xref: /freebsd/sys/powerpc/mpc85xx/fsl_espi.c (revision 4d846d26)
1 /*-
2  * Copyright (c) 2017 Justin Hibbits <jhibbits@FreeBSD.org>
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  *
26  */
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29 
30 #include <sys/param.h>
31 #include <sys/systm.h>
32 #include <sys/bus.h>
33 #include <sys/kernel.h>
34 #include <sys/lock.h>
35 #include <sys/malloc.h>
36 #include <sys/module.h>
37 #include <sys/mutex.h>
38 
39 #include <machine/bus.h>
40 
41 #include <dev/spibus/spi.h>
42 #include <dev/spibus/spibusvar.h>
43 
44 #include <dev/ofw/ofw_bus.h>
45 #include <dev/ofw/ofw_bus_subr.h>
46 
47 #include <powerpc/mpc85xx/mpc85xx.h>
48 
49 #include "spibus_if.h"
50 
51 /* TODO:
52  *
53  * Optimize FIFO reads and writes to do word-at-a-time instead of byte-at-a-time
54  */
55 #define	ESPI_SPMODE	0x0
56 #define	  ESPI_SPMODE_EN	  0x80000000
57 #define	  ESPI_SPMODE_LOOP	  0x40000000
58 #define	  ESPI_SPMODE_HO_ADJ_M	  0x00070000
59 #define	  ESPI_SPMODE_TXTHR_M	  0x00003f00
60 #define	  ESPI_SPMODE_TXTHR_S	  8
61 #define	  ESPI_SPMODE_RXTHR_M	  0x0000001f
62 #define	  ESPI_SPMODE_RXTHR_S	  0
63 #define	ESPI_SPIE	0x4
64 #define	  ESPI_SPIE_RXCNT_M	  0x3f000000
65 #define	  ESPI_SPIE_RXCNT_S	  24
66 #define	  ESPI_SPIE_TXCNT_M	  0x003f0000
67 #define	  ESPI_SPIE_TXCNT_S	  16
68 #define	  ESPI_SPIE_TXE		  0x00008000
69 #define	  ESPI_SPIE_DON		  0x00004000
70 #define	  ESPI_SPIE_RXT		  0x00002000
71 #define	  ESPI_SPIE_RXF		  0x00001000
72 #define	  ESPI_SPIE_TXT		  0x00000800
73 #define	  ESPI_SPIE_RNE		  0x00000200
74 #define	  ESPI_SPIE_TNF		  0x00000100
75 #define	ESPI_SPIM	0x8
76 #define	ESPI_SPCOM	0xc
77 #define	  ESPI_SPCOM_CS_M	  0xc0000000
78 #define	  ESPI_SPCOM_CS_S	  30
79 #define	  ESPI_SPCOM_RXDELAY	  0x20000000
80 #define	  ESPI_SPCOM_DO		  0x10000000
81 #define	  ESPI_SPCOM_TO		  0x08000000
82 #define	  ESPI_SPCOM_HLD	  0x04000000
83 #define	  ESPI_SPCOM_RXSKIP_M	  0x00ff0000
84 #define	  ESPI_SPCOM_TRANLEN_M	  0x0000ffff
85 #define	ESPI_SPITF	0x10
86 #define	ESPI_SPIRF	0x14
87 #define	ESPI_SPMODE0	0x20
88 #define	ESPI_SPMODE1	0x24
89 #define	ESPI_SPMODE2	0x28
90 #define	ESPI_SPMODE3	0x2c
91 #define	  ESPI_CSMODE_CI	  0x80000000
92 #define	  ESPI_CSMODE_CP	  0x40000000
93 #define	  ESPI_CSMODE_REV	  0x20000000
94 #define	  ESPI_CSMODE_DIV16	  0x10000000
95 #define	  ESPI_CSMODE_PM_M	  0x0f000000
96 #define	  ESPI_CSMODE_PM_S	  24
97 #define	  ESPI_CSMODE_ODD	  0x00800000
98 #define	  ESPI_CSMODE_POL	  0x00100000
99 #define	  ESPI_CSMODE_LEN_M	  0x000f0000
100 #define	    ESPI_CSMODE_LEN(x)	    (x << 16)
101 #define	  ESPI_CSMODE_CSBEF_M	  0x0000f000
102 #define	  ESPI_CSMODE_CSAFT_M	  0x00000f00
103 #define	  ESPI_CSMODE_CSCG_M	  0x000000f8
104 #define	    ESPI_CSMODE_CSCG(x)	    (x << 3)
105 #define	ESPI_CSMODE(n)		(ESPI_SPMODE0 + n * 4)
106 
107 #define	FSL_ESPI_WRITE(sc,off,val)	bus_write_4(sc->sc_mem_res, off, val)
108 #define	FSL_ESPI_READ(sc,off)		bus_read_4(sc->sc_mem_res, off)
109 #define	FSL_ESPI_WRITE_FIFO(sc,off,val)	bus_write_1(sc->sc_mem_res, off, val)
