xref: /freebsd/sys/powerpc/booke/pmap.c (revision f05cddf9)
1 /*-
2  * Copyright (C) 2007-2009 Semihalf, Rafal Jaworowski <raj@semihalf.com>
3  * Copyright (C) 2006 Semihalf, Marian Balakowicz <m8@semihalf.com>
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN
18  * NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
19  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
20  * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
21  * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
22  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
23  * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
24  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  *
26  * Some hw specific parts of this pmap were derived or influenced
27  * by NetBSD's ibm4xx pmap module. More generic code is shared with
28  * a few other pmap modules from the FreeBSD tree.
29  */
30 
31  /*
32   * VM layout notes:
33   *
34   * Kernel and user threads run within one common virtual address space
35   * defined by AS=0.
36   *
37   * Virtual address space layout:
38   * -----------------------------
39   * 0x0000_0000 - 0xafff_ffff	: user process
40   * 0xb000_0000 - 0xbfff_ffff	: pmap_mapdev()-ed area (PCI/PCIE etc.)
41   * 0xc000_0000 - 0xc0ff_ffff	: kernel reserved
42   *   0xc000_0000 - data_end	: kernel code+data, env, metadata etc.
43   * 0xc100_0000 - 0xfeef_ffff	: KVA
44   *   0xc100_0000 - 0xc100_3fff : reserved for page zero/copy
45   *   0xc100_4000 - 0xc200_3fff : reserved for ptbl bufs
46   *   0xc200_4000 - 0xc200_8fff : guard page + kstack0
47   *   0xc200_9000 - 0xfeef_ffff	: actual free KVA space
48   * 0xfef0_0000 - 0xffff_ffff	: I/O devices region
49   */
50 
51 #include <sys/cdefs.h>
52 __FBSDID("$FreeBSD$");
53 
54 #include <sys/param.h>
55 #include <sys/malloc.h>
56 #include <sys/ktr.h>
57 #include <sys/proc.h>
58 #include <sys/user.h>
59 #include <sys/queue.h>
60 #include <sys/systm.h>
61 #include <sys/kernel.h>
62 #include <sys/linker.h>
63 #include <sys/msgbuf.h>
64 #include <sys/lock.h>
65 #include <sys/mutex.h>
66 #include <sys/rwlock.h>
67 #include <sys/sched.h>
68 #include <sys/smp.h>
69 #include <sys/vmmeter.h>
70 
71 #include <vm/vm.h>
72 #include <vm/vm_page.h>
73 #include <vm/vm_kern.h>
74 #include <vm/vm_pageout.h>
75 #include <vm/vm_extern.h>
76 #include <vm/vm_object.h>
77 #include <vm/vm_param.h>
78 #include <vm/vm_map.h>
79 #include <vm/vm_pager.h>
80 #include <vm/uma.h>
81 
82 #include <machine/cpu.h>
83 #include <machine/pcb.h>
84 #include <machine/platform.h>
85 
86 #include <machine/tlb.h>
87 #include <machine/spr.h>
88 #include <machine/md_var.h>
89 #include <machine/mmuvar.h>
90 #include <machine/pmap.h>
91 #include <machine/pte.h>
92 
93 #include "mmu_if.h"
94 
95 #ifdef  DEBUG
96 #define debugf(fmt, args...) printf(fmt, ##args)
97 #else
98 #define debugf(fmt, args...)
99 #endif
100 
101 #define TODO			panic("%s: not implemented", __func__);
102 
103 extern struct mtx sched_lock;
104 
105 extern int dumpsys_minidump;
106 
107 extern unsigned char _etext[];
108 extern unsigned char _end[];
109 
110 extern uint32_t *bootinfo;
111 
112 #ifdef SMP
113 extern uint32_t bp_ntlb1s;
114 #endif
115 
116 vm_paddr_t ccsrbar_pa;
117 vm_paddr_t kernload;
118 vm_offset_t kernstart;
119 vm_size_t kernsize;
120 
121 /* Message buffer and tables. */
122 static vm_offset_t data_start;
123 static vm_size_t data_end;
124 
125 /* Phys/avail memory regions. */
126 static struct mem_region *availmem_regions;
127 static int availmem_regions_sz;
128 static struct mem_region *physmem_regions;
129 static int physmem_regions_sz;
130 
131 /* Reserved KVA space and mutex for mmu_booke_zero_page. */
132 static vm_offset_t zero_page_va;
133 static struct mtx zero_page_mutex;
134 
135 static struct mtx tlbivax_mutex;
136 
137 /*
138  * Reserved KVA space for mmu_booke_zero_page_idle. This is used
139  * by idle thred only, no lock required.
140  */
141 static vm_offset_t zero_page_idle_va;
142 
143 /* Reserved KVA space and mutex for mmu_booke_copy_page. */
144 static vm_offset_t copy_page_src_va;
145 static vm_offset_t copy_page_dst_va;
146 static struct mtx copy_page_mutex;
147 
148 /**************************************************************************/
149 /* PMAP */
150 /**************************************************************************/
151 
152 static void mmu_booke_enter_locked(mmu_t, pmap_t, vm_offset_t, vm_page_t,
153     vm_prot_t, boolean_t);
154 
155 unsigned int kptbl_min;		/* Index of the first kernel ptbl. */
156 unsigned int kernel_ptbls;	/* Number of KVA ptbls. */
157 
158 /*
159  * If user pmap is processed with mmu_booke_remove and the resident count
160  * drops to 0, there are no more pages to remove, so we need not continue.
161  */
162 #define PMAP_REMOVE_DONE(pmap) \
163 	((pmap) != kernel_pmap && (pmap)->pm_stats.resident_count == 0)
164 
165 extern void tid_flush(tlbtid_t);
166 
167 /**************************************************************************/
168 /* TLB and TID handling */
169 /**************************************************************************/
170 
171 /* Translation ID busy table */
172 static volatile pmap_t tidbusy[MAXCPU][TID_MAX + 1];
173 
174 /*
175  * TLB0 capabilities (entry, way numbers etc.). These can vary between e500
176  * core revisions and should be read from h/w registers during early config.
177  */
178 uint32_t tlb0_entries;
179 uint32_t tlb0_ways;
180 uint32_t tlb0_entries_per_way;
181 
182 #define TLB0_ENTRIES		(tlb0_entries)
183 #define TLB0_WAYS		(tlb0_ways)
184 #define TLB0_ENTRIES_PER_WAY	(tlb0_entries_per_way)
185 
186 #define TLB1_ENTRIES 16
187 
188 /* In-ram copy of the TLB1 */
189 static tlb_entry_t tlb1[TLB1_ENTRIES];
190 
191 /* Next free entry in the TLB1 */
192 static unsigned int tlb1_idx;
193 
194 static tlbtid_t tid_alloc(struct pmap *);
195 
196 static void tlb_print_entry(int, uint32_t, uint32_t, uint32_t, uint32_t);
197 
198 static int tlb1_set_entry(vm_offset_t, vm_offset_t, vm_size_t, uint32_t);
199 static void tlb1_write_entry(unsigned int);
200 static int tlb1_iomapped(int, vm_paddr_t, vm_size_t, vm_offset_t *);
201 static vm_size_t tlb1_mapin_region(vm_offset_t, vm_paddr_t, vm_size_t);
202 
203 static vm_size_t tsize2size(unsigned int);
204 static unsigned int size2tsize(vm_size_t);
205 static unsigned int ilog2(unsigned int);
206 
207 static void set_mas4_defaults(void);
208 
209 static inline void tlb0_flush_entry(vm_offset_t);
210 static inline unsigned int tlb0_tableidx(vm_offset_t, unsigned int);
211 
212 /**************************************************************************/
213 /* Page table management */
214 /**************************************************************************/
215 
216 static struct rwlock_padalign pvh_global_lock;
217 
218 /* Data for the pv entry allocation mechanism */
219 static uma_zone_t pvzone;
220 static int pv_entry_count = 0, pv_entry_max = 0, pv_entry_high_water = 0;
221 
222 #define PV_ENTRY_ZONE_MIN	2048	/* min pv entries in uma zone */
223 
224 #ifndef PMAP_SHPGPERPROC
225 #define PMAP_SHPGPERPROC	200
226 #endif
227 
228 static void ptbl_init(void);
229 static struct ptbl_buf *ptbl_buf_alloc(void);
230 static void ptbl_buf_free(struct ptbl_buf *);
231 static void ptbl_free_pmap_ptbl(pmap_t, pte_t *);
232 
233 static pte_t *ptbl_alloc(mmu_t, pmap_t, unsigned int);
234 static void ptbl_free(mmu_t, pmap_t, unsigned int);
235 static void ptbl_hold(mmu_t, pmap_t, unsigned int);
236 static int ptbl_unhold(mmu_t, pmap_t, unsigned int);
237 
238 static vm_paddr_t pte_vatopa(mmu_t, pmap_t, vm_offset_t);
239 static pte_t *pte_find(mmu_t, pmap_t, vm_offset_t);
240 static void pte_enter(mmu_t, pmap_t, vm_page_t, vm_offset_t, uint32_t);
241 static int pte_remove(mmu_t, pmap_t, vm_offset_t, uint8_t);
242 
243 static pv_entry_t pv_alloc(void);
244 static void pv_free(pv_entry_t);
245 static void pv_insert(pmap_t, vm_offset_t, vm_page_t);
246 static void pv_remove(pmap_t, vm_offset_t, vm_page_t);
247 
248 /* Number of kva ptbl buffers, each covering one ptbl (PTBL_PAGES). */
249 #define PTBL_BUFS		(128 * 16)
250 
251 struct ptbl_buf {
252 	TAILQ_ENTRY(ptbl_buf) link;	/* list link */
253 	vm_offset_t kva;		/* va of mapping */
254 };
255 
256 /* ptbl free list and a lock used for access synchronization. */
257 static TAILQ_HEAD(, ptbl_buf) ptbl_buf_freelist;
258 static struct mtx ptbl_buf_freelist_lock;
259 
260 /* Base address of kva space allocated fot ptbl bufs. */
261 static vm_offset_t ptbl_buf_pool_vabase;
262 
263 /* Pointer to ptbl_buf structures. */
264 static struct ptbl_buf *ptbl_bufs;
265 
266 void pmap_bootstrap_ap(volatile uint32_t *);
267 
268 /*
269  * Kernel MMU interface
270  */
271 static void		mmu_booke_change_wiring(mmu_t, pmap_t, vm_offset_t, boolean_t);
272 static void		mmu_booke_clear_modify(mmu_t, vm_page_t);
273 static void		mmu_booke_clear_reference(mmu_t, vm_page_t);
274 static void		mmu_booke_copy(mmu_t, pmap_t, pmap_t, vm_offset_t,
275     vm_size_t, vm_offset_t);
276 static void		mmu_booke_copy_page(mmu_t, vm_page_t, vm_page_t);
277 static void		mmu_booke_copy_pages(mmu_t, vm_page_t *,
278     vm_offset_t, vm_page_t *, vm_offset_t, int);
279 static void		mmu_booke_enter(mmu_t, pmap_t, vm_offset_t, vm_page_t,
280     vm_prot_t, boolean_t);
281 static void		mmu_booke_enter_object(mmu_t, pmap_t, vm_offset_t, vm_offset_t,
282     vm_page_t, vm_prot_t);
283 static void		mmu_booke_enter_quick(mmu_t, pmap_t, vm_offset_t, vm_page_t,
284     vm_prot_t);
285 static vm_paddr_t	mmu_booke_extract(mmu_t, pmap_t, vm_offset_t);
286 static vm_page_t	mmu_booke_extract_and_hold(mmu_t, pmap_t, vm_offset_t,
287     vm_prot_t);
288 static void		mmu_booke_init(mmu_t);
289 static boolean_t	mmu_booke_is_modified(mmu_t, vm_page_t);
290 static boolean_t	mmu_booke_is_prefaultable(mmu_t, pmap_t, vm_offset_t);
291 static boolean_t	mmu_booke_is_referenced(mmu_t, vm_page_t);
292 static int		mmu_booke_ts_referenced(mmu_t, vm_page_t);
293 static vm_offset_t	mmu_booke_map(mmu_t, vm_offset_t *, vm_paddr_t, vm_paddr_t,
294     int);
295 static int		mmu_booke_mincore(mmu_t, pmap_t, vm_offset_t,
296     vm_paddr_t *);
297 static void		mmu_booke_object_init_pt(mmu_t, pmap_t, vm_offset_t,
298     vm_object_t, vm_pindex_t, vm_size_t);
299 static boolean_t	mmu_booke_page_exists_quick(mmu_t, pmap_t, vm_page_t);
300 static void		mmu_booke_page_init(mmu_t, vm_page_t);
301 static int		mmu_booke_page_wired_mappings(mmu_t, vm_page_t);
302 static void		mmu_booke_pinit(mmu_t, pmap_t);
303 static void		mmu_booke_pinit0(mmu_t, pmap_t);
304 static void		mmu_booke_protect(mmu_t, pmap_t, vm_offset_t, vm_offset_t,
305     vm_prot_t);
306 static void		mmu_booke_qenter(mmu_t, vm_offset_t, vm_page_t *, int);
307 static void		mmu_booke_qremove(mmu_t, vm_offset_t, int);
308 static void		mmu_booke_release(mmu_t, pmap_t);
309 static void		mmu_booke_remove(mmu_t, pmap_t, vm_offset_t, vm_offset_t);
310 static void		mmu_booke_remove_all(mmu_t, vm_page_t);
311 static void		mmu_booke_remove_write(mmu_t, vm_page_t);
312 static void		mmu_booke_zero_page(mmu_t, vm_page_t);
313 static void		mmu_booke_zero_page_area(mmu_t, vm_page_t, int, int);
314 static void		mmu_booke_zero_page_idle(mmu_t, vm_page_t);
315 static void		mmu_booke_activate(mmu_t, struct thread *);
316 static void		mmu_booke_deactivate(mmu_t, struct thread *);
317 static void		mmu_booke_bootstrap(mmu_t, vm_offset_t, vm_offset_t);
