xref: /freebsd/sys/powerpc/powermac/smu.c (revision d0b2dbfa)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2009 Nathan Whitehorn
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
21  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
22  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
23  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
24  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  *
28  */
29 
30 #include <sys/cdefs.h>
31 #include <sys/param.h>
32 #include <sys/bus.h>
33 #include <sys/eventhandler.h>
34 #include <sys/systm.h>
35 #include <sys/module.h>
36 #include <sys/conf.h>
37 #include <sys/cpu.h>
38 #include <sys/clock.h>
39 #include <sys/ctype.h>
40 #include <sys/kernel.h>
41 #include <sys/kthread.h>
42 #include <sys/lock.h>
43 #include <sys/mutex.h>
44 #include <sys/reboot.h>
45 #include <sys/rman.h>
46 #include <sys/sysctl.h>
47 #include <sys/unistd.h>
48 
49 #include <machine/bus.h>
50 #include <machine/intr_machdep.h>
51 #include <machine/md_var.h>
52 
53 #include <dev/iicbus/iicbus.h>
54 #include <dev/iicbus/iiconf.h>
55 #include <dev/led/led.h>
56 #include <dev/ofw/openfirm.h>
57 #include <dev/ofw/ofw_bus.h>
58 #include <dev/ofw/ofw_bus_subr.h>
59 #include <powerpc/powermac/macgpiovar.h>
60 #include <powerpc/powermac/powermac_thermal.h>
61 
62 #include "clock_if.h"
63 #include "iicbus_if.h"
64 
65 struct smu_cmd {
66 	volatile uint8_t cmd;
67 	uint8_t		len;
68 	uint8_t		data[254];
69 
70 	STAILQ_ENTRY(smu_cmd) cmd_q;
71 };
72 
73 STAILQ_HEAD(smu_cmdq, smu_cmd);
74 
75 struct smu_fan {
76 	struct pmac_fan fan;
77 	device_t dev;
78 	cell_t	reg;
79 
80 	enum {
81 		SMU_FAN_RPM,
82 		SMU_FAN_PWM
83 	} type;
84 	int	setpoint;
85 	int	old_style;
86 	int     rpm;
87 };
88 
89 /* We can read the PWM and the RPM from a PWM controlled fan.
90  * Offer both values via sysctl.
91  */
92 enum {
93 	SMU_PWM_SYSCTL_PWM   = 1 << 8,
94 	SMU_PWM_SYSCTL_RPM   = 2 << 8
95 };
96 
97 struct smu_sensor {
98 	struct pmac_therm therm;
99 	device_t dev;
100 
101 	cell_t	reg;
102 	enum {
103 		SMU_CURRENT_SENSOR,
104 		SMU_VOLTAGE_SENSOR,
105 		SMU_POWER_SENSOR,
106 		SMU_TEMP_SENSOR
107 	} type;
108 };
109 
110 struct smu_softc {
111 	device_t	sc_dev;
112 	struct mtx	sc_mtx;
113 
114 	struct resource	*sc_memr;
115 	int		sc_memrid;
116 	int		sc_u3;
117 
118 	bus_dma_tag_t	sc_dmatag;
119 	bus_space_tag_t	sc_bt;
120 	bus_space_handle_t sc_mailbox;
121 
122 	struct smu_cmd	*sc_cmd, *sc_cur_cmd;
123 	bus_addr_t	sc_cmd_phys;
124 	bus_dmamap_t	sc_cmd_dmamap;
125 	struct smu_cmdq	sc_cmdq;
126 
127 	struct smu_fan	*sc_fans;
128 	int		sc_nfans;
129 	int		old_style_fans;
130 	struct smu_sensor *sc_sensors;
131 	int		sc_nsensors;
132 
133 	int		sc_doorbellirqid;
134 	struct resource	*sc_doorbellirq;
135 	void		*sc_doorbellirqcookie;
136 
137 	struct proc	*sc_fanmgt_proc;
138 	time_t		sc_lastuserchange;
139 
140 	/* Calibration data */
141 	uint16_t	sc_cpu_diode_scale;
142 	int16_t		sc_cpu_diode_offset;
143 
144 	uint16_t	sc_cpu_volt_scale;
145 	int16_t		sc_cpu_volt_offset;
146 	uint16_t	sc_cpu_curr_scale;
147 	int16_t		sc_cpu_curr_offset;
148 
149 	uint16_t	sc_slots_pow_scale;
150 	int16_t		sc_slots_pow_offset;
151 
152 	struct cdev 	*sc_leddev;
153 };
154 
155 /* regular bus attachment functions */
156 
157 static int	smu_probe(device_t);
158 static int	smu_attach(device_t);
159 static const struct ofw_bus_devinfo *
160     smu_get_devinfo(device_t bus, device_t dev);
161 
162 /* cpufreq notification hooks */
163 
164 static void	smu_cpufreq_pre_change(device_t, const struct cf_level *level);
165 static void	smu_cpufreq_post_change(device_t, const struct cf_level *level);
166 
167 /* clock interface */
168 static int	smu_gettime(device_t dev, struct timespec *ts);
169 static int	smu_settime(device_t dev, struct timespec *ts);
170 
171 /* utility functions */
172 static int	smu_run_cmd(device_t dev, struct smu_cmd *cmd, int wait);
173 static int	smu_get_datablock(device_t dev, int8_t id, uint8_t *buf,
174 		    size_t len);
175 static void	smu_attach_i2c(device_t dev, phandle_t i2croot);
176 static void	smu_attach_fans(device_t dev, phandle_t fanroot);
177 static void	smu_attach_sensors(device_t dev, phandle_t sensroot);
178 static void	smu_set_sleepled(void *xdev, int onoff);
179 static int	smu_server_mode(SYSCTL_HANDLER_ARGS);
180 static void	smu_doorbell_intr(void *xdev);
181 static void	smu_shutdown(void *xdev, int howto);
182 
183 /* where to find the doorbell GPIO */
184 
185 static device_t	smu_doorbell = NULL;
186 
187 static device_method_t  smu_methods[] = {
188 	/* Device interface */
189 	DEVMETHOD(device_probe,		smu_probe),
190 	DEVMETHOD(device_attach,	smu_attach),
191 
192 	/* Clock interface */
193 	DEVMETHOD(clock_gettime,	smu_gettime),
194 	DEVMETHOD(clock_settime,	smu_settime),
195 
196 	/* ofw_bus interface */
197 	DEVMETHOD(bus_child_pnpinfo,	ofw_bus_gen_child_pnpinfo),
198 	DEVMETHOD(ofw_bus_get_devinfo,	smu_get_devinfo),
199 	DEVMETHOD(ofw_bus_get_compat,	ofw_bus_gen_get_compat),
200 	DEVMETHOD(ofw_bus_get_model,	ofw_bus_gen_get_model),
201 	DEVMETHOD(ofw_bus_get_name,	ofw_bus_gen_get_name),
202 	DEVMETHOD(ofw_bus_get_node,	ofw_bus_gen_get_node),
203 	DEVMETHOD(ofw_bus_get_type,	ofw_bus_gen_get_type),
204 
205 	{ 0, 0 },
206 };
207 
208 static driver_t smu_driver = {
209 	"smu",
210 	smu_methods,
211 	sizeof(struct smu_softc)
212 };
213 
214 DRIVER_MODULE(smu, ofwbus, smu_driver, 0, 0);
215 static MALLOC_DEFINE(M_SMU, "smu", "SMU Sensor Information");
216 
217 #define SMU_MAILBOX		0x8000860c
218 #define SMU_FANMGT_INTERVAL	1000 /* ms */
219 
