xref: /freebsd/sys/powerpc/aim/slb.c (revision d6b92ffa)
1 /*-
2  * Copyright (c) 2010 Nathan Whitehorn
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  *
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  *
26  * $FreeBSD$
27  */
28 
29 #include <sys/param.h>
30 #include <sys/kernel.h>
31 #include <sys/lock.h>
32 #include <sys/malloc.h>
33 #include <sys/mutex.h>
34 #include <sys/proc.h>
35 #include <sys/systm.h>
36 
37 #include <vm/vm.h>
38 #include <vm/pmap.h>
39 #include <vm/uma.h>
40 #include <vm/vm.h>
41 #include <vm/vm_map.h>
42 #include <vm/vm_page.h>
43 #include <vm/vm_pageout.h>
44 
45 #include <machine/md_var.h>
46 #include <machine/platform.h>
47 #include <machine/vmparam.h>
48 
49 uintptr_t moea64_get_unique_vsid(void);
50 void moea64_release_vsid(uint64_t vsid);
51 static void slb_zone_init(void *);
52 
53 static uma_zone_t slbt_zone;
54 static uma_zone_t slb_cache_zone;
55 int n_slbs = 64;
56 
57 SYSINIT(slb_zone_init, SI_SUB_KMEM, SI_ORDER_ANY, slb_zone_init, NULL);
58 
59 struct slbtnode {
60 	uint16_t	ua_alloc;
61 	uint8_t		ua_level;
62 	/* Only 36 bits needed for full 64-bit address space. */
63 	uint64_t	ua_base;
64 	union {
65 		struct slbtnode	*ua_child[16];
66 		struct slb	slb_entries[16];
67 	} u;
68 };
69 
70 /*
71  * For a full 64-bit address space, there are 36 bits in play in an
72  * esid, so 8 levels, with the leaf being at level 0.
73  *
74  * |3333|3322|2222|2222|1111|1111|11  |    |    |  esid
75  * |5432|1098|7654|3210|9876|5432|1098|7654|3210|  bits
76  * +----+----+----+----+----+----+----+----+----+--------
77  * | 8  | 7  | 6  | 5  | 4  | 3  | 2  | 1  | 0  | level
78  */
79 #define UAD_ROOT_LEVEL  8
80 #define UAD_LEAF_LEVEL  0
81 
82 static inline int
83 esid2idx(uint64_t esid, int level)
84 {
85 	int shift;
86 
87 	shift = level * 4;
88 	return ((esid >> shift) & 0xF);
89 }
90 
91 /*
92  * The ua_base field should have 0 bits after the first 4*(level+1)
93  * bits; i.e. only
94  */
95 #define uad_baseok(ua)                          \
96 	(esid2base(ua->ua_base, ua->ua_level) == ua->ua_base)
97 
98 
99 static inline uint64_t
100 esid2base(uint64_t esid, int level)
101 {
102 	uint64_t mask;
103 	int shift;
104 
105 	shift = (level + 1) * 4;
106 	mask = ~((1ULL << shift) - 1);
107 	return (esid & mask);
108 }
109 
110 /*
111  * Allocate a new leaf node for the specified esid/vmhandle from the
112  * parent node.
113  */
114 static struct slb *
115 make_new_leaf(uint64_t esid, uint64_t slbv, struct slbtnode *parent)
116 {
117 	struct slbtnode *child;
118 	struct slb *retval;
119 	int idx;
120 
121 	idx = esid2idx(esid, parent->ua_level);
122 	KASSERT(parent->u.ua_child[idx] == NULL, ("Child already exists!"));
123 
124 	/* unlock and M_WAITOK and loop? */
125 	child = uma_zalloc(slbt_zone, M_NOWAIT | M_ZERO);
126 	KASSERT(child != NULL, ("unhandled NULL case"));
127 
128 	child->ua_level = UAD_LEAF_LEVEL;
129 	child->ua_base = esid2base(esid, child->ua_level);
130 	idx = esid2idx(esid, child->ua_level);
131 	child->u.slb_entries[idx].slbv = slbv;
132 	child->u.slb_entries[idx].slbe = (esid << SLBE_ESID_SHIFT) | SLBE_VALID;
133 	setbit(&child->ua_alloc, idx);
134 
135 	retval = &child->u.slb_entries[idx];
136 
137 	/*
138 	 * The above stores must be visible before the next one, so
139 	 * that a lockless searcher always sees a valid path through
140 	 * the tree.
141 	 */
142 	powerpc_lwsync();
143 
144 	idx = esid2idx(esid, parent->ua_level);
145 	parent->u.ua_child[idx] = child;
146 	setbit(&parent->ua_alloc, idx);
147 
148 	return (retval);
149 }
150 
151 /*
152  * Allocate a new intermediate node to fit between the parent and
153  * esid.
