xref: /freebsd/sys/riscv/riscv/pmap.c (revision 4b9d6057)
1 /*-
2  * SPDX-License-Identifier: BSD-4-Clause
3  *
4  * Copyright (c) 1991 Regents of the University of California.
5  * All rights reserved.
6  * Copyright (c) 1994 John S. Dyson
7  * All rights reserved.
8  * Copyright (c) 1994 David Greenman
9  * All rights reserved.
10  * Copyright (c) 2003 Peter Wemm
11  * All rights reserved.
12  * Copyright (c) 2005-2010 Alan L. Cox <alc@cs.rice.edu>
13  * All rights reserved.
14  * Copyright (c) 2014 Andrew Turner
15  * All rights reserved.
16  * Copyright (c) 2014 The FreeBSD Foundation
17  * All rights reserved.
18  * Copyright (c) 2015-2018 Ruslan Bukin <br@bsdpad.com>
19  * All rights reserved.
20  *
21  * This code is derived from software contributed to Berkeley by
22  * the Systems Programming Group of the University of Utah Computer
23  * Science Department and William Jolitz of UUNET Technologies Inc.
24  *
25  * Portions of this software were developed by Andrew Turner under
26  * sponsorship from The FreeBSD Foundation.
27  *
28  * Portions of this software were developed by SRI International and the
29  * University of Cambridge Computer Laboratory under DARPA/AFRL contract
30  * FA8750-10-C-0237 ("CTSRD"), as part of the DARPA CRASH research programme.
31  *
32  * Portions of this software were developed by the University of Cambridge
33  * Computer Laboratory as part of the CTSRD Project, with support from the
34  * UK Higher Education Innovation Fund (HEIF).
35  *
36  * Redistribution and use in source and binary forms, with or without
37  * modification, are permitted provided that the following conditions
38  * are met:
39  * 1. Redistributions of source code must retain the above copyright
40  *    notice, this list of conditions and the following disclaimer.
41  * 2. Redistributions in binary form must reproduce the above copyright
42  *    notice, this list of conditions and the following disclaimer in the
43  *    documentation and/or other materials provided with the distribution.
44  * 3. All advertising materials mentioning features or use of this software
45  *    must display the following acknowledgement:
46  *	This product includes software developed by the University of
47  *	California, Berkeley and its contributors.
48  * 4. Neither the name of the University nor the names of its contributors
49  *    may be used to endorse or promote products derived from this software
50  *    without specific prior written permission.
51  *
52  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
53  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
54  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
55  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
56  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
57  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
58  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
59  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
60  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
61  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
62  * SUCH DAMAGE.
63  */
64 /*-
65  * Copyright (c) 2003 Networks Associates Technology, Inc.
66  * All rights reserved.
67  *
68  * This software was developed for the FreeBSD Project by Jake Burkholder,
69  * Safeport Network Services, and Network Associates Laboratories, the
70  * Security Research Division of Network Associates, Inc. under
71  * DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA
72  * CHATS research program.
73  *
74  * Redistribution and use in source and binary forms, with or without
75  * modification, are permitted provided that the following conditions
76  * are met:
77  * 1. Redistributions of source code must retain the above copyright
78  *    notice, this list of conditions and the following disclaimer.
79  * 2. Redistributions in binary form must reproduce the above copyright
80  *    notice, this list of conditions and the following disclaimer in the
81  *    documentation and/or other materials provided with the distribution.
82  *
83  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
84  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
85  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
86  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
87  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
88  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
89  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
90  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
91  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
92  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
93  * SUCH DAMAGE.
94  */
95 
96 #include <sys/cdefs.h>
97 /*
98  *	Manages physical address maps.
99  *
100  *	Since the information managed by this module is
101  *	also stored by the logical address mapping module,
102  *	this module may throw away valid virtual-to-physical
103  *	mappings at almost any time.  However, invalidations
104  *	of virtual-to-physical mappings must be done as
105  *	requested.
106  *
107  *	In order to cope with hardware architectures which
108  *	make virtual-to-physical map invalidates expensive,
109  *	this module may delay invalidate or reduced protection
110  *	operations until such time as they are actually
111  *	necessary.  This module is given full information as
112  *	to which processors are currently using which maps,
113  *	and to when physical maps must be made correct.
114  */
115 
116 #include <sys/param.h>
117 #include <sys/systm.h>
118 #include <sys/bitstring.h>
119 #include <sys/bus.h>
120 #include <sys/cpuset.h>
121 #include <sys/kernel.h>
122 #include <sys/ktr.h>
123 #include <sys/lock.h>
124 #include <sys/malloc.h>
125 #include <sys/mman.h>
126 #include <sys/msgbuf.h>
127 #include <sys/mutex.h>
128 #include <sys/physmem.h>
129 #include <sys/proc.h>
130 #include <sys/rwlock.h>
131 #include <sys/sbuf.h>
132 #include <sys/sx.h>
133 #include <sys/vmem.h>
134 #include <sys/vmmeter.h>
135 #include <sys/sched.h>
136 #include <sys/sysctl.h>
137 #include <sys/smp.h>
138 
139 #include <vm/vm.h>
140 #include <vm/vm_param.h>
141 #include <vm/vm_kern.h>
142 #include <vm/vm_page.h>
143 #include <vm/vm_map.h>
144 #include <vm/vm_object.h>
145 #include <vm/vm_extern.h>
146 #include <vm/vm_pageout.h>
147 #include <vm/vm_pager.h>
148 #include <vm/vm_phys.h>
149 #include <vm/vm_radix.h>
150 #include <vm/vm_reserv.h>
151 #include <vm/vm_dumpset.h>
152 #include <vm/uma.h>
153 
154 #include <machine/machdep.h>
155 #include <machine/md_var.h>
156 #include <machine/pcb.h>
157 #include <machine/sbi.h>
158 
159 /*
160  * Boundary values for the page table page index space:
161  *
162  * L3 pages: [0, NUL2E)
163  * L2 pages: [NUL2E, NUL2E + NUL1E)
164  * L1 pages: [NUL2E + NUL1E, NUL2E + NUL1E + NUL0E)
165  *
166  * Note that these ranges are used in both SV39 and SV48 mode.  In SV39 mode the
167  * ranges are not fully populated since there are at most Ln_ENTRIES^2 L3 pages
168  * in a set of page tables.
169  */
170 #define	NUL0E		Ln_ENTRIES
171 #define	NUL1E		(Ln_ENTRIES * NUL0E)
172 #define	NUL2E		(Ln_ENTRIES * NUL1E)
173 
174 #ifdef PV_STATS
175 #define PV_STAT(x)	do { x ; } while (0)
176 #define	__pv_stat_used
177 #else
178 #define PV_STAT(x)	do { } while (0)
179 #define	__pv_stat_used	__unused
180 #endif
181 
182 #define	pmap_l1_pindex(v)	(NUL2E + ((v) >> L1_SHIFT))
183 #define	pmap_l2_pindex(v)	((v) >> L2_SHIFT)
184 #define	pa_to_pvh(pa)		(&pv_table[pa_index(pa)])
185 
186 #define	NPV_LIST_LOCKS	MAXCPU
187 
188 #define	PHYS_TO_PV_LIST_LOCK(pa)	\
189 			(&pv_list_locks[pmap_l2_pindex(pa) % NPV_LIST_LOCKS])
190 
191 #define	CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, pa)	do {	\
192 	struct rwlock **_lockp = (lockp);		\
193 	struct rwlock *_new_lock;			\
194 							\
195 	_new_lock = PHYS_TO_PV_LIST_LOCK(pa);		\
196 	if (_new_lock != *_lockp) {			\
197 		if (*_lockp != NULL)			\
198 			rw_wunlock(*_lockp);		\
199 		*_lockp = _new_lock;			\
200 		rw_wlock(*_lockp);			\
201 	}						\
202 } while (0)
203 
204 #define	CHANGE_PV_LIST_LOCK_TO_VM_PAGE(lockp, m)	\
205 			CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, VM_PAGE_TO_PHYS(m))
206 
207 #define	RELEASE_PV_LIST_LOCK(lockp)		do {	\
208 	struct rwlock **_lockp = (lockp);		\
209 							\
210 	if (*_lockp != NULL) {				\
211 		rw_wunlock(*_lockp);			\
212 		*_lockp = NULL;				\
213 	}						\
214 } while (0)
215 
216 #define	VM_PAGE_TO_PV_LIST_LOCK(m)	\
217 			PHYS_TO_PV_LIST_LOCK(VM_PAGE_TO_PHYS(m))
218 
219 static SYSCTL_NODE(_vm, OID_AUTO, pmap, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
220     "VM/pmap parameters");
221 
222 /* The list of all the user pmaps */
223 LIST_HEAD(pmaplist, pmap);
224 static struct pmaplist allpmaps = LIST_HEAD_INITIALIZER();
225 
226 enum pmap_mode __read_frequently pmap_mode = PMAP_MODE_SV39;
227 SYSCTL_INT(_vm_pmap, OID_AUTO, mode, CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
228     &pmap_mode, 0,
229     "translation mode, 0 = SV39, 1 = SV48");
230 
231 struct pmap kernel_pmap_store;
232 
233 vm_offset_t virtual_avail;	/* VA of first avail page (after kernel bss) */
234 vm_offset_t virtual_end;	/* VA of last avail page (end of kernel AS) */
235 vm_offset_t kernel_vm_end = 0;
236 
237 vm_paddr_t dmap_phys_base;	/* The start of the dmap region */
238 vm_paddr_t dmap_phys_max;	/* The limit of the dmap region */
239 vm_offset_t dmap_max_addr;	/* The virtual address limit of the dmap */
240 
241 /* This code assumes all L1 DMAP entries will be used */
242 CTASSERT((DMAP_MIN_ADDRESS  & ~L1_OFFSET) == DMAP_MIN_ADDRESS);
243 CTASSERT((DMAP_MAX_ADDRESS  & ~L1_OFFSET) == DMAP_MAX_ADDRESS);
244 
245 /*
246  * This code assumes that the early DEVMAP is L2_SIZE aligned and is fully
247  * contained within a single L2 entry. The early DTB is mapped immediately
248  * before the devmap L2 entry.
249  */
250 CTASSERT((PMAP_MAPDEV_EARLY_SIZE & L2_OFFSET) == 0);
251 CTASSERT((VM_EARLY_DTB_ADDRESS & L2_OFFSET) == 0);
252 CTASSERT(VM_EARLY_DTB_ADDRESS < (VM_MAX_KERNEL_ADDRESS - PMAP_MAPDEV_EARLY_SIZE));
253 
254 static struct rwlock_padalign pvh_global_lock;
255 static struct mtx_padalign allpmaps_lock;
256 
257 static int __read_frequently superpages_enabled = 1;
258 SYSCTL_INT(_vm_pmap, OID_AUTO, superpages_enabled,
259     CTLFLAG_RDTUN, &superpages_enabled, 0,
260     "Enable support for transparent superpages");
261 
262 static SYSCTL_NODE(_vm_pmap, OID_AUTO, l2, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
263     "2MB page mapping counters");
264 
265 static u_long pmap_l2_demotions;
266 SYSCTL_ULONG(_vm_pmap_l2, OID_AUTO, demotions, CTLFLAG_RD,
267     &pmap_l2_demotions, 0,
268     "2MB page demotions");
269 
270 static u_long pmap_l2_mappings;
271 SYSCTL_ULONG(_vm_pmap_l2, OID_AUTO, mappings, CTLFLAG_RD,
272     &pmap_l2_mappings, 0,
273     "2MB page mappings");
274 
275 static u_long pmap_l2_p_failures;
276 SYSCTL_ULONG(_vm_pmap_l2, OID_AUTO, p_failures, CTLFLAG_RD,
277     &pmap_l2_p_failures, 0,
278     "2MB page promotion failures");
279 
280 static u_long pmap_l2_promotions;
281 SYSCTL_ULONG(_vm_pmap_l2, OID_AUTO, promotions, CTLFLAG_RD,
282     &pmap_l2_promotions, 0,
283     "2MB page promotions");
284 
285 /*
286  * Data for the pv entry allocation mechanism
287  */
288 static TAILQ_HEAD(pch, pv_chunk) pv_chunks = TAILQ_HEAD_INITIALIZER(pv_chunks);
289 static struct mtx pv_chunks_mutex;
290 static struct rwlock pv_list_locks[NPV_LIST_LOCKS];
291 static struct md_page *pv_table;
292 static struct md_page pv_dummy;
293 
294 extern cpuset_t all_harts;
295 
296 /*
297  * Internal flags for pmap_enter()'s helper functions.
298  */
299 #define	PMAP_ENTER_NORECLAIM	0x1000000	/* Don't reclaim PV entries. */
300 #define	PMAP_ENTER_NOREPLACE	0x2000000	/* Don't replace mappings. */
301 
302 static void	free_pv_chunk(struct pv_chunk *pc);
303 static void	free_pv_entry(pmap_t pmap, pv_entry_t pv);
304 static pv_entry_t get_pv_entry(pmap_t pmap, struct rwlock **lockp);
305 static vm_page_t reclaim_pv_chunk(pmap_t locked_pmap, struct rwlock **lockp);
306 static void	pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va);
307 static pv_entry_t pmap_pvh_remove(struct md_page *pvh, pmap_t pmap,
308 		    vm_offset_t va);
309 static bool	pmap_demote_l2(pmap_t pmap, pd_entry_t *l2, vm_offset_t va);
310 static bool	pmap_demote_l2_locked(pmap_t pmap, pd_entry_t *l2,
311 		    vm_offset_t va, struct rwlock **lockp);
312 static int	pmap_enter_l2(pmap_t pmap, vm_offset_t va, pd_entry_t new_l2,
313 		    u_int flags, vm_page_t m, struct rwlock **lockp);
314 static vm_page_t pmap_enter_quick_locked(pmap_t pmap, vm_offset_t va,
315     vm_page_t m, vm_prot_t prot, vm_page_t mpte, struct rwlock **lockp);
316 static int pmap_remove_l3(pmap_t pmap, pt_entry_t *l3, vm_offset_t sva,
317     pd_entry_t ptepde, struct spglist *free, struct rwlock **lockp);
318 static boolean_t pmap_try_insert_pv_entry(pmap_t pmap, vm_offset_t va,
319     vm_page_t m, struct rwlock **lockp);
320 
321 static vm_page_t _pmap_alloc_l3(pmap_t pmap, vm_pindex_t ptepindex,
322 		struct rwlock **lockp);
323 
324 static void _pmap_unwire_ptp(pmap_t pmap, vm_offset_t va, vm_page_t m,
325     struct spglist *free);
326 static int pmap_unuse_pt(pmap_t, vm_offset_t, pd_entry_t, struct spglist *);
327 
328 static int pmap_change_attr_locked(vm_offset_t va, vm_size_t size, int mode);
329 
330 #define	pmap_clear(pte)			pmap_store(pte, 0)
331 #define	pmap_clear_bits(pte, bits)	atomic_clear_64(pte, bits)
332 #define	pmap_load_store(pte, entry)	atomic_swap_64(pte, entry)
333 #define	pmap_load_clear(pte)		pmap_load_store(pte, 0)
334 #define	pmap_load(pte)			atomic_load_64(pte)
335 #define	pmap_store(pte, entry)		atomic_store_64(pte, entry)
336 #define	pmap_store_bits(pte, bits)	atomic_set_64(pte, bits)
337 
338 /********************/
339 /* Inline functions */
340 /********************/
341 
342 static __inline void
343 pagecopy(void *s, void *d)
344 {
345 
346 	memcpy(d, s, PAGE_SIZE);
347 }
348 
349 static __inline void
350 pagezero(void *p)
351 {
352 
353 	bzero(p, PAGE_SIZE);
354 }
355 
356 #define	pmap_l0_index(va)	(((va) >> L0_SHIFT) & Ln_ADDR_MASK)
357 #define	pmap_l1_index(va)	(((va) >> L1_SHIFT) & Ln_ADDR_MASK)
358 #define	pmap_l2_index(va)	(((va) >> L2_SHIFT) & Ln_ADDR_MASK)
359 #define	pmap_l3_index(va)	(((va) >> L3_SHIFT) & Ln_ADDR_MASK)
360 
361 #define	PTE_TO_PHYS(pte) \
362     ((((pte) & ~PTE_HI_MASK) >> PTE_PPN0_S) * PAGE_SIZE)
363 #define	L2PTE_TO_PHYS(l2) \
364     ((((l2) & ~PTE_HI_MASK) >> PTE_PPN1_S) << L2_SHIFT)
365 
366 static __inline pd_entry_t *
367 pmap_l0(pmap_t pmap, vm_offset_t va)
368 {
369 	KASSERT(pmap_mode != PMAP_MODE_SV39, ("%s: in SV39 mode", __func__));
370 	KASSERT(VIRT_IS_VALID(va),
371 	    ("%s: malformed virtual address %#lx", __func__, va));
372 	return (&pmap->pm_top[pmap_l0_index(va)]);
373 }
374 
375 static __inline pd_entry_t *
376 pmap_l0_to_l1(pd_entry_t *l0, vm_offset_t va)
377 {
378 	vm_paddr_t phys;
379 	pd_entry_t *l1;
380 
381 	KASSERT(pmap_mode != PMAP_MODE_SV39, ("%s: in SV39 mode", __func__));
382 	phys = PTE_TO_PHYS(pmap_load(l0));
383 	l1 = (pd_entry_t *)PHYS_TO_DMAP(phys);
384 
385 	return (&l1[pmap_l1_index(va)]);
386 }
387 
388 static __inline pd_entry_t *
389 pmap_l1(pmap_t pmap, vm_offset_t va)
390 {
391 	pd_entry_t *l0;
392 
393 	KASSERT(VIRT_IS_VALID(va),
394 	    ("%s: malformed virtual address %#lx", __func__, va));
395 	if (pmap_mode == PMAP_MODE_SV39) {
396 		return (&pmap->pm_top[pmap_l1_index(va)]);
397 	} else {
398 		l0 = pmap_l0(pmap, va);
399 		if ((pmap_load(l0) & PTE_V) == 0)
400 			return (NULL);
401 		if ((pmap_load(l0) & PTE_RX) != 0)
402 			return (NULL);
403 		return (pmap_l0_to_l1(l0, va));
404 	}
405 }
406 
407 static __inline pd_entry_t *
408 pmap_l1_to_l2(pd_entry_t *l1, vm_offset_t va)
409 {
410 	vm_paddr_t phys;
411 	pd_entry_t *l2;
412 
413 	phys = PTE_TO_PHYS(pmap_load(l1));
414 	l2 = (pd_entry_t *)PHYS_TO_DMAP(phys);
415 
416 	return (&l2[pmap_l2_index(va)]);
417 }
418 
419 static __inline pd_entry_t *
420 pmap_l2(pmap_t pmap, vm_offset_t va)
421 {
422 	pd_entry_t *l1;
423 
424 	l1 = pmap_l1(pmap, va);
425 	if (l1 == NULL)
426 		return (NULL);
427 	if ((pmap_load(l1) & PTE_V) == 0)
428 		return (NULL);
429 	if ((pmap_load(l1) & PTE_RX) != 0)
430 		return (NULL);
431 
432 	return (pmap_l1_to_l2(l1, va));
433 }
434 
435 static __inline pt_entry_t *
436 pmap_l2_to_l3(pd_entry_t *l2, vm_offset_t va)
437 {
438 	vm_paddr_t phys;
439 	pt_entry_t *l3;
440 
441 	phys = PTE_TO_PHYS(pmap_load(l2));
442 	l3 = (pd_entry_t *)PHYS_TO_DMAP(phys);
443 
444 	return (&l3[pmap_l3_index(va)]);
445 }
446 
447 static __inline pt_entry_t *
448 pmap_l3(pmap_t pmap, vm_offset_t va)
449 {
450 	pd_entry_t *l2;
451 
452 	l2 = pmap_l2(pmap, va);
453 	if (l2 == NULL)
454 		return (NULL);
455 	if ((pmap_load(l2) & PTE_V) == 0)
456 		return (NULL);
457 	if ((pmap_load(l2) & PTE_RX) != 0)
458 		return (NULL);
459 
460 	return (pmap_l2_to_l3(l2, va));
461 }
462 
463 static __inline void
464 pmap_resident_count_inc(pmap_t pmap, int count)
465 {
466 
467 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
468 	pmap->pm_stats.resident_count += count;
469 }
470 
471 static __inline void
472 pmap_resident_count_dec(pmap_t pmap, int count)
473 {
474 
475 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
476 	KASSERT(pmap->pm_stats.resident_count >= count,
477 	    ("pmap %p resident count underflow %ld %d", pmap,
478 	    pmap->pm_stats.resident_count, count));
479 	pmap->pm_stats.resident_count -= count;
480 }
481 
482 static void
483 pmap_distribute_l1(struct pmap *pmap, vm_pindex_t l1index,
484     pt_entry_t entry)
485 {
486 	struct pmap *user_pmap;
487 	pd_entry_t *l1;
488 
489 	/*
490 	 * Distribute new kernel L1 entry to all the user pmaps.  This is only
491 	 * necessary with three-level paging configured: with four-level paging
492 	 * the kernel's half of the top-level page table page is static and can
493 	 * simply be copied at pmap initialization time.
494 	 */
495 	if (pmap != kernel_pmap || pmap_mode != PMAP_MODE_SV39)
496 		return;
497 
498 	mtx_lock(&allpmaps_lock);
499 	LIST_FOREACH(user_pmap, &allpmaps, pm_list) {
500 		l1 = &user_pmap->pm_top[l1index];
501 		pmap_store(l1, entry);
502 	}
503 	mtx_unlock(&allpmaps_lock);
504 }
505 
506 static pt_entry_t *
507 pmap_early_page_idx(vm_offset_t l1pt, vm_offset_t va, u_int *l1_slot,
508     u_int *l2_slot)
509 {
510 	pt_entry_t *l2;
511 	pd_entry_t *l1 __diagused;
512 
513 	l1 = (pd_entry_t *)l1pt;
514 	*l1_slot = (va >> L1_SHIFT) & Ln_ADDR_MASK;
515 
516 	/* Check locore has used a table L1 map */
517 	KASSERT((l1[*l1_slot] & PTE_RX) == 0,
518 		("Invalid bootstrap L1 table"));
519 
520 	/* Find the address of the L2 table */
521 	l2 = (pt_entry_t *)init_pt_va;
522 	*l2_slot = pmap_l2_index(va);
523 
524 	return (l2);
525 }
526 
527 static vm_paddr_t
528 pmap_early_vtophys(vm_offset_t l1pt, vm_offset_t va)
529 {
530 	u_int l1_slot, l2_slot;
531 	pt_entry_t *l2;
532 	vm_paddr_t ret;
533 
534 	l2 = pmap_early_page_idx(l1pt, va, &l1_slot, &l2_slot);
535 
536 	/* Check locore has used L2 superpages */
537 	KASSERT((l2[l2_slot] & PTE_RX) != 0,
538 		("Invalid bootstrap L2 table"));
539 
540 	/* L2 is superpages */
541 	ret = L2PTE_TO_PHYS(l2[l2_slot]);
542 	ret += (va & L2_OFFSET);
543 
544 	return (ret);
545 }
546 
547 static void
548 pmap_bootstrap_dmap(vm_offset_t kern_l1, vm_paddr_t min_pa, vm_paddr_t max_pa)
549 {
550 	vm_offset_t va;
551 	vm_paddr_t pa;
552 	pd_entry_t *l1;
553 	u_int l1_slot;
554 	pt_entry_t entry;
555 	pn_t pn;
556 
557 	pa = dmap_phys_base = min_pa & ~L1_OFFSET;
558 	va = DMAP_MIN_ADDRESS;
559 	l1 = (pd_entry_t *)kern_l1;
560 	l1_slot = pmap_l1_index(DMAP_MIN_ADDRESS);
561 
562 	for (; va < DMAP_MAX_ADDRESS && pa < max_pa;
563 	    pa += L1_SIZE, va += L1_SIZE, l1_slot++) {
564 		KASSERT(l1_slot < Ln_ENTRIES, ("Invalid L1 index"));
565 
566 		/* superpages */
567 		pn = (pa / PAGE_SIZE);
568 		entry = PTE_KERN;
569 		entry |= (pn << PTE_PPN0_S);
570 		pmap_store(&l1[l1_slot], entry);
571 	}
572 
573 	/* Set the upper limit of the DMAP region */
574 	dmap_phys_max = pa;
575 	dmap_max_addr = va;
576 
577 	sfence_vma();
578 }
579 
580 static vm_offset_t
581 pmap_bootstrap_l3(vm_offset_t l1pt, vm_offset_t va, vm_offset_t l3_start)
582 {
583 	vm_offset_t l3pt;
584 	pt_entry_t entry;
585 	pd_entry_t *l2;
586 	vm_paddr_t pa;
587 	u_int l2_slot;
588 	pn_t pn;
589 
590 	KASSERT((va & L2_OFFSET) == 0, ("Invalid virtual address"));
591 
592 	l2 = pmap_l2(kernel_pmap, va);
593 	l2 = (pd_entry_t *)((uintptr_t)l2 & ~(PAGE_SIZE - 1));
594 	l2_slot = pmap_l2_index(va);
595 	l3pt = l3_start;
596 
597 	for (; va < VM_MAX_KERNEL_ADDRESS; l2_slot++, va += L2_SIZE) {
598 		KASSERT(l2_slot < Ln_ENTRIES, ("Invalid L2 index"));
599 
600 		pa = pmap_early_vtophys(l1pt, l3pt);
601 		pn = (pa / PAGE_SIZE);
602 		entry = (PTE_V);
603 		entry |= (pn << PTE_PPN0_S);
604 		pmap_store(&l2[l2_slot], entry);
605 		l3pt += PAGE_SIZE;
606 	}
607 
608 	/* Clean the L2 page table */
609 	memset((void *)l3_start, 0, l3pt - l3_start);
610 
611 	return (l3pt);
612 }
613 
614 /*
615  *	Bootstrap the system enough to run with virtual memory.
616  */
617 void
618 pmap_bootstrap(vm_offset_t l1pt, vm_paddr_t kernstart, vm_size_t kernlen)
619 {
620 	vm_paddr_t physmap[PHYS_AVAIL_ENTRIES];
621 	uint64_t satp;
622 	vm_offset_t dpcpu, freemempos, l0pv, msgbufpv;
623 	vm_paddr_t l0pa, l1pa, max_pa, min_pa, pa;
624 	pd_entry_t *l0p;
625 	pt_entry_t *l2p;
626 	u_int l1_slot, l2_slot;
627 	u_int physmap_idx;
628 	int i, mode;
629 
630 	printf("pmap_bootstrap %lx %lx %lx\n", l1pt, kernstart, kernlen);
631 
632 	/* Set this early so we can use the pagetable walking functions */
633 	kernel_pmap_store.pm_top = (pd_entry_t *)l1pt;
634 	PMAP_LOCK_INIT(kernel_pmap);
635 	TAILQ_INIT(&kernel_pmap->pm_pvchunk);
636 	vm_radix_init(&kernel_pmap->pm_root);
637 
638 	rw_init(&pvh_global_lock, "pmap pv global");
639 
640 	/*
641 	 * Set the current CPU as active in the kernel pmap. Secondary cores
642 	 * will add themselves later in init_secondary(). The SBI firmware
643 	 * may rely on this mask being precise, so CPU_FILL() is not used.
