xref: /freebsd/sys/sys/time.h (revision 716fd348)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1982, 1986, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. Neither the name of the University nor the names of its contributors
16  *    may be used to endorse or promote products derived from this software
17  *    without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  *
31  *	@(#)time.h	8.5 (Berkeley) 5/4/95
32  * $FreeBSD$
33  */
34 
35 #ifndef _SYS_TIME_H_
36 #define	_SYS_TIME_H_
37 
38 #include <sys/_timeval.h>
39 #include <sys/types.h>
40 #include <sys/timespec.h>
41 #include <sys/_clock_id.h>
42 
43 struct timezone {
44 	int	tz_minuteswest;	/* minutes west of Greenwich */
45 	int	tz_dsttime;	/* type of dst correction */
46 };
47 #define	DST_NONE	0	/* not on dst */
48 #define	DST_USA		1	/* USA style dst */
49 #define	DST_AUST	2	/* Australian style dst */
50 #define	DST_WET		3	/* Western European dst */
51 #define	DST_MET		4	/* Middle European dst */
52 #define	DST_EET		5	/* Eastern European dst */
53 #define	DST_CAN		6	/* Canada */
54 
55 #if __BSD_VISIBLE
56 struct bintime {
57 	time_t	sec;
58 	uint64_t frac;
59 };
60 
61 static __inline void
62 bintime_addx(struct bintime *_bt, uint64_t _x)
63 {
64 	uint64_t _u;
65 
66 	_u = _bt->frac;
67 	_bt->frac += _x;
68 	if (_u > _bt->frac)
69 		_bt->sec++;
70 }
71 
72 static __inline void
73 bintime_add(struct bintime *_bt, const struct bintime *_bt2)
74 {
75 	uint64_t _u;
76 
77 	_u = _bt->frac;
78 	_bt->frac += _bt2->frac;
79 	if (_u > _bt->frac)
80 		_bt->sec++;
81 	_bt->sec += _bt2->sec;
82 }
83 
84 static __inline void
85 bintime_sub(struct bintime *_bt, const struct bintime *_bt2)
86 {
87 	uint64_t _u;
88 
89 	_u = _bt->frac;
90 	_bt->frac -= _bt2->frac;
91 	if (_u < _bt->frac)
92 		_bt->sec--;
93 	_bt->sec -= _bt2->sec;
94 }
95 
96 static __inline void
97 bintime_mul(struct bintime *_bt, u_int _x)
98 {
99 	uint64_t _p1, _p2;
100 
101 	_p1 = (_bt->frac & 0xffffffffull) * _x;
102 	_p2 = (_bt->frac >> 32) * _x + (_p1 >> 32);
103 	_bt->sec *= _x;
104 	_bt->sec += (_p2 >> 32);
105 	_bt->frac = (_p2 << 32) | (_p1 & 0xffffffffull);
106 }
107 
108 static __inline void
109 bintime_shift(struct bintime *_bt, int _exp)
110 {
111 
112 	if (_exp > 0) {
113 		_bt->sec <<= _exp;
114 		_bt->sec |= _bt->frac >> (64 - _exp);
115 		_bt->frac <<= _exp;
116 	} else if (_exp < 0) {
117 		_bt->frac >>= -_exp;
118 		_bt->frac |= (uint64_t)_bt->sec << (64 + _exp);
119 		_bt->sec >>= -_exp;
120 	}
121 }
122 
123 #define	bintime_clear(a)	((a)->sec = (a)->frac = 0)
124 #define	bintime_isset(a)	((a)->sec || (a)->frac)
125 #define	bintime_cmp(a, b, cmp)						\
126 	(((a)->sec == (b)->sec) ?					\
127 	    ((a)->frac cmp (b)->frac) :					\
128 	    ((a)->sec cmp (b)->sec))
129 
130 #define	SBT_1S	((sbintime_t)1 << 32)
131 #define	SBT_1M	(SBT_1S * 60)
132 #define	SBT_1MS	(SBT_1S / 1000)
133 #define	SBT_1US	(SBT_1S / 1000000)
134 #define	SBT_1NS	(SBT_1S / 1000000000) /* beware rounding, see nstosbt() */
135 #define	SBT_MAX	0x7fffffffffffffffLL
136 
137 static __inline int
138 sbintime_getsec(sbintime_t _sbt)
139 {
140 
141 	return (_sbt >> 32);
142 }
143 
144 static __inline sbintime_t
145 bttosbt(const struct bintime _bt)
146 {
147 
148 	return (((sbintime_t)_bt.sec << 32) + (_bt.frac >> 32));
149 }
150 
151 static __inline struct bintime
152 sbttobt(sbintime_t _sbt)
153 {
154 	struct bintime _bt;
155 
156 	_bt.sec = _sbt >> 32;
157 	_bt.frac = _sbt << 32;
158 	return (_bt);
159 }
160 
161 /*
162  * Decimal<->sbt conversions.  Multiplying or dividing by SBT_1NS results in
163  * large roundoff errors which sbttons() and nstosbt() avoid.  Millisecond and
164  * microsecond functions are also provided for completeness.
