xref: /freebsd/sys/sys/smr.h (revision 10ff414c)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2019, 2020 Jeffrey Roberson <jeff@FreeBSD.org>
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice unmodified, this list of conditions, and the following
11  *    disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26  *
27  * $FreeBSD$
28  *
29  */
30 
31 #ifndef _SYS_SMR_H_
32 #define	_SYS_SMR_H_
33 
34 #include <sys/_smr.h>
35 
36 /*
37  * Safe memory reclamation.  See subr_smr.c for a description of the
38  * algorithm, and smr_types.h for macros to define and access SMR-protected
39  * data structures.
40  *
41  * Readers synchronize with smr_enter()/exit() and writers may either
42  * free directly to a SMR UMA zone or use smr_synchronize or wait.
43  */
44 
45 /*
46  * Modular arithmetic for comparing sequence numbers that have
47  * potentially wrapped.  Copied from tcp_seq.h.
48  */
49 #define	SMR_SEQ_LT(a, b)	((smr_delta_t)((a)-(b)) < 0)
50 #define	SMR_SEQ_LEQ(a, b)	((smr_delta_t)((a)-(b)) <= 0)
51 #define	SMR_SEQ_GT(a, b)	((smr_delta_t)((a)-(b)) > 0)
52 #define	SMR_SEQ_GEQ(a, b)	((smr_delta_t)((a)-(b)) >= 0)
53 #define	SMR_SEQ_DELTA(a, b)	((smr_delta_t)((a)-(b)))
54 #define	SMR_SEQ_MIN(a, b)	(SMR_SEQ_LT((a), (b)) ? (a) : (b))
55 #define	SMR_SEQ_MAX(a, b)	(SMR_SEQ_GT((a), (b)) ? (a) : (b))
56 
57 #define	SMR_SEQ_INVALID		0
58 
59 /* Shared SMR state. */
60 union s_wr {
61 	struct {
62 		smr_seq_t	seq;	/* Current write sequence #. */
63 		int		ticks;	/* tick of last update (LAZY) */
64 	};
65 	uint64_t	_pair;
66 };
67 struct smr_shared {
68 	const char	*s_name;	/* Name for debugging/reporting. */
69 	union s_wr	s_wr;		/* Write sequence */
70 	smr_seq_t	s_rd_seq;	/* Minimum observed read sequence. */
71 };
72 typedef struct smr_shared *smr_shared_t;
73 
74 /* Per-cpu SMR state. */
75 struct smr {
76 	smr_seq_t	c_seq;		/* Current observed sequence. */
77 	smr_shared_t	c_shared;	/* Shared SMR state. */
78 	int		c_deferred;	/* Deferred advance counter. */
79 	int		c_limit;	/* Deferred advance limit. */
80 	int		c_flags;	/* SMR Configuration */
81 };
82 
83 #define	SMR_LAZY	0x0001		/* Higher latency write, fast read. */
84 #define	SMR_DEFERRED	0x0002		/* Aggregate updates to wr_seq. */
85 
86 /*
87  * Return the current write sequence number.  This is not the same as the
88  * current goal which may be in the future.
89  */
90 static inline smr_seq_t
91 smr_shared_current(smr_shared_t s)
92 {
93 
94 	return (atomic_load_int(&s->s_wr.seq));
95 }
96 
97 static inline smr_seq_t
98 smr_current(smr_t smr)
99 {
100 
101 	return (smr_shared_current(zpcpu_get(smr)->c_shared));
102 }
103 
104 /*
105  * Enter a read section.
106  */
107 static inline void
108 smr_enter(smr_t smr)
109 {
110 
111 	critical_enter();
112 	smr = zpcpu_get(smr);
113 	KASSERT((smr->c_flags & SMR_LAZY) == 0,
114 	    ("smr_enter(%s) lazy smr.", smr->c_shared->s_name));
115 	KASSERT(smr->c_seq == 0,
116 	    ("smr_enter(%s) does not support recursion.",
117 	    smr->c_shared->s_name));
118 
119 	/*
120 	 * Store the current observed write sequence number in our
121 	 * per-cpu state so that it can be queried via smr_poll().
122 	 * Frees that are newer than this stored value will be
123 	 * deferred until we call smr_exit().
124 	 *
125 	 * An acquire barrier is used to synchronize with smr_exit()
126 	 * and smr_poll().
127 	 *
128 	 * It is possible that a long delay between loading the wr_seq
129 	 * and storing the c_seq could create a situation where the
130 	 * rd_seq advances beyond our stored c_seq.  In this situation
131 	 * only the observed wr_seq is stale, the fence still orders
132 	 * the load.  See smr_poll() for details on how this condition
133 	 * is detected and handled there.
