xref: /freebsd/sys/powerpc/powerpc/trap.c (revision 0957b409)
1 /*-
2  * Copyright (C) 1995, 1996 Wolfgang Solfrank.
3  * Copyright (C) 1995, 1996 TooLs GmbH.
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  * 3. All advertising materials mentioning features or use of this software
15  *    must display the following acknowledgement:
16  *	This product includes software developed by TooLs GmbH.
17  * 4. The name of TooLs GmbH may not be used to endorse or promote products
18  *    derived from this software without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
21  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
22  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
23  * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
25  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
26  * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
27  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
28  * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
29  * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30  *
31  * $NetBSD: trap.c,v 1.58 2002/03/04 04:07:35 dbj Exp $
32  */
33 
34 #include <sys/cdefs.h>
35 __FBSDID("$FreeBSD$");
36 
37 #include <sys/param.h>
38 #include <sys/kdb.h>
39 #include <sys/proc.h>
40 #include <sys/ktr.h>
41 #include <sys/lock.h>
42 #include <sys/mutex.h>
43 #include <sys/pioctl.h>
44 #include <sys/ptrace.h>
45 #include <sys/reboot.h>
46 #include <sys/syscall.h>
47 #include <sys/sysent.h>
48 #include <sys/systm.h>
49 #include <sys/kernel.h>
50 #include <sys/uio.h>
51 #include <sys/signalvar.h>
52 #include <sys/vmmeter.h>
53 
54 #include <security/audit/audit.h>
55 
56 #include <vm/vm.h>
57 #include <vm/pmap.h>
58 #include <vm/vm_extern.h>
59 #include <vm/vm_param.h>
60 #include <vm/vm_kern.h>
61 #include <vm/vm_map.h>
62 #include <vm/vm_page.h>
63 
64 #include <machine/_inttypes.h>
65 #include <machine/altivec.h>
66 #include <machine/cpu.h>
67 #include <machine/db_machdep.h>
68 #include <machine/fpu.h>
69 #include <machine/frame.h>
70 #include <machine/pcb.h>
71 #include <machine/psl.h>
72 #include <machine/trap.h>
73 #include <machine/spr.h>
74 #include <machine/sr.h>
75 
76 /* Below matches setjmp.S */
77 #define	FAULTBUF_LR	21
78 #define	FAULTBUF_R1	1
79 #define	FAULTBUF_R2	2
80 #define	FAULTBUF_CR	22
81 #define	FAULTBUF_R14	3
82 
83 #define	MOREARGS(sp)	((caddr_t)((uintptr_t)(sp) + \
84     sizeof(struct callframe) - 3*sizeof(register_t))) /* more args go here */
85 
86 static void	trap_fatal(struct trapframe *frame);
87 static void	printtrap(u_int vector, struct trapframe *frame, int isfatal,
88 		    int user);
89 static int	trap_pfault(struct trapframe *frame, int user);
90 static int	fix_unaligned(struct thread *td, struct trapframe *frame);
91 static int	handle_onfault(struct trapframe *frame);
92 static void	syscall(struct trapframe *frame);
93 
94 #if defined(__powerpc64__) && defined(AIM)
95        void	handle_kernel_slb_spill(int, register_t, register_t);
96 static int	handle_user_slb_spill(pmap_t pm, vm_offset_t addr);
97 extern int	n_slbs;
98 static void	normalize_inputs(void);
99 #endif
100 
101 extern vm_offset_t __startkernel;
102 
103 #ifdef KDB
104 int db_trap_glue(struct trapframe *);		/* Called from trap_subr.S */
105 #endif
106 
107 struct powerpc_exception {
108 	u_int	vector;
109 	char	*name;
110 };
111 
112 #ifdef KDTRACE_HOOKS
113 #include <sys/dtrace_bsd.h>
114 
115 int (*dtrace_invop_jump_addr)(struct trapframe *);
116 #endif
117 
118 static struct powerpc_exception powerpc_exceptions[] = {
119 	{ EXC_CRIT,	"critical input" },
120 	{ EXC_RST,	"system reset" },
121 	{ EXC_MCHK,	"machine check" },
122 	{ EXC_DSI,	"data storage interrupt" },