110 #define	FSL_ESPI_READ_FIFO(sc,off)	bus_read_1(sc->sc_mem_res, off)
111 
112 #define FSL_ESPI_LOCK(_sc)			\
113     mtx_lock(&(_sc)->sc_mtx)
114 #define FSL_ESPI_UNLOCK(_sc)			\
115     mtx_unlock(&(_sc)->sc_mtx)
116 
117 struct fsl_espi_softc
118 {
119 	device_t		sc_dev;
120 	struct resource		*sc_mem_res;
121 	struct resource		*sc_irq_res;
122 	struct mtx		sc_mtx;
123 	int			sc_num_cs;
124 	struct spi_command	*sc_cmd;
125 	uint32_t		sc_len;
126 	uint32_t		sc_read;
127 	uint32_t		sc_flags;
128 #define	  FSL_ESPI_BUSY		  0x00000001
129 	uint32_t		sc_written;
130 	void *			sc_intrhand;
131 };
132 
133 static void fsl_espi_intr(void *);
134 
135 static int
136 fsl_espi_probe(device_t dev)
137 {
138 
139 	if (!ofw_bus_status_okay(dev))
140 		return (ENXIO);
141 
142 	if (!ofw_bus_is_compatible(dev, "fsl,mpc8536-espi"))
143 		return (ENXIO);
144 
145 	device_set_desc(dev, "Freescale eSPI controller");
146 
147 	return (BUS_PROBE_DEFAULT);
148 }
149 
150 static int
151 fsl_espi_attach(device_t dev)
152 {
153 	struct fsl_espi_softc *sc;
154 	int rid;
155 	phandle_t node;
156 
157 	sc = device_get_softc(dev);
158 	sc->sc_dev = dev;
159 	node = ofw_bus_get_node(dev);
160 
161 	rid = 0;
162 	sc->sc_mem_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
163 	    RF_ACTIVE);
164 	if (!sc->sc_mem_res) {
165 		device_printf(dev, "cannot allocate memory resource\n");
166 		return (ENXIO);
167 	}
168 
169 	rid = 0;
170 	sc->sc_irq_res = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
171 	    RF_ACTIVE);
172 	if (!sc->sc_irq_res) {
173 		bus_release_resource(dev, SYS_RES_MEMORY, 0, sc->sc_mem_res);
174 		device_printf(dev, "cannot allocate interrupt\n");
175 		return (ENXIO);
176 	}
177 
178 	/* Hook up our interrupt handler. */
179 	if (bus_setup_intr(dev, sc->sc_irq_res, INTR_TYPE_MISC | INTR_MPSAFE,
180 	    NULL, fsl_espi_intr, sc, &sc->sc_intrhand)) {
181 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sc_irq_res);
182 		bus_release_resource(dev, SYS_RES_MEMORY, 0, sc->sc_mem_res);
183 		device_printf(dev, "cannot setup the interrupt handler\n");
184 		return (ENXIO);
185 	}
186 	if (OF_getencprop(node, "fsl,espi-num-chipselects",
187 	    &sc->sc_num_cs, sizeof(sc->sc_num_cs)) < 0 )
188 		sc->sc_num_cs = 4;
189 
190 	mtx_init(&sc->sc_mtx, "fsl_espi", NULL, MTX_DEF);
191 
192 	/* Enable the SPI controller.  */
193 	FSL_ESPI_WRITE(sc, ESPI_SPMODE, ESPI_SPMODE_EN |
194 	    (16 << ESPI_SPMODE_TXTHR_S) | (15 << ESPI_SPMODE_RXTHR_S));
195 
196 	/* Disable all interrupts until we start transfers  */
197 	FSL_ESPI_WRITE(sc, ESPI_SPIM, 0);
198 
199 	device_add_child(dev, "spibus", -1);
200 
201 	return (bus_generic_attach(dev));
202 }
203 
204 static int
205 fsl_espi_detach(device_t dev)
206 {
207 	struct fsl_espi_softc *sc;
208 
209 	bus_generic_detach(dev);
210 
211 	sc = device_get_softc(dev);
212 	FSL_ESPI_WRITE(sc, ESPI_SPMODE, 0);
213 
214 	sc = device_get_softc(dev);
215 	mtx_destroy(&sc->sc_mtx);
216 	if (sc->sc_intrhand)
217 		bus_teardown_intr(dev, sc->sc_irq_res, sc->sc_intrhand);
218 	if (sc->sc_irq_res)
