xref: /freebsd/sys/powerpc/booke/pmap.c (revision b0b1dbdd)
1 /*-
2  * Copyright (C) 2007-2009 Semihalf, Rafal Jaworowski <raj@semihalf.com>
3  * Copyright (C) 2006 Semihalf, Marian Balakowicz <m8@semihalf.com>
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN
18  * NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
19  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
20  * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
21  * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
22  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
23  * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
24  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  *
26  * Some hw specific parts of this pmap were derived or influenced
27  * by NetBSD's ibm4xx pmap module. More generic code is shared with
28  * a few other pmap modules from the FreeBSD tree.
29  */
30 
31  /*
32   * VM layout notes:
33   *
34   * Kernel and user threads run within one common virtual address space
35   * defined by AS=0.
36   *
37   * Virtual address space layout:
38   * -----------------------------
39   * 0x0000_0000 - 0xafff_ffff	: user process
40   * 0xb000_0000 - 0xbfff_ffff	: pmap_mapdev()-ed area (PCI/PCIE etc.)
41   * 0xc000_0000 - 0xc0ff_ffff	: kernel reserved
42   *   0xc000_0000 - data_end	: kernel code+data, env, metadata etc.
43   * 0xc100_0000 - 0xfeef_ffff	: KVA
44   *   0xc100_0000 - 0xc100_3fff : reserved for page zero/copy
45   *   0xc100_4000 - 0xc200_3fff : reserved for ptbl bufs
46   *   0xc200_4000 - 0xc200_8fff : guard page + kstack0
47   *   0xc200_9000 - 0xfeef_ffff	: actual free KVA space
48   * 0xfef0_0000 - 0xffff_ffff	: I/O devices region
49   */
50 
51 #include <sys/cdefs.h>
52 __FBSDID("$FreeBSD$");
53 
54 #include "opt_kstack_pages.h"
55 
56 #include <sys/param.h>
57 #include <sys/conf.h>
58 #include <sys/malloc.h>
59 #include <sys/ktr.h>
60 #include <sys/proc.h>
61 #include <sys/user.h>
62 #include <sys/queue.h>
63 #include <sys/systm.h>
64 #include <sys/kernel.h>
65 #include <sys/kerneldump.h>
66 #include <sys/linker.h>
67 #include <sys/msgbuf.h>
68 #include <sys/lock.h>
69 #include <sys/mutex.h>
70 #include <sys/rwlock.h>
71 #include <sys/sched.h>
72 #include <sys/smp.h>
73 #include <sys/vmmeter.h>
74 
75 #include <vm/vm.h>
76 #include <vm/vm_page.h>
77 #include <vm/vm_kern.h>
78 #include <vm/vm_pageout.h>
79 #include <vm/vm_extern.h>
80 #include <vm/vm_object.h>
81 #include <vm/vm_param.h>
82 #include <vm/vm_map.h>
83 #include <vm/vm_pager.h>
84 #include <vm/uma.h>
85 
86 #include <machine/cpu.h>
87 #include <machine/pcb.h>
88 #include <machine/platform.h>
89 
90 #include <machine/tlb.h>
91 #include <machine/spr.h>
92 #include <machine/md_var.h>
93 #include <machine/mmuvar.h>
94 #include <machine/pmap.h>
95 #include <machine/pte.h>
96 
97 #include "mmu_if.h"
98 
99 #define	SPARSE_MAPDEV
100 #ifdef  DEBUG
101 #define debugf(fmt, args...) printf(fmt, ##args)
102 #else
103 #define debugf(fmt, args...)
104 #endif
105 
106 #define TODO			panic("%s: not implemented", __func__);
107 
108 extern unsigned char _etext[];
109 extern unsigned char _end[];
110 
111 extern uint32_t *bootinfo;
112 
113 vm_paddr_t kernload;
114 vm_offset_t kernstart;
115 vm_size_t kernsize;
116 
117 /* Message buffer and tables. */
118 static vm_offset_t data_start;
119 static vm_size_t data_end;
120 
121 /* Phys/avail memory regions. */
122 static struct mem_region *availmem_regions;
123 static int availmem_regions_sz;
124 static struct mem_region *physmem_regions;
125 static int physmem_regions_sz;
126 
127 /* Reserved KVA space and mutex for mmu_booke_zero_page. */
128 static vm_offset_t zero_page_va;
129 static struct mtx zero_page_mutex;
130 
131 static struct mtx tlbivax_mutex;
132 
133 /* Reserved KVA space and mutex for mmu_booke_copy_page. */
134 static vm_offset_t copy_page_src_va;
135 static vm_offset_t copy_page_dst_va;
136 static struct mtx copy_page_mutex;
137 
138 /**************************************************************************/
139 /* PMAP */
140 /**************************************************************************/
141 
142 static int mmu_booke_enter_locked(mmu_t, pmap_t, vm_offset_t, vm_page_t,
143     vm_prot_t, u_int flags, int8_t psind);
144 
145 unsigned int kptbl_min;		/* Index of the first kernel ptbl. */
146 unsigned int kernel_ptbls;	/* Number of KVA ptbls. */
147 
148 /*
149  * If user pmap is processed with mmu_booke_remove and the resident count
150  * drops to 0, there are no more pages to remove, so we need not continue.
151  */
152 #define PMAP_REMOVE_DONE(pmap) \
153 	((pmap) != kernel_pmap && (pmap)->pm_stats.resident_count == 0)
154 
155 extern int elf32_nxstack;
156 
157 /**************************************************************************/
158 /* TLB and TID handling */
159 /**************************************************************************/
160 
161 /* Translation ID busy table */
162 static volatile pmap_t tidbusy[MAXCPU][TID_MAX + 1];
163 
164 /*
165  * TLB0 capabilities (entry, way numbers etc.). These can vary between e500
166  * core revisions and should be read from h/w registers during early config.
167  */
168 uint32_t tlb0_entries;
169 uint32_t tlb0_ways;
170 uint32_t tlb0_entries_per_way;
171 uint32_t tlb1_entries;
172 
173 #define TLB0_ENTRIES		(tlb0_entries)
174 #define TLB0_WAYS		(tlb0_ways)
175 #define TLB0_ENTRIES_PER_WAY	(tlb0_entries_per_way)
176 
177 #define TLB1_ENTRIES (tlb1_entries)
178 #define TLB1_MAXENTRIES	64
179 
180 static vm_offset_t tlb1_map_base = VM_MAXUSER_ADDRESS + PAGE_SIZE;
181 
182 static tlbtid_t tid_alloc(struct pmap *);
183 static void tid_flush(tlbtid_t tid);
184 
185 static void tlb_print_entry(int, uint32_t, uint32_t, uint32_t, uint32_t);
186 
187 static void tlb1_read_entry(tlb_entry_t *, unsigned int);
188 static void tlb1_write_entry(tlb_entry_t *, unsigned int);
189 static int tlb1_iomapped(int, vm_paddr_t, vm_size_t, vm_offset_t *);
190 static vm_size_t tlb1_mapin_region(vm_offset_t, vm_paddr_t, vm_size_t);
191 
192 static vm_size_t tsize2size(unsigned int);
193 static unsigned int size2tsize(vm_size_t);
194 static unsigned int ilog2(unsigned int);
195 
196 static void set_mas4_defaults(void);
197 
198 static inline void tlb0_flush_entry(vm_offset_t);
199 static inline unsigned int tlb0_tableidx(vm_offset_t, unsigned int);
200 
201 /**************************************************************************/
202 /* Page table management */
203 /**************************************************************************/
204 
205 static struct rwlock_padalign pvh_global_lock;
206 
207 /* Data for the pv entry allocation mechanism */
208 static uma_zone_t pvzone;
209 static int pv_entry_count = 0, pv_entry_max = 0, pv_entry_high_water = 0;
210 
211 #define PV_ENTRY_ZONE_MIN	2048	/* min pv entries in uma zone */
212 
213 #ifndef PMAP_SHPGPERPROC
214 #define PMAP_SHPGPERPROC	200
215 #endif
216 
217 static void ptbl_init(void);
218 static struct ptbl_buf *ptbl_buf_alloc(void);
219 static void ptbl_buf_free(struct ptbl_buf *);
220 static void ptbl_free_pmap_ptbl(pmap_t, pte_t *);
221 
222 static pte_t *ptbl_alloc(mmu_t, pmap_t, unsigned int, boolean_t);
223 static void ptbl_free(mmu_t, pmap_t, unsigned int);
224 static void ptbl_hold(mmu_t, pmap_t, unsigned int);
225 static int ptbl_unhold(mmu_t, pmap_t, unsigned int);
226 
227 static vm_paddr_t pte_vatopa(mmu_t, pmap_t, vm_offset_t);
228 static pte_t *pte_find(mmu_t, pmap_t, vm_offset_t);
229 static int pte_enter(mmu_t, pmap_t, vm_page_t, vm_offset_t, uint32_t, boolean_t);
230 static int pte_remove(mmu_t, pmap_t, vm_offset_t, uint8_t);
231 static void kernel_pte_alloc(vm_offset_t data_end, vm_offset_t addr,
232 			     vm_offset_t pdir);
233 
234 static pv_entry_t pv_alloc(void);
235 static void pv_free(pv_entry_t);
236 static void pv_insert(pmap_t, vm_offset_t, vm_page_t);
237 static void pv_remove(pmap_t, vm_offset_t, vm_page_t);
238 
239 static void booke_pmap_init_qpages(void);
240 
241 /* Number of kva ptbl buffers, each covering one ptbl (PTBL_PAGES). */
242 #define PTBL_BUFS		(128 * 16)
243 
244 struct ptbl_buf {
245 	TAILQ_ENTRY(ptbl_buf) link;	/* list link */
246 	vm_offset_t kva;		/* va of mapping */
247 };
248 
249 /* ptbl free list and a lock used for access synchronization. */
250 static TAILQ_HEAD(, ptbl_buf) ptbl_buf_freelist;
251 static struct mtx ptbl_buf_freelist_lock;
252 
253 /* Base address of kva space allocated fot ptbl bufs. */
254 static vm_offset_t ptbl_buf_pool_vabase;
255 
256 /* Pointer to ptbl_buf structures. */
257 static struct ptbl_buf *ptbl_bufs;
258 
259 #ifdef SMP
260 extern tlb_entry_t __boot_tlb1[];
261 void pmap_bootstrap_ap(volatile uint32_t *);
262 #endif
263 
264 /*
265  * Kernel MMU interface
266  */
267 static void		mmu_booke_clear_modify(mmu_t, vm_page_t);
268 static void		mmu_booke_copy(mmu_t, pmap_t, pmap_t, vm_offset_t,
269     vm_size_t, vm_offset_t);
270 static void		mmu_booke_copy_page(mmu_t, vm_page_t, vm_page_t);
271 static void		mmu_booke_copy_pages(mmu_t, vm_page_t *,
272     vm_offset_t, vm_page_t *, vm_offset_t, int);
273 static int		mmu_booke_enter(mmu_t, pmap_t, vm_offset_t, vm_page_t,
274     vm_prot_t, u_int flags, int8_t psind);
275 static void		mmu_booke_enter_object(mmu_t, pmap_t, vm_offset_t, vm_offset_t,
276     vm_page_t, vm_prot_t);
277 static void		mmu_booke_enter_quick(mmu_t, pmap_t, vm_offset_t, vm_page_t,
278     vm_prot_t);
279 static vm_paddr_t	mmu_booke_extract(mmu_t, pmap_t, vm_offset_t);
280 static vm_page_t	mmu_booke_extract_and_hold(mmu_t, pmap_t, vm_offset_t,
281     vm_prot_t);
282 static void		mmu_booke_init(mmu_t);
283 static boolean_t	mmu_booke_is_modified(mmu_t, vm_page_t);
284 static boolean_t	mmu_booke_is_prefaultable(mmu_t, pmap_t, vm_offset_t);
285 static boolean_t	mmu_booke_is_referenced(mmu_t, vm_page_t);
286 static int		mmu_booke_ts_referenced(mmu_t, vm_page_t);
287 static vm_offset_t	mmu_booke_map(mmu_t, vm_offset_t *, vm_paddr_t, vm_paddr_t,
288     int);
289 static int		mmu_booke_mincore(mmu_t, pmap_t, vm_offset_t,
290     vm_paddr_t *);
291 static void		mmu_booke_object_init_pt(mmu_t, pmap_t, vm_offset_t,
292     vm_object_t, vm_pindex_t, vm_size_t);
293 static boolean_t	mmu_booke_page_exists_quick(mmu_t, pmap_t, vm_page_t);
294 static void		mmu_booke_page_init(mmu_t, vm_page_t);
295 static int		mmu_booke_page_wired_mappings(mmu_t, vm_page_t);
296 static void		mmu_booke_pinit(mmu_t, pmap_t);
297 static void		mmu_booke_pinit0(mmu_t, pmap_t);
298 static void		mmu_booke_protect(mmu_t, pmap_t, vm_offset_t, vm_offset_t,
299     vm_prot_t);
300 static void		mmu_booke_qenter(mmu_t, vm_offset_t, vm_page_t *, int);
301 static void		mmu_booke_qremove(mmu_t, vm_offset_t, int);
302 static void		mmu_booke_release(mmu_t, pmap_t);
303 static void		mmu_booke_remove(mmu_t, pmap_t, vm_offset_t, vm_offset_t);
304 static void		mmu_booke_remove_all(mmu_t, vm_page_t);
305 static void		mmu_booke_remove_write(mmu_t, vm_page_t);
306 static void		mmu_booke_unwire(mmu_t, pmap_t, vm_offset_t, vm_offset_t);
307 static void		mmu_booke_zero_page(mmu_t, vm_page_t);
308 static void		mmu_booke_zero_page_area(mmu_t, vm_page_t, int, int);
309 static void		mmu_booke_activate(mmu_t, struct thread *);
310 static void		mmu_booke_deactivate(mmu_t, struct thread *);
311 static void		mmu_booke_bootstrap(mmu_t, vm_offset_t, vm_offset_t);
312 static void		*mmu_booke_mapdev(mmu_t, vm_paddr_t, vm_size_t);
313 static void		*mmu_booke_mapdev_attr(mmu_t, vm_paddr_t, vm_size_t, vm_memattr_t);
314 static void		mmu_booke_unmapdev(mmu_t, vm_offset_t, vm_size_t);
315 static vm_paddr_t	mmu_booke_kextract(mmu_t, vm_offset_t);
316 static void		mmu_booke_kenter(mmu_t, vm_offset_t, vm_paddr_t);
317 static void		mmu_booke_kenter_attr(mmu_t, vm_offset_t, vm_paddr_t, vm_memattr_t);
318 static void		mmu_booke_kremove(mmu_t, vm_offset_t);
319 static boolean_t	mmu_booke_dev_direct_mapped(mmu_t, vm_paddr_t, vm_size_t);
320 static void		mmu_booke_sync_icache(mmu_t, pmap_t, vm_offset_t,
321     vm_size_t);
322 static void		mmu_booke_dumpsys_map(mmu_t, vm_paddr_t pa, size_t,
323     void **);
324 static void		mmu_booke_dumpsys_unmap(mmu_t, vm_paddr_t pa, size_t,
325     void *);
326 static void		mmu_booke_scan_init(mmu_t);
327 static vm_offset_t	mmu_booke_quick_enter_page(mmu_t mmu, vm_page_t m);
328 static void		mmu_booke_quick_remove_page(mmu_t mmu, vm_offset_t addr);
329 static int		mmu_booke_change_attr(mmu_t mmu, vm_offset_t addr,
330     vm_size_t sz, vm_memattr_t mode);
331 
332 static mmu_method_t mmu_booke_methods[] = {
333 	/* pmap dispatcher interface */
334 	MMUMETHOD(mmu_clear_modify,	mmu_booke_clear_modify),
335 	MMUMETHOD(mmu_copy,		mmu_booke_copy),
336 	MMUMETHOD(mmu_copy_page,	mmu_booke_copy_page),
337 	MMUMETHOD(mmu_copy_pages,	mmu_booke_copy_pages),
338 	MMUMETHOD(mmu_enter,		mmu_booke_enter),
339 	MMUMETHOD(mmu_enter_object,	mmu_booke_enter_object),
340 	MMUMETHOD(mmu_enter_quick,	mmu_booke_enter_quick),
341 	MMUMETHOD(mmu_extract,		mmu_booke_extract),
342 	MMUMETHOD(mmu_extract_and_hold,	mmu_booke_extract_and_hold),
343 	MMUMETHOD(mmu_init,		mmu_booke_init),
344 	MMUMETHOD(mmu_is_modified,	mmu_booke_is_modified),
345 	MMUMETHOD(mmu_is_prefaultable,	mmu_booke_is_prefaultable),
346 	MMUMETHOD(mmu_is_referenced,	mmu_booke_is_referenced),
347 	MMUMETHOD(mmu_ts_referenced,	mmu_booke_ts_referenced),
348 	MMUMETHOD(mmu_map,		mmu_booke_map),
349 	MMUMETHOD(mmu_mincore,		mmu_booke_mincore),
350 	MMUMETHOD(mmu_object_init_pt,	mmu_booke_object_init_pt),
351 	MMUMETHOD(mmu_page_exists_quick,mmu_booke_page_exists_quick),
352 	MMUMETHOD(mmu_page_init,	mmu_booke_page_init),
353 	MMUMETHOD(mmu_page_wired_mappings, mmu_booke_page_wired_mappings),
354 	MMUMETHOD(mmu_pinit,		mmu_booke_pinit),
355 	MMUMETHOD(mmu_pinit0,		mmu_booke_pinit0),
356 	MMUMETHOD(mmu_protect,		mmu_booke_protect),
357 	MMUMETHOD(mmu_qenter,		mmu_booke_qenter),
358 	MMUMETHOD(mmu_qremove,		mmu_booke_qremove),
359 	MMUMETHOD(mmu_release,		mmu_booke_release),
360 	MMUMETHOD(mmu_remove,		mmu_booke_remove),
361 	MMUMETHOD(mmu_remove_all,	mmu_booke_remove_all),
362 	MMUMETHOD(mmu_remove_write,	mmu_booke_remove_write),
363 	MMUMETHOD(mmu_sync_icache,	mmu_booke_sync_icache),
364 	MMUMETHOD(mmu_unwire,		mmu_booke_unwire),
365 	MMUMETHOD(mmu_zero_page,	mmu_booke_zero_page),
366 	MMUMETHOD(mmu_zero_page_area,	mmu_booke_zero_page_area),
367 	MMUMETHOD(mmu_activate,		mmu_booke_activate),
368 	MMUMETHOD(mmu_deactivate,	mmu_booke_deactivate),
369 	MMUMETHOD(mmu_quick_enter_page, mmu_booke_quick_enter_page),
370 	MMUMETHOD(mmu_quick_remove_page, mmu_booke_quick_remove_page),
371 
372 	/* Internal interfaces */
373 	MMUMETHOD(mmu_bootstrap,	mmu_booke_bootstrap),
374 	MMUMETHOD(mmu_dev_direct_mapped,mmu_booke_dev_direct_mapped),
375 	MMUMETHOD(mmu_mapdev,		mmu_booke_mapdev),
376 	MMUMETHOD(mmu_mapdev_attr,	mmu_booke_mapdev_attr),
377 	MMUMETHOD(mmu_kenter,		mmu_booke_kenter),
378 	MMUMETHOD(mmu_kenter_attr,	mmu_booke_kenter_attr),
379 	MMUMETHOD(mmu_kextract,		mmu_booke_kextract),
380 	MMUMETHOD(mmu_kremove,		mmu_booke_kremove),
381 	MMUMETHOD(mmu_unmapdev,		mmu_booke_unmapdev),
382 	MMUMETHOD(mmu_change_attr,	mmu_booke_change_attr),
383 
384 	/* dumpsys() support */
385 	MMUMETHOD(mmu_dumpsys_map,	mmu_booke_dumpsys_map),
386 	MMUMETHOD(mmu_dumpsys_unmap,	mmu_booke_dumpsys_unmap),
387 	MMUMETHOD(mmu_scan_init,	mmu_booke_scan_init),
388 
389 	{ 0, 0 }
390 };
391 
392 MMU_DEF(booke_mmu, MMU_TYPE_BOOKE, mmu_booke_methods, 0);
393 
394 static __inline uint32_t
395 tlb_calc_wimg(vm_paddr_t pa, vm_memattr_t ma)
396 {
397 	uint32_t attrib;
398 	int i;
399 
400 	if (ma != VM_MEMATTR_DEFAULT) {
401 		switch (ma) {
402 		case VM_MEMATTR_UNCACHEABLE:
403 			return (MAS2_I | MAS2_G);
404 		case VM_MEMATTR_WRITE_COMBINING:
405 		case VM_MEMATTR_WRITE_BACK:
406 		case VM_MEMATTR_PREFETCHABLE:
407 			return (MAS2_I);
408 		case VM_MEMATTR_WRITE_THROUGH:
409 			return (MAS2_W | MAS2_M);
410 		case VM_MEMATTR_CACHEABLE:
411 			return (MAS2_M);
412 		}
413 	}
414 
415 	/*
416 	 * Assume the page is cache inhibited and access is guarded unless
417 	 * it's in our available memory array.
