 
3921 static vm_offset_t
3922 mmu_radix_map(vm_offset_t *virt __unused, vm_paddr_t start,
3923     vm_paddr_t end, int prot __unused)
3924 {
3925 
3926 	CTR5(KTR_PMAP, "%s(%p, %#x, %#x, %#x)", __func__, virt, start, end,
3927 		 prot);
3928 	return (PHYS_TO_DMAP(start));
3929 }
3930 
3931 void
3932 mmu_radix_object_init_pt(pmap_t pmap, vm_offset_t addr,
3933     vm_object_t object, vm_pindex_t pindex, vm_size_t size)
3934 {
3935 	pml3_entry_t *l3e;
3936 	vm_paddr_t pa, ptepa;
3937 	vm_page_t p, pdpg;
3938 	vm_memattr_t ma;
3939 
3940 	CTR6(KTR_PMAP, "%s(%p, %#x, %p, %u, %#x)", __func__, pmap, addr,
3941 	    object, pindex, size);
3942 	VM_OBJECT_ASSERT_WLOCKED(object);
3943 	KASSERT(object->type == OBJT_DEVICE || object->type == OBJT_SG,
3944 			("pmap_object_init_pt: non-device object"));
3945 	/* NB: size can be logically ored with addr here */
3946 	if ((addr & L3_PAGE_MASK) == 0 && (size & L3_PAGE_MASK) == 0) {
3947 		if (!mmu_radix_ps_enabled(pmap))
3948 			return;
3949 		if (!vm_object_populate(object, pindex, pindex + atop(size)))
3950 			return;
3951 		p = vm_page_lookup(object, pindex);
3952 		KASSERT(p->valid == VM_PAGE_BITS_ALL,
3953 		    ("pmap_object_init_pt: invalid page %p", p));
3954 		ma = p->md.mdpg_cache_attrs;
3955 
3956 		/*
3957 		 * Abort the mapping if the first page is not physically
3958 		 * aligned to a 2MB page boundary.
3959 		 */
3960 		ptepa = VM_PAGE_TO_PHYS(p);
3961 		if (ptepa & L3_PAGE_MASK)
3962 			return;
3963 
3964 		/*
3965 		 * Skip the first page.  Abort the mapping if the rest of
3966 		 * the pages are not physically contiguous or have differing
3967 		 * memory attributes.
3968 		 */
3969 		p = TAILQ_NEXT(p, listq);
3970 		for (pa = ptepa + PAGE_SIZE; pa < ptepa + size;
3971 		    pa += PAGE_SIZE) {
3972 			KASSERT(p->valid == VM_PAGE_BITS_ALL,
3973 			    ("pmap_object_init_pt: invalid page %p", p));
3974 			if (pa != VM_PAGE_TO_PHYS(p) ||
3975 			    ma != p->md.mdpg_cache_attrs)
3976 				return;
3977 			p = TAILQ_NEXT(p, listq);
3978 		}
3979 
3980 		PMAP_LOCK(pmap);
3981 		for (pa = ptepa | pmap_cache_bits(ma);
3982 		    pa < ptepa + size; pa += L3_PAGE_SIZE) {
3983 			pdpg = pmap_allocl3e(pmap, addr, NULL);
3984 			if (pdpg == NULL) {
3985 				/*
3986 				 * The creation of mappings below is only an
3987 				 * optimization.  If a page directory page
3988 				 * cannot be allocated without blocking,
3989 				 * continue on to the next mapping rather than
3990 				 * blocking.
3991 				 */
3992 				addr += L3_PAGE_SIZE;
3993 				continue;
3994 			}
3995 			l3e = (pml3_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pdpg));
3996 			l3e = &l3e[pmap_pml3e_index(addr)];
3997 			if ((*l3e & PG_V) == 0) {
3998 				pa |= PG_M | PG_A | PG_RW;
3999 				pte_store(l3e, pa);
4000 				pmap_resident_count_inc(pmap, L3_PAGE_SIZE / PAGE_SIZE);
4001 				atomic_add_long(&pmap_l3e_mappings, 1);
4002 			} else {
4003 				/* Continue on if the PDE is already valid. */
4004 				pdpg->ref_count--;
4005 				KASSERT(pdpg->ref_count > 0,
4006 				    ("pmap_object_init_pt: missing reference "
4007 				    "to page directory page, va: 0x%lx", addr));
4008 			}
4009 			addr += L3_PAGE_SIZE;
4010 		}
4011 		ptesync();
4012 		PMAP_UNLOCK(pmap);
4013 	}
4014 }
4015 
4016 boolean_t
4017 mmu_radix_page_exists_quick(pmap_t pmap, vm_page_t m)
4018 {
4019 	struct md_page *pvh;
4020 	struct rwlock *lock;
4021 	pv_entry_t pv;
4022 	int loops = 0;
4023 	boolean_t rv;
4024 
4025 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4026 	    ("pmap_page_exists_quick: page %p is not managed", m));
4027 	CTR3(KTR_PMAP, "%s(%p, %p)", __func__, pmap, m);
4028 	rv = FALSE;
4029 	lock = VM_PAGE_TO_PV_LIST_LOCK(m);
4030 	rw_rlock(lock);
4031 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
4032 		if (PV_PMAP(pv) == pmap) {
4033 			rv = TRUE;
4034 			break;
4035 		}
4036 		loops++;
4037 		if (loops >= 16)
4038 			break;
4039 	}
4040 	if (!rv && loops < 16 && (m->flags & PG_FICTITIOUS) == 0) {
4041 		pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
4042 		TAILQ_FOREACH(pv, &pvh->pv_list, pv_link) {
4043 			if (PV_PMAP(pv) == pmap) {
4044 				rv = TRUE;
4045 				break;
4046 			}
4047 			loops++;
4048 			if (loops >= 16)
4049 				break;
4050 		}
4051 	}
4052 	rw_runlock(lock);
4053 	return (rv);
4054 }
4055 
4056 void
4057 mmu_radix_page_init(vm_page_t m)
4058 {
4059 
4060 	CTR2(KTR_PMAP, "%s(%p)", __func__, m);
4061 	TAILQ_INIT(&m->md.pv_list);
4062 	m->md.mdpg_cache_attrs = VM_MEMATTR_DEFAULT;
4063 }
4064 
4065 int
4066 mmu_radix_page_wired_mappings(vm_page_t m)
4067 {
4068 	struct rwlock *lock;
4069 	struct md_page *pvh;
4070 	pmap_t pmap;
4071 	pt_entry_t *pte;
4072 	pv_entry_t pv;
4073 	int count, md_gen, pvh_gen;
4074 
4075 	if ((m->oflags & VPO_UNMANAGED) != 0)
4076 		return (0);
4077 	CTR2(KTR_PMAP, "%s(%p)", __func__, m);
4078 	lock = VM_PAGE_TO_PV_LIST_LOCK(m);
4079 	rw_rlock(lock);
4080 restart:
4081 	count = 0;
4082 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
4083 		pmap = PV_PMAP(pv);
4084 		if (!PMAP_TRYLOCK(pmap)) {
4085 			md_gen = m->md.pv_gen;
4086 			rw_runlock(lock);
4087 			PMAP_LOCK(pmap);
4088 			rw_rlock(lock);
4089 			if (md_gen != m->md.pv_gen) {
4090 				PMAP_UNLOCK(pmap);
4091 				goto restart;
4092 			}
4093 		}
4094 		pte = pmap_pte(pmap, pv->pv_va);
4095 		if ((*pte & PG_W) != 0)
4096 			count++;
4097 		PMAP_UNLOCK(pmap);
4098 	}
4099 	if ((m->flags & PG_FICTITIOUS) == 0) {
4100 		pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
4101 		TAILQ_FOREACH(pv, &pvh->pv_list, pv_link) {
4102 			pmap = PV_PMAP(pv);
4103 			if (!PMAP_TRYLOCK(pmap)) {
4104 				md_gen = m->md.pv_gen;
4105 				pvh_gen = pvh->pv_gen;
4106 				rw_runlock(lock);
4107 				PMAP_LOCK(pmap);
4108 				rw_rlock(lock);
4109 				if (md_gen != m->md.pv_gen ||
4110 				    pvh_gen != pvh->pv_gen) {
4111 					PMAP_UNLOCK(pmap);
4112 					goto restart;
4113 				}
4114 			}
4115 			pte = pmap_pml3e(pmap, pv->pv_va);
4116 			if ((*pte & PG_W) != 0)
4117 				count++;
4118 			PMAP_UNLOCK(pmap);
4119 		}
4120 	}
4121 	rw_runlock(lock);
4122 	return (count);
4123 }
4124 
4125 static void
4126 mmu_radix_update_proctab(int pid, pml1_entry_t l1pa)
4127 {
4128 	isa3_proctab[pid].proctab0 = htobe64(RTS_SIZE |  l1pa | RADIX_PGD_INDEX_SHIFT);
4129 }
4130 
4131 int
4132 mmu_radix_pinit(pmap_t pmap)
4133 {
4134 	vmem_addr_t pid;
4135 	vm_paddr_t l1pa;
4136 
4137 	CTR2(KTR_PMAP, "%s(%p)", __func__, pmap);
4138 
4139 	/*
4140 	 * allocate the page directory page
4141 	 */
4142 	pmap->pm_pml1 = uma_zalloc(zone_radix_pgd, M_WAITOK);
4143 
4144 	for (int j = 0; j <  RADIX_PGD_SIZE_SHIFT; j++)
4145 		pagezero((vm_offset_t)pmap->pm_pml1 + j * PAGE_SIZE);
4146 	pmap->pm_radix.rt_root = 0;
4147 	TAILQ_INIT(&pmap->pm_pvchunk);
4148 	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
4149 	pmap->pm_flags = PMAP_PDE_SUPERPAGE;
4150 	vmem_alloc(asid_arena, 1, M_FIRSTFIT|M_WAITOK, &pid);
4151 
4152 	pmap->pm_pid = pid;
4153 	l1pa = DMAP_TO_PHYS((vm_offset_t)pmap->pm_pml1);
4154 	mmu_radix_update_proctab(pid, l1pa);
4155 	__asm __volatile("ptesync;isync" : : : "memory");
4156 
4157 	return (1);
4158 }
4159 
4160 /*
4161  * This routine is called if the desired page table page does not exist.
4162  *
4163  * If page table page allocation fails, this routine may sleep before
4164  * returning NULL.  It sleeps only if a lock pointer was given.
4165  *
4166  * Note: If a page allocation fails at page table level two or three,
4167  * one or two pages may be held during the wait, only to be released
4168  * afterwards.  This conservative approach is easily argued to avoid
4169  * race conditions.
4170  */
4171 static vm_page_t
4172 _pmap_allocpte(pmap_t pmap, vm_pindex_t ptepindex, struct rwlock **lockp)
4173 {
4174 	vm_page_t m, pdppg, pdpg;
4175 
4176 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
4177 
4178 	/*
4179 	 * Allocate a page table page.
4180 	 */
4181 	if ((m = vm_page_alloc(NULL, ptepindex, VM_ALLOC_NOOBJ |
4182 	    VM_ALLOC_WIRED | VM_ALLOC_ZERO)) == NULL) {
4183 		if (lockp != NULL) {
4184 			RELEASE_PV_LIST_LOCK(lockp);
4185 			PMAP_UNLOCK(pmap);
4186 			vm_wait(NULL);
4187 			PMAP_LOCK(pmap);
4188 		}
4189 		/*
4190 		 * Indicate the need to retry.  While waiting, the page table
4191 		 * page may have been allocated.
4192 		 */
4193 		return (NULL);
4194 	}
4195 	if ((m->flags & PG_ZERO) == 0)
4196 		mmu_radix_zero_page(m);
4197 
4198 	/*
4199 	 * Map the pagetable page into the process address space, if
4200 	 * it isn't already there.