165  *
166  * These functions return the smallest sbt larger or equal to the
167  * number of seconds requested so that sbttoX(Xtosbt(y)) == y.  Unlike
168  * top of second computations below, which require that we tick at the
169  * top of second, these need to be rounded up so we do whatever for at
170  * least as long as requested.
171  *
172  * The naive computation we'd do is this
173  *	((unit * 2^64 / SIFACTOR) + 2^32-1) >> 32
174  * However, that overflows. Instead, we compute
175  *	((unit * 2^63 / SIFACTOR) + 2^31-1) >> 32
176  * and use pre-computed constants that are the ceil of the 2^63 / SIFACTOR
177  * term to ensure we are using exactly the right constant. We use the lesser
178  * evil of ull rather than a uint64_t cast to ensure we have well defined
179  * right shift semantics. With these changes, we get all the ns, us and ms
180  * conversions back and forth right.
181  * Note: This file is used for both kernel and userland includes, so we can't
182  * rely on KASSERT being defined, nor can we pollute the namespace by including
183  * assert.h.
184  */
185 static __inline int64_t
186 sbttons(sbintime_t _sbt)
187 {
188 	uint64_t ns;
189 
190 #ifdef KASSERT
191 	KASSERT(_sbt >= 0, ("Negative values illegal for sbttons: %jx", _sbt));
192 #endif
193 	ns = _sbt;
194 	if (ns >= SBT_1S)
195 		ns = (ns >> 32) * 1000000000;
196 	else
197 		ns = 0;
198 
199 	return (ns + (1000000000 * (_sbt & 0xffffffffu) >> 32));
200 }
201 
202 static __inline sbintime_t
203 nstosbt(int64_t _ns)
204 {
205 	sbintime_t sb = 0;
206 
207 #ifdef KASSERT
208 	KASSERT(_ns >= 0, ("Negative values illegal for nstosbt: %jd", _ns));
209 #endif
210 	if (_ns >= 1000000000) {
211 		sb = (_ns / 1000000000) * SBT_1S;
212 		_ns = _ns % 1000000000;
213 	}
214 	/* 9223372037 = ceil(2^63 / 1000000000) */
215 	sb += ((_ns * 9223372037ull) + 0x7fffffff) >> 31;
216 	return (sb);
217 }
218 
219 static __inline int64_t
220 sbttous(sbintime_t _sbt)
221 {
222 
223 #ifdef KASSERT
224 	KASSERT(_sbt >= 0, ("Negative values illegal for sbttous: %jx", _sbt));
225 #endif
226 	return ((_sbt >> 32) * 1000000 +
227 		(1000000 * (_sbt & 0xffffffffu) >> 32));
228 }
229 
230 static __inline sbintime_t
231 ustosbt(int64_t _us)
232 {
233 	sbintime_t sb = 0;
234 
235 #ifdef KASSERT
236 	KASSERT(_us >= 0, ("Negative values illegal for ustosbt: %jd", _us));
237 #endif
238 	if (_us >= 1000000) {
239 		sb = (_us / 1000000) * SBT_1S;
240 		_us = _us % 1000000;
241 	}
242 	/* 9223372036855 = ceil(2^63 / 1000000) */
243 	sb += ((_us * 9223372036855ull) + 0x7fffffff) >> 31;
244 	return (sb);
245 }
246 
247 static __inline int64_t
248 sbttoms(sbintime_t _sbt)
249 {
250 #ifdef KASSERT
251 	KASSERT(_sbt >= 0, ("Negative values illegal for sbttoms: %jx", _sbt));
252 #endif
253 	return ((_sbt >> 32) * 1000 + (1000 * (_sbt & 0xffffffffu) >> 32));
254 }
255 
256 static __inline sbintime_t
257 mstosbt(int64_t _ms)
258 {
259 	sbintime_t sb = 0;
260 
261 #ifdef KASSERT
262 	KASSERT(_ms >= 0, ("Negative values illegal for mstosbt: %jd", _ms));
