xref: /freebsd/sys/powerpc/powerpc/exec_machdep.c (revision 361971fb)
1 /*-
2  * SPDX-License-Identifier: BSD-4-Clause AND BSD-2-Clause-FreeBSD
3  *
4  * Copyright (C) 1995, 1996 Wolfgang Solfrank.
5  * Copyright (C) 1995, 1996 TooLs GmbH.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *      This product includes software developed by TooLs GmbH.
19  * 4. The name of TooLs GmbH may not be used to endorse or promote products
20  *    derived from this software without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
23  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
24  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
25  * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
27  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
28  * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
29  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
30  * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
31  * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32  */
33 /*-
34  * Copyright (C) 2001 Benno Rice
35  * All rights reserved.
36  *
37  * Redistribution and use in source and binary forms, with or without
38  * modification, are permitted provided that the following conditions
39  * are met:
40  * 1. Redistributions of source code must retain the above copyright
41  *    notice, this list of conditions and the following disclaimer.
42  * 2. Redistributions in binary form must reproduce the above copyright
43  *    notice, this list of conditions and the following disclaimer in the
44  *    documentation and/or other materials provided with the distribution.
45  *
46  * THIS SOFTWARE IS PROVIDED BY Benno Rice ``AS IS'' AND ANY EXPRESS OR
47  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
48  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
49  * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
50  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
51  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
52  * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
53  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
54  * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
55  * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
56  *	$NetBSD: machdep.c,v 1.74.2.1 2000/11/01 16:13:48 tv Exp $
57  */
58 
59 #include <sys/cdefs.h>
60 __FBSDID("$FreeBSD$");
61 
62 #include "opt_fpu_emu.h"
63 
64 #include <sys/param.h>
65 #include <sys/proc.h>
66 #include <sys/systm.h>
67 #include <sys/bio.h>
68 #include <sys/buf.h>
69 #include <sys/bus.h>
70 #include <sys/cons.h>
71 #include <sys/cpu.h>
72 #include <sys/exec.h>
73 #include <sys/imgact.h>
74 #include <sys/kernel.h>
75 #include <sys/ktr.h>
76 #include <sys/lock.h>
77 #include <sys/malloc.h>
78 #include <sys/mutex.h>
79 #include <sys/reg.h>
80 #include <sys/signalvar.h>
81 #include <sys/syscallsubr.h>
82 #include <sys/syscall.h>
83 #include <sys/sysent.h>
84 #include <sys/sysproto.h>
85 #include <sys/ucontext.h>
86 #include <sys/uio.h>
87 
88 #include <machine/altivec.h>
89 #include <machine/cpu.h>
90 #include <machine/elf.h>
91 #include <machine/fpu.h>
92 #include <machine/pcb.h>
93 #include <machine/sigframe.h>
94 #include <machine/trap.h>
95 #include <machine/vmparam.h>
96 
97 #include <vm/vm.h>
98 #include <vm/vm_param.h>
99 #include <vm/pmap.h>
100 #include <vm/vm_map.h>
101 
102 #ifdef FPU_EMU
103 #include <powerpc/fpu/fpu_extern.h>
104 #endif
105 
106 #ifdef COMPAT_FREEBSD32
107 #include <compat/freebsd32/freebsd32_signal.h>
108 #include <compat/freebsd32/freebsd32_util.h>
109 #include <compat/freebsd32/freebsd32_proto.h>
110 
111 typedef struct __ucontext32 {
112 	sigset_t		uc_sigmask;
113 	mcontext32_t		uc_mcontext;
114 	uint32_t		uc_link;
115 	struct sigaltstack32    uc_stack;
116 	uint32_t		uc_flags;
117 	uint32_t		__spare__[4];
118 } ucontext32_t;
119 
120 struct sigframe32 {
121 	ucontext32_t		sf_uc;
122 	struct siginfo32	sf_si;
123 };
124 
125 static int	grab_mcontext32(struct thread *td, mcontext32_t *, int flags);
126 #endif
127 
128 static int	grab_mcontext(struct thread *, mcontext_t *, int);
129 
130 static void	cleanup_power_extras(struct thread *);
131 
132 #ifdef __powerpc64__
133 extern struct sysentvec elf64_freebsd_sysvec_v2;
134 #endif
135 
136 #ifdef __powerpc64__
137 _Static_assert(sizeof(mcontext_t) == 1392, "mcontext_t size incorrect");
138 _Static_assert(sizeof(ucontext_t) == 1472, "ucontext_t size incorrect");
139 _Static_assert(sizeof(siginfo_t) == 80, "siginfo_t size incorrect");
140 #ifdef COMPAT_FREEBSD32
141 _Static_assert(sizeof(mcontext32_t) == 1224, "mcontext32_t size incorrect");
142 _Static_assert(sizeof(ucontext32_t) == 1280, "ucontext32_t size incorrect");
143 _Static_assert(sizeof(struct siginfo32) == 64, "struct siginfo32 size incorrect");
144 #endif /* COMPAT_FREEBSD32 */
145 #else /* powerpc */
146 _Static_assert(sizeof(mcontext_t) == 1224, "mcontext_t size incorrect");
147 _Static_assert(sizeof(ucontext_t) == 1280, "ucontext_t size incorrect");
148 _Static_assert(sizeof(siginfo_t) == 64, "siginfo_t size incorrect");
149 #endif
150 
151 void
152 sendsig(sig_t catcher, ksiginfo_t *ksi, sigset_t *mask)
153 {
154 	struct trapframe *tf;
155 	struct sigacts *psp;
156 	struct sigframe sf;
157 	struct thread *td;
158 	struct proc *p;
159 	#ifdef COMPAT_FREEBSD32
160 	struct siginfo32 siginfo32;
161 	struct sigframe32 sf32;
162 	#endif
163 	size_t sfpsize;
164 	caddr_t sfp, usfp;
165 	register_t sp;
166 	int oonstack, rndfsize;
167 	int sig;
168 	int code;
169 
170 	td = curthread;
171 	p = td->td_proc;
172 	PROC_LOCK_ASSERT(p, MA_OWNED);
173 
174 	psp = p->p_sigacts;
175 	mtx_assert(&psp->ps_mtx, MA_OWNED);
176 	tf = td->td_frame;
177 
178 	/*
179 	 * Fill siginfo structure.
180 	 */
181 	ksi->ksi_info.si_signo = ksi->ksi_signo;
182 	ksi->ksi_info.si_addr =
183 	    (void *)((tf->exc == EXC_DSI || tf->exc == EXC_DSE) ?