219 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sc_irq_res);
220 	if (sc->sc_mem_res)
221 		bus_release_resource(dev, SYS_RES_MEMORY, 0, sc->sc_mem_res);
222 
223 	return (0);
224 }
225 
226 static void
227 fsl_espi_fill_fifo(struct fsl_espi_softc *sc)
228 {
229 	struct spi_command *cmd;
230 	uint32_t spier, written;
231 	uint8_t *data;
232 
233 	cmd = sc->sc_cmd;
234 	spier = FSL_ESPI_READ(sc, ESPI_SPIE);
235 	while (sc->sc_written < sc->sc_len &&
236 	    (spier & ESPI_SPIE_TNF)) {
237 		data = (uint8_t *)cmd->tx_cmd;
238 		written = sc->sc_written++;
239 		if (written >= cmd->tx_cmd_sz) {
240 			data = (uint8_t *)cmd->tx_data;
241 			written -= cmd->tx_cmd_sz;
242 		}
243 		FSL_ESPI_WRITE_FIFO(sc, ESPI_SPITF, data[written]);
244 		spier = FSL_ESPI_READ(sc, ESPI_SPIE);
245 	}
246 }
247 
248 static void
249 fsl_espi_drain_fifo(struct fsl_espi_softc *sc)
250 {
251 	struct spi_command *cmd;
252 	uint32_t spier, read;
253 	uint8_t *data;
254 	uint8_t r;
255 
256 	cmd = sc->sc_cmd;
257 	spier = FSL_ESPI_READ(sc, ESPI_SPIE);
258 	while (sc->sc_read < sc->sc_len && (spier & ESPI_SPIE_RNE)) {
259 		data = (uint8_t *)cmd->rx_cmd;
260 		read = sc->sc_read++;
261 		if (read >= cmd->rx_cmd_sz) {
262 			data = (uint8_t *)cmd->rx_data;
263 			read -= cmd->rx_cmd_sz;
264 		}
265 		r = FSL_ESPI_READ_FIFO(sc, ESPI_SPIRF);
266 		data[read] = r;
267 		spier = FSL_ESPI_READ(sc, ESPI_SPIE);
268 	}
269 }
270 
271 static void
272 fsl_espi_intr(void *arg)
273 {
274 	struct fsl_espi_softc *sc;
275 	uint32_t spie;
276 
277 	sc = (struct fsl_espi_softc *)arg;
278 	FSL_ESPI_LOCK(sc);
279 
280 	/* Filter stray interrupts. */
281 	if ((sc->sc_flags & FSL_ESPI_BUSY) == 0) {
282 		FSL_ESPI_UNLOCK(sc);
283 		return;
284 	}
285 	spie = FSL_ESPI_READ(sc, ESPI_SPIE);
286 	FSL_ESPI_WRITE(sc, ESPI_SPIE, spie);
287 
288 	/* TX - Fill up the FIFO. */
289 	fsl_espi_fill_fifo(sc);
290 
291 	/* RX - Drain the FIFO. */
292 	fsl_espi_drain_fifo(sc);
293 
294 	/* Check for end of transfer. */
295 	if (spie & ESPI_SPIE_DON)
296 		wakeup(sc->sc_dev);
297 
298 	FSL_ESPI_UNLOCK(sc);
299 }
300 
301 static int
302 fsl_espi_transfer(device_t dev, device_t child, struct spi_command *cmd)
303 {
304 	struct fsl_espi_softc *sc;
305 	u_long plat_clk;
306 	uint32_t csmode, spi_clk, spi_mode;
307 	int cs, err, pm;
308 
309 	sc = device_get_softc(dev);
310 
311 	KASSERT(cmd->tx_cmd_sz == cmd->rx_cmd_sz,
312 	    ("TX/RX command sizes should be equal"));
313 	KASSERT(cmd->tx_data_sz == cmd->rx_data_sz,
314 	    ("TX/RX data sizes should be equal"));
315 
316 	/* Restrict transmit length to command max length */
317 	if (cmd->tx_cmd_sz + cmd->tx_data_sz > ESPI_SPCOM_TRANLEN_M + 1) {
318 		return (EINVAL);
319 	}
320 
321 	/* Get the proper chip select for this child. */
322 	spibus_get_cs(child, &cs);
323 	if (cs < 0 || cs > sc->sc_num_cs) {
324 		device_printf(dev,
325 		    "Invalid chip select %d requested by %s\n", cs,
326 		    device_get_nameunit(child));
327 		return (EINVAL);
328 	}
329 	spibus_get_clock(child, &spi_clk);
330 	spibus_get_mode(child, &spi_mode);
331 
332 	FSL_ESPI_LOCK(sc);