123 	{ EXC_DSE,	"data segment exception" },
124 	{ EXC_ISI,	"instruction storage interrupt" },
125 	{ EXC_ISE,	"instruction segment exception" },
126 	{ EXC_EXI,	"external interrupt" },
127 	{ EXC_ALI,	"alignment" },
128 	{ EXC_PGM,	"program" },
129 	{ EXC_HEA,	"hypervisor emulation assistance" },
130 	{ EXC_FPU,	"floating-point unavailable" },
131 	{ EXC_APU,	"auxiliary proc unavailable" },
132 	{ EXC_DECR,	"decrementer" },
133 	{ EXC_FIT,	"fixed-interval timer" },
134 	{ EXC_WDOG,	"watchdog timer" },
135 	{ EXC_SC,	"system call" },
136 	{ EXC_TRC,	"trace" },
137 	{ EXC_FPA,	"floating-point assist" },
138 	{ EXC_DEBUG,	"debug" },
139 	{ EXC_PERF,	"performance monitoring" },
140 	{ EXC_VEC,	"altivec unavailable" },
141 	{ EXC_VSX,	"vsx unavailable" },
142 	{ EXC_FAC,	"facility unavailable" },
143 	{ EXC_ITMISS,	"instruction tlb miss" },
144 	{ EXC_DLMISS,	"data load tlb miss" },
145 	{ EXC_DSMISS,	"data store tlb miss" },
146 	{ EXC_BPT,	"instruction breakpoint" },
147 	{ EXC_SMI,	"system management" },
148 	{ EXC_VECAST_G4,	"altivec assist" },
149 	{ EXC_THRM,	"thermal management" },
150 	{ EXC_RUNMODETRC,	"run mode/trace" },
151 	{ EXC_SOFT_PATCH, "soft patch exception" },
152 	{ EXC_LAST,	NULL }
153 };
154 
155 #define ESR_BITMASK							\
156     "\20"								\
157     "\040b0\037b1\036b2\035b3\034PIL\033PRR\032PTR\031FP"		\
158     "\030ST\027b9\026DLK\025ILK\024b12\023b13\022BO\021PIE"		\
159     "\020b16\017b17\016b18\015b19\014b20\013b21\012b22\011b23"		\
160     "\010SPE\007EPID\006b26\005b27\004b28\003b29\002b30\001b31"
161 #define	MCSR_BITMASK							\
162     "\20"								\
163     "\040MCP\037ICERR\036DCERR\035TLBPERR\034L2MMU_MHIT\033b5\032b6\031b7"	\
164     "\030b8\027b9\026b10\025NMI\024MAV\023MEA\022b14\021IF"		\
165     "\020LD\017ST\016LDG\015b19\014b20\013b21\012b22\011b23"		\
166     "\010b24\007b25\006b26\005b27\004b28\003b29\002TLBSYNC\001BSL2_ERR"
167 #define	MSSSR_BITMASK							\
168     "\20"								\
169     "\040b0\037b1\036b2\035b3\034b4\033b5\032b6\031b7"			\
170     "\030b8\027b9\026b10\025b11\024b12\023L2TAG\022L2DAT\021L3TAG"	\
171     "\020L3DAT\017APE\016DPE\015TEA\014b20\013b21\012b22\011b23"	\
172     "\010b24\007b25\006b26\005b27\004b28\003b29\002b30\001b31"
173 
174 
175 static const char *
176 trapname(u_int vector)
177 {
178 	struct	powerpc_exception *pe;
179 
180 	for (pe = powerpc_exceptions; pe->vector != EXC_LAST; pe++) {
181 		if (pe->vector == vector)
182 			return (pe->name);
183 	}
184 
185 	return ("unknown");
186 }
187 
188 static inline bool
189 frame_is_trap_inst(struct trapframe *frame)
190 {
191 #ifdef AIM
192 	return (frame->exc == EXC_PGM && frame->srr1 & EXC_PGM_TRAP);
193 #else
194 	return ((frame->cpu.booke.esr & ESR_PTR) != 0);
195 #endif
196 }
197 
198 void
199 trap(struct trapframe *frame)
200 {
201 	struct thread	*td;
202 	struct proc	*p;
203 #ifdef KDTRACE_HOOKS
204 	uint32_t inst;
205 #endif
206 	int		sig, type, user;
207 	u_int		ucode;
208 	ksiginfo_t	ksi;
209 	register_t 	fscr;
210 
211 	VM_CNT_INC(v_trap);
212 
213 #ifdef KDB
214 	if (kdb_active) {
215 		kdb_reenter();
216 		return;
217 	}
218 #endif
219 
220 	td = curthread;
221 	p = td->td_proc;
222 
223 	type = ucode = frame->exc;
224 	sig = 0;
225 	user = frame->srr1 & PSL_PR;
226 
227 	CTR3(KTR_TRAP, "trap: %s type=%s (%s)", td->td_name,
228 	    trapname(type), user ? "user" : "kernel");
229 
230 #ifdef KDTRACE_HOOKS
231 	/*
232 	 * A trap can occur while DTrace executes a probe. Before
233 	 * executing the probe, DTrace blocks re-scheduling and sets
234 	 * a flag in its per-cpu flags to indicate that it doesn't
235 	 * want to fault. On returning from the probe, the no-fault
236 	 * flag is cleared and finally re-scheduling is enabled.