184 	    tf->dar : tf->srr0);
185 
186 	#ifdef COMPAT_FREEBSD32
187 	if (SV_PROC_FLAG(p, SV_ILP32)) {
188 		siginfo_to_siginfo32(&ksi->ksi_info, &siginfo32);
189 		sig = siginfo32.si_signo;
190 		code = siginfo32.si_code;
191 		sfp = (caddr_t)&sf32;
192 		sfpsize = sizeof(sf32);
193 		rndfsize = roundup(sizeof(sf32), 16);
194 		sp = (uint32_t)tf->fixreg[1];
195 		oonstack = sigonstack(sp);
196 
197 		/*
198 		 * Save user context
199 		 */
200 
201 		memset(&sf32, 0, sizeof(sf32));
202 		grab_mcontext32(td, &sf32.sf_uc.uc_mcontext, 0);
203 
204 		sf32.sf_uc.uc_sigmask = *mask;
205 		sf32.sf_uc.uc_stack.ss_sp = (uintptr_t)td->td_sigstk.ss_sp;
206 		sf32.sf_uc.uc_stack.ss_size = (uint32_t)td->td_sigstk.ss_size;
207 		sf32.sf_uc.uc_stack.ss_flags = (td->td_pflags & TDP_ALTSTACK)
208 		    ? ((oonstack) ? SS_ONSTACK : 0) : SS_DISABLE;
209 
210 		sf32.sf_uc.uc_mcontext.mc_onstack = (oonstack) ? 1 : 0;
211 	} else {
212 	#endif
213 		sig = ksi->ksi_signo;
214 		code = ksi->ksi_code;
215 		sfp = (caddr_t)&sf;
216 		sfpsize = sizeof(sf);
217 		#ifdef __powerpc64__
218 		/*
219 		 * 64-bit PPC defines a 288 byte scratch region
220 		 * below the stack.
221 		 */
222 		rndfsize = 288 + roundup(sizeof(sf), 48);
223 		#else
224 		rndfsize = roundup(sizeof(sf), 16);
225 		#endif
226 		sp = tf->fixreg[1];
227 		oonstack = sigonstack(sp);
228 
229 		/*
230 		 * Save user context
231 		 */
232 
233 		memset(&sf, 0, sizeof(sf));
234 		grab_mcontext(td, &sf.sf_uc.uc_mcontext, 0);
235 
236 		sf.sf_uc.uc_sigmask = *mask;
237 		sf.sf_uc.uc_stack = td->td_sigstk;
238 		sf.sf_uc.uc_stack.ss_flags = (td->td_pflags & TDP_ALTSTACK)
239 		    ? ((oonstack) ? SS_ONSTACK : 0) : SS_DISABLE;
240 
241 		sf.sf_uc.uc_mcontext.mc_onstack = (oonstack) ? 1 : 0;
242 	#ifdef COMPAT_FREEBSD32
243 	}
244 	#endif
245 
246 	CTR4(KTR_SIG, "sendsig: td=%p (%s) catcher=%p sig=%d", td, p->p_comm,
247 	     catcher, sig);
248 
249 	/*
250 	 * Allocate and validate space for the signal handler context.
251 	 */
252 	if ((td->td_pflags & TDP_ALTSTACK) != 0 && !oonstack &&
253 	    SIGISMEMBER(psp->ps_sigonstack, sig)) {
254 		usfp = (void *)(((uintptr_t)td->td_sigstk.ss_sp +
255 		   td->td_sigstk.ss_size - rndfsize) & ~0xFul);
256 	} else {
257 		usfp = (void *)((sp - rndfsize) & ~0xFul);
258 	}
259 
260 	/*
261 	 * Set Floating Point facility to "Ignore Exceptions Mode" so signal
262 	 * handler can run.
263 	 */
264 	if (td->td_pcb->pcb_flags & PCB_FPU)
265 		tf->srr1 = tf->srr1 & ~(PSL_FE0 | PSL_FE1);
266 
267 	/*
268 	 * Set up the registers to return to sigcode.
269 	 *
270 	 *   r1/sp - sigframe ptr
271 	 *   lr    - sig function, dispatched to by blrl in trampoline
272 	 *   r3    - sig number
273 	 *   r4    - SIGINFO ? &siginfo : exception code
274 	 *   r5    - user context
275 	 *   srr0  - trampoline function addr
276 	 */
277 	tf->lr = (register_t)catcher;
278 	tf->fixreg[1] = (register_t)usfp;
279 	tf->fixreg[FIRSTARG] = sig;
280 	#ifdef COMPAT_FREEBSD32
281 	tf->fixreg[FIRSTARG+2] = (register_t)usfp +
282 	    ((SV_PROC_FLAG(p, SV_ILP32)) ?
283 	    offsetof(struct sigframe32, sf_uc) :
284 	    offsetof(struct sigframe, sf_uc));
285 	#else
286 	tf->fixreg[FIRSTARG+2] = (register_t)usfp +
287 	    offsetof(struct sigframe, sf_uc);
288 	#endif
289 	if (SIGISMEMBER(psp->ps_siginfo, sig)) {
290 		/*
291 		 * Signal handler installed with SA_SIGINFO.
292 		 */
293 		#ifdef COMPAT_FREEBSD32
294 		if (SV_PROC_FLAG(p, SV_ILP32)) {
295 			sf32.sf_si = siginfo32;
296 			tf->fixreg[FIRSTARG+1] = (register_t)usfp +
297 			    offsetof(struct sigframe32, sf_si);
298 			sf32.sf_si = siginfo32;
299 		} else  {
300 		#endif
301 			tf->fixreg[FIRSTARG+1] = (register_t)usfp +
302 			    offsetof(struct sigframe, sf_si);
303 			sf.sf_si = ksi->ksi_info;
304 		#ifdef COMPAT_FREEBSD32
305 		}
306 		#endif
307 	} else {
308 		/* Old FreeBSD-style arguments. */
309 		tf->fixreg[FIRSTARG+1] = code;
310 		tf->fixreg[FIRSTARG+3] = (tf->exc == EXC_DSI) ?
311 		    tf->dar : tf->srr0;
312 	}
313 	mtx_unlock(&psp->ps_mtx);
314 	PROC_UNLOCK(p);
315 
316 	tf->srr0 = (register_t)PROC_SIGCODE(p);
317 
318 	/*
319 	 * copy the frame out to userland.
320 	 */
321 	if (copyout(sfp, usfp, sfpsize) != 0) {
322 		/*
323 		 * Process has trashed its stack. Kill it.