263 #endif
264 	if (_ms >= 1000) {
265 		sb = (_ms / 1000) * SBT_1S;
266 		_ms = _ms % 1000;
267 	}
268 	/* 9223372036854776 = ceil(2^63 / 1000) */
269 	sb += ((_ms * 9223372036854776ull) + 0x7fffffff) >> 31;
270 	return (sb);
271 }
272 
273 /*-
274  * Background information:
275  *
276  * When converting between timestamps on parallel timescales of differing
277  * resolutions it is historical and scientific practice to round down rather
278  * than doing 4/5 rounding.
279  *
280  *   The date changes at midnight, not at noon.
281  *
282  *   Even at 15:59:59.999999999 it's not four'o'clock.
283  *
284  *   time_second ticks after N.999999999 not after N.4999999999
285  */
286 
287 static __inline void
288 bintime2timespec(const struct bintime *_bt, struct timespec *_ts)
289 {
290 
291 	_ts->tv_sec = _bt->sec;
292 	_ts->tv_nsec = ((uint64_t)1000000000 *
293 	    (uint32_t)(_bt->frac >> 32)) >> 32;
294 }
295 
296 static __inline uint64_t
297 bintime2ns(const struct bintime *_bt)
298 {
299 	uint64_t ret;
300 
301 	ret = (uint64_t)(_bt->sec) * (uint64_t)1000000000;
302 	ret += (((uint64_t)1000000000 *
303 		 (uint32_t)(_bt->frac >> 32)) >> 32);
304 	return (ret);
305 }
306 
307 static __inline void
308 timespec2bintime(const struct timespec *_ts, struct bintime *_bt)
309 {
310 
311 	_bt->sec = _ts->tv_sec;
312 	/* 18446744073 = int(2^64 / 1000000000) */
313 	_bt->frac = _ts->tv_nsec * (uint64_t)18446744073LL;
314 }
315 
316 static __inline void
317 bintime2timeval(const struct bintime *_bt, struct timeval *_tv)
318 {
319 
320 	_tv->tv_sec = _bt->sec;
321 	_tv->tv_usec = ((uint64_t)1000000 * (uint32_t)(_bt->frac >> 32)) >> 32;
322 }
323 
324 static __inline void
325 timeval2bintime(const struct timeval *_tv, struct bintime *_bt)
326 {
327 
328 	_bt->sec = _tv->tv_sec;
329 	/* 18446744073709 = int(2^64 / 1000000) */
330 	_bt->frac = _tv->tv_usec * (uint64_t)18446744073709LL;
331 }
332 
333 static __inline struct timespec
334 sbttots(sbintime_t _sbt)
335 {
336 	struct timespec _ts;
337 
338 	_ts.tv_sec = _sbt >> 32;
339 	_ts.tv_nsec = sbttons((uint32_t)_sbt);
340 	return (_ts);
341 }
342 
343 static __inline sbintime_t
344 tstosbt(struct timespec _ts)
345 {
346 
347 	return (((sbintime_t)_ts.tv_sec << 32) + nstosbt(_ts.tv_nsec));
348 }
349 
350 static __inline struct timeval
351 sbttotv(sbintime_t _sbt)
352 {
353 	struct timeval _tv;
354 
355 	_tv.tv_sec = _sbt >> 32;
356 	_tv.tv_usec = sbttous((uint32_t)_sbt);
357 	return (_tv);
358 }
359 
360 static __inline sbintime_t
361 tvtosbt(struct timeval _tv)
362 {
363 
364 	return (((sbintime_t)_tv.tv_sec << 32) + ustosbt(_tv.tv_usec));
365 }
366 #endif /* __BSD_VISIBLE */
367 
368 #ifdef _KERNEL
369 /*
370  * Simple macros to convert ticks to milliseconds
371  * or microseconds and vice-versa. The answer
372  * will always be at least 1. Note the return
373  * value is a uint32_t however we step up the
374  * operations to 64 bit to avoid any overflow/underflow
375  * problems.