154  */
155 static struct slbtnode*
156 make_intermediate(uint64_t esid, struct slbtnode *parent)
157 {
158 	struct slbtnode *child, *inter;
159 	int idx, level;
160 
161 	idx = esid2idx(esid, parent->ua_level);
162 	child = parent->u.ua_child[idx];
163 	KASSERT(esid2base(esid, child->ua_level) != child->ua_base,
164 	    ("No need for an intermediate node?"));
165 
166 	/*
167 	 * Find the level where the existing child and our new esid
168 	 * meet.  It must be lower than parent->ua_level or we would
169 	 * have chosen a different index in parent.
170 	 */
171 	level = child->ua_level + 1;
172 	while (esid2base(esid, level) !=
173 	    esid2base(child->ua_base, level))
174 		level++;
175 	KASSERT(level < parent->ua_level,
176 	    ("Found splitting level %d for %09jx and %09jx, "
177 	    "but it's the same as %p's",
178 	    level, esid, child->ua_base, parent));
179 
180 	/* unlock and M_WAITOK and loop? */
181 	inter = uma_zalloc(slbt_zone, M_NOWAIT | M_ZERO);
182 	KASSERT(inter != NULL, ("unhandled NULL case"));
183 
184 	/* Set up intermediate node to point to child ... */
185 	inter->ua_level = level;
186 	inter->ua_base = esid2base(esid, inter->ua_level);
187 	idx = esid2idx(child->ua_base, inter->ua_level);
188 	inter->u.ua_child[idx] = child;
189 	setbit(&inter->ua_alloc, idx);
190 	powerpc_lwsync();
191 
192 	/* Set up parent to point to intermediate node ... */
193 	idx = esid2idx(inter->ua_base, parent->ua_level);
194 	parent->u.ua_child[idx] = inter;
195 	setbit(&parent->ua_alloc, idx);
196 
197 	return (inter);
198 }
199 
200 uint64_t
201 kernel_va_to_slbv(vm_offset_t va)
202 {
203 	uint64_t slbv;
204 
205 	/* Set kernel VSID to deterministic value */
206 	slbv = (KERNEL_VSID((uintptr_t)va >> ADDR_SR_SHFT)) << SLBV_VSID_SHIFT;
207 
208 	/* Figure out if this is a large-page mapping */
209 	if (hw_direct_map && va < VM_MIN_KERNEL_ADDRESS) {
210 		/*
211 		 * XXX: If we have set up a direct map, assumes
212 		 * all physical memory is mapped with large pages.
213 		 */
214 		if (mem_valid(va, 0) == 0)
215 			slbv |= SLBV_L;
216 	}
217 
218 	return (slbv);
219 }
220 
221 struct slb *
222 user_va_to_slb_entry(pmap_t pm, vm_offset_t va)
223 {
224 	uint64_t esid = va >> ADDR_SR_SHFT;
225 	struct slbtnode *ua;
226 	int idx;
227 
228 	ua = pm->pm_slb_tree_root;
229 
230 	for (;;) {
231 		KASSERT(uad_baseok(ua), ("uad base %016jx level %d bad!",
232 		    ua->ua_base, ua->ua_level));
233 		idx = esid2idx(esid, ua->ua_level);
234 
235 		/*
236 		 * This code is specific to ppc64 where a load is
237 		 * atomic, so no need for atomic_load macro.
238 		 */
239 		if (ua->ua_level == UAD_LEAF_LEVEL)
240 			return ((ua->u.slb_entries[idx].slbe & SLBE_VALID) ?
241 			    &ua->u.slb_entries[idx] : NULL);
242 
243 		/*
244 		 * The following accesses are implicitly ordered under the POWER
245 		 * ISA by load dependencies (the store ordering is provided by
246 		 * the powerpc_lwsync() calls elsewhere) and so are run without
247 		 * barriers.
248 		 */
249 		ua = ua->u.ua_child[idx];
250 		if (ua == NULL ||
251 		    esid2base(esid, ua->ua_level) != ua->ua_base)
252 			return (NULL);
253 	}
254 
255 	return (NULL);
256 }
257 
258 uint64_t
259 va_to_vsid(pmap_t pm, vm_offset_t va)
260 {
261 	struct slb *entry;
262 
263 	/* Shortcut kernel case */
264 	if (pm == kernel_pmap)
265 		return (KERNEL_VSID((uintptr_t)va >> ADDR_SR_SHFT));
266 
267 	/*
268 	 * If there is no vsid for this VA, we need to add a new entry
269 	 * to the PMAP's segment table.