237 	 *
238 	 * If the DTrace kernel module has registered a trap handler,
239 	 * call it and if it returns non-zero, assume that it has
240 	 * handled the trap and modified the trap frame so that this
241 	 * function can return normally.
242 	 */
243 	if (dtrace_trap_func != NULL && (*dtrace_trap_func)(frame, type) != 0)
244 		return;
245 #endif
246 
247 	if (user) {
248 		td->td_pticks = 0;
249 		td->td_frame = frame;
250 		if (td->td_cowgen != p->p_cowgen)
251 			thread_cow_update(td);
252 
253 		/* User Mode Traps */
254 		switch (type) {
255 		case EXC_RUNMODETRC:
256 		case EXC_TRC:
257 			frame->srr1 &= ~PSL_SE;
258 			sig = SIGTRAP;
259 			ucode = TRAP_TRACE;
260 			break;
261 
262 #if defined(__powerpc64__) && defined(AIM)
263 		case EXC_ISE:
264 		case EXC_DSE:
265 			if (handle_user_slb_spill(&p->p_vmspace->vm_pmap,
266 			    (type == EXC_ISE) ? frame->srr0 : frame->dar) != 0){
267 				sig = SIGSEGV;
268 				ucode = SEGV_MAPERR;
269 			}
270 			break;
271 #endif
272 		case EXC_DSI:
273 		case EXC_ISI:
274 			sig = trap_pfault(frame, 1);
275 			if (sig == SIGSEGV)
276 				ucode = SEGV_MAPERR;
277 			break;
278 
279 		case EXC_SC:
280 			syscall(frame);
281 			break;
282 
283 		case EXC_FPU:
284 			KASSERT((td->td_pcb->pcb_flags & PCB_FPU) != PCB_FPU,
285 			    ("FPU already enabled for thread"));
286 			enable_fpu(td);
287 			break;
288 
289 		case EXC_VEC:
290 			KASSERT((td->td_pcb->pcb_flags & PCB_VEC) != PCB_VEC,
291 			    ("Altivec already enabled for thread"));
292 			enable_vec(td);
293 			break;
294 
295 		case EXC_VSX:
296 			KASSERT((td->td_pcb->pcb_flags & PCB_VSX) != PCB_VSX,
297 			    ("VSX already enabled for thread"));
298 			if (!(td->td_pcb->pcb_flags & PCB_VEC))
299 				enable_vec(td);
300 			if (!(td->td_pcb->pcb_flags & PCB_FPU))
301 				save_fpu(td);
302 			td->td_pcb->pcb_flags |= PCB_VSX;
303 			enable_fpu(td);
304 			break;
305 
306 		case EXC_FAC:
307 			fscr = mfspr(SPR_FSCR);
308 			if ((fscr & FSCR_IC_MASK) == FSCR_IC_HTM) {
309 				CTR0(KTR_TRAP, "Hardware Transactional Memory subsystem disabled");
310 			}
311 			sig = SIGILL;
312 			ucode =	ILL_ILLOPC;
313 			break;
314 		case EXC_HEA:
315 			sig = SIGILL;
316 			ucode =	ILL_ILLOPC;
317 			break;
318 
319 		case EXC_VECAST_E:
320 		case EXC_VECAST_G4:
321 		case EXC_VECAST_G5:
322 			/*
323 			 * We get a VPU assist exception for IEEE mode
324 			 * vector operations on denormalized floats.
325 			 * Emulating this is a giant pain, so for now,
326 			 * just switch off IEEE mode and treat them as
327 			 * zero.
328 			 */
329 
330 			save_vec(td);
331 			td->td_pcb->pcb_vec.vscr |= ALTIVEC_VSCR_NJ;
332 			enable_vec(td);
333 			break;
334 
335 		case EXC_ALI:
336 			if (fix_unaligned(td, frame) != 0) {
337 				sig = SIGBUS;
338 				ucode = BUS_ADRALN;
339 			}
340 			else
341 				frame->srr0 += 4;
342 			break;
343 
344 		case EXC_DEBUG:	/* Single stepping */
345 			mtspr(SPR_DBSR, mfspr(SPR_DBSR));
346 			frame->srr1 &= ~PSL_DE;
347 			frame->cpu.booke.dbcr0 &= ~(DBCR0_IDM | DBCR0_IC);
348 			sig = SIGTRAP;
349 			ucode = TRAP_TRACE;
350 			break;
351 
352 		case EXC_PGM:
353 			/* Identify the trap reason */
354 			if (frame_is_trap_inst(frame)) {
355 #ifdef KDTRACE_HOOKS
356 				inst = fuword32((const void *)frame->srr0);
357 				if (inst == 0x0FFFDDDD &&
358 				    dtrace_pid_probe_ptr != NULL) {
359 					(*dtrace_pid_probe_ptr)(frame);
360 					break;
361 				}
362 #endif
363  				sig = SIGTRAP;
364 				ucode = TRAP_BRKPT;
365 			} else {
366 				sig = ppc_instr_emulate(frame, td->td_pcb);
367 				if (sig == SIGILL) {
368 					if (frame->srr1 & EXC_PGM_PRIV)
369 						ucode = ILL_PRVOPC;
370 					else if (frame->srr1 & EXC_PGM_ILLEGAL)
371 						ucode = ILL_ILLOPC;
372 				} else if (sig == SIGFPE)
373 					ucode = FPE_FLTINV;	/* Punt for now, invalid operation. */
374 			}
375 			break;
376 
377 		case EXC_MCHK:
378 			/*
379 			 * Note that this may not be recoverable for the user
380 			 * process, depending on the type of machine check,
381 			 * but it at least prevents the kernel from dying.