4201 	 */
4202 
4203 	if (ptepindex >= (NUPDE + NUPDPE)) {
4204 		pml1_entry_t *l1e;
4205 		vm_pindex_t pml1index;
4206 
4207 		/* Wire up a new PDPE page */
4208 		pml1index = ptepindex - (NUPDE + NUPDPE);
4209 		l1e = &pmap->pm_pml1[pml1index];
4210 		pde_store(l1e, VM_PAGE_TO_PHYS(m));
4211 
4212 	} else if (ptepindex >= NUPDE) {
4213 		vm_pindex_t pml1index;
4214 		vm_pindex_t pdpindex;
4215 		pml1_entry_t *l1e;
4216 		pml2_entry_t *l2e;
4217 
4218 		/* Wire up a new l2e page */
4219 		pdpindex = ptepindex - NUPDE;
4220 		pml1index = pdpindex >> RPTE_SHIFT;
4221 
4222 		l1e = &pmap->pm_pml1[pml1index];
4223 		if ((*l1e & PG_V) == 0) {
4224 			/* Have to allocate a new pdp, recurse */
4225 			if (_pmap_allocpte(pmap, NUPDE + NUPDPE + pml1index,
4226 				lockp) == NULL) {
4227 				vm_page_unwire_noq(m);
4228 				vm_page_free_zero(m);
4229 				return (NULL);
4230 			}
4231 		} else {
4232 			/* Add reference to l2e page */
4233 			pdppg = PHYS_TO_VM_PAGE(*l1e & PG_FRAME);
4234 			pdppg->ref_count++;
4235 		}
4236 		l2e = (pml2_entry_t *)PHYS_TO_DMAP(*l1e & PG_FRAME);
4237 
4238 		/* Now find the pdp page */
4239 		l2e = &l2e[pdpindex & RPTE_MASK];
4240 		pde_store(l2e, VM_PAGE_TO_PHYS(m));
4241 
4242 	} else {
4243 		vm_pindex_t pml1index;
4244 		vm_pindex_t pdpindex;
4245 		pml1_entry_t *l1e;
4246 		pml2_entry_t *l2e;
4247 		pml3_entry_t *l3e;
4248 
4249 		/* Wire up a new PTE page */
4250 		pdpindex = ptepindex >> RPTE_SHIFT;
4251 		pml1index = pdpindex >> RPTE_SHIFT;
4252 
4253 		/* First, find the pdp and check that its valid. */
4254 		l1e = &pmap->pm_pml1[pml1index];
4255 		if ((*l1e & PG_V) == 0) {
4256 			/* Have to allocate a new pd, recurse */
4257 			if (_pmap_allocpte(pmap, NUPDE + pdpindex,
4258 			    lockp) == NULL) {
4259 				vm_page_unwire_noq(m);
4260 				vm_page_free_zero(m);
4261 				return (NULL);
4262 			}
4263 			l2e = (pml2_entry_t *)PHYS_TO_DMAP(*l1e & PG_FRAME);
4264 			l2e = &l2e[pdpindex & RPTE_MASK];
4265 		} else {
4266 			l2e = (pml2_entry_t *)PHYS_TO_DMAP(*l1e & PG_FRAME);
4267 			l2e = &l2e[pdpindex & RPTE_MASK];
4268 			if ((*l2e & PG_V) == 0) {
4269 				/* Have to allocate a new pd, recurse */
4270 				if (_pmap_allocpte(pmap, NUPDE + pdpindex,
4271 				    lockp) == NULL) {
4272 					vm_page_unwire_noq(m);
4273 					vm_page_free_zero(m);
4274 					return (NULL);
4275 				}
4276 			} else {
4277 				/* Add reference to the pd page */
4278 				pdpg = PHYS_TO_VM_PAGE(*l2e & PG_FRAME);
4279 				pdpg->ref_count++;
4280 			}
4281 		}
4282 		l3e = (pml3_entry_t *)PHYS_TO_DMAP(*l2e & PG_FRAME);
4283 
4284 		/* Now we know where the page directory page is */
4285 		l3e = &l3e[ptepindex & RPTE_MASK];
4286 		pde_store(l3e, VM_PAGE_TO_PHYS(m));
4287 	}
4288 
4289 	pmap_resident_count_inc(pmap, 1);
4290 	return (m);
4291 }
4292 static vm_page_t
4293 pmap_allocl3e(pmap_t pmap, vm_offset_t va, struct rwlock **lockp)
4294 {
4295 	vm_pindex_t pdpindex, ptepindex;
4296 	pml2_entry_t *pdpe;
4297 	vm_page_t pdpg;
4298 
4299 retry:
4300 	pdpe = pmap_pml2e(pmap, va);
4301 	if (pdpe != NULL && (*pdpe & PG_V) != 0) {
4302 		/* Add a reference to the pd page. */
4303 		pdpg = PHYS_TO_VM_PAGE(*pdpe & PG_FRAME);
4304 		pdpg->ref_count++;
4305 	} else {
4306 		/* Allocate a pd page. */
4307 		ptepindex = pmap_l3e_pindex(va);
4308 		pdpindex = ptepindex >> RPTE_SHIFT;
4309 		pdpg = _pmap_allocpte(pmap, NUPDE + pdpindex, lockp);
4310 		if (pdpg == NULL && lockp != NULL)
4311 			goto retry;
4312 	}
4313 	return (pdpg);
4314 }
4315 
4316 static vm_page_t
4317 pmap_allocpte(pmap_t pmap, vm_offset_t va, struct rwlock **lockp)
4318 {
4319 	vm_pindex_t ptepindex;
4320 	pml3_entry_t *pd;
4321 	vm_page_t m;
4322 
4323 	/*
4324 	 * Calculate pagetable page index
4325 	 */
4326 	ptepindex = pmap_l3e_pindex(va);
4327 retry:
4328 	/*
4329 	 * Get the page directory entry
4330 	 */
4331 	pd = pmap_pml3e(pmap, va);
4332 
4333 	/*
4334 	 * This supports switching from a 2MB page to a
4335 	 * normal 4K page.
4336 	 */
4337 	if (pd != NULL && (*pd & (RPTE_LEAF | PG_V)) == (RPTE_LEAF | PG_V)) {
4338 		if (!pmap_demote_l3e_locked(pmap, pd, va, lockp)) {
4339 			/*
4340 			 * Invalidation of the 2MB page mapping may have caused
4341 			 * the deallocation of the underlying PD page.
4342 			 */
4343 			pd = NULL;
4344 		}
4345 	}
4346 
4347 	/*
4348 	 * If the page table page is mapped, we just increment the
4349 	 * hold count, and activate it.
4350 	 */
4351 	if (pd != NULL && (*pd & PG_V) != 0) {
4352 		m = PHYS_TO_VM_PAGE(*pd & PG_FRAME);
4353 		m->ref_count++;
4354 	} else {
4355 		/*
4356 		 * Here if the pte page isn't mapped, or if it has been
4357 		 * deallocated.
4358 		 */
4359 		m = _pmap_allocpte(pmap, ptepindex, lockp);
4360 		if (m == NULL && lockp != NULL)
4361 			goto retry;
4362 	}
4363 	return (m);
4364 }
4365 
4366 static void
4367 mmu_radix_pinit0(pmap_t pmap)
4368 {
4369 
4370 	CTR2(KTR_PMAP, "%s(%p)", __func__, pmap);
4371 	PMAP_LOCK_INIT(pmap);
4372 	pmap->pm_pml1 = kernel_pmap->pm_pml1;
4373 	pmap->pm_pid = kernel_pmap->pm_pid;
4374 
4375 	pmap->pm_radix.rt_root = 0;
4376 	TAILQ_INIT(&pmap->pm_pvchunk);
4377 	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
4378 	kernel_pmap->pm_flags =
4379 		pmap->pm_flags = PMAP_PDE_SUPERPAGE;
4380 }
4381 /*
4382  * pmap_protect_l3e: do the things to protect a 2mpage in a process
4383  */
4384 static boolean_t
4385 pmap_protect_l3e(pmap_t pmap, pt_entry_t *l3e, vm_offset_t sva, vm_prot_t prot)
4386 {
4387 	pt_entry_t newpde, oldpde;
4388 	vm_offset_t eva, va;
4389 	vm_page_t m;
4390 	boolean_t anychanged;
4391 
4392 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
4393 	KASSERT((sva & L3_PAGE_MASK) == 0,
4394 	    ("pmap_protect_l3e: sva is not 2mpage aligned"));
4395 	anychanged = FALSE;
4396 retry:
4397 	oldpde = newpde = *l3e;
4398 	if ((oldpde & (PG_MANAGED | PG_M | PG_RW)) ==
4399 	    (PG_MANAGED | PG_M | PG_RW)) {
4400 		eva = sva + L3_PAGE_SIZE;
4401 		for (va = sva, m = PHYS_TO_VM_PAGE(oldpde & PG_PS_FRAME);
4402 		    va < eva; va += PAGE_SIZE, m++)
4403 			vm_page_dirty(m);
4404 	}
4405 	if ((prot & VM_PROT_WRITE) == 0) {
4406 		newpde &= ~(PG_RW | PG_M);
4407 		newpde |= RPTE_EAA_R;
4408 	}
4409 	if (prot & VM_PROT_EXECUTE)
4410 		newpde |= PG_X;
4411 	if (newpde != oldpde) {
4412 		/*
4413 		 * As an optimization to future operations on this PDE, clear
4414 		 * PG_PROMOTED.  The impending invalidation will remove any
4415 		 * lingering 4KB page mappings from the TLB.
4416 		 */
4417 		if (!atomic_cmpset_long(l3e, oldpde, newpde & ~PG_PROMOTED))
4418 			goto retry;
4419 		anychanged = TRUE;
4420 	}
4421 	return (anychanged);
4422 }
4423 
4424 void
4425 mmu_radix_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva,
4426     vm_prot_t prot)
4427 {
4428 	vm_offset_t va_next;
4429 	pml1_entry_t *l1e;
4430 	pml2_entry_t *l2e;
4431 	pml3_entry_t ptpaddr, *l3e;
4432 	pt_entry_t *pte;
4433 	boolean_t anychanged;
4434 
4435 	CTR5(KTR_PMAP, "%s(%p, %#x, %#x, %#x)", __func__, pmap, sva, eva,
4436 	    prot);
4437 
4438 	KASSERT((prot & ~VM_PROT_ALL) == 0, ("invalid prot %x", prot));
4439 	if (prot == VM_PROT_NONE) {
4440 		mmu_radix_remove(pmap, sva, eva);
4441 		return;
4442 	}
4443 
4444 	if ((prot & (VM_PROT_WRITE|VM_PROT_EXECUTE)) ==
4445 	    (VM_PROT_WRITE|VM_PROT_EXECUTE))
4446 		return;
4447 
4448 #ifdef INVARIANTS
4449 	if (VERBOSE_PROTECT || pmap_logging)
4450 		printf("pmap_protect(%p, %#lx, %#lx, %x) - asid: %lu\n",
4451 			   pmap, sva, eva, prot, pmap->pm_pid);
4452 #endif
4453 	anychanged = FALSE;
4454 
4455 	PMAP_LOCK(pmap);
4456 	for (; sva < eva; sva = va_next) {
4457 		l1e = pmap_pml1e(pmap, sva);
4458 		if ((*l1e & PG_V) == 0) {
4459 			va_next = (sva + L1_PAGE_SIZE) & ~L1_PAGE_MASK;
4460 			if (va_next < sva)
4461 				va_next = eva;
4462 			continue;
4463 		}
4464 
4465 		l2e = pmap_l1e_to_l2e(l1e, sva);
4466 		if ((*l2e & PG_V) == 0) {
4467 			va_next = (sva + L2_PAGE_SIZE) & ~L2_PAGE_MASK;
4468 			if (va_next < sva)
4469 				va_next = eva;
4470 			continue;
4471 		}
4472 
4473 		va_next = (sva + L3_PAGE_SIZE) & ~L3_PAGE_MASK;
4474 		if (va_next < sva)
4475 			va_next = eva;
4476 
4477 		l3e = pmap_l2e_to_l3e(l2e, sva);
4478 		ptpaddr = *l3e;
4479 
4480 		/*
4481 		 * Weed out invalid mappings.
4482 		 */
4483 		if (ptpaddr == 0)
4484 			continue;
4485 
4486 		/*
4487 		 * Check for large page.
4488 		 */
4489 		if ((ptpaddr & RPTE_LEAF) != 0) {
4490 			/*
4491 			 * Are we protecting the entire large page?  If not,
4492 			 * demote the mapping and fall through.
4493 			 */
4494 			if (sva + L3_PAGE_SIZE == va_next && eva >= va_next) {
4495 				if (pmap_protect_l3e(pmap, l3e, sva, prot))
4496 					anychanged = TRUE;
4497 				continue;
4498 			} else if (!pmap_demote_l3e(pmap, l3e, sva)) {
4499 				/*
4500 				 * The large page mapping was destroyed.