644 	 */
645 	CPU_SET(PCPU_GET(hart), &kernel_pmap->pm_active);
646 
647 	/* Assume the address we were loaded to is a valid physical address. */
648 	min_pa = max_pa = kernstart;
649 
650 	physmap_idx = physmem_avail(physmap, nitems(physmap));
651 	physmap_idx /= 2;
652 
653 	/*
654 	 * Find the minimum physical address. physmap is sorted,
655 	 * but may contain empty ranges.
656 	 */
657 	for (i = 0; i < physmap_idx * 2; i += 2) {
658 		if (physmap[i] == physmap[i + 1])
659 			continue;
660 		if (physmap[i] <= min_pa)
661 			min_pa = physmap[i];
662 		if (physmap[i + 1] > max_pa)
663 			max_pa = physmap[i + 1];
664 	}
665 	printf("physmap_idx %u\n", physmap_idx);
666 	printf("min_pa %lx\n", min_pa);
667 	printf("max_pa %lx\n", max_pa);
668 
669 	/* Create a direct map region early so we can use it for pa -> va */
670 	pmap_bootstrap_dmap(l1pt, min_pa, max_pa);
671 
672 	/*
673 	 * Read the page table to find out what is already mapped.
674 	 * This assumes we have mapped a block of memory from KERNBASE
675 	 * using a single L1 entry.
676 	 */
677 	(void)pmap_early_page_idx(l1pt, KERNBASE, &l1_slot, &l2_slot);
678 
679 	/* Sanity check the index, KERNBASE should be the first VA */
680 	KASSERT(l2_slot == 0, ("The L2 index is non-zero"));
681 
682 	freemempos = roundup2(KERNBASE + kernlen, PAGE_SIZE);
683 
684 	/* Create the l3 tables for the early devmap */
685 	freemempos = pmap_bootstrap_l3(l1pt,
686 	    VM_MAX_KERNEL_ADDRESS - PMAP_MAPDEV_EARLY_SIZE, freemempos);
687 
688 	/*
689 	 * Invalidate the mapping we created for the DTB. At this point a copy
690 	 * has been created, and we no longer need it. We want to avoid the
691 	 * possibility of an aliased mapping in the future.
692 	 */
693 	l2p = pmap_l2(kernel_pmap, VM_EARLY_DTB_ADDRESS);
694 	if ((pmap_load(l2p) & PTE_V) != 0)
695 		pmap_clear(l2p);
696 
697 	sfence_vma();
698 
699 #define alloc_pages(var, np)						\
700 	(var) = freemempos;						\
701 	freemempos += (np * PAGE_SIZE);					\
702 	memset((char *)(var), 0, ((np) * PAGE_SIZE));
703 
704 	mode = 0;
705 	TUNABLE_INT_FETCH("vm.pmap.mode", &mode);
706 	if (mode == PMAP_MODE_SV48 && (mmu_caps & MMU_SV48) != 0) {
707 		/*
708 		 * Enable SV48 mode: allocate an L0 page and set SV48 mode in
709 		 * SATP.  If the implementation does not provide SV48 mode,
710 		 * the mode read back from the (WARL) SATP register will be
711 		 * unchanged, and we continue in SV39 mode.
712 		 */
713 		alloc_pages(l0pv, 1);
714 		l0p = (void *)l0pv;
715 		l1pa = pmap_early_vtophys(l1pt, l1pt);
716 		l0p[pmap_l0_index(KERNBASE)] = PTE_V | PTE_A | PTE_D |
717 		    ((l1pa >> PAGE_SHIFT) << PTE_PPN0_S);
718 
719 		l0pa = pmap_early_vtophys(l1pt, l0pv);
720 		csr_write(satp, (l0pa >> PAGE_SHIFT) | SATP_MODE_SV48);
721 		satp = csr_read(satp);
722 		if ((satp & SATP_MODE_M) == SATP_MODE_SV48) {
723 			pmap_mode = PMAP_MODE_SV48;
724 			kernel_pmap_store.pm_top = l0p;
725 		} else {
726 			/* Mode didn't change, give the page back. */
727 			freemempos -= PAGE_SIZE;
728 		}
729 	}
730 
731 	/* Allocate dynamic per-cpu area. */
732 	alloc_pages(dpcpu, DPCPU_SIZE / PAGE_SIZE);
733 	dpcpu_init((void *)dpcpu, 0);
734 
735 	/* Allocate memory for the msgbuf, e.g. for /sbin/dmesg */
736 	alloc_pages(msgbufpv, round_page(msgbufsize) / PAGE_SIZE);
737 	msgbufp = (void *)msgbufpv;
738 
739 	virtual_avail = roundup2(freemempos, L2_SIZE);
740 	virtual_end = VM_MAX_KERNEL_ADDRESS - PMAP_MAPDEV_EARLY_SIZE;
741 	kernel_vm_end = virtual_avail;
742 
743 	pa = pmap_early_vtophys(l1pt, freemempos);
744 
745 	physmem_exclude_region(kernstart, pa - kernstart, EXFLAG_NOALLOC);
746 }
747 
748 /*
749  *	Initialize a vm_page's machine-dependent fields.
750  */
751 void
752 pmap_page_init(vm_page_t m)
753 {
754 
755 	TAILQ_INIT(&m->md.pv_list);
756 	m->md.pv_memattr = VM_MEMATTR_WRITE_BACK;
757 }
758 
759 /*
760  *	Initialize the pmap module.
761  *	Called by vm_init, to initialize any structures that the pmap
762  *	system needs to map virtual memory.
763  */
764 void
765 pmap_init(void)
766 {
767 	vm_size_t s;
768 	int i, pv_npg;
769 
770 	/*
771 	 * Initialize the pv chunk and pmap list mutexes.
772 	 */
773 	mtx_init(&pv_chunks_mutex, "pmap pv chunk list", NULL, MTX_DEF);
774 	mtx_init(&allpmaps_lock, "allpmaps", NULL, MTX_DEF);
775 
776 	/*
777 	 * Initialize the pool of pv list locks.
778 	 */
779 	for (i = 0; i < NPV_LIST_LOCKS; i++)
780 		rw_init(&pv_list_locks[i], "pmap pv list");
781 
782 	/*
783 	 * Calculate the size of the pv head table for superpages.
784 	 */
785 	pv_npg = howmany(vm_phys_segs[vm_phys_nsegs - 1].end, L2_SIZE);
786 
787 	/*
788 	 * Allocate memory for the pv head table for superpages.
789 	 */
790 	s = (vm_size_t)(pv_npg * sizeof(struct md_page));
791 	s = round_page(s);
792 	pv_table = kmem_malloc(s, M_WAITOK | M_ZERO);
793 	for (i = 0; i < pv_npg; i++)
794 		TAILQ_INIT(&pv_table[i].pv_list);
795 	TAILQ_INIT(&pv_dummy.pv_list);
796 
797 	if (superpages_enabled)
798 		pagesizes[1] = L2_SIZE;
799 }
800 
801 #ifdef SMP
802 /*
803  * For SMP, these functions have to use IPIs for coherence.
804  *
805  * In general, the calling thread uses a plain fence to order the
806  * writes to the page tables before invoking an SBI callback to invoke
807  * sfence_vma() on remote CPUs.
808  */
809 static void
810 pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
811 {
812 	cpuset_t mask;
813 
814 	sched_pin();
815 	mask = pmap->pm_active;
816 	CPU_CLR(PCPU_GET(hart), &mask);
817 	fence();
818 	if (!CPU_EMPTY(&mask) && smp_started)
819 		sbi_remote_sfence_vma(mask.__bits, va, 1);
820 	sfence_vma_page(va);
821 	sched_unpin();
822 }
823 
824 static void
825 pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
826 {
827 	cpuset_t mask;
828 
829 	sched_pin();
830 	mask = pmap->pm_active;
831 	CPU_CLR(PCPU_GET(hart), &mask);
832 	fence();
833 	if (!CPU_EMPTY(&mask) && smp_started)
834 		sbi_remote_sfence_vma(mask.__bits, sva, eva - sva + 1);
835 
836 	/*
837 	 * Might consider a loop of sfence_vma_page() for a small
838 	 * number of pages in the future.
839 	 */
840 	sfence_vma();
841 	sched_unpin();
842 }
843 
844 static void
845 pmap_invalidate_all(pmap_t pmap)
846 {
847 	cpuset_t mask;
848 
849 	sched_pin();
850 	mask = pmap->pm_active;
851 	CPU_CLR(PCPU_GET(hart), &mask);
852 
853 	/*
854 	 * XXX: The SBI doc doesn't detail how to specify x0 as the
855 	 * address to perform a global fence.  BBL currently treats
856 	 * all sfence_vma requests as global however.
857 	 */
858 	fence();
859 	if (!CPU_EMPTY(&mask) && smp_started)
860 		sbi_remote_sfence_vma(mask.__bits, 0, 0);
861 	sfence_vma();
862 	sched_unpin();
863 }
864 #else
865 /*
866  * Normal, non-SMP, invalidation functions.
867  * We inline these within pmap.c for speed.
868  */
869 static __inline void
870 pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
871 {
872 
873 	sfence_vma_page(va);
874 }
875 
876 static __inline void
877 pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
878 {
879 
880 	/*
881 	 * Might consider a loop of sfence_vma_page() for a small
882 	 * number of pages in the future.
883 	 */
884 	sfence_vma();
885 }
886 
887 static __inline void
888 pmap_invalidate_all(pmap_t pmap)
889 {
890 
891 	sfence_vma();
892 }
893 #endif
894 
895 /*
896  *	Routine:	pmap_extract
897  *	Function:
898  *		Extract the physical page address associated
899  *		with the given map/virtual_address pair.
900  */
901 vm_paddr_t
902 pmap_extract(pmap_t pmap, vm_offset_t va)
903 {
904 	pd_entry_t *l2p, l2;
905 	pt_entry_t *l3p;
906 	vm_paddr_t pa;
907 
908 	pa = 0;
909 
910 	/*
911 	 * Start with an L2 lookup, L1 superpages are currently not implemented.
912 	 */
913 	PMAP_LOCK(pmap);
914 	l2p = pmap_l2(pmap, va);
915 	if (l2p != NULL && ((l2 = pmap_load(l2p)) & PTE_V) != 0) {
916 		if ((l2 & PTE_RWX) == 0) {
917 			l3p = pmap_l2_to_l3(l2p, va);
918 			if (l3p != NULL) {
919 				pa = PTE_TO_PHYS(pmap_load(l3p));
920 				pa |= (va & L3_OFFSET);
921 			}
922 		} else {
923 			/* L2 is a superpage mapping. */
924 			pa = L2PTE_TO_PHYS(l2);
925 			pa |= (va & L2_OFFSET);
926 		}
927 	}
928 	PMAP_UNLOCK(pmap);
929 	return (pa);
930 }
931 
932 /*
933  *	Routine:	pmap_extract_and_hold
934  *	Function:
935  *		Atomically extract and hold the physical page
936  *		with the given pmap and virtual address pair
937  *		if that mapping permits the given protection.
938  */
939 vm_page_t
940 pmap_extract_and_hold(pmap_t pmap, vm_offset_t va, vm_prot_t prot)
941 {
942 	pt_entry_t *l3p, l3;
943 	vm_paddr_t phys;
944 	vm_page_t m;
945 
946 	m = NULL;
947 	PMAP_LOCK(pmap);
948 	l3p = pmap_l3(pmap, va);
949 	if (l3p != NULL && (l3 = pmap_load(l3p)) != 0) {
950 		if ((l3 & PTE_W) != 0 || (prot & VM_PROT_WRITE) == 0) {
951 			phys = PTE_TO_PHYS(l3);
952 			m = PHYS_TO_VM_PAGE(phys);
953 			if (!vm_page_wire_mapped(m))
954 				m = NULL;
955 		}
956 	}
957 	PMAP_UNLOCK(pmap);
958 	return (m);
959 }
960 
961 /*
962  *	Routine:	pmap_kextract
963  *	Function:
964  *		Extract the physical page address associated with the given kernel
965  *		virtual address.
966  */
967 vm_paddr_t
968 pmap_kextract(vm_offset_t va)
969 {
970 	pd_entry_t *l2, l2e;
971 	pt_entry_t *l3;
972 	vm_paddr_t pa;
973 
974 	if (va >= DMAP_MIN_ADDRESS && va < DMAP_MAX_ADDRESS) {
975 		pa = DMAP_TO_PHYS(va);
976 	} else {
977 		l2 = pmap_l2(kernel_pmap, va);
978 		if (l2 == NULL)
979 			panic("pmap_kextract: No l2");
980 		l2e = pmap_load(l2);
981 		/*
982 		 * Beware of concurrent promotion and demotion! We must
983 		 * use l2e rather than loading from l2 multiple times to
984 		 * ensure we see a consistent state, including the
985 		 * implicit load in pmap_l2_to_l3.  It is, however, safe
986 		 * to use an old l2e because the L3 page is preserved by
987 		 * promotion.
988 		 */
989 		if ((l2e & PTE_RX) != 0) {
990 			/* superpages */
991 			pa = L2PTE_TO_PHYS(l2e);
992 			pa |= (va & L2_OFFSET);
993 			return (pa);
994 		}
995 
996 		l3 = pmap_l2_to_l3(&l2e, va);
997 		if (l3 == NULL)
998 			panic("pmap_kextract: No l3...");
999 		pa = PTE_TO_PHYS(pmap_load(l3));
1000 		pa |= (va & PAGE_MASK);
1001 	}
1002 	return (pa);
1003 }
1004 
1005 /***************************************************
1006  * Low level mapping routines.....
1007  ***************************************************/
1008 
1009 void
1010 pmap_kenter(vm_offset_t sva, vm_size_t size, vm_paddr_t pa, int mode __unused)
1011 {
1012 	pt_entry_t entry;
1013 	pt_entry_t *l3;
1014 	vm_offset_t va;
1015 	pn_t pn;
1016 
1017 	KASSERT((pa & L3_OFFSET) == 0,
1018 	   ("pmap_kenter_device: Invalid physical address"));
1019 	KASSERT((sva & L3_OFFSET) == 0,
1020 	   ("pmap_kenter_device: Invalid virtual address"));
1021 	KASSERT((size & PAGE_MASK) == 0,
1022 	    ("pmap_kenter_device: Mapping is not page-sized"));
1023 
1024 	va = sva;
1025 	while (size != 0) {
1026 		l3 = pmap_l3(kernel_pmap, va);
1027 		KASSERT(l3 != NULL, ("Invalid page table, va: 0x%lx", va));
1028 
1029 		pn = (pa / PAGE_SIZE);
1030 		entry = PTE_KERN;
1031 		entry |= (pn << PTE_PPN0_S);
1032 		pmap_store(l3, entry);
1033 
1034 		va += PAGE_SIZE;
1035 		pa += PAGE_SIZE;
1036 		size -= PAGE_SIZE;
1037 	}
1038 	pmap_invalidate_range(kernel_pmap, sva, va);
1039 }
1040 
1041 void
1042 pmap_kenter_device(vm_offset_t sva, vm_size_t size, vm_paddr_t pa)
1043 {
1044 	pmap_kenter(sva, size, pa, VM_MEMATTR_DEVICE);
1045 }
1046 
1047 /*
1048  * Remove a page from the kernel pagetables.
1049  * Note: not SMP coherent.
1050  */
1051 void
1052 pmap_kremove(vm_offset_t va)
1053 {
1054 	pt_entry_t *l3;
1055 
1056 	l3 = pmap_l3(kernel_pmap, va);
1057 	KASSERT(l3 != NULL, ("pmap_kremove: Invalid address"));
1058 
1059 	pmap_clear(l3);
1060 	sfence_vma();
1061 }
1062 
1063 void
1064 pmap_kremove_device(vm_offset_t sva, vm_size_t size)
1065 {
1066 	pt_entry_t *l3;
1067 	vm_offset_t va;
1068 
1069 	KASSERT((sva & L3_OFFSET) == 0,
1070 	   ("pmap_kremove_device: Invalid virtual address"));
1071 	KASSERT((size & PAGE_MASK) == 0,
1072 	    ("pmap_kremove_device: Mapping is not page-sized"));
1073 
1074 	va = sva;
1075 	while (size != 0) {
1076 		l3 = pmap_l3(kernel_pmap, va);
1077 		KASSERT(l3 != NULL, ("Invalid page table, va: 0x%lx", va));
1078 		pmap_clear(l3);
1079 
1080 		va += PAGE_SIZE;
1081 		size -= PAGE_SIZE;
1082 	}
1083 
1084 	pmap_invalidate_range(kernel_pmap, sva, va);
1085 }
1086 
1087 /*
1088  *	Used to map a range of physical addresses into kernel
1089  *	virtual address space.
1090  *
1091  *	The value passed in '*virt' is a suggested virtual address for
1092  *	the mapping. Architectures which can support a direct-mapped
1093  *	physical to virtual region can return the appropriate address
1094  *	within that region, leaving '*virt' unchanged. Other
1095  *	architectures should map the pages starting at '*virt' and
1096  *	update '*virt' with the first usable address after the mapped
1097  *	region.
1098  */
1099 vm_offset_t
1100 pmap_map(vm_offset_t *virt, vm_paddr_t start, vm_paddr_t end, int prot)
1101 {
1102 
1103 	return PHYS_TO_DMAP(start);
1104 }
1105 
1106 /*
1107  * Add a list of wired pages to the kva
1108  * this routine is only used for temporary
1109  * kernel mappings that do not need to have
1110  * page modification or references recorded.
1111  * Note that old mappings are simply written
1112  * over.  The page *must* be wired.
1113  * Note: SMP coherent.  Uses a ranged shootdown IPI.
1114  */
1115 void
1116 pmap_qenter(vm_offset_t sva, vm_page_t *ma, int count)
1117 {
1118 	pt_entry_t *l3, pa;
1119 	vm_offset_t va;
1120 	vm_page_t m;
1121 	pt_entry_t entry;
1122 	pn_t pn;
1123 	int i;
1124 
1125 	va = sva;
1126 	for (i = 0; i < count; i++) {
1127 		m = ma[i];
1128 		pa = VM_PAGE_TO_PHYS(m);
1129 		pn = (pa / PAGE_SIZE);
1130 		l3 = pmap_l3(kernel_pmap, va);
1131 
1132 		entry = PTE_KERN;
1133 		entry |= (pn << PTE_PPN0_S);
1134 		pmap_store(l3, entry);
1135 
1136 		va += L3_SIZE;
1137 	}
1138 	pmap_invalidate_range(kernel_pmap, sva, va);
1139 }
1140 
1141 /*
1142  * This routine tears out page mappings from the
1143  * kernel -- it is meant only for temporary mappings.
1144  * Note: SMP coherent.  Uses a ranged shootdown IPI.
1145  */
1146 void
1147 pmap_qremove(vm_offset_t sva, int count)
1148 {
1149 	pt_entry_t *l3;
1150 	vm_offset_t va;
1151 
1152 	KASSERT(sva >= VM_MIN_KERNEL_ADDRESS, ("usermode va %lx", sva));
1153 
1154 	for (va = sva; count-- > 0; va += PAGE_SIZE) {
1155 		l3 = pmap_l3(kernel_pmap, va);
1156 		KASSERT(l3 != NULL, ("pmap_kremove: Invalid address"));
1157 		pmap_clear(l3);
1158 	}
1159 	pmap_invalidate_range(kernel_pmap, sva, va);
1160 }
1161 
1162 bool
1163 pmap_ps_enabled(pmap_t pmap __unused)
1164 {
1165 
1166 	return (superpages_enabled);
1167 }
1168 
1169 /***************************************************
1170  * Page table page management routines.....
1171  ***************************************************/
1172 /*
1173  * Schedule the specified unused page table page to be freed.  Specifically,
1174  * add the page to the specified list of pages that will be released to the
1175  * physical memory manager after the TLB has been updated.
1176  */
1177 static __inline void
1178 pmap_add_delayed_free_list(vm_page_t m, struct spglist *free,
1179     boolean_t set_PG_ZERO)
1180 {
1181 
1182 	if (set_PG_ZERO)
1183 		m->flags |= PG_ZERO;
1184 	else
1185 		m->flags &= ~PG_ZERO;
1186 	SLIST_INSERT_HEAD(free, m, plinks.s.ss);
1187 }
1188 
1189 /*
1190  * Inserts the specified page table page into the specified pmap's collection
1191  * of idle page table pages.  Each of a pmap's page table pages is responsible
1192  * for mapping a distinct range of virtual addresses.  The pmap's collection is
1193  * ordered by this virtual address range.
1194  *
1195  * If "promoted" is false, then the page table page "mpte" must be zero filled;
1196  * "mpte"'s valid field will be set to 0.
1197  *
1198  * If "promoted" is true and "all_l3e_PTE_A_set" is false, then "mpte" must
1199  * contain valid mappings with identical attributes except for PTE_A;
1200  * "mpte"'s valid field will be set to 1.
1201  *
1202  * If "promoted" and "all_l3e_PTE_A_set" are both true, then "mpte" must contain
1203  * valid mappings with identical attributes including PTE_A; "mpte"'s valid
1204  * field will be set to VM_PAGE_BITS_ALL.
1205  */
1206 static __inline int
1207 pmap_insert_pt_page(pmap_t pmap, vm_page_t mpte, bool promoted,
1208     bool all_l3e_PTE_A_set)
1209 {
1210 
1211 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1212 	KASSERT(promoted || !all_l3e_PTE_A_set,
1213 	    ("a zero-filled PTP can't have PTE_A set in every PTE"));
1214 	mpte->valid = promoted ? (all_l3e_PTE_A_set ? VM_PAGE_BITS_ALL : 1) : 0;
1215 	return (vm_radix_insert(&pmap->pm_root, mpte));
1216 }
1217 
1218 /*
1219  * Removes the page table page mapping the specified virtual address from the
1220  * specified pmap's collection of idle page table pages, and returns it.
1221  * Otherwise, returns NULL if there is no page table page corresponding to the
1222  * specified virtual address.
1223  */
1224 static __inline vm_page_t
1225 pmap_remove_pt_page(pmap_t pmap, vm_offset_t va)
1226 {
1227 
1228 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1229 	return (vm_radix_remove(&pmap->pm_root, pmap_l2_pindex(va)));
1230 }
1231 
1232 /*
1233  * Decrements a page table page's reference count, which is used to record the
1234  * number of valid page table entries within the page.  If the reference count
1235  * drops to zero, then the page table page is unmapped.  Returns TRUE if the
1236  * page table page was unmapped and FALSE otherwise.
1237  */
1238 static inline boolean_t
1239 pmap_unwire_ptp(pmap_t pmap, vm_offset_t va, vm_page_t m, struct spglist *free)
1240 {
1241 	KASSERT(m->ref_count > 0,
1242 	    ("%s: page %p ref count underflow", __func__, m));
1243 
1244 	--m->ref_count;
1245 	if (m->ref_count == 0) {
1246 		_pmap_unwire_ptp(pmap, va, m, free);
1247 		return (TRUE);
1248 	} else {
1249 		return (FALSE);
1250 	}
1251 }
1252 
1253 static void
1254 _pmap_unwire_ptp(pmap_t pmap, vm_offset_t va, vm_page_t m, struct spglist *free)
1255 {
1256 	vm_paddr_t phys;
1257 
1258 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1259 	if (m->pindex >= NUL2E + NUL1E) {
1260 		pd_entry_t *l0;
1261 		l0 = pmap_l0(pmap, va);
1262 		pmap_clear(l0);
1263 	} else if (m->pindex >= NUL2E) {
1264 		pd_entry_t *l1;
1265 		l1 = pmap_l1(pmap, va);
1266 		pmap_clear(l1);
1267 		pmap_distribute_l1(pmap, pmap_l1_index(va), 0);
1268 	} else {
1269 		pd_entry_t *l2;
1270 		l2 = pmap_l2(pmap, va);
1271 		pmap_clear(l2);
1272 	}
1273 	pmap_resident_count_dec(pmap, 1);
1274 	if (m->pindex < NUL2E) {
1275 		pd_entry_t *l1;
1276 		vm_page_t pdpg;
1277 
1278 		l1 = pmap_l1(pmap, va);
1279 		phys = PTE_TO_PHYS(pmap_load(l1));
1280 		pdpg = PHYS_TO_VM_PAGE(phys);
1281 		pmap_unwire_ptp(pmap, va, pdpg, free);
1282 	} else if (m->pindex < NUL2E + NUL1E && pmap_mode != PMAP_MODE_SV39) {
1283 		pd_entry_t *l0;
1284 		vm_page_t pdpg;
1285 
1286 		MPASS(pmap_mode != PMAP_MODE_SV39);
1287 		l0 = pmap_l0(pmap, va);
1288 		phys = PTE_TO_PHYS(pmap_load(l0));
1289 		pdpg = PHYS_TO_VM_PAGE(phys);
1290 		pmap_unwire_ptp(pmap, va, pdpg, free);
1291 	}
1292 	pmap_invalidate_page(pmap, va);
1293 
1294 	vm_wire_sub(1);
1295 
1296 	/*
1297 	 * Put page on a list so that it is released after
1298 	 * *ALL* TLB shootdown is done
1299 	 */
1300 	pmap_add_delayed_free_list(m, free, TRUE);
1301 }
1302 
1303 /*
1304  * After removing a page table entry, this routine is used to
1305  * conditionally free the page, and manage the reference count.
1306  */
1307 static int
1308 pmap_unuse_pt(pmap_t pmap, vm_offset_t va, pd_entry_t ptepde,
1309     struct spglist *free)
1310 {
1311 	vm_page_t mpte;
1312 
1313 	if (va >= VM_MAXUSER_ADDRESS)
1314 		return (0);
1315 	KASSERT(ptepde != 0, ("pmap_unuse_pt: ptepde != 0"));
1316 	mpte = PHYS_TO_VM_PAGE(PTE_TO_PHYS(ptepde));
1317 	return (pmap_unwire_ptp(pmap, va, mpte, free));
1318 }
1319 
1320 static uint64_t
1321 pmap_satp_mode(void)
1322 {
1323 	return (pmap_mode == PMAP_MODE_SV39 ? SATP_MODE_SV39 : SATP_MODE_SV48);
1324 }
1325 
1326 void
1327 pmap_pinit0(pmap_t pmap)
1328 {
1329 	PMAP_LOCK_INIT(pmap);
1330 	bzero(&pmap->pm_stats, sizeof(pmap->pm_stats));
1331 	pmap->pm_top = kernel_pmap->pm_top;
1332 	pmap->pm_satp = pmap_satp_mode() |
1333 	    (vtophys(pmap->pm_top) >> PAGE_SHIFT);
1334 	CPU_ZERO(&pmap->pm_active);
1335 	TAILQ_INIT(&pmap->pm_pvchunk);
1336 	vm_radix_init(&pmap->pm_root);
1337 	pmap_activate_boot(pmap);
1338 }
1339 
1340 int
1341 pmap_pinit(pmap_t pmap)
1342 {
1343 	vm_paddr_t topphys;
1344 	vm_page_t mtop;
1345 	size_t i;
1346 
1347 	mtop = vm_page_alloc_noobj(VM_ALLOC_WIRED | VM_ALLOC_ZERO |
1348 	    VM_ALLOC_WAITOK);
1349 
1350 	topphys = VM_PAGE_TO_PHYS(mtop);
1351 	pmap->pm_top = (pd_entry_t *)PHYS_TO_DMAP(topphys);
1352 	pmap->pm_satp = pmap_satp_mode() | (topphys >> PAGE_SHIFT);
1353 
1354 	bzero(&pmap->pm_stats, sizeof(pmap->pm_stats));
1355 
1356 	CPU_ZERO(&pmap->pm_active);
1357 
1358 	if (pmap_mode == PMAP_MODE_SV39) {
1359 		/*
1360 		 * Copy L1 entries from the kernel pmap.  This must be done with
1361 		 * the allpmaps lock held to avoid races with
1362 		 * pmap_distribute_l1().
