xref: /freebsd/sys/riscv/riscv/mp_machdep.c (revision 85732ac8)
1 /*-
2  * Copyright (c) 2015 The FreeBSD Foundation
3  * Copyright (c) 2016 Ruslan Bukin <br@bsdpad.com>
4  * All rights reserved.
5  *
6  * Portions of this software were developed by Andrew Turner under
7  * sponsorship from the FreeBSD Foundation.
8  *
9  * Portions of this software were developed by SRI International and the
10  * University of Cambridge Computer Laboratory under DARPA/AFRL contract
11  * FA8750-10-C-0237 ("CTSRD"), as part of the DARPA CRASH research programme.
12  *
13  * Portions of this software were developed by the University of Cambridge
14  * Computer Laboratory as part of the CTSRD Project, with support from the
15  * UK Higher Education Innovation Fund (HEIF).
16  *
17  * Redistribution and use in source and binary forms, with or without
18  * modification, are permitted provided that the following conditions
19  * are met:
20  * 1. Redistributions of source code must retain the above copyright
21  *    notice, this list of conditions and the following disclaimer.
22  * 2. Redistributions in binary form must reproduce the above copyright
23  *    notice, this list of conditions and the following disclaimer in the
24  *    documentation and/or other materials provided with the distribution.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  */
38 
39 #include "opt_kstack_pages.h"
40 #include "opt_platform.h"
41 
42 #include <sys/cdefs.h>
43 __FBSDID("$FreeBSD$");
44 
45 #include <sys/param.h>
46 #include <sys/systm.h>
47 #include <sys/bus.h>
48 #include <sys/cpu.h>
49 #include <sys/kernel.h>
50 #include <sys/malloc.h>
51 #include <sys/module.h>
52 #include <sys/mutex.h>
53 #include <sys/proc.h>
54 #include <sys/sched.h>
55 #include <sys/smp.h>
56 
57 #include <vm/vm.h>
58 #include <vm/pmap.h>
59 #include <vm/vm_extern.h>
60 #include <vm/vm_kern.h>
61 
62 #include <machine/intr.h>
63 #include <machine/smp.h>
64 #include <machine/sbi.h>
65 
66 #ifdef FDT
67 #include <dev/ofw/openfirm.h>
68 #include <dev/ofw/ofw_cpu.h>
69 #endif
70 
71 boolean_t ofw_cpu_reg(phandle_t node, u_int, cell_t *);
72 
73 extern struct pcpu __pcpu[];
74 
75 uint32_t __riscv_boot_ap[MAXCPU];
76 
77 static enum {
78 	CPUS_UNKNOWN,
79 #ifdef FDT
80 	CPUS_FDT,
81 #endif
82 } cpu_enum_method;
83 
84 static device_identify_t riscv64_cpu_identify;
85 static device_probe_t riscv64_cpu_probe;
86 static device_attach_t riscv64_cpu_attach;
87 
88 static int ipi_handler(void *);
89 
90 struct mtx ap_boot_mtx;
91 struct pcb stoppcbs[MAXCPU];
92 
93 #ifdef INVARIANTS
94 static uint32_t cpu_reg[MAXCPU][2];
95 #endif
96 static device_t cpu_list[MAXCPU];
97 
98 void mpentry(unsigned long cpuid);
99 void init_secondary(uint64_t);
100 
101 uint8_t secondary_stacks[MAXCPU - 1][PAGE_SIZE * KSTACK_PAGES] __aligned(16);
102 
103 /* Set to 1 once we're ready to let the APs out of the pen. */
104 volatile int aps_ready = 0;
105 
106 /* Temporary variables for init_secondary()  */
107 void *dpcpu[MAXCPU - 1];
108 
109 static device_method_t riscv64_cpu_methods[] = {
110 	/* Device interface */
111 	DEVMETHOD(device_identify,	riscv64_cpu_identify),
112 	DEVMETHOD(device_probe,		riscv64_cpu_probe),
113 	DEVMETHOD(device_attach,	riscv64_cpu_attach),
114 
115 	DEVMETHOD_END
116 };
117 
118 static devclass_t riscv64_cpu_devclass;
119 static driver_t riscv64_cpu_driver = {
120 	"riscv64_cpu",
121 	riscv64_cpu_methods,
122 	0
123 };
124 
125 DRIVER_MODULE(riscv64_cpu, cpu, riscv64_cpu_driver, riscv64_cpu_devclass, 0, 0);
126 
127 static void
128 riscv64_cpu_identify(driver_t *driver, device_t parent)
129 {
130 
131 	if (device_find_child(parent, "riscv64_cpu", -1) != NULL)
132 		return;
133 	if (BUS_ADD_CHILD(parent, 0, "riscv64_cpu", -1) == NULL)
134 		device_printf(parent, "add child failed\n");
135 }
136 
137 static int
138 riscv64_cpu_probe(device_t dev)
139 {
140 	u_int cpuid;
141 
142 	cpuid = device_get_unit(dev);
143 	if (cpuid >= MAXCPU || cpuid > mp_maxid)
144 		return (EINVAL);
145 
146 	device_quiet(dev);
147 	return (0);
148 }
149 
150 static int
151 riscv64_cpu_attach(device_t dev)
152 {
153 	const uint32_t *reg;
154 	size_t reg_size;
155 	u_int cpuid;
156 	int i;
157 
158 	cpuid = device_get_unit(dev);