376  */
377 #define TICKS_2_MSEC(t) max(1, (uint32_t)(hz == 1000) ? \
378 	  (t) : (((uint64_t)(t) * (uint64_t)1000)/(uint64_t)hz))
379 #define TICKS_2_USEC(t) max(1, (uint32_t)(hz == 1000) ? \
380 	  ((t) * 1000) : (((uint64_t)(t) * (uint64_t)1000000)/(uint64_t)hz))
381 #define MSEC_2_TICKS(m) max(1, (uint32_t)((hz == 1000) ? \
382 	  (m) : ((uint64_t)(m) * (uint64_t)hz)/(uint64_t)1000))
383 #define USEC_2_TICKS(u) max(1, (uint32_t)((hz == 1000) ? \
384 	 ((u) / 1000) : ((uint64_t)(u) * (uint64_t)hz)/(uint64_t)1000000))
385 
386 #endif
387 /* Operations on timespecs */
388 #define	timespecclear(tvp)	((tvp)->tv_sec = (tvp)->tv_nsec = 0)
389 #define	timespecisset(tvp)	((tvp)->tv_sec || (tvp)->tv_nsec)
390 #define	timespeccmp(tvp, uvp, cmp)					\
391 	(((tvp)->tv_sec == (uvp)->tv_sec) ?				\
392 	    ((tvp)->tv_nsec cmp (uvp)->tv_nsec) :			\
393 	    ((tvp)->tv_sec cmp (uvp)->tv_sec))
394 
395 #define	timespecadd(tsp, usp, vsp)					\
396 	do {								\
397 		(vsp)->tv_sec = (tsp)->tv_sec + (usp)->tv_sec;		\
398 		(vsp)->tv_nsec = (tsp)->tv_nsec + (usp)->tv_nsec;	\
399 		if ((vsp)->tv_nsec >= 1000000000L) {			\
400 			(vsp)->tv_sec++;				\
401 			(vsp)->tv_nsec -= 1000000000L;			\
402 		}							\
403 	} while (0)
404 #define	timespecsub(tsp, usp, vsp)					\
405 	do {								\
406 		(vsp)->tv_sec = (tsp)->tv_sec - (usp)->tv_sec;		\
407 		(vsp)->tv_nsec = (tsp)->tv_nsec - (usp)->tv_nsec;	\
408 		if ((vsp)->tv_nsec < 0) {				\
409 			(vsp)->tv_sec--;				\
410 			(vsp)->tv_nsec += 1000000000L;			\
411 		}							\
412 	} while (0)
413 #define	timespecvalid_interval(tsp)	((tsp)->tv_sec >= 0 &&		\
414 	    (tsp)->tv_nsec >= 0 && (tsp)->tv_nsec < 1000000000L)
415 
416 #ifdef _KERNEL
417 
418 /* Operations on timevals. */
419 
420 #define	timevalclear(tvp)		((tvp)->tv_sec = (tvp)->tv_usec = 0)
421 #define	timevalisset(tvp)		((tvp)->tv_sec || (tvp)->tv_usec)
422 #define	timevalcmp(tvp, uvp, cmp)					\
423 	(((tvp)->tv_sec == (uvp)->tv_sec) ?				\
424 	    ((tvp)->tv_usec cmp (uvp)->tv_usec) :			\
425 	    ((tvp)->tv_sec cmp (uvp)->tv_sec))
426 
427 /* timevaladd and timevalsub are not inlined */
428 
429 #endif /* _KERNEL */
430 
431 #ifndef _KERNEL			/* NetBSD/OpenBSD compatible interfaces */
432 
433 #define	timerclear(tvp)		((tvp)->tv_sec = (tvp)->tv_usec = 0)
434 #define	timerisset(tvp)		((tvp)->tv_sec || (tvp)->tv_usec)
435 #define	timercmp(tvp, uvp, cmp)					\
436 	(((tvp)->tv_sec == (uvp)->tv_sec) ?				\
437 	    ((tvp)->tv_usec cmp (uvp)->tv_usec) :			\