1363 		 */
1364 		mtx_lock(&allpmaps_lock);
1365 		LIST_INSERT_HEAD(&allpmaps, pmap, pm_list);
1366 		for (i = pmap_l1_index(VM_MIN_KERNEL_ADDRESS);
1367 		    i < pmap_l1_index(VM_MAX_KERNEL_ADDRESS); i++)
1368 			pmap->pm_top[i] = kernel_pmap->pm_top[i];
1369 		for (i = pmap_l1_index(DMAP_MIN_ADDRESS);
1370 		    i < pmap_l1_index(DMAP_MAX_ADDRESS); i++)
1371 			pmap->pm_top[i] = kernel_pmap->pm_top[i];
1372 		mtx_unlock(&allpmaps_lock);
1373 	} else {
1374 		i = pmap_l0_index(VM_MIN_KERNEL_ADDRESS);
1375 		pmap->pm_top[i] = kernel_pmap->pm_top[i];
1376 	}
1377 
1378 	TAILQ_INIT(&pmap->pm_pvchunk);
1379 	vm_radix_init(&pmap->pm_root);
1380 
1381 	return (1);
1382 }
1383 
1384 /*
1385  * This routine is called if the desired page table page does not exist.
1386  *
1387  * If page table page allocation fails, this routine may sleep before
1388  * returning NULL.  It sleeps only if a lock pointer was given.
1389  *
1390  * Note: If a page allocation fails at page table level two or three,
1391  * one or two pages may be held during the wait, only to be released
1392  * afterwards.  This conservative approach is easily argued to avoid
1393  * race conditions.
1394  */
1395 static vm_page_t
1396 _pmap_alloc_l3(pmap_t pmap, vm_pindex_t ptepindex, struct rwlock **lockp)
1397 {
1398 	vm_page_t m, pdpg;
1399 	pt_entry_t entry;
1400 	vm_paddr_t phys;
1401 	pn_t pn;
1402 
1403 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1404 
1405 	/*
1406 	 * Allocate a page table page.
1407 	 */
1408 	m = vm_page_alloc_noobj(VM_ALLOC_WIRED | VM_ALLOC_ZERO);
1409 	if (m == NULL) {
1410 		if (lockp != NULL) {
1411 			RELEASE_PV_LIST_LOCK(lockp);
1412 			PMAP_UNLOCK(pmap);
1413 			rw_runlock(&pvh_global_lock);
1414 			vm_wait(NULL);
1415 			rw_rlock(&pvh_global_lock);
1416 			PMAP_LOCK(pmap);
1417 		}
1418 
1419 		/*
1420 		 * Indicate the need to retry.  While waiting, the page table
1421 		 * page may have been allocated.
1422 		 */
1423 		return (NULL);
1424 	}
1425 	m->pindex = ptepindex;
1426 
1427 	/*
1428 	 * Map the pagetable page into the process address space, if
1429 	 * it isn't already there.
1430 	 */
1431 	pn = VM_PAGE_TO_PHYS(m) >> PAGE_SHIFT;
1432 	if (ptepindex >= NUL2E + NUL1E) {
1433 		pd_entry_t *l0;
1434 		vm_pindex_t l0index;
1435 
1436 		KASSERT(pmap_mode != PMAP_MODE_SV39,
1437 		    ("%s: pindex %#lx in SV39 mode", __func__, ptepindex));
1438 		KASSERT(ptepindex < NUL2E + NUL1E + NUL0E,
1439 		    ("%s: pindex %#lx out of range", __func__, ptepindex));
1440 
1441 		l0index = ptepindex - (NUL2E + NUL1E);
1442 		l0 = &pmap->pm_top[l0index];
1443 		KASSERT((pmap_load(l0) & PTE_V) == 0,
1444 		    ("%s: L0 entry %#lx is valid", __func__, pmap_load(l0)));
1445 
1446 		entry = PTE_V | (pn << PTE_PPN0_S);
1447 		pmap_store(l0, entry);
1448 	} else if (ptepindex >= NUL2E) {
1449 		pd_entry_t *l0, *l1;
1450 		vm_pindex_t l0index, l1index;
1451 
1452 		l1index = ptepindex - NUL2E;
1453 		if (pmap_mode == PMAP_MODE_SV39) {
1454 			l1 = &pmap->pm_top[l1index];
1455 		} else {
1456 			l0index = l1index >> Ln_ENTRIES_SHIFT;
1457 			l0 = &pmap->pm_top[l0index];
1458 			if (pmap_load(l0) == 0) {
1459 				/* Recurse to allocate the L1 page. */
1460 				if (_pmap_alloc_l3(pmap,
1461 				    NUL2E + NUL1E + l0index, lockp) == NULL)
1462 					goto fail;
1463 				phys = PTE_TO_PHYS(pmap_load(l0));
1464 			} else {
1465 				phys = PTE_TO_PHYS(pmap_load(l0));
1466 				pdpg = PHYS_TO_VM_PAGE(phys);
1467 				pdpg->ref_count++;
1468 			}
1469 			l1 = (pd_entry_t *)PHYS_TO_DMAP(phys);
1470 			l1 = &l1[ptepindex & Ln_ADDR_MASK];
1471 		}
1472 		KASSERT((pmap_load(l1) & PTE_V) == 0,
1473 		    ("%s: L1 entry %#lx is valid", __func__, pmap_load(l1)));
1474 
1475 		entry = PTE_V | (pn << PTE_PPN0_S);
1476 		pmap_store(l1, entry);
1477 		pmap_distribute_l1(pmap, l1index, entry);
1478 	} else {
1479 		vm_pindex_t l0index, l1index;
1480 		pd_entry_t *l0, *l1, *l2;
1481 
1482 		l1index = ptepindex >> (L1_SHIFT - L2_SHIFT);
1483 		if (pmap_mode == PMAP_MODE_SV39) {
1484 			l1 = &pmap->pm_top[l1index];
1485 			if (pmap_load(l1) == 0) {
1486 				/* recurse for allocating page dir */
1487 				if (_pmap_alloc_l3(pmap, NUL2E + l1index,
1488 				    lockp) == NULL)
1489 					goto fail;
1490 			} else {
1491 				phys = PTE_TO_PHYS(pmap_load(l1));
1492 				pdpg = PHYS_TO_VM_PAGE(phys);
1493 				pdpg->ref_count++;
1494 			}
1495 		} else {
1496 			l0index = l1index >> Ln_ENTRIES_SHIFT;
1497 			l0 = &pmap->pm_top[l0index];
1498 			if (pmap_load(l0) == 0) {
1499 				/* Recurse to allocate the L1 entry. */
1500 				if (_pmap_alloc_l3(pmap, NUL2E + l1index,
1501 				    lockp) == NULL)
1502 					goto fail;
1503 				phys = PTE_TO_PHYS(pmap_load(l0));
1504 				l1 = (pd_entry_t *)PHYS_TO_DMAP(phys);
1505 				l1 = &l1[l1index & Ln_ADDR_MASK];
1506 			} else {
1507 				phys = PTE_TO_PHYS(pmap_load(l0));
1508 				l1 = (pd_entry_t *)PHYS_TO_DMAP(phys);
1509 				l1 = &l1[l1index & Ln_ADDR_MASK];
1510 				if (pmap_load(l1) == 0) {
1511 					/* Recurse to allocate the L2 page. */
1512 					if (_pmap_alloc_l3(pmap,
1513 					    NUL2E + l1index, lockp) == NULL)
1514 						goto fail;
1515 				} else {
1516 					phys = PTE_TO_PHYS(pmap_load(l1));
1517 					pdpg = PHYS_TO_VM_PAGE(phys);
1518 					pdpg->ref_count++;
1519 				}
1520 			}
1521 		}
1522 
1523 		phys = PTE_TO_PHYS(pmap_load(l1));
1524 		l2 = (pd_entry_t *)PHYS_TO_DMAP(phys);
1525 		l2 = &l2[ptepindex & Ln_ADDR_MASK];
1526 		KASSERT((pmap_load(l2) & PTE_V) == 0,
1527 		    ("%s: L2 entry %#lx is valid", __func__, pmap_load(l2)));
1528 
1529 		entry = PTE_V | (pn << PTE_PPN0_S);
1530 		pmap_store(l2, entry);
1531 	}
1532 
1533 	pmap_resident_count_inc(pmap, 1);
1534 
1535 	return (m);
1536 
1537 fail:
1538 	vm_page_unwire_noq(m);
1539 	vm_page_free_zero(m);
1540 	return (NULL);
1541 }
1542 
1543 static vm_page_t
1544 pmap_alloc_l2(pmap_t pmap, vm_offset_t va, struct rwlock **lockp)
1545 {
1546 	pd_entry_t *l1;
1547 	vm_page_t l2pg;
1548 	vm_pindex_t l2pindex;
1549 
1550 retry:
1551 	l1 = pmap_l1(pmap, va);
1552 	if (l1 != NULL && (pmap_load(l1) & PTE_V) != 0) {
1553 		KASSERT((pmap_load(l1) & PTE_RWX) == 0,
1554 		    ("%s: L1 entry %#lx for VA %#lx is a leaf", __func__,
1555 		    pmap_load(l1), va));
1556 		/* Add a reference to the L2 page. */
1557 		l2pg = PHYS_TO_VM_PAGE(PTE_TO_PHYS(pmap_load(l1)));
1558 		l2pg->ref_count++;
1559 	} else {
1560 		/* Allocate a L2 page. */
1561 		l2pindex = pmap_l2_pindex(va) >> Ln_ENTRIES_SHIFT;
1562 		l2pg = _pmap_alloc_l3(pmap, NUL2E + l2pindex, lockp);
1563 		if (l2pg == NULL && lockp != NULL)
1564 			goto retry;
1565 	}
1566 	return (l2pg);
1567 }
1568 
1569 static vm_page_t
1570 pmap_alloc_l3(pmap_t pmap, vm_offset_t va, struct rwlock **lockp)
1571 {
1572 	vm_pindex_t ptepindex;
1573 	pd_entry_t *l2;
1574 	vm_paddr_t phys;
1575 	vm_page_t m;
1576 
1577 	/*
1578 	 * Calculate pagetable page index
1579 	 */
1580 	ptepindex = pmap_l2_pindex(va);
1581 retry:
1582 	/*
1583 	 * Get the page directory entry
1584 	 */
1585 	l2 = pmap_l2(pmap, va);
1586 
1587 	/*
1588 	 * If the page table page is mapped, we just increment the
1589 	 * hold count, and activate it.
1590 	 */
1591 	if (l2 != NULL && pmap_load(l2) != 0) {
1592 		phys = PTE_TO_PHYS(pmap_load(l2));
1593 		m = PHYS_TO_VM_PAGE(phys);
1594 		m->ref_count++;
1595 	} else {
1596 		/*
1597 		 * Here if the pte page isn't mapped, or if it has been
1598 		 * deallocated.
1599 		 */
1600 		m = _pmap_alloc_l3(pmap, ptepindex, lockp);
1601 		if (m == NULL && lockp != NULL)
1602 			goto retry;
1603 	}
1604 	return (m);
1605 }
1606 
1607 /***************************************************
1608  * Pmap allocation/deallocation routines.
1609  ***************************************************/
1610 
1611 /*
1612  * Release any resources held by the given physical map.
1613  * Called when a pmap initialized by pmap_pinit is being released.
1614  * Should only be called if the map contains no valid mappings.
1615  */
1616 void
1617 pmap_release(pmap_t pmap)
1618 {
1619 	vm_page_t m;
1620 
1621 	KASSERT(pmap->pm_stats.resident_count == 0,
1622 	    ("pmap_release: pmap resident count %ld != 0",
1623 	    pmap->pm_stats.resident_count));
1624 	KASSERT(CPU_EMPTY(&pmap->pm_active),
1625 	    ("releasing active pmap %p", pmap));
1626 
1627 	if (pmap_mode == PMAP_MODE_SV39) {
1628 		mtx_lock(&allpmaps_lock);
1629 		LIST_REMOVE(pmap, pm_list);
1630 		mtx_unlock(&allpmaps_lock);
1631 	}
1632 
1633 	m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t)pmap->pm_top));
1634 	vm_page_unwire_noq(m);
1635 	vm_page_free(m);
1636 }
1637 
1638 static int
1639 kvm_size(SYSCTL_HANDLER_ARGS)
1640 {
1641 	unsigned long ksize = VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS;
1642 
1643 	return sysctl_handle_long(oidp, &ksize, 0, req);
1644 }
1645 SYSCTL_PROC(_vm, OID_AUTO, kvm_size, CTLTYPE_LONG | CTLFLAG_RD | CTLFLAG_MPSAFE,
1646     0, 0, kvm_size, "LU",
1647     "Size of KVM");
1648 
1649 static int
1650 kvm_free(SYSCTL_HANDLER_ARGS)
1651 {
1652 	unsigned long kfree = VM_MAX_KERNEL_ADDRESS - kernel_vm_end;
1653 
1654 	return sysctl_handle_long(oidp, &kfree, 0, req);
1655 }
1656 SYSCTL_PROC(_vm, OID_AUTO, kvm_free, CTLTYPE_LONG | CTLFLAG_RD | CTLFLAG_MPSAFE,
1657     0, 0, kvm_free, "LU",
1658     "Amount of KVM free");
1659 
1660 /*
1661  * grow the number of kernel page table entries, if needed
1662  */
1663 void
1664 pmap_growkernel(vm_offset_t addr)
1665 {
1666 	vm_paddr_t paddr;
1667 	vm_page_t nkpg;
1668 	pd_entry_t *l1, *l2;
1669 	pt_entry_t entry;
1670 	pn_t pn;
1671 
1672 	mtx_assert(&kernel_map->system_mtx, MA_OWNED);
1673 
1674 	addr = roundup2(addr, L2_SIZE);
1675 	if (addr - 1 >= vm_map_max(kernel_map))
1676 		addr = vm_map_max(kernel_map);
1677 	while (kernel_vm_end < addr) {
1678 		l1 = pmap_l1(kernel_pmap, kernel_vm_end);
1679 		if (pmap_load(l1) == 0) {
1680 			/* We need a new PDP entry */
1681 			nkpg = vm_page_alloc_noobj(VM_ALLOC_INTERRUPT |
1682 			    VM_ALLOC_WIRED | VM_ALLOC_ZERO);
1683 			if (nkpg == NULL)
1684 				panic("pmap_growkernel: no memory to grow kernel");
1685 			nkpg->pindex = kernel_vm_end >> L1_SHIFT;
1686 			paddr = VM_PAGE_TO_PHYS(nkpg);
1687 
1688 			pn = (paddr / PAGE_SIZE);
1689 			entry = (PTE_V);
1690 			entry |= (pn << PTE_PPN0_S);
1691 			pmap_store(l1, entry);
1692 			pmap_distribute_l1(kernel_pmap,
1693 			    pmap_l1_index(kernel_vm_end), entry);
1694 			continue; /* try again */
1695 		}
1696 		l2 = pmap_l1_to_l2(l1, kernel_vm_end);
1697 		if ((pmap_load(l2) & PTE_V) != 0 &&
1698 		    (pmap_load(l2) & PTE_RWX) == 0) {
1699 			kernel_vm_end = (kernel_vm_end + L2_SIZE) & ~L2_OFFSET;
1700 			if (kernel_vm_end - 1 >= vm_map_max(kernel_map)) {
1701 				kernel_vm_end = vm_map_max(kernel_map);
1702 				break;
1703 			}
1704 			continue;
1705 		}
1706 
1707 		nkpg = vm_page_alloc_noobj(VM_ALLOC_INTERRUPT | VM_ALLOC_WIRED |
1708 		    VM_ALLOC_ZERO);
1709 		if (nkpg == NULL)
1710 			panic("pmap_growkernel: no memory to grow kernel");
1711 		nkpg->pindex = kernel_vm_end >> L2_SHIFT;
1712 		paddr = VM_PAGE_TO_PHYS(nkpg);
1713 
1714 		pn = (paddr / PAGE_SIZE);
1715 		entry = (PTE_V);
1716 		entry |= (pn << PTE_PPN0_S);
1717 		pmap_store(l2, entry);
1718 
1719 		pmap_invalidate_page(kernel_pmap, kernel_vm_end);
1720 
1721 		kernel_vm_end = (kernel_vm_end + L2_SIZE) & ~L2_OFFSET;
1722 		if (kernel_vm_end - 1 >= vm_map_max(kernel_map)) {
1723 			kernel_vm_end = vm_map_max(kernel_map);
1724 			break;
1725 		}
1726 	}
1727 }
1728 
1729 /***************************************************
1730  * page management routines.
1731  ***************************************************/
1732 
1733 static const uint64_t pc_freemask[_NPCM] = {
1734 	[0 ... _NPCM - 2] = PC_FREEN,
1735 	[_NPCM - 1] = PC_FREEL
1736 };
1737 
1738 #if 0
1739 #ifdef PV_STATS
1740 static int pc_chunk_count, pc_chunk_allocs, pc_chunk_frees, pc_chunk_tryfail;
1741 
1742 SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_count, CTLFLAG_RD, &pc_chunk_count, 0,
1743 	"Current number of pv entry chunks");
1744 SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_allocs, CTLFLAG_RD, &pc_chunk_allocs, 0,
1745 	"Current number of pv entry chunks allocated");
1746 SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_frees, CTLFLAG_RD, &pc_chunk_frees, 0,
1747 	"Current number of pv entry chunks frees");
1748 SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_tryfail, CTLFLAG_RD, &pc_chunk_tryfail, 0,
1749 	"Number of times tried to get a chunk page but failed.");
1750 
1751 static long pv_entry_frees, pv_entry_allocs, pv_entry_count;
1752 static int pv_entry_spare;
1753 
1754 SYSCTL_LONG(_vm_pmap, OID_AUTO, pv_entry_frees, CTLFLAG_RD, &pv_entry_frees, 0,
1755 	"Current number of pv entry frees");
1756 SYSCTL_LONG(_vm_pmap, OID_AUTO, pv_entry_allocs, CTLFLAG_RD, &pv_entry_allocs, 0,
1757 	"Current number of pv entry allocs");
1758 SYSCTL_LONG(_vm_pmap, OID_AUTO, pv_entry_count, CTLFLAG_RD, &pv_entry_count, 0,
1759 	"Current number of pv entries");
1760 SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_spare, CTLFLAG_RD, &pv_entry_spare, 0,
1761 	"Current number of spare pv entries");
1762 #endif
1763 #endif /* 0 */
1764 
1765 /*
1766  * We are in a serious low memory condition.  Resort to
1767  * drastic measures to free some pages so we can allocate
1768  * another pv entry chunk.
1769  *
1770  * Returns NULL if PV entries were reclaimed from the specified pmap.
1771  *
1772  * We do not, however, unmap 2mpages because subsequent accesses will
1773  * allocate per-page pv entries until repromotion occurs, thereby
1774  * exacerbating the shortage of free pv entries.
1775  */
1776 static vm_page_t
1777 reclaim_pv_chunk(pmap_t locked_pmap, struct rwlock **lockp)
1778 {
1779 
1780 	panic("RISCVTODO: reclaim_pv_chunk");
1781 }
1782 
1783 /*
1784  * free the pv_entry back to the free list
1785  */
1786 static void
1787 free_pv_entry(pmap_t pmap, pv_entry_t pv)
1788 {
1789 	struct pv_chunk *pc;
1790 	int idx, field, bit;
1791 
1792 	rw_assert(&pvh_global_lock, RA_LOCKED);
1793 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1794 	PV_STAT(atomic_add_long(&pv_entry_frees, 1));
1795 	PV_STAT(atomic_add_int(&pv_entry_spare, 1));
1796 	PV_STAT(atomic_subtract_long(&pv_entry_count, 1));
1797 	pc = pv_to_chunk(pv);
1798 	idx = pv - &pc->pc_pventry[0];
1799 	field = idx / 64;
1800 	bit = idx % 64;
1801 	pc->pc_map[field] |= 1ul << bit;
1802 	if (!pc_is_free(pc)) {
1803 		/* 98% of the time, pc is already at the head of the list. */
1804 		if (__predict_false(pc != TAILQ_FIRST(&pmap->pm_pvchunk))) {
1805 			TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
1806 			TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
1807 		}
1808 		return;
1809 	}
1810 	TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
1811 	free_pv_chunk(pc);
1812 }
1813 
1814 static void
1815 free_pv_chunk(struct pv_chunk *pc)
1816 {
1817 	vm_page_t m;
1818 
1819 	mtx_lock(&pv_chunks_mutex);
1820  	TAILQ_REMOVE(&pv_chunks, pc, pc_lru);
1821 	mtx_unlock(&pv_chunks_mutex);
1822 	PV_STAT(atomic_subtract_int(&pv_entry_spare, _NPCPV));
1823 	PV_STAT(atomic_subtract_int(&pc_chunk_count, 1));
1824 	PV_STAT(atomic_add_int(&pc_chunk_frees, 1));
1825 	/* entire chunk is free, return it */
1826 	m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t)pc));
1827 	dump_drop_page(m->phys_addr);
1828 	vm_page_unwire_noq(m);
1829 	vm_page_free(m);
1830 }
1831 
1832 /*
1833  * Returns a new PV entry, allocating a new PV chunk from the system when
1834  * needed.  If this PV chunk allocation fails and a PV list lock pointer was
1835  * given, a PV chunk is reclaimed from an arbitrary pmap.  Otherwise, NULL is
1836  * returned.
1837  *
1838  * The given PV list lock may be released.
1839  */
1840 static pv_entry_t
1841 get_pv_entry(pmap_t pmap, struct rwlock **lockp)
1842 {
1843 	int bit, field;
1844 	pv_entry_t pv;
1845 	struct pv_chunk *pc;
1846 	vm_page_t m;
1847 
1848 	rw_assert(&pvh_global_lock, RA_LOCKED);
1849 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1850 	PV_STAT(atomic_add_long(&pv_entry_allocs, 1));
1851 retry:
1852 	pc = TAILQ_FIRST(&pmap->pm_pvchunk);
1853 	if (pc != NULL) {
1854 		for (field = 0; field < _NPCM; field++) {
1855 			if (pc->pc_map[field]) {
1856 				bit = ffsl(pc->pc_map[field]) - 1;
1857 				break;
1858 			}
1859 		}
1860 		if (field < _NPCM) {
1861 			pv = &pc->pc_pventry[field * 64 + bit];
1862 			pc->pc_map[field] &= ~(1ul << bit);
1863 			/* If this was the last item, move it to tail */
1864 			if (pc_is_full(pc)) {
1865 				TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
1866 				TAILQ_INSERT_TAIL(&pmap->pm_pvchunk, pc,
1867 				    pc_list);
1868 			}
1869 			PV_STAT(atomic_add_long(&pv_entry_count, 1));
1870 			PV_STAT(atomic_subtract_int(&pv_entry_spare, 1));
1871 			return (pv);
1872 		}
1873 	}
1874 	/* No free items, allocate another chunk */
1875 	m = vm_page_alloc_noobj(VM_ALLOC_WIRED);
1876 	if (m == NULL) {
1877 		if (lockp == NULL) {
1878 			PV_STAT(pc_chunk_tryfail++);
1879 			return (NULL);
1880 		}
1881 		m = reclaim_pv_chunk(pmap, lockp);
1882 		if (m == NULL)
1883 			goto retry;
1884 	}
1885 	PV_STAT(atomic_add_int(&pc_chunk_count, 1));
1886 	PV_STAT(atomic_add_int(&pc_chunk_allocs, 1));
1887 	dump_add_page(m->phys_addr);
1888 	pc = (void *)PHYS_TO_DMAP(m->phys_addr);
1889 	pc->pc_pmap = pmap;
1890 	pc->pc_map[0] = PC_FREEN & ~1ul;	/* preallocated bit 0 */
1891 	pc->pc_map[1] = PC_FREEN;
1892 	pc->pc_map[2] = PC_FREEL;
1893 	mtx_lock(&pv_chunks_mutex);
1894 	TAILQ_INSERT_TAIL(&pv_chunks, pc, pc_lru);
1895 	mtx_unlock(&pv_chunks_mutex);
1896 	pv = &pc->pc_pventry[0];
1897 	TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
1898 	PV_STAT(atomic_add_long(&pv_entry_count, 1));
1899 	PV_STAT(atomic_add_int(&pv_entry_spare, _NPCPV - 1));
1900 	return (pv);
1901 }
1902 
1903 /*
1904  * Ensure that the number of spare PV entries in the specified pmap meets or
1905  * exceeds the given count, "needed".
1906  *
1907  * The given PV list lock may be released.
1908  */
1909 static void
1910 reserve_pv_entries(pmap_t pmap, int needed, struct rwlock **lockp)
1911 {
1912 	struct pch new_tail;
1913 	struct pv_chunk *pc;
1914 	vm_page_t m;
1915 	int avail, free;
1916 	bool reclaimed;
1917 
1918 	rw_assert(&pvh_global_lock, RA_LOCKED);
1919 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1920 	KASSERT(lockp != NULL, ("reserve_pv_entries: lockp is NULL"));
1921 
1922 	/*
1923 	 * Newly allocated PV chunks must be stored in a private list until
1924 	 * the required number of PV chunks have been allocated.  Otherwise,
1925 	 * reclaim_pv_chunk() could recycle one of these chunks.  In
1926 	 * contrast, these chunks must be added to the pmap upon allocation.