134 	 */
135 	/* This is an add because we do not have atomic_store_acq_int */
136 	atomic_add_acq_int(&smr->c_seq, smr_shared_current(smr->c_shared));
137 }
138 
139 /*
140  * Exit a read section.
141  */
142 static inline void
143 smr_exit(smr_t smr)
144 {
145 
146 	smr = zpcpu_get(smr);
147 	CRITICAL_ASSERT(curthread);
148 	KASSERT((smr->c_flags & SMR_LAZY) == 0,
149 	    ("smr_exit(%s) lazy smr.", smr->c_shared->s_name));
150 	KASSERT(smr->c_seq != SMR_SEQ_INVALID,
151 	    ("smr_exit(%s) not in a smr section.", smr->c_shared->s_name));
152 
153 	/*
154 	 * Clear the recorded sequence number.  This allows poll() to
155 	 * detect CPUs not in read sections.
156 	 *
157 	 * Use release semantics to retire any stores before the sequence
158 	 * number is cleared.
159 	 */
160 	atomic_store_rel_int(&smr->c_seq, SMR_SEQ_INVALID);
161 	critical_exit();
162 }
163 
164 /*
165  * Enter a lazy smr section.  This is used for read-mostly state that
166  * can tolerate a high free latency.
167  */
168 static inline void
169 smr_lazy_enter(smr_t smr)
170 {
171 
172 	critical_enter();
173 	smr = zpcpu_get(smr);
174 	KASSERT((smr->c_flags & SMR_LAZY) != 0,
175 	    ("smr_lazy_enter(%s) non-lazy smr.", smr->c_shared->s_name));
176 	KASSERT(smr->c_seq == 0,
177 	    ("smr_lazy_enter(%s) does not support recursion.",
178 	    smr->c_shared->s_name));
179 
180 	/*
181 	 * This needs no serialization.  If an interrupt occurs before we
182 	 * assign sr_seq to c_seq any speculative loads will be discarded.
183 	 * If we assign a stale wr_seq value due to interrupt we use the
184 	 * same algorithm that renders smr_enter() safe.
185 	 */
186 	atomic_store_int(&smr->c_seq, smr_shared_current(smr->c_shared));
187 }
188 
189 /*
190  * Exit a lazy smr section.  This is used for read-mostly state that
191  * can tolerate a high free latency.
192  */
193 static inline void
194 smr_lazy_exit(smr_t smr)
195 {
196 
197 	smr = zpcpu_get(smr);
198 	CRITICAL_ASSERT(curthread);
199 	KASSERT((smr->c_flags & SMR_LAZY) != 0,
200 	    ("smr_lazy_enter(%s) non-lazy smr.", smr->c_shared->s_name));
201 	KASSERT(smr->c_seq != SMR_SEQ_INVALID,
202 	    ("smr_lazy_exit(%s) not in a smr section.", smr->c_shared->s_name));
203 
204 	/*
205 	 * All loads/stores must be retired before the sequence becomes
206 	 * visible.  The fence compiles away on amd64.  Another
207 	 * alternative would be to omit the fence but store the exit
208 	 * time and wait 1 tick longer.
209 	 */
210 	atomic_thread_fence_rel();
211 	atomic_store_int(&smr->c_seq, SMR_SEQ_INVALID);
212 	critical_exit();
213 }
214 
215 /*
216  * Advances the write sequence number.  Returns the sequence number
217  * required to ensure that all modifications are visible to readers.
218  */
219 smr_seq_t smr_advance(smr_t smr);
220 
221 /*
222  * Returns true if a goal sequence has been reached.  If
223  * wait is true this will busy loop until success.
224  */
225 bool smr_poll(smr_t smr, smr_seq_t goal, bool wait);
226 
227 /* Create a new SMR context. */
228 smr_t smr_create(const char *name, int limit, int flags);
229 
230 /* Destroy the context. */
231 void smr_destroy(smr_t smr);
232 
233 /*
234  * Blocking wait for all readers to observe 'goal'.
235  */
236 static inline bool
237 smr_wait(smr_t smr, smr_seq_t goal)
238 {
239 
240 	return (smr_poll(smr, goal, true));
241 }
242 
243 /*
244  * Synchronize advances the write sequence and returns when all
245  * readers have observed it.
246  *
247  * If your application can cache a sequence number returned from
248  * smr_advance() and poll or wait at a later time there will
249  * be less chance of busy looping while waiting for readers.
250  */
251 static inline void
252 smr_synchronize(smr_t smr)
253 {
254 
255         smr_wait(smr, smr_advance(smr));
256 }
257 
258 /* Only at startup. */
259 void smr_init(void);
260 
261 #endif	/* _SYS_SMR_H_ */
262