xref: /freebsd/sys/sys/time.h (revision e17f5b1d)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1982, 1986, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. Neither the name of the University nor the names of its contributors
16  *    may be used to endorse or promote products derived from this software
17  *    without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  *
31  *	@(#)time.h	8.5 (Berkeley) 5/4/95
32  * $FreeBSD$
33  */
34 
35 #ifndef _SYS_TIME_H_
36 #define	_SYS_TIME_H_
37 
38 #include <sys/_timeval.h>
39 #include <sys/types.h>
40 #include <sys/timespec.h>
41 
42 struct timezone {
43 	int	tz_minuteswest;	/* minutes west of Greenwich */
44 	int	tz_dsttime;	/* type of dst correction */
45 };
46 #define	DST_NONE	0	/* not on dst */
47 #define	DST_USA		1	/* USA style dst */
48 #define	DST_AUST	2	/* Australian style dst */
49 #define	DST_WET		3	/* Western European dst */
50 #define	DST_MET		4	/* Middle European dst */
51 #define	DST_EET		5	/* Eastern European dst */
52 #define	DST_CAN		6	/* Canada */
53 
54 #if __BSD_VISIBLE
55 struct bintime {
56 	time_t	sec;
57 	uint64_t frac;
58 };
59 
60 static __inline void
61 bintime_addx(struct bintime *_bt, uint64_t _x)
62 {
63 	uint64_t _u;
64 
65 	_u = _bt->frac;
66 	_bt->frac += _x;
67 	if (_u > _bt->frac)
68 		_bt->sec++;
69 }
70 
71 static __inline void
72 bintime_add(struct bintime *_bt, const struct bintime *_bt2)
73 {
74 	uint64_t _u;
75 
76 	_u = _bt->frac;
77 	_bt->frac += _bt2->frac;
78 	if (_u > _bt->frac)
79 		_bt->sec++;
80 	_bt->sec += _bt2->sec;
81 }
82 
83 static __inline void
84 bintime_sub(struct bintime *_bt, const struct bintime *_bt2)
85 {
86 	uint64_t _u;
87 
88 	_u = _bt->frac;
89 	_bt->frac -= _bt2->frac;
90 	if (_u < _bt->frac)
91 		_bt->sec--;
92 	_bt->sec -= _bt2->sec;
93 }
94 
95 static __inline void
96 bintime_mul(struct bintime *_bt, u_int _x)
97 {
98 	uint64_t _p1, _p2;
99 
100 	_p1 = (_bt->frac & 0xffffffffull) * _x;
101 	_p2 = (_bt->frac >> 32) * _x + (_p1 >> 32);
102 	_bt->sec *= _x;
103 	_bt->sec += (_p2 >> 32);
104 	_bt->frac = (_p2 << 32) | (_p1 & 0xffffffffull);
105 }
106 
107 static __inline void
108 bintime_shift(struct bintime *_bt, int _exp)
109 {
110 
111 	if (_exp > 0) {
112 		_bt->sec <<= _exp;
113 		_bt->sec |= _bt->frac >> (64 - _exp);
114 		_bt->frac <<= _exp;
115 	} else if (_exp < 0) {
116 		_bt->frac >>= -_exp;
117 		_bt->frac |= (uint64_t)_bt->sec << (64 + _exp);
118 		_bt->sec >>= -_exp;
119 	}
120 }
121 
122 #define	bintime_clear(a)	((a)->sec = (a)->frac = 0)
123 #define	bintime_isset(a)	((a)->sec || (a)->frac)
124 #define	bintime_cmp(a, b, cmp)						\
125 	(((a)->sec == (b)->sec) ?					\
126 	    ((a)->frac cmp (b)->frac) :					\
127 	    ((a)->sec cmp (b)->sec))
128 
129 #define	SBT_1S	((sbintime_t)1 << 32)
130 #define	SBT_1M	(SBT_1S * 60)
131 #define	SBT_1MS	(SBT_1S / 1000)
132 #define	SBT_1US	(SBT_1S / 1000000)
133 #define	SBT_1NS	(SBT_1S / 1000000000) /* beware rounding, see nstosbt() */
134 #define	SBT_MAX	0x7fffffffffffffffLL
135 
136 static __inline int
137 sbintime_getsec(sbintime_t _sbt)
138 {
139 
140 	return (_sbt >> 32);
141 }
142 
143 static __inline sbintime_t
144 bttosbt(const struct bintime _bt)
145 {
146 
147 	return (((sbintime_t)_bt.sec << 32) + (_bt.frac >> 32));
148 }
149 
150 static __inline struct bintime
151 sbttobt(sbintime_t _sbt)
152 {
153 	struct bintime _bt;
154 
155 	_bt.sec = _sbt >> 32;
156 	_bt.frac = _sbt << 32;
157 	return (_bt);
158 }
159 
160 /*
161  * Decimal<->sbt conversions.  Multiplying or dividing by SBT_1NS results in
162  * large roundoff errors which sbttons() and nstosbt() avoid.  Millisecond and
163  * microsecond functions are also provided for completeness.