324 		 */
325 		CTR2(KTR_SIG, "sendsig: sigexit td=%p sfp=%p", td, sfp);
326 		PROC_LOCK(p);
327 		sigexit(td, SIGILL);
328 	}
329 
330 	CTR3(KTR_SIG, "sendsig: return td=%p pc=%#x sp=%#x", td,
331 	     tf->srr0, tf->fixreg[1]);
332 
333 	PROC_LOCK(p);
334 	mtx_lock(&psp->ps_mtx);
335 }
336 
337 int
338 sys_sigreturn(struct thread *td, struct sigreturn_args *uap)
339 {
340 	ucontext_t uc;
341 	int error;
342 
343 	CTR2(KTR_SIG, "sigreturn: td=%p ucp=%p", td, uap->sigcntxp);
344 
345 	if (copyin(uap->sigcntxp, &uc, sizeof(uc)) != 0) {
346 		CTR1(KTR_SIG, "sigreturn: efault td=%p", td);
347 		return (EFAULT);
348 	}
349 
350 	error = set_mcontext(td, &uc.uc_mcontext);
351 	if (error != 0)
352 		return (error);
353 
354 	/*
355 	 * Save FPU state if needed. User may have changed it on
356 	 * signal handler
357 	 */
358 	if (uc.uc_mcontext.mc_srr1 & PSL_FP)
359 		save_fpu(td);
360 
361 	kern_sigprocmask(td, SIG_SETMASK, &uc.uc_sigmask, NULL, 0);
362 
363 	CTR3(KTR_SIG, "sigreturn: return td=%p pc=%#x sp=%#x",
364 	     td, uc.uc_mcontext.mc_srr0, uc.uc_mcontext.mc_gpr[1]);
365 
366 	return (EJUSTRETURN);
367 }
368 
369 #ifdef COMPAT_FREEBSD4
370 int
371 freebsd4_sigreturn(struct thread *td, struct freebsd4_sigreturn_args *uap)
372 {
373 
374 	return sys_sigreturn(td, (struct sigreturn_args *)uap);
375 }
376 #endif
377 
378 /*
379  * Construct a PCB from a trapframe. This is called from kdb_trap() where
380  * we want to start a backtrace from the function that caused us to enter
381  * the debugger. We have the context in the trapframe, but base the trace
382  * on the PCB. The PCB doesn't have to be perfect, as long as it contains
383  * enough for a backtrace.
384  */
385 void
386 makectx(struct trapframe *tf, struct pcb *pcb)
387 {
388 
389 	pcb->pcb_lr = tf->srr0;
390 	pcb->pcb_sp = tf->fixreg[1];
391 }
392 
393 /*
394  * get_mcontext/sendsig helper routine that doesn't touch the
395  * proc lock
396  */
397 static int
398 grab_mcontext(struct thread *td, mcontext_t *mcp, int flags)
399 {
400 	struct pcb *pcb;
401 	int i;
402 
403 	pcb = td->td_pcb;
404 
405 	memset(mcp, 0, sizeof(mcontext_t));
406 
407 	mcp->mc_vers = _MC_VERSION;
408 	mcp->mc_flags = 0;
409 	memcpy(&mcp->mc_frame, td->td_frame, sizeof(struct trapframe));
410 	if (flags & GET_MC_CLEAR_RET) {
411 		mcp->mc_gpr[3] = 0;
412 		mcp->mc_gpr[4] = 0;
413 	}
414 
415 	/*
416 	 * This assumes that floating-point context is *not* lazy,
417 	 * so if the thread has used FP there would have been a
418 	 * FP-unavailable exception that would have set things up
419 	 * correctly.
420 	 */
421 	if (pcb->pcb_flags & PCB_FPREGS) {
422 		if (pcb->pcb_flags & PCB_FPU) {
423 			KASSERT(td == curthread,
424 				("get_mcontext: fp save not curthread"));
425 			critical_enter();
426 			save_fpu(td);
427 			critical_exit();
428 		}
429 		mcp->mc_flags |= _MC_FP_VALID;
430 		memcpy(&mcp->mc_fpscr, &pcb->pcb_fpu.fpscr, sizeof(double));
431 		for (i = 0; i < 32; i++)
432 			memcpy(&mcp->mc_fpreg[i], &pcb->pcb_fpu.fpr[i].fpr,
433 			    sizeof(double));
434 	}
435 
436 	if (pcb->pcb_flags & PCB_VSX) {
437 		for (i = 0; i < 32; i++)
438 			memcpy(&mcp->mc_vsxfpreg[i],
439 			    &pcb->pcb_fpu.fpr[i].vsr[2], sizeof(double));
440 	}
441 
442 	/*
443 	 * Repeat for Altivec context
444 	 */
445 
446 	if (pcb->pcb_flags & PCB_VEC) {
447 		KASSERT(td == curthread,
448 			("get_mcontext: fp save not curthread"));
449 		critical_enter();
450 		save_vec(td);
451 		critical_exit();
452 		mcp->mc_flags |= _MC_AV_VALID;
453 		mcp->mc_vscr  = pcb->pcb_vec.vscr;
454 		mcp->mc_vrsave =  pcb->pcb_vec.vrsave;
455 		memcpy(mcp->mc_avec, pcb->pcb_vec.vr, sizeof(mcp->mc_avec));
456 	}
457 
458 	mcp->mc_len = sizeof(*mcp);
459 
460 	return (0);
461 }
462 
463 int
464 get_mcontext(struct thread *td, mcontext_t *mcp, int flags)
465 {
466 	int error;
467 
468 	error = grab_mcontext(td, mcp, flags);
469 	if (error == 0) {
470 		PROC_LOCK(curthread->td_proc);
471 		mcp->mc_onstack = sigonstack(td->td_frame->fixreg[1]);
472 		PROC_UNLOCK(curthread->td_proc);
473 	}
474 
475 	return (error);
476 }
477 
478 int
479 set_mcontext(struct thread *td, mcontext_t *mcp)
480 {
481 	struct pcb *pcb;
482 	struct trapframe *tf;
483 	register_t tls;
484 	int i;
485 
486 	pcb = td->td_pcb;
487 	tf = td->td_frame;
488 
489 	if (mcp->mc_vers != _MC_VERSION || mcp->mc_len != sizeof(*mcp))
490 		return (EINVAL);
491 
492 	/*
493 	 * Don't let the user change privileged MSR bits.
494 	 *
495 	 * psl_userstatic is used here to mask off any bits that can
496 	 * legitimately vary between user contexts (Floating point
497 	 * exception control and any facilities that we are using the
498 	 * "enable on first use" pattern with.)