4501 				 */
4502 				continue;
4503 			}
4504 		}
4505 
4506 		if (va_next > eva)
4507 			va_next = eva;
4508 
4509 		for (pte = pmap_l3e_to_pte(l3e, sva); sva != va_next; pte++,
4510 		    sva += PAGE_SIZE) {
4511 			pt_entry_t obits, pbits;
4512 			vm_page_t m;
4513 
4514 retry:
4515 			MPASS(pte == pmap_pte(pmap, sva));
4516 			obits = pbits = *pte;
4517 			if ((pbits & PG_V) == 0)
4518 				continue;
4519 
4520 			if ((prot & VM_PROT_WRITE) == 0) {
4521 				if ((pbits & (PG_MANAGED | PG_M | PG_RW)) ==
4522 				    (PG_MANAGED | PG_M | PG_RW)) {
4523 					m = PHYS_TO_VM_PAGE(pbits & PG_FRAME);
4524 					vm_page_dirty(m);
4525 				}
4526 				pbits &= ~(PG_RW | PG_M);
4527 				pbits |= RPTE_EAA_R;
4528 			}
4529 			if (prot & VM_PROT_EXECUTE)
4530 				pbits |= PG_X;
4531 
4532 			if (pbits != obits) {
4533 				if (!atomic_cmpset_long(pte, obits, pbits))
4534 					goto retry;
4535 				if (obits & (PG_A|PG_M)) {
4536 					anychanged = TRUE;
4537 #ifdef INVARIANTS
4538 					if (VERBOSE_PROTECT || pmap_logging)
4539 						printf("%#lx %#lx -> %#lx\n",
4540 						    sva, obits, pbits);
4541 #endif
4542 				}
4543 			}
4544 		}
4545 	}
4546 	if (anychanged)
4547 		pmap_invalidate_all(pmap);
4548 	PMAP_UNLOCK(pmap);
4549 }
4550 
4551 void
4552 mmu_radix_qenter(vm_offset_t sva, vm_page_t *ma, int count)
4553 {
4554 
4555 	CTR4(KTR_PMAP, "%s(%#x, %p, %d)", __func__, sva, ma, count);
4556 	pt_entry_t oldpte, pa, *pte;
4557 	vm_page_t m;
4558 	uint64_t cache_bits, attr_bits;
4559 	vm_offset_t va;
4560 
4561 	oldpte = 0;
4562 	attr_bits = RPTE_EAA_R | RPTE_EAA_W | RPTE_EAA_P | PG_M | PG_A;
4563 	va = sva;
4564 	pte = kvtopte(va);
4565 	while (va < sva + PAGE_SIZE * count) {
4566 		if (__predict_false((va & L3_PAGE_MASK) == 0))
4567 			pte = kvtopte(va);
4568 		MPASS(pte == pmap_pte(kernel_pmap, va));
4569 
4570 		/*
4571 		 * XXX there has to be a more efficient way than traversing
4572 		 * the page table every time - but go for correctness for
4573 		 * today
4574 		 */
4575 
4576 		m = *ma++;
4577 		cache_bits = pmap_cache_bits(m->md.mdpg_cache_attrs);
4578 		pa = VM_PAGE_TO_PHYS(m) | cache_bits | attr_bits;
4579 		if (*pte != pa) {
4580 			oldpte |= *pte;
4581 			pte_store(pte, pa);
4582 		}
4583 		va += PAGE_SIZE;
4584 		pte++;
4585 	}
4586 	if (__predict_false((oldpte & RPTE_VALID) != 0))
4587 		pmap_invalidate_range(kernel_pmap, sva, sva + count *
4588 		    PAGE_SIZE);
4589 	else
4590 		ptesync();
4591 }
4592 
4593 void
4594 mmu_radix_qremove(vm_offset_t sva, int count)
4595 {
4596 	vm_offset_t va;
4597 	pt_entry_t *pte;
4598 
4599 	CTR3(KTR_PMAP, "%s(%#x, %d)", __func__, sva, count);
4600 	KASSERT(sva >= VM_MIN_KERNEL_ADDRESS, ("usermode or dmap va %lx", sva));
4601 
4602 	va = sva;
4603 	pte = kvtopte(va);
4604 	while (va < sva + PAGE_SIZE * count) {
4605 		if (__predict_false((va & L3_PAGE_MASK) == 0))
4606 			pte = kvtopte(va);
4607 		pte_clear(pte);
4608 		pte++;
4609 		va += PAGE_SIZE;
4610 	}
4611 	pmap_invalidate_range(kernel_pmap, sva, va);
4612 }
4613 
4614 /***************************************************
4615  * Page table page management routines.....
4616  ***************************************************/
4617 /*
4618  * Schedule the specified unused page table page to be freed.  Specifically,
4619  * add the page to the specified list of pages that will be released to the
4620  * physical memory manager after the TLB has been updated.
4621  */
4622 static __inline void
4623 pmap_add_delayed_free_list(vm_page_t m, struct spglist *free,
4624     boolean_t set_PG_ZERO)
4625 {
4626 
4627 	if (set_PG_ZERO)
4628 		m->flags |= PG_ZERO;
4629 	else
4630 		m->flags &= ~PG_ZERO;
4631 	SLIST_INSERT_HEAD(free, m, plinks.s.ss);
4632 }
4633 
4634 /*
4635  * Inserts the specified page table page into the specified pmap's collection
4636  * of idle page table pages.  Each of a pmap's page table pages is responsible
4637  * for mapping a distinct range of virtual addresses.  The pmap's collection is
4638  * ordered by this virtual address range.
4639  */
4640 static __inline int
4641 pmap_insert_pt_page(pmap_t pmap, vm_page_t mpte)
4642 {
4643 
4644 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
4645 	return (vm_radix_insert(&pmap->pm_radix, mpte));
4646 }
4647 
4648 /*
4649  * Removes the page table page mapping the specified virtual address from the
4650  * specified pmap's collection of idle page table pages, and returns it.
4651  * Otherwise, returns NULL if there is no page table page corresponding to the
4652  * specified virtual address.
4653  */
4654 static __inline vm_page_t
4655 pmap_remove_pt_page(pmap_t pmap, vm_offset_t va)
4656 {
4657 
4658 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
4659 	return (vm_radix_remove(&pmap->pm_radix, pmap_l3e_pindex(va)));
4660 }
4661 
4662 /*
4663  * Decrements a page table page's wire count, which is used to record the
4664  * number of valid page table entries within the page.  If the wire count
4665  * drops to zero, then the page table page is unmapped.  Returns TRUE if the
4666  * page table page was unmapped and FALSE otherwise.
4667  */
4668 static inline boolean_t
4669 pmap_unwire_ptp(pmap_t pmap, vm_offset_t va, vm_page_t m, struct spglist *free)
4670 {
4671 
4672 	--m->ref_count;
4673 	if (m->ref_count == 0) {
4674 		_pmap_unwire_ptp(pmap, va, m, free);
4675 		return (TRUE);
4676 	} else
4677 		return (FALSE);
4678 }
4679 
4680 static void
4681 _pmap_unwire_ptp(pmap_t pmap, vm_offset_t va, vm_page_t m, struct spglist *free)
4682 {
4683 
4684 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
4685 	/*
4686 	 * unmap the page table page
4687 	 */
4688 	if (m->pindex >= (NUPDE + NUPDPE)) {
4689 		/* PDP page */
4690 		pml1_entry_t *pml1;
4691 		pml1 = pmap_pml1e(pmap, va);
4692 		*pml1 = 0;
4693 	} else if (m->pindex >= NUPDE) {
4694 		/* PD page */
4695 		pml2_entry_t *l2e;
4696 		l2e = pmap_pml2e(pmap, va);
4697 		*l2e = 0;
4698 	} else {
4699 		/* PTE page */
4700 		pml3_entry_t *l3e;
4701 		l3e = pmap_pml3e(pmap, va);
4702 		*l3e = 0;
4703 	}
4704 	pmap_resident_count_dec(pmap, 1);
4705 	if (m->pindex < NUPDE) {
4706 		/* We just released a PT, unhold the matching PD */
4707 		vm_page_t pdpg;
4708 
4709 		pdpg = PHYS_TO_VM_PAGE(*pmap_pml2e(pmap, va) & PG_FRAME);
4710 		pmap_unwire_ptp(pmap, va, pdpg, free);
4711 	}
4712 	if (m->pindex >= NUPDE && m->pindex < (NUPDE + NUPDPE)) {
4713 		/* We just released a PD, unhold the matching PDP */
4714 		vm_page_t pdppg;
4715 
4716 		pdppg = PHYS_TO_VM_PAGE(*pmap_pml1e(pmap, va) & PG_FRAME);
4717 		pmap_unwire_ptp(pmap, va, pdppg, free);
4718 	}
4719 
4720 	/*
4721 	 * Put page on a list so that it is released after
4722 	 * *ALL* TLB shootdown is done
4723 	 */
4724 	pmap_add_delayed_free_list(m, free, TRUE);
4725 }
4726 
4727 /*
4728  * After removing a page table entry, this routine is used to
4729  * conditionally free the page, and manage the hold/wire counts.
4730  */
4731 static int
4732 pmap_unuse_pt(pmap_t pmap, vm_offset_t va, pml3_entry_t ptepde,
4733     struct spglist *free)
4734 {
4735 	vm_page_t mpte;
4736 
4737 	if (va >= VM_MAXUSER_ADDRESS)
4738 		return (0);
4739 	KASSERT(ptepde != 0, ("pmap_unuse_pt: ptepde != 0"));
4740 	mpte = PHYS_TO_VM_PAGE(ptepde & PG_FRAME);
4741 	return (pmap_unwire_ptp(pmap, va, mpte, free));
4742 }
4743 
4744 void
4745 mmu_radix_release(pmap_t pmap)
4746 {
4747 
4748 	CTR2(KTR_PMAP, "%s(%p)", __func__, pmap);
4749 	KASSERT(pmap->pm_stats.resident_count == 0,
4750 	    ("pmap_release: pmap resident count %ld != 0",
4751 	    pmap->pm_stats.resident_count));
4752 	KASSERT(vm_radix_is_empty(&pmap->pm_radix),
4753 	    ("pmap_release: pmap has reserved page table page(s)"));
4754 
4755 	pmap_invalidate_all(pmap);
4756 	isa3_proctab[pmap->pm_pid].proctab0 = 0;
4757 	uma_zfree(zone_radix_pgd, pmap->pm_pml1);
4758 	vmem_free(asid_arena, pmap->pm_pid, 1);
4759 }
4760 
4761 /*
4762  * Create the PV entry for a 2MB page mapping.  Always returns true unless the
4763  * flag PMAP_ENTER_NORECLAIM is specified.  If that flag is specified, returns
4764  * false if the PV entry cannot be allocated without resorting to reclamation.
4765  */
4766 static bool
4767 pmap_pv_insert_l3e(pmap_t pmap, vm_offset_t va, pml3_entry_t pde, u_int flags,
4768     struct rwlock **lockp)
4769 {
4770 	struct md_page *pvh;
4771 	pv_entry_t pv;
4772 	vm_paddr_t pa;
4773 
4774 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
4775 	/* Pass NULL instead of the lock pointer to disable reclamation. */
4776 	if ((pv = get_pv_entry(pmap, (flags & PMAP_ENTER_NORECLAIM) != 0 ?
4777 	    NULL : lockp)) == NULL)
4778 		return (false);
4779 	pv->pv_va = va;
4780 	pa = pde & PG_PS_FRAME;
4781 	CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, pa);
4782 	pvh = pa_to_pvh(pa);
4783 	TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_link);
4784 	pvh->pv_gen++;
4785 	return (true);
4786 }
4787 
4788 /*
4789  * Fills a page table page with mappings to consecutive physical pages.
4790  */
4791 static void
4792 pmap_fill_ptp(pt_entry_t *firstpte, pt_entry_t newpte)
4793 {
4794 	pt_entry_t *pte;
4795 
4796 	for (pte = firstpte; pte < firstpte + NPTEPG; pte++) {
4797 		*pte = newpte;
4798 		newpte += PAGE_SIZE;
4799 	}
4800 }
4801 
4802 static boolean_t
4803 pmap_demote_l3e(pmap_t pmap, pml3_entry_t *pde, vm_offset_t va)
4804 {
4805 	struct rwlock *lock;
4806 	boolean_t rv;
4807 
4808 	lock = NULL;
4809 	rv = pmap_demote_l3e_locked(pmap, pde, va, &lock);
4810 	if (lock != NULL)
4811 		rw_wunlock(lock);
4812 	return (rv);
4813 }
4814 
4815 static boolean_t
4816 pmap_demote_l3e_locked(pmap_t pmap, pml3_entry_t *l3e, vm_offset_t va,
4817     struct rwlock **lockp)
4818 {
4819 	pml3_entry_t oldpde;
4820 	pt_entry_t *firstpte;
4821 	vm_paddr_t mptepa;
4822 	vm_page_t mpte;
4823 	struct spglist free;
4824 	vm_offset_t sva;
4825 
4826 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
4827 	oldpde = *l3e;
4828 	KASSERT((oldpde & (RPTE_LEAF | PG_V)) == (RPTE_LEAF | PG_V),
4829 	    ("pmap_demote_l3e: oldpde is missing RPTE_LEAF and/or PG_V %lx",
4830 	    oldpde));
4831 	if ((oldpde & PG_A) == 0 || (mpte = pmap_remove_pt_page(pmap, va)) ==
4832 	    NULL) {
4833 		KASSERT((oldpde & PG_W) == 0,
4834 		    ("pmap_demote_l3e: page table page for a wired mapping"
4835 		    " is missing"));
4836 
4837 		/*
4838 		 * Invalidate the 2MB page mapping and return "failure" if the
4839 		 * mapping was never accessed or the allocation of the new
4840 		 * page table page fails.  If the 2MB page mapping belongs to
4841 		 * the direct map region of the kernel's address space, then
4842 		 * the page allocation request specifies the highest possible
4843 		 * priority (VM_ALLOC_INTERRUPT).  Otherwise, the priority is
4844 		 * normal.  Page table pages are preallocated for every other
4845 		 * part of the kernel address space, so the direct map region
4846 		 * is the only part of the kernel address space that must be
4847 		 * handled here.
4848 		 */
4849 		if ((oldpde & PG_A) == 0 || (mpte = vm_page_alloc(NULL,
4850 		    pmap_l3e_pindex(va), (va >= DMAP_MIN_ADDRESS && va <
4851 		    DMAP_MAX_ADDRESS ? VM_ALLOC_INTERRUPT : VM_ALLOC_NORMAL) |
4852 		    VM_ALLOC_NOOBJ | VM_ALLOC_WIRED)) == NULL) {
4853 			SLIST_INIT(&free);
4854 			sva = trunc_2mpage(va);
4855 			pmap_remove_l3e(pmap, l3e, sva, &free, lockp);
4856 			pmap_invalidate_l3e_page(pmap, sva, oldpde);
4857 			vm_page_free_pages_toq(&free, true);
4858 			CTR2(KTR_PMAP, "pmap_demote_l3e: failure for va %#lx"
4859 			    " in pmap %p", va, pmap);
4860 			return (FALSE);
4861 		}
4862 		if (va < VM_MAXUSER_ADDRESS)
4863 			pmap_resident_count_inc(pmap, 1);
4864 	}
4865 	mptepa = VM_PAGE_TO_PHYS(mpte);
4866 	firstpte = (pt_entry_t *)PHYS_TO_DMAP(mptepa);
4867 	KASSERT((oldpde & PG_A) != 0,
4868 	    ("pmap_demote_l3e: oldpde is missing PG_A"));
4869 	KASSERT((oldpde & (PG_M | PG_RW)) != PG_RW,
4870 	    ("pmap_demote_l3e: oldpde is missing PG_M"));
4871 
4872 	/*
4873 	 * If the page table page is new, initialize it.