1927 	 */
1928 	TAILQ_INIT(&new_tail);
1929 retry:
1930 	avail = 0;
1931 	TAILQ_FOREACH(pc, &pmap->pm_pvchunk, pc_list) {
1932 		bit_count((bitstr_t *)pc->pc_map, 0,
1933 		    sizeof(pc->pc_map) * NBBY, &free);
1934 		if (free == 0)
1935 			break;
1936 		avail += free;
1937 		if (avail >= needed)
1938 			break;
1939 	}
1940 	for (reclaimed = false; avail < needed; avail += _NPCPV) {
1941 		m = vm_page_alloc_noobj(VM_ALLOC_WIRED);
1942 		if (m == NULL) {
1943 			m = reclaim_pv_chunk(pmap, lockp);
1944 			if (m == NULL)
1945 				goto retry;
1946 			reclaimed = true;
1947 		}
1948 		/* XXX PV STATS */
1949 #if 0
1950 		dump_add_page(m->phys_addr);
1951 #endif
1952 		pc = (void *)PHYS_TO_DMAP(m->phys_addr);
1953 		pc->pc_pmap = pmap;
1954 		pc->pc_map[0] = PC_FREEN;
1955 		pc->pc_map[1] = PC_FREEN;
1956 		pc->pc_map[2] = PC_FREEL;
1957 		TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
1958 		TAILQ_INSERT_TAIL(&new_tail, pc, pc_lru);
1959 
1960 		/*
1961 		 * The reclaim might have freed a chunk from the current pmap.
1962 		 * If that chunk contained available entries, we need to
1963 		 * re-count the number of available entries.
1964 		 */
1965 		if (reclaimed)
1966 			goto retry;
1967 	}
1968 	if (!TAILQ_EMPTY(&new_tail)) {
1969 		mtx_lock(&pv_chunks_mutex);
1970 		TAILQ_CONCAT(&pv_chunks, &new_tail, pc_lru);
1971 		mtx_unlock(&pv_chunks_mutex);
1972 	}
1973 }
1974 
1975 /*
1976  * First find and then remove the pv entry for the specified pmap and virtual
1977  * address from the specified pv list.  Returns the pv entry if found and NULL
1978  * otherwise.  This operation can be performed on pv lists for either 4KB or
1979  * 2MB page mappings.
1980  */
1981 static __inline pv_entry_t
1982 pmap_pvh_remove(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
1983 {
1984 	pv_entry_t pv;
1985 
1986 	rw_assert(&pvh_global_lock, RA_LOCKED);
1987 	TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
1988 		if (pmap == PV_PMAP(pv) && va == pv->pv_va) {
1989 			TAILQ_REMOVE(&pvh->pv_list, pv, pv_next);
1990 			pvh->pv_gen++;
1991 			break;
1992 		}
1993 	}
1994 	return (pv);
1995 }
1996 
1997 /*
1998  * First find and then destroy the pv entry for the specified pmap and virtual
1999  * address.  This operation can be performed on pv lists for either 4KB or 2MB
2000  * page mappings.
2001  */
2002 static void
2003 pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
2004 {
2005 	pv_entry_t pv;
2006 
2007 	pv = pmap_pvh_remove(pvh, pmap, va);
2008 
2009 	KASSERT(pv != NULL, ("pmap_pvh_free: pv not found for %#lx", va));
2010 	free_pv_entry(pmap, pv);
2011 }
2012 
2013 /*
2014  * Conditionally create the PV entry for a 4KB page mapping if the required
2015  * memory can be allocated without resorting to reclamation.
2016  */
2017 static boolean_t
2018 pmap_try_insert_pv_entry(pmap_t pmap, vm_offset_t va, vm_page_t m,
2019     struct rwlock **lockp)
2020 {
2021 	pv_entry_t pv;
2022 
2023 	rw_assert(&pvh_global_lock, RA_LOCKED);
2024 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2025 	/* Pass NULL instead of the lock pointer to disable reclamation. */
2026 	if ((pv = get_pv_entry(pmap, NULL)) != NULL) {
2027 		pv->pv_va = va;
2028 		CHANGE_PV_LIST_LOCK_TO_VM_PAGE(lockp, m);
2029 		TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
2030 		m->md.pv_gen++;
2031 		return (TRUE);
2032 	} else
2033 		return (FALSE);
2034 }
2035 
2036 /*
2037  * After demotion from a 2MB page mapping to 512 4KB page mappings,
2038  * destroy the pv entry for the 2MB page mapping and reinstantiate the pv
2039  * entries for each of the 4KB page mappings.
2040  */
2041 static void __unused
2042 pmap_pv_demote_l2(pmap_t pmap, vm_offset_t va, vm_paddr_t pa,
2043     struct rwlock **lockp)
2044 {
2045 	struct md_page *pvh;
2046 	struct pv_chunk *pc;
2047 	pv_entry_t pv;
2048 	vm_page_t m;
2049 	vm_offset_t va_last;
2050 	int bit, field;
2051 
2052 	rw_assert(&pvh_global_lock, RA_LOCKED);
2053 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2054 	CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, pa);
2055 
2056 	/*
2057 	 * Transfer the 2mpage's pv entry for this mapping to the first
2058 	 * page's pv list.  Once this transfer begins, the pv list lock
2059 	 * must not be released until the last pv entry is reinstantiated.
2060 	 */
2061 	pvh = pa_to_pvh(pa);
2062 	va &= ~L2_OFFSET;
2063 	pv = pmap_pvh_remove(pvh, pmap, va);
2064 	KASSERT(pv != NULL, ("pmap_pv_demote_l2: pv not found"));
2065 	m = PHYS_TO_VM_PAGE(pa);
2066 	TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
2067 	m->md.pv_gen++;
2068 	/* Instantiate the remaining 511 pv entries. */
2069 	va_last = va + L2_SIZE - PAGE_SIZE;
2070 	for (;;) {
2071 		pc = TAILQ_FIRST(&pmap->pm_pvchunk);
2072 		KASSERT(!pc_is_full(pc), ("pmap_pv_demote_l2: missing spare"));
2073 		for (field = 0; field < _NPCM; field++) {
2074 			while (pc->pc_map[field] != 0) {
2075 				bit = ffsl(pc->pc_map[field]) - 1;
2076 				pc->pc_map[field] &= ~(1ul << bit);
2077 				pv = &pc->pc_pventry[field * 64 + bit];
2078 				va += PAGE_SIZE;
2079 				pv->pv_va = va;
2080 				m++;
2081 				KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2082 			    ("pmap_pv_demote_l2: page %p is not managed", m));
2083 				TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
2084 				m->md.pv_gen++;
2085 				if (va == va_last)
2086 					goto out;
2087 			}
2088 		}
2089 		TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
2090 		TAILQ_INSERT_TAIL(&pmap->pm_pvchunk, pc, pc_list);
2091 	}
2092 out:
2093 	if (pc_is_free(pc)) {
2094 		TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
2095 		TAILQ_INSERT_TAIL(&pmap->pm_pvchunk, pc, pc_list);
2096 	}
2097 	/* XXX PV stats */
2098 }
2099 
2100 #if VM_NRESERVLEVEL > 0
2101 static void
2102 pmap_pv_promote_l2(pmap_t pmap, vm_offset_t va, vm_paddr_t pa,
2103     struct rwlock **lockp)
2104 {
2105 	struct md_page *pvh;
2106 	pv_entry_t pv;
2107 	vm_page_t m;
2108 	vm_offset_t va_last;
2109 
2110 	rw_assert(&pvh_global_lock, RA_LOCKED);
2111 	KASSERT((pa & L2_OFFSET) == 0,
2112 	    ("pmap_pv_promote_l2: misaligned pa %#lx", pa));
2113 
2114 	CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, pa);
2115 
2116 	m = PHYS_TO_VM_PAGE(pa);
2117 	va = va & ~L2_OFFSET;
2118 	pv = pmap_pvh_remove(&m->md, pmap, va);
2119 	KASSERT(pv != NULL, ("pmap_pv_promote_l2: pv for %#lx not found", va));
2120 	pvh = pa_to_pvh(pa);
2121 	TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_next);
2122 	pvh->pv_gen++;
2123 
2124 	va_last = va + L2_SIZE - PAGE_SIZE;
2125 	do {
2126 		m++;
2127 		va += PAGE_SIZE;
2128 		pmap_pvh_free(&m->md, pmap, va);
2129 	} while (va < va_last);
2130 }
2131 #endif /* VM_NRESERVLEVEL > 0 */
2132 
2133 /*
2134  * Create the PV entry for a 2MB page mapping.  Always returns true unless the
2135  * flag PMAP_ENTER_NORECLAIM is specified.  If that flag is specified, returns
2136  * false if the PV entry cannot be allocated without resorting to reclamation.
2137  */
2138 static bool
2139 pmap_pv_insert_l2(pmap_t pmap, vm_offset_t va, pd_entry_t l2e, u_int flags,
2140     struct rwlock **lockp)
2141 {
2142 	struct md_page *pvh;
2143 	pv_entry_t pv;
2144 	vm_paddr_t pa;
2145 
2146 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2147 	/* Pass NULL instead of the lock pointer to disable reclamation. */
2148 	if ((pv = get_pv_entry(pmap, (flags & PMAP_ENTER_NORECLAIM) != 0 ?
2149 	    NULL : lockp)) == NULL)
2150 		return (false);
2151 	pv->pv_va = va;
2152 	pa = PTE_TO_PHYS(l2e);
2153 	CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, pa);
2154 	pvh = pa_to_pvh(pa);
2155 	TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_next);
2156 	pvh->pv_gen++;
2157 	return (true);
2158 }
2159 
2160 static void
2161 pmap_remove_kernel_l2(pmap_t pmap, pt_entry_t *l2, vm_offset_t va)
2162 {
2163 	pt_entry_t newl2, oldl2 __diagused;
2164 	vm_page_t ml3;
2165 	vm_paddr_t ml3pa;
2166 
2167 	KASSERT(!VIRT_IN_DMAP(va), ("removing direct mapping of %#lx", va));
2168 	KASSERT(pmap == kernel_pmap, ("pmap %p is not kernel_pmap", pmap));
2169 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2170 
2171 	ml3 = pmap_remove_pt_page(pmap, va);
2172 	if (ml3 == NULL)
2173 		panic("pmap_remove_kernel_l2: Missing pt page");
2174 
2175 	ml3pa = VM_PAGE_TO_PHYS(ml3);
2176 	newl2 = ml3pa | PTE_V;
2177 
2178 	/*
2179 	 * If this page table page was unmapped by a promotion, then it
2180 	 * contains valid mappings.  Zero it to invalidate those mappings.
2181 	 */
2182 	if (vm_page_any_valid(ml3))
2183 		pagezero((void *)PHYS_TO_DMAP(ml3pa));
2184 
2185 	/*
2186 	 * Demote the mapping.
2187 	 */
2188 	oldl2 = pmap_load_store(l2, newl2);
2189 	KASSERT(oldl2 == 0, ("%s: found existing mapping at %p: %#lx",
2190 	    __func__, l2, oldl2));
2191 }
2192 
2193 /*
2194  * pmap_remove_l2: Do the things to unmap a level 2 superpage.
2195  */
2196 static int
2197 pmap_remove_l2(pmap_t pmap, pt_entry_t *l2, vm_offset_t sva,
2198     pd_entry_t l1e, struct spglist *free, struct rwlock **lockp)
2199 {
2200 	struct md_page *pvh;
2201 	pt_entry_t oldl2;
2202 	vm_offset_t eva, va;
2203 	vm_page_t m, ml3;
2204 
2205 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2206 	KASSERT((sva & L2_OFFSET) == 0, ("pmap_remove_l2: sva is not aligned"));
2207 	oldl2 = pmap_load_clear(l2);
2208 	KASSERT((oldl2 & PTE_RWX) != 0,
2209 	    ("pmap_remove_l2: L2e %lx is not a superpage mapping", oldl2));
2210 
2211 	/*
2212 	 * The sfence.vma documentation states that it is sufficient to specify
2213 	 * a single address within a superpage mapping.  However, since we do
2214 	 * not perform any invalidation upon promotion, TLBs may still be
2215 	 * caching 4KB mappings within the superpage, so we must invalidate the
2216 	 * entire range.
2217 	 */
2218 	pmap_invalidate_range(pmap, sva, sva + L2_SIZE);
2219 	if ((oldl2 & PTE_SW_WIRED) != 0)
2220 		pmap->pm_stats.wired_count -= L2_SIZE / PAGE_SIZE;
2221 	pmap_resident_count_dec(pmap, L2_SIZE / PAGE_SIZE);
2222 	if ((oldl2 & PTE_SW_MANAGED) != 0) {
2223 		CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, PTE_TO_PHYS(oldl2));
2224 		pvh = pa_to_pvh(PTE_TO_PHYS(oldl2));
2225 		pmap_pvh_free(pvh, pmap, sva);
2226 		eva = sva + L2_SIZE;
2227 		for (va = sva, m = PHYS_TO_VM_PAGE(PTE_TO_PHYS(oldl2));
2228 		    va < eva; va += PAGE_SIZE, m++) {
2229 			if ((oldl2 & PTE_D) != 0)
2230 				vm_page_dirty(m);
2231 			if ((oldl2 & PTE_A) != 0)
2232 				vm_page_aflag_set(m, PGA_REFERENCED);
2233 			if (TAILQ_EMPTY(&m->md.pv_list) &&
2234 			    TAILQ_EMPTY(&pvh->pv_list))
2235 				vm_page_aflag_clear(m, PGA_WRITEABLE);
2236 		}
2237 	}
2238 	if (pmap == kernel_pmap) {
2239 		pmap_remove_kernel_l2(pmap, l2, sva);
2240 	} else {
2241 		ml3 = pmap_remove_pt_page(pmap, sva);
2242 		if (ml3 != NULL) {
2243 			KASSERT(vm_page_any_valid(ml3),
2244 			    ("pmap_remove_l2: l3 page not promoted"));
2245 			pmap_resident_count_dec(pmap, 1);
2246 			KASSERT(ml3->ref_count == Ln_ENTRIES,
2247 			    ("pmap_remove_l2: l3 page ref count error"));
2248 			ml3->ref_count = 1;
2249 			vm_page_unwire_noq(ml3);
2250 			pmap_add_delayed_free_list(ml3, free, FALSE);
2251 		}
2252 	}
2253 	return (pmap_unuse_pt(pmap, sva, l1e, free));
2254 }
2255 
2256 /*
2257  * pmap_remove_l3: do the things to unmap a page in a process
2258  */
2259 static int
2260 pmap_remove_l3(pmap_t pmap, pt_entry_t *l3, vm_offset_t va,
2261     pd_entry_t l2e, struct spglist *free, struct rwlock **lockp)
2262 {
2263 	struct md_page *pvh;
2264 	pt_entry_t old_l3;
2265 	vm_paddr_t phys;
2266 	vm_page_t m;
2267 
2268 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2269 	old_l3 = pmap_load_clear(l3);
2270 	pmap_invalidate_page(pmap, va);
2271 	if (old_l3 & PTE_SW_WIRED)
2272 		pmap->pm_stats.wired_count -= 1;
2273 	pmap_resident_count_dec(pmap, 1);
2274 	if (old_l3 & PTE_SW_MANAGED) {
2275 		phys = PTE_TO_PHYS(old_l3);
2276 		m = PHYS_TO_VM_PAGE(phys);
2277 		if ((old_l3 & PTE_D) != 0)
2278 			vm_page_dirty(m);
2279 		if (old_l3 & PTE_A)
2280 			vm_page_aflag_set(m, PGA_REFERENCED);
2281 		CHANGE_PV_LIST_LOCK_TO_VM_PAGE(lockp, m);
2282 		pmap_pvh_free(&m->md, pmap, va);
2283 		if (TAILQ_EMPTY(&m->md.pv_list) &&
2284 		    (m->flags & PG_FICTITIOUS) == 0) {
2285 			pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
2286 			if (TAILQ_EMPTY(&pvh->pv_list))
2287 				vm_page_aflag_clear(m, PGA_WRITEABLE);
2288 		}
2289 	}
2290 
2291 	return (pmap_unuse_pt(pmap, va, l2e, free));
2292 }
2293 
2294 /*
2295  *	Remove the given range of addresses from the specified map.
2296  *
2297  *	It is assumed that the start and end are properly
2298  *	rounded to the page size.
2299  */
2300 void
2301 pmap_remove(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
2302 {
2303 	struct spglist free;
2304 	struct rwlock *lock;
2305 	vm_offset_t va, va_next;
2306 	pd_entry_t *l0, *l1, *l2, l2e;
2307 	pt_entry_t *l3;
2308 
2309 	/*
2310 	 * Perform an unsynchronized read.  This is, however, safe.
2311 	 */
2312 	if (pmap->pm_stats.resident_count == 0)
2313 		return;
2314 
2315 	SLIST_INIT(&free);
2316 
2317 	rw_rlock(&pvh_global_lock);
2318 	PMAP_LOCK(pmap);
2319 
2320 	lock = NULL;
2321 	for (; sva < eva; sva = va_next) {
2322 		if (pmap->pm_stats.resident_count == 0)
2323 			break;
2324 
2325 		if (pmap_mode == PMAP_MODE_SV48) {
2326 			l0 = pmap_l0(pmap, sva);
2327 			if (pmap_load(l0) == 0) {
2328 				va_next = (sva + L0_SIZE) & ~L0_OFFSET;
2329 				if (va_next < sva)
2330 					va_next = eva;
2331 				continue;
2332 			}
2333 			l1 = pmap_l0_to_l1(l0, sva);
2334 		} else {
2335 			l1 = pmap_l1(pmap, sva);
2336 		}
2337 
2338 		if (pmap_load(l1) == 0) {
2339 			va_next = (sva + L1_SIZE) & ~L1_OFFSET;
2340 			if (va_next < sva)
2341 				va_next = eva;
2342 			continue;
2343 		}
2344 
2345 		/*
2346 		 * Calculate index for next page table.
2347 		 */
2348 		va_next = (sva + L2_SIZE) & ~L2_OFFSET;
2349 		if (va_next < sva)
2350 			va_next = eva;
2351 
2352 		l2 = pmap_l1_to_l2(l1, sva);
2353 		if (l2 == NULL)
2354 			continue;
2355 		if ((l2e = pmap_load(l2)) == 0)
2356 			continue;
2357 		if ((l2e & PTE_RWX) != 0) {
2358 			if (sva + L2_SIZE == va_next && eva >= va_next) {
2359 				(void)pmap_remove_l2(pmap, l2, sva,
2360 				    pmap_load(l1), &free, &lock);
2361 				continue;
2362 			} else if (!pmap_demote_l2_locked(pmap, l2, sva,
2363 			    &lock)) {
2364 				/*
2365 				 * The large page mapping was destroyed.
2366 				 */
2367 				continue;
2368 			}
2369 			l2e = pmap_load(l2);
2370 		}
2371 
2372 		/*
2373 		 * Limit our scan to either the end of the va represented
2374 		 * by the current page table page, or to the end of the
2375 		 * range being removed.
2376 		 */
2377 		if (va_next > eva)
2378 			va_next = eva;
2379 
2380 		va = va_next;
2381 		for (l3 = pmap_l2_to_l3(l2, sva); sva != va_next; l3++,
2382 		    sva += L3_SIZE) {
2383 			if (pmap_load(l3) == 0) {
2384 				if (va != va_next) {
2385 					pmap_invalidate_range(pmap, va, sva);
2386 					va = va_next;
2387 				}
2388 				continue;
2389 			}
2390 			if (va == va_next)
2391 				va = sva;
2392 			if (pmap_remove_l3(pmap, l3, sva, l2e, &free, &lock)) {
2393 				sva += L3_SIZE;
2394 				break;
2395 			}
2396 		}
2397 		if (va != va_next)
2398 			pmap_invalidate_range(pmap, va, sva);
2399 	}
2400 	if (lock != NULL)
2401 		rw_wunlock(lock);
2402 	rw_runlock(&pvh_global_lock);
2403 	PMAP_UNLOCK(pmap);
2404 	vm_page_free_pages_toq(&free, false);
2405 }
2406 
2407 /*
2408  *	Routine:	pmap_remove_all
2409  *	Function:
2410  *		Removes this physical page from
2411  *		all physical maps in which it resides.
2412  *		Reflects back modify bits to the pager.
2413  *
2414  *	Notes:
2415  *		Original versions of this routine were very
2416  *		inefficient because they iteratively called
2417  *		pmap_remove (slow...)
2418  */
2419 
2420 void
2421 pmap_remove_all(vm_page_t m)
2422 {
2423 	struct spglist free;
2424 	struct md_page *pvh;
2425 	pmap_t pmap;
2426 	pt_entry_t *l3, l3e;
2427 	pd_entry_t *l2, l2e __diagused;
2428 	pv_entry_t pv;
2429 	vm_offset_t va;
2430 
2431 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2432 	    ("pmap_remove_all: page %p is not managed", m));
2433 	SLIST_INIT(&free);
2434 	pvh = (m->flags & PG_FICTITIOUS) != 0 ? &pv_dummy :
2435 	    pa_to_pvh(VM_PAGE_TO_PHYS(m));
2436 
2437 	rw_wlock(&pvh_global_lock);
2438 	while ((pv = TAILQ_FIRST(&pvh->pv_list)) != NULL) {
2439 		pmap = PV_PMAP(pv);
2440 		PMAP_LOCK(pmap);
2441 		va = pv->pv_va;
2442 		l2 = pmap_l2(pmap, va);
2443 		(void)pmap_demote_l2(pmap, l2, va);
2444 		PMAP_UNLOCK(pmap);
2445 	}
2446 	while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
2447 		pmap = PV_PMAP(pv);
2448 		PMAP_LOCK(pmap);
2449 		pmap_resident_count_dec(pmap, 1);
2450 		l2 = pmap_l2(pmap, pv->pv_va);
2451 		KASSERT(l2 != NULL, ("pmap_remove_all: no l2 table found"));
2452 		l2e = pmap_load(l2);
2453 
2454 		KASSERT((l2e & PTE_RX) == 0,
2455 		    ("pmap_remove_all: found a superpage in %p's pv list", m));
2456 
2457 		l3 = pmap_l2_to_l3(l2, pv->pv_va);
2458 		l3e = pmap_load_clear(l3);
2459 		pmap_invalidate_page(pmap, pv->pv_va);
2460 		if (l3e & PTE_SW_WIRED)
2461 			pmap->pm_stats.wired_count--;
2462 		if ((l3e & PTE_A) != 0)
2463 			vm_page_aflag_set(m, PGA_REFERENCED);
2464 
2465 		/*
2466 		 * Update the vm_page_t clean and reference bits.
2467 		 */
2468 		if ((l3e & PTE_D) != 0)
2469 			vm_page_dirty(m);
2470 		pmap_unuse_pt(pmap, pv->pv_va, pmap_load(l2), &free);
2471 		TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
2472 		m->md.pv_gen++;
2473 		free_pv_entry(pmap, pv);
2474 		PMAP_UNLOCK(pmap);
2475 	}
2476 	vm_page_aflag_clear(m, PGA_WRITEABLE);
2477 	rw_wunlock(&pvh_global_lock);
2478 	vm_page_free_pages_toq(&free, false);
2479 }
2480 
2481 /*
2482  *	Set the physical protection on the
2483  *	specified range of this map as requested.
2484  */
2485 void
2486 pmap_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
2487 {
2488 	pd_entry_t *l0, *l1, *l2, l2e;
2489 	pt_entry_t *l3, l3e, mask;
2490 	vm_page_t m, mt;
2491 	vm_paddr_t pa;
2492 	vm_offset_t va_next;
2493 	bool anychanged, pv_lists_locked;
2494 
2495 	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
2496 		pmap_remove(pmap, sva, eva);
2497 		return;
2498 	}
2499 
2500 	if ((prot & (VM_PROT_WRITE | VM_PROT_EXECUTE)) ==
2501 	    (VM_PROT_WRITE | VM_PROT_EXECUTE))
2502 		return;
2503 
2504 	anychanged = false;
2505 	pv_lists_locked = false;
2506 	mask = 0;
2507 	if ((prot & VM_PROT_WRITE) == 0)
2508 		mask |= PTE_W | PTE_D;
2509 	if ((prot & VM_PROT_EXECUTE) == 0)
2510 		mask |= PTE_X;
2511 resume:
2512 	PMAP_LOCK(pmap);
2513 	for (; sva < eva; sva = va_next) {
2514 		if (pmap_mode == PMAP_MODE_SV48) {
2515 			l0 = pmap_l0(pmap, sva);
2516 			if (pmap_load(l0) == 0) {
2517 				va_next = (sva + L0_SIZE) & ~L0_OFFSET;
2518 				if (va_next < sva)
2519 					va_next = eva;
2520 				continue;
2521 			}
2522 			l1 = pmap_l0_to_l1(l0, sva);
2523 		} else {
2524 			l1 = pmap_l1(pmap, sva);
2525 		}
2526 
2527 		if (pmap_load(l1) == 0) {
2528 			va_next = (sva + L1_SIZE) & ~L1_OFFSET;
2529 			if (va_next < sva)
2530 				va_next = eva;
2531 			continue;
2532 		}
2533 
2534 		va_next = (sva + L2_SIZE) & ~L2_OFFSET;
2535 		if (va_next < sva)
2536 			va_next = eva;
2537 
2538 		l2 = pmap_l1_to_l2(l1, sva);
2539 		if (l2 == NULL || (l2e = pmap_load(l2)) == 0)
2540 			continue;
2541 		if ((l2e & PTE_RWX) != 0) {
2542 			if (sva + L2_SIZE == va_next && eva >= va_next) {
2543 retryl2:
2544 				if ((prot & VM_PROT_WRITE) == 0 &&
2545 				    (l2e & (PTE_SW_MANAGED | PTE_D)) ==
2546 				    (PTE_SW_MANAGED | PTE_D)) {
2547 					pa = PTE_TO_PHYS(l2e);
2548 					m = PHYS_TO_VM_PAGE(pa);
2549 					for (mt = m; mt < &m[Ln_ENTRIES]; mt++)
2550 						vm_page_dirty(mt);
2551 				}
2552 				if (!atomic_fcmpset_long(l2, &l2e, l2e & ~mask))
2553 					goto retryl2;
2554 				anychanged = true;
2555 				continue;
2556 			} else {
2557 				if (!pv_lists_locked) {
2558 					pv_lists_locked = true;
2559 					if (!rw_try_rlock(&pvh_global_lock)) {
2560 						if (anychanged)
2561 							pmap_invalidate_all(
2562 							    pmap);
2563 						PMAP_UNLOCK(pmap);
2564 						rw_rlock(&pvh_global_lock);
2565 						goto resume;
2566 					}
2567 				}
2568 				if (!pmap_demote_l2(pmap, l2, sva)) {
2569 					/*
2570 					 * The large page mapping was destroyed.