333 
334 	/* If the controller is in use wait until it is available. */
335 	while (sc->sc_flags & FSL_ESPI_BUSY)
336 		mtx_sleep(dev, &sc->sc_mtx, 0, "fsl_espi", 0);
337 
338 	/* Now we have control over SPI controller. */
339 	sc->sc_flags = FSL_ESPI_BUSY;
340 
341 	/* Save a pointer to the SPI command. */
342 	sc->sc_cmd = cmd;
343 	sc->sc_read = 0;
344 	sc->sc_written = 0;
345 	sc->sc_len = cmd->tx_cmd_sz + cmd->tx_data_sz;
346 
347 	plat_clk = mpc85xx_get_system_clock();
348 	spi_clk = max(spi_clk, plat_clk / (16 * 16));
349 	if (plat_clk == 0) {
350 		device_printf(dev,
351 		    "unable to get platform clock, giving up.\n");
352 		return (EINVAL);
353 	}
354 	csmode = 0;
355 	if (plat_clk > spi_clk * 16 * 2) {
356 		csmode |= ESPI_CSMODE_DIV16;
357 		plat_clk /= 16;
358 	}
359 	pm = howmany(plat_clk, spi_clk * 2) - 1;
360 	if (pm < 0)
361 		pm = 1;
362 	if (pm > 15)
363 		pm = 15;
364 
365 	csmode |= (pm << ESPI_CSMODE_PM_S);
366 	csmode |= ESPI_CSMODE_REV;
367 	if (spi_mode == SPIBUS_MODE_CPOL || spi_mode == SPIBUS_MODE_CPOL_CPHA)
368 		csmode |= ESPI_CSMODE_CI;
369 	if (spi_mode == SPIBUS_MODE_CPHA || spi_mode == SPIBUS_MODE_CPOL_CPHA)
370 		csmode |= ESPI_CSMODE_CP;
371 	if (!(cs & SPIBUS_CS_HIGH))
372 		csmode |= ESPI_CSMODE_POL;
373 	csmode |= ESPI_CSMODE_LEN(7);/* Only deal with 8-bit characters. */
374 	csmode |= ESPI_CSMODE_CSCG(1); /* XXX: Make this configurable? */
375 	/* Configure transaction */
376 	FSL_ESPI_WRITE(sc, ESPI_SPCOM, (cs << ESPI_SPCOM_CS_S) | (sc->sc_len - 1));
377 	FSL_ESPI_WRITE(sc, ESPI_CSMODE(cs), csmode);
378 	/* Enable interrupts we need. */
379 	FSL_ESPI_WRITE(sc, ESPI_SPIM,
380 	    ESPI_SPIE_TXE | ESPI_SPIE_DON | ESPI_SPIE_RXF);
381 
382 	/* Wait for the transaction to complete. */
383 	err = mtx_sleep(dev, &sc->sc_mtx, 0, "fsl_espi", hz * 2);
384 	FSL_ESPI_WRITE(sc, ESPI_SPIM, 0);
385 
386 	/* Release the controller and wakeup the next thread waiting for it. */
387 	sc->sc_flags = 0;
388 	wakeup_one(dev);
389 	FSL_ESPI_UNLOCK(sc);
390 
391 	/*
392 	 * Check for transfer timeout.  The SPI controller doesn't
393 	 * return errors.
394 	 */
395 	if (err == EWOULDBLOCK) {
396 		device_printf(sc->sc_dev, "SPI error\n");
397 		err = EIO;
398 	}
399 
400 	return (err);
401 }
402 
403 static phandle_t
404 fsl_espi_get_node(device_t bus, device_t dev)
405 {
406 
407 	/* We only have one child, the SPI bus, which needs our own node. */
408 	return (ofw_bus_get_node(bus));
409 }
410 
411 static device_method_t fsl_espi_methods[] = {
412 	/* Device interface */
413 	DEVMETHOD(device_probe,		fsl_espi_probe),
414 	DEVMETHOD(device_attach,	fsl_espi_attach),
415 	DEVMETHOD(device_detach,	fsl_espi_detach),
416 
417 	/* SPI interface */
418 	DEVMETHOD(spibus_transfer,	fsl_espi_transfer),
419 
420 	/* ofw_bus interface */
421 	DEVMETHOD(ofw_bus_get_node,	fsl_espi_get_node),
422 
423 	DEVMETHOD_END
424 };
425 
426 static driver_t fsl_espi_driver = {
427 	"spi",
428 	fsl_espi_methods,
429 	sizeof(struct fsl_espi_softc),
430 };
431 
432 DRIVER_MODULE(fsl_espi, simplebus, fsl_espi_driver, 0, 0);
433