418 	 */
419 	attrib = _TLB_ENTRY_IO;
420 	for (i = 0; i < physmem_regions_sz; i++) {
421 		if ((pa >= physmem_regions[i].mr_start) &&
422 		    (pa < (physmem_regions[i].mr_start +
423 		     physmem_regions[i].mr_size))) {
424 			attrib = _TLB_ENTRY_MEM;
425 			break;
426 		}
427 	}
428 
429 	return (attrib);
430 }
431 
432 static inline void
433 tlb_miss_lock(void)
434 {
435 #ifdef SMP
436 	struct pcpu *pc;
437 
438 	if (!smp_started)
439 		return;
440 
441 	STAILQ_FOREACH(pc, &cpuhead, pc_allcpu) {
442 		if (pc != pcpup) {
443 
444 			CTR3(KTR_PMAP, "%s: tlb miss LOCK of CPU=%d, "
445 			    "tlb_lock=%p", __func__, pc->pc_cpuid, pc->pc_booke_tlb_lock);
446 
447 			KASSERT((pc->pc_cpuid != PCPU_GET(cpuid)),
448 			    ("tlb_miss_lock: tried to lock self"));
449 
450 			tlb_lock(pc->pc_booke_tlb_lock);
451 
452 			CTR1(KTR_PMAP, "%s: locked", __func__);
453 		}
454 	}
455 #endif
456 }
457 
458 static inline void
459 tlb_miss_unlock(void)
460 {
461 #ifdef SMP
462 	struct pcpu *pc;
463 
464 	if (!smp_started)
465 		return;
466 
467 	STAILQ_FOREACH(pc, &cpuhead, pc_allcpu) {
468 		if (pc != pcpup) {
469 			CTR2(KTR_PMAP, "%s: tlb miss UNLOCK of CPU=%d",
470 			    __func__, pc->pc_cpuid);
471 
472 			tlb_unlock(pc->pc_booke_tlb_lock);
473 
474 			CTR1(KTR_PMAP, "%s: unlocked", __func__);
475 		}
476 	}
477 #endif
478 }
479 
480 /* Return number of entries in TLB0. */
481 static __inline void
482 tlb0_get_tlbconf(void)
483 {
484 	uint32_t tlb0_cfg;
485 
486 	tlb0_cfg = mfspr(SPR_TLB0CFG);
487 	tlb0_entries = tlb0_cfg & TLBCFG_NENTRY_MASK;
488 	tlb0_ways = (tlb0_cfg & TLBCFG_ASSOC_MASK) >> TLBCFG_ASSOC_SHIFT;
489 	tlb0_entries_per_way = tlb0_entries / tlb0_ways;
490 }
491 
492 /* Return number of entries in TLB1. */
493 static __inline void
494 tlb1_get_tlbconf(void)
495 {
496 	uint32_t tlb1_cfg;
497 
498 	tlb1_cfg = mfspr(SPR_TLB1CFG);
499 	tlb1_entries = tlb1_cfg & TLBCFG_NENTRY_MASK;
500 }
501 
502 /**************************************************************************/
503 /* Page table related */
504 /**************************************************************************/
505 
506 /* Initialize pool of kva ptbl buffers. */
507 static void
508 ptbl_init(void)
509 {
510 	int i;
511 
512 	CTR3(KTR_PMAP, "%s: s (ptbl_bufs = 0x%08x size 0x%08x)", __func__,
513 	    (uint32_t)ptbl_bufs, sizeof(struct ptbl_buf) * PTBL_BUFS);
514 	CTR3(KTR_PMAP, "%s: s (ptbl_buf_pool_vabase = 0x%08x size = 0x%08x)",
515 	    __func__, ptbl_buf_pool_vabase, PTBL_BUFS * PTBL_PAGES * PAGE_SIZE);
516 
517 	mtx_init(&ptbl_buf_freelist_lock, "ptbl bufs lock", NULL, MTX_DEF);
518 	TAILQ_INIT(&ptbl_buf_freelist);
519 
520 	for (i = 0; i < PTBL_BUFS; i++) {
521 		ptbl_bufs[i].kva = ptbl_buf_pool_vabase + i * PTBL_PAGES * PAGE_SIZE;
522 		TAILQ_INSERT_TAIL(&ptbl_buf_freelist, &ptbl_bufs[i], link);
523 	}
524 }
525 
526 /* Get a ptbl_buf from the freelist. */
527 static struct ptbl_buf *
528 ptbl_buf_alloc(void)
529 {
530 	struct ptbl_buf *buf;
531 
532 	mtx_lock(&ptbl_buf_freelist_lock);
533 	buf = TAILQ_FIRST(&ptbl_buf_freelist);
534 	if (buf != NULL)
535 		TAILQ_REMOVE(&ptbl_buf_freelist, buf, link);
536 	mtx_unlock(&ptbl_buf_freelist_lock);
537 
538 	CTR2(KTR_PMAP, "%s: buf = %p", __func__, buf);
539 
540 	return (buf);
541 }
542 
543 /* Return ptbl buff to free pool. */
544 static void
545 ptbl_buf_free(struct ptbl_buf *buf)
546 {
547 
548 	CTR2(KTR_PMAP, "%s: buf = %p", __func__, buf);
549 
550 	mtx_lock(&ptbl_buf_freelist_lock);
551 	TAILQ_INSERT_TAIL(&ptbl_buf_freelist, buf, link);
552 	mtx_unlock(&ptbl_buf_freelist_lock);
553 }
554 
555 /*
556  * Search the list of allocated ptbl bufs and find on list of allocated ptbls
557  */
558 static void
559 ptbl_free_pmap_ptbl(pmap_t pmap, pte_t *ptbl)
560 {
561 	struct ptbl_buf *pbuf;
562 
563 	CTR2(KTR_PMAP, "%s: ptbl = %p", __func__, ptbl);
564 
565 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
566 
567 	TAILQ_FOREACH(pbuf, &pmap->pm_ptbl_list, link)
568 		if (pbuf->kva == (vm_offset_t)ptbl) {
569 			/* Remove from pmap ptbl buf list. */
570 			TAILQ_REMOVE(&pmap->pm_ptbl_list, pbuf, link);
571 
572 			/* Free corresponding ptbl buf. */
573 			ptbl_buf_free(pbuf);
574 			break;
575 		}
576 }
577 
578 /* Allocate page table. */
579 static pte_t *
580 ptbl_alloc(mmu_t mmu, pmap_t pmap, unsigned int pdir_idx, boolean_t nosleep)
581 {
582 	vm_page_t mtbl[PTBL_PAGES];
583 	vm_page_t m;
584 	struct ptbl_buf *pbuf;
585 	unsigned int pidx;
586 	pte_t *ptbl;
587 	int i, j;
588 
589 	CTR4(KTR_PMAP, "%s: pmap = %p su = %d pdir_idx = %d", __func__, pmap,
590 	    (pmap == kernel_pmap), pdir_idx);
591 
592 	KASSERT((pdir_idx <= (VM_MAXUSER_ADDRESS / PDIR_SIZE)),
593 	    ("ptbl_alloc: invalid pdir_idx"));
594 	KASSERT((pmap->pm_pdir[pdir_idx] == NULL),
595 	    ("pte_alloc: valid ptbl entry exists!"));
596 
597 	pbuf = ptbl_buf_alloc();
598 	if (pbuf == NULL)
599 		panic("pte_alloc: couldn't alloc kernel virtual memory");
600 
601 	ptbl = (pte_t *)pbuf->kva;
602 
603 	CTR2(KTR_PMAP, "%s: ptbl kva = %p", __func__, ptbl);
604 
605 	/* Allocate ptbl pages, this will sleep! */
606 	for (i = 0; i < PTBL_PAGES; i++) {
607 		pidx = (PTBL_PAGES * pdir_idx) + i;
608 		while ((m = vm_page_alloc(NULL, pidx,
609 		    VM_ALLOC_NOOBJ | VM_ALLOC_WIRED)) == NULL) {
610 			PMAP_UNLOCK(pmap);
611 			rw_wunlock(&pvh_global_lock);
612 			if (nosleep) {
613 				ptbl_free_pmap_ptbl(pmap, ptbl);
614 				for (j = 0; j < i; j++)
615 					vm_page_free(mtbl[j]);
616 				atomic_subtract_int(&vm_cnt.v_wire_count, i);
617 				return (NULL);
618 			}
619 			VM_WAIT;
620 			rw_wlock(&pvh_global_lock);
621 			PMAP_LOCK(pmap);
622 		}
623 		mtbl[i] = m;
624 	}
625 
626 	/* Map allocated pages into kernel_pmap. */
627 	mmu_booke_qenter(mmu, (vm_offset_t)ptbl, mtbl, PTBL_PAGES);
628 
629 	/* Zero whole ptbl. */
630 	bzero((caddr_t)ptbl, PTBL_PAGES * PAGE_SIZE);
631 
632 	/* Add pbuf to the pmap ptbl bufs list. */
633 	TAILQ_INSERT_TAIL(&pmap->pm_ptbl_list, pbuf, link);
634 
635 	return (ptbl);
636 }
637 
638 /* Free ptbl pages and invalidate pdir entry. */
639 static void
640 ptbl_free(mmu_t mmu, pmap_t pmap, unsigned int pdir_idx)
641 {
642 	pte_t *ptbl;
643 	vm_paddr_t pa;
644 	vm_offset_t va;
645 	vm_page_t m;
646 	int i;
647 
648 	CTR4(KTR_PMAP, "%s: pmap = %p su = %d pdir_idx = %d", __func__, pmap,
649 	    (pmap == kernel_pmap), pdir_idx);
650 
651 	KASSERT((pdir_idx <= (VM_MAXUSER_ADDRESS / PDIR_SIZE)),
652 	    ("ptbl_free: invalid pdir_idx"));
653 
654 	ptbl = pmap->pm_pdir[pdir_idx];
655 
656 	CTR2(KTR_PMAP, "%s: ptbl = %p", __func__, ptbl);
657 
658 	KASSERT((ptbl != NULL), ("ptbl_free: null ptbl"));
659 
660 	/*
661 	 * Invalidate the pdir entry as soon as possible, so that other CPUs
662 	 * don't attempt to look up the page tables we are releasing.
663 	 */
664 	mtx_lock_spin(&tlbivax_mutex);
665 	tlb_miss_lock();
666 
667 	pmap->pm_pdir[pdir_idx] = NULL;
668 
669 	tlb_miss_unlock();
670 	mtx_unlock_spin(&tlbivax_mutex);
671 
672 	for (i = 0; i < PTBL_PAGES; i++) {
673 		va = ((vm_offset_t)ptbl + (i * PAGE_SIZE));
674 		pa = pte_vatopa(mmu, kernel_pmap, va);
675 		m = PHYS_TO_VM_PAGE(pa);
676 		vm_page_free_zero(m);
677 		atomic_subtract_int(&vm_cnt.v_wire_count, 1);
678 		mmu_booke_kremove(mmu, va);
679 	}
680 
681 	ptbl_free_pmap_ptbl(pmap, ptbl);
682 }
683 
684 /*
685  * Decrement ptbl pages hold count and attempt to free ptbl pages.
686  * Called when removing pte entry from ptbl.
687  *
688  * Return 1 if ptbl pages were freed.
689  */
690 static int
691 ptbl_unhold(mmu_t mmu, pmap_t pmap, unsigned int pdir_idx)
692 {
693 	pte_t *ptbl;
694 	vm_paddr_t pa;
695 	vm_page_t m;
696 	int i;
697 
698 	CTR4(KTR_PMAP, "%s: pmap = %p su = %d pdir_idx = %d", __func__, pmap,
699 	    (pmap == kernel_pmap), pdir_idx);
700 
701 	KASSERT((pdir_idx <= (VM_MAXUSER_ADDRESS / PDIR_SIZE)),
702 	    ("ptbl_unhold: invalid pdir_idx"));
703 	KASSERT((pmap != kernel_pmap),
704 	    ("ptbl_unhold: unholding kernel ptbl!"));
705 
706 	ptbl = pmap->pm_pdir[pdir_idx];
707 
708 	//debugf("ptbl_unhold: ptbl = 0x%08x\n", (u_int32_t)ptbl);
709 	KASSERT(((vm_offset_t)ptbl >= VM_MIN_KERNEL_ADDRESS),
710 	    ("ptbl_unhold: non kva ptbl"));
711 
712 	/* decrement hold count */
713 	for (i = 0; i < PTBL_PAGES; i++) {
714 		pa = pte_vatopa(mmu, kernel_pmap,
715 		    (vm_offset_t)ptbl + (i * PAGE_SIZE));
716 		m = PHYS_TO_VM_PAGE(pa);
717 		m->wire_count--;
718 	}
719 
720 	/*
721 	 * Free ptbl pages if there are no pte etries in this ptbl.
722 	 * wire_count has the same value for all ptbl pages, so check the last
723 	 * page.
724 	 */
725 	if (m->wire_count == 0) {
726 		ptbl_free(mmu, pmap, pdir_idx);
727 
728 		//debugf("ptbl_unhold: e (freed ptbl)\n");
729 		return (1);
730 	}
731 
732 	return (0);
733 }
734 
735 /*
736  * Increment hold count for ptbl pages. This routine is used when a new pte
737  * entry is being inserted into the ptbl.
738  */
739 static void
740 ptbl_hold(mmu_t mmu, pmap_t pmap, unsigned int pdir_idx)
741 {
742 	vm_paddr_t pa;
743 	pte_t *ptbl;
744 	vm_page_t m;
745 	int i;
746 
747 	CTR3(KTR_PMAP, "%s: pmap = %p pdir_idx = %d", __func__, pmap,
748 	    pdir_idx);
749 
750 	KASSERT((pdir_idx <= (VM_MAXUSER_ADDRESS / PDIR_SIZE)),
751 	    ("ptbl_hold: invalid pdir_idx"));
752 	KASSERT((pmap != kernel_pmap),
753 	    ("ptbl_hold: holding kernel ptbl!"));
754 
755 	ptbl = pmap->pm_pdir[pdir_idx];
756 
757 	KASSERT((ptbl != NULL), ("ptbl_hold: null ptbl"));
758 
759 	for (i = 0; i < PTBL_PAGES; i++) {
760 		pa = pte_vatopa(mmu, kernel_pmap,
761 		    (vm_offset_t)ptbl + (i * PAGE_SIZE));
762 		m = PHYS_TO_VM_PAGE(pa);
763 		m->wire_count++;
764 	}
765 }
766 
767 /* Allocate pv_entry structure. */
768 pv_entry_t
769 pv_alloc(void)
770 {
771 	pv_entry_t pv;
772 
773 	pv_entry_count++;
774 	if (pv_entry_count > pv_entry_high_water)
775 		pagedaemon_wakeup();
776 	pv = uma_zalloc(pvzone, M_NOWAIT);
777 
778 	return (pv);
779 }
780 
781 /* Free pv_entry structure. */
782 static __inline void
783 pv_free(pv_entry_t pve)
784 {
785 
786 	pv_entry_count--;
787 	uma_zfree(pvzone, pve);
788 }
789 
790 
791 /* Allocate and initialize pv_entry structure. */
792 static void
793 pv_insert(pmap_t pmap, vm_offset_t va, vm_page_t m)
794 {
795 	pv_entry_t pve;
796 
797 	//int su = (pmap == kernel_pmap);
798 	//debugf("pv_insert: s (su = %d pmap = 0x%08x va = 0x%08x m = 0x%08x)\n", su,
799 	//	(u_int32_t)pmap, va, (u_int32_t)m);
800 
801 	pve = pv_alloc();
802 	if (pve == NULL)
803 		panic("pv_insert: no pv entries!");
804 
805 	pve->pv_pmap = pmap;
806 	pve->pv_va = va;
807 
808 	/* add to pv_list */
809 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
810 	rw_assert(&pvh_global_lock, RA_WLOCKED);
811 
812 	TAILQ_INSERT_TAIL(&m->md.pv_list, pve, pv_link);
813 
814 	//debugf("pv_insert: e\n");
815 }
816 
817 /* Destroy pv entry. */
818 static void
819 pv_remove(pmap_t pmap, vm_offset_t va, vm_page_t m)
820 {
821 	pv_entry_t pve;
822 
823 	//int su = (pmap == kernel_pmap);
824 	//debugf("pv_remove: s (su = %d pmap = 0x%08x va = 0x%08x)\n", su, (u_int32_t)pmap, va);
825 
826 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
827 	rw_assert(&pvh_global_lock, RA_WLOCKED);
828 
829 	/* find pv entry */
830 	TAILQ_FOREACH(pve, &m->md.pv_list, pv_link) {
831 		if ((pmap == pve->pv_pmap) && (va == pve->pv_va)) {
832 			/* remove from pv_list */
833 			TAILQ_REMOVE(&m->md.pv_list, pve, pv_link);
834 			if (TAILQ_EMPTY(&m->md.pv_list))
835 				vm_page_aflag_clear(m, PGA_WRITEABLE);
836 
837 			/* free pv entry struct */
838 			pv_free(pve);
839 			break;
840 		}
841 	}
842 
843 	//debugf("pv_remove: e\n");
844 }
845 
846 /*
847  * Clean pte entry, try to free page table page if requested.