438 	    ((tvp)->tv_sec cmp (uvp)->tv_sec))
439 #define	timeradd(tvp, uvp, vvp)						\
440 	do {								\
441 		(vvp)->tv_sec = (tvp)->tv_sec + (uvp)->tv_sec;		\
442 		(vvp)->tv_usec = (tvp)->tv_usec + (uvp)->tv_usec;	\
443 		if ((vvp)->tv_usec >= 1000000) {			\
444 			(vvp)->tv_sec++;				\
445 			(vvp)->tv_usec -= 1000000;			\
446 		}							\
447 	} while (0)
448 #define	timersub(tvp, uvp, vvp)						\
449 	do {								\
450 		(vvp)->tv_sec = (tvp)->tv_sec - (uvp)->tv_sec;		\
451 		(vvp)->tv_usec = (tvp)->tv_usec - (uvp)->tv_usec;	\
452 		if ((vvp)->tv_usec < 0) {				\
453 			(vvp)->tv_sec--;				\
454 			(vvp)->tv_usec += 1000000;			\
455 		}							\
456 	} while (0)
457 #endif
458 
459 /*
460  * Names of the interval timers, and structure
461  * defining a timer setting.
462  */
463 #define	ITIMER_REAL	0
464 #define	ITIMER_VIRTUAL	1
465 #define	ITIMER_PROF	2
466 
467 struct itimerval {
468 	struct	timeval it_interval;	/* timer interval */
469 	struct	timeval it_value;	/* current value */
470 };
471 
472 /*
473  * Getkerninfo clock information structure
474  */
475 struct clockinfo {
476 	int	hz;		/* clock frequency */
477 	int	tick;		/* micro-seconds per hz tick */
478 	int	spare;
479 	int	stathz;		/* statistics clock frequency */
480 	int	profhz;		/* profiling clock frequency */
481 };
482 
483 #if __BSD_VISIBLE
484 #define	CPUCLOCK_WHICH_PID	0
485 #define	CPUCLOCK_WHICH_TID	1
486 #endif
487 
488 #if defined(_KERNEL) || defined(_STANDALONE)
489 
490 /*
491  * Kernel to clock driver interface.
492  */
493 void	inittodr(time_t base);
494 void	resettodr(void);
495 
496 extern volatile time_t	time_second;
497 extern volatile time_t	time_uptime;
498 extern struct bintime tc_tick_bt;
499 extern sbintime_t tc_tick_sbt;
500 extern struct bintime tick_bt;
501 extern sbintime_t tick_sbt;
502 extern int tc_precexp;
503 extern int tc_timepercentage;
504 extern struct bintime bt_timethreshold;
505 extern struct bintime bt_tickthreshold;
506 extern sbintime_t sbt_timethreshold;
507 extern sbintime_t sbt_tickthreshold;
508 
509 extern volatile int rtc_generation;
510 
511 /*
512  * Functions for looking at our clock: [get]{bin,nano,micro}[up]time()
513  *
514  * Functions without the "get" prefix returns the best timestamp
515  * we can produce in the given format.
516  *
517  * "bin"   == struct bintime  == seconds + 64 bit fraction of seconds.
518  * "nano"  == struct timespec == seconds + nanoseconds.
519  * "micro" == struct timeval  == seconds + microseconds.