2571 					 */
2572 					continue;
2573 				}
2574 			}
2575 		}
2576 
2577 		if (va_next > eva)
2578 			va_next = eva;
2579 
2580 		for (l3 = pmap_l2_to_l3(l2, sva); sva != va_next; l3++,
2581 		    sva += L3_SIZE) {
2582 			l3e = pmap_load(l3);
2583 retryl3:
2584 			if ((l3e & PTE_V) == 0)
2585 				continue;
2586 			if ((prot & VM_PROT_WRITE) == 0 &&
2587 			    (l3e & (PTE_SW_MANAGED | PTE_D)) ==
2588 			    (PTE_SW_MANAGED | PTE_D)) {
2589 				m = PHYS_TO_VM_PAGE(PTE_TO_PHYS(l3e));
2590 				vm_page_dirty(m);
2591 			}
2592 			if (!atomic_fcmpset_long(l3, &l3e, l3e & ~mask))
2593 				goto retryl3;
2594 			anychanged = true;
2595 		}
2596 	}
2597 	if (anychanged)
2598 		pmap_invalidate_all(pmap);
2599 	if (pv_lists_locked)
2600 		rw_runlock(&pvh_global_lock);
2601 	PMAP_UNLOCK(pmap);
2602 }
2603 
2604 int
2605 pmap_fault(pmap_t pmap, vm_offset_t va, vm_prot_t ftype)
2606 {
2607 	pd_entry_t *l2, l2e;
2608 	pt_entry_t bits, *pte, oldpte;
2609 	int rv;
2610 
2611 	KASSERT(VIRT_IS_VALID(va), ("pmap_fault: invalid va %#lx", va));
2612 
2613 	rv = 0;
2614 	PMAP_LOCK(pmap);
2615 	l2 = pmap_l2(pmap, va);
2616 	if (l2 == NULL || ((l2e = pmap_load(l2)) & PTE_V) == 0)
2617 		goto done;
2618 	if ((l2e & PTE_RWX) == 0) {
2619 		pte = pmap_l2_to_l3(l2, va);
2620 		if (pte == NULL || ((oldpte = pmap_load(pte)) & PTE_V) == 0)
2621 			goto done;
2622 	} else {
2623 		pte = l2;
2624 		oldpte = l2e;
2625 	}
2626 
2627 	if ((pmap != kernel_pmap && (oldpte & PTE_U) == 0) ||
2628 	    (ftype == VM_PROT_WRITE && (oldpte & PTE_W) == 0) ||
2629 	    (ftype == VM_PROT_EXECUTE && (oldpte & PTE_X) == 0) ||
2630 	    (ftype == VM_PROT_READ && (oldpte & PTE_R) == 0))
2631 		goto done;
2632 
2633 	bits = PTE_A;
2634 	if (ftype == VM_PROT_WRITE)
2635 		bits |= PTE_D;
2636 
2637 	/*
2638 	 * Spurious faults can occur if the implementation caches invalid
2639 	 * entries in the TLB, or if simultaneous accesses on multiple CPUs
2640 	 * race with each other.
2641 	 */
2642 	if ((oldpte & bits) != bits)
2643 		pmap_store_bits(pte, bits);
2644 	sfence_vma();
2645 	rv = 1;
2646 done:
2647 	PMAP_UNLOCK(pmap);
2648 	return (rv);
2649 }
2650 
2651 static bool
2652 pmap_demote_l2(pmap_t pmap, pd_entry_t *l2, vm_offset_t va)
2653 {
2654 	struct rwlock *lock;
2655 	bool rv;
2656 
2657 	lock = NULL;
2658 	rv = pmap_demote_l2_locked(pmap, l2, va, &lock);
2659 	if (lock != NULL)
2660 		rw_wunlock(lock);
2661 	return (rv);
2662 }
2663 
2664 /*
2665  * Tries to demote a 2MB page mapping.  If demotion fails, the 2MB page
2666  * mapping is invalidated.
2667  */
2668 static bool
2669 pmap_demote_l2_locked(pmap_t pmap, pd_entry_t *l2, vm_offset_t va,
2670     struct rwlock **lockp)
2671 {
2672 	struct spglist free;
2673 	vm_page_t mpte;
2674 	pd_entry_t newl2, oldl2;
2675 	pt_entry_t *firstl3, newl3;
2676 	vm_paddr_t mptepa;
2677 	int i;
2678 
2679 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2680 
2681 	oldl2 = pmap_load(l2);
2682 	KASSERT((oldl2 & PTE_RWX) != 0,
2683 	    ("pmap_demote_l2_locked: oldl2 is not a leaf entry"));
2684 	if ((oldl2 & PTE_A) == 0 || (mpte = pmap_remove_pt_page(pmap, va)) ==
2685 	    NULL) {
2686 		KASSERT((oldl2 & PTE_SW_WIRED) == 0,
2687 		    ("pmap_demote_l2_locked: page table page for a wired mapping is missing"));
2688 		if ((oldl2 & PTE_A) == 0 || (mpte = vm_page_alloc_noobj(
2689 		    (VIRT_IN_DMAP(va) ? VM_ALLOC_INTERRUPT : 0) |
2690 		    VM_ALLOC_WIRED)) == NULL) {
2691 			SLIST_INIT(&free);
2692 			(void)pmap_remove_l2(pmap, l2, va & ~L2_OFFSET,
2693 			    pmap_load(pmap_l1(pmap, va)), &free, lockp);
2694 			vm_page_free_pages_toq(&free, true);
2695 			CTR2(KTR_PMAP, "pmap_demote_l2_locked: "
2696 			    "failure for va %#lx in pmap %p", va, pmap);
2697 			return (false);
2698 		}
2699 		mpte->pindex = pmap_l2_pindex(va);
2700 		if (va < VM_MAXUSER_ADDRESS) {
2701 			mpte->ref_count = Ln_ENTRIES;
2702 			pmap_resident_count_inc(pmap, 1);
2703 		}
2704 	}
2705 	mptepa = VM_PAGE_TO_PHYS(mpte);
2706 	firstl3 = (pt_entry_t *)PHYS_TO_DMAP(mptepa);
2707 	newl2 = ((mptepa / PAGE_SIZE) << PTE_PPN0_S) | PTE_V;
2708 	KASSERT((oldl2 & PTE_A) != 0,
2709 	    ("pmap_demote_l2_locked: oldl2 is missing PTE_A"));
2710 	KASSERT((oldl2 & (PTE_D | PTE_W)) != PTE_W,
2711 	    ("pmap_demote_l2_locked: oldl2 is missing PTE_D"));
2712 	newl3 = oldl2;
2713 
2714 	/*
2715 	 * If the page table page is not leftover from an earlier promotion,
2716 	 * initialize it.
2717 	 */
2718 	if (!vm_page_all_valid(mpte)) {
2719 		for (i = 0; i < Ln_ENTRIES; i++)
2720 			pmap_store(firstl3 + i, newl3 + (i << PTE_PPN0_S));
2721 	}
2722 	KASSERT(PTE_TO_PHYS(pmap_load(firstl3)) == PTE_TO_PHYS(newl3),
2723 	    ("pmap_demote_l2_locked: firstl3 and newl3 map different physical "
2724 	    "addresses"));
2725 
2726 	/*
2727 	 * If the mapping has changed attributes, update the PTEs.
2728 	 */
2729 	if ((pmap_load(firstl3) & PTE_PROMOTE) != (newl3 & PTE_PROMOTE))
2730 		for (i = 0; i < Ln_ENTRIES; i++)
2731 			pmap_store(firstl3 + i, newl3 + (i << PTE_PPN0_S));
2732 
2733 	/*
2734 	 * The spare PV entries must be reserved prior to demoting the
2735 	 * mapping, that is, prior to changing the L2 entry.  Otherwise, the
2736 	 * state of the L2 entry and the PV lists will be inconsistent, which
2737 	 * can result in reclaim_pv_chunk() attempting to remove a PV entry from
2738 	 * the wrong PV list and pmap_pv_demote_l2() failing to find the
2739 	 * expected PV entry for the 2MB page mapping that is being demoted.
2740 	 */
2741 	if ((oldl2 & PTE_SW_MANAGED) != 0)
2742 		reserve_pv_entries(pmap, Ln_ENTRIES - 1, lockp);
2743 
2744 	/*
2745 	 * Demote the mapping.
2746 	 */
2747 	pmap_store(l2, newl2);
2748 
2749 	/*
2750 	 * Demote the PV entry.
2751 	 */
2752 	if ((oldl2 & PTE_SW_MANAGED) != 0)
2753 		pmap_pv_demote_l2(pmap, va, PTE_TO_PHYS(oldl2), lockp);
2754 
2755 	atomic_add_long(&pmap_l2_demotions, 1);
2756 	CTR2(KTR_PMAP, "pmap_demote_l2_locked: success for va %#lx in pmap %p",
2757 	    va, pmap);
2758 	return (true);
2759 }
2760 
2761 #if VM_NRESERVLEVEL > 0
2762 static bool
2763 pmap_promote_l2(pmap_t pmap, pd_entry_t *l2, vm_offset_t va, vm_page_t ml3,
2764     struct rwlock **lockp)
2765 {
2766 	pt_entry_t all_l3e_PTE_A, *firstl3, firstl3e, *l3, l3e;
2767 	vm_paddr_t pa;
2768 
2769 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2770 	if (!pmap_ps_enabled(pmap))
2771 		return (false);
2772 
2773 	KASSERT((pmap_load(l2) & PTE_RWX) == 0,
2774 	    ("pmap_promote_l2: invalid l2 entry %p", l2));
2775 
2776 	/*
2777 	 * Examine the first L3E in the specified PTP.  Abort if this L3E is
2778 	 * ineligible for promotion or does not map the first 4KB physical page
2779 	 * within a 2MB page.
2780 	 */
2781 	firstl3 = (pt_entry_t *)PHYS_TO_DMAP(PTE_TO_PHYS(pmap_load(l2)));
2782 	firstl3e = pmap_load(firstl3);
2783 	pa = PTE_TO_PHYS(firstl3e);
2784 	if ((pa & L2_OFFSET) != 0) {
2785 		CTR2(KTR_PMAP, "pmap_promote_l2: failure for va %#lx pmap %p",
2786 		    va, pmap);
2787 		atomic_add_long(&pmap_l2_p_failures, 1);
2788 		return (false);
2789 	}
2790 
2791 	/*
2792 	 * Downgrade a clean, writable mapping to read-only to ensure that the
2793 	 * hardware does not set PTE_D while we are comparing PTEs.
2794 	 *
2795 	 * Upon a write access to a clean mapping, the implementation will
2796 	 * either atomically check protections and set PTE_D, or raise a page
2797 	 * fault.  In the latter case, the pmap lock provides atomicity.  Thus,
2798 	 * we do not issue an sfence.vma here and instead rely on pmap_fault()
2799 	 * to do so lazily.
2800 	 */
2801 	while ((firstl3e & (PTE_W | PTE_D)) == PTE_W) {
2802 		if (atomic_fcmpset_64(firstl3, &firstl3e, firstl3e & ~PTE_W)) {
2803 			firstl3e &= ~PTE_W;
2804 			break;
2805 		}
2806 	}
2807 
2808 	/*
2809 	 * Examine each of the other PTEs in the specified PTP.  Abort if this
2810 	 * PTE maps an unexpected 4KB physical page or does not have identical
2811 	 * characteristics to the first PTE.
2812 	 */
2813 	all_l3e_PTE_A = firstl3e & PTE_A;
2814 	pa += L2_SIZE - PAGE_SIZE;
2815 	for (l3 = firstl3 + Ln_ENTRIES - 1; l3 > firstl3; l3--) {
2816 		l3e = pmap_load(l3);
2817 		if (PTE_TO_PHYS(l3e) != pa) {
2818 			CTR2(KTR_PMAP,
2819 			    "pmap_promote_l2: failure for va %#lx pmap %p",
2820 			    va, pmap);
2821 			atomic_add_long(&pmap_l2_p_failures, 1);
2822 			return (false);
2823 		}
2824 		while ((l3e & (PTE_W | PTE_D)) == PTE_W) {
2825 			if (atomic_fcmpset_64(l3, &l3e, l3e & ~PTE_W)) {
2826 				l3e &= ~PTE_W;
2827 				break;
2828 			}
2829 		}
2830 		if ((l3e & PTE_PROMOTE) != (firstl3e & PTE_PROMOTE)) {
2831 			CTR2(KTR_PMAP,
2832 			    "pmap_promote_l2: failure for va %#lx pmap %p",
2833 			    va, pmap);
2834 			atomic_add_long(&pmap_l2_p_failures, 1);
2835 			return (false);
2836 		}
2837 		all_l3e_PTE_A &= l3e;
2838 		pa -= PAGE_SIZE;
2839 	}
2840 
2841 	/*
2842 	 * Unless all PTEs have PTE_A set, clear it from the superpage
2843 	 * mapping, so that promotions triggered by speculative mappings,
2844 	 * such as pmap_enter_quick(), don't automatically mark the
2845 	 * underlying pages as referenced.
2846 	 */
2847 	firstl3e &= ~PTE_A | all_l3e_PTE_A;
2848 
2849 	/*
2850 	 * Save the page table page in its current state until the L2
2851 	 * mapping the superpage is demoted by pmap_demote_l2() or
2852 	 * destroyed by pmap_remove_l3().
2853 	 */
2854 	if (ml3 == NULL)
2855 		ml3 = PHYS_TO_VM_PAGE(PTE_TO_PHYS(pmap_load(l2)));
2856 	KASSERT(ml3->pindex == pmap_l2_pindex(va),
2857 	    ("pmap_promote_l2: page table page's pindex is wrong"));
2858 	if (pmap_insert_pt_page(pmap, ml3, true, all_l3e_PTE_A != 0)) {
2859 		CTR2(KTR_PMAP, "pmap_promote_l2: failure for va %#lx pmap %p",
2860 		    va, pmap);
2861 		atomic_add_long(&pmap_l2_p_failures, 1);
2862 		return (false);
2863 	}
2864 
2865 	if ((firstl3e & PTE_SW_MANAGED) != 0)
2866 		pmap_pv_promote_l2(pmap, va, PTE_TO_PHYS(firstl3e), lockp);
2867 
2868 	pmap_store(l2, firstl3e);
2869 
2870 	atomic_add_long(&pmap_l2_promotions, 1);
2871 	CTR2(KTR_PMAP, "pmap_promote_l2: success for va %#lx in pmap %p", va,
2872 	    pmap);
2873 	return (true);
2874 }
2875 #endif
2876 
2877 /*
2878  *	Insert the given physical page (p) at
2879  *	the specified virtual address (v) in the
2880  *	target physical map with the protection requested.
2881  *
2882  *	If specified, the page will be wired down, meaning
2883  *	that the related pte can not be reclaimed.
2884  *
2885  *	NB:  This is the only routine which MAY NOT lazy-evaluate
2886  *	or lose information.  That is, this routine must actually
2887  *	insert this page into the given map NOW.
2888  */
2889 int
2890 pmap_enter(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
2891     u_int flags, int8_t psind)
2892 {
2893 	struct rwlock *lock;
2894 	pd_entry_t *l1, *l2, l2e;
2895 	pt_entry_t new_l3, orig_l3;
2896 	pt_entry_t *l3;
2897 	pv_entry_t pv;
2898 	vm_paddr_t opa, pa, l2_pa, l3_pa;
2899 	vm_page_t mpte, om, l2_m, l3_m;
2900 	pt_entry_t entry;
2901 	pn_t l2_pn, l3_pn, pn;
2902 	int rv;
2903 	bool nosleep;
2904 
2905 	va = trunc_page(va);
2906 	if ((m->oflags & VPO_UNMANAGED) == 0)
2907 		VM_PAGE_OBJECT_BUSY_ASSERT(m);
2908 	pa = VM_PAGE_TO_PHYS(m);
2909 	pn = (pa / PAGE_SIZE);
2910 
2911 	new_l3 = PTE_V | PTE_R | PTE_A;
2912 	if (prot & VM_PROT_EXECUTE)
2913 		new_l3 |= PTE_X;
2914 	if (flags & VM_PROT_WRITE)
2915 		new_l3 |= PTE_D;
2916 	if (prot & VM_PROT_WRITE)
2917 		new_l3 |= PTE_W;
2918 	if (va < VM_MAX_USER_ADDRESS)
2919 		new_l3 |= PTE_U;
2920 
2921 	new_l3 |= (pn << PTE_PPN0_S);
2922 	if ((flags & PMAP_ENTER_WIRED) != 0)
2923 		new_l3 |= PTE_SW_WIRED;
2924 
2925 	/*
2926 	 * Set modified bit gratuitously for writeable mappings if
2927 	 * the page is unmanaged. We do not want to take a fault
2928 	 * to do the dirty bit accounting for these mappings.
2929 	 */
2930 	if ((m->oflags & VPO_UNMANAGED) != 0) {
2931 		if (prot & VM_PROT_WRITE)
2932 			new_l3 |= PTE_D;
2933 	} else
2934 		new_l3 |= PTE_SW_MANAGED;
2935 
2936 	CTR2(KTR_PMAP, "pmap_enter: %.16lx -> %.16lx", va, pa);
2937 
2938 	lock = NULL;
2939 	mpte = NULL;
2940 	rw_rlock(&pvh_global_lock);
2941 	PMAP_LOCK(pmap);
2942 	if (psind == 1) {
2943 		/* Assert the required virtual and physical alignment. */
2944 		KASSERT((va & L2_OFFSET) == 0,
2945 		    ("pmap_enter: va %#lx unaligned", va));
2946 		KASSERT(m->psind > 0, ("pmap_enter: m->psind < psind"));
2947 		rv = pmap_enter_l2(pmap, va, new_l3, flags, m, &lock);
2948 		goto out;
2949 	}
2950 
2951 	l2 = pmap_l2(pmap, va);
2952 	if (l2 != NULL && ((l2e = pmap_load(l2)) & PTE_V) != 0 &&
2953 	    ((l2e & PTE_RWX) == 0 || pmap_demote_l2_locked(pmap, l2,
2954 	    va, &lock))) {
2955 		l3 = pmap_l2_to_l3(l2, va);
2956 		if (va < VM_MAXUSER_ADDRESS) {
2957 			mpte = PHYS_TO_VM_PAGE(PTE_TO_PHYS(pmap_load(l2)));
2958 			mpte->ref_count++;
2959 		}
2960 	} else if (va < VM_MAXUSER_ADDRESS) {
2961 		nosleep = (flags & PMAP_ENTER_NOSLEEP) != 0;
2962 		mpte = pmap_alloc_l3(pmap, va, nosleep ? NULL : &lock);
2963 		if (mpte == NULL && nosleep) {
2964 			CTR0(KTR_PMAP, "pmap_enter: mpte == NULL");
2965 			if (lock != NULL)
2966 				rw_wunlock(lock);
2967 			rw_runlock(&pvh_global_lock);
2968 			PMAP_UNLOCK(pmap);
2969 			return (KERN_RESOURCE_SHORTAGE);
2970 		}
2971 		l3 = pmap_l3(pmap, va);
2972 	} else {
2973 		l3 = pmap_l3(pmap, va);
2974 		/* TODO: This is not optimal, but should mostly work */
2975 		if (l3 == NULL) {
2976 			if (l2 == NULL) {
2977 				l2_m = vm_page_alloc_noobj(VM_ALLOC_WIRED |
2978 				    VM_ALLOC_ZERO);
2979 				if (l2_m == NULL)
2980 					panic("pmap_enter: l2 pte_m == NULL");
2981 
2982 				l2_pa = VM_PAGE_TO_PHYS(l2_m);
2983 				l2_pn = (l2_pa / PAGE_SIZE);
2984 
2985 				l1 = pmap_l1(pmap, va);
2986 				entry = (PTE_V);
2987 				entry |= (l2_pn << PTE_PPN0_S);
2988 				pmap_store(l1, entry);
2989 				pmap_distribute_l1(pmap, pmap_l1_index(va), entry);
2990 				l2 = pmap_l1_to_l2(l1, va);
2991 			}
2992 
2993 			l3_m = vm_page_alloc_noobj(VM_ALLOC_WIRED |
2994 			    VM_ALLOC_ZERO);
2995 			if (l3_m == NULL)
2996 				panic("pmap_enter: l3 pte_m == NULL");
2997 
2998 			l3_pa = VM_PAGE_TO_PHYS(l3_m);
2999 			l3_pn = (l3_pa / PAGE_SIZE);
3000 			entry = (PTE_V);
3001 			entry |= (l3_pn << PTE_PPN0_S);
3002 			pmap_store(l2, entry);
3003 			l3 = pmap_l2_to_l3(l2, va);
3004 		}
3005 		pmap_invalidate_page(pmap, va);
3006 	}
3007 
3008 	orig_l3 = pmap_load(l3);
3009 	opa = PTE_TO_PHYS(orig_l3);
3010 	pv = NULL;
3011 
3012 	/*
3013 	 * Is the specified virtual address already mapped?
3014 	 */
3015 	if ((orig_l3 & PTE_V) != 0) {
3016 		/*
3017 		 * Wiring change, just update stats. We don't worry about
3018 		 * wiring PT pages as they remain resident as long as there
3019 		 * are valid mappings in them. Hence, if a user page is wired,
3020 		 * the PT page will be also.
3021 		 */
3022 		if ((flags & PMAP_ENTER_WIRED) != 0 &&
3023 		    (orig_l3 & PTE_SW_WIRED) == 0)
3024 			pmap->pm_stats.wired_count++;
3025 		else if ((flags & PMAP_ENTER_WIRED) == 0 &&
3026 		    (orig_l3 & PTE_SW_WIRED) != 0)
3027 			pmap->pm_stats.wired_count--;
3028 
3029 		/*
3030 		 * Remove the extra PT page reference.
3031 		 */
3032 		if (mpte != NULL) {
3033 			mpte->ref_count--;
3034 			KASSERT(mpte->ref_count > 0,
3035 			    ("pmap_enter: missing reference to page table page,"
3036 			     " va: 0x%lx", va));
3037 		}
3038 
3039 		/*
3040 		 * Has the physical page changed?
3041 		 */
3042 		if (opa == pa) {
3043 			/*
3044 			 * No, might be a protection or wiring change.
3045 			 */
3046 			if ((orig_l3 & PTE_SW_MANAGED) != 0 &&
3047 			    (new_l3 & PTE_W) != 0)
3048 				vm_page_aflag_set(m, PGA_WRITEABLE);
3049 			goto validate;
3050 		}
3051 
3052 		/*
3053 		 * The physical page has changed.  Temporarily invalidate
3054 		 * the mapping.  This ensures that all threads sharing the
3055 		 * pmap keep a consistent view of the mapping, which is
3056 		 * necessary for the correct handling of COW faults.  It
3057 		 * also permits reuse of the old mapping's PV entry,
3058 		 * avoiding an allocation.
3059 		 *
3060 		 * For consistency, handle unmanaged mappings the same way.
3061 		 */
3062 		orig_l3 = pmap_load_clear(l3);
3063 		KASSERT(PTE_TO_PHYS(orig_l3) == opa,
3064 		    ("pmap_enter: unexpected pa update for %#lx", va));
3065 		if ((orig_l3 & PTE_SW_MANAGED) != 0) {
3066 			om = PHYS_TO_VM_PAGE(opa);
3067 
3068 			/*
3069 			 * The pmap lock is sufficient to synchronize with
3070 			 * concurrent calls to pmap_page_test_mappings() and
3071 			 * pmap_ts_referenced().
3072 			 */
3073 			if ((orig_l3 & PTE_D) != 0)
3074 				vm_page_dirty(om);
3075 			if ((orig_l3 & PTE_A) != 0)
3076 				vm_page_aflag_set(om, PGA_REFERENCED);
3077 			CHANGE_PV_LIST_LOCK_TO_PHYS(&lock, opa);
3078 			pv = pmap_pvh_remove(&om->md, pmap, va);
3079 			KASSERT(pv != NULL,
3080 			    ("pmap_enter: no PV entry for %#lx", va));
3081 			if ((new_l3 & PTE_SW_MANAGED) == 0)
3082 				free_pv_entry(pmap, pv);
3083 			if ((om->a.flags & PGA_WRITEABLE) != 0 &&
3084 			    TAILQ_EMPTY(&om->md.pv_list) &&
3085 			    ((om->flags & PG_FICTITIOUS) != 0 ||
3086 			    TAILQ_EMPTY(&pa_to_pvh(opa)->pv_list)))
3087 				vm_page_aflag_clear(om, PGA_WRITEABLE);
3088 		}
3089 		pmap_invalidate_page(pmap, va);
3090 		orig_l3 = 0;
3091 	} else {
3092 		/*
3093 		 * Increment the counters.
3094 		 */
3095 		if ((new_l3 & PTE_SW_WIRED) != 0)
3096 			pmap->pm_stats.wired_count++;
3097 		pmap_resident_count_inc(pmap, 1);
3098 	}
3099 	/*
3100 	 * Enter on the PV list if part of our managed memory.
3101 	 */
3102 	if ((new_l3 & PTE_SW_MANAGED) != 0) {
3103 		if (pv == NULL) {
3104 			pv = get_pv_entry(pmap, &lock);
3105 			pv->pv_va = va;
3106 		}
3107 		CHANGE_PV_LIST_LOCK_TO_PHYS(&lock, pa);
3108 		TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
3109 		m->md.pv_gen++;
3110 		if ((new_l3 & PTE_W) != 0)
3111 			vm_page_aflag_set(m, PGA_WRITEABLE);
3112 	}
3113 
3114 validate:
3115 	/*
3116 	 * Sync the i-cache on all harts before updating the PTE
3117 	 * if the new PTE is executable.
3118 	 */
3119 	if (prot & VM_PROT_EXECUTE)
3120 		pmap_sync_icache(pmap, va, PAGE_SIZE);
3121 
3122 	/*
3123 	 * Update the L3 entry.
3124 	 */
3125 	if (orig_l3 != 0) {
3126 		orig_l3 = pmap_load_store(l3, new_l3);
3127 		pmap_invalidate_page(pmap, va);
3128 		KASSERT(PTE_TO_PHYS(orig_l3) == pa,
3129 		    ("pmap_enter: invalid update"));
3130 		if ((orig_l3 & (PTE_D | PTE_SW_MANAGED)) ==
3131 		    (PTE_D | PTE_SW_MANAGED))
3132 			vm_page_dirty(m);
3133 	} else {
3134 		pmap_store(l3, new_l3);
3135 	}
3136 
3137 #if VM_NRESERVLEVEL > 0
3138 	if (mpte != NULL && mpte->ref_count == Ln_ENTRIES &&
3139 	    (m->flags & PG_FICTITIOUS) == 0 &&
3140 	    vm_reserv_level_iffullpop(m) == 0)
3141 		(void)pmap_promote_l2(pmap, l2, va, mpte, &lock);
3142 #endif
3143 
3144 	rv = KERN_SUCCESS;
3145 out:
3146 	if (lock != NULL)
3147 		rw_wunlock(lock);
3148 	rw_runlock(&pvh_global_lock);
3149 	PMAP_UNLOCK(pmap);
3150 	return (rv);
3151 }
3152 
3153 /*
3154  * Tries to create a read- and/or execute-only 2MB page mapping.  Returns
3155  * KERN_SUCCESS if the mapping was created.  Otherwise, returns an error
3156  * value.  See pmap_enter_l2() for the possible error values when "no sleep",
3157  * "no replace", and "no reclaim" are specified.