382 			 */
383 			sig = SIGBUS;
384 			ucode = BUS_OBJERR;
385 			break;
386 
387 #if defined(__powerpc64__) && defined(AIM)
388 		case EXC_SOFT_PATCH:
389 			/*
390 			 * Point to the instruction that generated the exception to execute it again,
391 			 * and normalize the register values.
392 			 */
393 			frame->srr0 -= 4;
394 			normalize_inputs();
395 			break;
396 #endif
397 
398 		default:
399 			trap_fatal(frame);
400 		}
401 	} else {
402 		/* Kernel Mode Traps */
403 
404 		KASSERT(cold || td->td_ucred != NULL,
405 		    ("kernel trap doesn't have ucred"));
406 		switch (type) {
407 		case EXC_PGM:
408 #ifdef KDTRACE_HOOKS
409 			if (frame_is_trap_inst(frame)) {
410 				if (*(uint32_t *)frame->srr0 == EXC_DTRACE) {
411 					if (dtrace_invop_jump_addr != NULL) {
412 						dtrace_invop_jump_addr(frame);
413 						return;
414 					}
415 				}
416 			}
417 #endif
418 #ifdef KDB
419 			if (db_trap_glue(frame))
420 				return;
421 #endif
422 			break;
423 #if defined(__powerpc64__) && defined(AIM)
424 		case EXC_DSE:
425 			if (td->td_pcb->pcb_cpu.aim.usr_vsid != 0 &&
426 			    (frame->dar & SEGMENT_MASK) == USER_ADDR) {
427 				__asm __volatile ("slbmte %0, %1" ::
428 					"r"(td->td_pcb->pcb_cpu.aim.usr_vsid),
429 					"r"(USER_SLB_SLBE));
430 				return;
431 			}
432 			break;
433 #endif
434 		case EXC_DSI:
435 			if (trap_pfault(frame, 0) == 0)
436  				return;
437 			break;
438 		case EXC_MCHK:
439 			if (handle_onfault(frame))
440  				return;
441 			break;
442 		default:
443 			break;
444 		}
445 		trap_fatal(frame);
446 	}
447 
448 	if (sig != 0) {
449 		if (p->p_sysent->sv_transtrap != NULL)
450 			sig = (p->p_sysent->sv_transtrap)(sig, type);
451 		ksiginfo_init_trap(&ksi);
452 		ksi.ksi_signo = sig;
453 		ksi.ksi_code = (int) ucode; /* XXX, not POSIX */
454 		ksi.ksi_addr = (void *)frame->srr0;
455 		ksi.ksi_trapno = type;
456 		trapsignal(td, &ksi);
457 	}
458 
459 	userret(td, frame);
460 }
461 
462 static void
463 trap_fatal(struct trapframe *frame)
464 {
465 #ifdef KDB
466 	bool handled;
467 #endif
468 
469 	printtrap(frame->exc, frame, 1, (frame->srr1 & PSL_PR));
470 #ifdef KDB
471 	if (debugger_on_trap) {
472 		kdb_why = KDB_WHY_TRAP;
473 		handled = kdb_trap(frame->exc, 0, frame);
474 		kdb_why = KDB_WHY_UNSET;
475 		if (handled)
476 			return;
477 	}
478 #endif
479 	panic("%s trap", trapname(frame->exc));
480 }
481 
482 static void
483 cpu_printtrap(u_int vector, struct trapframe *frame, int isfatal, int user)
484 {
485 #ifdef AIM
486 	uint16_t ver;
487 
488 	switch (vector) {
489 	case EXC_DSE:
490 	case EXC_DSI:
491 	case EXC_DTMISS:
492 		printf("   dsisr           = 0x%lx\n",
493 		    (u_long)frame->cpu.aim.dsisr);
494 		break;
495 	case EXC_MCHK:
496 		ver = mfpvr() >> 16;
497 		if (MPC745X_P(ver))
498 			printf("    msssr0         = 0x%b\n",
499 			    (int)mfspr(SPR_MSSSR0), MSSSR_BITMASK);
500 		break;
501 	}
502 #elif defined(BOOKE)
503 	vm_paddr_t pa;
504 
505 	switch (vector) {
506 	case EXC_MCHK:
507 		pa = mfspr(SPR_MCARU);
508 		pa = (pa << 32) | (u_register_t)mfspr(SPR_MCAR);
509 		printf("   mcsr            = 0x%b\n",