318 static void		*mmu_booke_mapdev(mmu_t, vm_paddr_t, vm_size_t);
319 static void		mmu_booke_unmapdev(mmu_t, vm_offset_t, vm_size_t);
320 static vm_paddr_t	mmu_booke_kextract(mmu_t, vm_offset_t);
321 static void		mmu_booke_kenter(mmu_t, vm_offset_t, vm_paddr_t);
322 static void		mmu_booke_kremove(mmu_t, vm_offset_t);
323 static boolean_t	mmu_booke_dev_direct_mapped(mmu_t, vm_paddr_t, vm_size_t);
324 static void		mmu_booke_sync_icache(mmu_t, pmap_t, vm_offset_t,
325     vm_size_t);
326 static vm_offset_t	mmu_booke_dumpsys_map(mmu_t, struct pmap_md *,
327     vm_size_t, vm_size_t *);
328 static void		mmu_booke_dumpsys_unmap(mmu_t, struct pmap_md *,
329     vm_size_t, vm_offset_t);
330 static struct pmap_md	*mmu_booke_scan_md(mmu_t, struct pmap_md *);
331 
332 static mmu_method_t mmu_booke_methods[] = {
333 	/* pmap dispatcher interface */
334 	MMUMETHOD(mmu_change_wiring,	mmu_booke_change_wiring),
335 	MMUMETHOD(mmu_clear_modify,	mmu_booke_clear_modify),
336 	MMUMETHOD(mmu_clear_reference,	mmu_booke_clear_reference),
337 	MMUMETHOD(mmu_copy,		mmu_booke_copy),
338 	MMUMETHOD(mmu_copy_page,	mmu_booke_copy_page),
339 	MMUMETHOD(mmu_copy_pages,	mmu_booke_copy_pages),
340 	MMUMETHOD(mmu_enter,		mmu_booke_enter),
341 	MMUMETHOD(mmu_enter_object,	mmu_booke_enter_object),
342 	MMUMETHOD(mmu_enter_quick,	mmu_booke_enter_quick),
343 	MMUMETHOD(mmu_extract,		mmu_booke_extract),
344 	MMUMETHOD(mmu_extract_and_hold,	mmu_booke_extract_and_hold),
345 	MMUMETHOD(mmu_init,		mmu_booke_init),
346 	MMUMETHOD(mmu_is_modified,	mmu_booke_is_modified),
347 	MMUMETHOD(mmu_is_prefaultable,	mmu_booke_is_prefaultable),
348 	MMUMETHOD(mmu_is_referenced,	mmu_booke_is_referenced),
349 	MMUMETHOD(mmu_ts_referenced,	mmu_booke_ts_referenced),
350 	MMUMETHOD(mmu_map,		mmu_booke_map),
351 	MMUMETHOD(mmu_mincore,		mmu_booke_mincore),
352 	MMUMETHOD(mmu_object_init_pt,	mmu_booke_object_init_pt),
353 	MMUMETHOD(mmu_page_exists_quick,mmu_booke_page_exists_quick),
354 	MMUMETHOD(mmu_page_init,	mmu_booke_page_init),
355 	MMUMETHOD(mmu_page_wired_mappings, mmu_booke_page_wired_mappings),
356 	MMUMETHOD(mmu_pinit,		mmu_booke_pinit),
357 	MMUMETHOD(mmu_pinit0,		mmu_booke_pinit0),
358 	MMUMETHOD(mmu_protect,		mmu_booke_protect),
359 	MMUMETHOD(mmu_qenter,		mmu_booke_qenter),
360 	MMUMETHOD(mmu_qremove,		mmu_booke_qremove),
361 	MMUMETHOD(mmu_release,		mmu_booke_release),
362 	MMUMETHOD(mmu_remove,		mmu_booke_remove),
363 	MMUMETHOD(mmu_remove_all,	mmu_booke_remove_all),
364 	MMUMETHOD(mmu_remove_write,	mmu_booke_remove_write),
365 	MMUMETHOD(mmu_sync_icache,	mmu_booke_sync_icache),
366 	MMUMETHOD(mmu_zero_page,	mmu_booke_zero_page),
367 	MMUMETHOD(mmu_zero_page_area,	mmu_booke_zero_page_area),
368 	MMUMETHOD(mmu_zero_page_idle,	mmu_booke_zero_page_idle),
369 	MMUMETHOD(mmu_activate,		mmu_booke_activate),
370 	MMUMETHOD(mmu_deactivate,	mmu_booke_deactivate),
371 
372 	/* Internal interfaces */
373 	MMUMETHOD(mmu_bootstrap,	mmu_booke_bootstrap),
374 	MMUMETHOD(mmu_dev_direct_mapped,mmu_booke_dev_direct_mapped),
375 	MMUMETHOD(mmu_mapdev,		mmu_booke_mapdev),
376 	MMUMETHOD(mmu_kenter,		mmu_booke_kenter),
377 	MMUMETHOD(mmu_kextract,		mmu_booke_kextract),
378 /*	MMUMETHOD(mmu_kremove,		mmu_booke_kremove),	*/
379 	MMUMETHOD(mmu_unmapdev,		mmu_booke_unmapdev),
380 
381 	/* dumpsys() support */
382 	MMUMETHOD(mmu_dumpsys_map,	mmu_booke_dumpsys_map),
383 	MMUMETHOD(mmu_dumpsys_unmap,	mmu_booke_dumpsys_unmap),
384 	MMUMETHOD(mmu_scan_md,		mmu_booke_scan_md),
385 
386 	{ 0, 0 }
387 };
388 
389 MMU_DEF(booke_mmu, MMU_TYPE_BOOKE, mmu_booke_methods, 0);
390 
391 static inline void
392 tlb_miss_lock(void)
393 {
394 #ifdef SMP
395 	struct pcpu *pc;
396 
397 	if (!smp_started)
398 		return;
399 
400 	STAILQ_FOREACH(pc, &cpuhead, pc_allcpu) {
401 		if (pc != pcpup) {
402 
403 			CTR3(KTR_PMAP, "%s: tlb miss LOCK of CPU=%d, "
404 			    "tlb_lock=%p", __func__, pc->pc_cpuid, pc->pc_booke_tlb_lock);
405 
406 			KASSERT((pc->pc_cpuid != PCPU_GET(cpuid)),
407 			    ("tlb_miss_lock: tried to lock self"));
408 
409 			tlb_lock(pc->pc_booke_tlb_lock);
410 
411 			CTR1(KTR_PMAP, "%s: locked", __func__);
412 		}
413 	}
414 #endif
415 }
416 
417 static inline void
418 tlb_miss_unlock(void)
419 {
420 #ifdef SMP
421 	struct pcpu *pc;
422 
423 	if (!smp_started)
424 		return;
425 
426 	STAILQ_FOREACH(pc, &cpuhead, pc_allcpu) {
427 		if (pc != pcpup) {
428 			CTR2(KTR_PMAP, "%s: tlb miss UNLOCK of CPU=%d",
429 			    __func__, pc->pc_cpuid);
430 
431 			tlb_unlock(pc->pc_booke_tlb_lock);
432 
433 			CTR1(KTR_PMAP, "%s: unlocked", __func__);
434 		}
435 	}
436 #endif
437 }
438 
439 /* Return number of entries in TLB0. */
440 static __inline void
441 tlb0_get_tlbconf(void)
442 {
443 	uint32_t tlb0_cfg;
444 
445 	tlb0_cfg = mfspr(SPR_TLB0CFG);
446 	tlb0_entries = tlb0_cfg & TLBCFG_NENTRY_MASK;
447 	tlb0_ways = (tlb0_cfg & TLBCFG_ASSOC_MASK) >> TLBCFG_ASSOC_SHIFT;
448 	tlb0_entries_per_way = tlb0_entries / tlb0_ways;
449 }
450 
451 /* Initialize pool of kva ptbl buffers. */
452 static void
453 ptbl_init(void)
454 {
455 	int i;
456 
457 	CTR3(KTR_PMAP, "%s: s (ptbl_bufs = 0x%08x size 0x%08x)", __func__,
458 	    (uint32_t)ptbl_bufs, sizeof(struct ptbl_buf) * PTBL_BUFS);
459 	CTR3(KTR_PMAP, "%s: s (ptbl_buf_pool_vabase = 0x%08x size = 0x%08x)",
460 	    __func__, ptbl_buf_pool_vabase, PTBL_BUFS * PTBL_PAGES * PAGE_SIZE);
461 
462 	mtx_init(&ptbl_buf_freelist_lock, "ptbl bufs lock", NULL, MTX_DEF);
463 	TAILQ_INIT(&ptbl_buf_freelist);
464 
465 	for (i = 0; i < PTBL_BUFS; i++) {
466 		ptbl_bufs[i].kva = ptbl_buf_pool_vabase + i * PTBL_PAGES * PAGE_SIZE;
467 		TAILQ_INSERT_TAIL(&ptbl_buf_freelist, &ptbl_bufs[i], link);
468 	}
469 }
470 
471 /* Get a ptbl_buf from the freelist. */
472 static struct ptbl_buf *
473 ptbl_buf_alloc(void)
474 {
475 	struct ptbl_buf *buf;
476 
477 	mtx_lock(&ptbl_buf_freelist_lock);
478 	buf = TAILQ_FIRST(&ptbl_buf_freelist);
479 	if (buf != NULL)
480 		TAILQ_REMOVE(&ptbl_buf_freelist, buf, link);
481 	mtx_unlock(&ptbl_buf_freelist_lock);
482 
483 	CTR2(KTR_PMAP, "%s: buf = %p", __func__, buf);
484 
485 	return (buf);
486 }
487 
488 /* Return ptbl buff to free pool. */
489 static void
490 ptbl_buf_free(struct ptbl_buf *buf)
491 {
492 
493 	CTR2(KTR_PMAP, "%s: buf = %p", __func__, buf);
494 
495 	mtx_lock(&ptbl_buf_freelist_lock);
496 	TAILQ_INSERT_TAIL(&ptbl_buf_freelist, buf, link);
497 	mtx_unlock(&ptbl_buf_freelist_lock);
498 }
499 
500 /*
501  * Search the list of allocated ptbl bufs and find on list of allocated ptbls
502  */
503 static void
504 ptbl_free_pmap_ptbl(pmap_t pmap, pte_t *ptbl)
505 {
506 	struct ptbl_buf *pbuf;
507 
508 	CTR2(KTR_PMAP, "%s: ptbl = %p", __func__, ptbl);
509 
510 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
511 
512 	TAILQ_FOREACH(pbuf, &pmap->pm_ptbl_list, link)
513 		if (pbuf->kva == (vm_offset_t)ptbl) {
514 			/* Remove from pmap ptbl buf list. */
515 			TAILQ_REMOVE(&pmap->pm_ptbl_list, pbuf, link);
516 
517 			/* Free corresponding ptbl buf. */
518 			ptbl_buf_free(pbuf);
519 			break;
520 		}
521 }
522 
523 /* Allocate page table. */
524 static pte_t *
525 ptbl_alloc(mmu_t mmu, pmap_t pmap, unsigned int pdir_idx)
526 {
527 	vm_page_t mtbl[PTBL_PAGES];
528 	vm_page_t m;
529 	struct ptbl_buf *pbuf;
530 	unsigned int pidx;
531 	pte_t *ptbl;
532 	int i;
533 
534 	CTR4(KTR_PMAP, "%s: pmap = %p su = %d pdir_idx = %d", __func__, pmap,
535 	    (pmap == kernel_pmap), pdir_idx);
536 
537 	KASSERT((pdir_idx <= (VM_MAXUSER_ADDRESS / PDIR_SIZE)),
538 	    ("ptbl_alloc: invalid pdir_idx"));
539 	KASSERT((pmap->pm_pdir[pdir_idx] == NULL),
540 	    ("pte_alloc: valid ptbl entry exists!"));
541 
542 	pbuf = ptbl_buf_alloc();
543 	if (pbuf == NULL)
544 		panic("pte_alloc: couldn't alloc kernel virtual memory");
545 
546 	ptbl = (pte_t *)pbuf->kva;
547 
548 	CTR2(KTR_PMAP, "%s: ptbl kva = %p", __func__, ptbl);
549 
550 	/* Allocate ptbl pages, this will sleep! */
551 	for (i = 0; i < PTBL_PAGES; i++) {
552 		pidx = (PTBL_PAGES * pdir_idx) + i;
553 		while ((m = vm_page_alloc(NULL, pidx,
554 		    VM_ALLOC_NOOBJ | VM_ALLOC_WIRED)) == NULL) {
555 
556 			PMAP_UNLOCK(pmap);
557 			rw_wunlock(&pvh_global_lock);
558 			VM_WAIT;
559 			rw_wlock(&pvh_global_lock);
560 			PMAP_LOCK(pmap);
561 		}
562 		mtbl[i] = m;
563 	}
564 
565 	/* Map allocated pages into kernel_pmap. */
566 	mmu_booke_qenter(mmu, (vm_offset_t)ptbl, mtbl, PTBL_PAGES);
567 
568 	/* Zero whole ptbl. */
569 	bzero((caddr_t)ptbl, PTBL_PAGES * PAGE_SIZE);
570 
571 	/* Add pbuf to the pmap ptbl bufs list. */
572 	TAILQ_INSERT_TAIL(&pmap->pm_ptbl_list, pbuf, link);
573 
574 	return (ptbl);
575 }
576 
577 /* Free ptbl pages and invalidate pdir entry. */
578 static void
579 ptbl_free(mmu_t mmu, pmap_t pmap, unsigned int pdir_idx)
580 {
581 	pte_t *ptbl;
582 	vm_paddr_t pa;
583 	vm_offset_t va;
584 	vm_page_t m;
585 	int i;
586 
587 	CTR4(KTR_PMAP, "%s: pmap = %p su = %d pdir_idx = %d", __func__, pmap,
588 	    (pmap == kernel_pmap), pdir_idx);
589 
590 	KASSERT((pdir_idx <= (VM_MAXUSER_ADDRESS / PDIR_SIZE)),
591 	    ("ptbl_free: invalid pdir_idx"));
592 
593 	ptbl = pmap->pm_pdir[pdir_idx];
594 
595 	CTR2(KTR_PMAP, "%s: ptbl = %p", __func__, ptbl);
596 
597 	KASSERT((ptbl != NULL), ("ptbl_free: null ptbl"));
598 
599 	/*
600 	 * Invalidate the pdir entry as soon as possible, so that other CPUs
601 	 * don't attempt to look up the page tables we are releasing.
602 	 */
603 	mtx_lock_spin(&tlbivax_mutex);
604 	tlb_miss_lock();
605 
606 	pmap->pm_pdir[pdir_idx] = NULL;
607 
608 	tlb_miss_unlock();
609 	mtx_unlock_spin(&tlbivax_mutex);
610 
611 	for (i = 0; i < PTBL_PAGES; i++) {
612 		va = ((vm_offset_t)ptbl + (i * PAGE_SIZE));
613 		pa = pte_vatopa(mmu, kernel_pmap, va);
614 		m = PHYS_TO_VM_PAGE(pa);
615 		vm_page_free_zero(m);
616 		atomic_subtract_int(&cnt.v_wire_count, 1);
617 		mmu_booke_kremove(mmu, va);
618 	}
619 
620 	ptbl_free_pmap_ptbl(pmap, ptbl);
621 }
622 
623 /*
624  * Decrement ptbl pages hold count and attempt to free ptbl pages.
625  * Called when removing pte entry from ptbl.
626  *
627  * Return 1 if ptbl pages were freed.
628  */
629 static int
630 ptbl_unhold(mmu_t mmu, pmap_t pmap, unsigned int pdir_idx)
631 {
632 	pte_t *ptbl;
633 	vm_paddr_t pa;
634 	vm_page_t m;
635 	int i;
636 
637 	CTR4(KTR_PMAP, "%s: pmap = %p su = %d pdir_idx = %d", __func__, pmap,
638 	    (pmap == kernel_pmap), pdir_idx);
639 
640 	KASSERT((pdir_idx <= (VM_MAXUSER_ADDRESS / PDIR_SIZE)),
641 	    ("ptbl_unhold: invalid pdir_idx"));
642 	KASSERT((pmap != kernel_pmap),
643 	    ("ptbl_unhold: unholding kernel ptbl!"));
644 
645 	ptbl = pmap->pm_pdir[pdir_idx];
646 
647 	//debugf("ptbl_unhold: ptbl = 0x%08x\n", (u_int32_t)ptbl);
648 	KASSERT(((vm_offset_t)ptbl >= VM_MIN_KERNEL_ADDRESS),
649 	    ("ptbl_unhold: non kva ptbl"));
650 
651 	/* decrement hold count */
652 	for (i = 0; i < PTBL_PAGES; i++) {
653 		pa = pte_vatopa(mmu, kernel_pmap,
654 		    (vm_offset_t)ptbl + (i * PAGE_SIZE));
655 		m = PHYS_TO_VM_PAGE(pa);
656 		m->wire_count--;
657 	}
658 
659 	/*
660 	 * Free ptbl pages if there are no pte etries in this ptbl.
661 	 * wire_count has the same value for all ptbl pages, so check the last
662 	 * page.
663 	 */
664 	if (m->wire_count == 0) {
665 		ptbl_free(mmu, pmap, pdir_idx);
666 
667 		//debugf("ptbl_unhold: e (freed ptbl)\n");
668 		return (1);
669 	}
670 
671 	return (0);
672 }
673 
674 /*
675  * Increment hold count for ptbl pages. This routine is used when a new pte
676  * entry is being inserted into the ptbl.