3158  */
3159 static int
3160 pmap_enter_2mpage(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
3161     struct rwlock **lockp)
3162 {
3163 	pd_entry_t new_l2;
3164 	pn_t pn;
3165 
3166 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3167 
3168 	pn = VM_PAGE_TO_PHYS(m) / PAGE_SIZE;
3169 	new_l2 = (pd_entry_t)((pn << PTE_PPN0_S) | PTE_R | PTE_V);
3170 	if ((m->oflags & VPO_UNMANAGED) == 0)
3171 		new_l2 |= PTE_SW_MANAGED;
3172 	if ((prot & VM_PROT_EXECUTE) != 0)
3173 		new_l2 |= PTE_X;
3174 	if (va < VM_MAXUSER_ADDRESS)
3175 		new_l2 |= PTE_U;
3176 	return (pmap_enter_l2(pmap, va, new_l2, PMAP_ENTER_NOSLEEP |
3177 	    PMAP_ENTER_NOREPLACE | PMAP_ENTER_NORECLAIM, NULL, lockp));
3178 }
3179 
3180 /*
3181  * Returns true if every page table entry in the specified page table is
3182  * zero.
3183  */
3184 static bool
3185 pmap_every_pte_zero(vm_paddr_t pa)
3186 {
3187 	pt_entry_t *pt_end, *pte;
3188 
3189 	KASSERT((pa & PAGE_MASK) == 0, ("pa is misaligned"));
3190 	pte = (pt_entry_t *)PHYS_TO_DMAP(pa);
3191 	for (pt_end = pte + Ln_ENTRIES; pte < pt_end; pte++) {
3192 		if (*pte != 0)
3193 			return (false);
3194 	}
3195 	return (true);
3196 }
3197 
3198 /*
3199  * Tries to create the specified 2MB page mapping.  Returns KERN_SUCCESS if
3200  * the mapping was created, and one of KERN_FAILURE, KERN_NO_SPACE, or
3201  * KERN_RESOURCE_SHORTAGE otherwise.  Returns KERN_FAILURE if
3202  * PMAP_ENTER_NOREPLACE was specified and a 4KB page mapping already exists
3203  * within the 2MB virtual address range starting at the specified virtual
3204  * address.  Returns KERN_NO_SPACE if PMAP_ENTER_NOREPLACE was specified and a
3205  * 2MB page mapping already exists at the specified virtual address.  Returns
3206  * KERN_RESOURCE_SHORTAGE if either (1) PMAP_ENTER_NOSLEEP was specified and a
3207  * page table page allocation failed or (2) PMAP_ENTER_NORECLAIM was specified
3208  * and a PV entry allocation failed.
3209  *
3210  * The parameter "m" is only used when creating a managed, writeable mapping.
3211  */
3212 static int
3213 pmap_enter_l2(pmap_t pmap, vm_offset_t va, pd_entry_t new_l2, u_int flags,
3214     vm_page_t m, struct rwlock **lockp)
3215 {
3216 	struct spglist free;
3217 	pd_entry_t *l2, *l3, oldl2;
3218 	vm_offset_t sva;
3219 	vm_page_t l2pg, mt;
3220 	vm_page_t uwptpg;
3221 
3222 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3223 
3224 	if ((l2pg = pmap_alloc_l2(pmap, va, (flags & PMAP_ENTER_NOSLEEP) != 0 ?
3225 	    NULL : lockp)) == NULL) {
3226 		CTR2(KTR_PMAP, "pmap_enter_l2: failed to allocate PT page"
3227 		    " for va %#lx in pmap %p", va, pmap);
3228 		return (KERN_RESOURCE_SHORTAGE);
3229 	}
3230 
3231 	l2 = (pd_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(l2pg));
3232 	l2 = &l2[pmap_l2_index(va)];
3233 	if ((oldl2 = pmap_load(l2)) != 0) {
3234 		KASSERT(l2pg->ref_count > 1,
3235 		    ("pmap_enter_l2: l2pg's ref count is too low"));
3236 		if ((flags & PMAP_ENTER_NOREPLACE) != 0) {
3237 			if ((oldl2 & PTE_RWX) != 0) {
3238 				l2pg->ref_count--;
3239 				CTR2(KTR_PMAP,
3240 				    "pmap_enter_l2: no space for va %#lx"
3241 				    " in pmap %p", va, pmap);
3242 				return (KERN_NO_SPACE);
3243 			} else if (va < VM_MAXUSER_ADDRESS ||
3244 			    !pmap_every_pte_zero(L2PTE_TO_PHYS(oldl2))) {
3245 				l2pg->ref_count--;
3246 				CTR2(KTR_PMAP, "pmap_enter_l2:"
3247 				    " failed to replace existing mapping"
3248 				    " for va %#lx in pmap %p", va, pmap);
3249 				return (KERN_FAILURE);
3250 			}
3251 		}
3252 		SLIST_INIT(&free);
3253 		if ((oldl2 & PTE_RWX) != 0)
3254 			(void)pmap_remove_l2(pmap, l2, va,
3255 			    pmap_load(pmap_l1(pmap, va)), &free, lockp);
3256 		else
3257 			for (sva = va; sva < va + L2_SIZE; sva += PAGE_SIZE) {
3258 				l3 = pmap_l2_to_l3(l2, sva);
3259 				if ((pmap_load(l3) & PTE_V) != 0 &&
3260 				    pmap_remove_l3(pmap, l3, sva, oldl2, &free,
3261 				    lockp) != 0)
3262 					break;
3263 			}
3264 		vm_page_free_pages_toq(&free, true);
3265 		if (va >= VM_MAXUSER_ADDRESS) {
3266 			/*
3267 			 * Both pmap_remove_l2() and pmap_remove_l3() will
3268 			 * leave the kernel page table page zero filled.
3269 			 */
3270 			mt = PHYS_TO_VM_PAGE(PTE_TO_PHYS(pmap_load(l2)));
3271 			if (pmap_insert_pt_page(pmap, mt, false, false))
3272 				panic("pmap_enter_l2: trie insert failed");
3273 		} else
3274 			KASSERT(pmap_load(l2) == 0,
3275 			    ("pmap_enter_l2: non-zero L2 entry %p", l2));
3276 	}
3277 
3278 	/*
3279 	 * Allocate leaf ptpage for wired userspace pages.
3280 	 */
3281 	uwptpg = NULL;
3282 	if ((new_l2 & PTE_SW_WIRED) != 0 && pmap != kernel_pmap) {
3283 		uwptpg = vm_page_alloc_noobj(VM_ALLOC_WIRED);
3284 		if (uwptpg == NULL) {
3285 			return (KERN_RESOURCE_SHORTAGE);
3286 		}
3287 		uwptpg->pindex = pmap_l2_pindex(va);
3288 		if (pmap_insert_pt_page(pmap, uwptpg, true, false)) {
3289 			vm_page_unwire_noq(uwptpg);
3290 			vm_page_free(uwptpg);
3291 			return (KERN_RESOURCE_SHORTAGE);
3292 		}
3293 		pmap_resident_count_inc(pmap, 1);
3294 		uwptpg->ref_count = Ln_ENTRIES;
3295 	}
3296 	if ((new_l2 & PTE_SW_MANAGED) != 0) {
3297 		/*
3298 		 * Abort this mapping if its PV entry could not be created.
3299 		 */
3300 		if (!pmap_pv_insert_l2(pmap, va, new_l2, flags, lockp)) {
3301 			SLIST_INIT(&free);
3302 			if (pmap_unwire_ptp(pmap, va, l2pg, &free)) {
3303 				/*
3304 				 * Although "va" is not mapped, paging-structure
3305 				 * caches could nonetheless have entries that
3306 				 * refer to the freed page table pages.
3307 				 * Invalidate those entries.
3308 				 */
3309 				pmap_invalidate_page(pmap, va);
3310 				vm_page_free_pages_toq(&free, true);
3311 			}
3312 			if (uwptpg != NULL) {
3313 				mt = pmap_remove_pt_page(pmap, va);
3314 				KASSERT(mt == uwptpg,
3315 				    ("removed pt page %p, expected %p", mt,
3316 				    uwptpg));
3317 				pmap_resident_count_dec(pmap, 1);
3318 				uwptpg->ref_count = 1;
3319 				vm_page_unwire_noq(uwptpg);
3320 				vm_page_free(uwptpg);
3321 			}
3322 			CTR2(KTR_PMAP,
3323 			    "pmap_enter_l2: failed to create PV entry"
3324 			    " for va %#lx in pmap %p", va, pmap);
3325 			return (KERN_RESOURCE_SHORTAGE);
3326 		}
3327 		if ((new_l2 & PTE_W) != 0)
3328 			for (mt = m; mt < &m[L2_SIZE / PAGE_SIZE]; mt++)
3329 				vm_page_aflag_set(mt, PGA_WRITEABLE);
3330 	}
3331 
3332 	/*
3333 	 * Increment counters.
3334 	 */
3335 	if ((new_l2 & PTE_SW_WIRED) != 0)
3336 		pmap->pm_stats.wired_count += L2_SIZE / PAGE_SIZE;
3337 	pmap->pm_stats.resident_count += L2_SIZE / PAGE_SIZE;
3338 
3339 	/*
3340 	 * Map the superpage.
3341 	 */
3342 	pmap_store(l2, new_l2);
3343 
3344 	atomic_add_long(&pmap_l2_mappings, 1);
3345 	CTR2(KTR_PMAP, "pmap_enter_l2: success for va %#lx in pmap %p",
3346 	    va, pmap);
3347 
3348 	return (KERN_SUCCESS);
3349 }
3350 
3351 /*
3352  * Maps a sequence of resident pages belonging to the same object.
3353  * The sequence begins with the given page m_start.  This page is
3354  * mapped at the given virtual address start.  Each subsequent page is
3355  * mapped at a virtual address that is offset from start by the same
3356  * amount as the page is offset from m_start within the object.  The
3357  * last page in the sequence is the page with the largest offset from
3358  * m_start that can be mapped at a virtual address less than the given
3359  * virtual address end.  Not every virtual page between start and end
3360  * is mapped; only those for which a resident page exists with the
3361  * corresponding offset from m_start are mapped.
3362  */
3363 void
3364 pmap_enter_object(pmap_t pmap, vm_offset_t start, vm_offset_t end,
3365     vm_page_t m_start, vm_prot_t prot)
3366 {
3367 	struct rwlock *lock;
3368 	vm_offset_t va;
3369 	vm_page_t m, mpte;
3370 	vm_pindex_t diff, psize;
3371 	int rv;
3372 
3373 	VM_OBJECT_ASSERT_LOCKED(m_start->object);
3374 
3375 	psize = atop(end - start);
3376 	mpte = NULL;
3377 	m = m_start;
3378 	lock = NULL;
3379 	rw_rlock(&pvh_global_lock);
3380 	PMAP_LOCK(pmap);
3381 	while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
3382 		va = start + ptoa(diff);
3383 		if ((va & L2_OFFSET) == 0 && va + L2_SIZE <= end &&
3384 		    m->psind == 1 && pmap_ps_enabled(pmap) &&
3385 		    ((rv = pmap_enter_2mpage(pmap, va, m, prot, &lock)) ==
3386 		    KERN_SUCCESS || rv == KERN_NO_SPACE))
3387 			m = &m[L2_SIZE / PAGE_SIZE - 1];
3388 		else
3389 			mpte = pmap_enter_quick_locked(pmap, va, m, prot, mpte,
3390 			    &lock);
3391 		m = TAILQ_NEXT(m, listq);
3392 	}
3393 	if (lock != NULL)
3394 		rw_wunlock(lock);
3395 	rw_runlock(&pvh_global_lock);
3396 	PMAP_UNLOCK(pmap);
3397 }
3398 
3399 /*
3400  * this code makes some *MAJOR* assumptions:
3401  * 1. Current pmap & pmap exists.
3402  * 2. Not wired.
3403  * 3. Read access.
3404  * 4. No page table pages.
3405  * but is *MUCH* faster than pmap_enter...
3406  */
3407 
3408 void
3409 pmap_enter_quick(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot)
3410 {
3411 	struct rwlock *lock;
3412 
3413 	lock = NULL;
3414 	rw_rlock(&pvh_global_lock);
3415 	PMAP_LOCK(pmap);
3416 	(void)pmap_enter_quick_locked(pmap, va, m, prot, NULL, &lock);
3417 	if (lock != NULL)
3418 		rw_wunlock(lock);
3419 	rw_runlock(&pvh_global_lock);
3420 	PMAP_UNLOCK(pmap);
3421 }
3422 
3423 static vm_page_t
3424 pmap_enter_quick_locked(pmap_t pmap, vm_offset_t va, vm_page_t m,
3425     vm_prot_t prot, vm_page_t mpte, struct rwlock **lockp)
3426 {
3427 	struct spglist free;
3428 	vm_paddr_t phys;
3429 	pd_entry_t *l2;
3430 	pt_entry_t *l3, newl3;
3431 
3432 	KASSERT(!VA_IS_CLEANMAP(va) ||
3433 	    (m->oflags & VPO_UNMANAGED) != 0,
3434 	    ("pmap_enter_quick_locked: managed mapping within the clean submap"));
3435 	rw_assert(&pvh_global_lock, RA_LOCKED);
3436 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3437 	l2 = NULL;
3438 
3439 	CTR2(KTR_PMAP, "pmap_enter_quick_locked: %p %lx", pmap, va);
3440 	/*
3441 	 * In the case that a page table page is not
3442 	 * resident, we are creating it here.
3443 	 */
3444 	if (va < VM_MAXUSER_ADDRESS) {
3445 		vm_pindex_t l2pindex;
3446 
3447 		/*
3448 		 * Calculate pagetable page index
3449 		 */
3450 		l2pindex = pmap_l2_pindex(va);
3451 		if (mpte && (mpte->pindex == l2pindex)) {
3452 			mpte->ref_count++;
3453 		} else {
3454 			/*
3455 			 * Get the l2 entry
3456 			 */
3457 			l2 = pmap_l2(pmap, va);
3458 
3459 			/*
3460 			 * If the page table page is mapped, we just increment
3461 			 * the hold count, and activate it.  Otherwise, we
3462 			 * attempt to allocate a page table page.  If this
3463 			 * attempt fails, we don't retry.  Instead, we give up.
3464 			 */
3465 			if (l2 != NULL && pmap_load(l2) != 0) {
3466 				if ((pmap_load(l2) & PTE_RWX) != 0)
3467 					return (NULL);
3468 				phys = PTE_TO_PHYS(pmap_load(l2));
3469 				mpte = PHYS_TO_VM_PAGE(phys);
3470 				mpte->ref_count++;
3471 			} else {
3472 				/*
3473 				 * Pass NULL instead of the PV list lock
3474 				 * pointer, because we don't intend to sleep.
3475 				 */
3476 				mpte = _pmap_alloc_l3(pmap, l2pindex, NULL);
3477 				if (mpte == NULL)
3478 					return (mpte);
3479 			}
3480 		}
3481 		l3 = (pt_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(mpte));
3482 		l3 = &l3[pmap_l3_index(va)];
3483 	} else {
3484 		mpte = NULL;
3485 		l3 = pmap_l3(kernel_pmap, va);
3486 	}
3487 	if (l3 == NULL)
3488 		panic("pmap_enter_quick_locked: No l3");
3489 	if (pmap_load(l3) != 0) {
3490 		if (mpte != NULL)
3491 			mpte->ref_count--;
3492 		return (NULL);
3493 	}
3494 
3495 	/*
3496 	 * Enter on the PV list if part of our managed memory.
3497 	 */
3498 	if ((m->oflags & VPO_UNMANAGED) == 0 &&
3499 	    !pmap_try_insert_pv_entry(pmap, va, m, lockp)) {
3500 		if (mpte != NULL) {
3501 			SLIST_INIT(&free);
3502 			if (pmap_unwire_ptp(pmap, va, mpte, &free))
3503 				vm_page_free_pages_toq(&free, false);
3504 		}
3505 		return (NULL);
3506 	}
3507 
3508 	/*
3509 	 * Increment counters
3510 	 */
3511 	pmap_resident_count_inc(pmap, 1);
3512 
3513 	newl3 = ((VM_PAGE_TO_PHYS(m) / PAGE_SIZE) << PTE_PPN0_S) |
3514 	    PTE_V | PTE_R;
3515 	if ((prot & VM_PROT_EXECUTE) != 0)
3516 		newl3 |= PTE_X;
3517 	if ((m->oflags & VPO_UNMANAGED) == 0)
3518 		newl3 |= PTE_SW_MANAGED;
3519 	if (va < VM_MAX_USER_ADDRESS)
3520 		newl3 |= PTE_U;
3521 
3522 	/*
3523 	 * Sync the i-cache on all harts before updating the PTE
3524 	 * if the new PTE is executable.
3525 	 */
3526 	if (prot & VM_PROT_EXECUTE)
3527 		pmap_sync_icache(pmap, va, PAGE_SIZE);
3528 
3529 	pmap_store(l3, newl3);
3530 
3531 #if VM_NRESERVLEVEL > 0
3532 	/*
3533 	 * If both the PTP and the reservation are fully populated, then attempt
3534 	 * promotion.
3535 	 */
3536 	if ((mpte == NULL || mpte->ref_count == Ln_ENTRIES) &&
3537 	    (m->flags & PG_FICTITIOUS) == 0 &&
3538 	    vm_reserv_level_iffullpop(m) == 0) {
3539 		if (l2 == NULL)
3540 			l2 = pmap_l2(pmap, va);
3541 
3542 		/*
3543 		 * If promotion succeeds, then the next call to this function
3544 		 * should not be given the unmapped PTP as a hint.
3545 		 */
3546 		if (pmap_promote_l2(pmap, l2, va, mpte, lockp))
3547 			mpte = NULL;
3548 	}
3549 #endif
3550 
3551 	return (mpte);
3552 }
3553 
3554 /*
3555  * This code maps large physical mmap regions into the
3556  * processor address space.  Note that some shortcuts
3557  * are taken, but the code works.
3558  */
3559 void
3560 pmap_object_init_pt(pmap_t pmap, vm_offset_t addr, vm_object_t object,
3561     vm_pindex_t pindex, vm_size_t size)
3562 {
3563 
3564 	VM_OBJECT_ASSERT_WLOCKED(object);
3565 	KASSERT(object->type == OBJT_DEVICE || object->type == OBJT_SG,
3566 	    ("pmap_object_init_pt: non-device object"));
3567 }
3568 
3569 /*
3570  *	Clear the wired attribute from the mappings for the specified range of
3571  *	addresses in the given pmap.  Every valid mapping within that range
3572  *	must have the wired attribute set.  In contrast, invalid mappings
3573  *	cannot have the wired attribute set, so they are ignored.
3574  *
3575  *	The wired attribute of the page table entry is not a hardware feature,
3576  *	so there is no need to invalidate any TLB entries.
3577  */
3578 void
3579 pmap_unwire(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
3580 {
3581 	vm_offset_t va_next;
3582 	pd_entry_t *l0, *l1, *l2, l2e;
3583 	pt_entry_t *l3, l3e;
3584 	bool pv_lists_locked;
3585 
3586 	pv_lists_locked = false;
3587 retry:
3588 	PMAP_LOCK(pmap);
3589 	for (; sva < eva; sva = va_next) {
3590 		if (pmap_mode == PMAP_MODE_SV48) {
3591 			l0 = pmap_l0(pmap, sva);
3592 			if (pmap_load(l0) == 0) {
3593 				va_next = (sva + L0_SIZE) & ~L0_OFFSET;
3594 				if (va_next < sva)
3595 					va_next = eva;
3596 				continue;
3597 			}
3598 			l1 = pmap_l0_to_l1(l0, sva);
3599 		} else {
3600 			l1 = pmap_l1(pmap, sva);
3601 		}
3602 
3603 		if (pmap_load(l1) == 0) {
3604 			va_next = (sva + L1_SIZE) & ~L1_OFFSET;
3605 			if (va_next < sva)
3606 				va_next = eva;
3607 			continue;
3608 		}
3609 
3610 		va_next = (sva + L2_SIZE) & ~L2_OFFSET;
3611 		if (va_next < sva)
3612 			va_next = eva;
3613 
3614 		l2 = pmap_l1_to_l2(l1, sva);
3615 		if ((l2e = pmap_load(l2)) == 0)
3616 			continue;
3617 		if ((l2e & PTE_RWX) != 0) {
3618 			if (sva + L2_SIZE == va_next && eva >= va_next) {
3619 				if ((l2e & PTE_SW_WIRED) == 0)
3620 					panic("pmap_unwire: l2 %#jx is missing "
3621 					    "PTE_SW_WIRED", (uintmax_t)l2e);
3622 				pmap_clear_bits(l2, PTE_SW_WIRED);
3623 				continue;
3624 			} else {
3625 				if (!pv_lists_locked) {
3626 					pv_lists_locked = true;
3627 					if (!rw_try_rlock(&pvh_global_lock)) {
3628 						PMAP_UNLOCK(pmap);
3629 						rw_rlock(&pvh_global_lock);
3630 						/* Repeat sva. */
3631 						goto retry;
3632 					}
3633 				}
3634 				if (!pmap_demote_l2(pmap, l2, sva))
3635 					panic("pmap_unwire: demotion failed");
3636 			}
3637 		}
3638 
3639 		if (va_next > eva)
3640 			va_next = eva;
3641 		for (l3 = pmap_l2_to_l3(l2, sva); sva != va_next; l3++,
3642 		    sva += L3_SIZE) {
3643 			if ((l3e = pmap_load(l3)) == 0)
3644 				continue;
3645 			if ((l3e & PTE_SW_WIRED) == 0)
3646 				panic("pmap_unwire: l3 %#jx is missing "
3647 				    "PTE_SW_WIRED", (uintmax_t)l3e);
3648 
3649 			/*
3650 			 * PG_W must be cleared atomically.  Although the pmap
3651 			 * lock synchronizes access to PG_W, another processor
3652 			 * could be setting PG_M and/or PG_A concurrently.
3653 			 */
3654 			pmap_clear_bits(l3, PTE_SW_WIRED);
3655 			pmap->pm_stats.wired_count--;
3656 		}
3657 	}
3658 	if (pv_lists_locked)
3659 		rw_runlock(&pvh_global_lock);
3660 	PMAP_UNLOCK(pmap);
3661 }
3662 
3663 /*
3664  *	Copy the range specified by src_addr/len
3665  *	from the source map to the range dst_addr/len
3666  *	in the destination map.
3667  *
3668  *	This routine is only advisory and need not do anything.
3669  */
3670 
3671 void
3672 pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr, vm_size_t len,
3673     vm_offset_t src_addr)
3674 {
3675 
3676 }
3677 
3678 /*
3679  *	pmap_zero_page zeros the specified hardware page by mapping
3680  *	the page into KVM and using bzero to clear its contents.
3681  */
3682 void
3683 pmap_zero_page(vm_page_t m)
3684 {
3685 	vm_offset_t va = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m));
3686 
3687 	pagezero((void *)va);
3688 }
3689 
3690 /*
3691  *	pmap_zero_page_area zeros the specified hardware page by mapping
3692  *	the page into KVM and using bzero to clear its contents.
3693  *
3694  *	off and size may not cover an area beyond a single hardware page.
3695  */
3696 void
3697 pmap_zero_page_area(vm_page_t m, int off, int size)
3698 {
3699 	vm_offset_t va = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m));
3700 
3701 	if (off == 0 && size == PAGE_SIZE)
3702 		pagezero((void *)va);
3703 	else
3704 		bzero((char *)va + off, size);
3705 }
3706 
3707 /*
3708  *	pmap_copy_page copies the specified (machine independent)
3709  *	page by mapping the page into virtual memory and using
3710  *	bcopy to copy the page, one machine dependent page at a
3711  *	time.
3712  */
3713 void
3714 pmap_copy_page(vm_page_t msrc, vm_page_t mdst)
3715 {
3716 	vm_offset_t src = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(msrc));
3717 	vm_offset_t dst = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(mdst));
3718 
3719 	pagecopy((void *)src, (void *)dst);
3720 }
3721 
3722 int unmapped_buf_allowed = 1;
3723 
3724 void
3725 pmap_copy_pages(vm_page_t ma[], vm_offset_t a_offset, vm_page_t mb[],
3726     vm_offset_t b_offset, int xfersize)
3727 {
3728 	void *a_cp, *b_cp;
3729 	vm_page_t m_a, m_b;
3730 	vm_paddr_t p_a, p_b;
3731 	vm_offset_t a_pg_offset, b_pg_offset;
3732 	int cnt;
3733 
3734 	while (xfersize > 0) {
3735 		a_pg_offset = a_offset & PAGE_MASK;
3736 		m_a = ma[a_offset >> PAGE_SHIFT];
3737 		p_a = m_a->phys_addr;
3738 		b_pg_offset = b_offset & PAGE_MASK;
3739 		m_b = mb[b_offset >> PAGE_SHIFT];
3740 		p_b = m_b->phys_addr;
3741 		cnt = min(xfersize, PAGE_SIZE - a_pg_offset);
3742 		cnt = min(cnt, PAGE_SIZE - b_pg_offset);
3743 		if (__predict_false(!PHYS_IN_DMAP(p_a))) {
3744 			panic("!DMAP a %lx", p_a);
3745 		} else {
3746 			a_cp = (char *)PHYS_TO_DMAP(p_a) + a_pg_offset;
3747 		}
3748 		if (__predict_false(!PHYS_IN_DMAP(p_b))) {
3749 			panic("!DMAP b %lx", p_b);
3750 		} else {
3751 			b_cp = (char *)PHYS_TO_DMAP(p_b) + b_pg_offset;
3752 		}
3753 		bcopy(a_cp, b_cp, cnt);
3754 		a_offset += cnt;
3755 		b_offset += cnt;
3756 		xfersize -= cnt;
3757 	}
3758 }
3759 
3760 vm_offset_t
3761 pmap_quick_enter_page(vm_page_t m)
3762 {
3763 
3764 	return (PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m)));
3765 }
3766 
3767 void
3768 pmap_quick_remove_page(vm_offset_t addr)
3769 {
3770 }
3771 
3772 /*
3773  * Returns true if the pmap's pv is one of the first
3774  * 16 pvs linked to from this page.  This count may
3775  * be changed upwards or downwards in the future; it
3776  * is only necessary that true be returned for a small
3777  * subset of pmaps for proper page aging.
3778  */
3779 boolean_t
3780 pmap_page_exists_quick(pmap_t pmap, vm_page_t m)
3781 {
3782 	struct md_page *pvh;
3783 	struct rwlock *lock;
3784 	pv_entry_t pv;
3785 	int loops = 0;
3786 	boolean_t rv;
3787 
3788 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
3789 	    ("pmap_page_exists_quick: page %p is not managed", m));
3790 	rv = FALSE;
3791 	rw_rlock(&pvh_global_lock);
3792 	lock = VM_PAGE_TO_PV_LIST_LOCK(m);
3793 	rw_rlock(lock);
3794 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
3795 		if (PV_PMAP(pv) == pmap) {
3796 			rv = TRUE;
3797 			break;
3798 		}
3799 		loops++;
3800 		if (loops >= 16)
3801 			break;
3802 	}
3803 	if (!rv && loops < 16 && (m->flags & PG_FICTITIOUS) == 0) {
3804 		pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
3805 		TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
3806 			if (PV_PMAP(pv) == pmap) {
3807 				rv = TRUE;
3808 				break;
3809 			}
3810 			loops++;
3811 			if (loops >= 16)
3812 				break;
3813 		}
3814 	}
3815 	rw_runlock(lock);
3816 	rw_runlock(&pvh_global_lock);
3817 	return (rv);
3818 }
3819 
3820 /*
3821  *	pmap_page_wired_mappings:
3822  *
3823  *	Return the number of managed mappings to the given physical page
3824  *	that are wired.