4874 	 */
4875 	if (mpte->ref_count == 1) {
4876 		mpte->ref_count = NPTEPG;
4877 		pmap_fill_ptp(firstpte, oldpde);
4878 	}
4879 
4880 	KASSERT((*firstpte & PG_FRAME) == (oldpde & PG_FRAME),
4881 	    ("pmap_demote_l3e: firstpte and newpte map different physical"
4882 	    " addresses"));
4883 
4884 	/*
4885 	 * If the mapping has changed attributes, update the page table
4886 	 * entries.
4887 	 */
4888 	if ((*firstpte & PG_PTE_PROMOTE) != (oldpde & PG_PTE_PROMOTE))
4889 		pmap_fill_ptp(firstpte, oldpde);
4890 
4891 	/*
4892 	 * The spare PV entries must be reserved prior to demoting the
4893 	 * mapping, that is, prior to changing the PDE.  Otherwise, the state
4894 	 * of the PDE and the PV lists will be inconsistent, which can result
4895 	 * in reclaim_pv_chunk() attempting to remove a PV entry from the
4896 	 * wrong PV list and pmap_pv_demote_l3e() failing to find the expected
4897 	 * PV entry for the 2MB page mapping that is being demoted.
4898 	 */
4899 	if ((oldpde & PG_MANAGED) != 0)
4900 		reserve_pv_entries(pmap, NPTEPG - 1, lockp);
4901 
4902 	/*
4903 	 * Demote the mapping.  This pmap is locked.  The old PDE has
4904 	 * PG_A set.  If the old PDE has PG_RW set, it also has PG_M
4905 	 * set.  Thus, there is no danger of a race with another
4906 	 * processor changing the setting of PG_A and/or PG_M between
4907 	 * the read above and the store below.
4908 	 */
4909 	pde_store(l3e, mptepa);
4910 	ptesync();
4911 	/*
4912 	 * Demote the PV entry.
4913 	 */
4914 	if ((oldpde & PG_MANAGED) != 0)
4915 		pmap_pv_demote_l3e(pmap, va, oldpde & PG_PS_FRAME, lockp);
4916 
4917 
4918 	atomic_add_long(&pmap_l3e_demotions, 1);
4919 	CTR2(KTR_PMAP, "pmap_demote_l3e: success for va %#lx"
4920 	    " in pmap %p", va, pmap);
4921 	return (TRUE);
4922 }
4923 
4924 /*
4925  * pmap_remove_kernel_pde: Remove a kernel superpage mapping.
4926  */
4927 static void
4928 pmap_remove_kernel_l3e(pmap_t pmap, pml3_entry_t *l3e, vm_offset_t va)
4929 {
4930 	vm_paddr_t mptepa;
4931 	vm_page_t mpte;
4932 
4933 	KASSERT(pmap == kernel_pmap, ("pmap %p is not kernel_pmap", pmap));
4934 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
4935 	mpte = pmap_remove_pt_page(pmap, va);
4936 	if (mpte == NULL)
4937 		panic("pmap_remove_kernel_pde: Missing pt page.");
4938 
4939 	mptepa = VM_PAGE_TO_PHYS(mpte);
4940 
4941 	/*
4942 	 * Initialize the page table page.
4943 	 */
4944 	pagezero(PHYS_TO_DMAP(mptepa));
4945 
4946 	/*
4947 	 * Demote the mapping.
4948 	 */
4949 	pde_store(l3e, mptepa);
4950 	ptesync();
4951 }
4952 
4953 /*
4954  * pmap_remove_l3e: do the things to unmap a superpage in a process
4955  */
4956 static int
4957 pmap_remove_l3e(pmap_t pmap, pml3_entry_t *pdq, vm_offset_t sva,
4958     struct spglist *free, struct rwlock **lockp)
4959 {
4960 	struct md_page *pvh;
4961 	pml3_entry_t oldpde;
4962 	vm_offset_t eva, va;
4963 	vm_page_t m, mpte;
4964 
4965 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
4966 	KASSERT((sva & L3_PAGE_MASK) == 0,
4967 	    ("pmap_remove_l3e: sva is not 2mpage aligned"));
4968 	oldpde = pte_load_clear(pdq);
4969 	if (oldpde & PG_W)
4970 		pmap->pm_stats.wired_count -= (L3_PAGE_SIZE / PAGE_SIZE);
4971 	pmap_resident_count_dec(pmap, L3_PAGE_SIZE / PAGE_SIZE);
4972 	if (oldpde & PG_MANAGED) {
4973 		CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, oldpde & PG_PS_FRAME);
4974 		pvh = pa_to_pvh(oldpde & PG_PS_FRAME);
4975 		pmap_pvh_free(pvh, pmap, sva);
4976 		eva = sva + L3_PAGE_SIZE;
4977 		for (va = sva, m = PHYS_TO_VM_PAGE(oldpde & PG_PS_FRAME);
4978 		    va < eva; va += PAGE_SIZE, m++) {
4979 			if ((oldpde & (PG_M | PG_RW)) == (PG_M | PG_RW))
4980 				vm_page_dirty(m);
4981 			if (oldpde & PG_A)
4982 				vm_page_aflag_set(m, PGA_REFERENCED);
4983 			if (TAILQ_EMPTY(&m->md.pv_list) &&
4984 			    TAILQ_EMPTY(&pvh->pv_list))
4985 				vm_page_aflag_clear(m, PGA_WRITEABLE);
4986 		}
4987 	}
4988 	if (pmap == kernel_pmap) {
4989 		pmap_remove_kernel_l3e(pmap, pdq, sva);
4990 	} else {
4991 		mpte = pmap_remove_pt_page(pmap, sva);
4992 		if (mpte != NULL) {
4993 			pmap_resident_count_dec(pmap, 1);
4994 			KASSERT(mpte->ref_count == NPTEPG,
4995 			    ("pmap_remove_l3e: pte page wire count error"));
4996 			mpte->ref_count = 0;
4997 			pmap_add_delayed_free_list(mpte, free, FALSE);
4998 		}
4999 	}
5000 	return (pmap_unuse_pt(pmap, sva, *pmap_pml2e(pmap, sva), free));
5001 }
5002 
5003 
5004 /*
5005  * pmap_remove_pte: do the things to unmap a page in a process
5006  */
5007 static int
5008 pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t va,
5009     pml3_entry_t ptepde, struct spglist *free, struct rwlock **lockp)
5010 {
5011 	struct md_page *pvh;
5012 	pt_entry_t oldpte;
5013 	vm_page_t m;
5014 
5015 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
5016 	oldpte = pte_load_clear(ptq);
5017 	if (oldpte & RPTE_WIRED)
5018 		pmap->pm_stats.wired_count -= 1;
5019 	pmap_resident_count_dec(pmap, 1);
5020 	if (oldpte & RPTE_MANAGED) {
5021 		m = PHYS_TO_VM_PAGE(oldpte & PG_FRAME);
5022 		if ((oldpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
5023 			vm_page_dirty(m);
5024 		if (oldpte & PG_A)
5025 			vm_page_aflag_set(m, PGA_REFERENCED);
5026 		CHANGE_PV_LIST_LOCK_TO_VM_PAGE(lockp, m);
5027 		pmap_pvh_free(&m->md, pmap, va);
5028 		if (TAILQ_EMPTY(&m->md.pv_list) &&
5029 		    (m->flags & PG_FICTITIOUS) == 0) {
5030 			pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
5031 			if (TAILQ_EMPTY(&pvh->pv_list))
5032 				vm_page_aflag_clear(m, PGA_WRITEABLE);
5033 		}
5034 	}
5035 	return (pmap_unuse_pt(pmap, va, ptepde, free));
5036 }
5037 
5038 /*
5039  * Remove a single page from a process address space
5040  */
5041 static bool
5042 pmap_remove_page(pmap_t pmap, vm_offset_t va, pml3_entry_t *l3e,
5043     struct spglist *free)
5044 {
5045 	struct rwlock *lock;
5046 	pt_entry_t *pte;
5047 	bool invalidate_all;
5048 
5049 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
5050 	if ((*l3e & RPTE_VALID) == 0) {
5051 		return (false);
5052 	}
5053 	pte = pmap_l3e_to_pte(l3e, va);
5054 	if ((*pte & RPTE_VALID) == 0) {
5055 		return (false);
5056 	}
5057 	lock = NULL;
5058 
5059 	invalidate_all = pmap_remove_pte(pmap, pte, va, *l3e, free, &lock);
5060 	if (lock != NULL)
5061 		rw_wunlock(lock);
5062 	if (!invalidate_all)
5063 		pmap_invalidate_page(pmap, va);
5064 	return (invalidate_all);
5065 }
5066 
5067 /*
5068  * Removes the specified range of addresses from the page table page.
5069  */
5070 static bool
5071 pmap_remove_ptes(pmap_t pmap, vm_offset_t sva, vm_offset_t eva,
5072     pml3_entry_t *l3e, struct spglist *free, struct rwlock **lockp)
5073 {
5074 	pt_entry_t *pte;
5075 	vm_offset_t va;
5076 	bool anyvalid;
5077 
5078 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
5079 	anyvalid = false;
5080 	va = eva;
5081 	for (pte = pmap_l3e_to_pte(l3e, sva); sva != eva; pte++,
5082 	    sva += PAGE_SIZE) {
5083 		MPASS(pte == pmap_pte(pmap, sva));
5084 		if (*pte == 0) {
5085 			if (va != eva) {
5086 				anyvalid = true;
5087 				va = eva;
5088 			}
5089 			continue;
5090 		}
5091 		if (va == eva)
5092 			va = sva;
5093 		if (pmap_remove_pte(pmap, pte, sva, *l3e, free, lockp)) {
5094 			anyvalid = true;
5095 			sva += PAGE_SIZE;
5096 			break;
5097 		}
5098 	}
5099 	if (anyvalid)
5100 		pmap_invalidate_all(pmap);
5101 	else if (va != eva)
5102 		pmap_invalidate_range(pmap, va, sva);
5103 	return (anyvalid);
5104 }
5105 
5106 
5107 void
5108 mmu_radix_remove(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
5109 {
5110 	struct rwlock *lock;
5111 	vm_offset_t va_next;
5112 	pml1_entry_t *l1e;
5113 	pml2_entry_t *l2e;
5114 	pml3_entry_t ptpaddr, *l3e;
5115 	struct spglist free;
5116 	bool anyvalid;
5117 
5118 	CTR4(KTR_PMAP, "%s(%p, %#x, %#x)", __func__, pmap, sva, eva);
5119 
5120 	/*
5121 	 * Perform an unsynchronized read.  This is, however, safe.
5122 	 */
5123 	if (pmap->pm_stats.resident_count == 0)
5124 		return;
5125 
5126 	anyvalid = false;
5127 	SLIST_INIT(&free);
5128 
5129 	/* XXX something fishy here */
5130 	sva = (sva + PAGE_MASK) & ~PAGE_MASK;
5131 	eva = (eva + PAGE_MASK) & ~PAGE_MASK;
5132 
5133 	PMAP_LOCK(pmap);
5134 
5135 	/*
5136 	 * special handling of removing one page.  a very
5137 	 * common operation and easy to short circuit some
5138 	 * code.
5139 	 */
5140 	if (sva + PAGE_SIZE == eva) {
5141 		l3e = pmap_pml3e(pmap, sva);
5142 		if (l3e && (*l3e & RPTE_LEAF) == 0) {
5143 			anyvalid = pmap_remove_page(pmap, sva, l3e, &free);
5144 			goto out;
5145 		}
5146 	}
5147 
5148 	lock = NULL;
5149 	for (; sva < eva; sva = va_next) {
5150 
5151 		if (pmap->pm_stats.resident_count == 0)
5152 			break;
5153 		l1e = pmap_pml1e(pmap, sva);
5154 		if (l1e == NULL || (*l1e & PG_V) == 0) {
5155 			va_next = (sva + L1_PAGE_SIZE) & ~L1_PAGE_MASK;
5156 			if (va_next < sva)
5157 				va_next = eva;
5158 			continue;
5159 		}
5160 
5161 		l2e = pmap_l1e_to_l2e(l1e, sva);
5162 		if (l2e == NULL || (*l2e & PG_V) == 0) {
5163 			va_next = (sva + L2_PAGE_SIZE) & ~L2_PAGE_MASK;
5164 			if (va_next < sva)
5165 				va_next = eva;
5166 			continue;
5167 		}
5168 
5169 		/*
5170 		 * Calculate index for next page table.
5171 		 */
5172 		va_next = (sva + L3_PAGE_SIZE) & ~L3_PAGE_MASK;
5173 		if (va_next < sva)
5174 			va_next = eva;
5175 
5176 		l3e = pmap_l2e_to_l3e(l2e, sva);
5177 		ptpaddr = *l3e;
5178 
5179 		/*
5180 		 * Weed out invalid mappings.