499 	 *
500 	 * All other bits are required to match psl_userset(32).
501 	 *
502 	 * Remember to update the platform cpu_init code when implementing
503 	 * support for a new conditional facility!
504 	 */
505 	if ((mcp->mc_srr1 & psl_userstatic) != (tf->srr1 & psl_userstatic)) {
506 		return (EINVAL);
507 	}
508 
509 	/* Copy trapframe, preserving TLS pointer across context change */
510 	if (SV_PROC_FLAG(td->td_proc, SV_LP64))
511 		tls = tf->fixreg[13];
512 	else
513 		tls = tf->fixreg[2];
514 	memcpy(tf, mcp->mc_frame, sizeof(mcp->mc_frame));
515 	if (SV_PROC_FLAG(td->td_proc, SV_LP64))
516 		tf->fixreg[13] = tls;
517 	else
518 		tf->fixreg[2] = tls;
519 
520 	/*
521 	 * Force the FPU back off to ensure the new context will not bypass
522 	 * the enable_fpu() setup code accidentally.
523 	 *
524 	 * This prevents an issue where a process that uses floating point
525 	 * inside a signal handler could end up in a state where the MSR
526 	 * did not match pcb_flags.
527 	 *
528 	 * Additionally, ensure VSX is disabled as well, as it is illegal
529 	 * to leave it turned on when FP or VEC are off.
530 	 */
531 	tf->srr1 &= ~(PSL_FP | PSL_VSX);
532 	pcb->pcb_flags &= ~(PCB_FPU | PCB_VSX);
533 
534 	if (mcp->mc_flags & _MC_FP_VALID) {
535 		/* enable_fpu() will happen lazily on a fault */
536 		pcb->pcb_flags |= PCB_FPREGS;
537 		memcpy(&pcb->pcb_fpu.fpscr, &mcp->mc_fpscr, sizeof(double));
538 		bzero(pcb->pcb_fpu.fpr, sizeof(pcb->pcb_fpu.fpr));
539 		for (i = 0; i < 32; i++) {
540 			memcpy(&pcb->pcb_fpu.fpr[i].fpr, &mcp->mc_fpreg[i],
541 			    sizeof(double));
542 			memcpy(&pcb->pcb_fpu.fpr[i].vsr[2],
543 			    &mcp->mc_vsxfpreg[i], sizeof(double));
544 		}
545 	}
546 
547 	if (mcp->mc_flags & _MC_AV_VALID) {
548 		if ((pcb->pcb_flags & PCB_VEC) != PCB_VEC) {
549 			critical_enter();
550 			enable_vec(td);
551 			critical_exit();
552 		}
553 		pcb->pcb_vec.vscr = mcp->mc_vscr;
554 		pcb->pcb_vec.vrsave = mcp->mc_vrsave;
555 		memcpy(pcb->pcb_vec.vr, mcp->mc_avec, sizeof(mcp->mc_avec));
556 	} else {
557 		tf->srr1 &= ~PSL_VEC;
558 		pcb->pcb_flags &= ~PCB_VEC;
559 	}
560 
561 	return (0);
562 }
563 
564 /*
565  * Clean up extra POWER state.  Some per-process registers and states are not
566  * managed by the MSR, so must be cleaned up explicitly on thread exit.
567  *
568  * Currently this includes:
569  * DSCR -- Data stream control register (PowerISA 2.06+)
570  * FSCR -- Facility Status and Control Register (PowerISA 2.07+)
571  */
572 static void
573 cleanup_power_extras(struct thread *td)
574 {
575 	uint32_t pcb_flags;
576 
577 	if (td != curthread)
578 		return;
579 
580 	pcb_flags = td->td_pcb->pcb_flags;
581 	/* Clean up registers not managed by MSR. */
582 	if (pcb_flags & PCB_CFSCR)
583 		mtspr(SPR_FSCR, 0);
584 	if (pcb_flags & PCB_CDSCR)
585 		mtspr(SPR_DSCRP, 0);
586 
587 	if (pcb_flags & PCB_FPU)
588 		cleanup_fpscr();
589 }
590 
591 /*
592  * Ensure the PCB has been updated in preparation for copying a thread.
593  *
594  * This is needed because normally this only happens during switching tasks,
595  * but when we are cloning a thread, we need the updated state before doing
596  * the actual copy, so the new thread inherits the current state instead of
597  * the state at the last task switch.
598  *
599  * Keep this in sync with the assembly code in cpu_switch()!
600  */
601 void
602 cpu_save_thread_regs(struct thread *td)
603 {
604 	uint32_t pcb_flags;
605 	struct pcb *pcb;
606 
607 	KASSERT(td == curthread,
608 	    ("cpu_save_thread_regs: td is not curthread"));
609 
610 	pcb = td->td_pcb;
611 
612 	pcb_flags = pcb->pcb_flags;
613 
614 #if defined(__powerpc64__)
615 	/* Are *any* FSCR flags in use? */
616 	if (pcb_flags & PCB_CFSCR) {
617 		pcb->pcb_fscr = mfspr(SPR_FSCR);
618 
619 		if (pcb->pcb_fscr & FSCR_EBB) {
620 			pcb->pcb_ebb.ebbhr = mfspr(SPR_EBBHR);
621 			pcb->pcb_ebb.ebbrr = mfspr(SPR_EBBRR);
622 			pcb->pcb_ebb.bescr = mfspr(SPR_BESCR);
623 		}
624 		if (pcb->pcb_fscr & FSCR_LM) {
625 			pcb->pcb_lm.lmrr = mfspr(SPR_LMRR);
626 			pcb->pcb_lm.lmser = mfspr(SPR_LMSER);
627 		}
628 		if (pcb->pcb_fscr & FSCR_TAR)
629 			pcb->pcb_tar = mfspr(SPR_TAR);
630 	}
631 
632 	/*
633 	 * This is outside of the PCB_CFSCR check because it can be set
634 	 * independently when running on POWER7/POWER8.
635 	 */
636 	if (pcb_flags & PCB_CDSCR)
637 		pcb->pcb_dscr = mfspr(SPR_DSCRP);
638 #endif
639 
640 #if defined(__SPE__)
641 	/*
642 	 * On E500v2, single-precision scalar instructions and access to
643 	 * SPEFSCR may be used without PSL_VEC turned on, as long as they
644 	 * limit themselves to the low word of the registers.
645 	 *
646 	 * As such, we need to unconditionally save SPEFSCR, even though
647 	 * it is also updated in save_vec_nodrop().