220 /* Command types */
221 #define SMU_ADC			0xd8
222 #define SMU_FAN			0x4a
223 #define SMU_RPM_STATUS		0x01
224 #define SMU_RPM_SETPOINT	0x02
225 #define SMU_PWM_STATUS		0x11
226 #define SMU_PWM_SETPOINT	0x12
227 #define SMU_I2C			0x9a
228 #define  SMU_I2C_SIMPLE		0x00
229 #define  SMU_I2C_NORMAL		0x01
230 #define  SMU_I2C_COMBINED	0x02
231 #define SMU_MISC		0xee
232 #define  SMU_MISC_GET_DATA	0x02
233 #define  SMU_MISC_LED_CTRL	0x04
234 #define SMU_POWER		0xaa
235 #define SMU_POWER_EVENTS	0x8f
236 #define  SMU_PWR_GET_POWERUP	0x00
237 #define  SMU_PWR_SET_POWERUP	0x01
238 #define  SMU_PWR_CLR_POWERUP	0x02
239 #define SMU_RTC			0x8e
240 #define  SMU_RTC_GET		0x81
241 #define  SMU_RTC_SET		0x80
242 
243 /* Power event types */
244 #define SMU_WAKEUP_KEYPRESS	0x01
245 #define SMU_WAKEUP_AC_INSERT	0x02
246 #define SMU_WAKEUP_AC_CHANGE	0x04
247 #define SMU_WAKEUP_RING		0x10
248 
249 /* Data blocks */
250 #define SMU_CPUTEMP_CAL		0x18
251 #define SMU_CPUVOLT_CAL		0x21
252 #define SMU_SLOTPW_CAL		0x78
253 
254 /* Partitions */
255 #define SMU_PARTITION		0x3e
256 #define SMU_PARTITION_LATEST	0x01
257 #define SMU_PARTITION_BASE	0x02
258 #define SMU_PARTITION_UPDATE	0x03
259 
260 static int
261 smu_probe(device_t dev)
262 {
263 	const char *name = ofw_bus_get_name(dev);
264 
265 	if (strcmp(name, "smu") != 0)
266 		return (ENXIO);
267 
268 	device_set_desc(dev, "Apple System Management Unit");
269 	return (0);
270 }
271 
272 static void
273 smu_phys_callback(void *xsc, bus_dma_segment_t *segs, int nsegs, int error)
274 {
275 	struct smu_softc *sc = xsc;
276 
277 	sc->sc_cmd_phys = segs[0].ds_addr;
278 }
279 
280 static int
281 smu_attach(device_t dev)
282 {
283 	struct smu_softc *sc;
284 	phandle_t	node, child;
285 	uint8_t		data[12];
286 
287 	sc = device_get_softc(dev);
288 
289 	mtx_init(&sc->sc_mtx, "smu", NULL, MTX_DEF);
290 	sc->sc_cur_cmd = NULL;
291 	sc->sc_doorbellirqid = -1;
292 
293 	sc->sc_u3 = 0;
294 	if (OF_finddevice("/u3") != -1)
295 		sc->sc_u3 = 1;
296 
297 	/*
298 	 * Map the mailbox area. This should be determined from firmware,
299 	 * but I have not found a simple way to do that.
300 	 */
301 	bus_dma_tag_create(NULL, 16, 0, BUS_SPACE_MAXADDR_32BIT,
302 	    BUS_SPACE_MAXADDR, NULL, NULL, PAGE_SIZE, 1, PAGE_SIZE, 0, NULL,
303 	    NULL, &(sc->sc_dmatag));
304 	sc->sc_bt = &bs_le_tag;
305 	bus_space_map(sc->sc_bt, SMU_MAILBOX, 4, 0, &sc->sc_mailbox);
306 
307 	/*
308 	 * Allocate the command buffer. This can be anywhere in the low 4 GB
309 	 * of memory.
310 	 */
311 	bus_dmamem_alloc(sc->sc_dmatag, (void **)&sc->sc_cmd, BUS_DMA_WAITOK |
312 	    BUS_DMA_ZERO, &sc->sc_cmd_dmamap);
313 	bus_dmamap_load(sc->sc_dmatag, sc->sc_cmd_dmamap,
314 	    sc->sc_cmd, PAGE_SIZE, smu_phys_callback, sc, 0);
315 	STAILQ_INIT(&sc->sc_cmdq);
316 
317 	/*
318 	 * Set up handlers to change CPU voltage when CPU frequency is changed.
319 	 */
320 	EVENTHANDLER_REGISTER(cpufreq_pre_change, smu_cpufreq_pre_change, dev,
321 	    EVENTHANDLER_PRI_ANY);
322 	EVENTHANDLER_REGISTER(cpufreq_post_change, smu_cpufreq_post_change, dev,
323 	    EVENTHANDLER_PRI_ANY);
324 
325 	node = ofw_bus_get_node(dev);
326 
327 	/* Some SMUs have RPM and PWM controlled fans which do not sit
328 	 * under the same node. So we have to attach them separately.
329 	 */
330 	smu_attach_fans(dev, node);
331 
332 	/*
333 	 * Now detect and attach the other child devices.
334 	 */
335 	for (child = OF_child(node); child != 0; child = OF_peer(child)) {
336 		char name[32];
337 		memset(name, 0, sizeof(name));
338 		OF_getprop(child, "name", name, sizeof(name));
339 
340 		if (strncmp(name, "sensors", 8) == 0)
341 			smu_attach_sensors(dev, child);
342 
343 		if (strncmp(name, "smu-i2c-control", 15) == 0)
344 			smu_attach_i2c(dev, child);
345 	}
346 
347 	/* Some SMUs have the I2C children directly under the bus. */
348 	smu_attach_i2c(dev, node);
349 
350 	/*
351 	 * Collect calibration constants.
352 	 */
353 	smu_get_datablock(dev, SMU_CPUTEMP_CAL, data, sizeof(data));
354 	sc->sc_cpu_diode_scale = (data[4] << 8) + data[5];
355 	sc->sc_cpu_diode_offset = (data[6] << 8) + data[7];
356 
357 	smu_get_datablock(dev, SMU_CPUVOLT_CAL, data, sizeof(data));
358 	sc->sc_cpu_volt_scale = (data[4] << 8) + data[5];
359 	sc->sc_cpu_volt_offset = (data[6] << 8) + data[7];
360 	sc->sc_cpu_curr_scale = (data[8] << 8) + data[9];
361 	sc->sc_cpu_curr_offset = (data[10] << 8) + data[11];
362 
363 	smu_get_datablock(dev, SMU_SLOTPW_CAL, data, sizeof(data));
364 	sc->sc_slots_pow_scale = (data[4] << 8) + data[5];
365 	sc->sc_slots_pow_offset = (data[6] << 8) + data[7];
366 
367 	/*
368 	 * Set up LED interface
369 	 */
370 	sc->sc_leddev = led_create(smu_set_sleepled, dev, "sleepled");
371 
372 	/*
373 	 * Reset on power loss behavior
374 	 */
375 
376 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
377             SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO,
378 	    "server_mode", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, dev,
379 	    0, smu_server_mode, "I", "Enable reboot after power failure");
380 
381 	/*
382 	 * Set up doorbell interrupt.
383 	 */
384 	sc->sc_doorbellirqid = 0;
385 	sc->sc_doorbellirq = bus_alloc_resource_any(smu_doorbell, SYS_RES_IRQ,
386 	    &sc->sc_doorbellirqid, RF_ACTIVE);
387 	bus_setup_intr(smu_doorbell, sc->sc_doorbellirq,
388 	    INTR_TYPE_MISC | INTR_MPSAFE, NULL, smu_doorbell_intr, dev,
389 	    &sc->sc_doorbellirqcookie);
390 	powerpc_config_intr(rman_get_start(sc->sc_doorbellirq),
391 	    INTR_TRIGGER_EDGE, INTR_POLARITY_LOW);
392 
393 	/*
394 	 * Connect RTC interface.