5181 		 */
5182 		if (ptpaddr == 0)
5183 			continue;
5184 
5185 		/*
5186 		 * Check for large page.
5187 		 */
5188 		if ((ptpaddr & RPTE_LEAF) != 0) {
5189 			/*
5190 			 * Are we removing the entire large page?  If not,
5191 			 * demote the mapping and fall through.
5192 			 */
5193 			if (sva + L3_PAGE_SIZE == va_next && eva >= va_next) {
5194 				pmap_remove_l3e(pmap, l3e, sva, &free, &lock);
5195 				continue;
5196 			} else if (!pmap_demote_l3e_locked(pmap, l3e, sva,
5197 			    &lock)) {
5198 				/* The large page mapping was destroyed. */
5199 				continue;
5200 			} else
5201 				ptpaddr = *l3e;
5202 		}
5203 
5204 		/*
5205 		 * Limit our scan to either the end of the va represented
5206 		 * by the current page table page, or to the end of the
5207 		 * range being removed.
5208 		 */
5209 		if (va_next > eva)
5210 			va_next = eva;
5211 
5212 		if (pmap_remove_ptes(pmap, sva, va_next, l3e, &free, &lock))
5213 			anyvalid = true;
5214 	}
5215 	if (lock != NULL)
5216 		rw_wunlock(lock);
5217 out:
5218 	if (anyvalid)
5219 		pmap_invalidate_all(pmap);
5220 	PMAP_UNLOCK(pmap);
5221 	vm_page_free_pages_toq(&free, true);
5222 }
5223 
5224 void
5225 mmu_radix_remove_all(vm_page_t m)
5226 {
5227 	struct md_page *pvh;
5228 	pv_entry_t pv;
5229 	pmap_t pmap;
5230 	struct rwlock *lock;
5231 	pt_entry_t *pte, tpte;
5232 	pml3_entry_t *l3e;
5233 	vm_offset_t va;
5234 	struct spglist free;
5235 	int pvh_gen, md_gen;
5236 
5237 	CTR2(KTR_PMAP, "%s(%p)", __func__, m);
5238 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
5239 	    ("pmap_remove_all: page %p is not managed", m));
5240 	SLIST_INIT(&free);
5241 	lock = VM_PAGE_TO_PV_LIST_LOCK(m);
5242 	pvh = (m->flags & PG_FICTITIOUS) != 0 ? &pv_dummy :
5243 	    pa_to_pvh(VM_PAGE_TO_PHYS(m));
5244 retry:
5245 	rw_wlock(lock);
5246 	while ((pv = TAILQ_FIRST(&pvh->pv_list)) != NULL) {
5247 		pmap = PV_PMAP(pv);
5248 		if (!PMAP_TRYLOCK(pmap)) {
5249 			pvh_gen = pvh->pv_gen;
5250 			rw_wunlock(lock);
5251 			PMAP_LOCK(pmap);
5252 			rw_wlock(lock);
5253 			if (pvh_gen != pvh->pv_gen) {
5254 				rw_wunlock(lock);
5255 				PMAP_UNLOCK(pmap);
5256 				goto retry;
5257 			}
5258 		}
5259 		va = pv->pv_va;
5260 		l3e = pmap_pml3e(pmap, va);
5261 		(void)pmap_demote_l3e_locked(pmap, l3e, va, &lock);
5262 		PMAP_UNLOCK(pmap);
5263 	}
5264 	while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
5265 		pmap = PV_PMAP(pv);
5266 		if (!PMAP_TRYLOCK(pmap)) {
5267 			pvh_gen = pvh->pv_gen;
5268 			md_gen = m->md.pv_gen;
5269 			rw_wunlock(lock);
5270 			PMAP_LOCK(pmap);
5271 			rw_wlock(lock);
5272 			if (pvh_gen != pvh->pv_gen || md_gen != m->md.pv_gen) {
5273 				rw_wunlock(lock);
5274 				PMAP_UNLOCK(pmap);
5275 				goto retry;
5276 			}
5277 		}
5278 		pmap_resident_count_dec(pmap, 1);
5279 		l3e = pmap_pml3e(pmap, pv->pv_va);
5280 		KASSERT((*l3e & RPTE_LEAF) == 0, ("pmap_remove_all: found"
5281 		    " a 2mpage in page %p's pv list", m));
5282 		pte = pmap_l3e_to_pte(l3e, pv->pv_va);
5283 		tpte = pte_load_clear(pte);
5284 		if (tpte & PG_W)
5285 			pmap->pm_stats.wired_count--;
5286 		if (tpte & PG_A)
5287 			vm_page_aflag_set(m, PGA_REFERENCED);
5288 
5289 		/*
5290 		 * Update the vm_page_t clean and reference bits.
5291 		 */
5292 		if ((tpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
5293 			vm_page_dirty(m);
5294 		pmap_unuse_pt(pmap, pv->pv_va, *l3e, &free);
5295 		pmap_invalidate_page(pmap, pv->pv_va);
5296 		TAILQ_REMOVE(&m->md.pv_list, pv, pv_link);
5297 		m->md.pv_gen++;
5298 		free_pv_entry(pmap, pv);
5299 		PMAP_UNLOCK(pmap);
5300 	}
5301 	vm_page_aflag_clear(m, PGA_WRITEABLE);
5302 	rw_wunlock(lock);
5303 	vm_page_free_pages_toq(&free, true);
5304 }
5305 
5306 /*
5307  * Destroy all managed, non-wired mappings in the given user-space
5308  * pmap.  This pmap cannot be active on any processor besides the
5309  * caller.
5310  *
5311  * This function cannot be applied to the kernel pmap.  Moreover, it
5312  * is not intended for general use.  It is only to be used during
5313  * process termination.  Consequently, it can be implemented in ways
5314  * that make it faster than pmap_remove().  First, it can more quickly
5315  * destroy mappings by iterating over the pmap's collection of PV
5316  * entries, rather than searching the page table.  Second, it doesn't
5317  * have to test and clear the page table entries atomically, because
5318  * no processor is currently accessing the user address space.  In
5319  * particular, a page table entry's dirty bit won't change state once
5320  * this function starts.
5321  *
5322  * Although this function destroys all of the pmap's managed,
5323  * non-wired mappings, it can delay and batch the invalidation of TLB
5324  * entries without calling pmap_delayed_invl_started() and
5325  * pmap_delayed_invl_finished().  Because the pmap is not active on
5326  * any other processor, none of these TLB entries will ever be used
5327  * before their eventual invalidation.  Consequently, there is no need
5328  * for either pmap_remove_all() or pmap_remove_write() to wait for
5329  * that eventual TLB invalidation.
5330  */
5331 
5332 void
5333 mmu_radix_remove_pages(pmap_t pmap)
5334 {
5335 
5336 	CTR2(KTR_PMAP, "%s(%p)", __func__, pmap);
5337 	pml3_entry_t ptel3e;
5338 	pt_entry_t *pte, tpte;
5339 	struct spglist free;
5340 	vm_page_t m, mpte, mt;
5341 	pv_entry_t pv;
5342 	struct md_page *pvh;
5343 	struct pv_chunk *pc, *npc;
5344 	struct rwlock *lock;
5345 	int64_t bit;
5346 	uint64_t inuse, bitmask;
5347 	int allfree, field, freed, idx;
5348 	boolean_t superpage;
5349 	vm_paddr_t pa;
5350 
5351 	/*
5352 	 * Assert that the given pmap is only active on the current
5353 	 * CPU.  Unfortunately, we cannot block another CPU from
5354 	 * activating the pmap while this function is executing.
5355 	 */
5356 	KASSERT(pmap->pm_pid == mfspr(SPR_PID),
5357 	    ("non-current asid %lu - expected %lu", pmap->pm_pid,
5358 	    mfspr(SPR_PID)));
5359 
5360 	lock = NULL;
5361 
5362 	SLIST_INIT(&free);
5363 	PMAP_LOCK(pmap);
5364 	TAILQ_FOREACH_SAFE(pc, &pmap->pm_pvchunk, pc_list, npc) {
5365 		allfree = 1;
5366 		freed = 0;
5367 		for (field = 0; field < _NPCM; field++) {
5368 			inuse = ~pc->pc_map[field] & pc_freemask[field];
5369 			while (inuse != 0) {
5370 				bit = cnttzd(inuse);
5371 				bitmask = 1UL << bit;
5372 				idx = field * 64 + bit;
5373 				pv = &pc->pc_pventry[idx];
5374 				inuse &= ~bitmask;
5375 
5376 				pte = pmap_pml2e(pmap, pv->pv_va);
5377 				ptel3e = *pte;
5378 				pte = pmap_l2e_to_l3e(pte, pv->pv_va);
5379 				tpte = *pte;
5380 				if ((tpte & (RPTE_LEAF | PG_V)) == PG_V) {
5381 					superpage = FALSE;
5382 					ptel3e = tpte;
5383 					pte = (pt_entry_t *)PHYS_TO_DMAP(tpte &
5384 					    PG_FRAME);
5385 					pte = &pte[pmap_pte_index(pv->pv_va)];
5386 					tpte = *pte;
5387 				} else {
5388 					/*
5389 					 * Keep track whether 'tpte' is a
5390 					 * superpage explicitly instead of
5391 					 * relying on RPTE_LEAF being set.
5392 					 *
5393 					 * This is because RPTE_LEAF is numerically
5394 					 * identical to PG_PTE_PAT and thus a
5395 					 * regular page could be mistaken for
5396 					 * a superpage.
5397 					 */
5398 					superpage = TRUE;
5399 				}
5400 
5401 				if ((tpte & PG_V) == 0) {
5402 					panic("bad pte va %lx pte %lx",
5403 					    pv->pv_va, tpte);
5404 				}
5405 
5406 /*
5407  * We cannot remove wired pages from a process' mapping at this time
5408  */
5409 				if (tpte & PG_W) {
5410 					allfree = 0;
5411 					continue;
5412 				}
5413 
5414 				if (superpage)
5415 					pa = tpte & PG_PS_FRAME;
5416 				else
5417 					pa = tpte & PG_FRAME;
5418 
5419 				m = PHYS_TO_VM_PAGE(pa);
5420 				KASSERT(m->phys_addr == pa,
5421 				    ("vm_page_t %p phys_addr mismatch %016jx %016jx",
5422 				    m, (uintmax_t)m->phys_addr,
5423 				    (uintmax_t)tpte));
5424 
5425 				KASSERT((m->flags & PG_FICTITIOUS) != 0 ||
5426 				    m < &vm_page_array[vm_page_array_size],
5427 				    ("pmap_remove_pages: bad tpte %#jx",
5428 				    (uintmax_t)tpte));
5429 
5430 				pte_clear(pte);
5431 
5432 				/*
5433 				 * Update the vm_page_t clean/reference bits.