510 		    (int)mfspr(SPR_MCSR), MCSR_BITMASK);
511 		printf("   mcar            = 0x%jx\n", (uintmax_t)pa);
512 	}
513 	printf("   esr             = 0x%b\n",
514 	    (int)frame->cpu.booke.esr, ESR_BITMASK);
515 #endif
516 }
517 
518 static void
519 printtrap(u_int vector, struct trapframe *frame, int isfatal, int user)
520 {
521 
522 	printf("\n");
523 	printf("%s %s trap:\n", isfatal ? "fatal" : "handled",
524 	    user ? "user" : "kernel");
525 	printf("\n");
526 	printf("   exception       = 0x%x (%s)\n", vector, trapname(vector));
527 	switch (vector) {
528 	case EXC_DSE:
529 	case EXC_DSI:
530 	case EXC_DTMISS:
531 		printf("   virtual address = 0x%" PRIxPTR "\n", frame->dar);
532 		break;
533 	case EXC_ISE:
534 	case EXC_ISI:
535 	case EXC_ITMISS:
536 		printf("   virtual address = 0x%" PRIxPTR "\n", frame->srr0);
537 		break;
538 	case EXC_MCHK:
539 		break;
540 	}
541 	cpu_printtrap(vector, frame, isfatal, user);
542 	printf("   srr0            = 0x%" PRIxPTR " (0x%" PRIxPTR ")\n",
543 	    frame->srr0, frame->srr0 - (register_t)(__startkernel - KERNBASE));
544 	printf("   srr1            = 0x%lx\n", (u_long)frame->srr1);
545 	printf("   current msr     = 0x%" PRIxPTR "\n", mfmsr());
546 	printf("   lr              = 0x%" PRIxPTR " (0x%" PRIxPTR ")\n",
547 	    frame->lr, frame->lr - (register_t)(__startkernel - KERNBASE));
548 	printf("   curthread       = %p\n", curthread);
549 	if (curthread != NULL)
550 		printf("          pid = %d, comm = %s\n",
551 		    curthread->td_proc->p_pid, curthread->td_name);
552 	printf("\n");
553 }
554 
555 /*
556  * Handles a fatal fault when we have onfault state to recover.  Returns
557  * non-zero if there was onfault recovery state available.
558  */
559 static int
560 handle_onfault(struct trapframe *frame)
561 {
562 	struct		thread *td;
563 	jmp_buf		*fb;
564 
565 	td = curthread;
566 	fb = td->td_pcb->pcb_onfault;
567 	if (fb != NULL) {
568 		frame->srr0 = (*fb)->_jb[FAULTBUF_LR];
569 		frame->fixreg[1] = (*fb)->_jb[FAULTBUF_R1];
570 		frame->fixreg[2] = (*fb)->_jb[FAULTBUF_R2];
571 		frame->fixreg[3] = 1;
572 		frame->cr = (*fb)->_jb[FAULTBUF_CR];
573 		bcopy(&(*fb)->_jb[FAULTBUF_R14], &frame->fixreg[14],
574 		    18 * sizeof(register_t));
575 		td->td_pcb->pcb_onfault = NULL; /* Returns twice, not thrice */
576 		return (1);
577 	}
578 	return (0);
579 }
580 
581 int
582 cpu_fetch_syscall_args(struct thread *td)
583 {
584 	struct proc *p;
585 	struct trapframe *frame;
586 	struct syscall_args *sa;
587 	caddr_t	params;
588 	size_t argsz;
589 	int error, n, i;
590 
591 	p = td->td_proc;
592 	frame = td->td_frame;
593 	sa = &td->td_sa;
594 
595 	sa->code = frame->fixreg[0];
596 	params = (caddr_t)(frame->fixreg + FIRSTARG);
597 	n = NARGREG;
598 
599 	if (sa->code == SYS_syscall) {
600 		/*
601 		 * code is first argument,
602 		 * followed by actual args.
603 		 */
604 		sa->code = *(register_t *) params;
605 		params += sizeof(register_t);
606 		n -= 1;
607 	} else if (sa->code == SYS___syscall) {
608 		/*
609 		 * Like syscall, but code is a quad,
610 		 * so as to maintain quad alignment
611 		 * for the rest of the args.