677  */
678 static void
679 ptbl_hold(mmu_t mmu, pmap_t pmap, unsigned int pdir_idx)
680 {
681 	vm_paddr_t pa;
682 	pte_t *ptbl;
683 	vm_page_t m;
684 	int i;
685 
686 	CTR3(KTR_PMAP, "%s: pmap = %p pdir_idx = %d", __func__, pmap,
687 	    pdir_idx);
688 
689 	KASSERT((pdir_idx <= (VM_MAXUSER_ADDRESS / PDIR_SIZE)),
690 	    ("ptbl_hold: invalid pdir_idx"));
691 	KASSERT((pmap != kernel_pmap),
692 	    ("ptbl_hold: holding kernel ptbl!"));
693 
694 	ptbl = pmap->pm_pdir[pdir_idx];
695 
696 	KASSERT((ptbl != NULL), ("ptbl_hold: null ptbl"));
697 
698 	for (i = 0; i < PTBL_PAGES; i++) {
699 		pa = pte_vatopa(mmu, kernel_pmap,
700 		    (vm_offset_t)ptbl + (i * PAGE_SIZE));
701 		m = PHYS_TO_VM_PAGE(pa);
702 		m->wire_count++;
703 	}
704 }
705 
706 /* Allocate pv_entry structure. */
707 pv_entry_t
708 pv_alloc(void)
709 {
710 	pv_entry_t pv;
711 
712 	pv_entry_count++;
713 	if (pv_entry_count > pv_entry_high_water)
714 		pagedaemon_wakeup();
715 	pv = uma_zalloc(pvzone, M_NOWAIT);
716 
717 	return (pv);
718 }
719 
720 /* Free pv_entry structure. */
721 static __inline void
722 pv_free(pv_entry_t pve)
723 {
724 
725 	pv_entry_count--;
726 	uma_zfree(pvzone, pve);
727 }
728 
729 
730 /* Allocate and initialize pv_entry structure. */
731 static void
732 pv_insert(pmap_t pmap, vm_offset_t va, vm_page_t m)
733 {
734 	pv_entry_t pve;
735 
736 	//int su = (pmap == kernel_pmap);
737 	//debugf("pv_insert: s (su = %d pmap = 0x%08x va = 0x%08x m = 0x%08x)\n", su,
738 	//	(u_int32_t)pmap, va, (u_int32_t)m);
739 
740 	pve = pv_alloc();
741 	if (pve == NULL)
742 		panic("pv_insert: no pv entries!");
743 
744 	pve->pv_pmap = pmap;
745 	pve->pv_va = va;
746 
747 	/* add to pv_list */
748 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
749 	rw_assert(&pvh_global_lock, RA_WLOCKED);
750 
751 	TAILQ_INSERT_TAIL(&m->md.pv_list, pve, pv_link);
752 
753 	//debugf("pv_insert: e\n");
754 }
755 
756 /* Destroy pv entry. */
757 static void
758 pv_remove(pmap_t pmap, vm_offset_t va, vm_page_t m)
759 {
760 	pv_entry_t pve;
761 
762 	//int su = (pmap == kernel_pmap);
763 	//debugf("pv_remove: s (su = %d pmap = 0x%08x va = 0x%08x)\n", su, (u_int32_t)pmap, va);
764 
765 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
766 	rw_assert(&pvh_global_lock, RA_WLOCKED);
767 
768 	/* find pv entry */
769 	TAILQ_FOREACH(pve, &m->md.pv_list, pv_link) {
770 		if ((pmap == pve->pv_pmap) && (va == pve->pv_va)) {
771 			/* remove from pv_list */
772 			TAILQ_REMOVE(&m->md.pv_list, pve, pv_link);
773 			if (TAILQ_EMPTY(&m->md.pv_list))
774 				vm_page_aflag_clear(m, PGA_WRITEABLE);
775 
776 			/* free pv entry struct */
777 			pv_free(pve);
778 			break;
779 		}
780 	}
781 
782 	//debugf("pv_remove: e\n");
783 }
784 
785 /*
786  * Clean pte entry, try to free page table page if requested.
787  *
788  * Return 1 if ptbl pages were freed, otherwise return 0.
789  */
790 static int
791 pte_remove(mmu_t mmu, pmap_t pmap, vm_offset_t va, uint8_t flags)
792 {
793 	unsigned int pdir_idx = PDIR_IDX(va);
794 	unsigned int ptbl_idx = PTBL_IDX(va);
795 	vm_page_t m;
796 	pte_t *ptbl;
797 	pte_t *pte;
798 
799 	//int su = (pmap == kernel_pmap);
800 	//debugf("pte_remove: s (su = %d pmap = 0x%08x va = 0x%08x flags = %d)\n",
801 	//		su, (u_int32_t)pmap, va, flags);
802 
803 	ptbl = pmap->pm_pdir[pdir_idx];
804 	KASSERT(ptbl, ("pte_remove: null ptbl"));
805 
806 	pte = &ptbl[ptbl_idx];
807 
808 	if (pte == NULL || !PTE_ISVALID(pte))
809 		return (0);
810 
811 	if (PTE_ISWIRED(pte))
812 		pmap->pm_stats.wired_count--;
813 
814 	/* Handle managed entry. */
815 	if (PTE_ISMANAGED(pte)) {
816 		/* Get vm_page_t for mapped pte. */
817 		m = PHYS_TO_VM_PAGE(PTE_PA(pte));
818 
819 		if (PTE_ISMODIFIED(pte))
820 			vm_page_dirty(m);
821 
822 		if (PTE_ISREFERENCED(pte))
823 			vm_page_aflag_set(m, PGA_REFERENCED);
824 
825 		pv_remove(pmap, va, m);
826 	}
827 
828 	mtx_lock_spin(&tlbivax_mutex);
829 	tlb_miss_lock();
830 
831 	tlb0_flush_entry(va);
832 	pte->flags = 0;
833 	pte->rpn = 0;
834 
835 	tlb_miss_unlock();
836 	mtx_unlock_spin(&tlbivax_mutex);
837 
838 	pmap->pm_stats.resident_count--;
839 
840 	if (flags & PTBL_UNHOLD) {
841 		//debugf("pte_remove: e (unhold)\n");
842 		return (ptbl_unhold(mmu, pmap, pdir_idx));
843 	}
844 
845 	//debugf("pte_remove: e\n");
846 	return (0);
847 }
848 
849 /*
850  * Insert PTE for a given page and virtual address.
851  */
852 static void
853 pte_enter(mmu_t mmu, pmap_t pmap, vm_page_t m, vm_offset_t va, uint32_t flags)
854 {
855 	unsigned int pdir_idx = PDIR_IDX(va);
856 	unsigned int ptbl_idx = PTBL_IDX(va);
857 	pte_t *ptbl, *pte;
858 
859 	CTR4(KTR_PMAP, "%s: su = %d pmap = %p va = %p", __func__,
860 	    pmap == kernel_pmap, pmap, va);
861 
862 	/* Get the page table pointer. */
863 	ptbl = pmap->pm_pdir[pdir_idx];
864 
865 	if (ptbl == NULL) {
866 		/* Allocate page table pages. */
867 		ptbl = ptbl_alloc(mmu, pmap, pdir_idx);
868 	} else {
869 		/*
870 		 * Check if there is valid mapping for requested
871 		 * va, if there is, remove it.
872 		 */
873 		pte = &pmap->pm_pdir[pdir_idx][ptbl_idx];
874 		if (PTE_ISVALID(pte)) {
875 			pte_remove(mmu, pmap, va, PTBL_HOLD);
876 		} else {
877 			/*
878 			 * pte is not used, increment hold count
879 			 * for ptbl pages.
880 			 */
881 			if (pmap != kernel_pmap)
882 				ptbl_hold(mmu, pmap, pdir_idx);
883 		}
884 	}
885 
886 	/*
887 	 * Insert pv_entry into pv_list for mapped page if part of managed
888 	 * memory.
889 	 */
890 	if ((m->oflags & VPO_UNMANAGED) == 0) {
891 		flags |= PTE_MANAGED;
892 
893 		/* Create and insert pv entry. */
894 		pv_insert(pmap, va, m);
895 	}
896 
897 	pmap->pm_stats.resident_count++;
898 
899 	mtx_lock_spin(&tlbivax_mutex);
900 	tlb_miss_lock();
901 
902 	tlb0_flush_entry(va);
903 	if (pmap->pm_pdir[pdir_idx] == NULL) {
904 		/*
905 		 * If we just allocated a new page table, hook it in
906 		 * the pdir.
907 		 */
908 		pmap->pm_pdir[pdir_idx] = ptbl;
909 	}
910 	pte = &(pmap->pm_pdir[pdir_idx][ptbl_idx]);
911 	pte->rpn = VM_PAGE_TO_PHYS(m) & ~PTE_PA_MASK;
912 	pte->flags |= (PTE_VALID | flags);
913 
914 	tlb_miss_unlock();
915 	mtx_unlock_spin(&tlbivax_mutex);
916 }
917 
918 /* Return the pa for the given pmap/va. */
919 static vm_paddr_t
920 pte_vatopa(mmu_t mmu, pmap_t pmap, vm_offset_t va)
921 {
922 	vm_paddr_t pa = 0;
923 	pte_t *pte;
924 
925 	pte = pte_find(mmu, pmap, va);
926 	if ((pte != NULL) && PTE_ISVALID(pte))
927 		pa = (PTE_PA(pte) | (va & PTE_PA_MASK));
928 	return (pa);
929 }
930 
931 /* Get a pointer to a PTE in a page table. */
932 static pte_t *
933 pte_find(mmu_t mmu, pmap_t pmap, vm_offset_t va)
934 {
935 	unsigned int pdir_idx = PDIR_IDX(va);
936 	unsigned int ptbl_idx = PTBL_IDX(va);
937 
938 	KASSERT((pmap != NULL), ("pte_find: invalid pmap"));
939 
940 	if (pmap->pm_pdir[pdir_idx])
941 		return (&(pmap->pm_pdir[pdir_idx][ptbl_idx]));
942 
943 	return (NULL);
944 }
945 
946 /**************************************************************************/
947 /* PMAP related */
948 /**************************************************************************/
949 
950 /*
951  * This is called during booke_init, before the system is really initialized.
952  */
953 static void
954 mmu_booke_bootstrap(mmu_t mmu, vm_offset_t start, vm_offset_t kernelend)
955 {
956 	vm_offset_t phys_kernelend;
957 	struct mem_region *mp, *mp1;
958 	int cnt, i, j;
959 	u_int s, e, sz;
960 	u_int phys_avail_count;
961 	vm_size_t physsz, hwphyssz, kstack0_sz;
962 	vm_offset_t kernel_pdir, kstack0, va;
963 	vm_paddr_t kstack0_phys;
964 	void *dpcpu;
965 	pte_t *pte;
966 
967 	debugf("mmu_booke_bootstrap: entered\n");
968 
969 	/* Initialize invalidation mutex */
970 	mtx_init(&tlbivax_mutex, "tlbivax", NULL, MTX_SPIN);
971 
972 	/* Read TLB0 size and associativity. */
973 	tlb0_get_tlbconf();
974 
975 	/*
976 	 * Align kernel start and end address (kernel image).
977 	 * Note that kernel end does not necessarily relate to kernsize.
978 	 * kernsize is the size of the kernel that is actually mapped.
979 	 * Also note that "start - 1" is deliberate. With SMP, the
980 	 * entry point is exactly a page from the actual load address.
981 	 * As such, trunc_page() has no effect and we're off by a page.
982 	 * Since we always have the ELF header between the load address
983 	 * and the entry point, we can safely subtract 1 to compensate.
984 	 */
985 	kernstart = trunc_page(start - 1);
986 	data_start = round_page(kernelend);
987 	data_end = data_start;
988 
989 	/*
990 	 * Addresses of preloaded modules (like file systems) use
991 	 * physical addresses. Make sure we relocate those into
992 	 * virtual addresses.
993 	 */
994 	preload_addr_relocate = kernstart - kernload;
995 
996 	/* Allocate the dynamic per-cpu area. */
997 	dpcpu = (void *)data_end;
998 	data_end += DPCPU_SIZE;
999 
1000 	/* Allocate space for the message buffer. */
1001 	msgbufp = (struct msgbuf *)data_end;
1002 	data_end += msgbufsize;
1003 	debugf(" msgbufp at 0x%08x end = 0x%08x\n", (uint32_t)msgbufp,
1004 	    data_end);
1005 
1006 	data_end = round_page(data_end);
1007 
1008 	/* Allocate space for ptbl_bufs. */
1009 	ptbl_bufs = (struct ptbl_buf *)data_end;
1010 	data_end += sizeof(struct ptbl_buf) * PTBL_BUFS;
1011 	debugf(" ptbl_bufs at 0x%08x end = 0x%08x\n", (uint32_t)ptbl_bufs,
1012 	    data_end);
1013 
1014 	data_end = round_page(data_end);
1015 
1016 	/* Allocate PTE tables for kernel KVA. */
1017 	kernel_pdir = data_end;
1018 	kernel_ptbls = (VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS +
1019 	    PDIR_SIZE - 1) / PDIR_SIZE;
1020 	data_end += kernel_ptbls * PTBL_PAGES * PAGE_SIZE;
1021 	debugf(" kernel ptbls: %d\n", kernel_ptbls);
1022 	debugf(" kernel pdir at 0x%08x end = 0x%08x\n", kernel_pdir, data_end);
1023 
1024 	debugf(" data_end: 0x%08x\n", data_end);
1025 	if (data_end - kernstart > kernsize) {
1026 		kernsize += tlb1_mapin_region(kernstart + kernsize,
1027 		    kernload + kernsize, (data_end - kernstart) - kernsize);
1028 	}
1029 	data_end = kernstart + kernsize;
1030 	debugf(" updated data_end: 0x%08x\n", data_end);
1031 
1032 	/*
1033 	 * Clear the structures - note we can only do it safely after the
1034 	 * possible additional TLB1 translations are in place (above) so that
1035 	 * all range up to the currently calculated 'data_end' is covered.
1036 	 */
1037 	dpcpu_init(dpcpu, 0);
1038 	memset((void *)ptbl_bufs, 0, sizeof(struct ptbl_buf) * PTBL_SIZE);
1039 	memset((void *)kernel_pdir, 0, kernel_ptbls * PTBL_PAGES * PAGE_SIZE);
1040 
1041 	/*******************************************************/
1042 	/* Set the start and end of kva. */
1043 	/*******************************************************/
1044 	virtual_avail = round_page(data_end);
1045 	virtual_end = VM_MAX_KERNEL_ADDRESS;
1046 
1047 	/* Allocate KVA space for page zero/copy operations. */
1048 	zero_page_va = virtual_avail;
1049 	virtual_avail += PAGE_SIZE;
1050 	zero_page_idle_va = virtual_avail;
1051 	virtual_avail += PAGE_SIZE;
1052 	copy_page_src_va = virtual_avail;
1053 	virtual_avail += PAGE_SIZE;
1054 	copy_page_dst_va = virtual_avail;
1055 	virtual_avail += PAGE_SIZE;
1056 	debugf("zero_page_va = 0x%08x\n", zero_page_va);
1057 	debugf("zero_page_idle_va = 0x%08x\n", zero_page_idle_va);
1058 	debugf("copy_page_src_va = 0x%08x\n", copy_page_src_va);
1059 	debugf("copy_page_dst_va = 0x%08x\n", copy_page_dst_va);
1060 
1061 	/* Initialize page zero/copy mutexes. */
1062 	mtx_init(&zero_page_mutex, "mmu_booke_zero_page", NULL, MTX_DEF);
1063 	mtx_init(&copy_page_mutex, "mmu_booke_copy_page", NULL, MTX_DEF);
1064 
1065 	/* Allocate KVA space for ptbl bufs. */
1066 	ptbl_buf_pool_vabase = virtual_avail;
1067 	virtual_avail += PTBL_BUFS * PTBL_PAGES * PAGE_SIZE;
1068 	debugf("ptbl_buf_pool_vabase = 0x%08x end = 0x%08x\n",
1069 	    ptbl_buf_pool_vabase, virtual_avail);
1070 
1071 	/* Calculate corresponding physical addresses for the kernel region. */
1072 	phys_kernelend = kernload + kernsize;
1073 	debugf("kernel image and allocated data:\n");
1074 	debugf(" kernload    = 0x%08x\n", kernload);
1075 	debugf(" kernstart   = 0x%08x\n", kernstart);
1076 	debugf(" kernsize    = 0x%08x\n", kernsize);
1077 
1078 	if (sizeof(phys_avail) / sizeof(phys_avail[0]) < availmem_regions_sz)
1079 		panic("mmu_booke_bootstrap: phys_avail too small");
1080 
1081 	/*
1082 	 * Remove kernel physical address range from avail regions list. Page
1083 	 * align all regions.  Non-page aligned memory isn't very interesting
1084 	 * to us.  Also, sort the entries for ascending addresses.