848  *
849  * Return 1 if ptbl pages were freed, otherwise return 0.
850  */
851 static int
852 pte_remove(mmu_t mmu, pmap_t pmap, vm_offset_t va, uint8_t flags)
853 {
854 	unsigned int pdir_idx = PDIR_IDX(va);
855 	unsigned int ptbl_idx = PTBL_IDX(va);
856 	vm_page_t m;
857 	pte_t *ptbl;
858 	pte_t *pte;
859 
860 	//int su = (pmap == kernel_pmap);
861 	//debugf("pte_remove: s (su = %d pmap = 0x%08x va = 0x%08x flags = %d)\n",
862 	//		su, (u_int32_t)pmap, va, flags);
863 
864 	ptbl = pmap->pm_pdir[pdir_idx];
865 	KASSERT(ptbl, ("pte_remove: null ptbl"));
866 
867 	pte = &ptbl[ptbl_idx];
868 
869 	if (pte == NULL || !PTE_ISVALID(pte))
870 		return (0);
871 
872 	if (PTE_ISWIRED(pte))
873 		pmap->pm_stats.wired_count--;
874 
875 	/* Get vm_page_t for mapped pte. */
876 	m = PHYS_TO_VM_PAGE(PTE_PA(pte));
877 
878 	/* Handle managed entry. */
879 	if (PTE_ISMANAGED(pte)) {
880 
881 		if (PTE_ISMODIFIED(pte))
882 			vm_page_dirty(m);
883 
884 		if (PTE_ISREFERENCED(pte))
885 			vm_page_aflag_set(m, PGA_REFERENCED);
886 
887 		pv_remove(pmap, va, m);
888 	} else if (m->md.pv_tracked) {
889 		/*
890 		 * Always pv_insert()/pv_remove() on MPC85XX, in case DPAA is
891 		 * used.  This is needed by the NCSW support code for fast
892 		 * VA<->PA translation.
893 		 */
894 		pv_remove(pmap, va, m);
895 		if (TAILQ_EMPTY(&m->md.pv_list))
896 			m->md.pv_tracked = false;
897 	}
898 
899 	mtx_lock_spin(&tlbivax_mutex);
900 	tlb_miss_lock();
901 
902 	tlb0_flush_entry(va);
903 	*pte = 0;
904 
905 	tlb_miss_unlock();
906 	mtx_unlock_spin(&tlbivax_mutex);
907 
908 	pmap->pm_stats.resident_count--;
909 
910 	if (flags & PTBL_UNHOLD) {
911 		//debugf("pte_remove: e (unhold)\n");
912 		return (ptbl_unhold(mmu, pmap, pdir_idx));
913 	}
914 
915 	//debugf("pte_remove: e\n");
916 	return (0);
917 }
918 
919 /*
920  * Insert PTE for a given page and virtual address.
921  */
922 static int
923 pte_enter(mmu_t mmu, pmap_t pmap, vm_page_t m, vm_offset_t va, uint32_t flags,
924     boolean_t nosleep)
925 {
926 	unsigned int pdir_idx = PDIR_IDX(va);
927 	unsigned int ptbl_idx = PTBL_IDX(va);
928 	pte_t *ptbl, *pte;
929 
930 	CTR4(KTR_PMAP, "%s: su = %d pmap = %p va = %p", __func__,
931 	    pmap == kernel_pmap, pmap, va);
932 
933 	/* Get the page table pointer. */
934 	ptbl = pmap->pm_pdir[pdir_idx];
935 
936 	if (ptbl == NULL) {
937 		/* Allocate page table pages. */
938 		ptbl = ptbl_alloc(mmu, pmap, pdir_idx, nosleep);
939 		if (ptbl == NULL) {
940 			KASSERT(nosleep, ("nosleep and NULL ptbl"));
941 			return (ENOMEM);
942 		}
943 	} else {
944 		/*
945 		 * Check if there is valid mapping for requested
946 		 * va, if there is, remove it.
947 		 */
948 		pte = &pmap->pm_pdir[pdir_idx][ptbl_idx];
949 		if (PTE_ISVALID(pte)) {
950 			pte_remove(mmu, pmap, va, PTBL_HOLD);
951 		} else {
952 			/*
953 			 * pte is not used, increment hold count
954 			 * for ptbl pages.
955 			 */
956 			if (pmap != kernel_pmap)
957 				ptbl_hold(mmu, pmap, pdir_idx);
958 		}
959 	}
960 
961 	/*
962 	 * Insert pv_entry into pv_list for mapped page if part of managed
963 	 * memory.
964 	 */
965 	if ((m->oflags & VPO_UNMANAGED) == 0) {
966 		flags |= PTE_MANAGED;
967 
968 		/* Create and insert pv entry. */
969 		pv_insert(pmap, va, m);
970 	}
971 
972 	pmap->pm_stats.resident_count++;
973 
974 	mtx_lock_spin(&tlbivax_mutex);
975 	tlb_miss_lock();
976 
977 	tlb0_flush_entry(va);
978 	if (pmap->pm_pdir[pdir_idx] == NULL) {
979 		/*
980 		 * If we just allocated a new page table, hook it in
981 		 * the pdir.
982 		 */
983 		pmap->pm_pdir[pdir_idx] = ptbl;
984 	}
985 	pte = &(pmap->pm_pdir[pdir_idx][ptbl_idx]);
986 	*pte = PTE_RPN_FROM_PA(VM_PAGE_TO_PHYS(m));
987 	*pte |= (PTE_VALID | flags | PTE_PS_4KB); /* 4KB pages only */
988 
989 	tlb_miss_unlock();
990 	mtx_unlock_spin(&tlbivax_mutex);
991 	return (0);
992 }
993 
994 /* Return the pa for the given pmap/va. */
995 static vm_paddr_t
996 pte_vatopa(mmu_t mmu, pmap_t pmap, vm_offset_t va)
997 {
998 	vm_paddr_t pa = 0;
999 	pte_t *pte;
1000 
1001 	pte = pte_find(mmu, pmap, va);
1002 	if ((pte != NULL) && PTE_ISVALID(pte))
1003 		pa = (PTE_PA(pte) | (va & PTE_PA_MASK));
1004 	return (pa);
1005 }
1006 
1007 /* Get a pointer to a PTE in a page table. */
1008 static pte_t *
1009 pte_find(mmu_t mmu, pmap_t pmap, vm_offset_t va)
1010 {
1011 	unsigned int pdir_idx = PDIR_IDX(va);
1012 	unsigned int ptbl_idx = PTBL_IDX(va);
1013 
1014 	KASSERT((pmap != NULL), ("pte_find: invalid pmap"));
1015 
1016 	if (pmap->pm_pdir[pdir_idx])
1017 		return (&(pmap->pm_pdir[pdir_idx][ptbl_idx]));
1018 
1019 	return (NULL);
1020 }
1021 
1022 /* Set up kernel page tables. */
1023 static void
1024 kernel_pte_alloc(vm_offset_t data_end, vm_offset_t addr, vm_offset_t pdir)
1025 {
1026 	int		i;
1027 	vm_offset_t	va;
1028 	pte_t		*pte;
1029 
1030 	/* Initialize kernel pdir */
1031 	for (i = 0; i < kernel_ptbls; i++)
1032 		kernel_pmap->pm_pdir[kptbl_min + i] =
1033 		    (pte_t *)(pdir + (i * PAGE_SIZE * PTBL_PAGES));
1034 
1035 	/*
1036 	 * Fill in PTEs covering kernel code and data. They are not required
1037 	 * for address translation, as this area is covered by static TLB1
1038 	 * entries, but for pte_vatopa() to work correctly with kernel area
1039 	 * addresses.
1040 	 */
1041 	for (va = addr; va < data_end; va += PAGE_SIZE) {
1042 		pte = &(kernel_pmap->pm_pdir[PDIR_IDX(va)][PTBL_IDX(va)]);
1043 		*pte = PTE_RPN_FROM_PA(kernload + (va - kernstart));
1044 		*pte |= PTE_M | PTE_SR | PTE_SW | PTE_SX | PTE_WIRED |
1045 		    PTE_VALID | PTE_PS_4KB;
1046 	}
1047 }
1048 
1049 /**************************************************************************/
1050 /* PMAP related */
1051 /**************************************************************************/
1052 
1053 /*
1054  * This is called during booke_init, before the system is really initialized.
1055  */
1056 static void
1057 mmu_booke_bootstrap(mmu_t mmu, vm_offset_t start, vm_offset_t kernelend)
1058 {
1059 	vm_paddr_t phys_kernelend;
1060 	struct mem_region *mp, *mp1;
1061 	int cnt, i, j;
1062 	vm_paddr_t s, e, sz;
1063 	vm_paddr_t physsz, hwphyssz;
1064 	u_int phys_avail_count;
1065 	vm_size_t kstack0_sz;
1066 	vm_offset_t kernel_pdir, kstack0;
1067 	vm_paddr_t kstack0_phys;
1068 	void *dpcpu;
1069 
1070 	debugf("mmu_booke_bootstrap: entered\n");
1071 
1072 	/* Set interesting system properties */
1073 	hw_direct_map = 0;
1074 	elf32_nxstack = 1;
1075 
1076 	/* Initialize invalidation mutex */
1077 	mtx_init(&tlbivax_mutex, "tlbivax", NULL, MTX_SPIN);
1078 
1079 	/* Read TLB0 size and associativity. */
1080 	tlb0_get_tlbconf();
1081 
1082 	/*
1083 	 * Align kernel start and end address (kernel image).
1084 	 * Note that kernel end does not necessarily relate to kernsize.
1085 	 * kernsize is the size of the kernel that is actually mapped.
1086 	 */
1087 	kernstart = trunc_page(start);
1088 	data_start = round_page(kernelend);
1089 	data_end = data_start;
1090 
1091 	/*
1092 	 * Addresses of preloaded modules (like file systems) use
1093 	 * physical addresses. Make sure we relocate those into
1094 	 * virtual addresses.
1095 	 */
1096 	preload_addr_relocate = kernstart - kernload;
1097 
1098 	/* Allocate the dynamic per-cpu area. */
1099 	dpcpu = (void *)data_end;
1100 	data_end += DPCPU_SIZE;
1101 
1102 	/* Allocate space for the message buffer. */
1103 	msgbufp = (struct msgbuf *)data_end;
1104 	data_end += msgbufsize;
1105 	debugf(" msgbufp at 0x%08x end = 0x%08x\n", (uint32_t)msgbufp,
1106 	    data_end);
1107 
1108 	data_end = round_page(data_end);
1109 
1110 	/* Allocate space for ptbl_bufs. */
1111 	ptbl_bufs = (struct ptbl_buf *)data_end;
1112 	data_end += sizeof(struct ptbl_buf) * PTBL_BUFS;
1113 	debugf(" ptbl_bufs at 0x%08x end = 0x%08x\n", (uint32_t)ptbl_bufs,
1114 	    data_end);
1115 
1116 	data_end = round_page(data_end);
1117 
1118 	/* Allocate PTE tables for kernel KVA. */
1119 	kernel_pdir = data_end;
1120 	kernel_ptbls = howmany(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS,
1121 	    PDIR_SIZE);
1122 	data_end += kernel_ptbls * PTBL_PAGES * PAGE_SIZE;
1123 	debugf(" kernel ptbls: %d\n", kernel_ptbls);
1124 	debugf(" kernel pdir at 0x%08x end = 0x%08x\n", kernel_pdir, data_end);
1125 
1126 	debugf(" data_end: 0x%08x\n", data_end);
1127 	if (data_end - kernstart > kernsize) {
1128 		kernsize += tlb1_mapin_region(kernstart + kernsize,
1129 		    kernload + kernsize, (data_end - kernstart) - kernsize);
1130 	}
1131 	data_end = kernstart + kernsize;
1132 	debugf(" updated data_end: 0x%08x\n", data_end);
1133 
1134 	/*
1135 	 * Clear the structures - note we can only do it safely after the
1136 	 * possible additional TLB1 translations are in place (above) so that
1137 	 * all range up to the currently calculated 'data_end' is covered.
1138 	 */
1139 	dpcpu_init(dpcpu, 0);
1140 	memset((void *)ptbl_bufs, 0, sizeof(struct ptbl_buf) * PTBL_SIZE);
1141 	memset((void *)kernel_pdir, 0, kernel_ptbls * PTBL_PAGES * PAGE_SIZE);
1142 
1143 	/*******************************************************/
1144 	/* Set the start and end of kva. */
1145 	/*******************************************************/
1146 	virtual_avail = round_page(data_end);
1147 	virtual_end = VM_MAX_KERNEL_ADDRESS;
1148 
1149 	/* Allocate KVA space for page zero/copy operations. */
1150 	zero_page_va = virtual_avail;
1151 	virtual_avail += PAGE_SIZE;
1152 	copy_page_src_va = virtual_avail;
1153 	virtual_avail += PAGE_SIZE;
1154 	copy_page_dst_va = virtual_avail;
1155 	virtual_avail += PAGE_SIZE;
1156 	debugf("zero_page_va = 0x%08x\n", zero_page_va);
1157 	debugf("copy_page_src_va = 0x%08x\n", copy_page_src_va);
1158 	debugf("copy_page_dst_va = 0x%08x\n", copy_page_dst_va);
1159 
1160 	/* Initialize page zero/copy mutexes. */
1161 	mtx_init(&zero_page_mutex, "mmu_booke_zero_page", NULL, MTX_DEF);
1162 	mtx_init(&copy_page_mutex, "mmu_booke_copy_page", NULL, MTX_DEF);
1163 
1164 	/* Allocate KVA space for ptbl bufs. */
1165 	ptbl_buf_pool_vabase = virtual_avail;
1166 	virtual_avail += PTBL_BUFS * PTBL_PAGES * PAGE_SIZE;
1167 	debugf("ptbl_buf_pool_vabase = 0x%08x end = 0x%08x\n",
1168 	    ptbl_buf_pool_vabase, virtual_avail);
1169 
1170 	/* Calculate corresponding physical addresses for the kernel region. */
1171 	phys_kernelend = kernload + kernsize;
1172 	debugf("kernel image and allocated data:\n");
1173 	debugf(" kernload    = 0x%09llx\n", (uint64_t)kernload);
1174 	debugf(" kernstart   = 0x%08x\n", kernstart);
1175 	debugf(" kernsize    = 0x%08x\n", kernsize);
1176 
1177 	if (sizeof(phys_avail) / sizeof(phys_avail[0]) < availmem_regions_sz)
1178 		panic("mmu_booke_bootstrap: phys_avail too small");
1179 
1180 	/*
1181 	 * Remove kernel physical address range from avail regions list. Page
1182 	 * align all regions.  Non-page aligned memory isn't very interesting
1183 	 * to us.  Also, sort the entries for ascending addresses.
1184 	 */
1185 
1186 	/* Retrieve phys/avail mem regions */
1187 	mem_regions(&physmem_regions, &physmem_regions_sz,
1188 	    &availmem_regions, &availmem_regions_sz);
1189 	sz = 0;
1190 	cnt = availmem_regions_sz;
1191 	debugf("processing avail regions:\n");
1192 	for (mp = availmem_regions; mp->mr_size; mp++) {
1193 		s = mp->mr_start;
1194 		e = mp->mr_start + mp->mr_size;
1195 		debugf(" %09jx-%09jx -> ", (uintmax_t)s, (uintmax_t)e);
1196 		/* Check whether this region holds all of the kernel. */
1197 		if (s < kernload && e > phys_kernelend) {
1198 			availmem_regions[cnt].mr_start = phys_kernelend;
1199 			availmem_regions[cnt++].mr_size = e - phys_kernelend;
1200 			e = kernload;
1201 		}
1202 		/* Look whether this regions starts within the kernel. */
1203 		if (s >= kernload && s < phys_kernelend) {
1204 			if (e <= phys_kernelend)
1205 				goto empty;
1206 			s = phys_kernelend;
1207 		}
1208 		/* Now look whether this region ends within the kernel. */
1209 		if (e > kernload && e <= phys_kernelend) {
1210 			if (s >= kernload)
1211 				goto empty;
1212 			e = kernload;
1213 		}
1214 		/* Now page align the start and size of the region. */
1215 		s = round_page(s);
1216 		e = trunc_page(e);
1217 		if (e < s)
1218 			e = s;
1219 		sz = e - s;
1220 		debugf("%09jx-%09jx = %jx\n",
1221 		    (uintmax_t)s, (uintmax_t)e, (uintmax_t)sz);
1222 
1223 		/* Check whether some memory is left here. */
1224 		if (sz == 0) {
1225 		empty:
1226 			memmove(mp, mp + 1,
1227 			    (cnt - (mp - availmem_regions)) * sizeof(*mp));
1228 			cnt--;
1229 			mp--;
1230 			continue;
1231 		}
1232 
1233 		/* Do an insertion sort. */
1234 		for (mp1 = availmem_regions; mp1 < mp; mp1++)
1235 			if (s < mp1->mr_start)
1236 				break;
1237 		if (mp1 < mp) {
1238 			memmove(mp1 + 1, mp1, (char *)mp - (char *)mp1);
1239 			mp1->mr_start = s;
1240 			mp1->mr_size = sz;
1241 		} else {
1242 			mp->mr_start = s;
1243 			mp->mr_size = sz;
1244 		}
1245 	}
1246 	availmem_regions_sz = cnt;
1247 
1248 	/*******************************************************/
1249 	/* Steal physical memory for kernel stack from the end */
1250 	/* of the first avail region                           */
1251 	/*******************************************************/
1252 	kstack0_sz = kstack_pages * PAGE_SIZE;
1253 	kstack0_phys = availmem_regions[0].mr_start +
1254 	    availmem_regions[0].mr_size;
1255 	kstack0_phys -= kstack0_sz;
1256 	availmem_regions[0].mr_size -= kstack0_sz;
1257 
1258 	/*******************************************************/
1259 	/* Fill in phys_avail table, based on availmem_regions */
1260 	/*******************************************************/
1261 	phys_avail_count = 0;
1262 	physsz = 0;
1263 	hwphyssz = 0;
1264 	TUNABLE_ULONG_FETCH("hw.physmem", (u_long *) &hwphyssz);
1265 
1266 	debugf("fill in phys_avail:\n");
1267 	for (i = 0, j = 0; i < availmem_regions_sz; i++, j += 2) {
1268 
1269 		debugf(" region: 0x%jx - 0x%jx (0x%jx)\n",
1270 		    (uintmax_t)availmem_regions[i].mr_start,
1271 		    (uintmax_t)availmem_regions[i].mr_start +
1272 		        availmem_regions[i].mr_size,
1273 		    (uintmax_t)availmem_regions[i].mr_size);
1274 
1275 		if (hwphyssz != 0 &&
1276 		    (physsz + availmem_regions[i].mr_size) >= hwphyssz) {
1277 			debugf(" hw.physmem adjust\n");
1278 			if (physsz < hwphyssz) {
1279 				phys_avail[j] = availmem_regions[i].mr_start;
1280 				phys_avail[j + 1] =
1281 				    availmem_regions[i].mr_start +
1282 				    hwphyssz - physsz;
1283 				physsz = hwphyssz;
1284 				phys_avail_count++;
1285 			}
1286 			break;
1287 		}
1288 
1289 		phys_avail[j] = availmem_regions[i].mr_start;
1290 		phys_avail[j + 1] = availmem_regions[i].mr_start +
1291 		    availmem_regions[i].mr_size;
1292 		phys_avail_count++;
1293 		physsz += availmem_regions[i].mr_size;
1294 	}
1295 	physmem = btoc(physsz);
1296 
1297 	/* Calculate the last available physical address. */
1298 	for (i = 0; phys_avail[i + 2] != 0; i += 2)
1299 		;
1300 	Maxmem = powerpc_btop(phys_avail[i + 1]);
1301 
1302 	debugf("Maxmem = 0x%08lx\n", Maxmem);
1303 	debugf("phys_avail_count = %d\n", phys_avail_count);
1304 	debugf("physsz = 0x%09jx physmem = %jd (0x%09jx)\n",
1305 	    (uintmax_t)physsz, (uintmax_t)physmem, (uintmax_t)physmem);
1306 
1307 	/*******************************************************/
1308 	/* Initialize (statically allocated) kernel pmap. */
1309 	/*******************************************************/
1310 	PMAP_LOCK_INIT(kernel_pmap);
1311 	kptbl_min = VM_MIN_KERNEL_ADDRESS / PDIR_SIZE;
1312 
1313 	debugf("kernel_pmap = 0x%08x\n", (uint32_t)kernel_pmap);
1314 	debugf("kptbl_min = %d, kernel_ptbls = %d\n", kptbl_min, kernel_ptbls);
1315 	debugf("kernel pdir range: 0x%08x - 0x%08x\n",
1316 	    kptbl_min * PDIR_SIZE, (kptbl_min + kernel_ptbls) * PDIR_SIZE - 1);
1317 
1318 	kernel_pte_alloc(data_end, kernstart, kernel_pdir);
1319 	for (i = 0; i < MAXCPU; i++) {
1320 		kernel_pmap->pm_tid[i] = TID_KERNEL;
1321 
1322 		/* Initialize each CPU's tidbusy entry 0 with kernel_pmap */
1323 		tidbusy[i][TID_KERNEL] = kernel_pmap;
1324 	}
1325 
1326 	/* Mark kernel_pmap active on all CPUs */
1327 	CPU_FILL(&kernel_pmap->pm_active);
1328 
1329  	/*
1330 	 * Initialize the global pv list lock.