3825  */
3826 int
3827 pmap_page_wired_mappings(vm_page_t m)
3828 {
3829 	struct md_page *pvh;
3830 	struct rwlock *lock;
3831 	pmap_t pmap;
3832 	pd_entry_t *l2;
3833 	pt_entry_t *l3;
3834 	pv_entry_t pv;
3835 	int count, md_gen, pvh_gen;
3836 
3837 	if ((m->oflags & VPO_UNMANAGED) != 0)
3838 		return (0);
3839 	rw_rlock(&pvh_global_lock);
3840 	lock = VM_PAGE_TO_PV_LIST_LOCK(m);
3841 	rw_rlock(lock);
3842 restart:
3843 	count = 0;
3844 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
3845 		pmap = PV_PMAP(pv);
3846 		if (!PMAP_TRYLOCK(pmap)) {
3847 			md_gen = m->md.pv_gen;
3848 			rw_runlock(lock);
3849 			PMAP_LOCK(pmap);
3850 			rw_rlock(lock);
3851 			if (md_gen != m->md.pv_gen) {
3852 				PMAP_UNLOCK(pmap);
3853 				goto restart;
3854 			}
3855 		}
3856 		l2 = pmap_l2(pmap, pv->pv_va);
3857 		KASSERT((pmap_load(l2) & PTE_RWX) == 0,
3858 		    ("%s: found a 2mpage in page %p's pv list", __func__, m));
3859 		l3 = pmap_l2_to_l3(l2, pv->pv_va);
3860 		if ((pmap_load(l3) & PTE_SW_WIRED) != 0)
3861 			count++;
3862 		PMAP_UNLOCK(pmap);
3863 	}
3864 	if ((m->flags & PG_FICTITIOUS) == 0) {
3865 		pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
3866 		TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
3867 			pmap = PV_PMAP(pv);
3868 			if (!PMAP_TRYLOCK(pmap)) {
3869 				md_gen = m->md.pv_gen;
3870 				pvh_gen = pvh->pv_gen;
3871 				rw_runlock(lock);
3872 				PMAP_LOCK(pmap);
3873 				rw_rlock(lock);
3874 				if (md_gen != m->md.pv_gen ||
3875 				    pvh_gen != pvh->pv_gen) {
3876 					PMAP_UNLOCK(pmap);
3877 					goto restart;
3878 				}
3879 			}
3880 			l2 = pmap_l2(pmap, pv->pv_va);
3881 			if ((pmap_load(l2) & PTE_SW_WIRED) != 0)
3882 				count++;
3883 			PMAP_UNLOCK(pmap);
3884 		}
3885 	}
3886 	rw_runlock(lock);
3887 	rw_runlock(&pvh_global_lock);
3888 	return (count);
3889 }
3890 
3891 /*
3892  * Returns true if the given page is mapped individually or as part of
3893  * a 2mpage.  Otherwise, returns false.
3894  */
3895 bool
3896 pmap_page_is_mapped(vm_page_t m)
3897 {
3898 	struct rwlock *lock;
3899 	bool rv;
3900 
3901 	if ((m->oflags & VPO_UNMANAGED) != 0)
3902 		return (false);
3903 	lock = VM_PAGE_TO_PV_LIST_LOCK(m);
3904 	rw_rlock(lock);
3905 	rv = !TAILQ_EMPTY(&m->md.pv_list) ||
3906 	    ((m->flags & PG_FICTITIOUS) == 0 &&
3907 	    !TAILQ_EMPTY(&pa_to_pvh(VM_PAGE_TO_PHYS(m))->pv_list));
3908 	rw_runlock(lock);
3909 	return (rv);
3910 }
3911 
3912 static void
3913 pmap_remove_pages_pv(pmap_t pmap, vm_page_t m, pv_entry_t pv,
3914     struct spglist *free, bool superpage)
3915 {
3916 	struct md_page *pvh;
3917 	vm_page_t mpte, mt;
3918 
3919 	if (superpage) {
3920 		pmap_resident_count_dec(pmap, Ln_ENTRIES);
3921 		pvh = pa_to_pvh(m->phys_addr);
3922 		TAILQ_REMOVE(&pvh->pv_list, pv, pv_next);
3923 		pvh->pv_gen++;
3924 		if (TAILQ_EMPTY(&pvh->pv_list)) {
3925 			for (mt = m; mt < &m[Ln_ENTRIES]; mt++)
3926 				if (TAILQ_EMPTY(&mt->md.pv_list) &&
3927 				    (mt->a.flags & PGA_WRITEABLE) != 0)
3928 					vm_page_aflag_clear(mt, PGA_WRITEABLE);
3929 		}
3930 		mpte = pmap_remove_pt_page(pmap, pv->pv_va);
3931 		if (mpte != NULL) {
3932 			KASSERT(vm_page_any_valid(mpte),
3933 			    ("pmap_remove_pages: pte page not promoted"));
3934 			pmap_resident_count_dec(pmap, 1);
3935 			KASSERT(mpte->ref_count == Ln_ENTRIES,
3936 			    ("pmap_remove_pages: pte page ref count error"));
3937 			mpte->ref_count = 0;
3938 			pmap_add_delayed_free_list(mpte, free, FALSE);
3939 		}
3940 	} else {
3941 		pmap_resident_count_dec(pmap, 1);
3942 		TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
3943 		m->md.pv_gen++;
3944 		if (TAILQ_EMPTY(&m->md.pv_list) &&
3945 		    (m->a.flags & PGA_WRITEABLE) != 0) {
3946 			pvh = pa_to_pvh(m->phys_addr);
3947 			if (TAILQ_EMPTY(&pvh->pv_list))
3948 				vm_page_aflag_clear(m, PGA_WRITEABLE);
3949 		}
3950 	}
3951 }
3952 
3953 /*
3954  * Destroy all managed, non-wired mappings in the given user-space
3955  * pmap.  This pmap cannot be active on any processor besides the
3956  * caller.
3957  *
3958  * This function cannot be applied to the kernel pmap.  Moreover, it
3959  * is not intended for general use.  It is only to be used during
3960  * process termination.  Consequently, it can be implemented in ways
3961  * that make it faster than pmap_remove().  First, it can more quickly
3962  * destroy mappings by iterating over the pmap's collection of PV
3963  * entries, rather than searching the page table.  Second, it doesn't
3964  * have to test and clear the page table entries atomically, because
3965  * no processor is currently accessing the user address space.  In
3966  * particular, a page table entry's dirty bit won't change state once
3967  * this function starts.
3968  */
3969 void
3970 pmap_remove_pages(pmap_t pmap)
3971 {
3972 	struct spglist free;
3973 	pd_entry_t ptepde;
3974 	pt_entry_t *pte, tpte;
3975 	vm_page_t m, mt;
3976 	pv_entry_t pv;
3977 	struct pv_chunk *pc, *npc;
3978 	struct rwlock *lock;
3979 	int64_t bit;
3980 	uint64_t inuse, bitmask;
3981 	int allfree, field, freed __pv_stat_used, idx;
3982 	bool superpage;
3983 
3984 	lock = NULL;
3985 
3986 	SLIST_INIT(&free);
3987 	rw_rlock(&pvh_global_lock);
3988 	PMAP_LOCK(pmap);
3989 	TAILQ_FOREACH_SAFE(pc, &pmap->pm_pvchunk, pc_list, npc) {
3990 		allfree = 1;
3991 		freed = 0;
3992 		for (field = 0; field < _NPCM; field++) {
3993 			inuse = ~pc->pc_map[field] & pc_freemask[field];
3994 			while (inuse != 0) {
3995 				bit = ffsl(inuse) - 1;
3996 				bitmask = 1UL << bit;
3997 				idx = field * 64 + bit;
3998 				pv = &pc->pc_pventry[idx];
3999 				inuse &= ~bitmask;
4000 
4001 				pte = pmap_l1(pmap, pv->pv_va);
4002 				ptepde = pmap_load(pte);
4003 				pte = pmap_l1_to_l2(pte, pv->pv_va);
4004 				tpte = pmap_load(pte);
4005 
4006 				KASSERT((tpte & PTE_V) != 0,
4007 				    ("L2 PTE is invalid... bogus PV entry? "
4008 				    "va=%#lx, pte=%#lx", pv->pv_va, tpte));
4009 				if ((tpte & PTE_RWX) != 0) {
4010 					superpage = true;
4011 				} else {
4012 					ptepde = tpte;
4013 					pte = pmap_l2_to_l3(pte, pv->pv_va);
4014 					tpte = pmap_load(pte);
4015 					superpage = false;
4016 				}
4017 
4018 				/*
4019 				 * We cannot remove wired pages from a
4020 				 * process' mapping at this time.
4021 				 */
4022 				if (tpte & PTE_SW_WIRED) {
4023 					allfree = 0;
4024 					continue;
4025 				}
4026 
4027 				m = PHYS_TO_VM_PAGE(PTE_TO_PHYS(tpte));
4028 				KASSERT((m->flags & PG_FICTITIOUS) != 0 ||
4029 				    m < &vm_page_array[vm_page_array_size],
4030 				    ("pmap_remove_pages: bad pte %#jx",
4031 				    (uintmax_t)tpte));
4032 
4033 				pmap_clear(pte);
4034 
4035 				/*
4036 				 * Update the vm_page_t clean/reference bits.
4037 				 */
4038 				if ((tpte & (PTE_D | PTE_W)) ==
4039 				    (PTE_D | PTE_W)) {
4040 					if (superpage)
4041 						for (mt = m;
4042 						    mt < &m[Ln_ENTRIES]; mt++)
4043 							vm_page_dirty(mt);
4044 					else
4045 						vm_page_dirty(m);
4046 				}
4047 
4048 				CHANGE_PV_LIST_LOCK_TO_VM_PAGE(&lock, m);
4049 
4050 				/* Mark free */
4051 				pc->pc_map[field] |= bitmask;
4052 
4053 				pmap_remove_pages_pv(pmap, m, pv, &free,
4054 				    superpage);
4055 				pmap_unuse_pt(pmap, pv->pv_va, ptepde, &free);
4056 				freed++;
4057 			}
4058 		}
4059 		PV_STAT(atomic_add_long(&pv_entry_frees, freed));
4060 		PV_STAT(atomic_add_int(&pv_entry_spare, freed));
4061 		PV_STAT(atomic_subtract_long(&pv_entry_count, freed));
4062 		if (allfree) {
4063 			TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
4064 			free_pv_chunk(pc);
4065 		}
4066 	}
4067 	if (lock != NULL)
4068 		rw_wunlock(lock);
4069 	pmap_invalidate_all(pmap);
4070 	rw_runlock(&pvh_global_lock);
4071 	PMAP_UNLOCK(pmap);
4072 	vm_page_free_pages_toq(&free, false);
4073 }
4074 
4075 static bool
4076 pmap_page_test_mappings(vm_page_t m, boolean_t accessed, boolean_t modified)
4077 {
4078 	struct md_page *pvh;
4079 	struct rwlock *lock;
4080 	pd_entry_t *l2;
4081 	pt_entry_t *l3, mask;
4082 	pv_entry_t pv;
4083 	pmap_t pmap;
4084 	int md_gen, pvh_gen;
4085 	bool rv;
4086 
4087 	mask = 0;
4088 	if (modified)
4089 		mask |= PTE_D;
4090 	if (accessed)
4091 		mask |= PTE_A;
4092 
4093 	rv = FALSE;
4094 	rw_rlock(&pvh_global_lock);
4095 	lock = VM_PAGE_TO_PV_LIST_LOCK(m);
4096 	rw_rlock(lock);
4097 restart:
4098 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
4099 		pmap = PV_PMAP(pv);
4100 		if (!PMAP_TRYLOCK(pmap)) {
4101 			md_gen = m->md.pv_gen;
4102 			rw_runlock(lock);
4103 			PMAP_LOCK(pmap);
4104 			rw_rlock(lock);
4105 			if (md_gen != m->md.pv_gen) {
4106 				PMAP_UNLOCK(pmap);
4107 				goto restart;
4108 			}
4109 		}
4110 		l2 = pmap_l2(pmap, pv->pv_va);
4111 		KASSERT((pmap_load(l2) & PTE_RWX) == 0,
4112 		    ("%s: found a 2mpage in page %p's pv list", __func__, m));
4113 		l3 = pmap_l2_to_l3(l2, pv->pv_va);
4114 		rv = (pmap_load(l3) & mask) == mask;
4115 		PMAP_UNLOCK(pmap);
4116 		if (rv)
4117 			goto out;
4118 	}
4119 	if ((m->flags & PG_FICTITIOUS) == 0) {
4120 		pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
4121 		TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
4122 			pmap = PV_PMAP(pv);
4123 			if (!PMAP_TRYLOCK(pmap)) {
4124 				md_gen = m->md.pv_gen;
4125 				pvh_gen = pvh->pv_gen;
4126 				rw_runlock(lock);
4127 				PMAP_LOCK(pmap);
4128 				rw_rlock(lock);
4129 				if (md_gen != m->md.pv_gen ||
4130 				    pvh_gen != pvh->pv_gen) {
4131 					PMAP_UNLOCK(pmap);
4132 					goto restart;
4133 				}
4134 			}
4135 			l2 = pmap_l2(pmap, pv->pv_va);
4136 			rv = (pmap_load(l2) & mask) == mask;
4137 			PMAP_UNLOCK(pmap);
4138 			if (rv)
4139 				goto out;
4140 		}
4141 	}
4142 out:
4143 	rw_runlock(lock);
4144 	rw_runlock(&pvh_global_lock);
4145 	return (rv);
4146 }
4147 
4148 /*
4149  *	pmap_is_modified:
4150  *
4151  *	Return whether or not the specified physical page was modified
4152  *	in any physical maps.
4153  */
4154 boolean_t
4155 pmap_is_modified(vm_page_t m)
4156 {
4157 
4158 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4159 	    ("pmap_is_modified: page %p is not managed", m));
4160 
4161 	/*
4162 	 * If the page is not busied then this check is racy.
4163 	 */
4164 	if (!pmap_page_is_write_mapped(m))
4165 		return (FALSE);
4166 	return (pmap_page_test_mappings(m, FALSE, TRUE));
4167 }
4168 
4169 /*
4170  *	pmap_is_prefaultable:
4171  *
4172  *	Return whether or not the specified virtual address is eligible
4173  *	for prefault.
4174  */
4175 boolean_t
4176 pmap_is_prefaultable(pmap_t pmap, vm_offset_t addr)
4177 {
4178 	pt_entry_t *l3;
4179 	boolean_t rv;
4180 
4181 	/*
4182 	 * Return TRUE if and only if the L3 entry for the specified virtual
4183 	 * address is allocated but invalid.
4184 	 */
4185 	rv = FALSE;
4186 	PMAP_LOCK(pmap);
4187 	l3 = pmap_l3(pmap, addr);
4188 	if (l3 != NULL && pmap_load(l3) == 0) {
4189 		rv = TRUE;
4190 	}
4191 	PMAP_UNLOCK(pmap);
4192 	return (rv);
4193 }
4194 
4195 /*
4196  *	pmap_is_referenced:
4197  *
4198  *	Return whether or not the specified physical page was referenced
4199  *	in any physical maps.
4200  */
4201 boolean_t
4202 pmap_is_referenced(vm_page_t m)
4203 {
4204 
4205 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4206 	    ("pmap_is_referenced: page %p is not managed", m));
4207 	return (pmap_page_test_mappings(m, TRUE, FALSE));
4208 }
4209 
4210 /*
4211  * Clear the write and modified bits in each of the given page's mappings.
4212  */
4213 void
4214 pmap_remove_write(vm_page_t m)
4215 {
4216 	struct md_page *pvh;
4217 	struct rwlock *lock;
4218 	pmap_t pmap;
4219 	pd_entry_t *l2;
4220 	pt_entry_t *l3, oldl3, newl3;
4221 	pv_entry_t next_pv, pv;
4222 	vm_offset_t va;
4223 	int md_gen, pvh_gen;
4224 
4225 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4226 	    ("pmap_remove_write: page %p is not managed", m));
4227 	vm_page_assert_busied(m);
4228 
4229 	if (!pmap_page_is_write_mapped(m))
4230 		return;
4231 	lock = VM_PAGE_TO_PV_LIST_LOCK(m);
4232 	pvh = (m->flags & PG_FICTITIOUS) != 0 ? &pv_dummy :
4233 	    pa_to_pvh(VM_PAGE_TO_PHYS(m));
4234 	rw_rlock(&pvh_global_lock);
4235 retry_pv_loop:
4236 	rw_wlock(lock);
4237 	TAILQ_FOREACH_SAFE(pv, &pvh->pv_list, pv_next, next_pv) {
4238 		pmap = PV_PMAP(pv);
4239 		if (!PMAP_TRYLOCK(pmap)) {
4240 			pvh_gen = pvh->pv_gen;
4241 			rw_wunlock(lock);
4242 			PMAP_LOCK(pmap);
4243 			rw_wlock(lock);
4244 			if (pvh_gen != pvh->pv_gen) {
4245 				PMAP_UNLOCK(pmap);
4246 				rw_wunlock(lock);
4247 				goto retry_pv_loop;
4248 			}
4249 		}
4250 		va = pv->pv_va;
4251 		l2 = pmap_l2(pmap, va);
4252 		if ((pmap_load(l2) & PTE_W) != 0)
4253 			(void)pmap_demote_l2_locked(pmap, l2, va, &lock);
4254 		KASSERT(lock == VM_PAGE_TO_PV_LIST_LOCK(m),
4255 		    ("inconsistent pv lock %p %p for page %p",
4256 		    lock, VM_PAGE_TO_PV_LIST_LOCK(m), m));
4257 		PMAP_UNLOCK(pmap);
4258 	}
4259 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
4260 		pmap = PV_PMAP(pv);
4261 		if (!PMAP_TRYLOCK(pmap)) {
4262 			pvh_gen = pvh->pv_gen;
4263 			md_gen = m->md.pv_gen;
4264 			rw_wunlock(lock);
4265 			PMAP_LOCK(pmap);
4266 			rw_wlock(lock);
4267 			if (pvh_gen != pvh->pv_gen || md_gen != m->md.pv_gen) {
4268 				PMAP_UNLOCK(pmap);
4269 				rw_wunlock(lock);
4270 				goto retry_pv_loop;
4271 			}
4272 		}
4273 		l2 = pmap_l2(pmap, pv->pv_va);
4274 		KASSERT((pmap_load(l2) & PTE_RWX) == 0,
4275 		    ("%s: found a 2mpage in page %p's pv list", __func__, m));
4276 		l3 = pmap_l2_to_l3(l2, pv->pv_va);
4277 		oldl3 = pmap_load(l3);
4278 retry:
4279 		if ((oldl3 & PTE_W) != 0) {
4280 			newl3 = oldl3 & ~(PTE_D | PTE_W);
4281 			if (!atomic_fcmpset_long(l3, &oldl3, newl3))
4282 				goto retry;
4283 			if ((oldl3 & PTE_D) != 0)
4284 				vm_page_dirty(m);
4285 			pmap_invalidate_page(pmap, pv->pv_va);
4286 		}
4287 		PMAP_UNLOCK(pmap);
4288 	}
4289 	rw_wunlock(lock);
4290 	vm_page_aflag_clear(m, PGA_WRITEABLE);
4291 	rw_runlock(&pvh_global_lock);
4292 }
4293 
4294 /*
4295  *	pmap_ts_referenced:
4296  *
4297  *	Return a count of reference bits for a page, clearing those bits.
4298  *	It is not necessary for every reference bit to be cleared, but it
4299  *	is necessary that 0 only be returned when there are truly no
4300  *	reference bits set.
4301  *
4302  *	As an optimization, update the page's dirty field if a modified bit is
4303  *	found while counting reference bits.  This opportunistic update can be
4304  *	performed at low cost and can eliminate the need for some future calls
4305  *	to pmap_is_modified().  However, since this function stops after
4306  *	finding PMAP_TS_REFERENCED_MAX reference bits, it may not detect some
4307  *	dirty pages.  Those dirty pages will only be detected by a future call
4308  *	to pmap_is_modified().
4309  */
4310 int
4311 pmap_ts_referenced(vm_page_t m)
4312 {
4313 	struct spglist free;
4314 	struct md_page *pvh;
4315 	struct rwlock *lock;
4316 	pv_entry_t pv, pvf;
4317 	pmap_t pmap;
4318 	pd_entry_t *l2, l2e;
4319 	pt_entry_t *l3, l3e;
4320 	vm_paddr_t pa;
4321 	vm_offset_t va;
4322 	int cleared, md_gen, not_cleared, pvh_gen;
4323 
4324 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4325 	    ("pmap_ts_referenced: page %p is not managed", m));
4326 	SLIST_INIT(&free);
4327 	cleared = 0;
4328 	pa = VM_PAGE_TO_PHYS(m);
4329 	pvh = (m->flags & PG_FICTITIOUS) != 0 ? &pv_dummy : pa_to_pvh(pa);
4330 
4331 	lock = PHYS_TO_PV_LIST_LOCK(pa);
4332 	rw_rlock(&pvh_global_lock);
4333 	rw_wlock(lock);
4334 retry:
4335 	not_cleared = 0;
4336 	if ((pvf = TAILQ_FIRST(&pvh->pv_list)) == NULL)
4337 		goto small_mappings;
4338 	pv = pvf;
4339 	do {
4340 		pmap = PV_PMAP(pv);
4341 		if (!PMAP_TRYLOCK(pmap)) {
4342 			pvh_gen = pvh->pv_gen;
4343 			rw_wunlock(lock);
4344 			PMAP_LOCK(pmap);
4345 			rw_wlock(lock);
4346 			if (pvh_gen != pvh->pv_gen) {
4347 				PMAP_UNLOCK(pmap);
4348 				goto retry;
4349 			}
4350 		}
4351 		va = pv->pv_va;
4352 		l2 = pmap_l2(pmap, va);
4353 		l2e = pmap_load(l2);
4354 		if ((l2e & (PTE_W | PTE_D)) == (PTE_W | PTE_D)) {
4355 			/*
4356 			 * Although l2e is mapping a 2MB page, because
4357 			 * this function is called at a 4KB page granularity,
4358 			 * we only update the 4KB page under test.
4359 			 */
4360 			vm_page_dirty(m);
4361 		}
4362 		if ((l2e & PTE_A) != 0) {
4363 			/*
4364 			 * Since this reference bit is shared by 512 4KB
4365 			 * pages, it should not be cleared every time it is
4366 			 * tested.  Apply a simple "hash" function on the
4367 			 * physical page number, the virtual superpage number,
4368 			 * and the pmap address to select one 4KB page out of
4369 			 * the 512 on which testing the reference bit will
4370 			 * result in clearing that reference bit.  This
4371 			 * function is designed to avoid the selection of the
4372 			 * same 4KB page for every 2MB page mapping.
4373 			 *
4374 			 * On demotion, a mapping that hasn't been referenced
4375 			 * is simply destroyed.  To avoid the possibility of a
4376 			 * subsequent page fault on a demoted wired mapping,
4377 			 * always leave its reference bit set.  Moreover,
4378 			 * since the superpage is wired, the current state of
4379 			 * its reference bit won't affect page replacement.
4380 			 */
4381 			if ((((pa >> PAGE_SHIFT) ^ (pv->pv_va >> L2_SHIFT) ^
4382 			    (uintptr_t)pmap) & (Ln_ENTRIES - 1)) == 0 &&
4383 			    (l2e & PTE_SW_WIRED) == 0) {
4384 				pmap_clear_bits(l2, PTE_A);
4385 				pmap_invalidate_page(pmap, va);
4386 				cleared++;
4387 			} else
4388 				not_cleared++;
4389 		}
4390 		PMAP_UNLOCK(pmap);
4391 		/* Rotate the PV list if it has more than one entry. */
4392 		if (pv != NULL && TAILQ_NEXT(pv, pv_next) != NULL) {
4393 			TAILQ_REMOVE(&pvh->pv_list, pv, pv_next);
4394 			TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_next);
4395 			pvh->pv_gen++;
4396 		}
4397 		if (cleared + not_cleared >= PMAP_TS_REFERENCED_MAX)
4398 			goto out;
4399 	} while ((pv = TAILQ_FIRST(&pvh->pv_list)) != pvf);
4400 small_mappings:
4401 	if ((pvf = TAILQ_FIRST(&m->md.pv_list)) == NULL)
4402 		goto out;
4403 	pv = pvf;
4404 	do {
4405 		pmap = PV_PMAP(pv);
4406 		if (!PMAP_TRYLOCK(pmap)) {
4407 			pvh_gen = pvh->pv_gen;
4408 			md_gen = m->md.pv_gen;
4409 			rw_wunlock(lock);
4410 			PMAP_LOCK(pmap);
4411 			rw_wlock(lock);
4412 			if (pvh_gen != pvh->pv_gen || md_gen != m->md.pv_gen) {
4413 				PMAP_UNLOCK(pmap);
4414 				goto retry;
4415 			}
4416 		}
4417 		l2 = pmap_l2(pmap, pv->pv_va);
4418 
4419 		KASSERT((pmap_load(l2) & PTE_RX) == 0,
4420 		    ("pmap_ts_referenced: found an invalid l2 table"));
4421 
4422 		l3 = pmap_l2_to_l3(l2, pv->pv_va);
4423 		l3e = pmap_load(l3);
4424 		if ((l3e & PTE_D) != 0)
4425 			vm_page_dirty(m);
4426 		if ((l3e & PTE_A) != 0) {
4427 			if ((l3e & PTE_SW_WIRED) == 0) {
4428 				/*
4429 				 * Wired pages cannot be paged out so
4430 				 * doing accessed bit emulation for
4431 				 * them is wasted effort. We do the
4432 				 * hard work for unwired pages only.
4433 				 */
4434 				pmap_clear_bits(l3, PTE_A);
4435 				pmap_invalidate_page(pmap, pv->pv_va);
4436 				cleared++;
4437 			} else
4438 				not_cleared++;
4439 		}
4440 		PMAP_UNLOCK(pmap);
4441 		/* Rotate the PV list if it has more than one entry. */
4442 		if (pv != NULL && TAILQ_NEXT(pv, pv_next) != NULL) {
4443 			TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
4444 			TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
4445 			m->md.pv_gen++;
4446 		}
4447 	} while ((pv = TAILQ_FIRST(&m->md.pv_list)) != pvf && cleared +
4448 	    not_cleared < PMAP_TS_REFERENCED_MAX);
4449 out:
4450 	rw_wunlock(lock);
4451 	rw_runlock(&pvh_global_lock);
4452 	vm_page_free_pages_toq(&free, false);
4453 	return (cleared + not_cleared);
4454 }
4455 
4456 /*
4457  *	Apply the given advice to the specified range of addresses within the
4458  *	given pmap.  Depending on the advice, clear the referenced and/or
4459  *	modified flags in each mapping and set the mapped page's dirty field.