5434 				 */
5435 				if ((tpte & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
5436 					if (superpage) {
5437 						for (mt = m; mt < &m[L3_PAGE_SIZE / PAGE_SIZE]; mt++)
5438 							vm_page_dirty(mt);
5439 					} else
5440 						vm_page_dirty(m);
5441 				}
5442 
5443 				CHANGE_PV_LIST_LOCK_TO_VM_PAGE(&lock, m);
5444 
5445 				/* Mark free */
5446 				pc->pc_map[field] |= bitmask;
5447 				if (superpage) {
5448 					pmap_resident_count_dec(pmap, L3_PAGE_SIZE / PAGE_SIZE);
5449 					pvh = pa_to_pvh(tpte & PG_PS_FRAME);
5450 					TAILQ_REMOVE(&pvh->pv_list, pv, pv_link);
5451 					pvh->pv_gen++;
5452 					if (TAILQ_EMPTY(&pvh->pv_list)) {
5453 						for (mt = m; mt < &m[L3_PAGE_SIZE / PAGE_SIZE]; mt++)
5454 							if ((mt->a.flags & PGA_WRITEABLE) != 0 &&
5455 							    TAILQ_EMPTY(&mt->md.pv_list))
5456 								vm_page_aflag_clear(mt, PGA_WRITEABLE);
5457 					}
5458 					mpte = pmap_remove_pt_page(pmap, pv->pv_va);
5459 					if (mpte != NULL) {
5460 						pmap_resident_count_dec(pmap, 1);
5461 						KASSERT(mpte->ref_count == NPTEPG,
5462 						    ("pmap_remove_pages: pte page wire count error"));
5463 						mpte->ref_count = 0;
5464 						pmap_add_delayed_free_list(mpte, &free, FALSE);
5465 					}
5466 				} else {
5467 					pmap_resident_count_dec(pmap, 1);
5468 #ifdef VERBOSE_PV
5469 					printf("freeing pv (%p, %p)\n",
5470 						   pmap, pv);
5471 #endif
5472 					TAILQ_REMOVE(&m->md.pv_list, pv, pv_link);
5473 					m->md.pv_gen++;
5474 					if ((m->a.flags & PGA_WRITEABLE) != 0 &&
5475 					    TAILQ_EMPTY(&m->md.pv_list) &&
5476 					    (m->flags & PG_FICTITIOUS) == 0) {
5477 						pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
5478 						if (TAILQ_EMPTY(&pvh->pv_list))
5479 							vm_page_aflag_clear(m, PGA_WRITEABLE);
5480 					}
5481 				}
5482 				pmap_unuse_pt(pmap, pv->pv_va, ptel3e, &free);
5483 				freed++;
5484 			}
5485 		}
5486 		PV_STAT(atomic_add_long(&pv_entry_frees, freed));
5487 		PV_STAT(atomic_add_int(&pv_entry_spare, freed));
5488 		PV_STAT(atomic_subtract_long(&pv_entry_count, freed));
5489 		if (allfree) {
5490 			TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
5491 			free_pv_chunk(pc);
5492 		}
5493 	}
5494 	if (lock != NULL)
5495 		rw_wunlock(lock);
5496 	pmap_invalidate_all(pmap);
5497 	PMAP_UNLOCK(pmap);
5498 	vm_page_free_pages_toq(&free, true);
5499 }
5500 
5501 void
5502 mmu_radix_remove_write(vm_page_t m)
5503 {
5504 	struct md_page *pvh;
5505 	pmap_t pmap;
5506 	struct rwlock *lock;
5507 	pv_entry_t next_pv, pv;
5508 	pml3_entry_t *l3e;
5509 	pt_entry_t oldpte, *pte;
5510 	int pvh_gen, md_gen;
5511 
5512 	CTR2(KTR_PMAP, "%s(%p)", __func__, m);
5513 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
5514 	    ("pmap_remove_write: page %p is not managed", m));
5515 	vm_page_assert_busied(m);
5516 
5517 	if (!pmap_page_is_write_mapped(m))
5518 		return;
5519 	lock = VM_PAGE_TO_PV_LIST_LOCK(m);
5520 	pvh = (m->flags & PG_FICTITIOUS) != 0 ? &pv_dummy :
5521 	    pa_to_pvh(VM_PAGE_TO_PHYS(m));
5522 retry_pv_loop:
5523 	rw_wlock(lock);
5524 	TAILQ_FOREACH_SAFE(pv, &pvh->pv_list, pv_link, next_pv) {
5525 		pmap = PV_PMAP(pv);
5526 		if (!PMAP_TRYLOCK(pmap)) {
5527 			pvh_gen = pvh->pv_gen;
5528 			rw_wunlock(lock);
5529 			PMAP_LOCK(pmap);
5530 			rw_wlock(lock);
5531 			if (pvh_gen != pvh->pv_gen) {
5532 				PMAP_UNLOCK(pmap);
5533 				rw_wunlock(lock);
5534 				goto retry_pv_loop;
5535 			}
5536 		}
5537 		l3e = pmap_pml3e(pmap, pv->pv_va);
5538 		if ((*l3e & PG_RW) != 0)
5539 			(void)pmap_demote_l3e_locked(pmap, l3e, pv->pv_va, &lock);
5540 		KASSERT(lock == VM_PAGE_TO_PV_LIST_LOCK(m),
5541 		    ("inconsistent pv lock %p %p for page %p",
5542 		    lock, VM_PAGE_TO_PV_LIST_LOCK(m), m));
5543 		PMAP_UNLOCK(pmap);
5544 	}
5545 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
5546 		pmap = PV_PMAP(pv);
5547 		if (!PMAP_TRYLOCK(pmap)) {
5548 			pvh_gen = pvh->pv_gen;
5549 			md_gen = m->md.pv_gen;
5550 			rw_wunlock(lock);
5551 			PMAP_LOCK(pmap);
5552 			rw_wlock(lock);
5553 			if (pvh_gen != pvh->pv_gen ||
5554 			    md_gen != m->md.pv_gen) {
5555 				PMAP_UNLOCK(pmap);
5556 				rw_wunlock(lock);
5557 				goto retry_pv_loop;
5558 			}
5559 		}
5560 		l3e = pmap_pml3e(pmap, pv->pv_va);
5561 		KASSERT((*l3e & RPTE_LEAF) == 0,
5562 		    ("pmap_remove_write: found a 2mpage in page %p's pv list",
5563 		    m));
5564 		pte = pmap_l3e_to_pte(l3e, pv->pv_va);
5565 retry:
5566 		oldpte = *pte;
5567 		if (oldpte & PG_RW) {
5568 			if (!atomic_cmpset_long(pte, oldpte,
5569 			    (oldpte | RPTE_EAA_R) & ~(PG_RW | PG_M)))
5570 				goto retry;
5571 			if ((oldpte & PG_M) != 0)
5572 				vm_page_dirty(m);
5573 			pmap_invalidate_page(pmap, pv->pv_va);
5574 		}
5575 		PMAP_UNLOCK(pmap);
5576 	}
5577 	rw_wunlock(lock);
5578 	vm_page_aflag_clear(m, PGA_WRITEABLE);
5579 }
5580 
5581 /*
5582  *	Clear the wired attribute from the mappings for the specified range of
5583  *	addresses in the given pmap.  Every valid mapping within that range
5584  *	must have the wired attribute set.  In contrast, invalid mappings
5585  *	cannot have the wired attribute set, so they are ignored.
5586  *
5587  *	The wired attribute of the page table entry is not a hardware
5588  *	feature, so there is no need to invalidate any TLB entries.
5589  *	Since pmap_demote_l3e() for the wired entry must never fail,
5590  *	pmap_delayed_invl_started()/finished() calls around the
5591  *	function are not needed.
5592  */
5593 void
5594 mmu_radix_unwire(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
5595 {
5596 	vm_offset_t va_next;
5597 	pml1_entry_t *l1e;
5598 	pml2_entry_t *l2e;
5599 	pml3_entry_t *l3e;
5600 	pt_entry_t *pte;
5601 
5602 	CTR4(KTR_PMAP, "%s(%p, %#x, %#x)", __func__, pmap, sva, eva);
5603 	PMAP_LOCK(pmap);
5604 	for (; sva < eva; sva = va_next) {
5605 		l1e = pmap_pml1e(pmap, sva);
5606 		if ((*l1e & PG_V) == 0) {
5607 			va_next = (sva + L1_PAGE_SIZE) & ~L1_PAGE_MASK;
5608 			if (va_next < sva)
5609 				va_next = eva;
5610 			continue;
5611 		}
5612 		l2e = pmap_l1e_to_l2e(l1e, sva);
5613 		if ((*l2e & PG_V) == 0) {
5614 			va_next = (sva + L2_PAGE_SIZE) & ~L2_PAGE_MASK;
5615 			if (va_next < sva)
5616 				va_next = eva;
5617 			continue;
5618 		}
5619 		va_next = (sva + L3_PAGE_SIZE) & ~L3_PAGE_MASK;
5620 		if (va_next < sva)
5621 			va_next = eva;
5622 		l3e = pmap_l2e_to_l3e(l2e, sva);
5623 		if ((*l3e & PG_V) == 0)
5624 			continue;
5625 		if ((*l3e & RPTE_LEAF) != 0) {
5626 			if ((*l3e & PG_W) == 0)
5627 				panic("pmap_unwire: pde %#jx is missing PG_W",
5628 				    (uintmax_t)*l3e);
5629 
5630 			/*
5631 			 * Are we unwiring the entire large page?  If not,
5632 			 * demote the mapping and fall through.
5633 			 */
5634 			if (sva + L3_PAGE_SIZE == va_next && eva >= va_next) {
5635 				atomic_clear_long(l3e, PG_W);
5636 				pmap->pm_stats.wired_count -= L3_PAGE_SIZE /
5637 				    PAGE_SIZE;
5638 				continue;
5639 			} else if (!pmap_demote_l3e(pmap, l3e, sva))
5640 				panic("pmap_unwire: demotion failed");
5641 		}
5642 		if (va_next > eva)
5643 			va_next = eva;
5644 		for (pte = pmap_l3e_to_pte(l3e, sva); sva != va_next; pte++,
5645 		    sva += PAGE_SIZE) {
5646 			MPASS(pte == pmap_pte(pmap, sva));
5647 			if ((*pte & PG_V) == 0)
5648 				continue;
5649 			if ((*pte & PG_W) == 0)
5650 				panic("pmap_unwire: pte %#jx is missing PG_W",
5651 				    (uintmax_t)*pte);
5652 
5653 			/*
5654 			 * PG_W must be cleared atomically.  Although the pmap
5655 			 * lock synchronizes access to PG_W, another processor
5656 			 * could be setting PG_M and/or PG_A concurrently.
5657 			 */
5658 			atomic_clear_long(pte, PG_W);
5659 			pmap->pm_stats.wired_count--;
5660 		}
5661 	}
5662 	PMAP_UNLOCK(pmap);
5663 }
5664 
5665 void
5666 mmu_radix_zero_page(vm_page_t m)
5667 {
5668 	vm_offset_t addr;
5669 
5670 	CTR2(KTR_PMAP, "%s(%p)", __func__, m);
5671 	addr = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m));
5672 	pagezero(addr);
5673 }
5674 
5675 void
5676 mmu_radix_zero_page_area(vm_page_t m, int off, int size)
5677 {
5678 	caddr_t addr;
5679 
5680 	CTR4(KTR_PMAP, "%s(%p, %d, %d)", __func__, m, off, size);
5681 	MPASS(off + size <= PAGE_SIZE);
5682 	addr = (caddr_t)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m));
5683 	memset(addr + off, 0, size);
5684 }
5685 
5686 
5687 
5688 
5689 static int
5690 mmu_radix_mincore(pmap_t pmap, vm_offset_t addr, vm_paddr_t *locked_pa)
5691 {
5692 	pml3_entry_t *l3ep;
5693 	pt_entry_t pte;
5694 	vm_paddr_t pa;
5695 	int val;
5696 
5697 	CTR3(KTR_PMAP, "%s(%p, %#x)", __func__, pmap, addr);
5698 	PMAP_LOCK(pmap);
5699 
5700 	l3ep = pmap_pml3e(pmap, addr);
5701 	if (l3ep != NULL && (*l3ep & PG_V)) {
5702 		if (*l3ep & RPTE_LEAF) {
5703 			pte = *l3ep;
5704 			/* Compute the physical address of the 4KB page. */
5705 			pa = ((*l3ep & PG_PS_FRAME) | (addr & L3_PAGE_MASK)) &
5706 			    PG_FRAME;
5707 			val = MINCORE_SUPER;
5708 		} else {
5709 			pte = *pmap_l3e_to_pte(l3ep, addr);
5710 			pa = pte & PG_FRAME;
5711 			val = 0;
5712 		}
5713 	} else {
5714 		pte = 0;
5715 		pa = 0;
5716 		val = 0;
5717 	}
5718 	if ((pte & PG_V) != 0) {
5719 		val |= MINCORE_INCORE;
5720 		if ((pte & (PG_M | PG_RW)) == (PG_M | PG_RW))
5721 			val |= MINCORE_MODIFIED | MINCORE_MODIFIED_OTHER;
5722 		if ((pte & PG_A) != 0)
5723 			val |= MINCORE_REFERENCED | MINCORE_REFERENCED_OTHER;
5724 	}
5725 	if ((val & (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER)) !=
5726 	    (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER) &&
5727 	    (pte & (PG_MANAGED | PG_V)) == (PG_MANAGED | PG_V)) {
5728 		*locked_pa = pa;
5729 	}
5730 	PMAP_UNLOCK(pmap);
5731 	return (val);
5732 }
5733 
5734 void
5735 mmu_radix_activate(struct thread *td)
5736 {
5737 	pmap_t pmap;
5738 	uint32_t curpid;
5739 
5740 	CTR2(KTR_PMAP, "%s(%p)", __func__, td);
5741 	critical_enter();
5742 	pmap = vmspace_pmap(td->td_proc->p_vmspace);
5743 	curpid = mfspr(SPR_PID);
5744 	if (pmap->pm_pid > isa3_base_pid &&
5745 		curpid != pmap->pm_pid) {
5746 		mmu_radix_pid_set(pmap);
5747 	}
5748 	critical_exit();
5749 }
5750 
5751 /*
5752  *	Increase the starting virtual address of the given mapping if a
5753  *	different alignment might result in more superpage mappings.