270 	 */
271 
272 	entry = user_va_to_slb_entry(pm, va);
273 
274 	if (entry == NULL)
275 		return (allocate_user_vsid(pm,
276 		    (uintptr_t)va >> ADDR_SR_SHFT, 0));
277 
278 	return ((entry->slbv & SLBV_VSID_MASK) >> SLBV_VSID_SHIFT);
279 }
280 
281 uint64_t
282 allocate_user_vsid(pmap_t pm, uint64_t esid, int large)
283 {
284 	uint64_t vsid, slbv;
285 	struct slbtnode *ua, *next, *inter;
286 	struct slb *slb;
287 	int idx;
288 
289 	KASSERT(pm != kernel_pmap, ("Attempting to allocate a kernel VSID"));
290 
291 	PMAP_LOCK_ASSERT(pm, MA_OWNED);
292 	vsid = moea64_get_unique_vsid();
293 
294 	slbv = vsid << SLBV_VSID_SHIFT;
295 	if (large)
296 		slbv |= SLBV_L;
297 
298 	ua = pm->pm_slb_tree_root;
299 
300 	/* Descend to the correct leaf or NULL pointer. */
301 	for (;;) {
302 		KASSERT(uad_baseok(ua),
303 		   ("uad base %09jx level %d bad!", ua->ua_base, ua->ua_level));
304 		idx = esid2idx(esid, ua->ua_level);
305 
306 		if (ua->ua_level == UAD_LEAF_LEVEL) {
307 			ua->u.slb_entries[idx].slbv = slbv;
308 			eieio();
309 			ua->u.slb_entries[idx].slbe = (esid << SLBE_ESID_SHIFT)
310 			    | SLBE_VALID;
311 			setbit(&ua->ua_alloc, idx);
312 			slb = &ua->u.slb_entries[idx];
313 			break;
314 		}
315 
316 		next = ua->u.ua_child[idx];
317 		if (next == NULL) {
318 			slb = make_new_leaf(esid, slbv, ua);
319 			break;
320                 }
321 
322 		/*
323 		 * Check if the next item down has an okay ua_base.
324 		 * If not, we need to allocate an intermediate node.
325 		 */
326 		if (esid2base(esid, next->ua_level) != next->ua_base) {
327 			inter = make_intermediate(esid, ua);
328 			slb = make_new_leaf(esid, slbv, inter);
329 			break;
330 		}
331 
332 		ua = next;
333 	}
334 
335 	/*
336 	 * Someone probably wants this soon, and it may be a wired
337 	 * SLB mapping, so pre-spill this entry.
338 	 */
339 	eieio();
340 	slb_insert_user(pm, slb);
341 
342 	return (vsid);
343 }
344 
345 void
346 free_vsid(pmap_t pm, uint64_t esid, int large)
347 {
348 	struct slbtnode *ua;
349 	int idx;
350 
351 	PMAP_LOCK_ASSERT(pm, MA_OWNED);
352 
353 	ua = pm->pm_slb_tree_root;
354 	/* Descend to the correct leaf. */
355 	for (;;) {
356 		KASSERT(uad_baseok(ua),
357 		   ("uad base %09jx level %d bad!", ua->ua_base, ua->ua_level));
358 
359 		idx = esid2idx(esid, ua->ua_level);
360 		if (ua->ua_level == UAD_LEAF_LEVEL) {
361 			ua->u.slb_entries[idx].slbv = 0;
362 			eieio();
363 			ua->u.slb_entries[idx].slbe = 0;
364 			clrbit(&ua->ua_alloc, idx);
365 			return;
366 		}
367 
368 		ua = ua->u.ua_child[idx];
369 		if (ua == NULL ||
370 		    esid2base(esid, ua->ua_level) != ua->ua_base) {
371 			/* Perhaps just return instead of assert? */
372 			KASSERT(0,
373 			    ("Asked to remove an entry that was never inserted!"));
374 			return;
375 		}
376 	}
377 }
378 
379 static void
380 free_slb_tree_node(struct slbtnode *ua)
381 {
382 	int idx;
383 
384 	for (idx = 0; idx < 16; idx++) {
385 		if (ua->ua_level != UAD_LEAF_LEVEL) {
386 			if (ua->u.ua_child[idx] != NULL)
387 				free_slb_tree_node(ua->u.ua_child[idx]);
388 		} else {
389 			if (ua->u.slb_entries[idx].slbv != 0)
390 				moea64_release_vsid(ua->u.slb_entries[idx].slbv
391 				    >> SLBV_VSID_SHIFT);
392 		}
393 	}
394 
395 	uma_zfree(slbt_zone, ua);
396 }
397 
398 void
399 slb_free_tree(pmap_t pm)
400 {
401 
402 	free_slb_tree_node(pm->pm_slb_tree_root);
403 }
404 
405 struct slbtnode *
406 slb_alloc_tree(void)