1331 	 */
1332 	rw_init(&pvh_global_lock, "pmap pv global");
1333 
1334 	/*******************************************************/
1335 	/* Final setup */
1336 	/*******************************************************/
1337 
1338 	/* Enter kstack0 into kernel map, provide guard page */
1339 	kstack0 = virtual_avail + KSTACK_GUARD_PAGES * PAGE_SIZE;
1340 	thread0.td_kstack = kstack0;
1341 	thread0.td_kstack_pages = kstack_pages;
1342 
1343 	debugf("kstack_sz = 0x%08x\n", kstack0_sz);
1344 	debugf("kstack0_phys at 0x%09llx - 0x%09llx\n",
1345 	    kstack0_phys, kstack0_phys + kstack0_sz);
1346 	debugf("kstack0 at 0x%08x - 0x%08x\n", kstack0, kstack0 + kstack0_sz);
1347 
1348 	virtual_avail += KSTACK_GUARD_PAGES * PAGE_SIZE + kstack0_sz;
1349 	for (i = 0; i < kstack_pages; i++) {
1350 		mmu_booke_kenter(mmu, kstack0, kstack0_phys);
1351 		kstack0 += PAGE_SIZE;
1352 		kstack0_phys += PAGE_SIZE;
1353 	}
1354 
1355 	pmap_bootstrapped = 1;
1356 
1357 	debugf("virtual_avail = %08x\n", virtual_avail);
1358 	debugf("virtual_end   = %08x\n", virtual_end);
1359 
1360 	debugf("mmu_booke_bootstrap: exit\n");
1361 }
1362 
1363 #ifdef SMP
1364  void
1365 tlb1_ap_prep(void)
1366 {
1367 	tlb_entry_t *e, tmp;
1368 	unsigned int i;
1369 
1370 	/* Prepare TLB1 image for AP processors */
1371 	e = __boot_tlb1;
1372 	for (i = 0; i < TLB1_ENTRIES; i++) {
1373 		tlb1_read_entry(&tmp, i);
1374 
1375 		if ((tmp.mas1 & MAS1_VALID) && (tmp.mas2 & _TLB_ENTRY_SHARED))
1376 			memcpy(e++, &tmp, sizeof(tmp));
1377 	}
1378 }
1379 
1380 void
1381 pmap_bootstrap_ap(volatile uint32_t *trcp __unused)
1382 {
1383 	int i;
1384 
1385 	/*
1386 	 * Finish TLB1 configuration: the BSP already set up its TLB1 and we
1387 	 * have the snapshot of its contents in the s/w __boot_tlb1[] table
1388 	 * created by tlb1_ap_prep(), so use these values directly to
1389 	 * (re)program AP's TLB1 hardware.
1390 	 *
1391 	 * Start at index 1 because index 0 has the kernel map.
1392 	 */
1393 	for (i = 1; i < TLB1_ENTRIES; i++) {
1394 		if (__boot_tlb1[i].mas1 & MAS1_VALID)
1395 			tlb1_write_entry(&__boot_tlb1[i], i);
1396 	}
1397 
1398 	set_mas4_defaults();
1399 }
1400 #endif
1401 
1402 static void
1403 booke_pmap_init_qpages(void)
1404 {
1405 	struct pcpu *pc;
1406 	int i;
1407 
1408 	CPU_FOREACH(i) {
1409 		pc = pcpu_find(i);
1410 		pc->pc_qmap_addr = kva_alloc(PAGE_SIZE);
1411 		if (pc->pc_qmap_addr == 0)
1412 			panic("pmap_init_qpages: unable to allocate KVA");
1413 	}
1414 }
1415 
1416 SYSINIT(qpages_init, SI_SUB_CPU, SI_ORDER_ANY, booke_pmap_init_qpages, NULL);
1417 
1418 /*
1419  * Get the physical page address for the given pmap/virtual address.
1420  */
1421 static vm_paddr_t
1422 mmu_booke_extract(mmu_t mmu, pmap_t pmap, vm_offset_t va)
1423 {
1424 	vm_paddr_t pa;
1425 
1426 	PMAP_LOCK(pmap);
1427 	pa = pte_vatopa(mmu, pmap, va);
1428 	PMAP_UNLOCK(pmap);
1429 
1430 	return (pa);
1431 }
1432 
1433 /*
1434  * Extract the physical page address associated with the given
1435  * kernel virtual address.
1436  */
1437 static vm_paddr_t
1438 mmu_booke_kextract(mmu_t mmu, vm_offset_t va)
1439 {
1440 	tlb_entry_t e;
1441 	int i;
1442 
1443 	/* Check TLB1 mappings */
1444 	for (i = 0; i < TLB1_ENTRIES; i++) {
1445 		tlb1_read_entry(&e, i);
1446 		if (!(e.mas1 & MAS1_VALID))
1447 			continue;
1448 		if (va >= e.virt && va < e.virt + e.size)
1449 			return (e.phys + (va - e.virt));
1450 	}
1451 
1452 	return (pte_vatopa(mmu, kernel_pmap, va));
1453 }
1454 
1455 /*
1456  * Initialize the pmap module.
1457  * Called by vm_init, to initialize any structures that the pmap
1458  * system needs to map virtual memory.
1459  */
1460 static void
1461 mmu_booke_init(mmu_t mmu)
1462 {
1463 	int shpgperproc = PMAP_SHPGPERPROC;
1464 
1465 	/*
1466 	 * Initialize the address space (zone) for the pv entries.  Set a
1467 	 * high water mark so that the system can recover from excessive
1468 	 * numbers of pv entries.
1469 	 */
1470 	pvzone = uma_zcreate("PV ENTRY", sizeof(struct pv_entry), NULL, NULL,
1471 	    NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM | UMA_ZONE_NOFREE);
1472 
1473 	TUNABLE_INT_FETCH("vm.pmap.shpgperproc", &shpgperproc);
1474 	pv_entry_max = shpgperproc * maxproc + vm_cnt.v_page_count;
1475 
1476 	TUNABLE_INT_FETCH("vm.pmap.pv_entries", &pv_entry_max);
1477 	pv_entry_high_water = 9 * (pv_entry_max / 10);
1478 
1479 	uma_zone_reserve_kva(pvzone, pv_entry_max);
1480 
1481 	/* Pre-fill pvzone with initial number of pv entries. */
1482 	uma_prealloc(pvzone, PV_ENTRY_ZONE_MIN);
1483 
1484 	/* Initialize ptbl allocation. */
1485 	ptbl_init();
1486 }
1487 
1488 /*
1489  * Map a list of wired pages into kernel virtual address space.  This is
1490  * intended for temporary mappings which do not need page modification or
1491  * references recorded.  Existing mappings in the region are overwritten.
1492  */
1493 static void
1494 mmu_booke_qenter(mmu_t mmu, vm_offset_t sva, vm_page_t *m, int count)
1495 {
1496 	vm_offset_t va;
1497 
1498 	va = sva;
1499 	while (count-- > 0) {
1500 		mmu_booke_kenter(mmu, va, VM_PAGE_TO_PHYS(*m));
1501 		va += PAGE_SIZE;
1502 		m++;
1503 	}
1504 }
1505 
1506 /*
1507  * Remove page mappings from kernel virtual address space.  Intended for
1508  * temporary mappings entered by mmu_booke_qenter.
1509  */
1510 static void
1511 mmu_booke_qremove(mmu_t mmu, vm_offset_t sva, int count)
1512 {
1513 	vm_offset_t va;
1514 
1515 	va = sva;
1516 	while (count-- > 0) {
1517 		mmu_booke_kremove(mmu, va);
1518 		va += PAGE_SIZE;
1519 	}
1520 }
1521 
1522 /*
1523  * Map a wired page into kernel virtual address space.
1524  */
1525 static void
1526 mmu_booke_kenter(mmu_t mmu, vm_offset_t va, vm_paddr_t pa)
1527 {
1528 
1529 	mmu_booke_kenter_attr(mmu, va, pa, VM_MEMATTR_DEFAULT);
1530 }
1531 
1532 static void
1533 mmu_booke_kenter_attr(mmu_t mmu, vm_offset_t va, vm_paddr_t pa, vm_memattr_t ma)
1534 {
1535 	uint32_t flags;
1536 	pte_t *pte;
1537 
1538 	KASSERT(((va >= VM_MIN_KERNEL_ADDRESS) &&
1539 	    (va <= VM_MAX_KERNEL_ADDRESS)), ("mmu_booke_kenter: invalid va"));
1540 
1541 	flags = PTE_SR | PTE_SW | PTE_SX | PTE_WIRED | PTE_VALID;
1542 	flags |= tlb_calc_wimg(pa, ma) << PTE_MAS2_SHIFT;
1543 	flags |= PTE_PS_4KB;
1544 
1545 	pte = pte_find(mmu, kernel_pmap, va);
1546 
1547 	mtx_lock_spin(&tlbivax_mutex);
1548 	tlb_miss_lock();
1549 
1550 	if (PTE_ISVALID(pte)) {
1551 
1552 		CTR1(KTR_PMAP, "%s: replacing entry!", __func__);
1553 
1554 		/* Flush entry from TLB0 */
1555 		tlb0_flush_entry(va);
1556 	}
1557 
1558 	*pte = PTE_RPN_FROM_PA(pa) | flags;
1559 
1560 	//debugf("mmu_booke_kenter: pdir_idx = %d ptbl_idx = %d va=0x%08x "
1561 	//		"pa=0x%08x rpn=0x%08x flags=0x%08x\n",
1562 	//		pdir_idx, ptbl_idx, va, pa, pte->rpn, pte->flags);
1563 
1564 	/* Flush the real memory from the instruction cache. */
1565 	if ((flags & (PTE_I | PTE_G)) == 0)
1566 		__syncicache((void *)va, PAGE_SIZE);
1567 
1568 	tlb_miss_unlock();
1569 	mtx_unlock_spin(&tlbivax_mutex);
1570 }
1571 
1572 /*
1573  * Remove a page from kernel page table.
1574  */
1575 static void
1576 mmu_booke_kremove(mmu_t mmu, vm_offset_t va)
1577 {
1578 	pte_t *pte;
1579 
1580 	CTR2(KTR_PMAP,"%s: s (va = 0x%08x)\n", __func__, va);
1581 
1582 	KASSERT(((va >= VM_MIN_KERNEL_ADDRESS) &&
1583 	    (va <= VM_MAX_KERNEL_ADDRESS)),
1584 	    ("mmu_booke_kremove: invalid va"));
1585 
1586 	pte = pte_find(mmu, kernel_pmap, va);
1587 
1588 	if (!PTE_ISVALID(pte)) {
1589 
1590 		CTR1(KTR_PMAP, "%s: invalid pte", __func__);
1591 
1592 		return;
1593 	}
1594 
1595 	mtx_lock_spin(&tlbivax_mutex);
1596 	tlb_miss_lock();
1597 
1598 	/* Invalidate entry in TLB0, update PTE. */
1599 	tlb0_flush_entry(va);
1600 	*pte = 0;
1601 
1602 	tlb_miss_unlock();
1603 	mtx_unlock_spin(&tlbivax_mutex);
1604 }
1605 
1606 /*
1607  * Initialize pmap associated with process 0.
1608  */
1609 static void
1610 mmu_booke_pinit0(mmu_t mmu, pmap_t pmap)
1611 {
1612 
1613 	PMAP_LOCK_INIT(pmap);
1614 	mmu_booke_pinit(mmu, pmap);
1615 	PCPU_SET(curpmap, pmap);
1616 }
1617 
1618 /*
1619  * Initialize a preallocated and zeroed pmap structure,
1620  * such as one in a vmspace structure.
1621  */
1622 static void
1623 mmu_booke_pinit(mmu_t mmu, pmap_t pmap)
1624 {
1625 	int i;
1626 
1627 	CTR4(KTR_PMAP, "%s: pmap = %p, proc %d '%s'", __func__, pmap,
1628 	    curthread->td_proc->p_pid, curthread->td_proc->p_comm);
1629 
1630 	KASSERT((pmap != kernel_pmap), ("pmap_pinit: initializing kernel_pmap"));
1631 
1632 	for (i = 0; i < MAXCPU; i++)
1633 		pmap->pm_tid[i] = TID_NONE;
1634 	CPU_ZERO(&kernel_pmap->pm_active);
1635 	bzero(&pmap->pm_stats, sizeof(pmap->pm_stats));
1636 	bzero(&pmap->pm_pdir, sizeof(pte_t *) * PDIR_NENTRIES);
1637 	TAILQ_INIT(&pmap->pm_ptbl_list);
1638 }
1639 
1640 /*
1641  * Release any resources held by the given physical map.
1642  * Called when a pmap initialized by mmu_booke_pinit is being released.
1643  * Should only be called if the map contains no valid mappings.
1644  */
1645 static void
1646 mmu_booke_release(mmu_t mmu, pmap_t pmap)
1647 {
1648 
1649 	KASSERT(pmap->pm_stats.resident_count == 0,
1650 	    ("pmap_release: pmap resident count %ld != 0",
1651 	    pmap->pm_stats.resident_count));
1652 }
1653 
1654 /*
1655  * Insert the given physical page at the specified virtual address in the
1656  * target physical map with the protection requested. If specified the page
1657  * will be wired down.
1658  */
1659 static int
1660 mmu_booke_enter(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_page_t m,
1661     vm_prot_t prot, u_int flags, int8_t psind)
1662 {
1663 	int error;
1664 
1665 	rw_wlock(&pvh_global_lock);
1666 	PMAP_LOCK(pmap);
1667 	error = mmu_booke_enter_locked(mmu, pmap, va, m, prot, flags, psind);
1668 	rw_wunlock(&pvh_global_lock);
1669 	PMAP_UNLOCK(pmap);
1670 	return (error);
1671 }
1672 
1673 static int
1674 mmu_booke_enter_locked(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_page_t m,
1675     vm_prot_t prot, u_int pmap_flags, int8_t psind __unused)
1676 {
1677 	pte_t *pte;
1678 	vm_paddr_t pa;
1679 	uint32_t flags;
1680 	int error, su, sync;
1681 
1682 	pa = VM_PAGE_TO_PHYS(m);
1683 	su = (pmap == kernel_pmap);
1684 	sync = 0;
1685 
1686 	//debugf("mmu_booke_enter_locked: s (pmap=0x%08x su=%d tid=%d m=0x%08x va=0x%08x "
1687 	//		"pa=0x%08x prot=0x%08x flags=%#x)\n",
1688 	//		(u_int32_t)pmap, su, pmap->pm_tid,
1689 	//		(u_int32_t)m, va, pa, prot, flags);
1690 
1691 	if (su) {
1692 		KASSERT(((va >= virtual_avail) &&
1693 		    (va <= VM_MAX_KERNEL_ADDRESS)),
1694 		    ("mmu_booke_enter_locked: kernel pmap, non kernel va"));
1695 	} else {
1696 		KASSERT((va <= VM_MAXUSER_ADDRESS),
1697 		    ("mmu_booke_enter_locked: user pmap, non user va"));
1698 	}
1699 	if ((m->oflags & VPO_UNMANAGED) == 0 && !vm_page_xbusied(m))
1700 		VM_OBJECT_ASSERT_LOCKED(m->object);
1701 
1702 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1703 
1704 	/*
1705 	 * If there is an existing mapping, and the physical address has not
1706 	 * changed, must be protection or wiring change.
1707 	 */
1708 	if (((pte = pte_find(mmu, pmap, va)) != NULL) &&
1709 	    (PTE_ISVALID(pte)) && (PTE_PA(pte) == pa)) {
1710 
1711 		/*
1712 		 * Before actually updating pte->flags we calculate and
1713 		 * prepare its new value in a helper var.