648 	 */
649 	pcb->pcb_vec.vscr = mfspr(SPR_SPEFSCR);
650 #endif
651 
652 	if (pcb_flags & PCB_FPU)
653 		save_fpu_nodrop(td);
654 
655 	if (pcb_flags & PCB_VEC)
656 		save_vec_nodrop(td);
657 }
658 
659 /*
660  * Set set up registers on exec.
661  */
662 void
663 exec_setregs(struct thread *td, struct image_params *imgp, uintptr_t stack)
664 {
665 	struct trapframe	*tf;
666 	register_t		argc;
667 
668 	tf = trapframe(td);
669 	bzero(tf, sizeof *tf);
670 	#ifdef __powerpc64__
671 	tf->fixreg[1] = -roundup(-stack + 48, 16);
672 	#else
673 	tf->fixreg[1] = -roundup(-stack + 8, 16);
674 	#endif
675 
676 	/*
677 	 * Set up arguments for _start():
678 	 *	_start(argc, argv, envp, obj, cleanup, ps_strings);
679 	 *
680 	 * Notes:
681 	 *	- obj and cleanup are the auxilliary and termination
682 	 *	  vectors.  They are fixed up by ld.elf_so.
683 	 *	- ps_strings is a NetBSD extention, and will be
684 	 * 	  ignored by executables which are strictly
685 	 *	  compliant with the SVR4 ABI.
686 	 */
687 
688 	/* Collect argc from the user stack */
689 	argc = fuword((void *)stack);
690 
691 	tf->fixreg[3] = argc;
692 	tf->fixreg[4] = stack + sizeof(register_t);
693 	tf->fixreg[5] = stack + (2 + argc)*sizeof(register_t);
694 	tf->fixreg[6] = 0;				/* auxiliary vector */
695 	tf->fixreg[7] = 0;				/* termination vector */
696 	tf->fixreg[8] = (register_t)imgp->ps_strings;	/* NetBSD extension */
697 
698 	tf->srr0 = imgp->entry_addr;
699 	#ifdef __powerpc64__
700 	tf->fixreg[12] = imgp->entry_addr;
701 	#endif
702 	tf->srr1 = psl_userset | PSL_FE_DFLT;
703 	cleanup_power_extras(td);
704 	td->td_pcb->pcb_flags = 0;
705 }
706 
707 #ifdef COMPAT_FREEBSD32
708 void
709 ppc32_setregs(struct thread *td, struct image_params *imgp, uintptr_t stack)
710 {
711 	struct trapframe	*tf;
712 	uint32_t		argc;
713 
714 	tf = trapframe(td);
715 	bzero(tf, sizeof *tf);
716 	tf->fixreg[1] = -roundup(-stack + 8, 16);
717 
718 	argc = fuword32((void *)stack);
719 
720 	tf->fixreg[3] = argc;
721 	tf->fixreg[4] = stack + sizeof(uint32_t);
722 	tf->fixreg[5] = stack + (2 + argc)*sizeof(uint32_t);
723 	tf->fixreg[6] = 0;				/* auxiliary vector */
724 	tf->fixreg[7] = 0;				/* termination vector */
725 	tf->fixreg[8] = (register_t)imgp->ps_strings;	/* NetBSD extension */
726 
727 	tf->srr0 = imgp->entry_addr;
728 	tf->srr1 = psl_userset32 | PSL_FE_DFLT;
729 	cleanup_power_extras(td);
730 	td->td_pcb->pcb_flags = 0;
731 }
732 #endif
733 
734 int
735 fill_regs(struct thread *td, struct reg *regs)
736 {
737 	struct trapframe *tf;
738 
739 	tf = td->td_frame;
740 	memcpy(regs, tf, sizeof(struct reg));
741 
742 	return (0);
743 }
744 
745 int
746 fill_dbregs(struct thread *td, struct dbreg *dbregs)
747 {
748 	/* No debug registers on PowerPC */
749 	return (ENOSYS);
750 }
751 
752 int
753 fill_fpregs(struct thread *td, struct fpreg *fpregs)
754 {
755 	struct pcb *pcb;
756 	int i;
757 
758 	pcb = td->td_pcb;
759 
760 	if ((pcb->pcb_flags & PCB_FPREGS) == 0)
761 		memset(fpregs, 0, sizeof(struct fpreg));
762 	else {
763 		memcpy(&fpregs->fpscr, &pcb->pcb_fpu.fpscr, sizeof(double));
764 		for (i = 0; i < 32; i++)
765 			memcpy(&fpregs->fpreg[i], &pcb->pcb_fpu.fpr[i].fpr,
766 			    sizeof(double));
767 	}
768 
769 	return (0);
770 }
771 
772 int
773 set_regs(struct thread *td, struct reg *regs)
774 {
775 	struct trapframe *tf;
776 
777 	tf = td->td_frame;
778 	memcpy(tf, regs, sizeof(struct reg));
779 
780 	return (0);
781 }
782 
783 int
784 set_dbregs(struct thread *td, struct dbreg *dbregs)
785 {
786 	/* No debug registers on PowerPC */
787 	return (ENOSYS);
788 }
789 
790 int
791 set_fpregs(struct thread *td, struct fpreg *fpregs)
792 {
793 	struct pcb *pcb;
794 	int i;
795 
796 	pcb = td->td_pcb;
797 	pcb->pcb_flags |= PCB_FPREGS;
798 	memcpy(&pcb->pcb_fpu.fpscr, &fpregs->fpscr, sizeof(double));
799 	for (i = 0; i < 32; i++) {