159 
160 	if (cpuid >= MAXCPU || cpuid > mp_maxid)
161 		return (EINVAL);
162 	KASSERT(cpu_list[cpuid] == NULL, ("Already have cpu %u", cpuid));
163 
164 	reg = cpu_get_cpuid(dev, &reg_size);
165 	if (reg == NULL)
166 		return (EINVAL);
167 
168 	if (bootverbose) {
169 		device_printf(dev, "register <");
170 		for (i = 0; i < reg_size; i++)
171 			printf("%s%x", (i == 0) ? "" : " ", reg[i]);
172 		printf(">\n");
173 	}
174 
175 	/* Set the device to start it later */
176 	cpu_list[cpuid] = dev;
177 
178 	return (0);
179 }
180 
181 static void
182 release_aps(void *dummy __unused)
183 {
184 	u_long mask;
185 	int cpu, i;
186 
187 	if (mp_ncpus == 1)
188 		return;
189 
190 	/* Setup the IPI handler */
191 	riscv_setup_ipihandler(ipi_handler);
192 
193 	atomic_store_rel_int(&aps_ready, 1);
194 
195 	/* Wake up the other CPUs */
196 	mask = 0;
197 
198 	for (i = 1; i < mp_ncpus; i++)
199 		mask |= (1 << i);
200 
201 	sbi_send_ipi(&mask);
202 
203 	printf("Release APs\n");
204 
205 	for (i = 0; i < 2000; i++) {
206 		if (smp_started) {
207 			for (cpu = 0; cpu <= mp_maxid; cpu++) {
208 				if (CPU_ABSENT(cpu))
209 					continue;
210 			}
211 			return;
212 		}
213 		DELAY(1000);
214 	}
215 
216 	printf("APs not started\n");
217 }
218 SYSINIT(start_aps, SI_SUB_SMP, SI_ORDER_FIRST, release_aps, NULL);
219 
220 void
221 init_secondary(uint64_t cpu)
222 {
223 	struct pcpu *pcpup;
224 
225 	/* Setup the pcpu pointer */
226 	pcpup = &__pcpu[cpu];
227 	__asm __volatile("mv gp, %0" :: "r"(pcpup));
228 
229 	/* Workaround: make sure wfi doesn't halt the hart */
230 	intr_disable();
231 	csr_set(sie, SIE_SSIE);
232 	csr_set(sip, SIE_SSIE);
233 
234 	/* Spin until the BSP releases the APs */
235 	while (!aps_ready)
236 		__asm __volatile("wfi");
237 
238 	/* Initialize curthread */
239 	KASSERT(PCPU_GET(idlethread) != NULL, ("no idle thread"));
240 	pcpup->pc_curthread = pcpup->pc_idlethread;
241 	pcpup->pc_curpcb = pcpup->pc_idlethread->td_pcb;
242 
243 	/*
244 	 * Identify current CPU. This is necessary to setup
245 	 * affinity registers and to provide support for
246 	 * runtime chip identification.
247 	 */
248 	identify_cpu();
249 
250 	/* Enable software interrupts */
251 	riscv_unmask_ipi();
252 
253 	/* Start per-CPU event timers. */
254 	cpu_initclocks_ap();
255 
256 	/* Enable interrupts */
257 	intr_enable();
258 
259 	/* Enable external (PLIC) interrupts */
260 	csr_set(sie, SIE_SEIE);
261 
262 	mtx_lock_spin(&ap_boot_mtx);
263 
264 	atomic_add_rel_32(&smp_cpus, 1);
265 
266 	if (smp_cpus == mp_ncpus) {
267 		/* enable IPI's, tlb shootdown, freezes etc */
268 		atomic_store_rel_int(&smp_started, 1);
269 	}
270 
271 	mtx_unlock_spin(&ap_boot_mtx);
272 
273 	/* Enter the scheduler */
274 	sched_throw(NULL);
275 
276 	panic("scheduler returned us to init_secondary");
277 	/* NOTREACHED */
278 }
279 
280 static int
281 ipi_handler(void *arg)
282 {
283 	u_int ipi_bitmap;
284 	u_int cpu, ipi;
285 	int bit;
286 
287 	sbi_clear_ipi();
288 
289 	cpu = PCPU_GET(cpuid);
290 
291 	mb();
292 
293 	ipi_bitmap = atomic_readandclear_int(PCPU_PTR(pending_ipis));
294 	if (ipi_bitmap == 0)
295 		return (FILTER_HANDLED);
296 
297 	while ((bit = ffs(ipi_bitmap))) {
298 		bit = (bit - 1);
299 		ipi = (1 << bit);
300 		ipi_bitmap &= ~ipi;
301 
302 		mb();
303 
304 		switch (ipi) {
305 		case IPI_AST:
306 			CTR0(KTR_SMP, "IPI_AST");
307 			break;
308 		case IPI_PREEMPT:
309 			CTR1(KTR_SMP, "%s: IPI_PREEMPT", __func__);
310 			sched_preempt(curthread);
311 			break;
312 		case IPI_RENDEZVOUS:
313 			CTR0(KTR_SMP, "IPI_RENDEZVOUS");
314 			smp_rendezvous_action();
315 			break;
316 		case IPI_STOP:
317 		case IPI_STOP_HARD:
318 			CTR0(KTR_SMP, (ipi == IPI_STOP) ? "IPI_STOP" : "IPI_STOP_HARD");
319 			savectx(&stoppcbs[cpu]);
320 
321 			/* Indicate we are stopped */
322 			CPU_SET_ATOMIC(cpu, &stopped_cpus);
323 
324 			/* Wait for restart */
325 			while (!CPU_ISSET(cpu, &started_cpus))
326 				cpu_spinwait();
327 
328 			CPU_CLR_ATOMIC(cpu, &started_cpus);
329 			CPU_CLR_ATOMIC(cpu, &stopped_cpus);
330 			CTR0(KTR_SMP, "IPI_STOP (restart)");
331 
332 			/*
333 			 * The kernel debugger might have set a breakpoint,
334 			 * so flush the instruction cache.