612 		 */
613 		if (SV_PROC_FLAG(p, SV_ILP32)) {
614 			params += sizeof(register_t);
615 			sa->code = *(register_t *) params;
616 			params += sizeof(register_t);
617 			n -= 2;
618 		} else {
619 			sa->code = *(register_t *) params;
620 			params += sizeof(register_t);
621 			n -= 1;
622 		}
623 	}
624 
625 	if (sa->code >= p->p_sysent->sv_size)
626 		sa->callp = &p->p_sysent->sv_table[0];
627 	else
628 		sa->callp = &p->p_sysent->sv_table[sa->code];
629 
630 	sa->narg = sa->callp->sy_narg;
631 
632 	if (SV_PROC_FLAG(p, SV_ILP32)) {
633 		argsz = sizeof(uint32_t);
634 
635 		for (i = 0; i < n; i++)
636 			sa->args[i] = ((u_register_t *)(params))[i] &
637 			    0xffffffff;
638 	} else {
639 		argsz = sizeof(uint64_t);
640 
641 		for (i = 0; i < n; i++)
642 			sa->args[i] = ((u_register_t *)(params))[i];
643 	}
644 
645 	if (sa->narg > n)
646 		error = copyin(MOREARGS(frame->fixreg[1]), sa->args + n,
647 			       (sa->narg - n) * argsz);
648 	else
649 		error = 0;
650 
651 #ifdef __powerpc64__
652 	if (SV_PROC_FLAG(p, SV_ILP32) && sa->narg > n) {
653 		/* Expand the size of arguments copied from the stack */
654 
655 		for (i = sa->narg; i >= n; i--)
656 			sa->args[i] = ((uint32_t *)(&sa->args[n]))[i-n];
657 	}
658 #endif
659 
660 	if (error == 0) {
661 		td->td_retval[0] = 0;
662 		td->td_retval[1] = frame->fixreg[FIRSTARG + 1];
663 	}
664 	return (error);
665 }
666 
667 #include "../../kern/subr_syscall.c"
668 
669 void
670 syscall(struct trapframe *frame)
671 {
672 	struct thread *td;
673 	int error;
674 
675 	td = curthread;
676 	td->td_frame = frame;
677 
678 #if defined(__powerpc64__) && defined(AIM)
679 	/*
680 	 * Speculatively restore last user SLB segment, which we know is
681 	 * invalid already, since we are likely to do copyin()/copyout().
682 	 */
683 	if (td->td_pcb->pcb_cpu.aim.usr_vsid != 0)
684 		__asm __volatile ("slbmte %0, %1; isync" ::
685 		    "r"(td->td_pcb->pcb_cpu.aim.usr_vsid), "r"(USER_SLB_SLBE));
686 #endif
687 
688 	error = syscallenter(td);
689 	syscallret(td, error);
690 }
691 
692 #if defined(__powerpc64__) && defined(AIM)
693 /* Handle kernel SLB faults -- runs in real mode, all seat belts off */
694 void
695 handle_kernel_slb_spill(int type, register_t dar, register_t srr0)
696 {
697 	struct slb *slbcache;
698 	uint64_t slbe, slbv;
699 	uint64_t esid, addr;
700 	int i;
701 
702 	addr = (type == EXC_ISE) ? srr0 : dar;
703 	slbcache = PCPU_GET(aim.slb);
704 	esid = (uintptr_t)addr >> ADDR_SR_SHFT;
705 	slbe = (esid << SLBE_ESID_SHIFT) | SLBE_VALID;
706 
707 	/* See if the hardware flushed this somehow (can happen in LPARs) */
708 	for (i = 0; i < n_slbs; i++)
709 		if (slbcache[i].slbe == (slbe | (uint64_t)i))
710 			return;
711 
712 	/* Not in the map, needs to actually be added */
713 	slbv = kernel_va_to_slbv(addr);
714 	if (slbcache[USER_SLB_SLOT].slbe == 0) {
715 		for (i = 0; i < n_slbs; i++) {
716 			if (i == USER_SLB_SLOT)
717 				continue;
718 			if (!(slbcache[i].slbe & SLBE_VALID))
719 				goto fillkernslb;
720 		}
721 
722 		if (i == n_slbs)
723 			slbcache[USER_SLB_SLOT].slbe = 1;
724 	}
725 
726 	/* Sacrifice a random SLB entry that is not the user entry */
727 	i = mftb() % n_slbs;
728 	if (i == USER_SLB_SLOT)
729 		i = (i+1) % n_slbs;
730 
731 fillkernslb:
732 	/* Write new entry */
733 	slbcache[i].slbv = slbv;
734 	slbcache[i].slbe = slbe | (uint64_t)i;
735 
736 	/* Trap handler will restore from cache on exit */
737 }
738 
739 static int
740 handle_user_slb_spill(pmap_t pm, vm_offset_t addr)
741 {
742 	struct slb *user_entry;
743 	uint64_t esid;
744 	int i;
745 
746 	if (pm->pm_slb == NULL)
747 		return (-1);
748 
749 	esid = (uintptr_t)addr >> ADDR_SR_SHFT;
750 
751 	PMAP_LOCK(pm);
752 	user_entry = user_va_to_slb_entry(pm, addr);
753 
754 	if (user_entry == NULL) {
755 		/* allocate_vsid auto-spills it */
756 		(void)allocate_user_vsid(pm, esid, 0);
757 	} else {
758 		/*
759 		 * Check that another CPU has not already mapped this.