395 	 */
396 	clock_register(dev, 1000);
397 
398 	/*
399 	 * Learn about shutdown events
400 	 */
401 	EVENTHANDLER_REGISTER(shutdown_final, smu_shutdown, dev,
402 	    SHUTDOWN_PRI_LAST);
403 
404 	return (bus_generic_attach(dev));
405 }
406 
407 static const struct ofw_bus_devinfo *
408 smu_get_devinfo(device_t bus, device_t dev)
409 {
410 
411 	return (device_get_ivars(dev));
412 }
413 
414 static void
415 smu_send_cmd(device_t dev, struct smu_cmd *cmd)
416 {
417 	struct smu_softc *sc;
418 
419 	sc = device_get_softc(dev);
420 
421 	mtx_assert(&sc->sc_mtx, MA_OWNED);
422 
423 	if (sc->sc_u3)
424 		powerpc_pow_enabled = 0; /* SMU cannot work if we go to NAP */
425 
426 	sc->sc_cur_cmd = cmd;
427 
428 	/* Copy the command to the mailbox */
429 	sc->sc_cmd->cmd = cmd->cmd;
430 	sc->sc_cmd->len = cmd->len;
431 	memcpy(sc->sc_cmd->data, cmd->data, sizeof(cmd->data));
432 	bus_dmamap_sync(sc->sc_dmatag, sc->sc_cmd_dmamap, BUS_DMASYNC_PREWRITE);
433 	bus_space_write_4(sc->sc_bt, sc->sc_mailbox, 0, sc->sc_cmd_phys);
434 
435 	/* Flush the cacheline it is in -- SMU bypasses the cache */
436 	__asm __volatile("sync; dcbf 0,%0; sync" :: "r"(sc->sc_cmd): "memory");
437 
438 	/* Ring SMU doorbell */
439 	macgpio_write(smu_doorbell, GPIO_DDR_OUTPUT);
440 }
441 
442 static void
443 smu_doorbell_intr(void *xdev)
444 {
445 	device_t smu;
446 	struct smu_softc *sc;
447 	int doorbell_ack;
448 
449 	smu = xdev;
450 	doorbell_ack = macgpio_read(smu_doorbell);
451 	sc = device_get_softc(smu);
452 
453 	if (doorbell_ack != (GPIO_DDR_OUTPUT | GPIO_LEVEL_RO | GPIO_DATA))
454 		return;
455 
456 	mtx_lock(&sc->sc_mtx);
457 
458 	if (sc->sc_cur_cmd == NULL)	/* spurious */
459 		goto done;
460 
461 	/* Check result. First invalidate the cache again... */
462 	__asm __volatile("dcbf 0,%0; sync" :: "r"(sc->sc_cmd) : "memory");
463 
464 	bus_dmamap_sync(sc->sc_dmatag, sc->sc_cmd_dmamap, BUS_DMASYNC_POSTREAD);
465 
466 	sc->sc_cur_cmd->cmd = sc->sc_cmd->cmd;
467 	sc->sc_cur_cmd->len = sc->sc_cmd->len;
468 	memcpy(sc->sc_cur_cmd->data, sc->sc_cmd->data,
469 	    sizeof(sc->sc_cmd->data));
470 	wakeup(sc->sc_cur_cmd);
471 	sc->sc_cur_cmd = NULL;
472 	if (sc->sc_u3)
473 		powerpc_pow_enabled = 1;
474 
475     done:
476 	/* Queue next command if one is pending */
477 	if (STAILQ_FIRST(&sc->sc_cmdq) != NULL) {
478 		sc->sc_cur_cmd = STAILQ_FIRST(&sc->sc_cmdq);
479 		STAILQ_REMOVE_HEAD(&sc->sc_cmdq, cmd_q);
480 		smu_send_cmd(smu, sc->sc_cur_cmd);
481 	}
482 
483 	mtx_unlock(&sc->sc_mtx);
484 }
485 
486 static int
487 smu_run_cmd(device_t dev, struct smu_cmd *cmd, int wait)
488 {
489 	struct smu_softc *sc;
490 	uint8_t cmd_code;
491 	int error;
492 
493 	sc = device_get_softc(dev);
494 	cmd_code = cmd->cmd;
495 
496 	mtx_lock(&sc->sc_mtx);
497 	if (sc->sc_cur_cmd != NULL) {
498 		STAILQ_INSERT_TAIL(&sc->sc_cmdq, cmd, cmd_q);
499 	} else
500 		smu_send_cmd(dev, cmd);
501 	mtx_unlock(&sc->sc_mtx);
502 
503 	if (!wait)
504 		return (0);
505 
506 	if (sc->sc_doorbellirqid < 0) {
507 		/* Poll if the IRQ has not been set up yet */
508 		do {
509 			DELAY(50);
510 			smu_doorbell_intr(dev);
511 		} while (sc->sc_cur_cmd != NULL);
512 	} else {
513 		/* smu_doorbell_intr will wake us when the command is ACK'ed */
514 		error = tsleep(cmd, 0, "smu", 800 * hz / 1000);
515 		if (error != 0)
516 			smu_doorbell_intr(dev);	/* One last chance */
517 
518 		if (error != 0) {
519 		    mtx_lock(&sc->sc_mtx);
520 		    if (cmd->cmd == cmd_code) {	/* Never processed */
521 			/* Abort this command if we timed out */
522 			if (sc->sc_cur_cmd == cmd)
523 				sc->sc_cur_cmd = NULL;
524 			else
525 				STAILQ_REMOVE(&sc->sc_cmdq, cmd, smu_cmd,
526 				    cmd_q);
527 			mtx_unlock(&sc->sc_mtx);
528 			return (error);
529 		    }
530 		    error = 0;
531 		    mtx_unlock(&sc->sc_mtx);
532 		}
533 	}
534 
535 	/* SMU acks the command by inverting the command bits */
536 	if (cmd->cmd == ((~cmd_code) & 0xff))
537 		error = 0;
538 	else
539 		error = EIO;
540 
541 	return (error);
542 }
543 
544 static int
545 smu_get_datablock(device_t dev, int8_t id, uint8_t *buf, size_t len)
546 {
547 	struct smu_cmd cmd;
548 	uint8_t addr[4];
549 
550 	cmd.cmd = SMU_PARTITION;
551 	cmd.len = 2;
552 	cmd.data[0] = SMU_PARTITION_LATEST;
553 	cmd.data[1] = id;
554 
555 	smu_run_cmd(dev, &cmd, 1);
556 
557 	addr[0] = addr[1] = 0;
558 	addr[2] = cmd.data[0];
559 	addr[3] = cmd.data[1];
560 
561 	cmd.cmd = SMU_MISC;
562 	cmd.len = 7;
563 	cmd.data[0] = SMU_MISC_GET_DATA;
564 	cmd.data[1] = sizeof(addr);
565 	memcpy(&cmd.data[2], addr, sizeof(addr));
566 	cmd.data[6] = len;
567 
568 	smu_run_cmd(dev, &cmd, 1);
569 	memcpy(buf, cmd.data, len);
570 	return (0);
571 }
572 
573 static void
574 smu_slew_cpu_voltage(device_t dev, int to)
575 {
576 	struct smu_cmd cmd;
577 
578 	cmd.cmd = SMU_POWER;
579 	cmd.len = 8;
580 	cmd.data[0] = 'V';
581 	cmd.data[1] = 'S';
582 	cmd.data[2] = 'L';
583 	cmd.data[3] = 'E';
584 	cmd.data[4] = 'W';
585 	cmd.data[5] = 0xff;
586 	cmd.data[6] = 1;
587 	cmd.data[7] = to;
588 
589 	smu_run_cmd(dev, &cmd, 1);
590 }
591 
592 static void
593 smu_cpufreq_pre_change(device_t dev, const struct cf_level *level)
594 {
595 	/*
596 	 * Make sure the CPU voltage is raised before we raise
597 	 * the clock.