1085 	 */
1086 
1087 	/* Retrieve phys/avail mem regions */
1088 	mem_regions(&physmem_regions, &physmem_regions_sz,
1089 	    &availmem_regions, &availmem_regions_sz);
1090 	sz = 0;
1091 	cnt = availmem_regions_sz;
1092 	debugf("processing avail regions:\n");
1093 	for (mp = availmem_regions; mp->mr_size; mp++) {
1094 		s = mp->mr_start;
1095 		e = mp->mr_start + mp->mr_size;
1096 		debugf(" %08x-%08x -> ", s, e);
1097 		/* Check whether this region holds all of the kernel. */
1098 		if (s < kernload && e > phys_kernelend) {
1099 			availmem_regions[cnt].mr_start = phys_kernelend;
1100 			availmem_regions[cnt++].mr_size = e - phys_kernelend;
1101 			e = kernload;
1102 		}
1103 		/* Look whether this regions starts within the kernel. */
1104 		if (s >= kernload && s < phys_kernelend) {
1105 			if (e <= phys_kernelend)
1106 				goto empty;
1107 			s = phys_kernelend;
1108 		}
1109 		/* Now look whether this region ends within the kernel. */
1110 		if (e > kernload && e <= phys_kernelend) {
1111 			if (s >= kernload)
1112 				goto empty;
1113 			e = kernload;
1114 		}
1115 		/* Now page align the start and size of the region. */
1116 		s = round_page(s);
1117 		e = trunc_page(e);
1118 		if (e < s)
1119 			e = s;
1120 		sz = e - s;
1121 		debugf("%08x-%08x = %x\n", s, e, sz);
1122 
1123 		/* Check whether some memory is left here. */
1124 		if (sz == 0) {
1125 		empty:
1126 			memmove(mp, mp + 1,
1127 			    (cnt - (mp - availmem_regions)) * sizeof(*mp));
1128 			cnt--;
1129 			mp--;
1130 			continue;
1131 		}
1132 
1133 		/* Do an insertion sort. */
1134 		for (mp1 = availmem_regions; mp1 < mp; mp1++)
1135 			if (s < mp1->mr_start)
1136 				break;
1137 		if (mp1 < mp) {
1138 			memmove(mp1 + 1, mp1, (char *)mp - (char *)mp1);
1139 			mp1->mr_start = s;
1140 			mp1->mr_size = sz;
1141 		} else {
1142 			mp->mr_start = s;
1143 			mp->mr_size = sz;
1144 		}
1145 	}
1146 	availmem_regions_sz = cnt;
1147 
1148 	/*******************************************************/
1149 	/* Steal physical memory for kernel stack from the end */
1150 	/* of the first avail region                           */
1151 	/*******************************************************/
1152 	kstack0_sz = KSTACK_PAGES * PAGE_SIZE;
1153 	kstack0_phys = availmem_regions[0].mr_start +
1154 	    availmem_regions[0].mr_size;
1155 	kstack0_phys -= kstack0_sz;
1156 	availmem_regions[0].mr_size -= kstack0_sz;
1157 
1158 	/*******************************************************/
1159 	/* Fill in phys_avail table, based on availmem_regions */
1160 	/*******************************************************/
1161 	phys_avail_count = 0;
1162 	physsz = 0;
1163 	hwphyssz = 0;
1164 	TUNABLE_ULONG_FETCH("hw.physmem", (u_long *) &hwphyssz);
1165 
1166 	debugf("fill in phys_avail:\n");
1167 	for (i = 0, j = 0; i < availmem_regions_sz; i++, j += 2) {
1168 
1169 		debugf(" region: 0x%08x - 0x%08x (0x%08x)\n",
1170 		    availmem_regions[i].mr_start,
1171 		    availmem_regions[i].mr_start +
1172 		        availmem_regions[i].mr_size,
1173 		    availmem_regions[i].mr_size);
1174 
1175 		if (hwphyssz != 0 &&
1176 		    (physsz + availmem_regions[i].mr_size) >= hwphyssz) {
1177 			debugf(" hw.physmem adjust\n");
1178 			if (physsz < hwphyssz) {
1179 				phys_avail[j] = availmem_regions[i].mr_start;
1180 				phys_avail[j + 1] =
1181 				    availmem_regions[i].mr_start +
1182 				    hwphyssz - physsz;
1183 				physsz = hwphyssz;
1184 				phys_avail_count++;
1185 			}
1186 			break;
1187 		}
1188 
1189 		phys_avail[j] = availmem_regions[i].mr_start;
1190 		phys_avail[j + 1] = availmem_regions[i].mr_start +
1191 		    availmem_regions[i].mr_size;
1192 		phys_avail_count++;
1193 		physsz += availmem_regions[i].mr_size;
1194 	}
1195 	physmem = btoc(physsz);
1196 
1197 	/* Calculate the last available physical address. */
1198 	for (i = 0; phys_avail[i + 2] != 0; i += 2)
1199 		;
1200 	Maxmem = powerpc_btop(phys_avail[i + 1]);
1201 
1202 	debugf("Maxmem = 0x%08lx\n", Maxmem);
1203 	debugf("phys_avail_count = %d\n", phys_avail_count);
1204 	debugf("physsz = 0x%08x physmem = %ld (0x%08lx)\n", physsz, physmem,
1205 	    physmem);
1206 
1207 	/*******************************************************/
1208 	/* Initialize (statically allocated) kernel pmap. */
1209 	/*******************************************************/
1210 	PMAP_LOCK_INIT(kernel_pmap);
1211 	kptbl_min = VM_MIN_KERNEL_ADDRESS / PDIR_SIZE;
1212 
1213 	debugf("kernel_pmap = 0x%08x\n", (uint32_t)kernel_pmap);
1214 	debugf("kptbl_min = %d, kernel_ptbls = %d\n", kptbl_min, kernel_ptbls);
1215 	debugf("kernel pdir range: 0x%08x - 0x%08x\n",
1216 	    kptbl_min * PDIR_SIZE, (kptbl_min + kernel_ptbls) * PDIR_SIZE - 1);
1217 
1218 	/* Initialize kernel pdir */
1219 	for (i = 0; i < kernel_ptbls; i++)
1220 		kernel_pmap->pm_pdir[kptbl_min + i] =
1221 		    (pte_t *)(kernel_pdir + (i * PAGE_SIZE * PTBL_PAGES));
1222 
1223 	for (i = 0; i < MAXCPU; i++) {
1224 		kernel_pmap->pm_tid[i] = TID_KERNEL;
1225 
1226 		/* Initialize each CPU's tidbusy entry 0 with kernel_pmap */
1227 		tidbusy[i][0] = kernel_pmap;
1228 	}
1229 
1230 	/*
1231 	 * Fill in PTEs covering kernel code and data. They are not required
1232 	 * for address translation, as this area is covered by static TLB1
1233 	 * entries, but for pte_vatopa() to work correctly with kernel area
1234 	 * addresses.
1235 	 */
1236 	for (va = kernstart; va < data_end; va += PAGE_SIZE) {
1237 		pte = &(kernel_pmap->pm_pdir[PDIR_IDX(va)][PTBL_IDX(va)]);
1238 		pte->rpn = kernload + (va - kernstart);
1239 		pte->flags = PTE_M | PTE_SR | PTE_SW | PTE_SX | PTE_WIRED |
1240 		    PTE_VALID;
1241 	}
1242 	/* Mark kernel_pmap active on all CPUs */
1243 	CPU_FILL(&kernel_pmap->pm_active);
1244 
1245  	/*
1246 	 * Initialize the global pv list lock.
1247 	 */
1248 	rw_init(&pvh_global_lock, "pmap pv global");
1249 
1250 	/*******************************************************/
1251 	/* Final setup */
1252 	/*******************************************************/
1253 
1254 	/* Enter kstack0 into kernel map, provide guard page */
1255 	kstack0 = virtual_avail + KSTACK_GUARD_PAGES * PAGE_SIZE;
1256 	thread0.td_kstack = kstack0;
1257 	thread0.td_kstack_pages = KSTACK_PAGES;
1258 
1259 	debugf("kstack_sz = 0x%08x\n", kstack0_sz);
1260 	debugf("kstack0_phys at 0x%08x - 0x%08x\n",
1261 	    kstack0_phys, kstack0_phys + kstack0_sz);
1262 	debugf("kstack0 at 0x%08x - 0x%08x\n", kstack0, kstack0 + kstack0_sz);
1263 
1264 	virtual_avail += KSTACK_GUARD_PAGES * PAGE_SIZE + kstack0_sz;
1265 	for (i = 0; i < KSTACK_PAGES; i++) {
1266 		mmu_booke_kenter(mmu, kstack0, kstack0_phys);
1267 		kstack0 += PAGE_SIZE;
1268 		kstack0_phys += PAGE_SIZE;
1269 	}
1270 
1271 	debugf("virtual_avail = %08x\n", virtual_avail);
1272 	debugf("virtual_end   = %08x\n", virtual_end);
1273 
1274 	debugf("mmu_booke_bootstrap: exit\n");
1275 }
1276 
1277 void
1278 pmap_bootstrap_ap(volatile uint32_t *trcp __unused)
1279 {
1280 	int i;
1281 
1282 	/*
1283 	 * Finish TLB1 configuration: the BSP already set up its TLB1 and we
1284 	 * have the snapshot of its contents in the s/w tlb1[] table, so use
1285 	 * these values directly to (re)program AP's TLB1 hardware.
1286 	 */
1287 	for (i = bp_ntlb1s; i < tlb1_idx; i++) {
1288 		/* Skip invalid entries */
1289 		if (!(tlb1[i].mas1 & MAS1_VALID))
1290 			continue;
1291 
1292 		tlb1_write_entry(i);
1293 	}
1294 
1295 	set_mas4_defaults();
1296 }
1297 
1298 /*
1299  * Get the physical page address for the given pmap/virtual address.
1300  */
1301 static vm_paddr_t
1302 mmu_booke_extract(mmu_t mmu, pmap_t pmap, vm_offset_t va)
1303 {
1304 	vm_paddr_t pa;
1305 
1306 	PMAP_LOCK(pmap);
1307 	pa = pte_vatopa(mmu, pmap, va);
1308 	PMAP_UNLOCK(pmap);
1309 
1310 	return (pa);
1311 }
1312 
1313 /*
1314  * Extract the physical page address associated with the given
1315  * kernel virtual address.
1316  */
1317 static vm_paddr_t
1318 mmu_booke_kextract(mmu_t mmu, vm_offset_t va)
1319 {
1320 
1321 	return (pte_vatopa(mmu, kernel_pmap, va));
1322 }
1323 
1324 /*
1325  * Initialize the pmap module.
1326  * Called by vm_init, to initialize any structures that the pmap
1327  * system needs to map virtual memory.
1328  */
1329 static void
1330 mmu_booke_init(mmu_t mmu)
1331 {
1332 	int shpgperproc = PMAP_SHPGPERPROC;
1333 
1334 	/*
1335 	 * Initialize the address space (zone) for the pv entries.  Set a
1336 	 * high water mark so that the system can recover from excessive
1337 	 * numbers of pv entries.
1338 	 */
1339 	pvzone = uma_zcreate("PV ENTRY", sizeof(struct pv_entry), NULL, NULL,
1340 	    NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM | UMA_ZONE_NOFREE);
1341 
1342 	TUNABLE_INT_FETCH("vm.pmap.shpgperproc", &shpgperproc);
1343 	pv_entry_max = shpgperproc * maxproc + cnt.v_page_count;
1344 
1345 	TUNABLE_INT_FETCH("vm.pmap.pv_entries", &pv_entry_max);
1346 	pv_entry_high_water = 9 * (pv_entry_max / 10);
1347 
1348 	uma_zone_reserve_kva(pvzone, pv_entry_max);
1349 
1350 	/* Pre-fill pvzone with initial number of pv entries. */
1351 	uma_prealloc(pvzone, PV_ENTRY_ZONE_MIN);
1352 
1353 	/* Initialize ptbl allocation. */
1354 	ptbl_init();
1355 }
1356 
1357 /*
1358  * Map a list of wired pages into kernel virtual address space.  This is
1359  * intended for temporary mappings which do not need page modification or
1360  * references recorded.  Existing mappings in the region are overwritten.
1361  */
1362 static void
1363 mmu_booke_qenter(mmu_t mmu, vm_offset_t sva, vm_page_t *m, int count)
1364 {
1365 	vm_offset_t va;
1366 
1367 	va = sva;
1368 	while (count-- > 0) {
1369 		mmu_booke_kenter(mmu, va, VM_PAGE_TO_PHYS(*m));
1370 		va += PAGE_SIZE;
1371 		m++;
1372 	}
1373 }
1374 
1375 /*
1376  * Remove page mappings from kernel virtual address space.  Intended for
1377  * temporary mappings entered by mmu_booke_qenter.
1378  */
1379 static void
1380 mmu_booke_qremove(mmu_t mmu, vm_offset_t sva, int count)
1381 {
1382 	vm_offset_t va;
1383 
1384 	va = sva;
1385 	while (count-- > 0) {
1386 		mmu_booke_kremove(mmu, va);
1387 		va += PAGE_SIZE;
1388 	}
1389 }
1390 
1391 /*
1392  * Map a wired page into kernel virtual address space.
1393  */
1394 static void
1395 mmu_booke_kenter(mmu_t mmu, vm_offset_t va, vm_paddr_t pa)
1396 {
1397 	unsigned int pdir_idx = PDIR_IDX(va);
1398 	unsigned int ptbl_idx = PTBL_IDX(va);
1399 	uint32_t flags;
1400 	pte_t *pte;
1401 
1402 	KASSERT(((va >= VM_MIN_KERNEL_ADDRESS) &&
1403 	    (va <= VM_MAX_KERNEL_ADDRESS)), ("mmu_booke_kenter: invalid va"));
1404 
1405 	flags = PTE_M | PTE_SR | PTE_SW | PTE_SX | PTE_WIRED | PTE_VALID;
1406 
1407 	pte = &(kernel_pmap->pm_pdir[pdir_idx][ptbl_idx]);
1408 
1409 	mtx_lock_spin(&tlbivax_mutex);
1410 	tlb_miss_lock();
1411 
1412 	if (PTE_ISVALID(pte)) {
1413 
1414 		CTR1(KTR_PMAP, "%s: replacing entry!", __func__);
1415 
1416 		/* Flush entry from TLB0 */
1417 		tlb0_flush_entry(va);
1418 	}
1419 
1420 	pte->rpn = pa & ~PTE_PA_MASK;
1421 	pte->flags = flags;
1422 
1423 	//debugf("mmu_booke_kenter: pdir_idx = %d ptbl_idx = %d va=0x%08x "
1424 	//		"pa=0x%08x rpn=0x%08x flags=0x%08x\n",
1425 	//		pdir_idx, ptbl_idx, va, pa, pte->rpn, pte->flags);
1426 
1427 	/* Flush the real memory from the instruction cache. */
1428 	if ((flags & (PTE_I | PTE_G)) == 0) {
1429 		__syncicache((void *)va, PAGE_SIZE);
1430 	}
1431 
1432 	tlb_miss_unlock();
1433 	mtx_unlock_spin(&tlbivax_mutex);
1434 }
1435 
1436 /*
1437  * Remove a page from kernel page table.
1438  */
1439 static void
1440 mmu_booke_kremove(mmu_t mmu, vm_offset_t va)
1441 {
1442 	unsigned int pdir_idx = PDIR_IDX(va);
1443 	unsigned int ptbl_idx = PTBL_IDX(va);
1444 	pte_t *pte;
1445 
1446 //	CTR2(KTR_PMAP,("%s: s (va = 0x%08x)\n", __func__, va));
1447 
1448 	KASSERT(((va >= VM_MIN_KERNEL_ADDRESS) &&
1449 	    (va <= VM_MAX_KERNEL_ADDRESS)),
1450 	    ("mmu_booke_kremove: invalid va"));
1451 
1452 	pte = &(kernel_pmap->pm_pdir[pdir_idx][ptbl_idx]);
1453 
1454 	if (!PTE_ISVALID(pte)) {
1455 
1456 		CTR1(KTR_PMAP, "%s: invalid pte", __func__);
1457 
1458 		return;
1459 	}
1460 
1461 	mtx_lock_spin(&tlbivax_mutex);
1462 	tlb_miss_lock();
1463 
1464 	/* Invalidate entry in TLB0, update PTE. */
1465 	tlb0_flush_entry(va);
1466 	pte->flags = 0;
1467 	pte->rpn = 0;
1468 
1469 	tlb_miss_unlock();
1470 	mtx_unlock_spin(&tlbivax_mutex);
1471 }
1472 
1473 /*
1474  * Initialize pmap associated with process 0.
1475  */
1476 static void
1477 mmu_booke_pinit0(mmu_t mmu, pmap_t pmap)
1478 {
1479 
1480 	mmu_booke_pinit(mmu, pmap);
1481 	PCPU_SET(curpmap, pmap);
1482 }
1483 
1484 /*
1485  * Initialize a preallocated and zeroed pmap structure,
1486  * such as one in a vmspace structure.
1487  */
1488 static void
1489 mmu_booke_pinit(mmu_t mmu, pmap_t pmap)
1490 {
1491 	int i;
1492 
1493 	CTR4(KTR_PMAP, "%s: pmap = %p, proc %d '%s'", __func__, pmap,
1494 	    curthread->td_proc->p_pid, curthread->td_proc->p_comm);
1495 
1496 	KASSERT((pmap != kernel_pmap), ("pmap_pinit: initializing kernel_pmap"));
1497 
1498 	PMAP_LOCK_INIT(pmap);
1499 	for (i = 0; i < MAXCPU; i++)
1500 		pmap->pm_tid[i] = TID_NONE;
1501 	CPU_ZERO(&kernel_pmap->pm_active);
1502 	bzero(&pmap->pm_stats, sizeof(pmap->pm_stats));
1503 	bzero(&pmap->pm_pdir, sizeof(pte_t *) * PDIR_NENTRIES);
1504 	TAILQ_INIT(&pmap->pm_ptbl_list);
1505 }
1506 
1507 /*
1508  * Release any resources held by the given physical map.
1509  * Called when a pmap initialized by mmu_booke_pinit is being released.
1510  * Should only be called if the map contains no valid mappings.