520  *
521  * Functions containing "up" returns time relative to boot and
522  * should be used for calculating time intervals.
523  *
524  * Functions without "up" returns UTC time.
525  *
526  * Functions with the "get" prefix returns a less precise result
527  * much faster than the functions without "get" prefix and should
528  * be used where a precision of 1/hz seconds is acceptable or where
529  * performance is priority. (NB: "precision", _not_ "resolution" !)
530  */
531 
532 void	binuptime(struct bintime *bt);
533 void	nanouptime(struct timespec *tsp);
534 void	microuptime(struct timeval *tvp);
535 
536 static __inline sbintime_t
537 sbinuptime(void)
538 {
539 	struct bintime _bt;
540 
541 	binuptime(&_bt);
542 	return (bttosbt(_bt));
543 }
544 
545 void	bintime(struct bintime *bt);
546 void	nanotime(struct timespec *tsp);
547 void	microtime(struct timeval *tvp);
548 
549 void	getbinuptime(struct bintime *bt);
550 void	getnanouptime(struct timespec *tsp);
551 void	getmicrouptime(struct timeval *tvp);
552 
553 static __inline sbintime_t
554 getsbinuptime(void)
555 {
556 	struct bintime _bt;
557 
558 	getbinuptime(&_bt);
559 	return (bttosbt(_bt));
560 }
561 
562 void	getbintime(struct bintime *bt);
563 void	getnanotime(struct timespec *tsp);
564 void	getmicrotime(struct timeval *tvp);
565 
566 void	getboottime(struct timeval *boottime);
567 void	getboottimebin(struct bintime *boottimebin);
568 
569 /* Other functions */
570 int	itimerdecr(struct itimerval *itp, int usec);
571 int	itimerfix(struct timeval *tv);
572 int	ppsratecheck(struct timeval *, int *, int);
573 int	ratecheck(struct timeval *, const struct timeval *);
574 void	timevaladd(struct timeval *t1, const struct timeval *t2);
575 void	timevalsub(struct timeval *t1, const struct timeval *t2);
576 int	tvtohz(struct timeval *tv);
577 
578 #define	TC_DEFAULTPERC		5
579 
580 #define	BT2FREQ(bt)                                                     \
581 	(((uint64_t)0x8000000000000000 + ((bt)->frac >> 2)) /           \
582 	    ((bt)->frac >> 1))
583 
584 #define	SBT2FREQ(sbt)	((SBT_1S + ((sbt) >> 1)) / (sbt))
585 
586 #define	FREQ2BT(freq, bt)                                               \
587 {									\
588 	(bt)->sec = 0;                                                  \
589 	(bt)->frac = ((uint64_t)0x8000000000000000  / (freq)) << 1;     \
590 }
591 
592 #define	TIMESEL(sbt, sbt2)						\
593 	(((sbt2) >= sbt_timethreshold) ?				\
594 	    ((*(sbt) = getsbinuptime()), 1) : ((*(sbt) = sbinuptime()), 0))
595 
596 #else /* !_KERNEL && !_STANDALONE */
597 #include <time.h>
598 
599 #include <sys/cdefs.h>
600 #include <sys/select.h>
601 
602 __BEGIN_DECLS
603 int	setitimer(int, const struct itimerval *, struct itimerval *);
604 int	utimes(const char *, const struct timeval *);
605 
606 #if __BSD_VISIBLE
607 int	adjtime(const struct timeval *, struct timeval *);
608 int	clock_getcpuclockid2(id_t, int, clockid_t *);
609 int	futimes(int, const struct timeval *);
610 int	futimesat(int, const char *, const struct timeval [2]);
611 int	lutimes(const char *, const struct timeval *);
612 int	settimeofday(const struct timeval *, const struct timezone *);
613 #endif
614 
615 #if __XSI_VISIBLE
616 int	getitimer(int, struct itimerval *);
617 int	gettimeofday(struct timeval *, struct timezone *);
618 #endif
619 
620 __END_DECLS
621 
622 #endif /* !_KERNEL */
623 
624 #endif /* !_SYS_TIME_H_ */
625