598 	 */
599 
600 	if (level->rel_set[0].freq == 10000 /* max */)
601 		smu_slew_cpu_voltage(dev, 0);
602 }
603 
604 static void
605 smu_cpufreq_post_change(device_t dev, const struct cf_level *level)
606 {
607 	/* We are safe to reduce CPU voltage after a downward transition */
608 
609 	if (level->rel_set[0].freq < 10000 /* max */)
610 		smu_slew_cpu_voltage(dev, 1); /* XXX: 1/4 voltage for 970MP? */
611 }
612 
613 /* Routines for probing the SMU doorbell GPIO */
614 static int doorbell_probe(device_t dev);
615 static int doorbell_attach(device_t dev);
616 
617 static device_method_t  doorbell_methods[] = {
618 	/* Device interface */
619 	DEVMETHOD(device_probe,		doorbell_probe),
620 	DEVMETHOD(device_attach,	doorbell_attach),
621 	{ 0, 0 },
622 };
623 
624 static driver_t doorbell_driver = {
625 	"smudoorbell",
626 	doorbell_methods,
627 	0
628 };
629 
630 EARLY_DRIVER_MODULE(smudoorbell, macgpio, doorbell_driver, 0, 0,
631     BUS_PASS_SUPPORTDEV);
632 
633 static int
634 doorbell_probe(device_t dev)
635 {
636 	const char *name = ofw_bus_get_name(dev);
637 
638 	if (strcmp(name, "smu-doorbell") != 0)
639 		return (ENXIO);
640 
641 	device_set_desc(dev, "SMU Doorbell GPIO");
642 	device_quiet(dev);
643 	return (0);
644 }
645 
646 static int
647 doorbell_attach(device_t dev)
648 {
649 	smu_doorbell = dev;
650 	return (0);
651 }
652 
653 /*
654  * Sensor and fan management
655  */
656 
657 static int
658 smu_fan_check_old_style(struct smu_fan *fan)
659 {
660 	device_t smu = fan->dev;
661 	struct smu_softc *sc = device_get_softc(smu);
662 	struct smu_cmd cmd;
663 	int error;
664 
665 	if (sc->old_style_fans != -1)
666 		return (sc->old_style_fans);
667 
668 	/*
669 	 * Apple has two fan control mechanisms. We can't distinguish
670 	 * them except by seeing if the new one fails. If the new one
671 	 * fails, use the old one.
672 	 */
673 
674 	cmd.cmd = SMU_FAN;
675 	cmd.len = 2;
676 	cmd.data[0] = 0x31;
677 	cmd.data[1] = fan->reg;
678 
679 	do {
680 		error = smu_run_cmd(smu, &cmd, 1);
681 	} while (error == EWOULDBLOCK);
682 
683 	sc->old_style_fans = (error != 0);
684 
685 	return (sc->old_style_fans);
686 }
687 
688 static int
689 smu_fan_set_rpm(struct smu_fan *fan, int rpm)
690 {
691 	device_t smu = fan->dev;
692 	struct smu_cmd cmd;
693 	int error;
694 
695 	cmd.cmd = SMU_FAN;
696 	error = EIO;
697 
698 	/* Clamp to allowed range */
699 	rpm = max(fan->fan.min_rpm, rpm);
700 	rpm = min(fan->fan.max_rpm, rpm);
701 
702 	smu_fan_check_old_style(fan);
703 
704 	if (!fan->old_style) {
705 		cmd.len = 4;
706 		cmd.data[0] = 0x30;
707 		cmd.data[1] = fan->reg;
708 		cmd.data[2] = (rpm >> 8) & 0xff;
709 		cmd.data[3] = rpm & 0xff;
710 
711 		error = smu_run_cmd(smu, &cmd, 1);
712 		if (error && error != EWOULDBLOCK)
713 			fan->old_style = 1;
714 	} else {
715 		cmd.len = 14;
716 		cmd.data[0] = 0x00; /* RPM fan. */
717 		cmd.data[1] = 1 << fan->reg;
718 		cmd.data[2 + 2*fan->reg] = (rpm >> 8) & 0xff;
719 		cmd.data[3 + 2*fan->reg] = rpm & 0xff;
720 		error = smu_run_cmd(smu, &cmd, 1);
721 	}
722 
723 	if (error == 0)
724 		fan->setpoint = rpm;
725 
726 	return (error);
727 }
728 
729 static int
730 smu_fan_read_rpm(struct smu_fan *fan)
731 {
732 	device_t smu = fan->dev;
733 	struct smu_cmd cmd;
734 	int rpm, error;
735 
736 	smu_fan_check_old_style(fan);
737 
738 	if (!fan->old_style) {
739 		cmd.cmd = SMU_FAN;
740 		cmd.len = 2;
741 		cmd.data[0] = 0x31;
742 		cmd.data[1] = fan->reg;
743 
744 		error = smu_run_cmd(smu, &cmd, 1);
745 		if (error && error != EWOULDBLOCK)
746 			fan->old_style = 1;
747 
748 		rpm = (cmd.data[0] << 8) | cmd.data[1];
749 	}
750 
751 	if (fan->old_style) {
752 		cmd.cmd = SMU_FAN;
753 		cmd.len = 1;
754 		cmd.data[0] = SMU_RPM_STATUS;
755 
756 		error = smu_run_cmd(smu, &cmd, 1);
757 		if (error)
758 			return (error);
759 
760 		rpm = (cmd.data[fan->reg*2+1] << 8) | cmd.data[fan->reg*2+2];
761 	}
762 
763 	return (rpm);
764 }
765 static int
766 smu_fan_set_pwm(struct smu_fan *fan, int pwm)
767 {
768 	device_t smu = fan->dev;
769 	struct smu_cmd cmd;
770 	int error;
771 
772 	cmd.cmd = SMU_FAN;
773 	error = EIO;
774 
775 	/* Clamp to allowed range */
776 	pwm = max(fan->fan.min_rpm, pwm);
777 	pwm = min(fan->fan.max_rpm, pwm);
778 
779 	/*
780 	 * Apple has two fan control mechanisms. We can't distinguish
781 	 * them except by seeing if the new one fails. If the new one
782 	 * fails, use the old one.