1511  */
1512 static void
1513 mmu_booke_release(mmu_t mmu, pmap_t pmap)
1514 {
1515 
1516 	KASSERT(pmap->pm_stats.resident_count == 0,
1517 	    ("pmap_release: pmap resident count %ld != 0",
1518 	    pmap->pm_stats.resident_count));
1519 
1520 	PMAP_LOCK_DESTROY(pmap);
1521 }
1522 
1523 /*
1524  * Insert the given physical page at the specified virtual address in the
1525  * target physical map with the protection requested. If specified the page
1526  * will be wired down.
1527  */
1528 static void
1529 mmu_booke_enter(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_page_t m,
1530     vm_prot_t prot, boolean_t wired)
1531 {
1532 
1533 	rw_wlock(&pvh_global_lock);
1534 	PMAP_LOCK(pmap);
1535 	mmu_booke_enter_locked(mmu, pmap, va, m, prot, wired);
1536 	rw_wunlock(&pvh_global_lock);
1537 	PMAP_UNLOCK(pmap);
1538 }
1539 
1540 static void
1541 mmu_booke_enter_locked(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_page_t m,
1542     vm_prot_t prot, boolean_t wired)
1543 {
1544 	pte_t *pte;
1545 	vm_paddr_t pa;
1546 	uint32_t flags;
1547 	int su, sync;
1548 
1549 	pa = VM_PAGE_TO_PHYS(m);
1550 	su = (pmap == kernel_pmap);
1551 	sync = 0;
1552 
1553 	//debugf("mmu_booke_enter_locked: s (pmap=0x%08x su=%d tid=%d m=0x%08x va=0x%08x "
1554 	//		"pa=0x%08x prot=0x%08x wired=%d)\n",
1555 	//		(u_int32_t)pmap, su, pmap->pm_tid,
1556 	//		(u_int32_t)m, va, pa, prot, wired);
1557 
1558 	if (su) {
1559 		KASSERT(((va >= virtual_avail) &&
1560 		    (va <= VM_MAX_KERNEL_ADDRESS)),
1561 		    ("mmu_booke_enter_locked: kernel pmap, non kernel va"));
1562 	} else {
1563 		KASSERT((va <= VM_MAXUSER_ADDRESS),
1564 		    ("mmu_booke_enter_locked: user pmap, non user va"));
1565 	}
1566 	if ((m->oflags & (VPO_UNMANAGED | VPO_BUSY)) == 0)
1567 		VM_OBJECT_ASSERT_LOCKED(m->object);
1568 
1569 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1570 
1571 	/*
1572 	 * If there is an existing mapping, and the physical address has not
1573 	 * changed, must be protection or wiring change.
1574 	 */
1575 	if (((pte = pte_find(mmu, pmap, va)) != NULL) &&
1576 	    (PTE_ISVALID(pte)) && (PTE_PA(pte) == pa)) {
1577 
1578 		/*
1579 		 * Before actually updating pte->flags we calculate and
1580 		 * prepare its new value in a helper var.
1581 		 */
1582 		flags = pte->flags;
1583 		flags &= ~(PTE_UW | PTE_UX | PTE_SW | PTE_SX | PTE_MODIFIED);
1584 
1585 		/* Wiring change, just update stats. */
1586 		if (wired) {
1587 			if (!PTE_ISWIRED(pte)) {
1588 				flags |= PTE_WIRED;
1589 				pmap->pm_stats.wired_count++;
1590 			}
1591 		} else {
1592 			if (PTE_ISWIRED(pte)) {
1593 				flags &= ~PTE_WIRED;
1594 				pmap->pm_stats.wired_count--;
1595 			}
1596 		}
1597 
1598 		if (prot & VM_PROT_WRITE) {
1599 			/* Add write permissions. */
1600 			flags |= PTE_SW;
1601 			if (!su)
1602 				flags |= PTE_UW;
1603 
1604 			if ((flags & PTE_MANAGED) != 0)
1605 				vm_page_aflag_set(m, PGA_WRITEABLE);
1606 		} else {
1607 			/* Handle modified pages, sense modify status. */
1608 
1609 			/*
1610 			 * The PTE_MODIFIED flag could be set by underlying
1611 			 * TLB misses since we last read it (above), possibly
1612 			 * other CPUs could update it so we check in the PTE
1613 			 * directly rather than rely on that saved local flags
1614 			 * copy.
1615 			 */
1616 			if (PTE_ISMODIFIED(pte))
1617 				vm_page_dirty(m);
1618 		}
1619 
1620 		if (prot & VM_PROT_EXECUTE) {
1621 			flags |= PTE_SX;
1622 			if (!su)
1623 				flags |= PTE_UX;
1624 
1625 			/*
1626 			 * Check existing flags for execute permissions: if we
1627 			 * are turning execute permissions on, icache should
1628 			 * be flushed.
1629 			 */
1630 			if ((pte->flags & (PTE_UX | PTE_SX)) == 0)
1631 				sync++;
1632 		}
1633 
1634 		flags &= ~PTE_REFERENCED;
1635 
1636 		/*
1637 		 * The new flags value is all calculated -- only now actually
1638 		 * update the PTE.
1639 		 */
1640 		mtx_lock_spin(&tlbivax_mutex);
1641 		tlb_miss_lock();
1642 
1643 		tlb0_flush_entry(va);
1644 		pte->flags = flags;
1645 
1646 		tlb_miss_unlock();
1647 		mtx_unlock_spin(&tlbivax_mutex);
1648 
1649 	} else {
1650 		/*
1651 		 * If there is an existing mapping, but it's for a different
1652 		 * physical address, pte_enter() will delete the old mapping.
1653 		 */
1654 		//if ((pte != NULL) && PTE_ISVALID(pte))
1655 		//	debugf("mmu_booke_enter_locked: replace\n");
1656 		//else
1657 		//	debugf("mmu_booke_enter_locked: new\n");
1658 
1659 		/* Now set up the flags and install the new mapping. */
1660 		flags = (PTE_SR | PTE_VALID);
1661 		flags |= PTE_M;
1662 
1663 		if (!su)
1664 			flags |= PTE_UR;
1665 
1666 		if (prot & VM_PROT_WRITE) {
1667 			flags |= PTE_SW;
1668 			if (!su)
1669 				flags |= PTE_UW;
1670 
1671 			if ((m->oflags & VPO_UNMANAGED) == 0)
1672 				vm_page_aflag_set(m, PGA_WRITEABLE);
1673 		}
1674 
1675 		if (prot & VM_PROT_EXECUTE) {
1676 			flags |= PTE_SX;
1677 			if (!su)
1678 				flags |= PTE_UX;
1679 		}
1680 
1681 		/* If its wired update stats. */
1682 		if (wired) {
1683 			pmap->pm_stats.wired_count++;
1684 			flags |= PTE_WIRED;
1685 		}
1686 
1687 		pte_enter(mmu, pmap, m, va, flags);
1688 
1689 		/* Flush the real memory from the instruction cache. */
1690 		if (prot & VM_PROT_EXECUTE)
1691 			sync++;
1692 	}
1693 
1694 	if (sync && (su || pmap == PCPU_GET(curpmap))) {
1695 		__syncicache((void *)va, PAGE_SIZE);
1696 		sync = 0;
1697 	}
1698 }
1699 
1700 /*
1701  * Maps a sequence of resident pages belonging to the same object.
1702  * The sequence begins with the given page m_start.  This page is
1703  * mapped at the given virtual address start.  Each subsequent page is
1704  * mapped at a virtual address that is offset from start by the same
1705  * amount as the page is offset from m_start within the object.  The
1706  * last page in the sequence is the page with the largest offset from
1707  * m_start that can be mapped at a virtual address less than the given
1708  * virtual address end.  Not every virtual page between start and end
1709  * is mapped; only those for which a resident page exists with the
1710  * corresponding offset from m_start are mapped.
1711  */
1712 static void
1713 mmu_booke_enter_object(mmu_t mmu, pmap_t pmap, vm_offset_t start,
1714     vm_offset_t end, vm_page_t m_start, vm_prot_t prot)
1715 {
1716 	vm_page_t m;
1717 	vm_pindex_t diff, psize;
1718 
1719 	VM_OBJECT_ASSERT_LOCKED(m_start->object);
1720 
1721 	psize = atop(end - start);
1722 	m = m_start;
1723 	rw_wlock(&pvh_global_lock);
1724 	PMAP_LOCK(pmap);
1725 	while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
1726 		mmu_booke_enter_locked(mmu, pmap, start + ptoa(diff), m,
1727 		    prot & (VM_PROT_READ | VM_PROT_EXECUTE), FALSE);
1728 		m = TAILQ_NEXT(m, listq);
1729 	}
1730 	rw_wunlock(&pvh_global_lock);
1731 	PMAP_UNLOCK(pmap);
1732 }
1733 
1734 static void
1735 mmu_booke_enter_quick(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_page_t m,
1736     vm_prot_t prot)
1737 {
1738 
1739 	rw_wlock(&pvh_global_lock);
1740 	PMAP_LOCK(pmap);
1741 	mmu_booke_enter_locked(mmu, pmap, va, m,
1742 	    prot & (VM_PROT_READ | VM_PROT_EXECUTE), FALSE);
1743 	rw_wunlock(&pvh_global_lock);
1744 	PMAP_UNLOCK(pmap);
1745 }
1746 
1747 /*
1748  * Remove the given range of addresses from the specified map.
1749  *
1750  * It is assumed that the start and end are properly rounded to the page size.
1751  */
1752 static void
1753 mmu_booke_remove(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_offset_t endva)
1754 {
1755 	pte_t *pte;
1756 	uint8_t hold_flag;
1757 
1758 	int su = (pmap == kernel_pmap);
1759 
1760 	//debugf("mmu_booke_remove: s (su = %d pmap=0x%08x tid=%d va=0x%08x endva=0x%08x)\n",
1761 	//		su, (u_int32_t)pmap, pmap->pm_tid, va, endva);
1762 
1763 	if (su) {
1764 		KASSERT(((va >= virtual_avail) &&
1765 		    (va <= VM_MAX_KERNEL_ADDRESS)),
1766 		    ("mmu_booke_remove: kernel pmap, non kernel va"));
1767 	} else {
1768 		KASSERT((va <= VM_MAXUSER_ADDRESS),
1769 		    ("mmu_booke_remove: user pmap, non user va"));
1770 	}
1771 
1772 	if (PMAP_REMOVE_DONE(pmap)) {
1773 		//debugf("mmu_booke_remove: e (empty)\n");
1774 		return;
1775 	}
1776 
1777 	hold_flag = PTBL_HOLD_FLAG(pmap);
1778 	//debugf("mmu_booke_remove: hold_flag = %d\n", hold_flag);
1779 
1780 	rw_wlock(&pvh_global_lock);
1781 	PMAP_LOCK(pmap);
1782 	for (; va < endva; va += PAGE_SIZE) {
1783 		pte = pte_find(mmu, pmap, va);
1784 		if ((pte != NULL) && PTE_ISVALID(pte))
1785 			pte_remove(mmu, pmap, va, hold_flag);
1786 	}
1787 	PMAP_UNLOCK(pmap);
1788 	rw_wunlock(&pvh_global_lock);
1789 
1790 	//debugf("mmu_booke_remove: e\n");
1791 }
1792 
1793 /*
1794  * Remove physical page from all pmaps in which it resides.
1795  */
1796 static void
1797 mmu_booke_remove_all(mmu_t mmu, vm_page_t m)
1798 {
1799 	pv_entry_t pv, pvn;
1800 	uint8_t hold_flag;
1801 
1802 	rw_wlock(&pvh_global_lock);
1803 	for (pv = TAILQ_FIRST(&m->md.pv_list); pv != NULL; pv = pvn) {
1804 		pvn = TAILQ_NEXT(pv, pv_link);
1805 
1806 		PMAP_LOCK(pv->pv_pmap);
1807 		hold_flag = PTBL_HOLD_FLAG(pv->pv_pmap);
1808 		pte_remove(mmu, pv->pv_pmap, pv->pv_va, hold_flag);
1809 		PMAP_UNLOCK(pv->pv_pmap);
1810 	}
1811 	vm_page_aflag_clear(m, PGA_WRITEABLE);
1812 	rw_wunlock(&pvh_global_lock);
1813 }
1814 
1815 /*
1816  * Map a range of physical addresses into kernel virtual address space.
1817  */
1818 static vm_offset_t
1819 mmu_booke_map(mmu_t mmu, vm_offset_t *virt, vm_paddr_t pa_start,
1820     vm_paddr_t pa_end, int prot)
1821 {
1822 	vm_offset_t sva = *virt;
1823 	vm_offset_t va = sva;
1824 
1825 	//debugf("mmu_booke_map: s (sva = 0x%08x pa_start = 0x%08x pa_end = 0x%08x)\n",
1826 	//		sva, pa_start, pa_end);
1827 
1828 	while (pa_start < pa_end) {
1829 		mmu_booke_kenter(mmu, va, pa_start);
1830 		va += PAGE_SIZE;
1831 		pa_start += PAGE_SIZE;
1832 	}
1833 	*virt = va;
1834 
1835 	//debugf("mmu_booke_map: e (va = 0x%08x)\n", va);
1836 	return (sva);
1837 }
1838 
1839 /*
1840  * The pmap must be activated before it's address space can be accessed in any
1841  * way.
1842  */
1843 static void
1844 mmu_booke_activate(mmu_t mmu, struct thread *td)
1845 {
1846 	pmap_t pmap;
1847 	u_int cpuid;
1848 
1849 	pmap = &td->td_proc->p_vmspace->vm_pmap;
1850 
1851 	CTR5(KTR_PMAP, "%s: s (td = %p, proc = '%s', id = %d, pmap = 0x%08x)",
1852 	    __func__, td, td->td_proc->p_comm, td->td_proc->p_pid, pmap);
1853 
1854 	KASSERT((pmap != kernel_pmap), ("mmu_booke_activate: kernel_pmap!"));
1855 
1856 	mtx_lock_spin(&sched_lock);
1857 
1858 	cpuid = PCPU_GET(cpuid);
1859 	CPU_SET_ATOMIC(cpuid, &pmap->pm_active);
1860 	PCPU_SET(curpmap, pmap);
1861 
1862 	if (pmap->pm_tid[cpuid] == TID_NONE)
1863 		tid_alloc(pmap);
1864 
1865 	/* Load PID0 register with pmap tid value. */
1866 	mtspr(SPR_PID0, pmap->pm_tid[cpuid]);
1867 	__asm __volatile("isync");
1868 
1869 	mtx_unlock_spin(&sched_lock);
1870 
1871 	CTR3(KTR_PMAP, "%s: e (tid = %d for '%s')", __func__,
1872 	    pmap->pm_tid[PCPU_GET(cpuid)], td->td_proc->p_comm);
1873 }
1874 
1875 /*
1876  * Deactivate the specified process's address space.
1877  */
1878 static void
1879 mmu_booke_deactivate(mmu_t mmu, struct thread *td)
1880 {
1881 	pmap_t pmap;
1882 
1883 	pmap = &td->td_proc->p_vmspace->vm_pmap;
1884 
1885 	CTR5(KTR_PMAP, "%s: td=%p, proc = '%s', id = %d, pmap = 0x%08x",
1886 	    __func__, td, td->td_proc->p_comm, td->td_proc->p_pid, pmap);
1887 
1888 	CPU_CLR_ATOMIC(PCPU_GET(cpuid), &pmap->pm_active);
1889 	PCPU_SET(curpmap, NULL);
1890 }
1891 
1892 /*
1893  * Copy the range specified by src_addr/len
1894  * from the source map to the range dst_addr/len
1895  * in the destination map.
1896  *
1897  * This routine is only advisory and need not do anything.
1898  */
1899 static void
1900 mmu_booke_copy(mmu_t mmu, pmap_t dst_pmap, pmap_t src_pmap,
1901     vm_offset_t dst_addr, vm_size_t len, vm_offset_t src_addr)
1902 {
1903 
1904 }
1905 
1906 /*
1907  * Set the physical protection on the specified range of this map as requested.