5754  */
5755 void
5756 mmu_radix_align_superpage(vm_object_t object, vm_ooffset_t offset,
5757     vm_offset_t *addr, vm_size_t size)
5758 {
5759 
5760 	CTR5(KTR_PMAP, "%s(%p, %#x, %p, %#x)", __func__, object, offset, addr,
5761 	    size);
5762 	vm_offset_t superpage_offset;
5763 
5764 	if (size < L3_PAGE_SIZE)
5765 		return;
5766 	if (object != NULL && (object->flags & OBJ_COLORED) != 0)
5767 		offset += ptoa(object->pg_color);
5768 	superpage_offset = offset & L3_PAGE_MASK;
5769 	if (size - ((L3_PAGE_SIZE - superpage_offset) & L3_PAGE_MASK) < L3_PAGE_SIZE ||
5770 	    (*addr & L3_PAGE_MASK) == superpage_offset)
5771 		return;
5772 	if ((*addr & L3_PAGE_MASK) < superpage_offset)
5773 		*addr = (*addr & ~L3_PAGE_MASK) + superpage_offset;
5774 	else
5775 		*addr = ((*addr + L3_PAGE_MASK) & ~L3_PAGE_MASK) + superpage_offset;
5776 }
5777 
5778 static void *
5779 mmu_radix_mapdev_attr(vm_paddr_t pa, vm_size_t size, vm_memattr_t attr)
5780 {
5781 	vm_offset_t va, tmpva, ppa, offset;
5782 
5783 	ppa = trunc_page(pa);
5784 	offset = pa & PAGE_MASK;
5785 	size = roundup2(offset + size, PAGE_SIZE);
5786 	if (pa < powerpc_ptob(Maxmem))
5787 		panic("bad pa: %#lx less than Maxmem %#lx\n",
5788 			  pa, powerpc_ptob(Maxmem));
5789 	va = kva_alloc(size);
5790 	if (bootverbose)
5791 		printf("%s(%#lx, %lu, %d)\n", __func__, pa, size, attr);
5792 	KASSERT(size > 0, ("%s(%#lx, %lu, %d)", __func__, pa, size, attr));
5793 
5794 	if (!va)
5795 		panic("%s: Couldn't alloc kernel virtual memory", __func__);
5796 
5797 	for (tmpva = va; size > 0;) {
5798 		mmu_radix_kenter_attr(tmpva, ppa, attr);
5799 		size -= PAGE_SIZE;
5800 		tmpva += PAGE_SIZE;
5801 		ppa += PAGE_SIZE;
5802 	}
5803 	ptesync();
5804 
5805 	return ((void *)(va + offset));
5806 }
5807 
5808 static void *
5809 mmu_radix_mapdev(vm_paddr_t pa, vm_size_t size)
5810 {
5811 
5812 	CTR3(KTR_PMAP, "%s(%#x, %#x)", __func__, pa, size);
5813 
5814 	return (mmu_radix_mapdev_attr(pa, size, VM_MEMATTR_DEFAULT));
5815 }
5816 
5817 void
5818 mmu_radix_page_set_memattr(vm_page_t m, vm_memattr_t ma)
5819 {
5820 
5821 	CTR3(KTR_PMAP, "%s(%p, %#x)", __func__, m, ma);
5822 	m->md.mdpg_cache_attrs = ma;
5823 
5824 	/*
5825 	 * If "m" is a normal page, update its direct mapping.  This update
5826 	 * can be relied upon to perform any cache operations that are
5827 	 * required for data coherence.
5828 	 */
5829 	if ((m->flags & PG_FICTITIOUS) == 0 &&
5830 	    mmu_radix_change_attr(PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m)),
5831 	    PAGE_SIZE, m->md.mdpg_cache_attrs))
5832 		panic("memory attribute change on the direct map failed");
5833 }
5834 
5835 static void
5836 mmu_radix_unmapdev(vm_offset_t va, vm_size_t size)
5837 {
5838 	vm_offset_t offset;
5839 
5840 	CTR3(KTR_PMAP, "%s(%#x, %#x)", __func__, va, size);
5841 	/* If we gave a direct map region in pmap_mapdev, do nothing */
5842 	if (va >= DMAP_MIN_ADDRESS && va < DMAP_MAX_ADDRESS)
5843 		return;
5844 
5845 	offset = va & PAGE_MASK;
5846 	size = round_page(offset + size);
5847 	va = trunc_page(va);
5848 
5849 	if (pmap_initialized)
5850 		kva_free(va, size);
5851 }
5852 
5853 static __inline void
5854 pmap_pte_attr(pt_entry_t *pte, uint64_t cache_bits, uint64_t mask)
5855 {
5856 	uint64_t opte, npte;
5857 
5858 	/*
5859 	 * The cache mode bits are all in the low 32-bits of the
5860 	 * PTE, so we can just spin on updating the low 32-bits.
5861 	 */
5862 	do {
5863 		opte = *pte;
5864 		npte = opte & ~mask;
5865 		npte |= cache_bits;
5866 	} while (npte != opte && !atomic_cmpset_long(pte, opte, npte));
5867 }
5868 
5869 /*
5870  * Tries to demote a 1GB page mapping.
5871  */
5872 static boolean_t
5873 pmap_demote_l2e(pmap_t pmap, pml2_entry_t *l2e, vm_offset_t va)
5874 {
5875 	pml2_entry_t oldpdpe;
5876 	pml3_entry_t *firstpde, newpde, *pde;
5877 	vm_paddr_t pdpgpa;
5878 	vm_page_t pdpg;
5879 
5880 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
5881 	oldpdpe = *l2e;
5882 	KASSERT((oldpdpe & (RPTE_LEAF | PG_V)) == (RPTE_LEAF | PG_V),
5883 	    ("pmap_demote_pdpe: oldpdpe is missing PG_PS and/or PG_V"));
5884 	pdpg = vm_page_alloc(NULL, va >> L2_PAGE_SIZE_SHIFT,
5885 	    VM_ALLOC_INTERRUPT | VM_ALLOC_NOOBJ | VM_ALLOC_WIRED);
5886 	if (pdpg == NULL) {
5887 		CTR2(KTR_PMAP, "pmap_demote_pdpe: failure for va %#lx"
5888 		    " in pmap %p", va, pmap);
5889 		return (FALSE);
5890 	}
5891 	pdpgpa = VM_PAGE_TO_PHYS(pdpg);
5892 	firstpde = (pml3_entry_t *)PHYS_TO_DMAP(pdpgpa);
5893 	KASSERT((oldpdpe & PG_A) != 0,
5894 	    ("pmap_demote_pdpe: oldpdpe is missing PG_A"));
5895 	KASSERT((oldpdpe & (PG_M | PG_RW)) != PG_RW,
5896 	    ("pmap_demote_pdpe: oldpdpe is missing PG_M"));
5897 	newpde = oldpdpe;
5898 
5899 	/*
5900 	 * Initialize the page directory page.
5901 	 */
5902 	for (pde = firstpde; pde < firstpde + NPDEPG; pde++) {
5903 		*pde = newpde;
5904 		newpde += L3_PAGE_SIZE;
5905 	}
5906 
5907 	/*
5908 	 * Demote the mapping.
5909 	 */
5910 	pde_store(l2e, pdpgpa);
5911 
5912 	/*
5913 	 * Flush PWC --- XXX revisit
5914 	 */
5915 	pmap_invalidate_all(pmap);
5916 
5917 	pmap_l2e_demotions++;
5918 	CTR2(KTR_PMAP, "pmap_demote_pdpe: success for va %#lx"
5919 	    " in pmap %p", va, pmap);
5920 	return (TRUE);
5921 }
5922 
5923 vm_paddr_t
5924 mmu_radix_kextract(vm_offset_t va)
5925 {
5926 	pml3_entry_t l3e;
5927 	vm_paddr_t pa;
5928 
5929 	CTR2(KTR_PMAP, "%s(%#x)", __func__, va);
5930 	if (va >= DMAP_MIN_ADDRESS && va < DMAP_MAX_ADDRESS) {
5931 		pa = DMAP_TO_PHYS(va);
5932 	} else {
5933 		l3e = *pmap_pml3e(kernel_pmap, va);
5934 		if (l3e & RPTE_LEAF) {
5935 			pa = (l3e & PG_PS_FRAME) | (va & L3_PAGE_MASK);
5936 			pa |= (va & L3_PAGE_MASK);
5937 		} else {
5938 			/*
5939 			 * Beware of a concurrent promotion that changes the
5940 			 * PDE at this point!  For example, vtopte() must not
5941 			 * be used to access the PTE because it would use the
5942 			 * new PDE.  It is, however, safe to use the old PDE
5943 			 * because the page table page is preserved by the
5944 			 * promotion.
5945 			 */
5946 			pa = *pmap_l3e_to_pte(&l3e, va);
5947 			pa = (pa & PG_FRAME) | (va & PAGE_MASK);
5948 			pa |= (va & PAGE_MASK);
5949 		}
5950 	}
5951 	return (pa);
5952 }
5953 
5954 static pt_entry_t
5955 mmu_radix_calc_wimg(vm_paddr_t pa, vm_memattr_t ma)
5956 {
5957 
5958 	if (ma != VM_MEMATTR_DEFAULT) {
5959 		return pmap_cache_bits(ma);
5960 	}
5961 
5962 	/*
5963 	 * Assume the page is cache inhibited and access is guarded unless
5964 	 * it's in our available memory array.
5965 	 */
5966 	for (int i = 0; i < pregions_sz; i++) {
5967 		if ((pa >= pregions[i].mr_start) &&
5968 		    (pa < (pregions[i].mr_start + pregions[i].mr_size)))
5969 			return (RPTE_ATTR_MEM);
5970 	}
5971 	return (RPTE_ATTR_GUARDEDIO);
5972 }
5973 
5974 static void
5975 mmu_radix_kenter_attr(vm_offset_t va, vm_paddr_t pa, vm_memattr_t ma)
5976 {
5977 	pt_entry_t *pte, pteval;
5978 	uint64_t cache_bits;
5979 
5980 	pte = kvtopte(va);
5981 	MPASS(pte != NULL);
5982 	pteval = pa | RPTE_EAA_R | RPTE_EAA_W | RPTE_EAA_P | PG_M | PG_A;
5983 	cache_bits = mmu_radix_calc_wimg(pa, ma);
5984 	pte_store(pte, pteval | cache_bits);
5985 }
5986 
5987 void
5988 mmu_radix_kremove(vm_offset_t va)
5989 {
5990 	pt_entry_t *pte;
5991 
5992 	CTR2(KTR_PMAP, "%s(%#x)", __func__, va);
5993 
5994 	pte = kvtopte(va);
5995 	pte_clear(pte);
5996 }
5997 
5998 int
5999 mmu_radix_decode_kernel_ptr(vm_offset_t addr,
6000     int *is_user, vm_offset_t *decoded)
6001 {
6002 
6003 	CTR2(KTR_PMAP, "%s(%#jx)", __func__, (uintmax_t)addr);
6004 	*decoded = addr;
6005 	*is_user = (addr < VM_MAXUSER_ADDRESS);
6006 	return (0);
6007 }
6008 
6009 static boolean_t
6010 mmu_radix_dev_direct_mapped(vm_paddr_t pa, vm_size_t size)
6011 {
6012 
6013 	CTR3(KTR_PMAP, "%s(%#x, %#x)", __func__, pa, size);
6014 	return (mem_valid(pa, size));
6015 }
6016 
6017 static void
6018 mmu_radix_scan_init()
6019 {
6020 
6021 	CTR1(KTR_PMAP, "%s()", __func__);
6022 	UNIMPLEMENTED();
6023 }
6024 
6025 static void
6026 mmu_radix_dumpsys_map(vm_paddr_t pa, size_t sz,
6027 	void **va)
6028 {
6029 	CTR4(KTR_PMAP, "%s(%#jx, %#zx, %p)", __func__, (uintmax_t)pa, sz, va);
6030 	UNIMPLEMENTED();
6031 }
6032 
6033 vm_offset_t
6034 mmu_radix_quick_enter_page(vm_page_t m)
6035 {
6036 	vm_paddr_t paddr;
6037 
6038 	CTR2(KTR_PMAP, "%s(%p)", __func__, m);
6039 	paddr = VM_PAGE_TO_PHYS(m);
6040 	return (PHYS_TO_DMAP(paddr));
6041 }
6042 
6043 void
6044 mmu_radix_quick_remove_page(vm_offset_t addr __unused)
6045 {
6046 	/* no work to do here */
6047 	CTR2(KTR_PMAP, "%s(%#x)", __func__, addr);
6048 }
6049 
6050 static void
6051 pmap_invalidate_cache_range(vm_offset_t sva, vm_offset_t eva)
6052 {
6053 	cpu_flush_dcache((void *)sva, eva - sva);
6054 }
6055 
6056 int
6057 mmu_radix_change_attr(vm_offset_t va, vm_size_t size,
6058     vm_memattr_t mode)
6059 {
6060 	int error;
6061 
6062 	CTR4(KTR_PMAP, "%s(%#x, %#zx, %d)", __func__, va, size, mode);
6063 	PMAP_LOCK(kernel_pmap);
6064 	error = pmap_change_attr_locked(va, size, mode, true);
6065 	PMAP_UNLOCK(kernel_pmap);
6066 	return (error);
6067 }
6068 
6069 static int
6070 pmap_change_attr_locked(vm_offset_t va, vm_size_t size, int mode, bool flush)
6071 {
6072 	vm_offset_t base, offset, tmpva;
6073 	vm_paddr_t pa_start, pa_end, pa_end1;
6074 	pml2_entry_t *l2e;
6075 	pml3_entry_t *l3e;
6076 	pt_entry_t *pte;
6077 	int cache_bits, error;
6078 	boolean_t changed;
6079 
6080 	PMAP_LOCK_ASSERT(kernel_pmap, MA_OWNED);
6081 	base = trunc_page(va);
6082 	offset = va & PAGE_MASK;
6083 	size = round_page(offset + size);
6084 
6085 	/*
6086 	 * Only supported on kernel virtual addresses, including the direct
6087 	 * map but excluding the recursive map.
6088 	 */
6089 	if (base < DMAP_MIN_ADDRESS)
6090 		return (EINVAL);
6091 
6092 	cache_bits = pmap_cache_bits(mode);
6093 	changed = FALSE;
6094 
6095 	/*
6096 	 * Pages that aren't mapped aren't supported.  Also break down 2MB pages
6097 	 * into 4KB pages if required.