4460  */
4461 void
4462 pmap_advise(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, int advice)
4463 {
4464 }
4465 
4466 /*
4467  *	Clear the modify bits on the specified physical page.
4468  */
4469 void
4470 pmap_clear_modify(vm_page_t m)
4471 {
4472 	struct md_page *pvh;
4473 	struct rwlock *lock;
4474 	pmap_t pmap;
4475 	pv_entry_t next_pv, pv;
4476 	pd_entry_t *l2, oldl2;
4477 	pt_entry_t *l3;
4478 	vm_offset_t va;
4479 	int md_gen, pvh_gen;
4480 
4481 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4482 	    ("pmap_clear_modify: page %p is not managed", m));
4483 	vm_page_assert_busied(m);
4484 
4485 	if (!pmap_page_is_write_mapped(m))
4486 	        return;
4487 
4488 	/*
4489 	 * If the page is not PGA_WRITEABLE, then no PTEs can have PG_M set.
4490 	 * If the object containing the page is locked and the page is not
4491 	 * exclusive busied, then PGA_WRITEABLE cannot be concurrently set.
4492 	 */
4493 	if ((m->a.flags & PGA_WRITEABLE) == 0)
4494 		return;
4495 	pvh = (m->flags & PG_FICTITIOUS) != 0 ? &pv_dummy :
4496 	    pa_to_pvh(VM_PAGE_TO_PHYS(m));
4497 	lock = VM_PAGE_TO_PV_LIST_LOCK(m);
4498 	rw_rlock(&pvh_global_lock);
4499 	rw_wlock(lock);
4500 restart:
4501 	TAILQ_FOREACH_SAFE(pv, &pvh->pv_list, pv_next, next_pv) {
4502 		pmap = PV_PMAP(pv);
4503 		if (!PMAP_TRYLOCK(pmap)) {
4504 			pvh_gen = pvh->pv_gen;
4505 			rw_wunlock(lock);
4506 			PMAP_LOCK(pmap);
4507 			rw_wlock(lock);
4508 			if (pvh_gen != pvh->pv_gen) {
4509 				PMAP_UNLOCK(pmap);
4510 				goto restart;
4511 			}
4512 		}
4513 		va = pv->pv_va;
4514 		l2 = pmap_l2(pmap, va);
4515 		oldl2 = pmap_load(l2);
4516 		/* If oldl2 has PTE_W set, then it also has PTE_D set. */
4517 		if ((oldl2 & PTE_W) != 0 &&
4518 		    pmap_demote_l2_locked(pmap, l2, va, &lock) &&
4519 		    (oldl2 & PTE_SW_WIRED) == 0) {
4520 			/*
4521 			 * Write protect the mapping to a single page so that
4522 			 * a subsequent write access may repromote.
4523 			 */
4524 			va += VM_PAGE_TO_PHYS(m) - PTE_TO_PHYS(oldl2);
4525 			l3 = pmap_l2_to_l3(l2, va);
4526 			pmap_clear_bits(l3, PTE_D | PTE_W);
4527 			vm_page_dirty(m);
4528 			pmap_invalidate_page(pmap, va);
4529 		}
4530 		PMAP_UNLOCK(pmap);
4531 	}
4532 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
4533 		pmap = PV_PMAP(pv);
4534 		if (!PMAP_TRYLOCK(pmap)) {
4535 			md_gen = m->md.pv_gen;
4536 			pvh_gen = pvh->pv_gen;
4537 			rw_wunlock(lock);
4538 			PMAP_LOCK(pmap);
4539 			rw_wlock(lock);
4540 			if (pvh_gen != pvh->pv_gen || md_gen != m->md.pv_gen) {
4541 				PMAP_UNLOCK(pmap);
4542 				goto restart;
4543 			}
4544 		}
4545 		l2 = pmap_l2(pmap, pv->pv_va);
4546 		KASSERT((pmap_load(l2) & PTE_RWX) == 0,
4547 		    ("%s: found a 2mpage in page %p's pv list", __func__, m));
4548 		l3 = pmap_l2_to_l3(l2, pv->pv_va);
4549 		if ((pmap_load(l3) & (PTE_D | PTE_W)) == (PTE_D | PTE_W)) {
4550 			pmap_clear_bits(l3, PTE_D | PTE_W);
4551 			pmap_invalidate_page(pmap, pv->pv_va);
4552 		}
4553 		PMAP_UNLOCK(pmap);
4554 	}
4555 	rw_wunlock(lock);
4556 	rw_runlock(&pvh_global_lock);
4557 }
4558 
4559 void *
4560 pmap_mapbios(vm_paddr_t pa, vm_size_t size)
4561 {
4562 
4563         return ((void *)PHYS_TO_DMAP(pa));
4564 }
4565 
4566 void
4567 pmap_unmapbios(void *p, vm_size_t size)
4568 {
4569 }
4570 
4571 /*
4572  * Sets the memory attribute for the specified page.
4573  */
4574 void
4575 pmap_page_set_memattr(vm_page_t m, vm_memattr_t ma)
4576 {
4577 
4578 	m->md.pv_memattr = ma;
4579 
4580 	/*
4581 	 * If "m" is a normal page, update its direct mapping.  This update
4582 	 * can be relied upon to perform any cache operations that are
4583 	 * required for data coherence.
4584 	 */
4585 	if ((m->flags & PG_FICTITIOUS) == 0 &&
4586 	    pmap_change_attr(PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m)), PAGE_SIZE,
4587 	    m->md.pv_memattr) != 0)
4588 		panic("memory attribute change on the direct map failed");
4589 }
4590 
4591 /*
4592  * Changes the specified virtual address range's memory type to that given by
4593  * the parameter "mode".  The specified virtual address range must be
4594  * completely contained within either the direct map or the kernel map.
4595  *
4596  * Returns zero if the change completed successfully, and either EINVAL or
4597  * ENOMEM if the change failed.  Specifically, EINVAL is returned if some part
4598  * of the virtual address range was not mapped, and ENOMEM is returned if
4599  * there was insufficient memory available to complete the change.  In the
4600  * latter case, the memory type may have been changed on some part of the
4601  * virtual address range.
4602  */
4603 int
4604 pmap_change_attr(vm_offset_t va, vm_size_t size, int mode)
4605 {
4606 	int error;
4607 
4608 	PMAP_LOCK(kernel_pmap);
4609 	error = pmap_change_attr_locked(va, size, mode);
4610 	PMAP_UNLOCK(kernel_pmap);
4611 	return (error);
4612 }
4613 
4614 static int
4615 pmap_change_attr_locked(vm_offset_t va, vm_size_t size, int mode)
4616 {
4617 	vm_offset_t base, offset, tmpva;
4618 	pd_entry_t *l1, l1e;
4619 	pd_entry_t *l2, l2e;
4620 	pt_entry_t *l3, l3e;
4621 
4622 	PMAP_LOCK_ASSERT(kernel_pmap, MA_OWNED);
4623 	base = trunc_page(va);
4624 	offset = va & PAGE_MASK;
4625 	size = round_page(offset + size);
4626 
4627 	if (!VIRT_IN_DMAP(base) &&
4628 	    !(base >= VM_MIN_KERNEL_ADDRESS && base < VM_MAX_KERNEL_ADDRESS))
4629 		return (EINVAL);
4630 
4631 	for (tmpva = base; tmpva < base + size; ) {
4632 		l1 = pmap_l1(kernel_pmap, tmpva);
4633 		if (l1 == NULL || ((l1e = pmap_load(l1)) & PTE_V) == 0)
4634 			return (EINVAL);
4635 		if ((l1e & PTE_RWX) != 0) {
4636 			/*
4637 			 * TODO: Demote if attributes don't match and there
4638 			 * isn't an L1 page left in the range, and update the
4639 			 * L1 entry if the attributes don't match but there is
4640 			 * an L1 page left in the range, once we support the
4641 			 * upcoming Svpbmt extension.
4642 			 */
4643 			tmpva = (tmpva & ~L1_OFFSET) + L1_SIZE;
4644 			continue;
4645 		}
4646 		l2 = pmap_l1_to_l2(l1, tmpva);
4647 		if (l2 == NULL || ((l2e = pmap_load(l2)) & PTE_V) == 0)
4648 			return (EINVAL);
4649 		if ((l2e & PTE_RWX) != 0) {
4650 			/*
4651 			 * TODO: Demote if attributes don't match and there
4652 			 * isn't an L2 page left in the range, and update the
4653 			 * L2 entry if the attributes don't match but there is
4654 			 * an L2 page left in the range, once we support the
4655 			 * upcoming Svpbmt extension.
4656 			 */
4657 			tmpva = (tmpva & ~L2_OFFSET) + L2_SIZE;
4658 			continue;
4659 		}
4660 		l3 = pmap_l2_to_l3(l2, tmpva);
4661 		if (l3 == NULL || ((l3e = pmap_load(l3)) & PTE_V) == 0)
4662 			return (EINVAL);
4663 		/*
4664 		 * TODO: Update the L3 entry if the attributes don't match once
4665 		 * we support the upcoming Svpbmt extension.
4666 		 */
4667 		tmpva += PAGE_SIZE;
4668 	}
4669 
4670 	return (0);
4671 }
4672 
4673 /*
4674  * Perform the pmap work for mincore(2).  If the page is not both referenced and
4675  * modified by this pmap, returns its physical address so that the caller can
4676  * find other mappings.
4677  */
4678 int
4679 pmap_mincore(pmap_t pmap, vm_offset_t addr, vm_paddr_t *pap)
4680 {
4681 	pt_entry_t *l2, *l3, tpte;
4682 	vm_paddr_t pa;
4683 	int val;
4684 	bool managed;
4685 
4686 	PMAP_LOCK(pmap);
4687 	l2 = pmap_l2(pmap, addr);
4688 	if (l2 != NULL && ((tpte = pmap_load(l2)) & PTE_V) != 0) {
4689 		if ((tpte & PTE_RWX) != 0) {
4690 			pa = PTE_TO_PHYS(tpte) | (addr & L2_OFFSET);
4691 			val = MINCORE_INCORE | MINCORE_PSIND(1);
4692 		} else {
4693 			l3 = pmap_l2_to_l3(l2, addr);
4694 			tpte = pmap_load(l3);
4695 			if ((tpte & PTE_V) == 0) {
4696 				PMAP_UNLOCK(pmap);
4697 				return (0);
4698 			}
4699 			pa = PTE_TO_PHYS(tpte) | (addr & L3_OFFSET);
4700 			val = MINCORE_INCORE;
4701 		}
4702 
4703 		if ((tpte & PTE_D) != 0)
4704 			val |= MINCORE_MODIFIED | MINCORE_MODIFIED_OTHER;
4705 		if ((tpte & PTE_A) != 0)
4706 			val |= MINCORE_REFERENCED | MINCORE_REFERENCED_OTHER;
4707 		managed = (tpte & PTE_SW_MANAGED) == PTE_SW_MANAGED;
4708 	} else {
4709 		managed = false;
4710 		val = 0;
4711 	}
4712 	if ((val & (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER)) !=
4713 	    (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER) && managed) {
4714 		*pap = pa;
4715 	}
4716 	PMAP_UNLOCK(pmap);
4717 	return (val);
4718 }
4719 
4720 void
4721 pmap_activate_sw(struct thread *td)
4722 {
4723 	pmap_t oldpmap, pmap;
4724 	u_int hart;
4725 
4726 	oldpmap = PCPU_GET(curpmap);
4727 	pmap = vmspace_pmap(td->td_proc->p_vmspace);
4728 	if (pmap == oldpmap)
4729 		return;
4730 	csr_write(satp, pmap->pm_satp);
4731 
4732 	hart = PCPU_GET(hart);
4733 #ifdef SMP
4734 	CPU_SET_ATOMIC(hart, &pmap->pm_active);
4735 	CPU_CLR_ATOMIC(hart, &oldpmap->pm_active);
4736 #else
4737 	CPU_SET(hart, &pmap->pm_active);
4738 	CPU_CLR(hart, &oldpmap->pm_active);
4739 #endif
4740 	PCPU_SET(curpmap, pmap);
4741 
4742 	sfence_vma();
4743 }
4744 
4745 void
4746 pmap_activate(struct thread *td)
4747 {
4748 
4749 	critical_enter();
4750 	pmap_activate_sw(td);
4751 	critical_exit();
4752 }
4753 
4754 void
4755 pmap_activate_boot(pmap_t pmap)
4756 {
4757 	u_int hart;
4758 
4759 	hart = PCPU_GET(hart);
4760 #ifdef SMP
4761 	CPU_SET_ATOMIC(hart, &pmap->pm_active);
4762 #else
4763 	CPU_SET(hart, &pmap->pm_active);
4764 #endif
4765 	PCPU_SET(curpmap, pmap);
4766 }
4767 
4768 void
4769 pmap_active_cpus(pmap_t pmap, cpuset_t *res)
4770 {
4771 	*res = pmap->pm_active;
4772 }
4773 
4774 void
4775 pmap_sync_icache(pmap_t pmap, vm_offset_t va, vm_size_t sz)
4776 {
4777 	cpuset_t mask;
4778 
4779 	/*
4780 	 * From the RISC-V User-Level ISA V2.2:
4781 	 *
4782 	 * "To make a store to instruction memory visible to all
4783 	 * RISC-V harts, the writing hart has to execute a data FENCE
4784 	 * before requesting that all remote RISC-V harts execute a
4785 	 * FENCE.I."
4786 	 *
4787 	 * However, this is slightly misleading; we still need to
4788 	 * perform a FENCE.I for the local hart, as FENCE does nothing
4789 	 * for its icache. FENCE.I alone is also sufficient for the
4790 	 * local hart.
4791 	 */
4792 	sched_pin();
4793 	mask = all_harts;
4794 	CPU_CLR(PCPU_GET(hart), &mask);
4795 	fence_i();
4796 	if (!CPU_EMPTY(&mask) && smp_started) {
4797 		fence();
4798 		sbi_remote_fence_i(mask.__bits);
4799 	}
4800 	sched_unpin();
4801 }
4802 
4803 /*
4804  *	Increase the starting virtual address of the given mapping if a
4805  *	different alignment might result in more superpage mappings.
4806  */
4807 void
4808 pmap_align_superpage(vm_object_t object, vm_ooffset_t offset,
4809     vm_offset_t *addr, vm_size_t size)
4810 {
4811 	vm_offset_t superpage_offset;
4812 
4813 	if (size < L2_SIZE)
4814 		return;
4815 	if (object != NULL && (object->flags & OBJ_COLORED) != 0)
4816 		offset += ptoa(object->pg_color);
4817 	superpage_offset = offset & L2_OFFSET;
4818 	if (size - ((L2_SIZE - superpage_offset) & L2_OFFSET) < L2_SIZE ||
4819 	    (*addr & L2_OFFSET) == superpage_offset)
4820 		return;
4821 	if ((*addr & L2_OFFSET) < superpage_offset)
4822 		*addr = (*addr & ~L2_OFFSET) + superpage_offset;
4823 	else
4824 		*addr = ((*addr + L2_OFFSET) & ~L2_OFFSET) + superpage_offset;
4825 }
4826 
4827 /**
4828  * Get the kernel virtual address of a set of physical pages. If there are
4829  * physical addresses not covered by the DMAP perform a transient mapping
4830  * that will be removed when calling pmap_unmap_io_transient.
4831  *
4832  * \param page        The pages the caller wishes to obtain the virtual
4833  *                    address on the kernel memory map.
4834  * \param vaddr       On return contains the kernel virtual memory address
4835  *                    of the pages passed in the page parameter.
4836  * \param count       Number of pages passed in.
4837  * \param can_fault   true if the thread using the mapped pages can take
4838  *                    page faults, false otherwise.
4839  *
4840  * \returns true if the caller must call pmap_unmap_io_transient when
4841  *          finished or false otherwise.
4842  *
4843  */
4844 bool
4845 pmap_map_io_transient(vm_page_t page[], vm_offset_t vaddr[], int count,
4846     bool can_fault)
4847 {
4848 	vm_paddr_t paddr;
4849 	bool needs_mapping;
4850 	int error __diagused, i;
4851 
4852 	/*
4853 	 * Allocate any KVA space that we need, this is done in a separate
4854 	 * loop to prevent calling vmem_alloc while pinned.
4855 	 */
4856 	needs_mapping = false;
4857 	for (i = 0; i < count; i++) {
4858 		paddr = VM_PAGE_TO_PHYS(page[i]);
4859 		if (__predict_false(paddr >= DMAP_MAX_PHYSADDR)) {
4860 			error = vmem_alloc(kernel_arena, PAGE_SIZE,
4861 			    M_BESTFIT | M_WAITOK, &vaddr[i]);
4862 			KASSERT(error == 0, ("vmem_alloc failed: %d", error));
4863 			needs_mapping = true;
4864 		} else {
4865 			vaddr[i] = PHYS_TO_DMAP(paddr);
4866 		}
4867 	}
4868 
4869 	/* Exit early if everything is covered by the DMAP */
4870 	if (!needs_mapping)
4871 		return (false);
4872 
4873 	if (!can_fault)
4874 		sched_pin();
4875 	for (i = 0; i < count; i++) {
4876 		paddr = VM_PAGE_TO_PHYS(page[i]);
4877 		if (paddr >= DMAP_MAX_PHYSADDR) {
4878 			panic(
4879 			   "pmap_map_io_transient: TODO: Map out of DMAP data");
4880 		}
4881 	}
4882 
4883 	return (needs_mapping);
4884 }
4885 
4886 void
4887 pmap_unmap_io_transient(vm_page_t page[], vm_offset_t vaddr[], int count,
4888     bool can_fault)
4889 {
4890 	vm_paddr_t paddr;
4891 	int i;
4892 
4893 	if (!can_fault)
4894 		sched_unpin();
4895 	for (i = 0; i < count; i++) {
4896 		paddr = VM_PAGE_TO_PHYS(page[i]);
4897 		if (paddr >= DMAP_MAX_PHYSADDR) {
4898 			panic("RISCVTODO: pmap_unmap_io_transient: Unmap data");
4899 		}
4900 	}
4901 }
4902 
4903 boolean_t
4904 pmap_is_valid_memattr(pmap_t pmap __unused, vm_memattr_t mode)
4905 {
4906 
4907 	return (mode >= VM_MEMATTR_DEVICE && mode <= VM_MEMATTR_WRITE_BACK);
4908 }
4909 
4910 bool
4911 pmap_get_tables(pmap_t pmap, vm_offset_t va, pd_entry_t **l1, pd_entry_t **l2,
4912     pt_entry_t **l3)
4913 {
4914 	pd_entry_t *l1p, *l2p;
4915 
4916 	/* Get l1 directory entry. */
4917 	l1p = pmap_l1(pmap, va);
4918 	*l1 = l1p;
4919 
4920 	if (l1p == NULL || (pmap_load(l1p) & PTE_V) == 0)
4921 		return (false);
4922 
4923 	if ((pmap_load(l1p) & PTE_RX) != 0) {
4924 		*l2 = NULL;
4925 		*l3 = NULL;
4926 		return (true);
4927 	}
4928 
4929 	/* Get l2 directory entry. */
4930 	l2p = pmap_l1_to_l2(l1p, va);
4931 	*l2 = l2p;
4932 
4933 	if (l2p == NULL || (pmap_load(l2p) & PTE_V) == 0)
4934 		return (false);
4935 
4936 	if ((pmap_load(l2p) & PTE_RX) != 0) {
4937 		*l3 = NULL;
4938 		return (true);
4939 	}
4940 
4941 	/* Get l3 page table entry. */
4942 	*l3 = pmap_l2_to_l3(l2p, va);
4943 
4944 	return (true);
4945 }
4946 
4947 /*
4948  * Track a range of the kernel's virtual address space that is contiguous
4949  * in various mapping attributes.
4950  */
4951 struct pmap_kernel_map_range {
4952 	vm_offset_t sva;
4953 	pt_entry_t attrs;
4954 	int l3pages;
4955 	int l2pages;
4956 	int l1pages;
4957 };
4958 
4959 static void
4960 sysctl_kmaps_dump(struct sbuf *sb, struct pmap_kernel_map_range *range,
4961     vm_offset_t eva)
4962 {
4963 
4964 	if (eva <= range->sva)
4965 		return;
4966 
4967 	sbuf_printf(sb, "0x%016lx-0x%016lx r%c%c%c%c %d %d %d\n",
4968 	    range->sva, eva,
4969 	    (range->attrs & PTE_W) == PTE_W ? 'w' : '-',
4970 	    (range->attrs & PTE_X) == PTE_X ? 'x' : '-',
4971 	    (range->attrs & PTE_U) == PTE_U ? 'u' : 's',
4972 	    (range->attrs & PTE_G) == PTE_G ? 'g' : '-',
4973 	    range->l1pages, range->l2pages, range->l3pages);
4974 
4975 	/* Reset to sentinel value. */
4976 	range->sva = 0xfffffffffffffffful;
4977 }
4978 
4979 /*
4980  * Determine whether the attributes specified by a page table entry match those
4981  * being tracked by the current range.
4982  */
4983 static bool
4984 sysctl_kmaps_match(struct pmap_kernel_map_range *range, pt_entry_t attrs)
4985 {
4986 
4987 	return (range->attrs == attrs);
4988 }
4989 
4990 static void
4991 sysctl_kmaps_reinit(struct pmap_kernel_map_range *range, vm_offset_t va,
4992     pt_entry_t attrs)
4993 {
4994 
4995 	memset(range, 0, sizeof(*range));
4996 	range->sva = va;
4997 	range->attrs = attrs;
4998 }
4999 
5000 /*
5001  * Given a leaf PTE, derive the mapping's attributes. If they do not match
5002  * those of the current run, dump the address range and its attributes, and
5003  * begin a new run.
5004  */
5005 static void
5006 sysctl_kmaps_check(struct sbuf *sb, struct pmap_kernel_map_range *range,
5007     vm_offset_t va, pd_entry_t l1e, pd_entry_t l2e, pt_entry_t l3e)
5008 {
5009 	pt_entry_t attrs;
5010 
5011 	/* The PTE global bit is inherited by lower levels. */
5012 	attrs = l1e & PTE_G;
5013 	if ((l1e & PTE_RWX) != 0)
5014 		attrs |= l1e & (PTE_RWX | PTE_U);
5015 	else if (l2e != 0)
5016 		attrs |= l2e & PTE_G;
5017 	if ((l2e & PTE_RWX) != 0)
5018 		attrs |= l2e & (PTE_RWX | PTE_U);
5019 	else if (l3e != 0)
5020 		attrs |= l3e & (PTE_RWX | PTE_U | PTE_G);
5021 
5022 	if (range->sva > va || !sysctl_kmaps_match(range, attrs)) {
5023 		sysctl_kmaps_dump(sb, range, va);
5024 		sysctl_kmaps_reinit(range, va, attrs);
5025 	}
5026 }
5027 
5028 static int
5029 sysctl_kmaps(SYSCTL_HANDLER_ARGS)
5030 {
5031 	struct pmap_kernel_map_range range;
5032 	struct sbuf sbuf, *sb;
5033 	pd_entry_t l1e, *l2, l2e;
5034 	pt_entry_t *l3, l3e;
5035 	vm_offset_t sva;
5036 	vm_paddr_t pa;
5037 	int error, i, j, k;
5038 
5039 	error = sysctl_wire_old_buffer(req, 0);
5040 	if (error != 0)
5041 		return (error);
5042 	sb = &sbuf;
5043 	sbuf_new_for_sysctl(sb, NULL, PAGE_SIZE, req);
5044 
5045 	/* Sentinel value. */
5046 	range.sva = 0xfffffffffffffffful;
5047 
5048 	/*
5049 	 * Iterate over the kernel page tables without holding the kernel pmap
5050 	 * lock. Kernel page table pages are never freed, so at worst we will
5051 	 * observe inconsistencies in the output.
5052 	 */
5053 	sva = VM_MIN_KERNEL_ADDRESS;
5054 	for (i = pmap_l1_index(sva); i < Ln_ENTRIES; i++) {
5055 		if (i == pmap_l1_index(DMAP_MIN_ADDRESS))
5056 			sbuf_printf(sb, "\nDirect map:\n");
5057 		else if (i == pmap_l1_index(VM_MIN_KERNEL_ADDRESS))
5058 			sbuf_printf(sb, "\nKernel map:\n");
5059 
5060 		l1e = kernel_pmap->pm_top[i];
5061 		if ((l1e & PTE_V) == 0) {
5062 			sysctl_kmaps_dump(sb, &range, sva);
5063 			sva += L1_SIZE;
5064 			continue;
5065 		}
5066 		if ((l1e & PTE_RWX) != 0) {
5067 			sysctl_kmaps_check(sb, &range, sva, l1e, 0, 0);
5068 			range.l1pages++;
5069 			sva += L1_SIZE;
5070 			continue;
5071 		}
5072 		pa = PTE_TO_PHYS(l1e);
5073 		l2 = (pd_entry_t *)PHYS_TO_DMAP(pa);
5074 
5075 		for (j = pmap_l2_index(sva); j < Ln_ENTRIES; j++) {
5076 			l2e = l2[j];
5077 			if ((l2e & PTE_V) == 0) {
5078 				sysctl_kmaps_dump(sb, &range, sva);
5079 				sva += L2_SIZE;
5080 				continue;
5081 			}
5082 			if ((l2e & PTE_RWX) != 0) {
5083 				sysctl_kmaps_check(sb, &range, sva, l1e, l2e, 0);
5084 				range.l2pages++;
5085 				sva += L2_SIZE;
5086 				continue;
5087 			}
5088 			pa = PTE_TO_PHYS(l2e);
5089 			l3 = (pd_entry_t *)PHYS_TO_DMAP(pa);
5090 
5091 			for (k = pmap_l3_index(sva); k < Ln_ENTRIES; k++,
5092 			    sva += L3_SIZE) {
5093 				l3e = l3[k];
5094 				if ((l3e & PTE_V) == 0) {
5095 					sysctl_kmaps_dump(sb, &range, sva);
5096 					continue;
5097 				}
5098 				sysctl_kmaps_check(sb, &range, sva,
5099 				    l1e, l2e, l3e);
5100 				range.l3pages++;
5101 			}
5102 		}
5103 	}
5104 
5105 	error = sbuf_finish(sb);
5106 	sbuf_delete(sb);
5107 	return (error);
5108 }
5109 SYSCTL_OID(_vm_pmap, OID_AUTO, kernel_maps,
5110     CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE | CTLFLAG_SKIP,
5111     NULL, 0, sysctl_kmaps, "A",
5112     "Dump kernel address layout");
5113