1908  */
1909 static void
1910 mmu_booke_protect(mmu_t mmu, pmap_t pmap, vm_offset_t sva, vm_offset_t eva,
1911     vm_prot_t prot)
1912 {
1913 	vm_offset_t va;
1914 	vm_page_t m;
1915 	pte_t *pte;
1916 
1917 	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
1918 		mmu_booke_remove(mmu, pmap, sva, eva);
1919 		return;
1920 	}
1921 
1922 	if (prot & VM_PROT_WRITE)
1923 		return;
1924 
1925 	PMAP_LOCK(pmap);
1926 	for (va = sva; va < eva; va += PAGE_SIZE) {
1927 		if ((pte = pte_find(mmu, pmap, va)) != NULL) {
1928 			if (PTE_ISVALID(pte)) {
1929 				m = PHYS_TO_VM_PAGE(PTE_PA(pte));
1930 
1931 				mtx_lock_spin(&tlbivax_mutex);
1932 				tlb_miss_lock();
1933 
1934 				/* Handle modified pages. */
1935 				if (PTE_ISMODIFIED(pte) && PTE_ISMANAGED(pte))
1936 					vm_page_dirty(m);
1937 
1938 				tlb0_flush_entry(va);
1939 				pte->flags &= ~(PTE_UW | PTE_SW | PTE_MODIFIED);
1940 
1941 				tlb_miss_unlock();
1942 				mtx_unlock_spin(&tlbivax_mutex);
1943 			}
1944 		}
1945 	}
1946 	PMAP_UNLOCK(pmap);
1947 }
1948 
1949 /*
1950  * Clear the write and modified bits in each of the given page's mappings.
1951  */
1952 static void
1953 mmu_booke_remove_write(mmu_t mmu, vm_page_t m)
1954 {
1955 	pv_entry_t pv;
1956 	pte_t *pte;
1957 
1958 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1959 	    ("mmu_booke_remove_write: page %p is not managed", m));
1960 
1961 	/*
1962 	 * If the page is not VPO_BUSY, then PGA_WRITEABLE cannot be set by
1963 	 * another thread while the object is locked.  Thus, if PGA_WRITEABLE
1964 	 * is clear, no page table entries need updating.
1965 	 */
1966 	VM_OBJECT_ASSERT_WLOCKED(m->object);
1967 	if ((m->oflags & VPO_BUSY) == 0 &&
1968 	    (m->aflags & PGA_WRITEABLE) == 0)
1969 		return;
1970 	rw_wlock(&pvh_global_lock);
1971 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
1972 		PMAP_LOCK(pv->pv_pmap);
1973 		if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL) {
1974 			if (PTE_ISVALID(pte)) {
1975 				m = PHYS_TO_VM_PAGE(PTE_PA(pte));
1976 
1977 				mtx_lock_spin(&tlbivax_mutex);
1978 				tlb_miss_lock();
1979 
1980 				/* Handle modified pages. */
1981 				if (PTE_ISMODIFIED(pte))
1982 					vm_page_dirty(m);
1983 
1984 				/* Flush mapping from TLB0. */
1985 				pte->flags &= ~(PTE_UW | PTE_SW | PTE_MODIFIED);
1986 
1987 				tlb_miss_unlock();
1988 				mtx_unlock_spin(&tlbivax_mutex);
1989 			}
1990 		}
1991 		PMAP_UNLOCK(pv->pv_pmap);
1992 	}
1993 	vm_page_aflag_clear(m, PGA_WRITEABLE);
1994 	rw_wunlock(&pvh_global_lock);
1995 }
1996 
1997 static void
1998 mmu_booke_sync_icache(mmu_t mmu, pmap_t pm, vm_offset_t va, vm_size_t sz)
1999 {
2000 	pte_t *pte;
2001 	pmap_t pmap;
2002 	vm_page_t m;
2003 	vm_offset_t addr;
2004 	vm_paddr_t pa;
2005 	int active, valid;
2006 
2007 	va = trunc_page(va);
2008 	sz = round_page(sz);
2009 
2010 	rw_wlock(&pvh_global_lock);
2011 	pmap = PCPU_GET(curpmap);
2012 	active = (pm == kernel_pmap || pm == pmap) ? 1 : 0;
2013 	while (sz > 0) {
2014 		PMAP_LOCK(pm);
2015 		pte = pte_find(mmu, pm, va);
2016 		valid = (pte != NULL && PTE_ISVALID(pte)) ? 1 : 0;
2017 		if (valid)
2018 			pa = PTE_PA(pte);
2019 		PMAP_UNLOCK(pm);
2020 		if (valid) {
2021 			if (!active) {
2022 				/* Create a mapping in the active pmap. */
2023 				addr = 0;
2024 				m = PHYS_TO_VM_PAGE(pa);
2025 				PMAP_LOCK(pmap);
2026 				pte_enter(mmu, pmap, m, addr,
2027 				    PTE_SR | PTE_VALID | PTE_UR);
2028 				__syncicache((void *)addr, PAGE_SIZE);
2029 				pte_remove(mmu, pmap, addr, PTBL_UNHOLD);
2030 				PMAP_UNLOCK(pmap);
2031 			} else
2032 				__syncicache((void *)va, PAGE_SIZE);
2033 		}
2034 		va += PAGE_SIZE;
2035 		sz -= PAGE_SIZE;
2036 	}
2037 	rw_wunlock(&pvh_global_lock);
2038 }
2039 
2040 /*
2041  * Atomically extract and hold the physical page with the given
2042  * pmap and virtual address pair if that mapping permits the given
2043  * protection.
2044  */
2045 static vm_page_t
2046 mmu_booke_extract_and_hold(mmu_t mmu, pmap_t pmap, vm_offset_t va,
2047     vm_prot_t prot)
2048 {
2049 	pte_t *pte;
2050 	vm_page_t m;
2051 	uint32_t pte_wbit;
2052 	vm_paddr_t pa;
2053 
2054 	m = NULL;
2055 	pa = 0;
2056 	PMAP_LOCK(pmap);
2057 retry:
2058 	pte = pte_find(mmu, pmap, va);
2059 	if ((pte != NULL) && PTE_ISVALID(pte)) {
2060 		if (pmap == kernel_pmap)
2061 			pte_wbit = PTE_SW;
2062 		else
2063 			pte_wbit = PTE_UW;
2064 
2065 		if ((pte->flags & pte_wbit) || ((prot & VM_PROT_WRITE) == 0)) {
2066 			if (vm_page_pa_tryrelock(pmap, PTE_PA(pte), &pa))
2067 				goto retry;
2068 			m = PHYS_TO_VM_PAGE(PTE_PA(pte));
2069 			vm_page_hold(m);
2070 		}
2071 	}
2072 
2073 	PA_UNLOCK_COND(pa);
2074 	PMAP_UNLOCK(pmap);
2075 	return (m);
2076 }
2077 
2078 /*
2079  * Initialize a vm_page's machine-dependent fields.
2080  */
2081 static void
2082 mmu_booke_page_init(mmu_t mmu, vm_page_t m)
2083 {
2084 
2085 	TAILQ_INIT(&m->md.pv_list);
2086 }
2087 
2088 /*
2089  * mmu_booke_zero_page_area zeros the specified hardware page by
2090  * mapping it into virtual memory and using bzero to clear
2091  * its contents.
2092  *
2093  * off and size must reside within a single page.
2094  */
2095 static void
2096 mmu_booke_zero_page_area(mmu_t mmu, vm_page_t m, int off, int size)
2097 {
2098 	vm_offset_t va;
2099 
2100 	/* XXX KASSERT off and size are within a single page? */
2101 
2102 	mtx_lock(&zero_page_mutex);
2103 	va = zero_page_va;
2104 
2105 	mmu_booke_kenter(mmu, va, VM_PAGE_TO_PHYS(m));
2106 	bzero((caddr_t)va + off, size);
2107 	mmu_booke_kremove(mmu, va);
2108 
2109 	mtx_unlock(&zero_page_mutex);
2110 }
2111 
2112 /*
2113  * mmu_booke_zero_page zeros the specified hardware page.
2114  */
2115 static void
2116 mmu_booke_zero_page(mmu_t mmu, vm_page_t m)
2117 {
2118 
2119 	mmu_booke_zero_page_area(mmu, m, 0, PAGE_SIZE);
2120 }
2121 
2122 /*
2123  * mmu_booke_copy_page copies the specified (machine independent) page by
2124  * mapping the page into virtual memory and using memcopy to copy the page,
2125  * one machine dependent page at a time.
2126  */
2127 static void
2128 mmu_booke_copy_page(mmu_t mmu, vm_page_t sm, vm_page_t dm)
2129 {
2130 	vm_offset_t sva, dva;
2131 
2132 	sva = copy_page_src_va;
2133 	dva = copy_page_dst_va;
2134 
2135 	mtx_lock(&copy_page_mutex);
2136 	mmu_booke_kenter(mmu, sva, VM_PAGE_TO_PHYS(sm));
2137 	mmu_booke_kenter(mmu, dva, VM_PAGE_TO_PHYS(dm));
2138 	memcpy((caddr_t)dva, (caddr_t)sva, PAGE_SIZE);
2139 	mmu_booke_kremove(mmu, dva);
2140 	mmu_booke_kremove(mmu, sva);
2141 	mtx_unlock(&copy_page_mutex);
2142 }
2143 
2144 static inline void
2145 mmu_booke_copy_pages(mmu_t mmu, vm_page_t *ma, vm_offset_t a_offset,
2146     vm_page_t *mb, vm_offset_t b_offset, int xfersize)
2147 {
2148 	void *a_cp, *b_cp;
2149 	vm_offset_t a_pg_offset, b_pg_offset;
2150 	int cnt;
2151 
2152 	mtx_lock(&copy_page_mutex);
2153 	while (xfersize > 0) {
2154 		a_pg_offset = a_offset & PAGE_MASK;
2155 		cnt = min(xfersize, PAGE_SIZE - a_pg_offset);
2156 		mmu_booke_kenter(mmu, copy_page_src_va,
2157 		    VM_PAGE_TO_PHYS(ma[a_offset >> PAGE_SHIFT]));
2158 		a_cp = (char *)copy_page_src_va + a_pg_offset;
2159 		b_pg_offset = b_offset & PAGE_MASK;
2160 		cnt = min(cnt, PAGE_SIZE - b_pg_offset);
2161 		mmu_booke_kenter(mmu, copy_page_dst_va,
2162 		    VM_PAGE_TO_PHYS(mb[b_offset >> PAGE_SHIFT]));
2163 		b_cp = (char *)copy_page_dst_va + b_pg_offset;
2164 		bcopy(a_cp, b_cp, cnt);
2165 		mmu_booke_kremove(mmu, copy_page_dst_va);
2166 		mmu_booke_kremove(mmu, copy_page_src_va);
2167 		a_offset += cnt;
2168 		b_offset += cnt;
2169 		xfersize -= cnt;
2170 	}
2171 	mtx_unlock(&copy_page_mutex);
2172 }
2173 
2174 /*
2175  * mmu_booke_zero_page_idle zeros the specified hardware page by mapping it
2176  * into virtual memory and using bzero to clear its contents. This is intended
2177  * to be called from the vm_pagezero process only and outside of Giant. No
2178  * lock is required.
2179  */
2180 static void
2181 mmu_booke_zero_page_idle(mmu_t mmu, vm_page_t m)
2182 {
2183 	vm_offset_t va;
2184 
2185 	va = zero_page_idle_va;
2186 	mmu_booke_kenter(mmu, va, VM_PAGE_TO_PHYS(m));
2187 	bzero((caddr_t)va, PAGE_SIZE);
2188 	mmu_booke_kremove(mmu, va);
2189 }
2190 
2191 /*
2192  * Return whether or not the specified physical page was modified
2193  * in any of physical maps.
2194  */
2195 static boolean_t
2196 mmu_booke_is_modified(mmu_t mmu, vm_page_t m)
2197 {
2198 	pte_t *pte;
2199 	pv_entry_t pv;
2200 	boolean_t rv;
2201 
2202 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2203 	    ("mmu_booke_is_modified: page %p is not managed", m));
2204 	rv = FALSE;
2205 
2206 	/*
2207 	 * If the page is not VPO_BUSY, then PGA_WRITEABLE cannot be
2208 	 * concurrently set while the object is locked.  Thus, if PGA_WRITEABLE
2209 	 * is clear, no PTEs can be modified.
2210 	 */
2211 	VM_OBJECT_ASSERT_WLOCKED(m->object);
2212 	if ((m->oflags & VPO_BUSY) == 0 &&
2213 	    (m->aflags & PGA_WRITEABLE) == 0)
2214 		return (rv);
2215 	rw_wlock(&pvh_global_lock);
2216 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2217 		PMAP_LOCK(pv->pv_pmap);
2218 		if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL &&
2219 		    PTE_ISVALID(pte)) {
2220 			if (PTE_ISMODIFIED(pte))
2221 				rv = TRUE;
2222 		}
2223 		PMAP_UNLOCK(pv->pv_pmap);
2224 		if (rv)
2225 			break;
2226 	}
2227 	rw_wunlock(&pvh_global_lock);
2228 	return (rv);
2229 }
2230 
2231 /*
2232  * Return whether or not the specified virtual address is eligible
2233  * for prefault.
2234  */
2235 static boolean_t
2236 mmu_booke_is_prefaultable(mmu_t mmu, pmap_t pmap, vm_offset_t addr)
2237 {
2238 
2239 	return (FALSE);
2240 }
2241 
2242 /*
2243  * Return whether or not the specified physical page was referenced
2244  * in any physical maps.
2245  */
2246 static boolean_t
2247 mmu_booke_is_referenced(mmu_t mmu, vm_page_t m)
2248 {
2249 	pte_t *pte;
2250 	pv_entry_t pv;
2251 	boolean_t rv;
2252 
2253 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2254 	    ("mmu_booke_is_referenced: page %p is not managed", m));
2255 	rv = FALSE;
2256 	rw_wlock(&pvh_global_lock);
2257 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2258 		PMAP_LOCK(pv->pv_pmap);
2259 		if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL &&
2260 		    PTE_ISVALID(pte)) {
2261 			if (PTE_ISREFERENCED(pte))
2262 				rv = TRUE;
2263 		}
2264 		PMAP_UNLOCK(pv->pv_pmap);
2265 		if (rv)
2266 			break;
2267 	}
2268 	rw_wunlock(&pvh_global_lock);
2269 	return (rv);
2270 }
2271 
2272 /*
2273  * Clear the modify bits on the specified physical page.
2274  */
2275 static void
2276 mmu_booke_clear_modify(mmu_t mmu, vm_page_t m)
2277 {
2278 	pte_t *pte;
2279 	pv_entry_t pv;
2280 
2281 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2282 	    ("mmu_booke_clear_modify: page %p is not managed", m));
2283 	VM_OBJECT_ASSERT_WLOCKED(m->object);
2284 	KASSERT((m->oflags & VPO_BUSY) == 0,
2285 	    ("mmu_booke_clear_modify: page %p is busy", m));
2286 
2287 	/*
2288 	 * If the page is not PG_AWRITEABLE, then no PTEs can be modified.
2289 	 * If the object containing the page is locked and the page is not
2290 	 * VPO_BUSY, then PG_AWRITEABLE cannot be concurrently set.
2291 	 */
2292 	if ((m->aflags & PGA_WRITEABLE) == 0)
2293 		return;
2294 	rw_wlock(&pvh_global_lock);
2295 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2296 		PMAP_LOCK(pv->pv_pmap);
2297 		if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL &&
2298 		    PTE_ISVALID(pte)) {
2299 			mtx_lock_spin(&tlbivax_mutex);
2300 			tlb_miss_lock();
2301 
2302 			if (pte->flags & (PTE_SW | PTE_UW | PTE_MODIFIED)) {
2303 				tlb0_flush_entry(pv->pv_va);
2304 				pte->flags &= ~(PTE_SW | PTE_UW | PTE_MODIFIED |
2305 				    PTE_REFERENCED);
2306 			}
2307 
2308 			tlb_miss_unlock();
2309 			mtx_unlock_spin(&tlbivax_mutex);
2310 		}
2311 		PMAP_UNLOCK(pv->pv_pmap);
2312 	}
2313 	rw_wunlock(&pvh_global_lock);
2314 }
2315 
2316 /*
2317  * Return a count of reference bits for a page, clearing those bits.
2318  * It is not necessary for every reference bit to be cleared, but it
2319  * is necessary that 0 only be returned when there are truly no
2320  * reference bits set.
2321  *
2322  * XXX: The exact number of bits to check and clear is a matter that
2323  * should be tested and standardized at some point in the future for
2324  * optimal aging of shared pages.
2325  */
2326 static int
2327 mmu_booke_ts_referenced(mmu_t mmu, vm_page_t m)
2328 {
2329 	pte_t *pte;
2330 	pv_entry_t pv;
2331 	int count;
2332 
2333 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2334 	    ("mmu_booke_ts_referenced: page %p is not managed", m));
2335 	count = 0;
2336 	rw_wlock(&pvh_global_lock);
2337 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2338 		PMAP_LOCK(pv->pv_pmap);
2339 		if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL &&
2340 		    PTE_ISVALID(pte)) {
2341 			if (PTE_ISREFERENCED(pte)) {
2342 				mtx_lock_spin(&tlbivax_mutex);
2343 				tlb_miss_lock();
2344 
2345 				tlb0_flush_entry(pv->pv_va);
2346 				pte->flags &= ~PTE_REFERENCED;
2347 
2348 				tlb_miss_unlock();
2349 				mtx_unlock_spin(&tlbivax_mutex);
2350 
2351 				if (++count > 4) {
2352 					PMAP_UNLOCK(pv->pv_pmap);
2353 					break;
2354 				}
2355 			}
2356 		}
2357 		PMAP_UNLOCK(pv->pv_pmap);
2358 	}
2359 	rw_wunlock(&pvh_global_lock);
2360 	return (count);
2361 }
2362 
2363 /*
2364  * Clear the reference bit on the specified physical page.