6098 	 */
6099 	for (tmpva = base; tmpva < base + size; ) {
6100 		l2e = pmap_pml2e(kernel_pmap, tmpva);
6101 		if (l2e == NULL || *l2e == 0)
6102 			return (EINVAL);
6103 		if (*l2e & RPTE_LEAF) {
6104 			/*
6105 			 * If the current 1GB page already has the required
6106 			 * memory type, then we need not demote this page. Just
6107 			 * increment tmpva to the next 1GB page frame.
6108 			 */
6109 			if ((*l2e & RPTE_ATTR_MASK) == cache_bits) {
6110 				tmpva = trunc_1gpage(tmpva) + L2_PAGE_SIZE;
6111 				continue;
6112 			}
6113 
6114 			/*
6115 			 * If the current offset aligns with a 1GB page frame
6116 			 * and there is at least 1GB left within the range, then
6117 			 * we need not break down this page into 2MB pages.
6118 			 */
6119 			if ((tmpva & L2_PAGE_MASK) == 0 &&
6120 			    tmpva + L2_PAGE_MASK < base + size) {
6121 				tmpva += L2_PAGE_MASK;
6122 				continue;
6123 			}
6124 			if (!pmap_demote_l2e(kernel_pmap, l2e, tmpva))
6125 				return (ENOMEM);
6126 		}
6127 		l3e = pmap_l2e_to_l3e(l2e, tmpva);
6128 		KASSERT(l3e != NULL, ("no l3e entry for %#lx in %p\n",
6129 		    tmpva, l2e));
6130 		if (*l3e == 0)
6131 			return (EINVAL);
6132 		if (*l3e & RPTE_LEAF) {
6133 			/*
6134 			 * If the current 2MB page already has the required
6135 			 * memory type, then we need not demote this page. Just
6136 			 * increment tmpva to the next 2MB page frame.
6137 			 */
6138 			if ((*l3e & RPTE_ATTR_MASK) == cache_bits) {
6139 				tmpva = trunc_2mpage(tmpva) + L3_PAGE_SIZE;
6140 				continue;
6141 			}
6142 
6143 			/*
6144 			 * If the current offset aligns with a 2MB page frame
6145 			 * and there is at least 2MB left within the range, then
6146 			 * we need not break down this page into 4KB pages.
6147 			 */
6148 			if ((tmpva & L3_PAGE_MASK) == 0 &&
6149 			    tmpva + L3_PAGE_MASK < base + size) {
6150 				tmpva += L3_PAGE_SIZE;
6151 				continue;
6152 			}
6153 			if (!pmap_demote_l3e(kernel_pmap, l3e, tmpva))
6154 				return (ENOMEM);
6155 		}
6156 		pte = pmap_l3e_to_pte(l3e, tmpva);
6157 		if (*pte == 0)
6158 			return (EINVAL);
6159 		tmpva += PAGE_SIZE;
6160 	}
6161 	error = 0;
6162 
6163 	/*
6164 	 * Ok, all the pages exist, so run through them updating their
6165 	 * cache mode if required.
6166 	 */
6167 	pa_start = pa_end = 0;
6168 	for (tmpva = base; tmpva < base + size; ) {
6169 		l2e = pmap_pml2e(kernel_pmap, tmpva);
6170 		if (*l2e & RPTE_LEAF) {
6171 			if ((*l2e & RPTE_ATTR_MASK) != cache_bits) {
6172 				pmap_pte_attr(l2e, cache_bits,
6173 				    RPTE_ATTR_MASK);
6174 				changed = TRUE;
6175 			}
6176 			if (tmpva >= VM_MIN_KERNEL_ADDRESS &&
6177 			    (*l2e & PG_PS_FRAME) < dmaplimit) {
6178 				if (pa_start == pa_end) {
6179 					/* Start physical address run. */
6180 					pa_start = *l2e & PG_PS_FRAME;
6181 					pa_end = pa_start + L2_PAGE_SIZE;
6182 				} else if (pa_end == (*l2e & PG_PS_FRAME))
6183 					pa_end += L2_PAGE_SIZE;
6184 				else {
6185 					/* Run ended, update direct map. */
6186 					error = pmap_change_attr_locked(
6187 					    PHYS_TO_DMAP(pa_start),
6188 					    pa_end - pa_start, mode, flush);
6189 					if (error != 0)
6190 						break;
6191 					/* Start physical address run. */
6192 					pa_start = *l2e & PG_PS_FRAME;
6193 					pa_end = pa_start + L2_PAGE_SIZE;
6194 				}
6195 			}
6196 			tmpva = trunc_1gpage(tmpva) + L2_PAGE_SIZE;
6197 			continue;
6198 		}
6199 		l3e = pmap_l2e_to_l3e(l2e, tmpva);
6200 		if (*l3e & RPTE_LEAF) {
6201 			if ((*l3e & RPTE_ATTR_MASK) != cache_bits) {
6202 				pmap_pte_attr(l3e, cache_bits,
6203 				    RPTE_ATTR_MASK);
6204 				changed = TRUE;
6205 			}
6206 			if (tmpva >= VM_MIN_KERNEL_ADDRESS &&
6207 			    (*l3e & PG_PS_FRAME) < dmaplimit) {
6208 				if (pa_start == pa_end) {
6209 					/* Start physical address run. */
6210 					pa_start = *l3e & PG_PS_FRAME;
6211 					pa_end = pa_start + L3_PAGE_SIZE;
6212 				} else if (pa_end == (*l3e & PG_PS_FRAME))
6213 					pa_end += L3_PAGE_SIZE;
6214 				else {
6215 					/* Run ended, update direct map. */
6216 					error = pmap_change_attr_locked(
6217 					    PHYS_TO_DMAP(pa_start),
6218 					    pa_end - pa_start, mode, flush);
6219 					if (error != 0)
6220 						break;
6221 					/* Start physical address run. */
6222 					pa_start = *l3e & PG_PS_FRAME;
6223 					pa_end = pa_start + L3_PAGE_SIZE;
6224 				}
6225 			}
6226 			tmpva = trunc_2mpage(tmpva) + L3_PAGE_SIZE;
6227 		} else {
6228 			pte = pmap_l3e_to_pte(l3e, tmpva);
6229 			if ((*pte & RPTE_ATTR_MASK) != cache_bits) {
6230 				pmap_pte_attr(pte, cache_bits,
6231 				    RPTE_ATTR_MASK);
6232 				changed = TRUE;
6233 			}
6234 			if (tmpva >= VM_MIN_KERNEL_ADDRESS &&
6235 			    (*pte & PG_FRAME) < dmaplimit) {
6236 				if (pa_start == pa_end) {
6237 					/* Start physical address run. */
6238 					pa_start = *pte & PG_FRAME;
6239 					pa_end = pa_start + PAGE_SIZE;
6240 				} else if (pa_end == (*pte & PG_FRAME))
6241 					pa_end += PAGE_SIZE;
6242 				else {
6243 					/* Run ended, update direct map. */
6244 					error = pmap_change_attr_locked(
6245 					    PHYS_TO_DMAP(pa_start),
6246 					    pa_end - pa_start, mode, flush);
6247 					if (error != 0)
6248 						break;
6249 					/* Start physical address run. */
6250 					pa_start = *pte & PG_FRAME;
6251 					pa_end = pa_start + PAGE_SIZE;
6252 				}
6253 			}
6254 			tmpva += PAGE_SIZE;
6255 		}
6256 	}
6257 	if (error == 0 && pa_start != pa_end && pa_start < dmaplimit) {
6258 		pa_end1 = MIN(pa_end, dmaplimit);
6259 		if (pa_start != pa_end1)
6260 			error = pmap_change_attr_locked(PHYS_TO_DMAP(pa_start),
6261 			    pa_end1 - pa_start, mode, flush);
6262 	}
6263 
6264 	/*
6265 	 * Flush CPU caches if required to make sure any data isn't cached that
6266 	 * shouldn't be, etc.
6267 	 */
6268 	if (changed) {
6269 		pmap_invalidate_all(kernel_pmap);
6270 
6271 		if (flush)
6272 			pmap_invalidate_cache_range(base, tmpva);
6273 
6274 	}
6275 	return (error);
6276 }
6277 
6278 /*
6279  * Allocate physical memory for the vm_page array and map it into KVA,
6280  * attempting to back the vm_pages with domain-local memory.
6281  */
6282 void
6283 mmu_radix_page_array_startup(long pages)
6284 {
6285 #ifdef notyet
6286 	pml2_entry_t *l2e;
6287 	pml3_entry_t *pde;
6288 	pml3_entry_t newl3;
6289 	vm_offset_t va;
6290 	long pfn;
6291 	int domain, i;
6292 #endif
6293 	vm_paddr_t pa;
6294 	vm_offset_t start, end;
6295 
6296 	vm_page_array_size = pages;
6297 
6298 	start = VM_MIN_KERNEL_ADDRESS;
6299 	end = start + pages * sizeof(struct vm_page);
6300 
6301 	pa = vm_phys_early_alloc(0, end - start);
6302 
6303 	start = mmu_radix_map(&start, pa, end - start, VM_MEMATTR_DEFAULT);
6304 #ifdef notyet
6305 	/* TODO: NUMA vm_page_array.  Blocked out until then (copied from amd64). */
6306 	for (va = start; va < end; va += L3_PAGE_SIZE) {
6307 		pfn = first_page + (va - start) / sizeof(struct vm_page);
6308 		domain = _vm_phys_domain(ptoa(pfn));
6309 		l2e = pmap_pml2e(kernel_pmap, va);
6310 		if ((*l2e & PG_V) == 0) {
6311 			pa = vm_phys_early_alloc(domain, PAGE_SIZE);
6312 			dump_add_page(pa);
6313 			pagezero(PHYS_TO_DMAP(pa));
6314 			pde_store(l2e, (pml2_entry_t)pa);
6315 		}
6316 		pde = pmap_l2e_to_l3e(l2e, va);
6317 		if ((*pde & PG_V) != 0)
6318 			panic("Unexpected pde %p", pde);
6319 		pa = vm_phys_early_alloc(domain, L3_PAGE_SIZE);
6320 		for (i = 0; i < NPDEPG; i++)
6321 			dump_add_page(pa + i * PAGE_SIZE);
6322 		newl3 = (pml3_entry_t)(pa | RPTE_EAA_P | RPTE_EAA_R | RPTE_EAA_W);
6323 		pte_store(pde, newl3);
6324 	}
6325 #endif
6326 	vm_page_array = (vm_page_t)start;
6327 }
6328 
6329 #ifdef DDB
6330 #include <sys/kdb.h>
6331 #include <ddb/ddb.h>
6332 
6333 static void
6334 pmap_pte_walk(pml1_entry_t *l1, vm_offset_t va)
6335 {
6336 	pml1_entry_t *l1e;
6337 	pml2_entry_t *l2e;
6338 	pml3_entry_t *l3e;
6339 	pt_entry_t *pte;
6340 
6341 	l1e = &l1[pmap_pml1e_index(va)];
6342 	db_printf("VA %#016lx l1e %#016lx", va, *l1e);
6343 	if ((*l1e & PG_V) == 0) {
6344 		db_printf("\n");
6345 		return;
6346 	}
6347 	l2e = pmap_l1e_to_l2e(l1e, va);
6348 	db_printf(" l2e %#016lx", *l2e);
6349 	if ((*l2e & PG_V) == 0 || (*l2e & RPTE_LEAF) != 0) {
6350 		db_printf("\n");
6351 		return;
6352 	}
6353 	l3e = pmap_l2e_to_l3e(l2e, va);
6354 	db_printf(" l3e %#016lx", *l3e);
6355 	if ((*l3e & PG_V) == 0 || (*l3e & RPTE_LEAF) != 0) {
6356 		db_printf("\n");
6357 		return;
6358 	}
6359 	pte = pmap_l3e_to_pte(l3e, va);
6360 	db_printf(" pte %#016lx\n", *pte);
6361 }
6362 
6363 void
6364 pmap_page_print_mappings(vm_page_t m)
6365 {
6366 	pmap_t pmap;
6367 	pv_entry_t pv;
6368 
6369 	db_printf("page %p(%lx)\n", m, m->phys_addr);
6370 	/* need to elide locks if running in ddb */
6371 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
6372 		db_printf("pv: %p ", pv);
6373 		db_printf("va: %#016lx ", pv->pv_va);
6374 		pmap = PV_PMAP(pv);
6375 		db_printf("pmap %p  ", pmap);
6376 		if (pmap != NULL) {
6377 			db_printf("asid: %lu\n", pmap->pm_pid);
6378 			pmap_pte_walk(pmap->pm_pml1, pv->pv_va);
6379 		}
6380 	}
6381 }
6382 
6383 DB_SHOW_COMMAND(pte, pmap_print_pte)
6384 {
6385 	vm_offset_t va;
6386 	pmap_t pmap;
6387 
6388 	if (!have_addr) {
6389 		db_printf("show pte addr\n");
6390 		return;
6391 	}
6392 	va = (vm_offset_t)addr;
6393 
6394 	if (va >= DMAP_MIN_ADDRESS)
6395 		pmap = kernel_pmap;
6396 	else if (kdb_thread != NULL)
6397 		pmap = vmspace_pmap(kdb_thread->td_proc->p_vmspace);
6398 	else
6399 		pmap = vmspace_pmap(curthread->td_proc->p_vmspace);
6400 
6401 	pmap_pte_walk(pmap->pm_pml1, va);
6402 }
6403 
6404 #endif
6405 
6406