800 		memcpy(&pcb->pcb_fpu.fpr[i].fpr, &fpregs->fpreg[i],
801 		    sizeof(double));
802 	}
803 
804 	return (0);
805 }
806 
807 #ifdef COMPAT_FREEBSD32
808 int
809 set_regs32(struct thread *td, struct reg32 *regs)
810 {
811 	struct trapframe *tf;
812 	int i;
813 
814 	tf = td->td_frame;
815 	for (i = 0; i < 32; i++)
816 		tf->fixreg[i] = regs->fixreg[i];
817 	tf->lr = regs->lr;
818 	tf->cr = regs->cr;
819 	tf->xer = regs->xer;
820 	tf->ctr = regs->ctr;
821 	tf->srr0 = regs->pc;
822 
823 	return (0);
824 }
825 
826 int
827 fill_regs32(struct thread *td, struct reg32 *regs)
828 {
829 	struct trapframe *tf;
830 	int i;
831 
832 	tf = td->td_frame;
833 	for (i = 0; i < 32; i++)
834 		regs->fixreg[i] = tf->fixreg[i];
835 	regs->lr = tf->lr;
836 	regs->cr = tf->cr;
837 	regs->xer = tf->xer;
838 	regs->ctr = tf->ctr;
839 	regs->pc = tf->srr0;
840 
841 	return (0);
842 }
843 
844 static int
845 grab_mcontext32(struct thread *td, mcontext32_t *mcp, int flags)
846 {
847 	mcontext_t mcp64;
848 	int i, error;
849 
850 	error = grab_mcontext(td, &mcp64, flags);
851 	if (error != 0)
852 		return (error);
853 
854 	mcp->mc_vers = mcp64.mc_vers;
855 	mcp->mc_flags = mcp64.mc_flags;
856 	mcp->mc_onstack = mcp64.mc_onstack;
857 	mcp->mc_len = mcp64.mc_len;
858 	memcpy(mcp->mc_avec,mcp64.mc_avec,sizeof(mcp64.mc_avec));
859 	memcpy(mcp->mc_av,mcp64.mc_av,sizeof(mcp64.mc_av));
860 	for (i = 0; i < 42; i++)
861 		mcp->mc_frame[i] = mcp64.mc_frame[i];
862 	memcpy(mcp->mc_fpreg,mcp64.mc_fpreg,sizeof(mcp64.mc_fpreg));
863 	memcpy(mcp->mc_vsxfpreg,mcp64.mc_vsxfpreg,sizeof(mcp64.mc_vsxfpreg));
864 
865 	return (0);
866 }
867 
868 static int
869 get_mcontext32(struct thread *td, mcontext32_t *mcp, int flags)
870 {
871 	int error;
872 
873 	error = grab_mcontext32(td, mcp, flags);
874 	if (error == 0) {
875 		PROC_LOCK(curthread->td_proc);
876 		mcp->mc_onstack = sigonstack(td->td_frame->fixreg[1]);
877 		PROC_UNLOCK(curthread->td_proc);
878 	}
879 
880 	return (error);
881 }
882 
883 static int
884 set_mcontext32(struct thread *td, mcontext32_t *mcp)
885 {
886 	mcontext_t mcp64;
887 	int i, error;
888 
889 	mcp64.mc_vers = mcp->mc_vers;
890 	mcp64.mc_flags = mcp->mc_flags;
891 	mcp64.mc_onstack = mcp->mc_onstack;
892 	mcp64.mc_len = mcp->mc_len;
893 	memcpy(mcp64.mc_avec,mcp->mc_avec,sizeof(mcp64.mc_avec));
894 	memcpy(mcp64.mc_av,mcp->mc_av,sizeof(mcp64.mc_av));
895 	for (i = 0; i < 42; i++)
896 		mcp64.mc_frame[i] = mcp->mc_frame[i];
897 	mcp64.mc_srr1 |= (td->td_frame->srr1 & 0xFFFFFFFF00000000ULL);
898 	memcpy(mcp64.mc_fpreg,mcp->mc_fpreg,sizeof(mcp64.mc_fpreg));
899 	memcpy(mcp64.mc_vsxfpreg,mcp->mc_vsxfpreg,sizeof(mcp64.mc_vsxfpreg));
900 
901 	error = set_mcontext(td, &mcp64);
902 
903 	return (error);
904 }
905 #endif
906 
907 #ifdef COMPAT_FREEBSD32
908 int
909 freebsd32_sigreturn(struct thread *td, struct freebsd32_sigreturn_args *uap)
910 {
911 	ucontext32_t uc;
912 	int error;
913 
914 	CTR2(KTR_SIG, "sigreturn: td=%p ucp=%p", td, uap->sigcntxp);
915 
916 	if (copyin(uap->sigcntxp, &uc, sizeof(uc)) != 0) {
917 		CTR1(KTR_SIG, "sigreturn: efault td=%p", td);
918 		return (EFAULT);
919 	}
920 
921 	error = set_mcontext32(td, &uc.uc_mcontext);
922 	if (error != 0)
923 		return (error);
924 
925 	/*
926 	 * Save FPU state if needed. User may have changed it on
927 	 * signal handler
928 	 */
929 	if (uc.uc_mcontext.mc_srr1 & PSL_FP)
930 		save_fpu(td);
931 
932 	kern_sigprocmask(td, SIG_SETMASK, &uc.uc_sigmask, NULL, 0);
933 
934 	CTR3(KTR_SIG, "sigreturn: return td=%p pc=%#x sp=%#x",
935 	     td, uc.uc_mcontext.mc_srr0, uc.uc_mcontext.mc_gpr[1]);
936 
937 	return (EJUSTRETURN);
938 }
939 
940 /*
941  * The first two fields of a ucontext_t are the signal mask and the machine
942  * context.  The next field is uc_link; we want to avoid destroying the link
943  * when copying out contexts.