783 	 */
784 
785 	if (!fan->old_style) {
786 		cmd.len = 4;
787 		cmd.data[0] = 0x30;
788 		cmd.data[1] = fan->reg;
789 		cmd.data[2] = (pwm >> 8) & 0xff;
790 		cmd.data[3] = pwm & 0xff;
791 
792 		error = smu_run_cmd(smu, &cmd, 1);
793 		if (error && error != EWOULDBLOCK)
794 			fan->old_style = 1;
795 	}
796 
797 	if (fan->old_style) {
798 		cmd.len = 14;
799 		cmd.data[0] = 0x10; /* PWM fan. */
800 		cmd.data[1] = 1 << fan->reg;
801 		cmd.data[2 + 2*fan->reg] = (pwm >> 8) & 0xff;
802 		cmd.data[3 + 2*fan->reg] = pwm & 0xff;
803 		error = smu_run_cmd(smu, &cmd, 1);
804 	}
805 
806 	if (error == 0)
807 		fan->setpoint = pwm;
808 
809 	return (error);
810 }
811 
812 static int
813 smu_fan_read_pwm(struct smu_fan *fan, int *pwm, int *rpm)
814 {
815 	device_t smu = fan->dev;
816 	struct smu_cmd cmd;
817 	int error;
818 
819 	if (!fan->old_style) {
820 		cmd.cmd = SMU_FAN;
821 		cmd.len = 2;
822 		cmd.data[0] = 0x31;
823 		cmd.data[1] = fan->reg;
824 
825 		error = smu_run_cmd(smu, &cmd, 1);
826 		if (error && error != EWOULDBLOCK)
827 			fan->old_style = 1;
828 
829 		*rpm = (cmd.data[0] << 8) | cmd.data[1];
830 	}
831 
832 	if (fan->old_style) {
833 		cmd.cmd = SMU_FAN;
834 		cmd.len = 1;
835 		cmd.data[0] = SMU_PWM_STATUS;
836 
837 		error = smu_run_cmd(smu, &cmd, 1);
838 		if (error)
839 			return (error);
840 
841 		*rpm = (cmd.data[fan->reg*2+1] << 8) | cmd.data[fan->reg*2+2];
842 	}
843 	if (fan->old_style) {
844 		cmd.cmd = SMU_FAN;
845 		cmd.len = 14;
846 		cmd.data[0] = SMU_PWM_SETPOINT;
847 		cmd.data[1] = 1 << fan->reg;
848 
849 		error = smu_run_cmd(smu, &cmd, 1);
850 		if (error)
851 			return (error);
852 
853 		*pwm = cmd.data[fan->reg*2+2];
854 	}
855 	return (0);
856 }
857 
858 static int
859 smu_fanrpm_sysctl(SYSCTL_HANDLER_ARGS)
860 {
861 	device_t smu;
862 	struct smu_softc *sc;
863 	struct smu_fan *fan;
864 	int pwm = 0, rpm, error = 0;
865 
866 	smu = arg1;
867 	sc = device_get_softc(smu);
868 	fan = &sc->sc_fans[arg2 & 0xff];
869 
870 	if (fan->type == SMU_FAN_RPM) {
871 		rpm = smu_fan_read_rpm(fan);
872 		if (rpm < 0)
873 			return (rpm);
874 
875 		error = sysctl_handle_int(oidp, &rpm, 0, req);
876 	} else {
877 		error = smu_fan_read_pwm(fan, &pwm, &rpm);
878 		if (error < 0)
879 			return (EIO);
880 
881 		switch (arg2 & 0xff00) {
882 		case SMU_PWM_SYSCTL_PWM:
883 			error = sysctl_handle_int(oidp, &pwm, 0, req);
884 			break;
885 		case SMU_PWM_SYSCTL_RPM:
886 			error = sysctl_handle_int(oidp, &rpm, 0, req);
887 			break;
888 		default:
889 			/* This should never happen */
890 			return (EINVAL);
891 		}
892 	}
893 	/* We can only read the RPM from a PWM controlled fan, so return. */
894 	if ((arg2 & 0xff00) == SMU_PWM_SYSCTL_RPM)
895 		return (0);
896 
897 	if (error || !req->newptr)
898 		return (error);
899 
900 	sc->sc_lastuserchange = time_uptime;
901 
902 	if (fan->type == SMU_FAN_RPM)
903 		return (smu_fan_set_rpm(fan, rpm));
904 	else
905 		return (smu_fan_set_pwm(fan, pwm));
906 }
907 
908 static void
909 smu_fill_fan_prop(device_t dev, phandle_t child, int id)
910 {
911 	struct smu_fan *fan;
912 	struct smu_softc *sc;
913 	char type[32];
914 
915 	sc = device_get_softc(dev);
916 	fan = &sc->sc_fans[id];
917 
918 	OF_getprop(child, "device_type", type, sizeof(type));
919 	/* We have either RPM or PWM controlled fans. */
920 	if (strcmp(type, "fan-rpm-control") == 0)
921 		fan->type = SMU_FAN_RPM;
922 	else
923 		fan->type = SMU_FAN_PWM;
924 
925 	fan->dev = dev;
926 	fan->old_style = 0;
927 	OF_getprop(child, "reg", &fan->reg,
928 		   sizeof(cell_t));
929 	OF_getprop(child, "min-value", &fan->fan.min_rpm,
930 		   sizeof(int));
931 	OF_getprop(child, "max-value", &fan->fan.max_rpm,
932 		   sizeof(int));
933 	OF_getprop(child, "zone", &fan->fan.zone,
934 		   sizeof(int));
935 
936 	if (OF_getprop(child, "unmanaged-value",
937 		       &fan->fan.default_rpm,
938 		       sizeof(int)) != sizeof(int))
939 		fan->fan.default_rpm = fan->fan.max_rpm;
940 
941 	OF_getprop(child, "location", fan->fan.name,
942 		   sizeof(fan->fan.name));
943 
944 	if (fan->type == SMU_FAN_RPM)
945 		fan->setpoint = smu_fan_read_rpm(fan);
946 	else
947 		smu_fan_read_pwm(fan, &fan->setpoint, &fan->rpm);
948 }
949 
950 /* On the first call count the number of fans. In the second call,
951  * after allocating the fan struct, fill the properties of the fans.
952  */
953 static int
954 smu_count_fans(device_t dev)
955 {
956 	struct smu_softc *sc;
957 	phandle_t child, node, root;
958 	int nfans = 0;
959 
960 	node = ofw_bus_get_node(dev);
961 	sc = device_get_softc(dev);
962 
963 	/* First find the fanroots and count the number of fans. */
964 	for (root = OF_child(node); root != 0; root = OF_peer(root)) {
965 		char name[32];
966 		memset(name, 0, sizeof(name));
967 		OF_getprop(root, "name", name, sizeof(name));
968 		if (strncmp(name, "rpm-fans", 9) == 0 ||
969 		    strncmp(name, "pwm-fans", 9) == 0 ||
970 		    strncmp(name, "fans", 5) == 0)
971 			for (child = OF_child(root); child != 0;
972 			     child = OF_peer(child)) {
973 				nfans++;
974 				/* When allocated, fill the fan properties. */
975 				if (sc->sc_fans != NULL) {
976 					smu_fill_fan_prop(dev, child,
977 							  nfans - 1);
978 				}
979 			}
980 	}
981 	if (nfans == 0) {
982 		device_printf(dev, "WARNING: No fans detected!\n");
983 		return (0);
984 	}
985 	return (nfans);
986 }
987 
988 static void
989 smu_attach_fans(device_t dev, phandle_t fanroot)
990 {
991 	struct smu_fan *fan;
992 	struct smu_softc *sc;
993 	struct sysctl_oid *oid, *fanroot_oid;