1714 		 */
1715 		flags = *pte;
1716 		flags &= ~(PTE_UW | PTE_UX | PTE_SW | PTE_SX | PTE_MODIFIED);
1717 
1718 		/* Wiring change, just update stats. */
1719 		if ((pmap_flags & PMAP_ENTER_WIRED) != 0) {
1720 			if (!PTE_ISWIRED(pte)) {
1721 				flags |= PTE_WIRED;
1722 				pmap->pm_stats.wired_count++;
1723 			}
1724 		} else {
1725 			if (PTE_ISWIRED(pte)) {
1726 				flags &= ~PTE_WIRED;
1727 				pmap->pm_stats.wired_count--;
1728 			}
1729 		}
1730 
1731 		if (prot & VM_PROT_WRITE) {
1732 			/* Add write permissions. */
1733 			flags |= PTE_SW;
1734 			if (!su)
1735 				flags |= PTE_UW;
1736 
1737 			if ((flags & PTE_MANAGED) != 0)
1738 				vm_page_aflag_set(m, PGA_WRITEABLE);
1739 		} else {
1740 			/* Handle modified pages, sense modify status. */
1741 
1742 			/*
1743 			 * The PTE_MODIFIED flag could be set by underlying
1744 			 * TLB misses since we last read it (above), possibly
1745 			 * other CPUs could update it so we check in the PTE
1746 			 * directly rather than rely on that saved local flags
1747 			 * copy.
1748 			 */
1749 			if (PTE_ISMODIFIED(pte))
1750 				vm_page_dirty(m);
1751 		}
1752 
1753 		if (prot & VM_PROT_EXECUTE) {
1754 			flags |= PTE_SX;
1755 			if (!su)
1756 				flags |= PTE_UX;
1757 
1758 			/*
1759 			 * Check existing flags for execute permissions: if we
1760 			 * are turning execute permissions on, icache should
1761 			 * be flushed.
1762 			 */
1763 			if ((*pte & (PTE_UX | PTE_SX)) == 0)
1764 				sync++;
1765 		}
1766 
1767 		flags &= ~PTE_REFERENCED;
1768 
1769 		/*
1770 		 * The new flags value is all calculated -- only now actually
1771 		 * update the PTE.
1772 		 */
1773 		mtx_lock_spin(&tlbivax_mutex);
1774 		tlb_miss_lock();
1775 
1776 		tlb0_flush_entry(va);
1777 		*pte &= ~PTE_FLAGS_MASK;
1778 		*pte |= flags;
1779 
1780 		tlb_miss_unlock();
1781 		mtx_unlock_spin(&tlbivax_mutex);
1782 
1783 	} else {
1784 		/*
1785 		 * If there is an existing mapping, but it's for a different
1786 		 * physical address, pte_enter() will delete the old mapping.
1787 		 */
1788 		//if ((pte != NULL) && PTE_ISVALID(pte))
1789 		//	debugf("mmu_booke_enter_locked: replace\n");
1790 		//else
1791 		//	debugf("mmu_booke_enter_locked: new\n");
1792 
1793 		/* Now set up the flags and install the new mapping. */
1794 		flags = (PTE_SR | PTE_VALID);
1795 		flags |= PTE_M;
1796 
1797 		if (!su)
1798 			flags |= PTE_UR;
1799 
1800 		if (prot & VM_PROT_WRITE) {
1801 			flags |= PTE_SW;
1802 			if (!su)
1803 				flags |= PTE_UW;
1804 
1805 			if ((m->oflags & VPO_UNMANAGED) == 0)
1806 				vm_page_aflag_set(m, PGA_WRITEABLE);
1807 		}
1808 
1809 		if (prot & VM_PROT_EXECUTE) {
1810 			flags |= PTE_SX;
1811 			if (!su)
1812 				flags |= PTE_UX;
1813 		}
1814 
1815 		/* If its wired update stats. */
1816 		if ((pmap_flags & PMAP_ENTER_WIRED) != 0)
1817 			flags |= PTE_WIRED;
1818 
1819 		error = pte_enter(mmu, pmap, m, va, flags,
1820 		    (pmap_flags & PMAP_ENTER_NOSLEEP) != 0);
1821 		if (error != 0)
1822 			return (KERN_RESOURCE_SHORTAGE);
1823 
1824 		if ((flags & PMAP_ENTER_WIRED) != 0)
1825 			pmap->pm_stats.wired_count++;
1826 
1827 		/* Flush the real memory from the instruction cache. */
1828 		if (prot & VM_PROT_EXECUTE)
1829 			sync++;
1830 	}
1831 
1832 	if (sync && (su || pmap == PCPU_GET(curpmap))) {
1833 		__syncicache((void *)va, PAGE_SIZE);
1834 		sync = 0;
1835 	}
1836 
1837 	return (KERN_SUCCESS);
1838 }
1839 
1840 /*
1841  * Maps a sequence of resident pages belonging to the same object.
1842  * The sequence begins with the given page m_start.  This page is
1843  * mapped at the given virtual address start.  Each subsequent page is
1844  * mapped at a virtual address that is offset from start by the same
1845  * amount as the page is offset from m_start within the object.  The
1846  * last page in the sequence is the page with the largest offset from
1847  * m_start that can be mapped at a virtual address less than the given
1848  * virtual address end.  Not every virtual page between start and end
1849  * is mapped; only those for which a resident page exists with the
1850  * corresponding offset from m_start are mapped.
1851  */
1852 static void
1853 mmu_booke_enter_object(mmu_t mmu, pmap_t pmap, vm_offset_t start,
1854     vm_offset_t end, vm_page_t m_start, vm_prot_t prot)
1855 {
1856 	vm_page_t m;
1857 	vm_pindex_t diff, psize;
1858 
1859 	VM_OBJECT_ASSERT_LOCKED(m_start->object);
1860 
1861 	psize = atop(end - start);
1862 	m = m_start;
1863 	rw_wlock(&pvh_global_lock);
1864 	PMAP_LOCK(pmap);
1865 	while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
1866 		mmu_booke_enter_locked(mmu, pmap, start + ptoa(diff), m,
1867 		    prot & (VM_PROT_READ | VM_PROT_EXECUTE),
1868 		    PMAP_ENTER_NOSLEEP, 0);
1869 		m = TAILQ_NEXT(m, listq);
1870 	}
1871 	rw_wunlock(&pvh_global_lock);
1872 	PMAP_UNLOCK(pmap);
1873 }
1874 
1875 static void
1876 mmu_booke_enter_quick(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_page_t m,
1877     vm_prot_t prot)
1878 {
1879 
1880 	rw_wlock(&pvh_global_lock);
1881 	PMAP_LOCK(pmap);
1882 	mmu_booke_enter_locked(mmu, pmap, va, m,
1883 	    prot & (VM_PROT_READ | VM_PROT_EXECUTE), PMAP_ENTER_NOSLEEP,
1884 	    0);
1885 	rw_wunlock(&pvh_global_lock);
1886 	PMAP_UNLOCK(pmap);
1887 }
1888 
1889 /*
1890  * Remove the given range of addresses from the specified map.
1891  *
1892  * It is assumed that the start and end are properly rounded to the page size.
1893  */
1894 static void
1895 mmu_booke_remove(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_offset_t endva)
1896 {
1897 	pte_t *pte;
1898 	uint8_t hold_flag;
1899 
1900 	int su = (pmap == kernel_pmap);
1901 
1902 	//debugf("mmu_booke_remove: s (su = %d pmap=0x%08x tid=%d va=0x%08x endva=0x%08x)\n",
1903 	//		su, (u_int32_t)pmap, pmap->pm_tid, va, endva);
1904 
1905 	if (su) {
1906 		KASSERT(((va >= virtual_avail) &&
1907 		    (va <= VM_MAX_KERNEL_ADDRESS)),
1908 		    ("mmu_booke_remove: kernel pmap, non kernel va"));
1909 	} else {
1910 		KASSERT((va <= VM_MAXUSER_ADDRESS),
1911 		    ("mmu_booke_remove: user pmap, non user va"));
1912 	}
1913 
1914 	if (PMAP_REMOVE_DONE(pmap)) {
1915 		//debugf("mmu_booke_remove: e (empty)\n");
1916 		return;
1917 	}
1918 
1919 	hold_flag = PTBL_HOLD_FLAG(pmap);
1920 	//debugf("mmu_booke_remove: hold_flag = %d\n", hold_flag);
1921 
1922 	rw_wlock(&pvh_global_lock);
1923 	PMAP_LOCK(pmap);
1924 	for (; va < endva; va += PAGE_SIZE) {
1925 		pte = pte_find(mmu, pmap, va);
1926 		if ((pte != NULL) && PTE_ISVALID(pte))
1927 			pte_remove(mmu, pmap, va, hold_flag);
1928 	}
1929 	PMAP_UNLOCK(pmap);
1930 	rw_wunlock(&pvh_global_lock);
1931 
1932 	//debugf("mmu_booke_remove: e\n");
1933 }
1934 
1935 /*
1936  * Remove physical page from all pmaps in which it resides.
1937  */
1938 static void
1939 mmu_booke_remove_all(mmu_t mmu, vm_page_t m)
1940 {
1941 	pv_entry_t pv, pvn;
1942 	uint8_t hold_flag;
1943 
1944 	rw_wlock(&pvh_global_lock);
1945 	for (pv = TAILQ_FIRST(&m->md.pv_list); pv != NULL; pv = pvn) {
1946 		pvn = TAILQ_NEXT(pv, pv_link);
1947 
1948 		PMAP_LOCK(pv->pv_pmap);
1949 		hold_flag = PTBL_HOLD_FLAG(pv->pv_pmap);
1950 		pte_remove(mmu, pv->pv_pmap, pv->pv_va, hold_flag);
1951 		PMAP_UNLOCK(pv->pv_pmap);
1952 	}
1953 	vm_page_aflag_clear(m, PGA_WRITEABLE);
1954 	rw_wunlock(&pvh_global_lock);
1955 }
1956 
1957 /*
1958  * Map a range of physical addresses into kernel virtual address space.
1959  */
1960 static vm_offset_t
1961 mmu_booke_map(mmu_t mmu, vm_offset_t *virt, vm_paddr_t pa_start,
1962     vm_paddr_t pa_end, int prot)
1963 {
1964 	vm_offset_t sva = *virt;
1965 	vm_offset_t va = sva;
1966 
1967 	//debugf("mmu_booke_map: s (sva = 0x%08x pa_start = 0x%08x pa_end = 0x%08x)\n",
1968 	//		sva, pa_start, pa_end);
1969 
1970 	while (pa_start < pa_end) {
1971 		mmu_booke_kenter(mmu, va, pa_start);
1972 		va += PAGE_SIZE;
1973 		pa_start += PAGE_SIZE;
1974 	}
1975 	*virt = va;
1976 
1977 	//debugf("mmu_booke_map: e (va = 0x%08x)\n", va);
1978 	return (sva);
1979 }
1980 
1981 /*
1982  * The pmap must be activated before it's address space can be accessed in any
1983  * way.
1984  */
1985 static void
1986 mmu_booke_activate(mmu_t mmu, struct thread *td)
1987 {
1988 	pmap_t pmap;
1989 	u_int cpuid;
1990 
1991 	pmap = &td->td_proc->p_vmspace->vm_pmap;
1992 
1993 	CTR5(KTR_PMAP, "%s: s (td = %p, proc = '%s', id = %d, pmap = 0x%08x)",
1994 	    __func__, td, td->td_proc->p_comm, td->td_proc->p_pid, pmap);
1995 
1996 	KASSERT((pmap != kernel_pmap), ("mmu_booke_activate: kernel_pmap!"));
1997 
1998 	sched_pin();
1999 
2000 	cpuid = PCPU_GET(cpuid);
2001 	CPU_SET_ATOMIC(cpuid, &pmap->pm_active);
2002 	PCPU_SET(curpmap, pmap);
2003 
2004 	if (pmap->pm_tid[cpuid] == TID_NONE)
2005 		tid_alloc(pmap);
2006 
2007 	/* Load PID0 register with pmap tid value. */
2008 	mtspr(SPR_PID0, pmap->pm_tid[cpuid]);
2009 	__asm __volatile("isync");
2010 
2011 	mtspr(SPR_DBCR0, td->td_pcb->pcb_cpu.booke.dbcr0);
2012 
2013 	sched_unpin();
2014 
2015 	CTR3(KTR_PMAP, "%s: e (tid = %d for '%s')", __func__,
2016 	    pmap->pm_tid[PCPU_GET(cpuid)], td->td_proc->p_comm);
2017 }
2018 
2019 /*
2020  * Deactivate the specified process's address space.
2021  */
2022 static void
2023 mmu_booke_deactivate(mmu_t mmu, struct thread *td)
2024 {
2025 	pmap_t pmap;
2026 
2027 	pmap = &td->td_proc->p_vmspace->vm_pmap;
2028 
2029 	CTR5(KTR_PMAP, "%s: td=%p, proc = '%s', id = %d, pmap = 0x%08x",
2030 	    __func__, td, td->td_proc->p_comm, td->td_proc->p_pid, pmap);
2031 
2032 	td->td_pcb->pcb_cpu.booke.dbcr0 = mfspr(SPR_DBCR0);
2033 
2034 	CPU_CLR_ATOMIC(PCPU_GET(cpuid), &pmap->pm_active);
2035 	PCPU_SET(curpmap, NULL);
2036 }
2037 
2038 /*
2039  * Copy the range specified by src_addr/len
2040  * from the source map to the range dst_addr/len
2041  * in the destination map.
2042  *
2043  * This routine is only advisory and need not do anything.
2044  */
2045 static void
2046 mmu_booke_copy(mmu_t mmu, pmap_t dst_pmap, pmap_t src_pmap,
2047     vm_offset_t dst_addr, vm_size_t len, vm_offset_t src_addr)
2048 {
2049 
2050 }
2051 
2052 /*
2053  * Set the physical protection on the specified range of this map as requested.
2054  */
2055 static void
2056 mmu_booke_protect(mmu_t mmu, pmap_t pmap, vm_offset_t sva, vm_offset_t eva,
2057     vm_prot_t prot)
2058 {
2059 	vm_offset_t va;
2060 	vm_page_t m;
2061 	pte_t *pte;
2062 
2063 	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
2064 		mmu_booke_remove(mmu, pmap, sva, eva);
2065 		return;
2066 	}
2067 
2068 	if (prot & VM_PROT_WRITE)
2069 		return;
2070 
2071 	PMAP_LOCK(pmap);
2072 	for (va = sva; va < eva; va += PAGE_SIZE) {
2073 		if ((pte = pte_find(mmu, pmap, va)) != NULL) {
2074 			if (PTE_ISVALID(pte)) {
2075 				m = PHYS_TO_VM_PAGE(PTE_PA(pte));
2076 
2077 				mtx_lock_spin(&tlbivax_mutex);
2078 				tlb_miss_lock();
2079 
2080 				/* Handle modified pages. */
2081 				if (PTE_ISMODIFIED(pte) && PTE_ISMANAGED(pte))
2082 					vm_page_dirty(m);
2083 
2084 				tlb0_flush_entry(va);
2085 				*pte &= ~(PTE_UW | PTE_SW | PTE_MODIFIED);
2086 
2087 				tlb_miss_unlock();
2088 				mtx_unlock_spin(&tlbivax_mutex);
2089 			}
2090 		}
2091 	}
2092 	PMAP_UNLOCK(pmap);
2093 }
2094 
2095 /*
2096  * Clear the write and modified bits in each of the given page's mappings.
2097  */
2098 static void
2099 mmu_booke_remove_write(mmu_t mmu, vm_page_t m)
2100 {
2101 	pv_entry_t pv;
2102 	pte_t *pte;
2103 
2104 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2105 	    ("mmu_booke_remove_write: page %p is not managed", m));
2106 
2107 	/*
2108 	 * If the page is not exclusive busied, then PGA_WRITEABLE cannot be
2109 	 * set by another thread while the object is locked.  Thus,
2110 	 * if PGA_WRITEABLE is clear, no page table entries need updating.
2111 	 */
2112 	VM_OBJECT_ASSERT_WLOCKED(m->object);
2113 	if (!vm_page_xbusied(m) && (m->aflags & PGA_WRITEABLE) == 0)
2114 		return;
2115 	rw_wlock(&pvh_global_lock);
2116 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2117 		PMAP_LOCK(pv->pv_pmap);
2118 		if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL) {
2119 			if (PTE_ISVALID(pte)) {
2120 				m = PHYS_TO_VM_PAGE(PTE_PA(pte));
2121 
2122 				mtx_lock_spin(&tlbivax_mutex);
2123 				tlb_miss_lock();
2124 
2125 				/* Handle modified pages. */
2126 				if (PTE_ISMODIFIED(pte))
2127 					vm_page_dirty(m);
2128 
2129 				/* Flush mapping from TLB0. */
2130 				*pte &= ~(PTE_UW | PTE_SW | PTE_MODIFIED);
2131 
2132 				tlb_miss_unlock();
2133 				mtx_unlock_spin(&tlbivax_mutex);
2134 			}
2135 		}
2136 		PMAP_UNLOCK(pv->pv_pmap);
2137 	}
2138 	vm_page_aflag_clear(m, PGA_WRITEABLE);
2139 	rw_wunlock(&pvh_global_lock);
2140 }
2141 
2142 static void
2143 mmu_booke_sync_icache(mmu_t mmu, pmap_t pm, vm_offset_t va, vm_size_t sz)
2144 {
2145 	pte_t *pte;
2146 	pmap_t pmap;
2147 	vm_page_t m;
2148 	vm_offset_t addr;
2149 	vm_paddr_t pa = 0;
2150 	int active, valid;
2151 
2152 	va = trunc_page(va);
2153 	sz = round_page(sz);
2154 
2155 	rw_wlock(&pvh_global_lock);
2156 	pmap = PCPU_GET(curpmap);
2157 	active = (pm == kernel_pmap || pm == pmap) ? 1 : 0;
2158 	while (sz > 0) {
2159 		PMAP_LOCK(pm);
2160 		pte = pte_find(mmu, pm, va);
2161 		valid = (pte != NULL && PTE_ISVALID(pte)) ? 1 : 0;
2162 		if (valid)
2163 			pa = PTE_PA(pte);
2164 		PMAP_UNLOCK(pm);
2165 		if (valid) {
2166 			if (!active) {
2167 				/* Create a mapping in the active pmap. */
2168 				addr = 0;
2169 				m = PHYS_TO_VM_PAGE(pa);
2170 				PMAP_LOCK(pmap);
2171 				pte_enter(mmu, pmap, m, addr,
2172 				    PTE_SR | PTE_VALID | PTE_UR, FALSE);
2173 				__syncicache((void *)addr, PAGE_SIZE);
2174 				pte_remove(mmu, pmap, addr, PTBL_UNHOLD);
2175 				PMAP_UNLOCK(pmap);
2176 			} else
2177 				__syncicache((void *)va, PAGE_SIZE);
2178 		}
2179 		va += PAGE_SIZE;
2180 		sz -= PAGE_SIZE;
2181 	}
2182 	rw_wunlock(&pvh_global_lock);
2183 }
2184 
2185 /*
2186  * Atomically extract and hold the physical page with the given
2187  * pmap and virtual address pair if that mapping permits the given
2188  * protection.