944  */
945 #define	UC32_COPY_SIZE	offsetof(ucontext32_t, uc_link)
946 
947 int
948 freebsd32_getcontext(struct thread *td, struct freebsd32_getcontext_args *uap)
949 {
950 	ucontext32_t uc;
951 	int ret;
952 
953 	if (uap->ucp == NULL)
954 		ret = EINVAL;
955 	else {
956 		bzero(&uc, sizeof(uc));
957 		get_mcontext32(td, &uc.uc_mcontext, GET_MC_CLEAR_RET);
958 		PROC_LOCK(td->td_proc);
959 		uc.uc_sigmask = td->td_sigmask;
960 		PROC_UNLOCK(td->td_proc);
961 		ret = copyout(&uc, uap->ucp, UC32_COPY_SIZE);
962 	}
963 	return (ret);
964 }
965 
966 int
967 freebsd32_setcontext(struct thread *td, struct freebsd32_setcontext_args *uap)
968 {
969 	ucontext32_t uc;
970 	int ret;
971 
972 	if (uap->ucp == NULL)
973 		ret = EINVAL;
974 	else {
975 		ret = copyin(uap->ucp, &uc, UC32_COPY_SIZE);
976 		if (ret == 0) {
977 			ret = set_mcontext32(td, &uc.uc_mcontext);
978 			if (ret == 0) {
979 				kern_sigprocmask(td, SIG_SETMASK,
980 				    &uc.uc_sigmask, NULL, 0);
981 			}
982 		}
983 	}
984 	return (ret == 0 ? EJUSTRETURN : ret);
985 }
986 
987 int
988 freebsd32_swapcontext(struct thread *td, struct freebsd32_swapcontext_args *uap)
989 {
990 	ucontext32_t uc;
991 	int ret;
992 
993 	if (uap->oucp == NULL || uap->ucp == NULL)
994 		ret = EINVAL;
995 	else {
996 		bzero(&uc, sizeof(uc));
997 		get_mcontext32(td, &uc.uc_mcontext, GET_MC_CLEAR_RET);
998 		PROC_LOCK(td->td_proc);
999 		uc.uc_sigmask = td->td_sigmask;
1000 		PROC_UNLOCK(td->td_proc);
1001 		ret = copyout(&uc, uap->oucp, UC32_COPY_SIZE);
1002 		if (ret == 0) {
1003 			ret = copyin(uap->ucp, &uc, UC32_COPY_SIZE);
1004 			if (ret == 0) {
1005 				ret = set_mcontext32(td, &uc.uc_mcontext);
1006 				if (ret == 0) {
1007 					kern_sigprocmask(td, SIG_SETMASK,
1008 					    &uc.uc_sigmask, NULL, 0);
1009 				}
1010 			}
1011 		}
1012 	}
1013 	return (ret == 0 ? EJUSTRETURN : ret);
1014 }
1015 
1016 #endif
1017 
1018 void
1019 cpu_set_syscall_retval(struct thread *td, int error)
1020 {
1021 	struct proc *p;
1022 	struct trapframe *tf;
1023 	int fixup;
1024 
1025 	if (error == EJUSTRETURN)
1026 		return;
1027 
1028 	p = td->td_proc;
1029 	tf = td->td_frame;
1030 
1031 	if (tf->fixreg[0] == SYS___syscall &&
1032 	    (SV_PROC_FLAG(p, SV_ILP32))) {
1033 		int code = tf->fixreg[FIRSTARG + 1];
1034 		fixup = (
1035 #if defined(COMPAT_FREEBSD6) && defined(SYS_freebsd6_lseek)
1036 		    code != SYS_freebsd6_lseek &&
1037 #endif
1038 		    code != SYS_lseek) ?  1 : 0;
1039 	} else
1040 		fixup = 0;
1041 
1042 	switch (error) {
1043 	case 0:
1044 		if (fixup) {
1045 			/*
1046 			 * 64-bit return, 32-bit syscall. Fixup byte order
1047 			 */
1048 			tf->fixreg[FIRSTARG] = 0;
1049 			tf->fixreg[FIRSTARG + 1] = td->td_retval[0];
1050 		} else {
1051 			tf->fixreg[FIRSTARG] = td->td_retval[0];
1052 			tf->fixreg[FIRSTARG + 1] = td->td_retval[1];
1053 		}
1054 		tf->cr &= ~0x10000000;		/* Unset summary overflow */
1055 		break;
1056 	case ERESTART:
1057 		/*
1058 		 * Set user's pc back to redo the system call.
1059 		 */
1060 		tf->srr0 -= 4;
1061 		break;
1062 	default:
1063 		tf->fixreg[FIRSTARG] = error;
1064 		tf->cr |= 0x10000000;		/* Set summary overflow */
1065 		break;
1066 	}
1067 }
1068 
1069 /*
1070  * Threading functions
1071  */
1072 void
1073 cpu_thread_exit(struct thread *td)
1074 {
1075 	cleanup_power_extras(td);
1076 }
1077 
1078 void
1079 cpu_thread_clean(struct thread *td)
1080 {
1081 }
1082 
1083 void
1084 cpu_thread_alloc(struct thread *td)
1085 {
1086 	struct pcb *pcb;
1087 
1088 	pcb = (struct pcb *)((td->td_kstack + td->td_kstack_pages * PAGE_SIZE -
1089 	    sizeof(struct pcb)) & ~0x2fUL);
1090 	td->td_pcb = pcb;
1091 	td->td_frame = (struct trapframe *)pcb - 1;
1092 }
1093 
1094 void
1095 cpu_thread_free(struct thread *td)
1096 {
1097 }
1098 
1099 int
1100 cpu_set_user_tls(struct thread *td, void *tls_base)
1101 {
1102 
1103 	if (SV_PROC_FLAG(td->td_proc, SV_LP64))
1104 		td->td_frame->fixreg[13] = (register_t)tls_base + 0x7010;
1105 	else
1106 		td->td_frame->fixreg[2] = (register_t)tls_base + 0x7008;
1107 	return (0);
1108 }
1109 
1110 void
1111 cpu_copy_thread(struct thread *td, struct thread *td0)
1112 {
1113 	struct pcb *pcb2;
1114 	struct trapframe *tf;
1115 	struct callframe *cf;
1116 
1117 	/* Ensure td0 pcb is up to date. */
1118 	if (td0 == curthread)
1119 		cpu_save_thread_regs(td0);
1120 
1121 	pcb2 = td->td_pcb;
1122 
1123 	/* Copy the upcall pcb */
1124 	bcopy(td0->td_pcb, pcb2, sizeof(*pcb2));
1125 
1126 	/* Create a stack for the new thread */
1127 	tf = td->td_frame;
1128 	bcopy(td0->td_frame, tf, sizeof(struct trapframe));
1129 	tf->fixreg[FIRSTARG] = 0;
1130 	tf->fixreg[FIRSTARG + 1] = 0;
1131 	tf->cr &= ~0x10000000;
1132 
1133 	/* Set registers for trampoline to user mode. */
1134 	cf = (struct callframe *)tf - 1;
1135 	memset(cf, 0, sizeof(struct callframe));
1136 	cf->cf_func = (register_t)fork_return;
1137 	cf->cf_arg0 = (register_t)td;
1138 	cf->cf_arg1 = (register_t)tf;
1139 
1140 	pcb2->pcb_sp = (register_t)cf;