760 		 * XXX: Per-thread SLB caches would be better.
761 		 */
762 		for (i = 0; i < pm->pm_slb_len; i++)
763 			if (pm->pm_slb[i] == user_entry)
764 				break;
765 
766 		if (i == pm->pm_slb_len)
767 			slb_insert_user(pm, user_entry);
768 	}
769 	PMAP_UNLOCK(pm);
770 
771 	return (0);
772 }
773 #endif
774 
775 static int
776 trap_pfault(struct trapframe *frame, int user)
777 {
778 	vm_offset_t	eva, va;
779 	struct		thread *td;
780 	struct		proc *p;
781 	vm_map_t	map;
782 	vm_prot_t	ftype;
783 	int		rv, is_user;
784 
785 	td = curthread;
786 	p = td->td_proc;
787 	if (frame->exc == EXC_ISI) {
788 		eva = frame->srr0;
789 		ftype = VM_PROT_EXECUTE;
790 		if (frame->srr1 & SRR1_ISI_PFAULT)
791 			ftype |= VM_PROT_READ;
792 	} else {
793 		eva = frame->dar;
794 #ifdef BOOKE
795 		if (frame->cpu.booke.esr & ESR_ST)
796 #else
797 		if (frame->cpu.aim.dsisr & DSISR_STORE)
798 #endif
799 			ftype = VM_PROT_WRITE;
800 		else
801 			ftype = VM_PROT_READ;
802 	}
803 
804 	if (user) {
805 		KASSERT(p->p_vmspace != NULL, ("trap_pfault: vmspace  NULL"));
806 		map = &p->p_vmspace->vm_map;
807 	} else {
808 		rv = pmap_decode_kernel_ptr(eva, &is_user, &eva);
809 		if (rv != 0)
810 			return (SIGSEGV);
811 
812 		if (is_user)
813 			map = &p->p_vmspace->vm_map;
814 		else
815 			map = kernel_map;
816 	}
817 	va = trunc_page(eva);
818 
819 	/* Fault in the page. */
820 	rv = vm_fault(map, va, ftype, VM_FAULT_NORMAL);
821 	/*
822 	 * XXXDTRACE: add dtrace_doubletrap_func here?
823 	 */
824 
825 	if (rv == KERN_SUCCESS)
826 		return (0);
827 
828 	if (!user && handle_onfault(frame))
829 		return (0);
830 
831 	return (SIGSEGV);
832 }
833 
834 /*
835  * For now, this only deals with the particular unaligned access case
836  * that gcc tends to generate.  Eventually it should handle all of the
837  * possibilities that can happen on a 32-bit PowerPC in big-endian mode.
838  */
839 
840 static int
841 fix_unaligned(struct thread *td, struct trapframe *frame)
842 {
843 	struct thread	*fputhread;
844 #ifdef	__SPE__
845 	uint32_t	inst;
846 #endif
847 	int		indicator, reg;
848 	double		*fpr;
849 
850 #ifdef __SPE__
851 	indicator = (frame->cpu.booke.esr & (ESR_ST|ESR_SPE));
852 	if (indicator & ESR_SPE) {
853 		if (copyin((void *)frame->srr0, &inst, sizeof(inst)) != 0)
854 			return (-1);
855 		reg = EXC_ALI_SPE_REG(inst);
856 		fpr = (double *)td->td_pcb->pcb_vec.vr[reg];
857 		fputhread = PCPU_GET(vecthread);
858 
859 		/* Juggle the SPE to ensure that we've initialized
860 		 * the registers, and that their current state is in
861 		 * the PCB.