2189  */
2190 static vm_page_t
2191 mmu_booke_extract_and_hold(mmu_t mmu, pmap_t pmap, vm_offset_t va,
2192     vm_prot_t prot)
2193 {
2194 	pte_t *pte;
2195 	vm_page_t m;
2196 	uint32_t pte_wbit;
2197 	vm_paddr_t pa;
2198 
2199 	m = NULL;
2200 	pa = 0;
2201 	PMAP_LOCK(pmap);
2202 retry:
2203 	pte = pte_find(mmu, pmap, va);
2204 	if ((pte != NULL) && PTE_ISVALID(pte)) {
2205 		if (pmap == kernel_pmap)
2206 			pte_wbit = PTE_SW;
2207 		else
2208 			pte_wbit = PTE_UW;
2209 
2210 		if ((*pte & pte_wbit) || ((prot & VM_PROT_WRITE) == 0)) {
2211 			if (vm_page_pa_tryrelock(pmap, PTE_PA(pte), &pa))
2212 				goto retry;
2213 			m = PHYS_TO_VM_PAGE(PTE_PA(pte));
2214 			vm_page_hold(m);
2215 		}
2216 	}
2217 
2218 	PA_UNLOCK_COND(pa);
2219 	PMAP_UNLOCK(pmap);
2220 	return (m);
2221 }
2222 
2223 /*
2224  * Initialize a vm_page's machine-dependent fields.
2225  */
2226 static void
2227 mmu_booke_page_init(mmu_t mmu, vm_page_t m)
2228 {
2229 
2230 	TAILQ_INIT(&m->md.pv_list);
2231 }
2232 
2233 /*
2234  * mmu_booke_zero_page_area zeros the specified hardware page by
2235  * mapping it into virtual memory and using bzero to clear
2236  * its contents.
2237  *
2238  * off and size must reside within a single page.
2239  */
2240 static void
2241 mmu_booke_zero_page_area(mmu_t mmu, vm_page_t m, int off, int size)
2242 {
2243 	vm_offset_t va;
2244 
2245 	/* XXX KASSERT off and size are within a single page? */
2246 
2247 	mtx_lock(&zero_page_mutex);
2248 	va = zero_page_va;
2249 
2250 	mmu_booke_kenter(mmu, va, VM_PAGE_TO_PHYS(m));
2251 	bzero((caddr_t)va + off, size);
2252 	mmu_booke_kremove(mmu, va);
2253 
2254 	mtx_unlock(&zero_page_mutex);
2255 }
2256 
2257 /*
2258  * mmu_booke_zero_page zeros the specified hardware page.
2259  */
2260 static void
2261 mmu_booke_zero_page(mmu_t mmu, vm_page_t m)
2262 {
2263 	vm_offset_t off, va;
2264 
2265 	mtx_lock(&zero_page_mutex);
2266 	va = zero_page_va;
2267 
2268 	mmu_booke_kenter(mmu, va, VM_PAGE_TO_PHYS(m));
2269 	for (off = 0; off < PAGE_SIZE; off += cacheline_size)
2270 		__asm __volatile("dcbz 0,%0" :: "r"(va + off));
2271 	mmu_booke_kremove(mmu, va);
2272 
2273 	mtx_unlock(&zero_page_mutex);
2274 }
2275 
2276 /*
2277  * mmu_booke_copy_page copies the specified (machine independent) page by
2278  * mapping the page into virtual memory and using memcopy to copy the page,
2279  * one machine dependent page at a time.
2280  */
2281 static void
2282 mmu_booke_copy_page(mmu_t mmu, vm_page_t sm, vm_page_t dm)
2283 {
2284 	vm_offset_t sva, dva;
2285 
2286 	sva = copy_page_src_va;
2287 	dva = copy_page_dst_va;
2288 
2289 	mtx_lock(&copy_page_mutex);
2290 	mmu_booke_kenter(mmu, sva, VM_PAGE_TO_PHYS(sm));
2291 	mmu_booke_kenter(mmu, dva, VM_PAGE_TO_PHYS(dm));
2292 	memcpy((caddr_t)dva, (caddr_t)sva, PAGE_SIZE);
2293 	mmu_booke_kremove(mmu, dva);
2294 	mmu_booke_kremove(mmu, sva);
2295 	mtx_unlock(&copy_page_mutex);
2296 }
2297 
2298 static inline void
2299 mmu_booke_copy_pages(mmu_t mmu, vm_page_t *ma, vm_offset_t a_offset,
2300     vm_page_t *mb, vm_offset_t b_offset, int xfersize)
2301 {
2302 	void *a_cp, *b_cp;
2303 	vm_offset_t a_pg_offset, b_pg_offset;
2304 	int cnt;
2305 
2306 	mtx_lock(&copy_page_mutex);
2307 	while (xfersize > 0) {
2308 		a_pg_offset = a_offset & PAGE_MASK;
2309 		cnt = min(xfersize, PAGE_SIZE - a_pg_offset);
2310 		mmu_booke_kenter(mmu, copy_page_src_va,
2311 		    VM_PAGE_TO_PHYS(ma[a_offset >> PAGE_SHIFT]));
2312 		a_cp = (char *)copy_page_src_va + a_pg_offset;
2313 		b_pg_offset = b_offset & PAGE_MASK;
2314 		cnt = min(cnt, PAGE_SIZE - b_pg_offset);
2315 		mmu_booke_kenter(mmu, copy_page_dst_va,
2316 		    VM_PAGE_TO_PHYS(mb[b_offset >> PAGE_SHIFT]));
2317 		b_cp = (char *)copy_page_dst_va + b_pg_offset;
2318 		bcopy(a_cp, b_cp, cnt);
2319 		mmu_booke_kremove(mmu, copy_page_dst_va);
2320 		mmu_booke_kremove(mmu, copy_page_src_va);
2321 		a_offset += cnt;
2322 		b_offset += cnt;
2323 		xfersize -= cnt;
2324 	}
2325 	mtx_unlock(&copy_page_mutex);
2326 }
2327 
2328 static vm_offset_t
2329 mmu_booke_quick_enter_page(mmu_t mmu, vm_page_t m)
2330 {
2331 	vm_paddr_t paddr;
2332 	vm_offset_t qaddr;
2333 	uint32_t flags;
2334 	pte_t *pte;
2335 
2336 	paddr = VM_PAGE_TO_PHYS(m);
2337 
2338 	flags = PTE_SR | PTE_SW | PTE_SX | PTE_WIRED | PTE_VALID;
2339 	flags |= tlb_calc_wimg(paddr, pmap_page_get_memattr(m)) << PTE_MAS2_SHIFT;
2340 	flags |= PTE_PS_4KB;
2341 
2342 	critical_enter();
2343 	qaddr = PCPU_GET(qmap_addr);
2344 
2345 	pte = pte_find(mmu, kernel_pmap, qaddr);
2346 
2347 	KASSERT(*pte == 0, ("mmu_booke_quick_enter_page: PTE busy"));
2348 
2349 	/*
2350 	 * XXX: tlbivax is broadcast to other cores, but qaddr should
2351  	 * not be present in other TLBs.  Is there a better instruction
2352 	 * sequence to use? Or just forget it & use mmu_booke_kenter()...
2353 	 */
2354 	__asm __volatile("tlbivax 0, %0" :: "r"(qaddr & MAS2_EPN_MASK));
2355 	__asm __volatile("isync; msync");
2356 
2357 	*pte = PTE_RPN_FROM_PA(paddr) | flags;
2358 
2359 	/* Flush the real memory from the instruction cache. */
2360 	if ((flags & (PTE_I | PTE_G)) == 0)
2361 		__syncicache((void *)qaddr, PAGE_SIZE);
2362 
2363 	return (qaddr);
2364 }
2365 
2366 static void
2367 mmu_booke_quick_remove_page(mmu_t mmu, vm_offset_t addr)
2368 {
2369 	pte_t *pte;
2370 
2371 	pte = pte_find(mmu, kernel_pmap, addr);
2372 
2373 	KASSERT(PCPU_GET(qmap_addr) == addr,
2374 	    ("mmu_booke_quick_remove_page: invalid address"));
2375 	KASSERT(*pte != 0,
2376 	    ("mmu_booke_quick_remove_page: PTE not in use"));
2377 
2378 	*pte = 0;
2379 	critical_exit();
2380 }
2381 
2382 /*
2383  * Return whether or not the specified physical page was modified
2384  * in any of physical maps.
2385  */
2386 static boolean_t
2387 mmu_booke_is_modified(mmu_t mmu, vm_page_t m)
2388 {
2389 	pte_t *pte;
2390 	pv_entry_t pv;
2391 	boolean_t rv;
2392 
2393 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2394 	    ("mmu_booke_is_modified: page %p is not managed", m));
2395 	rv = FALSE;
2396 
2397 	/*
2398 	 * If the page is not exclusive busied, then PGA_WRITEABLE cannot be
2399 	 * concurrently set while the object is locked.  Thus, if PGA_WRITEABLE
2400 	 * is clear, no PTEs can be modified.
2401 	 */
2402 	VM_OBJECT_ASSERT_WLOCKED(m->object);
2403 	if (!vm_page_xbusied(m) && (m->aflags & PGA_WRITEABLE) == 0)
2404 		return (rv);
2405 	rw_wlock(&pvh_global_lock);
2406 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2407 		PMAP_LOCK(pv->pv_pmap);
2408 		if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL &&
2409 		    PTE_ISVALID(pte)) {
2410 			if (PTE_ISMODIFIED(pte))
2411 				rv = TRUE;
2412 		}
2413 		PMAP_UNLOCK(pv->pv_pmap);
2414 		if (rv)
2415 			break;
2416 	}
2417 	rw_wunlock(&pvh_global_lock);
2418 	return (rv);
2419 }
2420 
2421 /*
2422  * Return whether or not the specified virtual address is eligible
2423  * for prefault.
2424  */
2425 static boolean_t
2426 mmu_booke_is_prefaultable(mmu_t mmu, pmap_t pmap, vm_offset_t addr)
2427 {
2428 
2429 	return (FALSE);
2430 }
2431 
2432 /*
2433  * Return whether or not the specified physical page was referenced
2434  * in any physical maps.
2435  */
2436 static boolean_t
2437 mmu_booke_is_referenced(mmu_t mmu, vm_page_t m)
2438 {
2439 	pte_t *pte;
2440 	pv_entry_t pv;
2441 	boolean_t rv;
2442 
2443 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2444 	    ("mmu_booke_is_referenced: page %p is not managed", m));
2445 	rv = FALSE;
2446 	rw_wlock(&pvh_global_lock);
2447 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2448 		PMAP_LOCK(pv->pv_pmap);
2449 		if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL &&
2450 		    PTE_ISVALID(pte)) {
2451 			if (PTE_ISREFERENCED(pte))
2452 				rv = TRUE;
2453 		}
2454 		PMAP_UNLOCK(pv->pv_pmap);
2455 		if (rv)
2456 			break;
2457 	}
2458 	rw_wunlock(&pvh_global_lock);
2459 	return (rv);
2460 }
2461 
2462 /*
2463  * Clear the modify bits on the specified physical page.
2464  */
2465 static void
2466 mmu_booke_clear_modify(mmu_t mmu, vm_page_t m)
2467 {
2468 	pte_t *pte;
2469 	pv_entry_t pv;
2470 
2471 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2472 	    ("mmu_booke_clear_modify: page %p is not managed", m));
2473 	VM_OBJECT_ASSERT_WLOCKED(m->object);
2474 	KASSERT(!vm_page_xbusied(m),
2475 	    ("mmu_booke_clear_modify: page %p is exclusive busied", m));
2476 
2477 	/*
2478 	 * If the page is not PG_AWRITEABLE, then no PTEs can be modified.
2479 	 * If the object containing the page is locked and the page is not
2480 	 * exclusive busied, then PG_AWRITEABLE cannot be concurrently set.
2481 	 */
2482 	if ((m->aflags & PGA_WRITEABLE) == 0)
2483 		return;
2484 	rw_wlock(&pvh_global_lock);
2485 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2486 		PMAP_LOCK(pv->pv_pmap);
2487 		if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL &&
2488 		    PTE_ISVALID(pte)) {
2489 			mtx_lock_spin(&tlbivax_mutex);
2490 			tlb_miss_lock();
2491 
2492 			if (*pte & (PTE_SW | PTE_UW | PTE_MODIFIED)) {
2493 				tlb0_flush_entry(pv->pv_va);
2494 				*pte &= ~(PTE_SW | PTE_UW | PTE_MODIFIED |
2495 				    PTE_REFERENCED);
2496 			}
2497 
2498 			tlb_miss_unlock();
2499 			mtx_unlock_spin(&tlbivax_mutex);
2500 		}
2501 		PMAP_UNLOCK(pv->pv_pmap);
2502 	}
2503 	rw_wunlock(&pvh_global_lock);
2504 }
2505 
2506 /*
2507  * Return a count of reference bits for a page, clearing those bits.
2508  * It is not necessary for every reference bit to be cleared, but it
2509  * is necessary that 0 only be returned when there are truly no
2510  * reference bits set.
2511  *
2512  * As an optimization, update the page's dirty field if a modified bit is
2513  * found while counting reference bits.  This opportunistic update can be
2514  * performed at low cost and can eliminate the need for some future calls
2515  * to pmap_is_modified().  However, since this function stops after
2516  * finding PMAP_TS_REFERENCED_MAX reference bits, it may not detect some
2517  * dirty pages.  Those dirty pages will only be detected by a future call
2518  * to pmap_is_modified().
2519  */
2520 static int
2521 mmu_booke_ts_referenced(mmu_t mmu, vm_page_t m)
2522 {
2523 	pte_t *pte;
2524 	pv_entry_t pv;
2525 	int count;
2526 
2527 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2528 	    ("mmu_booke_ts_referenced: page %p is not managed", m));
2529 	count = 0;
2530 	rw_wlock(&pvh_global_lock);
2531 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2532 		PMAP_LOCK(pv->pv_pmap);
2533 		if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL &&
2534 		    PTE_ISVALID(pte)) {
2535 			if (PTE_ISMODIFIED(pte))
2536 				vm_page_dirty(m);
2537 			if (PTE_ISREFERENCED(pte)) {
2538 				mtx_lock_spin(&tlbivax_mutex);
2539 				tlb_miss_lock();
2540 
2541 				tlb0_flush_entry(pv->pv_va);
2542 				*pte &= ~PTE_REFERENCED;
2543 
2544 				tlb_miss_unlock();
2545 				mtx_unlock_spin(&tlbivax_mutex);
2546 
2547 				if (++count >= PMAP_TS_REFERENCED_MAX) {
2548 					PMAP_UNLOCK(pv->pv_pmap);
2549 					break;
2550 				}
2551 			}
2552 		}
2553 		PMAP_UNLOCK(pv->pv_pmap);
2554 	}
2555 	rw_wunlock(&pvh_global_lock);
2556 	return (count);
2557 }
2558 
2559 /*
2560  * Clear the wired attribute from the mappings for the specified range of
2561  * addresses in the given pmap.  Every valid mapping within that range must
2562  * have the wired attribute set.  In contrast, invalid mappings cannot have
2563  * the wired attribute set, so they are ignored.
2564  *
2565  * The wired attribute of the page table entry is not a hardware feature, so
2566  * there is no need to invalidate any TLB entries.
2567  */
2568 static void
2569 mmu_booke_unwire(mmu_t mmu, pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
2570 {
2571 	vm_offset_t va;
2572 	pte_t *pte;
2573 
2574 	PMAP_LOCK(pmap);
2575 	for (va = sva; va < eva; va += PAGE_SIZE) {
2576 		if ((pte = pte_find(mmu, pmap, va)) != NULL &&
2577 		    PTE_ISVALID(pte)) {
2578 			if (!PTE_ISWIRED(pte))
2579 				panic("mmu_booke_unwire: pte %p isn't wired",
2580 				    pte);
2581 			*pte &= ~PTE_WIRED;
2582 			pmap->pm_stats.wired_count--;
2583 		}
2584 	}
2585 	PMAP_UNLOCK(pmap);
2586 
2587 }
2588 
2589 /*
2590  * Return true if the pmap's pv is one of the first 16 pvs linked to from this
2591  * page.  This count may be changed upwards or downwards in the future; it is
2592  * only necessary that true be returned for a small subset of pmaps for proper
2593  * page aging.
2594  */
2595 static boolean_t
2596 mmu_booke_page_exists_quick(mmu_t mmu, pmap_t pmap, vm_page_t m)
2597 {
2598 	pv_entry_t pv;
2599 	int loops;
2600 	boolean_t rv;
2601 
2602 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2603 	    ("mmu_booke_page_exists_quick: page %p is not managed", m));
2604 	loops = 0;
2605 	rv = FALSE;
2606 	rw_wlock(&pvh_global_lock);
2607 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2608 		if (pv->pv_pmap == pmap) {
2609 			rv = TRUE;
2610 			break;
2611 		}
2612 		if (++loops >= 16)
2613 			break;
2614 	}
2615 	rw_wunlock(&pvh_global_lock);
2616 	return (rv);
2617 }
2618 
2619 /*
2620  * Return the number of managed mappings to the given physical page that are
2621  * wired.
2622  */
2623 static int
2624 mmu_booke_page_wired_mappings(mmu_t mmu, vm_page_t m)
2625 {
2626 	pv_entry_t pv;
2627 	pte_t *pte;
2628 	int count = 0;
2629 
2630 	if ((m->oflags & VPO_UNMANAGED) != 0)
2631 		return (count);
2632 	rw_wlock(&pvh_global_lock);
2633 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2634 		PMAP_LOCK(pv->pv_pmap);
2635 		if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL)
2636 			if (PTE_ISVALID(pte) && PTE_ISWIRED(pte))
2637 				count++;
2638 		PMAP_UNLOCK(pv->pv_pmap);
2639 	}
2640 	rw_wunlock(&pvh_global_lock);
2641 	return (count);
2642 }
2643 
2644 static int
2645 mmu_booke_dev_direct_mapped(mmu_t mmu, vm_paddr_t pa, vm_size_t size)
2646 {
2647 	int i;
2648 	vm_offset_t va;
2649 
2650 	/*
2651 	 * This currently does not work for entries that
2652 	 * overlap TLB1 entries.