994 	struct sysctl_ctx_list *ctx;
995 	char sysctl_name[32];
996 	int i, j;
997 
998 	sc = device_get_softc(dev);
999 
1000 	/* Get the number of fans. */
1001 	sc->sc_nfans = smu_count_fans(dev);
1002 	if (sc->sc_nfans == 0)
1003 		return;
1004 
1005 	/* Now we're able to allocate memory for the fans struct. */
1006 	sc->sc_fans = malloc(sc->sc_nfans * sizeof(struct smu_fan), M_SMU,
1007 	    M_WAITOK | M_ZERO);
1008 
1009 	/* Now fill in the properties. */
1010 	smu_count_fans(dev);
1011 
1012 	/* Register fans with pmac_thermal */
1013 	for (i = 0; i < sc->sc_nfans; i++)
1014 		pmac_thermal_fan_register(&sc->sc_fans[i].fan);
1015 
1016 	ctx = device_get_sysctl_ctx(dev);
1017 	fanroot_oid = SYSCTL_ADD_NODE(ctx,
1018 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO, "fans",
1019 	    CTLFLAG_RD | CTLFLAG_MPSAFE, 0, "SMU Fan Information");
1020 
1021 	/* Add sysctls */
1022 	for (i = 0; i < sc->sc_nfans; i++) {
1023 		fan = &sc->sc_fans[i];
1024 		for (j = 0; j < strlen(fan->fan.name); j++) {
1025 			sysctl_name[j] = tolower(fan->fan.name[j]);
1026 			if (isspace(sysctl_name[j]))
1027 				sysctl_name[j] = '_';
1028 		}
1029 		sysctl_name[j] = 0;
1030 		if (fan->type == SMU_FAN_RPM) {
1031 			oid = SYSCTL_ADD_NODE(ctx,
1032 			    SYSCTL_CHILDREN(fanroot_oid), OID_AUTO,
1033 			    sysctl_name, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
1034 			    "Fan Information");
1035 			SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
1036 				       "minrpm", CTLFLAG_RD,
1037 				       &fan->fan.min_rpm, 0,
1038 				       "Minimum allowed RPM");
1039 			SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
1040 				       "maxrpm", CTLFLAG_RD,
1041 				       &fan->fan.max_rpm, 0,
1042 				       "Maximum allowed RPM");
1043 			SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
1044 					"rpm",CTLTYPE_INT | CTLFLAG_RW |
1045 					CTLFLAG_MPSAFE, dev, i,
1046 					smu_fanrpm_sysctl, "I", "Fan RPM");
1047 
1048 			fan->fan.read = (int (*)(struct pmac_fan *))smu_fan_read_rpm;
1049 			fan->fan.set = (int (*)(struct pmac_fan *, int))smu_fan_set_rpm;
1050 
1051 		} else {
1052 			oid = SYSCTL_ADD_NODE(ctx,
1053 			    SYSCTL_CHILDREN(fanroot_oid), OID_AUTO,
1054 			        sysctl_name, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
1055 				"Fan Information");
1056 			SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
1057 				       "minpwm", CTLFLAG_RD,
1058 				       &fan->fan.min_rpm, 0,
1059 				       "Minimum allowed PWM in %");
1060 			SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
1061 				       "maxpwm", CTLFLAG_RD,
1062 				       &fan->fan.max_rpm, 0,
1063 				       "Maximum allowed PWM in %");
1064 			SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
1065 					"pwm",CTLTYPE_INT | CTLFLAG_RW |
1066 					CTLFLAG_MPSAFE, dev,
1067 					SMU_PWM_SYSCTL_PWM | i,
1068 					smu_fanrpm_sysctl, "I", "Fan PWM in %");
1069 			SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
1070 					"rpm",CTLTYPE_INT | CTLFLAG_RD |
1071 					CTLFLAG_MPSAFE, dev,
1072 					SMU_PWM_SYSCTL_RPM | i,
1073 					smu_fanrpm_sysctl, "I", "Fan RPM");
1074 			fan->fan.read = NULL;
1075 			fan->fan.set = (int (*)(struct pmac_fan *, int))smu_fan_set_pwm;
1076 		}
1077 		if (bootverbose)
1078 			device_printf(dev, "Fan: %s type: %d\n",
1079 				      fan->fan.name, fan->type);
1080 	}
1081 }
1082 
1083 static int
1084 smu_sensor_read(struct smu_sensor *sens)
1085 {
1086 	device_t smu = sens->dev;
1087 	struct smu_cmd cmd;
1088 	struct smu_softc *sc;
1089 	int64_t value;
1090 	int error;
1091 
1092 	cmd.cmd = SMU_ADC;
1093 	cmd.len = 1;
1094 	cmd.data[0] = sens->reg;
1095 	error = 0;
1096 
1097 	error = smu_run_cmd(smu, &cmd, 1);
1098 	if (error != 0)
1099 		return (-1);
1100 
1101 	sc = device_get_softc(smu);
1102 	value = (cmd.data[0] << 8) | cmd.data[1];
1103 
1104 	switch (sens->type) {
1105 	case SMU_TEMP_SENSOR:
1106 		value *= sc->sc_cpu_diode_scale;
1107 		value >>= 3;
1108 		value += ((int64_t)sc->sc_cpu_diode_offset) << 9;
1109 		value <<= 1;
1110 
1111 		/* Convert from 16.16 fixed point degC into integer 0.1 K. */
1112 		value = 10*(value >> 16) + ((10*(value & 0xffff)) >> 16) + 2731;
1113 		break;
1114 	case SMU_VOLTAGE_SENSOR:
1115 		value *= sc->sc_cpu_volt_scale;
1116 		value += sc->sc_cpu_volt_offset;
1117 		value <<= 4;
1118 
1119 		/* Convert from 16.16 fixed point V into mV. */
1120 		value *= 15625;
1121 		value /= 1024;
1122 		value /= 1000;
1123 		break;
1124 	case SMU_CURRENT_SENSOR:
1125 		value *= sc->sc_cpu_curr_scale;
1126 		value += sc->sc_cpu_curr_offset;
1127 		value <<= 4;
1128 
1129 		/* Convert from 16.16 fixed point A into mA. */
1130 		value *= 15625;
1131 		value /= 1024;
1132 		value /= 1000;
1133 		break;
1134 	case SMU_POWER_SENSOR:
1135 		value *= sc->sc_slots_pow_scale;
1136 		value += sc->sc_slots_pow_offset;
1137 		value <<= 4;
1138 
1139 		/* Convert from 16.16 fixed point W into mW. */
1140 		value *= 15625;
1141 		value /= 1024;
1142 		value /= 1000;
1143 		break;
1144 	}
1145 
1146 	return (value);
1147 }
1148 
1149 static int
1150 smu_sensor_sysctl(SYSCTL_HANDLER_ARGS)
1151 {
1152 	device_t smu;
1153 	struct smu_softc *sc;
1154 	struct smu_sensor *sens;
1155 	int value, error;
1156 
1157 	smu = arg1;
1158 	sc = device_get_softc(smu);
1159 	sens = &sc->sc_sensors[arg2];
1160 
1161 	value = smu_sensor_read(sens);
1162 	if (value < 0)
1163 		return (EBUSY);
1164 
1165 	error = sysctl_handle_int(oidp, &value, 0, req);
1166 
1167 	return (error);
1168 }
1169 
1170 static void