2365  */
2366 static void
2367 mmu_booke_clear_reference(mmu_t mmu, vm_page_t m)
2368 {
2369 	pte_t *pte;
2370 	pv_entry_t pv;
2371 
2372 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2373 	    ("mmu_booke_clear_reference: page %p is not managed", m));
2374 	rw_wlock(&pvh_global_lock);
2375 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2376 		PMAP_LOCK(pv->pv_pmap);
2377 		if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL &&
2378 		    PTE_ISVALID(pte)) {
2379 			if (PTE_ISREFERENCED(pte)) {
2380 				mtx_lock_spin(&tlbivax_mutex);
2381 				tlb_miss_lock();
2382 
2383 				tlb0_flush_entry(pv->pv_va);
2384 				pte->flags &= ~PTE_REFERENCED;
2385 
2386 				tlb_miss_unlock();
2387 				mtx_unlock_spin(&tlbivax_mutex);
2388 			}
2389 		}
2390 		PMAP_UNLOCK(pv->pv_pmap);
2391 	}
2392 	rw_wunlock(&pvh_global_lock);
2393 }
2394 
2395 /*
2396  * Change wiring attribute for a map/virtual-address pair.
2397  */
2398 static void
2399 mmu_booke_change_wiring(mmu_t mmu, pmap_t pmap, vm_offset_t va, boolean_t wired)
2400 {
2401 	pte_t *pte;
2402 
2403 	PMAP_LOCK(pmap);
2404 	if ((pte = pte_find(mmu, pmap, va)) != NULL) {
2405 		if (wired) {
2406 			if (!PTE_ISWIRED(pte)) {
2407 				pte->flags |= PTE_WIRED;
2408 				pmap->pm_stats.wired_count++;
2409 			}
2410 		} else {
2411 			if (PTE_ISWIRED(pte)) {
2412 				pte->flags &= ~PTE_WIRED;
2413 				pmap->pm_stats.wired_count--;
2414 			}
2415 		}
2416 	}
2417 	PMAP_UNLOCK(pmap);
2418 }
2419 
2420 /*
2421  * Return true if the pmap's pv is one of the first 16 pvs linked to from this
2422  * page.  This count may be changed upwards or downwards in the future; it is
2423  * only necessary that true be returned for a small subset of pmaps for proper
2424  * page aging.
2425  */
2426 static boolean_t
2427 mmu_booke_page_exists_quick(mmu_t mmu, pmap_t pmap, vm_page_t m)
2428 {
2429 	pv_entry_t pv;
2430 	int loops;
2431 	boolean_t rv;
2432 
2433 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2434 	    ("mmu_booke_page_exists_quick: page %p is not managed", m));
2435 	loops = 0;
2436 	rv = FALSE;
2437 	rw_wlock(&pvh_global_lock);
2438 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2439 		if (pv->pv_pmap == pmap) {
2440 			rv = TRUE;
2441 			break;
2442 		}
2443 		if (++loops >= 16)
2444 			break;
2445 	}
2446 	rw_wunlock(&pvh_global_lock);
2447 	return (rv);
2448 }
2449 
2450 /*
2451  * Return the number of managed mappings to the given physical page that are
2452  * wired.
2453  */
2454 static int
2455 mmu_booke_page_wired_mappings(mmu_t mmu, vm_page_t m)
2456 {
2457 	pv_entry_t pv;
2458 	pte_t *pte;
2459 	int count = 0;
2460 
2461 	if ((m->oflags & VPO_UNMANAGED) != 0)
2462 		return (count);
2463 	rw_wlock(&pvh_global_lock);
2464 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2465 		PMAP_LOCK(pv->pv_pmap);
2466 		if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL)
2467 			if (PTE_ISVALID(pte) && PTE_ISWIRED(pte))
2468 				count++;
2469 		PMAP_UNLOCK(pv->pv_pmap);
2470 	}
2471 	rw_wunlock(&pvh_global_lock);
2472 	return (count);
2473 }
2474 
2475 static int
2476 mmu_booke_dev_direct_mapped(mmu_t mmu, vm_paddr_t pa, vm_size_t size)
2477 {
2478 	int i;
2479 	vm_offset_t va;
2480 
2481 	/*
2482 	 * This currently does not work for entries that
2483 	 * overlap TLB1 entries.
2484 	 */
2485 	for (i = 0; i < tlb1_idx; i ++) {
2486 		if (tlb1_iomapped(i, pa, size, &va) == 0)
2487 			return (0);
2488 	}
2489 
2490 	return (EFAULT);
2491 }
2492 
2493 vm_offset_t
2494 mmu_booke_dumpsys_map(mmu_t mmu, struct pmap_md *md, vm_size_t ofs,
2495     vm_size_t *sz)
2496 {
2497 	vm_paddr_t pa, ppa;
2498 	vm_offset_t va;
2499 	vm_size_t gran;
2500 
2501 	/* Raw physical memory dumps don't have a virtual address. */
2502 	if (md->md_vaddr == ~0UL) {
2503 		/* We always map a 256MB page at 256M. */
2504 		gran = 256 * 1024 * 1024;
2505 		pa = md->md_paddr + ofs;
2506 		ppa = pa & ~(gran - 1);
2507 		ofs = pa - ppa;
2508 		va = gran;
2509 		tlb1_set_entry(va, ppa, gran, _TLB_ENTRY_IO);
2510 		if (*sz > (gran - ofs))
2511 			*sz = gran - ofs;
2512 		return (va + ofs);
2513 	}
2514 
2515 	/* Minidumps are based on virtual memory addresses. */
2516 	va = md->md_vaddr + ofs;
2517 	if (va >= kernstart + kernsize) {
2518 		gran = PAGE_SIZE - (va & PAGE_MASK);
2519 		if (*sz > gran)
2520 			*sz = gran;
2521 	}
2522 	return (va);
2523 }
2524 
2525 void
2526 mmu_booke_dumpsys_unmap(mmu_t mmu, struct pmap_md *md, vm_size_t ofs,
2527     vm_offset_t va)
2528 {
2529 
2530 	/* Raw physical memory dumps don't have a virtual address. */
2531 	if (md->md_vaddr == ~0UL) {
2532 		tlb1_idx--;
2533 		tlb1[tlb1_idx].mas1 = 0;
2534 		tlb1[tlb1_idx].mas2 = 0;
2535 		tlb1[tlb1_idx].mas3 = 0;
2536 		tlb1_write_entry(tlb1_idx);
2537 		return;
2538 	}
2539 
2540 	/* Minidumps are based on virtual memory addresses. */
2541 	/* Nothing to do... */
2542 }
2543 
2544 struct pmap_md *
2545 mmu_booke_scan_md(mmu_t mmu, struct pmap_md *prev)
2546 {
2547 	static struct pmap_md md;
2548 	pte_t *pte;
2549 	vm_offset_t va;
2550 
2551 	if (dumpsys_minidump) {
2552 		md.md_paddr = ~0UL;	/* Minidumps use virtual addresses. */
2553 		if (prev == NULL) {
2554 			/* 1st: kernel .data and .bss. */
2555 			md.md_index = 1;
2556 			md.md_vaddr = trunc_page((uintptr_t)_etext);
2557 			md.md_size = round_page((uintptr_t)_end) - md.md_vaddr;
2558 			return (&md);
2559 		}
2560 		switch (prev->md_index) {
2561 		case 1:
2562 			/* 2nd: msgbuf and tables (see pmap_bootstrap()). */
2563 			md.md_index = 2;
2564 			md.md_vaddr = data_start;
2565 			md.md_size = data_end - data_start;
2566 			break;
2567 		case 2:
2568 			/* 3rd: kernel VM. */
2569 			va = prev->md_vaddr + prev->md_size;
2570 			/* Find start of next chunk (from va). */
2571 			while (va < virtual_end) {
2572 				/* Don't dump the buffer cache. */
2573 				if (va >= kmi.buffer_sva &&
2574 				    va < kmi.buffer_eva) {
2575 					va = kmi.buffer_eva;
2576 					continue;
2577 				}
2578 				pte = pte_find(mmu, kernel_pmap, va);
2579 				if (pte != NULL && PTE_ISVALID(pte))
2580 					break;
2581 				va += PAGE_SIZE;
2582 			}
2583 			if (va < virtual_end) {
2584 				md.md_vaddr = va;
2585 				va += PAGE_SIZE;
2586 				/* Find last page in chunk. */
2587 				while (va < virtual_end) {
2588 					/* Don't run into the buffer cache. */
2589 					if (va == kmi.buffer_sva)
2590 						break;
2591 					pte = pte_find(mmu, kernel_pmap, va);
2592 					if (pte == NULL || !PTE_ISVALID(pte))
2593 						break;
2594 					va += PAGE_SIZE;
2595 				}
2596 				md.md_size = va - md.md_vaddr;
2597 				break;
2598 			}
2599 			md.md_index = 3;
2600 			/* FALLTHROUGH */
2601 		default:
2602 			return (NULL);
2603 		}
2604 	} else { /* minidumps */
2605 		mem_regions(&physmem_regions, &physmem_regions_sz,
2606 		    &availmem_regions, &availmem_regions_sz);
2607 
2608 		if (prev == NULL) {
2609 			/* first physical chunk. */
2610 			md.md_paddr = physmem_regions[0].mr_start;
2611 			md.md_size = physmem_regions[0].mr_size;
2612 			md.md_vaddr = ~0UL;
2613 			md.md_index = 1;
2614 		} else if (md.md_index < physmem_regions_sz) {
2615 			md.md_paddr = physmem_regions[md.md_index].mr_start;
2616 			md.md_size = physmem_regions[md.md_index].mr_size;
2617 			md.md_vaddr = ~0UL;
2618 			md.md_index++;
2619 		} else {
2620 			/* There's no next physical chunk. */
2621 			return (NULL);
2622 		}
2623 	}
2624 
2625 	return (&md);
2626 }
2627 
2628 /*
2629  * Map a set of physical memory pages into the kernel virtual address space.
2630  * Return a pointer to where it is mapped. This routine is intended to be used
2631  * for mapping device memory, NOT real memory.
2632  */
2633 static void *
2634 mmu_booke_mapdev(mmu_t mmu, vm_paddr_t pa, vm_size_t size)
2635 {
2636 	void *res;
2637 	uintptr_t va;
2638 	vm_size_t sz;
2639 
2640 	/*
2641 	 * CCSR is premapped. Note that (pa + size - 1) is there to make sure
2642 	 * we don't wrap around. Devices on the local bus typically extend all
2643 	 * the way up to and including 0xffffffff. In that case (pa + size)
2644 	 * would be 0. This creates a false positive (i.e. we think it's
2645 	 * within the CCSR) and not create a mapping.
2646 	 */
2647 	if (pa >= ccsrbar_pa && (pa + size - 1) < (ccsrbar_pa + CCSRBAR_SIZE)) {
2648 		va = CCSRBAR_VA + (pa - ccsrbar_pa);
2649 		return ((void *)va);
2650 	}
2651 
2652 	va = (pa >= 0x80000000) ? pa : (0xe2000000 + pa);
2653 	res = (void *)va;
2654 
2655 	do {
2656 		sz = 1 << (ilog2(size) & ~1);
2657 		if (bootverbose)
2658 			printf("Wiring VA=%x to PA=%x (size=%x), "
2659 			    "using TLB1[%d]\n", va, pa, sz, tlb1_idx);
2660 		tlb1_set_entry(va, pa, sz, _TLB_ENTRY_IO);
2661 		size -= sz;
2662 		pa += sz;
2663 		va += sz;
2664 	} while (size > 0);
2665 
2666 	return (res);
2667 }
2668 
2669 /*
2670  * 'Unmap' a range mapped by mmu_booke_mapdev().
2671  */
2672 static void
2673 mmu_booke_unmapdev(mmu_t mmu, vm_offset_t va, vm_size_t size)
2674 {
2675 	vm_offset_t base, offset;
2676 
2677 	/*
2678 	 * Unmap only if this is inside kernel virtual space.
2679 	 */
2680 	if ((va >= VM_MIN_KERNEL_ADDRESS) && (va <= VM_MAX_KERNEL_ADDRESS)) {
2681 		base = trunc_page(va);
2682 		offset = va & PAGE_MASK;
2683 		size = roundup(offset + size, PAGE_SIZE);
2684 		kmem_free(kernel_map, base, size);
2685 	}
2686 }
2687 
2688 /*
2689  * mmu_booke_object_init_pt preloads the ptes for a given object into the
2690  * specified pmap. This eliminates the blast of soft faults on process startup
2691  * and immediately after an mmap.
2692  */
2693 static void
2694 mmu_booke_object_init_pt(mmu_t mmu, pmap_t pmap, vm_offset_t addr,
2695     vm_object_t object, vm_pindex_t pindex, vm_size_t size)
2696 {
2697 
2698 	VM_OBJECT_ASSERT_WLOCKED(object);
2699 	KASSERT(object->type == OBJT_DEVICE || object->type == OBJT_SG,
2700 	    ("mmu_booke_object_init_pt: non-device object"));
2701 }
2702 
2703 /*
2704  * Perform the pmap work for mincore.
2705  */
2706 static int
2707 mmu_booke_mincore(mmu_t mmu, pmap_t pmap, vm_offset_t addr,
2708     vm_paddr_t *locked_pa)
2709 {
2710 
2711 	TODO;
2712 	return (0);
2713 }
2714 
2715 /**************************************************************************/
2716 /* TID handling */
2717 /**************************************************************************/
2718 
2719 /*
2720  * Allocate a TID. If necessary, steal one from someone else.
2721  * The new TID is flushed from the TLB before returning.
2722  */
2723 static tlbtid_t
2724 tid_alloc(pmap_t pmap)
2725 {
2726 	tlbtid_t tid;
2727 	int thiscpu;
2728 
2729 	KASSERT((pmap != kernel_pmap), ("tid_alloc: kernel pmap"));
2730 
2731 	CTR2(KTR_PMAP, "%s: s (pmap = %p)", __func__, pmap);
2732 
2733 	thiscpu = PCPU_GET(cpuid);
2734 
2735 	tid = PCPU_GET(tid_next);
2736 	if (tid > TID_MAX)
2737 		tid = TID_MIN;
2738 	PCPU_SET(tid_next, tid + 1);
2739 
2740 	/* If we are stealing TID then clear the relevant pmap's field */
2741 	if (tidbusy[thiscpu][tid] != NULL) {
2742 
2743 		CTR2(KTR_PMAP, "%s: warning: stealing tid %d", __func__, tid);
2744 
2745 		tidbusy[thiscpu][tid]->pm_tid[thiscpu] = TID_NONE;
2746 
2747 		/* Flush all entries from TLB0 matching this TID. */
2748 		tid_flush(tid);
2749 	}
2750 
2751 	tidbusy[thiscpu][tid] = pmap;
2752 	pmap->pm_tid[thiscpu] = tid;
2753 	__asm __volatile("msync; isync");
2754 
2755 	CTR3(KTR_PMAP, "%s: e (%02d next = %02d)", __func__, tid,
2756 	    PCPU_GET(tid_next));
2757 
2758 	return (tid);
2759 }
2760 
2761 /**************************************************************************/
2762 /* TLB0 handling */
2763 /**************************************************************************/
2764 
2765 static void
2766 tlb_print_entry(int i, uint32_t mas1, uint32_t mas2, uint32_t mas3,
2767     uint32_t mas7)
2768 {
2769 	int as;
2770 	char desc[3];
2771 	tlbtid_t tid;
2772 	vm_size_t size;
2773 	unsigned int tsize;
2774 
2775 	desc[2] = '\0';
2776 	if (mas1 & MAS1_VALID)
2777 		desc[0] = 'V';
2778 	else
2779 		desc[0] = ' ';
2780 
2781 	if (mas1 & MAS1_IPROT)
2782 		desc[1] = 'P';
2783 	else
2784 		desc[1] = ' ';
2785 
2786 	as = (mas1 & MAS1_TS_MASK) ? 1 : 0;
2787 	tid = MAS1_GETTID(mas1);
2788 
2789 	tsize = (mas1 & MAS1_TSIZE_MASK) >> MAS1_TSIZE_SHIFT;
2790 	size = 0;
2791 	if (tsize)
2792 		size = tsize2size(tsize);
2793 
2794 	debugf("%3d: (%s) [AS=%d] "
2795 	    "sz = 0x%08x tsz = %d tid = %d mas1 = 0x%08x "
2796 	    "mas2(va) = 0x%08x mas3(pa) = 0x%08x mas7 = 0x%08x\n",
2797 	    i, desc, as, size, tsize, tid, mas1, mas2, mas3, mas7);
2798 }
2799 
2800 /* Convert TLB0 va and way number to tlb0[] table index. */
2801 static inline unsigned int
2802 tlb0_tableidx(vm_offset_t va, unsigned int way)
2803 {
2804 	unsigned int idx;
2805 
2806 	idx = (way * TLB0_ENTRIES_PER_WAY);
2807 	idx += (va & MAS2_TLB0_ENTRY_IDX_MASK) >> MAS2_TLB0_ENTRY_IDX_SHIFT;
2808 	return (idx);
2809 }
2810 
2811 /*
2812  * Invalidate TLB0 entry.