1141 	#if defined(__powerpc64__) && (!defined(_CALL_ELF) || _CALL_ELF == 1)
1142 	pcb2->pcb_lr = ((register_t *)fork_trampoline)[0];
1143 	pcb2->pcb_toc = ((register_t *)fork_trampoline)[1];
1144 	#else
1145 	pcb2->pcb_lr = (register_t)fork_trampoline;
1146 	pcb2->pcb_context[0] = pcb2->pcb_lr;
1147 	#endif
1148 	pcb2->pcb_cpu.aim.usr_vsid = 0;
1149 #ifdef __SPE__
1150 	pcb2->pcb_vec.vscr = SPEFSCR_DFLT;
1151 #endif
1152 
1153 	/* Setup to release spin count in fork_exit(). */
1154 	td->td_md.md_spinlock_count = 1;
1155 	td->td_md.md_saved_msr = psl_kernset;
1156 }
1157 
1158 void
1159 cpu_set_upcall(struct thread *td, void (*entry)(void *), void *arg,
1160     stack_t *stack)
1161 {
1162 	struct trapframe *tf;
1163 	uintptr_t sp;
1164 
1165 	tf = td->td_frame;
1166 	/* align stack and alloc space for frame ptr and saved LR */
1167 	#ifdef __powerpc64__
1168 	sp = ((uintptr_t)stack->ss_sp + stack->ss_size - 48) &
1169 	    ~0x1f;
1170 	#else
1171 	sp = ((uintptr_t)stack->ss_sp + stack->ss_size - 8) &
1172 	    ~0x1f;
1173 	#endif
1174 	bzero(tf, sizeof(struct trapframe));
1175 
1176 	tf->fixreg[1] = (register_t)sp;
1177 	tf->fixreg[3] = (register_t)arg;
1178 	if (SV_PROC_FLAG(td->td_proc, SV_ILP32)) {
1179 		tf->srr0 = (register_t)entry;
1180 		#ifdef __powerpc64__
1181 		tf->srr1 = psl_userset32 | PSL_FE_DFLT;
1182 		#else
1183 		tf->srr1 = psl_userset | PSL_FE_DFLT;
1184 		#endif
1185 	} else {
1186 	    #ifdef __powerpc64__
1187 		if (td->td_proc->p_sysent == &elf64_freebsd_sysvec_v2) {
1188 			tf->srr0 = (register_t)entry;
1189 			/* ELFv2 ABI requires that the global entry point be in r12. */
1190 			tf->fixreg[12] = (register_t)entry;
1191 		}
1192 		else {
1193 			register_t entry_desc[3];
1194 			(void)copyin((void *)entry, entry_desc, sizeof(entry_desc));
1195 			tf->srr0 = entry_desc[0];
1196 			tf->fixreg[2] = entry_desc[1];
1197 			tf->fixreg[11] = entry_desc[2];
1198 		}
1199 		tf->srr1 = psl_userset | PSL_FE_DFLT;
1200 	    #endif
1201 	}
1202 
1203 	td->td_pcb->pcb_flags = 0;
1204 #ifdef __SPE__
1205 	td->td_pcb->pcb_vec.vscr = SPEFSCR_DFLT;
1206 #endif
1207 
1208 	td->td_retval[0] = (register_t)entry;
1209 	td->td_retval[1] = 0;
1210 }
1211 
1212 static int
1213 emulate_mfspr(int spr, int reg, struct trapframe *frame){
1214 	struct thread *td;
1215 
1216 	td = curthread;
1217 
1218 	if (spr == SPR_DSCR || spr == SPR_DSCRP) {
1219 		if (!(cpu_features2 & PPC_FEATURE2_DSCR))
1220 			return (SIGILL);
1221 		// If DSCR was never set, get the default DSCR
1222 		if ((td->td_pcb->pcb_flags & PCB_CDSCR) == 0)
1223 			td->td_pcb->pcb_dscr = mfspr(SPR_DSCRP);
1224 
1225 		frame->fixreg[reg] = td->td_pcb->pcb_dscr;
1226 		frame->srr0 += 4;
1227 		return (0);
1228 	} else
1229 		return (SIGILL);
1230 }
1231 
1232 static int
1233 emulate_mtspr(int spr, int reg, struct trapframe *frame){
1234 	struct thread *td;
1235 
1236 	td = curthread;
1237 
1238 	if (spr == SPR_DSCR || spr == SPR_DSCRP) {
1239 		if (!(cpu_features2 & PPC_FEATURE2_DSCR))
1240 			return (SIGILL);
1241 		td->td_pcb->pcb_flags |= PCB_CDSCR;
1242 		td->td_pcb->pcb_dscr = frame->fixreg[reg];
1243 		mtspr(SPR_DSCRP, frame->fixreg[reg]);
1244 		frame->srr0 += 4;
1245 		return (0);
1246 	} else
1247 		return (SIGILL);
1248 }
1249 
1250 #define XFX 0xFC0007FF
1251 int
1252 ppc_instr_emulate(struct trapframe *frame, struct thread *td)
1253 {
1254 	struct pcb *pcb;
1255 	uint32_t instr;
1256 	int reg, sig;
1257 	int rs, spr;
1258 
1259 	instr = fuword32((void *)frame->srr0);
1260 	sig = SIGILL;
1261 
1262 	if ((instr & 0xfc1fffff) == 0x7c1f42a6) {	/* mfpvr */
1263 		reg = (instr & ~0xfc1fffff) >> 21;
1264 		frame->fixreg[reg] = mfpvr();
1265 		frame->srr0 += 4;
1266 		return (0);
1267 	} else if ((instr & XFX) == 0x7c0002a6) {	/* mfspr */
1268 		rs = (instr &  0x3e00000) >> 21;
1269 		spr = (instr & 0x1ff800) >> 16;
1270 		return emulate_mfspr(spr, rs, frame);
1271 	} else if ((instr & XFX) == 0x7c0003a6) {	/* mtspr */
1272 		rs = (instr &  0x3e00000) >> 21;
1273 		spr = (instr & 0x1ff800) >> 16;
1274 		return emulate_mtspr(spr, rs, frame);
1275 	} else if ((instr & 0xfc000ffe) == 0x7c0004ac) {	/* various sync */
1276 		powerpc_sync(); /* Do a heavy-weight sync */
1277 		frame->srr0 += 4;
1278 		return (0);
1279 	}
1280 
1281 	pcb = td->td_pcb;
1282 #ifdef FPU_EMU
1283 	if (!(pcb->pcb_flags & PCB_FPREGS)) {
1284 		bzero(&pcb->pcb_fpu, sizeof(pcb->pcb_fpu));
1285 		pcb->pcb_flags |= PCB_FPREGS;
1286 	} else if (pcb->pcb_flags & PCB_FPU)
1287 		save_fpu(td);
1288 	sig = fpu_emulate(frame, &pcb->pcb_fpu);
1289 	if ((sig == 0 || sig == SIGFPE) && pcb->pcb_flags & PCB_FPU)
1290 		enable_fpu(td);
1291 #endif
1292 	if (sig == SIGILL) {
1293 		if (pcb->pcb_lastill != frame->srr0) {
1294 			/* Allow a second chance, in case of cache sync issues. */
1295 			sig = 0;
1296 			pmap_sync_icache(PCPU_GET(curpmap), frame->srr0, 4);
1297 			pcb->pcb_lastill = frame->srr0;
1298 		}
1299 	}
1300 
1301 	return (sig);
1302 }
1303