1171 smu_attach_sensors(device_t dev, phandle_t sensroot)
1172 {
1173 	struct smu_sensor *sens;
1174 	struct smu_softc *sc;
1175 	struct sysctl_oid *sensroot_oid;
1176 	struct sysctl_ctx_list *ctx;
1177 	phandle_t child;
1178 	char type[32];
1179 	int i;
1180 
1181 	sc = device_get_softc(dev);
1182 	sc->sc_nsensors = 0;
1183 
1184 	for (child = OF_child(sensroot); child != 0; child = OF_peer(child))
1185 		sc->sc_nsensors++;
1186 
1187 	if (sc->sc_nsensors == 0) {
1188 		device_printf(dev, "WARNING: No sensors detected!\n");
1189 		return;
1190 	}
1191 
1192 	sc->sc_sensors = malloc(sc->sc_nsensors * sizeof(struct smu_sensor),
1193 	    M_SMU, M_WAITOK | M_ZERO);
1194 
1195 	sens = sc->sc_sensors;
1196 	sc->sc_nsensors = 0;
1197 
1198 	ctx = device_get_sysctl_ctx(dev);
1199 	sensroot_oid = SYSCTL_ADD_NODE(ctx,
1200 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO, "sensors",
1201 	    CTLFLAG_RD | CTLFLAG_MPSAFE, 0, "SMU Sensor Information");
1202 
1203 	for (child = OF_child(sensroot); child != 0; child = OF_peer(child)) {
1204 		char sysctl_name[40], sysctl_desc[40];
1205 		const char *units;
1206 
1207 		sens->dev = dev;
1208 		OF_getprop(child, "device_type", type, sizeof(type));
1209 
1210 		if (strcmp(type, "current-sensor") == 0) {
1211 			sens->type = SMU_CURRENT_SENSOR;
1212 			units = "mA";
1213 		} else if (strcmp(type, "temp-sensor") == 0) {
1214 			sens->type = SMU_TEMP_SENSOR;
1215 			units = "C";
1216 		} else if (strcmp(type, "voltage-sensor") == 0) {
1217 			sens->type = SMU_VOLTAGE_SENSOR;
1218 			units = "mV";
1219 		} else if (strcmp(type, "power-sensor") == 0) {
1220 			sens->type = SMU_POWER_SENSOR;
1221 			units = "mW";
1222 		} else {
1223 			continue;
1224 		}
1225 
1226 		OF_getprop(child, "reg", &sens->reg, sizeof(cell_t));
1227 		OF_getprop(child, "zone", &sens->therm.zone, sizeof(int));
1228 		OF_getprop(child, "location", sens->therm.name,
1229 		    sizeof(sens->therm.name));
1230 
1231 		for (i = 0; i < strlen(sens->therm.name); i++) {
1232 			sysctl_name[i] = tolower(sens->therm.name[i]);
1233 			if (isspace(sysctl_name[i]))
1234 				sysctl_name[i] = '_';
1235 		}
1236 		sysctl_name[i] = 0;
1237 
1238 		sprintf(sysctl_desc,"%s (%s)", sens->therm.name, units);
1239 
1240 		SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(sensroot_oid), OID_AUTO,
1241 		    sysctl_name, CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_MPSAFE,
1242 		    dev, sc->sc_nsensors, smu_sensor_sysctl,
1243 		    (sens->type == SMU_TEMP_SENSOR) ? "IK" : "I", sysctl_desc);
1244 
1245 		if (sens->type == SMU_TEMP_SENSOR) {
1246 			/* Make up some numbers */
1247 			sens->therm.target_temp = 500 + 2731; /* 50 C */
1248 			sens->therm.max_temp = 900 + 2731; /* 90 C */
1249 
1250 			sens->therm.read =
1251 			    (int (*)(struct pmac_therm *))smu_sensor_read;
1252 			pmac_thermal_sensor_register(&sens->therm);
1253 		}
1254 
1255 		sens++;
1256 		sc->sc_nsensors++;
1257 	}
1258 }
1259 
1260 static void
1261 smu_set_sleepled(void *xdev, int onoff)
1262 {
1263 	static struct smu_cmd cmd;
1264 	device_t smu = xdev;
1265 
1266 	cmd.cmd = SMU_MISC;
1267 	cmd.len = 3;
1268 	cmd.data[0] = SMU_MISC_LED_CTRL;
1269 	cmd.data[1] = 0;
1270 	cmd.data[2] = onoff;
1271 
1272 	smu_run_cmd(smu, &cmd, 0);
1273 }
1274 
1275 static int
1276 smu_server_mode(SYSCTL_HANDLER_ARGS)
1277 {
1278 	struct smu_cmd cmd;
1279 	u_int server_mode;
1280 	device_t smu = arg1;
1281 	int error;
1282 
1283 	cmd.cmd = SMU_POWER_EVENTS;
1284 	cmd.len = 1;
1285 	cmd.data[0] = SMU_PWR_GET_POWERUP;
1286 
1287 	error = smu_run_cmd(smu, &cmd, 1);
1288 
1289 	if (error)
1290 		return (error);
1291 
1292 	server_mode = (cmd.data[1] & SMU_WAKEUP_AC_INSERT) ? 1 : 0;
1293 
1294 	error = sysctl_handle_int(oidp, &server_mode, 0, req);
1295 
1296 	if (error || !req->newptr)
1297 		return (error);
1298 
1299 	if (server_mode == 1)
1300 		cmd.data[0] = SMU_PWR_SET_POWERUP;
1301 	else if (server_mode == 0)
1302 		cmd.data[0] = SMU_PWR_CLR_POWERUP;
1303 	else
1304 		return (EINVAL);
1305 
1306 	cmd.len = 3;
1307 	cmd.data[1] = 0;
1308 	cmd.data[2] = SMU_WAKEUP_AC_INSERT;
1309 
1310 	return (smu_run_cmd(smu, &cmd, 1));
1311 }
1312 
1313 static void
1314 smu_shutdown(void *xdev, int howto)
1315 {
1316 	device_t smu = xdev;
1317 	struct smu_cmd cmd;
1318 
1319 	cmd.cmd = SMU_POWER;
1320 	if (howto & RB_HALT)
1321 		strcpy(cmd.data, "SHUTDOWN");
1322 	else
1323 		strcpy(cmd.data, "RESTART");
1324 
1325 	cmd.len = strlen(cmd.data);
1326 
1327 	smu_run_cmd(smu, &cmd, 1);
1328 
1329 	for (;;);
1330 }
1331 
1332 static int
1333 smu_gettime(device_t dev, struct timespec *ts)
1334 {
1335 	struct smu_cmd cmd;
1336 	struct clocktime ct;
1337 
1338 	cmd.cmd = SMU_RTC;
1339 	cmd.len = 1;
1340 	cmd.data[0] = SMU_RTC_GET;
1341 
1342 	if (smu_run_cmd(dev, &cmd, 1) != 0)
1343 		return (ENXIO);
1344 
1345 	ct.nsec	= 0;
1346 	ct.sec	= bcd2bin(cmd.data[0]);
1347 	ct.min	= bcd2bin(cmd.data[1]);
1348 	ct.hour	= bcd2bin(cmd.data[2]);
1349 	ct.dow	= bcd2bin(cmd.data[3]);
1350 	ct.day	= bcd2bin(cmd.data[4]);
1351 	ct.mon	= bcd2bin(cmd.data[5]);
1352 	ct.year	= bcd2bin(cmd.data[6]) + 2000;
1353 
1354 	return (clock_ct_to_ts(&ct, ts));
1355 }
1356 
1357 static int
1358 smu_settime(device_t dev, struct timespec *ts)
1359 {
1360 	static struct smu_cmd cmd;
1361 	struct clocktime ct;
1362 
1363 	cmd.cmd = SMU_RTC;
1364 	cmd.len = 8;
1365 	cmd.data[0] = SMU_RTC_SET;
1366 
1367 	clock_ts_to_ct(ts, &ct);
1368 
1369 	cmd.data[1] = bin2bcd(ct.sec);
1370 	cmd.data[2] = bin2bcd(ct.min);
1371 	cmd.data[3] = bin2bcd(ct.hour);