2653 	 */
2654 	for (i = 0; i < TLB1_ENTRIES; i ++) {
2655 		if (tlb1_iomapped(i, pa, size, &va) == 0)
2656 			return (0);
2657 	}
2658 
2659 	return (EFAULT);
2660 }
2661 
2662 void
2663 mmu_booke_dumpsys_map(mmu_t mmu, vm_paddr_t pa, size_t sz, void **va)
2664 {
2665 	vm_paddr_t ppa;
2666 	vm_offset_t ofs;
2667 	vm_size_t gran;
2668 
2669 	/* Minidumps are based on virtual memory addresses. */
2670 	if (do_minidump) {
2671 		*va = (void *)(vm_offset_t)pa;
2672 		return;
2673 	}
2674 
2675 	/* Raw physical memory dumps don't have a virtual address. */
2676 	/* We always map a 256MB page at 256M. */
2677 	gran = 256 * 1024 * 1024;
2678 	ppa = rounddown2(pa, gran);
2679 	ofs = pa - ppa;
2680 	*va = (void *)gran;
2681 	tlb1_set_entry((vm_offset_t)va, ppa, gran, _TLB_ENTRY_IO);
2682 
2683 	if (sz > (gran - ofs))
2684 		tlb1_set_entry((vm_offset_t)(va + gran), ppa + gran, gran,
2685 		    _TLB_ENTRY_IO);
2686 }
2687 
2688 void
2689 mmu_booke_dumpsys_unmap(mmu_t mmu, vm_paddr_t pa, size_t sz, void *va)
2690 {
2691 	vm_paddr_t ppa;
2692 	vm_offset_t ofs;
2693 	vm_size_t gran;
2694 	tlb_entry_t e;
2695 	int i;
2696 
2697 	/* Minidumps are based on virtual memory addresses. */
2698 	/* Nothing to do... */
2699 	if (do_minidump)
2700 		return;
2701 
2702 	for (i = 0; i < TLB1_ENTRIES; i++) {
2703 		tlb1_read_entry(&e, i);
2704 		if (!(e.mas1 & MAS1_VALID))
2705 			break;
2706 	}
2707 
2708 	/* Raw physical memory dumps don't have a virtual address. */
2709 	i--;
2710 	e.mas1 = 0;
2711 	e.mas2 = 0;
2712 	e.mas3 = 0;
2713 	tlb1_write_entry(&e, i);
2714 
2715 	gran = 256 * 1024 * 1024;
2716 	ppa = rounddown2(pa, gran);
2717 	ofs = pa - ppa;
2718 	if (sz > (gran - ofs)) {
2719 		i--;
2720 		e.mas1 = 0;
2721 		e.mas2 = 0;
2722 		e.mas3 = 0;
2723 		tlb1_write_entry(&e, i);
2724 	}
2725 }
2726 
2727 extern struct dump_pa dump_map[PHYS_AVAIL_SZ + 1];
2728 
2729 void
2730 mmu_booke_scan_init(mmu_t mmu)
2731 {
2732 	vm_offset_t va;
2733 	pte_t *pte;
2734 	int i;
2735 
2736 	if (!do_minidump) {
2737 		/* Initialize phys. segments for dumpsys(). */
2738 		memset(&dump_map, 0, sizeof(dump_map));
2739 		mem_regions(&physmem_regions, &physmem_regions_sz, &availmem_regions,
2740 		    &availmem_regions_sz);
2741 		for (i = 0; i < physmem_regions_sz; i++) {
2742 			dump_map[i].pa_start = physmem_regions[i].mr_start;
2743 			dump_map[i].pa_size = physmem_regions[i].mr_size;
2744 		}
2745 		return;
2746 	}
2747 
2748 	/* Virtual segments for minidumps: */
2749 	memset(&dump_map, 0, sizeof(dump_map));
2750 
2751 	/* 1st: kernel .data and .bss. */
2752 	dump_map[0].pa_start = trunc_page((uintptr_t)_etext);
2753 	dump_map[0].pa_size =
2754 	    round_page((uintptr_t)_end) - dump_map[0].pa_start;
2755 
2756 	/* 2nd: msgbuf and tables (see pmap_bootstrap()). */
2757 	dump_map[1].pa_start = data_start;
2758 	dump_map[1].pa_size = data_end - data_start;
2759 
2760 	/* 3rd: kernel VM. */
2761 	va = dump_map[1].pa_start + dump_map[1].pa_size;
2762 	/* Find start of next chunk (from va). */
2763 	while (va < virtual_end) {
2764 		/* Don't dump the buffer cache. */
2765 		if (va >= kmi.buffer_sva && va < kmi.buffer_eva) {
2766 			va = kmi.buffer_eva;
2767 			continue;
2768 		}
2769 		pte = pte_find(mmu, kernel_pmap, va);
2770 		if (pte != NULL && PTE_ISVALID(pte))
2771 			break;
2772 		va += PAGE_SIZE;
2773 	}
2774 	if (va < virtual_end) {
2775 		dump_map[2].pa_start = va;
2776 		va += PAGE_SIZE;
2777 		/* Find last page in chunk. */
2778 		while (va < virtual_end) {
2779 			/* Don't run into the buffer cache. */
2780 			if (va == kmi.buffer_sva)
2781 				break;
2782 			pte = pte_find(mmu, kernel_pmap, va);
2783 			if (pte == NULL || !PTE_ISVALID(pte))
2784 				break;
2785 			va += PAGE_SIZE;
2786 		}
2787 		dump_map[2].pa_size = va - dump_map[2].pa_start;
2788 	}
2789 }
2790 
2791 /*
2792  * Map a set of physical memory pages into the kernel virtual address space.
2793  * Return a pointer to where it is mapped. This routine is intended to be used
2794  * for mapping device memory, NOT real memory.
2795  */
2796 static void *
2797 mmu_booke_mapdev(mmu_t mmu, vm_paddr_t pa, vm_size_t size)
2798 {
2799 
2800 	return (mmu_booke_mapdev_attr(mmu, pa, size, VM_MEMATTR_DEFAULT));
2801 }
2802 
2803 static void *
2804 mmu_booke_mapdev_attr(mmu_t mmu, vm_paddr_t pa, vm_size_t size, vm_memattr_t ma)
2805 {
2806 	tlb_entry_t e;
2807 	void *res;
2808 	uintptr_t va, tmpva;
2809 	vm_size_t sz;
2810 	int i;
2811 
2812 	/*
2813 	 * Check if this is premapped in TLB1. Note: this should probably also
2814 	 * check whether a sequence of TLB1 entries exist that match the
2815 	 * requirement, but now only checks the easy case.
2816 	 */
2817 	if (ma == VM_MEMATTR_DEFAULT) {
2818 		for (i = 0; i < TLB1_ENTRIES; i++) {
2819 			tlb1_read_entry(&e, i);
2820 			if (!(e.mas1 & MAS1_VALID))
2821 				continue;
2822 			if (pa >= e.phys &&
2823 			    (pa + size) <= (e.phys + e.size))
2824 				return (void *)(e.virt +
2825 				    (vm_offset_t)(pa - e.phys));
2826 		}
2827 	}
2828 
2829 	size = roundup(size, PAGE_SIZE);
2830 
2831 	/*
2832 	 * The device mapping area is between VM_MAXUSER_ADDRESS and
2833 	 * VM_MIN_KERNEL_ADDRESS.  This gives 1GB of device addressing.
2834 	 */
2835 #ifdef SPARSE_MAPDEV
2836 	/*
2837 	 * With a sparse mapdev, align to the largest starting region.  This
2838 	 * could feasibly be optimized for a 'best-fit' alignment, but that
2839 	 * calculation could be very costly.
2840 	 */
2841 	do {
2842 	    tmpva = tlb1_map_base;
2843 	    va = roundup(tlb1_map_base, 1 << flsl(size));
2844 	} while (!atomic_cmpset_int(&tlb1_map_base, tmpva, va + size));
2845 #else
2846 	va = atomic_fetchadd_int(&tlb1_map_base, size);
2847 #endif
2848 	res = (void *)va;
2849 
2850 	do {
2851 		sz = 1 << (ilog2(size) & ~1);
2852 		if (va % sz != 0) {
2853 			do {
2854 				sz >>= 2;
2855 			} while (va % sz != 0);
2856 		}
2857 		if (bootverbose)
2858 			printf("Wiring VA=%x to PA=%jx (size=%x)\n",
2859 			    va, (uintmax_t)pa, sz);
2860 		tlb1_set_entry(va, pa, sz,
2861 		    _TLB_ENTRY_SHARED | tlb_calc_wimg(pa, ma));
2862 		size -= sz;
2863 		pa += sz;
2864 		va += sz;
2865 	} while (size > 0);
2866 
2867 	return (res);
2868 }
2869 
2870 /*
2871  * 'Unmap' a range mapped by mmu_booke_mapdev().
2872  */
2873 static void
2874 mmu_booke_unmapdev(mmu_t mmu, vm_offset_t va, vm_size_t size)
2875 {
2876 #ifdef SUPPORTS_SHRINKING_TLB1
2877 	vm_offset_t base, offset;
2878 
2879 	/*
2880 	 * Unmap only if this is inside kernel virtual space.
2881 	 */
2882 	if ((va >= VM_MIN_KERNEL_ADDRESS) && (va <= VM_MAX_KERNEL_ADDRESS)) {
2883 		base = trunc_page(va);
2884 		offset = va & PAGE_MASK;
2885 		size = roundup(offset + size, PAGE_SIZE);
2886 		kva_free(base, size);
2887 	}
2888 #endif
2889 }
2890 
2891 /*
2892  * mmu_booke_object_init_pt preloads the ptes for a given object into the
2893  * specified pmap. This eliminates the blast of soft faults on process startup
2894  * and immediately after an mmap.
2895  */
2896 static void
2897 mmu_booke_object_init_pt(mmu_t mmu, pmap_t pmap, vm_offset_t addr,
2898     vm_object_t object, vm_pindex_t pindex, vm_size_t size)
2899 {
2900 
2901 	VM_OBJECT_ASSERT_WLOCKED(object);
2902 	KASSERT(object->type == OBJT_DEVICE || object->type == OBJT_SG,
2903 	    ("mmu_booke_object_init_pt: non-device object"));
2904 }
2905 
2906 /*
2907  * Perform the pmap work for mincore.
2908  */
2909 static int
2910 mmu_booke_mincore(mmu_t mmu, pmap_t pmap, vm_offset_t addr,
2911     vm_paddr_t *locked_pa)
2912 {
2913 
2914 	/* XXX: this should be implemented at some point */
2915 	return (0);
2916 }
2917 
2918 static int
2919 mmu_booke_change_attr(mmu_t mmu, vm_offset_t addr, vm_size_t sz,
2920     vm_memattr_t mode)
2921 {
2922 	vm_offset_t va;
2923 	pte_t *pte;
2924 	int i, j;
2925 	tlb_entry_t e;
2926 
2927 	/* Check TLB1 mappings */
2928 	for (i = 0; i < TLB1_ENTRIES; i++) {
2929 		tlb1_read_entry(&e, i);
2930 		if (!(e.mas1 & MAS1_VALID))
2931 			continue;
2932 		if (addr >= e.virt && addr < e.virt + e.size)
2933 			break;
2934 	}
2935 	if (i < TLB1_ENTRIES) {
2936 		/* Only allow full mappings to be modified for now. */
2937 		/* Validate the range. */
2938 		for (j = i, va = addr; va < addr + sz; va += e.size, j++) {
2939 			tlb1_read_entry(&e, j);
2940 			if (va != e.virt || (sz - (va - addr) < e.size))
2941 				return (EINVAL);
2942 		}
2943 		for (va = addr; va < addr + sz; va += e.size, i++) {
2944 			tlb1_read_entry(&e, i);
2945 			e.mas2 &= ~MAS2_WIMGE_MASK;
2946 			e.mas2 |= tlb_calc_wimg(e.phys, mode);
2947 
2948 			/*
2949 			 * Write it out to the TLB.  Should really re-sync with other
2950 			 * cores.
2951 			 */
2952 			tlb1_write_entry(&e, i);
2953 		}
2954 		return (0);
2955 	}
2956 
2957 	/* Not in TLB1, try through pmap */
2958 	/* First validate the range. */
2959 	for (va = addr; va < addr + sz; va += PAGE_SIZE) {
2960 		pte = pte_find(mmu, kernel_pmap, va);
2961 		if (pte == NULL || !PTE_ISVALID(pte))
2962 			return (EINVAL);
2963 	}
2964 
2965 	mtx_lock_spin(&tlbivax_mutex);
2966 	tlb_miss_lock();
2967 	for (va = addr; va < addr + sz; va += PAGE_SIZE) {
2968 		pte = pte_find(mmu, kernel_pmap, va);
2969 		*pte &= ~(PTE_MAS2_MASK << PTE_MAS2_SHIFT);
2970 		*pte |= tlb_calc_wimg(PTE_PA(pte), mode) << PTE_MAS2_SHIFT;
2971 		tlb0_flush_entry(va);
2972 	}
2973 	tlb_miss_unlock();
2974 	mtx_unlock_spin(&tlbivax_mutex);
2975 
2976 	return (0);
2977 }
2978 
2979 /**************************************************************************/
2980 /* TID handling */
2981 /**************************************************************************/
2982 
2983 /*
2984  * Allocate a TID. If necessary, steal one from someone else.
2985  * The new TID is flushed from the TLB before returning.
2986  */
2987 static tlbtid_t
2988 tid_alloc(pmap_t pmap)
2989 {
2990 	tlbtid_t tid;
2991 	int thiscpu;
2992 
2993 	KASSERT((pmap != kernel_pmap), ("tid_alloc: kernel pmap"));
2994 
2995 	CTR2(KTR_PMAP, "%s: s (pmap = %p)", __func__, pmap);
2996 
2997 	thiscpu = PCPU_GET(cpuid);
2998 
2999 	tid = PCPU_GET(tid_next);
3000 	if (tid > TID_MAX)
3001 		tid = TID_MIN;
3002 	PCPU_SET(tid_next, tid + 1);
3003 
3004 	/* If we are stealing TID then clear the relevant pmap's field */
3005 	if (tidbusy[thiscpu][tid] != NULL) {
3006 
3007 		CTR2(KTR_PMAP, "%s: warning: stealing tid %d", __func__, tid);
3008 
3009 		tidbusy[thiscpu][tid]->pm_tid[thiscpu] = TID_NONE;
3010 
3011 		/* Flush all entries from TLB0 matching this TID. */
3012 		tid_flush(tid);
3013 	}
3014 
3015 	tidbusy[thiscpu][tid] = pmap;
3016 	pmap->pm_tid[thiscpu] = tid;
3017 	__asm __volatile("msync; isync");
3018 
3019 	CTR3(KTR_PMAP, "%s: e (%02d next = %02d)", __func__, tid,
3020 	    PCPU_GET(tid_next));
3021 
3022 	return (tid);
3023 }
3024 
3025 /**************************************************************************/
3026 /* TLB0 handling */
3027 /**************************************************************************/
3028 
3029 static void
3030 tlb_print_entry(int i, uint32_t mas1, uint32_t mas2, uint32_t mas3,
3031     uint32_t mas7)
3032 {
3033 	int as;
3034 	char desc[3];
3035 	tlbtid_t tid;
3036 	vm_size_t size;
3037 	unsigned int tsize;
3038 
3039 	desc[2] = '\0';
3040 	if (mas1 & MAS1_VALID)
3041 		desc[0] = 'V';
3042 	else
3043 		desc[0] = ' ';
3044 
3045 	if (mas1 & MAS1_IPROT)
3046 		desc[1] = 'P';
3047 	else
3048 		desc[1] = ' ';
3049 
3050 	as = (mas1 & MAS1_TS_MASK) ? 1 : 0;
3051 	tid = MAS1_GETTID(mas1);
3052 
3053 	tsize = (mas1 & MAS1_TSIZE_MASK) >> MAS1_TSIZE_SHIFT;
3054 	size = 0;
3055 	if (tsize)
3056 		size = tsize2size(tsize);
3057 
3058 	debugf("%3d: (%s) [AS=%d] "
3059 	    "sz = 0x%08x tsz = %d tid = %d mas1 = 0x%08x "
3060 	    "mas2(va) = 0x%08x mas3(pa) = 0x%08x mas7 = 0x%08x\n",
3061 	    i, desc, as, size, tsize, tid, mas1, mas2, mas3, mas7);
3062 }
3063 
3064 /* Convert TLB0 va and way number to tlb0[] table index. */
3065 static inline unsigned int
3066 tlb0_tableidx(vm_offset_t va, unsigned int way)
3067 {
3068 	unsigned int idx;
3069 
3070 	idx = (way * TLB0_ENTRIES_PER_WAY);
3071 	idx += (va & MAS2_TLB0_ENTRY_IDX_MASK) >> MAS2_TLB0_ENTRY_IDX_SHIFT;
3072 	return (idx);
3073 }
3074 
3075 /*
3076  * Invalidate TLB0 entry.
3077  */
3078 static inline void
3079 tlb0_flush_entry(vm_offset_t va)
3080 {
3081 
3082 	CTR2(KTR_PMAP, "%s: s va=0x%08x", __func__, va);
3083 
3084 	mtx_assert(&tlbivax_mutex, MA_OWNED);
3085 
3086 	__asm __volatile("tlbivax 0, %0" :: "r"(va & MAS2_EPN_MASK));
3087 	__asm __volatile("isync; msync");
3088 	__asm __volatile("tlbsync; msync");
3089 
3090 	CTR1(KTR_PMAP, "%s: e", __func__);
3091 }
3092 
3093 /* Print out contents of the MAS registers for each TLB0 entry */
3094 void
3095 tlb0_print_tlbentries(void)
3096 {
3097 	uint32_t mas0, mas1, mas2, mas3, mas7;
3098 	int entryidx, way, idx;
3099 
3100 	debugf("TLB0 entries:\n");
3101 	for (way = 0; way < TLB0_WAYS; way ++)
3102 		for (entryidx = 0; entryidx < TLB0_ENTRIES_PER_WAY; entryidx++) {
3103 
3104 			mas0 = MAS0_TLBSEL(0) | MAS0_ESEL(way);
3105 			mtspr(SPR_MAS0, mas0);
3106 			__asm __volatile("isync");
3107 
3108 			mas2 = entryidx << MAS2_TLB0_ENTRY_IDX_SHIFT;
3109 			mtspr(SPR_MAS2, mas2);
3110 
3111 			__asm __volatile("isync; tlbre");
3112 
3113 			mas1 = mfspr(SPR_MAS1);
3114 			mas2 = mfspr(SPR_MAS2);
3115 			mas3 = mfspr(SPR_MAS3);
3116 			mas7 = mfspr(SPR_MAS7);
3117 
3118 			idx = tlb0_tableidx(mas2, way);
3119 			tlb_print_entry(idx, mas1, mas2, mas3, mas7);
3120 		}
3121 }
3122 
3123 /**************************************************************************/
3124 /* TLB1 handling */
3125 /**************************************************************************/
3126 
3127 /*
3128  * TLB1 mapping notes:
3129  *
3130  * TLB1[0]	Kernel text and data.
3131  * TLB1[1-15]	Additional kernel text and data mappings (if required), PCI
3132  *		windows, other devices mappings.
3133  */
3134 
3135  /*
3136  * Read an entry from given TLB1 slot.
3137  */
3138 void
3139 tlb1_read_entry(tlb_entry_t *entry, unsigned int slot)
3140 {
3141 	uint32_t mas0;
3142 
3143 	KASSERT((entry != NULL), ("%s(): Entry is NULL!", __func__));
3144 
3145 	mas0 = MAS0_TLBSEL(1) | MAS0_ESEL(slot);
3146 	mtspr(SPR_MAS0, mas0);
3147 	__asm __volatile("isync; tlbre");
3148 
3149 	entry->mas1 = mfspr(SPR_MAS1);
3150 	entry->mas2 = mfspr(SPR_MAS2);
3151 	entry->mas3 = mfspr(SPR_MAS3);
3152 
3153 	switch ((mfpvr() >> 16) & 0xFFFF) {
3154 	case FSL_E500v2:
3155 	case FSL_E500mc:
3156 	case FSL_E5500:
3157 	case FSL_E6500:
3158 		entry->mas7 = mfspr(SPR_MAS7);
3159 		break;
3160 	default:
3161 		entry->mas7 = 0;
3162 		break;
3163 	}
3164 
3165 	entry->virt = entry->mas2 & MAS2_EPN_MASK;
3166 	entry->phys = ((vm_paddr_t)(entry->mas7 & MAS7_RPN) << 32) |
3167 	    (entry->mas3 & MAS3_RPN);
3168 	entry->size =
3169 	    tsize2size((entry->mas1 & MAS1_TSIZE_MASK) >> MAS1_TSIZE_SHIFT);
3170 }
3171 
3172 /*
3173  * Write given entry to TLB1 hardware.