335 			 */
336 			fence_i();
337 			break;
338 		case IPI_HARDCLOCK:
339 			CTR1(KTR_SMP, "%s: IPI_HARDCLOCK", __func__);
340 			hardclockintr();
341 			break;
342 		default:
343 			panic("Unknown IPI %#0x on cpu %d", ipi, curcpu);
344 		}
345 	}
346 
347 	return (FILTER_HANDLED);
348 }
349 
350 struct cpu_group *
351 cpu_topo(void)
352 {
353 
354 	return (smp_topo_none());
355 }
356 
357 /* Determine if we running MP machine */
358 int
359 cpu_mp_probe(void)
360 {
361 
362 	return (mp_ncpus > 1);
363 }
364 
365 #ifdef FDT
366 static boolean_t
367 cpu_init_fdt(u_int id, phandle_t node, u_int addr_size, pcell_t *reg)
368 {
369 	uint64_t target_cpu;
370 	struct pcpu *pcpup;
371 
372 	/* Check we are able to start this cpu */
373 	if (id > mp_maxid)
374 		return (0);
375 
376 	KASSERT(id < MAXCPU, ("Too many CPUs"));
377 
378 	KASSERT(addr_size == 1 || addr_size == 2, ("Invalid register size"));
379 #ifdef INVARIANTS
380 	cpu_reg[id][0] = reg[0];
381 	if (addr_size == 2)
382 		cpu_reg[id][1] = reg[1];
383 #endif
384 
385 	target_cpu = reg[0];
386 	if (addr_size == 2) {
387 		target_cpu <<= 32;
388 		target_cpu |= reg[1];
389 	}
390 
391 	pcpup = &__pcpu[id];
392 
393 	/* We are already running on cpu 0 */
394 	if (id == 0) {
395 		return (1);
396 	}
397 
398 	pcpu_init(pcpup, id, sizeof(struct pcpu));
399 
400 	dpcpu[id - 1] = (void *)kmem_malloc(DPCPU_SIZE, M_WAITOK | M_ZERO);
401 	dpcpu_init(dpcpu[id - 1], id);
402 
403 	printf("Starting CPU %u (%lx)\n", id, target_cpu);
404 	__riscv_boot_ap[id] = 1;
405 
406 	CPU_SET(id, &all_cpus);
407 
408 	return (1);
409 }
410 #endif
411 
412 /* Initialize and fire up non-boot processors */
413 void
414 cpu_mp_start(void)
415 {
416 
417 	mtx_init(&ap_boot_mtx, "ap boot", NULL, MTX_SPIN);
418 
419 	CPU_SET(0, &all_cpus);
420 
421 	switch(cpu_enum_method) {
422 #ifdef FDT
423 	case CPUS_FDT:
424 		ofw_cpu_early_foreach(cpu_init_fdt, true);
425 		break;
426 #endif
427 	case CPUS_UNKNOWN:
428 		break;
429 	}
430 }
431 
432 /* Introduce rest of cores to the world */
433 void
434 cpu_mp_announce(void)
435 {
436 }
437 
438 void
439 cpu_mp_setmaxid(void)
440 {
441 #ifdef FDT
442 	int cores;
443 
444 	cores = ofw_cpu_early_foreach(NULL, false);
445 	if (cores > 0) {
446 		cores = MIN(cores, MAXCPU);
447 		if (bootverbose)
448 			printf("Found %d CPUs in the device tree\n", cores);
449 		mp_ncpus = cores;
450 		mp_maxid = cores - 1;
451 		cpu_enum_method = CPUS_FDT;
452 		return;
453 	}
454 #endif
455 
456 	if (bootverbose)
457 		printf("No CPU data, limiting to 1 core\n");
458 	mp_ncpus = 1;
459 	mp_maxid = 0;
460 }
461