1372 	cmd.data[4] = bin2bcd(ct.dow);
1373 	cmd.data[5] = bin2bcd(ct.day);
1374 	cmd.data[6] = bin2bcd(ct.mon);
1375 	cmd.data[7] = bin2bcd(ct.year - 2000);
1376 
1377 	return (smu_run_cmd(dev, &cmd, 0));
1378 }
1379 
1380 /* SMU I2C Interface */
1381 
1382 static int smuiic_probe(device_t dev);
1383 static int smuiic_attach(device_t dev);
1384 static int smuiic_transfer(device_t dev, struct iic_msg *msgs, uint32_t nmsgs);
1385 static phandle_t smuiic_get_node(device_t bus, device_t dev);
1386 
1387 static device_method_t smuiic_methods[] = {
1388 	/* device interface */
1389 	DEVMETHOD(device_probe,         smuiic_probe),
1390 	DEVMETHOD(device_attach,        smuiic_attach),
1391 
1392 	/* iicbus interface */
1393 	DEVMETHOD(iicbus_callback,      iicbus_null_callback),
1394 	DEVMETHOD(iicbus_transfer,      smuiic_transfer),
1395 
1396 	/* ofw_bus interface */
1397 	DEVMETHOD(ofw_bus_get_node,     smuiic_get_node),
1398 	{ 0, 0 }
1399 };
1400 
1401 struct smuiic_softc {
1402 	struct mtx	sc_mtx;
1403 	volatile int	sc_iic_inuse;
1404 	int		sc_busno;
1405 };
1406 
1407 static driver_t smuiic_driver = {
1408 	"iichb",
1409 	smuiic_methods,
1410 	sizeof(struct smuiic_softc)
1411 };
1412 
1413 DRIVER_MODULE(smuiic, smu, smuiic_driver, 0, 0);
1414 
1415 static void
1416 smu_attach_i2c(device_t smu, phandle_t i2croot)
1417 {
1418 	phandle_t child;
1419 	device_t cdev;
1420 	struct ofw_bus_devinfo *dinfo;
1421 	char name[32];
1422 
1423 	for (child = OF_child(i2croot); child != 0; child = OF_peer(child)) {
1424 		if (OF_getprop(child, "name", name, sizeof(name)) <= 0)
1425 			continue;
1426 
1427 		if (strcmp(name, "i2c-bus") != 0 && strcmp(name, "i2c") != 0)
1428 			continue;
1429 
1430 		dinfo = malloc(sizeof(struct ofw_bus_devinfo), M_SMU,
1431 		    M_WAITOK | M_ZERO);
1432 		if (ofw_bus_gen_setup_devinfo(dinfo, child) != 0) {
1433 			free(dinfo, M_SMU);
1434 			continue;
1435 		}
1436 
1437 		cdev = device_add_child(smu, NULL, -1);
1438 		if (cdev == NULL) {
1439 			device_printf(smu, "<%s>: device_add_child failed\n",
1440 			    dinfo->obd_name);
1441 			ofw_bus_gen_destroy_devinfo(dinfo);
1442 			free(dinfo, M_SMU);
1443 			continue;
1444 		}
1445 		device_set_ivars(cdev, dinfo);
1446 	}
1447 }
1448 
1449 static int
1450 smuiic_probe(device_t dev)
1451 {
1452 	const char *name;
1453 
1454 	name = ofw_bus_get_name(dev);
1455 	if (name == NULL)
1456 		return (ENXIO);
1457 
1458 	if (strcmp(name, "i2c-bus") == 0 || strcmp(name, "i2c") == 0) {
1459 		device_set_desc(dev, "SMU I2C controller");
1460 		return (0);
1461 	}
1462 
1463 	return (ENXIO);
1464 }
1465 
1466 static int
1467 smuiic_attach(device_t dev)
1468 {
1469 	struct smuiic_softc *sc = device_get_softc(dev);
1470 	mtx_init(&sc->sc_mtx, "smuiic", NULL, MTX_DEF);
1471 	sc->sc_iic_inuse = 0;
1472 
1473 	/* Get our bus number */
1474 	OF_getprop(ofw_bus_get_node(dev), "reg", &sc->sc_busno,
1475 	    sizeof(sc->sc_busno));
1476 
1477 	/* Add the IIC bus layer */
1478 	device_add_child(dev, "iicbus", -1);
1479 
1480 	return (bus_generic_attach(dev));
1481 }
1482 
1483 static int
1484 smuiic_transfer(device_t dev, struct iic_msg *msgs, uint32_t nmsgs)
1485 {
1486 	struct smuiic_softc *sc = device_get_softc(dev);
1487 	struct smu_cmd cmd;
1488 	int i, j, error;
1489 
1490 	mtx_lock(&sc->sc_mtx);
1491 	while (sc->sc_iic_inuse)
1492 		mtx_sleep(sc, &sc->sc_mtx, 0, "smuiic", 100);
1493 
1494 	sc->sc_iic_inuse = 1;
1495 	error = 0;
1496 
1497 	for (i = 0; i < nmsgs; i++) {
1498 		cmd.cmd = SMU_I2C;
1499 		cmd.data[0] = sc->sc_busno;
1500 		if (msgs[i].flags & IIC_M_NOSTOP)
1501 			cmd.data[1] = SMU_I2C_COMBINED;
1502 		else
1503 			cmd.data[1] = SMU_I2C_SIMPLE;
1504 
1505 		cmd.data[2] = msgs[i].slave;
1506 		if (msgs[i].flags & IIC_M_RD)
1507 			cmd.data[2] |= 1;
1508 
1509 		if (msgs[i].flags & IIC_M_NOSTOP) {
1510 			KASSERT(msgs[i].len < 4,
1511 			    ("oversize I2C combined message"));
1512 
1513 			cmd.data[3] = min(msgs[i].len, 3);
1514 			memcpy(&cmd.data[4], msgs[i].buf, min(msgs[i].len, 3));
1515 			i++; /* Advance to next part of message */
1516 		} else {
1517 			cmd.data[3] = 0;
1518 			memset(&cmd.data[4], 0, 3);
1519 		}
1520 
1521 		cmd.data[7] = msgs[i].slave;
1522 		if (msgs[i].flags & IIC_M_RD)
1523 			cmd.data[7] |= 1;
1524 
1525 		cmd.data[8] = msgs[i].len;
1526 		if (msgs[i].flags & IIC_M_RD) {
1527 			memset(&cmd.data[9], 0xff, msgs[i].len);
1528 			cmd.len = 9;
1529 		} else {
1530 			memcpy(&cmd.data[9], msgs[i].buf, msgs[i].len);
1531 			cmd.len = 9 + msgs[i].len;
1532 		}
1533 
1534 		mtx_unlock(&sc->sc_mtx);
1535 		smu_run_cmd(device_get_parent(dev), &cmd, 1);
1536 		mtx_lock(&sc->sc_mtx);
1537 
1538 		for (j = 0; j < 10; j++) {
1539 			cmd.cmd = SMU_I2C;
1540 			cmd.len = 1;
1541 			cmd.data[0] = 0;
1542 			memset(&cmd.data[1], 0xff, msgs[i].len);
1543 
1544 			mtx_unlock(&sc->sc_mtx);
1545 			smu_run_cmd(device_get_parent(dev), &cmd, 1);
1546 			mtx_lock(&sc->sc_mtx);
1547 
1548 			if (!(cmd.data[0] & 0x80))
1549 				break;
1550 
1551 			mtx_sleep(sc, &sc->sc_mtx, 0, "smuiic", 10);
1552 		}
1553 
1554 		if (cmd.data[0] & 0x80) {
1555 			error = EIO;
1556 			msgs[i].len = 0;
1557 			goto exit;
1558 		}
1559 		memcpy(msgs[i].buf, &cmd.data[1], msgs[i].len);
1560 		msgs[i].len = cmd.len - 1;
1561 	}
1562 
1563     exit:
1564 	sc->sc_iic_inuse = 0;
1565 	mtx_unlock(&sc->sc_mtx);
1566 	wakeup(sc);
1567 	return (error);
1568 }
1569 
1570 static phandle_t
1571 smuiic_get_node(device_t bus, device_t dev)
1572 {
1573 
1574 	return (ofw_bus_get_node(bus));
1575 }
1576