3174  * Use 32 bit pa, clear 4 high-order bits of RPN (mas7).
3175  */
3176 static void
3177 tlb1_write_entry(tlb_entry_t *e, unsigned int idx)
3178 {
3179 	uint32_t mas0;
3180 
3181 	//debugf("tlb1_write_entry: s\n");
3182 
3183 	/* Select entry */
3184 	mas0 = MAS0_TLBSEL(1) | MAS0_ESEL(idx);
3185 	//debugf("tlb1_write_entry: mas0 = 0x%08x\n", mas0);
3186 
3187 	mtspr(SPR_MAS0, mas0);
3188 	__asm __volatile("isync");
3189 	mtspr(SPR_MAS1, e->mas1);
3190 	__asm __volatile("isync");
3191 	mtspr(SPR_MAS2, e->mas2);
3192 	__asm __volatile("isync");
3193 	mtspr(SPR_MAS3, e->mas3);
3194 	__asm __volatile("isync");
3195 	switch ((mfpvr() >> 16) & 0xFFFF) {
3196 	case FSL_E500mc:
3197 	case FSL_E5500:
3198 	case FSL_E6500:
3199 		mtspr(SPR_MAS8, 0);
3200 		__asm __volatile("isync");
3201 		/* FALLTHROUGH */
3202 	case FSL_E500v2:
3203 		mtspr(SPR_MAS7, e->mas7);
3204 		__asm __volatile("isync");
3205 		break;
3206 	default:
3207 		break;
3208 	}
3209 
3210 	__asm __volatile("tlbwe; isync; msync");
3211 
3212 	//debugf("tlb1_write_entry: e\n");
3213 }
3214 
3215 /*
3216  * Return the largest uint value log such that 2^log <= num.
3217  */
3218 static unsigned int
3219 ilog2(unsigned int num)
3220 {
3221 	int lz;
3222 
3223 	__asm ("cntlzw %0, %1" : "=r" (lz) : "r" (num));
3224 	return (31 - lz);
3225 }
3226 
3227 /*
3228  * Convert TLB TSIZE value to mapped region size.
3229  */
3230 static vm_size_t
3231 tsize2size(unsigned int tsize)
3232 {
3233 
3234 	/*
3235 	 * size = 4^tsize KB
3236 	 * size = 4^tsize * 2^10 = 2^(2 * tsize - 10)
3237 	 */
3238 
3239 	return ((1 << (2 * tsize)) * 1024);
3240 }
3241 
3242 /*
3243  * Convert region size (must be power of 4) to TLB TSIZE value.
3244  */
3245 static unsigned int
3246 size2tsize(vm_size_t size)
3247 {
3248 
3249 	return (ilog2(size) / 2 - 5);
3250 }
3251 
3252 /*
3253  * Register permanent kernel mapping in TLB1.
3254  *
3255  * Entries are created starting from index 0 (current free entry is
3256  * kept in tlb1_idx) and are not supposed to be invalidated.
3257  */
3258 int
3259 tlb1_set_entry(vm_offset_t va, vm_paddr_t pa, vm_size_t size,
3260     uint32_t flags)
3261 {
3262 	tlb_entry_t e;
3263 	uint32_t ts, tid;
3264 	int tsize, index;
3265 
3266 	for (index = 0; index < TLB1_ENTRIES; index++) {
3267 		tlb1_read_entry(&e, index);
3268 		if ((e.mas1 & MAS1_VALID) == 0)
3269 			break;
3270 		/* Check if we're just updating the flags, and update them. */
3271 		if (e.phys == pa && e.virt == va && e.size == size) {
3272 			e.mas2 = (va & MAS2_EPN_MASK) | flags;
3273 			tlb1_write_entry(&e, index);
3274 			return (0);
3275 		}
3276 	}
3277 	if (index >= TLB1_ENTRIES) {
3278 		printf("tlb1_set_entry: TLB1 full!\n");
3279 		return (-1);
3280 	}
3281 
3282 	/* Convert size to TSIZE */
3283 	tsize = size2tsize(size);
3284 
3285 	tid = (TID_KERNEL << MAS1_TID_SHIFT) & MAS1_TID_MASK;
3286 	/* XXX TS is hard coded to 0 for now as we only use single address space */
3287 	ts = (0 << MAS1_TS_SHIFT) & MAS1_TS_MASK;
3288 
3289 	e.phys = pa;
3290 	e.virt = va;
3291 	e.size = size;
3292 	e.mas1 = MAS1_VALID | MAS1_IPROT | ts | tid;
3293 	e.mas1 |= ((tsize << MAS1_TSIZE_SHIFT) & MAS1_TSIZE_MASK);
3294 	e.mas2 = (va & MAS2_EPN_MASK) | flags;
3295 
3296 	/* Set supervisor RWX permission bits */
3297 	e.mas3 = (pa & MAS3_RPN) | MAS3_SR | MAS3_SW | MAS3_SX;
3298 	e.mas7 = (pa >> 32) & MAS7_RPN;
3299 
3300 	tlb1_write_entry(&e, index);
3301 
3302 	/*
3303 	 * XXX in general TLB1 updates should be propagated between CPUs,
3304 	 * since current design assumes to have the same TLB1 set-up on all
3305 	 * cores.
3306 	 */
3307 	return (0);
3308 }
3309 
3310 /*
3311  * Map in contiguous RAM region into the TLB1 using maximum of
3312  * KERNEL_REGION_MAX_TLB_ENTRIES entries.
3313  *
3314  * If necessary round up last entry size and return total size
3315  * used by all allocated entries.
3316  */
3317 vm_size_t
3318 tlb1_mapin_region(vm_offset_t va, vm_paddr_t pa, vm_size_t size)
3319 {
3320 	vm_size_t pgs[KERNEL_REGION_MAX_TLB_ENTRIES];
3321 	vm_size_t mapped, pgsz, base, mask;
3322 	int idx, nents;
3323 
3324 	/* Round up to the next 1M */
3325 	size = roundup2(size, 1 << 20);
3326 
3327 	mapped = 0;
3328 	idx = 0;
3329 	base = va;
3330 	pgsz = 64*1024*1024;
3331 	while (mapped < size) {
3332 		while (mapped < size && idx < KERNEL_REGION_MAX_TLB_ENTRIES) {
3333 			while (pgsz > (size - mapped))
3334 				pgsz >>= 2;
3335 			pgs[idx++] = pgsz;
3336 			mapped += pgsz;
3337 		}
3338 
3339 		/* We under-map. Correct for this. */
3340 		if (mapped < size) {
3341 			while (pgs[idx - 1] == pgsz) {
3342 				idx--;
3343 				mapped -= pgsz;
3344 			}
3345 			/* XXX We may increase beyond out starting point. */
3346 			pgsz <<= 2;
3347 			pgs[idx++] = pgsz;
3348 			mapped += pgsz;
3349 		}
3350 	}
3351 
3352 	nents = idx;
3353 	mask = pgs[0] - 1;
3354 	/* Align address to the boundary */
3355 	if (va & mask) {
3356 		va = (va + mask) & ~mask;
3357 		pa = (pa + mask) & ~mask;
3358 	}
3359 
3360 	for (idx = 0; idx < nents; idx++) {
3361 		pgsz = pgs[idx];
3362 		debugf("%u: %llx -> %x, size=%x\n", idx, pa, va, pgsz);
3363 		tlb1_set_entry(va, pa, pgsz,
3364 		    _TLB_ENTRY_SHARED | _TLB_ENTRY_MEM);
3365 		pa += pgsz;
3366 		va += pgsz;
3367 	}
3368 
3369 	mapped = (va - base);
3370 #ifdef __powerpc64__
3371 	printf("mapped size 0x%016lx (wasted space 0x%16lx)\n",
3372 #else
3373 	printf("mapped size 0x%08x (wasted space 0x%08x)\n",
3374 #endif
3375 	    mapped, mapped - size);
3376 	return (mapped);
3377 }
3378 
3379 /*
3380  * TLB1 initialization routine, to be called after the very first
3381  * assembler level setup done in locore.S.
3382  */
3383 void
3384 tlb1_init()
3385 {
3386 	uint32_t mas0, mas1, mas2, mas3, mas7;
3387 	uint32_t tsz;
3388 
3389 	tlb1_get_tlbconf();
3390 
3391 	mas0 = MAS0_TLBSEL(1) | MAS0_ESEL(0);
3392 	mtspr(SPR_MAS0, mas0);
3393 	__asm __volatile("isync; tlbre");
3394 
3395 	mas1 = mfspr(SPR_MAS1);
3396 	mas2 = mfspr(SPR_MAS2);
3397 	mas3 = mfspr(SPR_MAS3);
3398 	mas7 = mfspr(SPR_MAS7);
3399 
3400 	kernload =  ((vm_paddr_t)(mas7 & MAS7_RPN) << 32) |
3401 	    (mas3 & MAS3_RPN);
3402 
3403 	tsz = (mas1 & MAS1_TSIZE_MASK) >> MAS1_TSIZE_SHIFT;
3404 	kernsize += (tsz > 0) ? tsize2size(tsz) : 0;
3405 
3406 	/* Setup TLB miss defaults */
3407 	set_mas4_defaults();
3408 }
3409 
3410 /*
3411  * pmap_early_io_unmap() should be used in short conjunction with
3412  * pmap_early_io_map(), as in the following snippet:
3413  *
3414  * x = pmap_early_io_map(...);
3415  * <do something with x>
3416  * pmap_early_io_unmap(x, size);
3417  *
3418  * And avoiding more allocations between.
3419  */
3420 void
3421 pmap_early_io_unmap(vm_offset_t va, vm_size_t size)
3422 {
3423 	int i;
3424 	tlb_entry_t e;
3425 	vm_size_t isize;
3426 
3427 	size = roundup(size, PAGE_SIZE);
3428 	isize = size;
3429 	for (i = 0; i < TLB1_ENTRIES && size > 0; i++) {
3430 		tlb1_read_entry(&e, i);
3431 		if (!(e.mas1 & MAS1_VALID))
3432 			continue;
3433 		if (va <= e.virt && (va + isize) >= (e.virt + e.size)) {
3434 			size -= e.size;
3435 			e.mas1 &= ~MAS1_VALID;
3436 			tlb1_write_entry(&e, i);
3437 		}
3438 	}
3439 	if (tlb1_map_base == va + isize)
3440 		tlb1_map_base -= isize;
3441 }
3442 
3443 vm_offset_t
3444 pmap_early_io_map(vm_paddr_t pa, vm_size_t size)
3445 {
3446 	vm_paddr_t pa_base;
3447 	vm_offset_t va, sz;
3448 	int i;
3449 	tlb_entry_t e;
3450 
3451 	KASSERT(!pmap_bootstrapped, ("Do not use after PMAP is up!"));
3452 
3453 	for (i = 0; i < TLB1_ENTRIES; i++) {
3454 		tlb1_read_entry(&e, i);
3455 		if (!(e.mas1 & MAS1_VALID))
3456 			continue;
3457 		if (pa >= e.phys && (pa + size) <=
3458 		    (e.phys + e.size))
3459 			return (e.virt + (pa - e.phys));
3460 	}
3461 
3462 	pa_base = rounddown(pa, PAGE_SIZE);
3463 	size = roundup(size + (pa - pa_base), PAGE_SIZE);
3464 	tlb1_map_base = roundup2(tlb1_map_base, 1 << (ilog2(size) & ~1));
3465 	va = tlb1_map_base + (pa - pa_base);
3466 
3467 	do {
3468 		sz = 1 << (ilog2(size) & ~1);
3469 		tlb1_set_entry(tlb1_map_base, pa_base, sz,
3470 		    _TLB_ENTRY_SHARED | _TLB_ENTRY_IO);
3471 		size -= sz;
3472 		pa_base += sz;
3473 		tlb1_map_base += sz;
3474 	} while (size > 0);
3475 
3476 	return (va);
3477 }
3478 
3479 void
3480 pmap_track_page(pmap_t pmap, vm_offset_t va)
3481 {
3482 	vm_paddr_t pa;
3483 	vm_page_t page;
3484 	struct pv_entry *pve;
3485 
3486 	va = trunc_page(va);
3487 	pa = pmap_kextract(va);
3488 
3489 	rw_wlock(&pvh_global_lock);
3490 	PMAP_LOCK(pmap);
3491 	page = PHYS_TO_VM_PAGE(pa);
3492 
3493 	TAILQ_FOREACH(pve, &page->md.pv_list, pv_link) {
3494 		if ((pmap == pve->pv_pmap) && (va == pve->pv_va)) {
3495 			goto out;
3496 		}
3497 	}
3498 	page->md.pv_tracked = true;
3499 	pv_insert(pmap, va, page);
3500 out:
3501 	PMAP_UNLOCK(pmap);
3502 	rw_wunlock(&pvh_global_lock);
3503 }
3504 
3505 
3506 /*
3507  * Setup MAS4 defaults.
3508  * These values are loaded to MAS0-2 on a TLB miss.
3509  */
3510 static void
3511 set_mas4_defaults(void)
3512 {
3513 	uint32_t mas4;
3514 
3515 	/* Defaults: TLB0, PID0, TSIZED=4K */
3516 	mas4 = MAS4_TLBSELD0;
3517 	mas4 |= (TLB_SIZE_4K << MAS4_TSIZED_SHIFT) & MAS4_TSIZED_MASK;
3518 #ifdef SMP
3519 	mas4 |= MAS4_MD;
3520 #endif
3521 	mtspr(SPR_MAS4, mas4);
3522 	__asm __volatile("isync");
3523 }
3524 
3525 /*
3526  * Print out contents of the MAS registers for each TLB1 entry
3527  */
3528 void
3529 tlb1_print_tlbentries(void)
3530 {
3531 	uint32_t mas0, mas1, mas2, mas3, mas7;
3532 	int i;
3533 
3534 	debugf("TLB1 entries:\n");
3535 	for (i = 0; i < TLB1_ENTRIES; i++) {
3536 
3537 		mas0 = MAS0_TLBSEL(1) | MAS0_ESEL(i);
3538 		mtspr(SPR_MAS0, mas0);
3539 
3540 		__asm __volatile("isync; tlbre");
3541 
3542 		mas1 = mfspr(SPR_MAS1);
3543 		mas2 = mfspr(SPR_MAS2);
3544 		mas3 = mfspr(SPR_MAS3);
3545 		mas7 = mfspr(SPR_MAS7);
3546 
3547 		tlb_print_entry(i, mas1, mas2, mas3, mas7);
3548 	}
3549 }
3550 
3551 /*
3552  * Return 0 if the physical IO range is encompassed by one of the
3553  * the TLB1 entries, otherwise return related error code.
3554  */
3555 static int
3556 tlb1_iomapped(int i, vm_paddr_t pa, vm_size_t size, vm_offset_t *va)
3557 {
3558 	uint32_t prot;
3559 	vm_paddr_t pa_start;
3560 	vm_paddr_t pa_end;
3561 	unsigned int entry_tsize;
3562 	vm_size_t entry_size;
3563 	tlb_entry_t e;
3564 
3565 	*va = (vm_offset_t)NULL;
3566 
3567 	tlb1_read_entry(&e, i);
3568 	/* Skip invalid entries */
3569 	if (!(e.mas1 & MAS1_VALID))
3570 		return (EINVAL);
3571 
3572 	/*
3573 	 * The entry must be cache-inhibited, guarded, and r/w
3574 	 * so it can function as an i/o page
3575 	 */
3576 	prot = e.mas2 & (MAS2_I | MAS2_G);
3577 	if (prot != (MAS2_I | MAS2_G))
3578 		return (EPERM);
3579 
3580 	prot = e.mas3 & (MAS3_SR | MAS3_SW);
3581 	if (prot != (MAS3_SR | MAS3_SW))
3582 		return (EPERM);
3583 
3584 	/* The address should be within the entry range. */
3585 	entry_tsize = (e.mas1 & MAS1_TSIZE_MASK) >> MAS1_TSIZE_SHIFT;
3586 	KASSERT((entry_tsize), ("tlb1_iomapped: invalid entry tsize"));
3587 
3588 	entry_size = tsize2size(entry_tsize);
3589 	pa_start = (((vm_paddr_t)e.mas7 & MAS7_RPN) << 32) |
3590 	    (e.mas3 & MAS3_RPN);
3591 	pa_end = pa_start + entry_size;
3592 
3593 	if ((pa < pa_start) || ((pa + size) > pa_end))
3594 		return (ERANGE);
3595 
3596 	/* Return virtual address of this mapping. */
3597 	*va = (e.mas2 & MAS2_EPN_MASK) + (pa - pa_start);
3598 	return (0);
3599 }
3600 
3601 /*
3602  * Invalidate all TLB0 entries which match the given TID. Note this is
3603  * dedicated for cases when invalidations should NOT be propagated to other
3604  * CPUs.
3605  */
3606 static void
3607 tid_flush(tlbtid_t tid)
3608 {
3609 	register_t msr;
3610 	uint32_t mas0, mas1, mas2;
3611 	int entry, way;
3612 
3613 
3614 	/* Don't evict kernel translations */
3615 	if (tid == TID_KERNEL)
3616 		return;
3617 
3618 	msr = mfmsr();
3619 	__asm __volatile("wrteei 0");
3620 
3621 	for (way = 0; way < TLB0_WAYS; way++)
3622 		for (entry = 0; entry < TLB0_ENTRIES_PER_WAY; entry++) {
3623 
3624 			mas0 = MAS0_TLBSEL(0) | MAS0_ESEL(way);
3625 			mtspr(SPR_MAS0, mas0);
3626 			__asm __volatile("isync");
3627 
3628 			mas2 = entry << MAS2_TLB0_ENTRY_IDX_SHIFT;
3629 			mtspr(SPR_MAS2, mas2);
3630 
3631 			__asm __volatile("isync; tlbre");
3632 
3633 			mas1 = mfspr(SPR_MAS1);
3634 
3635 			if (!(mas1 & MAS1_VALID))
3636 				continue;
3637 			if (((mas1 & MAS1_TID_MASK) >> MAS1_TID_SHIFT) != tid)
3638 				continue;
3639 			mas1 &= ~MAS1_VALID;
3640 			mtspr(SPR_MAS1, mas1);
3641 			__asm __volatile("isync; tlbwe; isync; msync");
3642 		}
3643 	mtmsr(msr);
3644 }
3645