164  *
165  * These functions return the smallest sbt larger or equal to the
166  * number of seconds requested so that sbttoX(Xtosbt(y)) == y.  Unlike
167  * top of second computations below, which require that we tick at the
168  * top of second, these need to be rounded up so we do whatever for at
169  * least as long as requested.
170  *
171  * The naive computation we'd do is this
172  *	((unit * 2^64 / SIFACTOR) + 2^32-1) >> 32
173  * However, that overflows. Instead, we compute
174  *	((unit * 2^63 / SIFACTOR) + 2^31-1) >> 32
175  * and use pre-computed constants that are the ceil of the 2^63 / SIFACTOR
176  * term to ensure we are using exactly the right constant. We use the lesser
177  * evil of ull rather than a uint64_t cast to ensure we have well defined
178  * right shift semantics. With these changes, we get all the ns, us and ms
179  * conversions back and forth right.
180  * Note: This file is used for both kernel and userland includes, so we can't
181  * rely on KASSERT being defined, nor can we pollute the namespace by including
182  * assert.h.
183  */
184 static __inline int64_t
185 sbttons(sbintime_t _sbt)
186 {
187 	uint64_t ns;
188 
189 #ifdef KASSERT
190 	KASSERT(_sbt >= 0, ("Negative values illegal for sbttons: %jx", _sbt));
191 #endif
192 	ns = _sbt;
193 	if (ns >= SBT_1S)
194 		ns = (ns >> 32) * 1000000000;
195 	else
196 		ns = 0;
197 
198 	return (ns + (1000000000 * (_sbt & 0xffffffffu) >> 32));
199 }
200 
201 static __inline sbintime_t
202 nstosbt(int64_t _ns)
203 {
204 	sbintime_t sb = 0;
205 
206 #ifdef KASSERT
207 	KASSERT(_ns >= 0, ("Negative values illegal for nstosbt: %jd", _ns));
208 #endif
209 	if (_ns >= SBT_1S) {
210 		sb = (_ns / 1000000000) * SBT_1S;
211 		_ns = _ns % 1000000000;
212 	}
213 	/* 9223372037 = ceil(2^63 / 1000000000) */
214 	sb += ((_ns * 9223372037ull) + 0x7fffffff) >> 31;
215 	return (sb);
216 }
217 
218 static __inline int64_t
219 sbttous(sbintime_t _sbt)
220 {
221 
222 	return ((1000000 * _sbt) >> 32);
223 }
224 
225 static __inline sbintime_t
226 ustosbt(int64_t _us)
227 {
228 	sbintime_t sb = 0;
229 
230 #ifdef KASSERT
231 	KASSERT(_us >= 0, ("Negative values illegal for ustosbt: %jd", _us));
232 #endif
233 	if (_us >= SBT_1S) {
234 		sb = (_us / 1000000) * SBT_1S;
235 		_us = _us % 1000000;
236 	}
237 	/* 9223372036855 = ceil(2^63 / 1000000) */
238 	sb += ((_us * 9223372036855ull) + 0x7fffffff) >> 31;
239 	return (sb);
240 }
241 
242 static __inline int64_t
243 sbttoms(sbintime_t _sbt)
244 {
245 
246 	return ((1000 * _sbt) >> 32);
247 }
248 
249 static __inline sbintime_t
250 mstosbt(int64_t _ms)
251 {
252 	sbintime_t sb = 0;
253 
254 #ifdef KASSERT
255 	KASSERT(_ms >= 0, ("Negative values illegal for mstosbt: %jd", _ms));
256 #endif
257 	if (_ms >= SBT_1S) {
258 		sb = (_ms / 1000) * SBT_1S;
259 		_ms = _ms % 1000;
260 	}
261 	/* 9223372036854776 = ceil(2^63 / 1000) */
262 	sb += ((_ms * 9223372036854776ull) + 0x7fffffff) >> 31;
263 	return (sb);
264 }
265 
266 /*-
267  * Background information:
268  *
269  * When converting between timestamps on parallel timescales of differing
270  * resolutions it is historical and scientific practice to round down rather
271  * than doing 4/5 rounding.
272  *
273  *   The date changes at midnight, not at noon.
274  *
275  *   Even at 15:59:59.999999999 it's not four'o'clock.