2813  */
2814 static inline void
2815 tlb0_flush_entry(vm_offset_t va)
2816 {
2817 
2818 	CTR2(KTR_PMAP, "%s: s va=0x%08x", __func__, va);
2819 
2820 	mtx_assert(&tlbivax_mutex, MA_OWNED);
2821 
2822 	__asm __volatile("tlbivax 0, %0" :: "r"(va & MAS2_EPN_MASK));
2823 	__asm __volatile("isync; msync");
2824 	__asm __volatile("tlbsync; msync");
2825 
2826 	CTR1(KTR_PMAP, "%s: e", __func__);
2827 }
2828 
2829 /* Print out contents of the MAS registers for each TLB0 entry */
2830 void
2831 tlb0_print_tlbentries(void)
2832 {
2833 	uint32_t mas0, mas1, mas2, mas3, mas7;
2834 	int entryidx, way, idx;
2835 
2836 	debugf("TLB0 entries:\n");
2837 	for (way = 0; way < TLB0_WAYS; way ++)
2838 		for (entryidx = 0; entryidx < TLB0_ENTRIES_PER_WAY; entryidx++) {
2839 
2840 			mas0 = MAS0_TLBSEL(0) | MAS0_ESEL(way);
2841 			mtspr(SPR_MAS0, mas0);
2842 			__asm __volatile("isync");
2843 
2844 			mas2 = entryidx << MAS2_TLB0_ENTRY_IDX_SHIFT;
2845 			mtspr(SPR_MAS2, mas2);
2846 
2847 			__asm __volatile("isync; tlbre");
2848 
2849 			mas1 = mfspr(SPR_MAS1);
2850 			mas2 = mfspr(SPR_MAS2);
2851 			mas3 = mfspr(SPR_MAS3);
2852 			mas7 = mfspr(SPR_MAS7);
2853 
2854 			idx = tlb0_tableidx(mas2, way);
2855 			tlb_print_entry(idx, mas1, mas2, mas3, mas7);
2856 		}
2857 }
2858 
2859 /**************************************************************************/
2860 /* TLB1 handling */
2861 /**************************************************************************/
2862 
2863 /*
2864  * TLB1 mapping notes:
2865  *
2866  * TLB1[0]	CCSRBAR
2867  * TLB1[1]	Kernel text and data.
2868  * TLB1[2-15]	Additional kernel text and data mappings (if required), PCI
2869  *		windows, other devices mappings.
2870  */
2871 
2872 /*
2873  * Write given entry to TLB1 hardware.
2874  * Use 32 bit pa, clear 4 high-order bits of RPN (mas7).
2875  */
2876 static void
2877 tlb1_write_entry(unsigned int idx)
2878 {
2879 	uint32_t mas0, mas7;
2880 
2881 	//debugf("tlb1_write_entry: s\n");
2882 
2883 	/* Clear high order RPN bits */
2884 	mas7 = 0;
2885 
2886 	/* Select entry */
2887 	mas0 = MAS0_TLBSEL(1) | MAS0_ESEL(idx);
2888 	//debugf("tlb1_write_entry: mas0 = 0x%08x\n", mas0);
2889 
2890 	mtspr(SPR_MAS0, mas0);
2891 	__asm __volatile("isync");
2892 	mtspr(SPR_MAS1, tlb1[idx].mas1);
2893 	__asm __volatile("isync");
2894 	mtspr(SPR_MAS2, tlb1[idx].mas2);
2895 	__asm __volatile("isync");
2896 	mtspr(SPR_MAS3, tlb1[idx].mas3);
2897 	__asm __volatile("isync");
2898 	mtspr(SPR_MAS7, mas7);
2899 	__asm __volatile("isync; tlbwe; isync; msync");
2900 
2901 	//debugf("tlb1_write_entry: e\n");
2902 }
2903 
2904 /*
2905  * Return the largest uint value log such that 2^log <= num.
2906  */
2907 static unsigned int
2908 ilog2(unsigned int num)
2909 {
2910 	int lz;
2911 
2912 	__asm ("cntlzw %0, %1" : "=r" (lz) : "r" (num));
2913 	return (31 - lz);
2914 }
2915 
2916 /*
2917  * Convert TLB TSIZE value to mapped region size.
2918  */
2919 static vm_size_t
2920 tsize2size(unsigned int tsize)
2921 {
2922 
2923 	/*
2924 	 * size = 4^tsize KB
2925 	 * size = 4^tsize * 2^10 = 2^(2 * tsize - 10)
2926 	 */
2927 
2928 	return ((1 << (2 * tsize)) * 1024);
2929 }
2930 
2931 /*
2932  * Convert region size (must be power of 4) to TLB TSIZE value.
2933  */
2934 static unsigned int
2935 size2tsize(vm_size_t size)
2936 {
2937 
2938 	return (ilog2(size) / 2 - 5);
2939 }
2940 
2941 /*
2942  * Register permanent kernel mapping in TLB1.
2943  *
2944  * Entries are created starting from index 0 (current free entry is
2945  * kept in tlb1_idx) and are not supposed to be invalidated.
2946  */
2947 static int
2948 tlb1_set_entry(vm_offset_t va, vm_offset_t pa, vm_size_t size,
2949     uint32_t flags)
2950 {
2951 	uint32_t ts, tid;
2952 	int tsize;
2953 
2954 	if (tlb1_idx >= TLB1_ENTRIES) {
2955 		printf("tlb1_set_entry: TLB1 full!\n");
2956 		return (-1);
2957 	}
2958 
2959 	/* Convert size to TSIZE */
2960 	tsize = size2tsize(size);
2961 
2962 	tid = (TID_KERNEL << MAS1_TID_SHIFT) & MAS1_TID_MASK;
2963 	/* XXX TS is hard coded to 0 for now as we only use single address space */
2964 	ts = (0 << MAS1_TS_SHIFT) & MAS1_TS_MASK;
2965 
2966 	/* XXX LOCK tlb1[] */
2967 
2968 	tlb1[tlb1_idx].mas1 = MAS1_VALID | MAS1_IPROT | ts | tid;
2969 	tlb1[tlb1_idx].mas1 |= ((tsize << MAS1_TSIZE_SHIFT) & MAS1_TSIZE_MASK);
2970 	tlb1[tlb1_idx].mas2 = (va & MAS2_EPN_MASK) | flags;
2971 
2972 	/* Set supervisor RWX permission bits */
2973 	tlb1[tlb1_idx].mas3 = (pa & MAS3_RPN) | MAS3_SR | MAS3_SW | MAS3_SX;
2974 
2975 	tlb1_write_entry(tlb1_idx++);
2976 
2977 	/* XXX UNLOCK tlb1[] */
2978 
2979 	/*
2980 	 * XXX in general TLB1 updates should be propagated between CPUs,
2981 	 * since current design assumes to have the same TLB1 set-up on all
2982 	 * cores.
2983 	 */
2984 	return (0);
2985 }
2986 
2987 /*
2988  * Map in contiguous RAM region into the TLB1 using maximum of
2989  * KERNEL_REGION_MAX_TLB_ENTRIES entries.
2990  *
2991  * If necessary round up last entry size and return total size
2992  * used by all allocated entries.
2993  */
2994 vm_size_t
2995 tlb1_mapin_region(vm_offset_t va, vm_paddr_t pa, vm_size_t size)
2996 {
2997 	vm_size_t pgs[KERNEL_REGION_MAX_TLB_ENTRIES];
2998 	vm_size_t mapped, pgsz, base, mask;
2999 	int idx, nents;
3000 
3001 	/* Round up to the next 1M */
3002 	size = (size + (1 << 20) - 1) & ~((1 << 20) - 1);
3003 
3004 	mapped = 0;
3005 	idx = 0;
3006 	base = va;
3007 	pgsz = 64*1024*1024;
3008 	while (mapped < size) {
3009 		while (mapped < size && idx < KERNEL_REGION_MAX_TLB_ENTRIES) {
3010 			while (pgsz > (size - mapped))
3011 				pgsz >>= 2;
3012 			pgs[idx++] = pgsz;
3013 			mapped += pgsz;
3014 		}
3015 
3016 		/* We under-map. Correct for this. */
3017 		if (mapped < size) {
3018 			while (pgs[idx - 1] == pgsz) {
3019 				idx--;
3020 				mapped -= pgsz;
3021 			}
3022 			/* XXX We may increase beyond out starting point. */
3023 			pgsz <<= 2;
3024 			pgs[idx++] = pgsz;
3025 			mapped += pgsz;
3026 		}
3027 	}
3028 
3029 	nents = idx;
3030 	mask = pgs[0] - 1;
3031 	/* Align address to the boundary */
3032 	if (va & mask) {
3033 		va = (va + mask) & ~mask;
3034 		pa = (pa + mask) & ~mask;
3035 	}
3036 
3037 	for (idx = 0; idx < nents; idx++) {
3038 		pgsz = pgs[idx];
3039 		debugf("%u: %x -> %x, size=%x\n", idx, pa, va, pgsz);
3040 		tlb1_set_entry(va, pa, pgsz, _TLB_ENTRY_MEM);
3041 		pa += pgsz;
3042 		va += pgsz;
3043 	}
3044 
3045 	mapped = (va - base);
3046 	debugf("mapped size 0x%08x (wasted space 0x%08x)\n",
3047 	    mapped, mapped - size);
3048 	return (mapped);
3049 }
3050 
3051 /*
3052  * TLB1 initialization routine, to be called after the very first
3053  * assembler level setup done in locore.S.
3054  */
3055 void
3056 tlb1_init(vm_offset_t ccsrbar)
3057 {
3058 	uint32_t mas0, mas1, mas3;
3059 	uint32_t tsz;
3060 	u_int i;
3061 
3062 	ccsrbar_pa = ccsrbar;
3063 
3064 	if (bootinfo != NULL && bootinfo[0] != 1) {
3065 		tlb1_idx = *((uint16_t *)(bootinfo + 8));
3066 	} else
3067 		tlb1_idx = 1;
3068 
3069 	/* The first entry/entries are used to map the kernel. */
3070 	for (i = 0; i < tlb1_idx; i++) {
3071 		mas0 = MAS0_TLBSEL(1) | MAS0_ESEL(i);
3072 		mtspr(SPR_MAS0, mas0);
3073 		__asm __volatile("isync; tlbre");
3074 
3075 		mas1 = mfspr(SPR_MAS1);
3076 		if ((mas1 & MAS1_VALID) == 0)
3077 			continue;
3078 
3079 		mas3 = mfspr(SPR_MAS3);
3080 
3081 		tlb1[i].mas1 = mas1;
3082 		tlb1[i].mas2 = mfspr(SPR_MAS2);
3083 		tlb1[i].mas3 = mas3;
3084 
3085 		if (i == 0)
3086 			kernload = mas3 & MAS3_RPN;
3087 
3088 		tsz = (mas1 & MAS1_TSIZE_MASK) >> MAS1_TSIZE_SHIFT;
3089 		kernsize += (tsz > 0) ? tsize2size(tsz) : 0;
3090 	}
3091 
3092 	/* Map in CCSRBAR. */
3093 	tlb1_set_entry(CCSRBAR_VA, ccsrbar, CCSRBAR_SIZE, _TLB_ENTRY_IO);
3094 
3095 #ifdef SMP
3096 	bp_ntlb1s = tlb1_idx;
3097 #endif
3098 
3099 	/* Purge the remaining entries */
3100 	for (i = tlb1_idx; i < TLB1_ENTRIES; i++)
3101 		tlb1_write_entry(i);
3102 
3103 	/* Setup TLB miss defaults */
3104 	set_mas4_defaults();
3105 }
3106 
3107 /*
3108  * Setup MAS4 defaults.
3109  * These values are loaded to MAS0-2 on a TLB miss.
3110  */
3111 static void
3112 set_mas4_defaults(void)
3113 {
3114 	uint32_t mas4;
3115 
3116 	/* Defaults: TLB0, PID0, TSIZED=4K */
3117 	mas4 = MAS4_TLBSELD0;
3118 	mas4 |= (TLB_SIZE_4K << MAS4_TSIZED_SHIFT) & MAS4_TSIZED_MASK;
3119 #ifdef SMP
3120 	mas4 |= MAS4_MD;
3121 #endif
3122 	mtspr(SPR_MAS4, mas4);
3123 	__asm __volatile("isync");
3124 }
3125 
3126 /*
3127  * Print out contents of the MAS registers for each TLB1 entry
3128  */
3129 void
3130 tlb1_print_tlbentries(void)
3131 {
3132 	uint32_t mas0, mas1, mas2, mas3, mas7;
3133 	int i;
3134 
3135 	debugf("TLB1 entries:\n");
3136 	for (i = 0; i < TLB1_ENTRIES; i++) {
3137 
3138 		mas0 = MAS0_TLBSEL(1) | MAS0_ESEL(i);
3139 		mtspr(SPR_MAS0, mas0);
3140 
3141 		__asm __volatile("isync; tlbre");
3142 
3143 		mas1 = mfspr(SPR_MAS1);
3144 		mas2 = mfspr(SPR_MAS2);
3145 		mas3 = mfspr(SPR_MAS3);
3146 		mas7 = mfspr(SPR_MAS7);
3147 
3148 		tlb_print_entry(i, mas1, mas2, mas3, mas7);
3149 	}
3150 }
3151 
3152 /*
3153  * Print out contents of the in-ram tlb1 table.
3154  */
3155 void
3156 tlb1_print_entries(void)
3157 {
3158 	int i;
3159 
3160 	debugf("tlb1[] table entries:\n");
3161 	for (i = 0; i < TLB1_ENTRIES; i++)
3162 		tlb_print_entry(i, tlb1[i].mas1, tlb1[i].mas2, tlb1[i].mas3, 0);
3163 }
3164 
3165 /*
3166  * Return 0 if the physical IO range is encompassed by one of the
3167  * the TLB1 entries, otherwise return related error code.
3168  */
3169 static int
3170 tlb1_iomapped(int i, vm_paddr_t pa, vm_size_t size, vm_offset_t *va)
3171 {
3172 	uint32_t prot;
3173 	vm_paddr_t pa_start;
3174 	vm_paddr_t pa_end;
3175 	unsigned int entry_tsize;
3176 	vm_size_t entry_size;
3177 
3178 	*va = (vm_offset_t)NULL;
3179 
3180 	/* Skip invalid entries */
3181 	if (!(tlb1[i].mas1 & MAS1_VALID))
3182 		return (EINVAL);
3183 
3184 	/*
3185 	 * The entry must be cache-inhibited, guarded, and r/w
3186 	 * so it can function as an i/o page
3187 	 */
3188 	prot = tlb1[i].mas2 & (MAS2_I | MAS2_G);
3189 	if (prot != (MAS2_I | MAS2_G))
3190 		return (EPERM);
3191 
3192 	prot = tlb1[i].mas3 & (MAS3_SR | MAS3_SW);
3193 	if (prot != (MAS3_SR | MAS3_SW))
3194 		return (EPERM);
3195 
3196 	/* The address should be within the entry range. */
3197 	entry_tsize = (tlb1[i].mas1 & MAS1_TSIZE_MASK) >> MAS1_TSIZE_SHIFT;
3198 	KASSERT((entry_tsize), ("tlb1_iomapped: invalid entry tsize"));
3199 
3200 	entry_size = tsize2size(entry_tsize);
3201 	pa_start = tlb1[i].mas3 & MAS3_RPN;
3202 	pa_end = pa_start + entry_size - 1;
3203 
3204 	if ((pa < pa_start) || ((pa + size) > pa_end))
3205 		return (ERANGE);
3206 
3207 	/* Return virtual address of this mapping. */
3208 	*va = (tlb1[i].mas2 & MAS2_EPN_MASK) + (pa - pa_start);
3209 	return (0);
3210 }
3211