407 {
408 	struct slbtnode *root;
409 
410 	root = uma_zalloc(slbt_zone, M_NOWAIT | M_ZERO);
411 	root->ua_level = UAD_ROOT_LEVEL;
412 
413 	return (root);
414 }
415 
416 /* Lock entries mapping kernel text and stacks */
417 
418 void
419 slb_insert_kernel(uint64_t slbe, uint64_t slbv)
420 {
421 	struct slb *slbcache;
422 	int i;
423 
424 	/* We don't want to be preempted while modifying the kernel map */
425 	critical_enter();
426 
427 	slbcache = PCPU_GET(slb);
428 
429 	/* Check for an unused slot, abusing the user slot as a full flag */
430 	if (slbcache[USER_SLB_SLOT].slbe == 0) {
431 		for (i = 0; i < n_slbs; i++) {
432 			if (i == USER_SLB_SLOT)
433 				continue;
434 			if (!(slbcache[i].slbe & SLBE_VALID))
435 				goto fillkernslb;
436 		}
437 
438 		if (i == n_slbs)
439 			slbcache[USER_SLB_SLOT].slbe = 1;
440 	}
441 
442 	i = mftb() % n_slbs;
443 	if (i == USER_SLB_SLOT)
444 			i = (i+1) % n_slbs;
445 
446 fillkernslb:
447 	KASSERT(i != USER_SLB_SLOT,
448 	    ("Filling user SLB slot with a kernel mapping"));
449 	slbcache[i].slbv = slbv;
450 	slbcache[i].slbe = slbe | (uint64_t)i;
451 
452 	/* If it is for this CPU, put it in the SLB right away */
453 	if (pmap_bootstrapped) {
454 		/* slbie not required */
455 		__asm __volatile ("slbmte %0, %1" ::
456 		    "r"(slbcache[i].slbv), "r"(slbcache[i].slbe));
457 	}
458 
459 	critical_exit();
460 }
461 
462 void
463 slb_insert_user(pmap_t pm, struct slb *slb)
464 {
465 	int i;
466 
467 	PMAP_LOCK_ASSERT(pm, MA_OWNED);
468 
469 	if (pm->pm_slb_len < n_slbs) {
470 		i = pm->pm_slb_len;
471 		pm->pm_slb_len++;
472 	} else {
473 		i = mftb() % n_slbs;
474 	}
475 
476 	/* Note that this replacement is atomic with respect to trap_subr */
477 	pm->pm_slb[i] = slb;
478 }
479 
480 static void *
481 slb_uma_real_alloc(uma_zone_t zone, vm_size_t bytes, u_int8_t *flags, int wait)
482 {
483 	static vm_offset_t realmax = 0;
484 	void *va;
485 	vm_page_t m;
486 	int pflags;
487 
488 	if (realmax == 0)
489 		realmax = platform_real_maxaddr();
490 
491 	*flags = UMA_SLAB_PRIV;
492 	pflags = malloc2vm_flags(wait) | VM_ALLOC_NOOBJ | VM_ALLOC_WIRED;
493 
494 	for (;;) {
495 		m = vm_page_alloc_contig(NULL, 0, pflags, 1, 0, realmax,
496 		    PAGE_SIZE, PAGE_SIZE, VM_MEMATTR_DEFAULT);
497 		if (m == NULL) {
498 			if (wait & M_NOWAIT)
499 				return (NULL);
500 			VM_WAIT;
501 		} else
502                         break;
503         }
504 
505 	va = (void *) VM_PAGE_TO_PHYS(m);
506 
507 	if (!hw_direct_map)
508 		pmap_kenter((vm_offset_t)va, VM_PAGE_TO_PHYS(m));
509 
510 	if ((wait & M_ZERO) && (m->flags & PG_ZERO) == 0)
511 		bzero(va, PAGE_SIZE);
512 
513 	return (va);
514 }
515 
516 static void
517 slb_zone_init(void *dummy)
518 {
519 
520 	slbt_zone = uma_zcreate("SLB tree node", sizeof(struct slbtnode),
521 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM);
522 	slb_cache_zone = uma_zcreate("SLB cache",
523 	    (n_slbs + 1)*sizeof(struct slb *), NULL, NULL, NULL, NULL,
524 	    UMA_ALIGN_PTR, UMA_ZONE_VM);
525 
526 	if (platform_real_maxaddr() != VM_MAX_ADDRESS) {
527 		uma_zone_set_allocf(slb_cache_zone, slb_uma_real_alloc);
528 		uma_zone_set_allocf(slbt_zone, slb_uma_real_alloc);
529 	}
530 }
531 
532 struct slb **
533 slb_alloc_user_cache(void)
534 {
535 	return (uma_zalloc(slb_cache_zone, M_ZERO));
536 }
537 
538 void
539 slb_free_user_cache(struct slb **slb)
540 {
541 	uma_zfree(slb_cache_zone, slb);
542 }
543