862 		 */
863 		if (fputhread != td) {
864 			if (fputhread)
865 				save_vec(fputhread);
866 			enable_vec(td);
867 		}
868 		save_vec(td);
869 
870 		if (!(indicator & ESR_ST)) {
871 			if (copyin((void *)frame->dar, fpr,
872 			    sizeof(double)) != 0)
873 				return (-1);
874 			frame->fixreg[reg] = td->td_pcb->pcb_vec.vr[reg][1];
875 			enable_vec(td);
876 		} else {
877 			td->td_pcb->pcb_vec.vr[reg][1] = frame->fixreg[reg];
878 			if (copyout(fpr, (void *)frame->dar,
879 			    sizeof(double)) != 0)
880 				return (-1);
881 		}
882 		return (0);
883 	}
884 #else
885 	indicator = EXC_ALI_OPCODE_INDICATOR(frame->cpu.aim.dsisr);
886 
887 	switch (indicator) {
888 	case EXC_ALI_LFD:
889 	case EXC_ALI_STFD:
890 		reg = EXC_ALI_RST(frame->cpu.aim.dsisr);
891 		fpr = &td->td_pcb->pcb_fpu.fpr[reg].fpr;
892 		fputhread = PCPU_GET(fputhread);
893 
894 		/* Juggle the FPU to ensure that we've initialized
895 		 * the FPRs, and that their current state is in
896 		 * the PCB.
897 		 */
898 		if (fputhread != td) {
899 			if (fputhread)
900 				save_fpu(fputhread);
901 			enable_fpu(td);
902 		}
903 		save_fpu(td);
904 
905 		if (indicator == EXC_ALI_LFD) {
906 			if (copyin((void *)frame->dar, fpr,
907 			    sizeof(double)) != 0)
908 				return (-1);
909 			enable_fpu(td);
910 		} else {
911 			if (copyout(fpr, (void *)frame->dar,
912 			    sizeof(double)) != 0)
913 				return (-1);
914 		}
915 		return (0);
916 		break;
917 	}
918 #endif
919 
920 	return (-1);
921 }
922 
923 #if defined(__powerpc64__) && defined(AIM)
924 #define MSKNSHL(x, m, n) "(((" #x ") & " #m ") << " #n ")"
925 #define MSKNSHR(x, m, n) "(((" #x ") & " #m ") >> " #n ")"
926 
927 /* xvcpsgndp instruction, built in opcode format.
928  * This can be changed to use mnemonic after a toolchain update.
929  */
930 #define XVCPSGNDP(xt, xa, xb) \
931 	__asm __volatile(".long (" \
932 		MSKNSHL(60, 0x3f, 26) " | " \
933 		MSKNSHL(xt, 0x1f, 21) " | " \
934 		MSKNSHL(xa, 0x1f, 16) " | " \
935 		MSKNSHL(xb, 0x1f, 11) " | " \
936 		MSKNSHL(240, 0xff, 3) " | " \
937 		MSKNSHR(xa,  0x20, 3) " | " \
938 		MSKNSHR(xa,  0x20, 4) " | " \
939 		MSKNSHR(xa,  0x20, 5) ")")
940 
941 /* Macros to normalize 1 or 10 VSX registers */
942 #define NORM(x)	XVCPSGNDP(x, x, x)
943 #define NORM10(x) \
944 	NORM(x ## 0); NORM(x ## 1); NORM(x ## 2); NORM(x ## 3); NORM(x ## 4); \
945 	NORM(x ## 5); NORM(x ## 6); NORM(x ## 7); NORM(x ## 8); NORM(x ## 9)
946 
947 static void
948 normalize_inputs(void)
949 {
950 	unsigned long msr;
951 
952 	/* enable VSX */
953 	msr = mfmsr();
954 	mtmsr(msr | PSL_VSX);
955 
956 	NORM(0);   NORM(1);   NORM(2);   NORM(3);   NORM(4);
957 	NORM(5);   NORM(6);   NORM(7);   NORM(8);   NORM(9);
958 	NORM10(1); NORM10(2); NORM10(3); NORM10(4); NORM10(5);
959 	NORM(60);  NORM(61);  NORM(62);  NORM(63);
960 
961 	/* restore MSR */
962 	mtmsr(msr);
963 }
964 #endif
965 
966 #ifdef KDB
967 int
968 db_trap_glue(struct trapframe *frame)
969 {
970 
971 	if (!(frame->srr1 & PSL_PR)
972 	    && (frame->exc == EXC_TRC || frame->exc == EXC_RUNMODETRC
973 	    	|| frame_is_trap_inst(frame)
974 		|| frame->exc == EXC_BPT
975 		|| frame->exc == EXC_DEBUG
976 		|| frame->exc == EXC_DSI)) {
977 		int type = frame->exc;
978 
979 		/* Ignore DTrace traps. */
980 		if (*(uint32_t *)frame->srr0 == EXC_DTRACE)
981 			return (0);
982 		if (frame_is_trap_inst(frame)) {
983 			type = T_BREAKPOINT;
984 		}
985 		return (kdb_trap(type, 0, frame));
986 	}
987 
988 	return (0);
989 }
990 #endif
991