276  *
277  *   time_second ticks after N.999999999 not after N.4999999999
278  */
279 
280 static __inline void
281 bintime2timespec(const struct bintime *_bt, struct timespec *_ts)
282 {
283 
284 	_ts->tv_sec = _bt->sec;
285 	_ts->tv_nsec = ((uint64_t)1000000000 *
286 	    (uint32_t)(_bt->frac >> 32)) >> 32;
287 }
288 
289 static __inline void
290 timespec2bintime(const struct timespec *_ts, struct bintime *_bt)
291 {
292 
293 	_bt->sec = _ts->tv_sec;
294 	/* 18446744073 = int(2^64 / 1000000000) */
295 	_bt->frac = _ts->tv_nsec * (uint64_t)18446744073LL;
296 }
297 
298 static __inline void
299 bintime2timeval(const struct bintime *_bt, struct timeval *_tv)
300 {
301 
302 	_tv->tv_sec = _bt->sec;
303 	_tv->tv_usec = ((uint64_t)1000000 * (uint32_t)(_bt->frac >> 32)) >> 32;
304 }
305 
306 static __inline void
307 timeval2bintime(const struct timeval *_tv, struct bintime *_bt)
308 {
309 
310 	_bt->sec = _tv->tv_sec;
311 	/* 18446744073709 = int(2^64 / 1000000) */
312 	_bt->frac = _tv->tv_usec * (uint64_t)18446744073709LL;
313 }
314 
315 static __inline struct timespec
316 sbttots(sbintime_t _sbt)
317 {
318 	struct timespec _ts;
319 
320 	_ts.tv_sec = _sbt >> 32;
321 	_ts.tv_nsec = sbttons((uint32_t)_sbt);
322 	return (_ts);
323 }
324 
325 static __inline sbintime_t
326 tstosbt(struct timespec _ts)
327 {
328 
329 	return (((sbintime_t)_ts.tv_sec << 32) + nstosbt(_ts.tv_nsec));
330 }
331 
332 static __inline struct timeval
333 sbttotv(sbintime_t _sbt)
334 {
335 	struct timeval _tv;
336 
337 	_tv.tv_sec = _sbt >> 32;
338 	_tv.tv_usec = sbttous((uint32_t)_sbt);
339 	return (_tv);
340 }
341 
342 static __inline sbintime_t
343 tvtosbt(struct timeval _tv)
344 {
345 
346 	return (((sbintime_t)_tv.tv_sec << 32) + ustosbt(_tv.tv_usec));
347 }
348 #endif /* __BSD_VISIBLE */
349 
350 #ifdef _KERNEL
351 /*
352  * Simple macros to convert ticks to milliseconds
353  * or microseconds and vice-versa. The answer
354  * will always be at least 1. Note the return
355  * value is a uint32_t however we step up the
356  * operations to 64 bit to avoid any overflow/underflow
357  * problems.
358  */
359 #define TICKS_2_MSEC(t) max(1, (uint32_t)(hz == 1000) ? \
360 	  (t) : (((uint64_t)(t) * (uint64_t)1000)/(uint64_t)hz))
361 #define TICKS_2_USEC(t) max(1, (uint32_t)(hz == 1000) ? \
362 	  ((t) * 1000) : (((uint64_t)(t) * (uint64_t)1000000)/(uint64_t)hz))
363 #define MSEC_2_TICKS(m) max(1, (uint32_t)((hz == 1000) ? \
364 	  (m) : ((uint64_t)(m) * (uint64_t)hz)/(uint64_t)1000))
365 #define USEC_2_TICKS(u) max(1, (uint32_t)((hz == 1000) ? \
366 	 ((u) / 1000) : ((uint64_t)(u) * (uint64_t)hz)/(uint64_t)1000000))
367 
368 #endif
369 /* Operations on timespecs */
370 #define	timespecclear(tvp)	((tvp)->tv_sec = (tvp)->tv_nsec = 0)
371 #define	timespecisset(tvp)	((tvp)->tv_sec || (tvp)->tv_nsec)
372 #define	timespeccmp(tvp, uvp, cmp)					\
373 	(((tvp)->tv_sec == (uvp)->tv_sec) ?				\
374 	    ((tvp)->tv_nsec cmp (uvp)->tv_nsec) :			\
375 	    ((tvp)->tv_sec cmp (uvp)->tv_sec))
376 
377 #define	timespecadd(tsp, usp, vsp)					\
378 	do {								\
379 		(vsp)->tv_sec = (tsp)->tv_sec + (usp)->tv_sec;		\
380 		(vsp)->tv_nsec = (tsp)->tv_nsec + (usp)->tv_nsec;	\
381 		if ((vsp)->tv_nsec >= 1000000000L) {			\
382 			(vsp)->tv_sec++;				\
383 			(vsp)->tv_nsec -= 1000000000L;			\
384 		}							\
385 	} while (0)
386 #define	timespecsub(tsp, usp, vsp)					\
387 	do {								\
388 		(vsp)->tv_sec = (tsp)->tv_sec - (usp)->tv_sec;		\
389 		(vsp)->tv_nsec = (tsp)->tv_nsec - (usp)->tv_nsec;	\
390 		if ((vsp)->tv_nsec < 0) {				\
391 			(vsp)->tv_sec--;				\
392 			(vsp)->tv_nsec += 1000000000L;			\
393 		}							\
394 	} while (0)
395 
396 #ifdef _KERNEL
397 
398 /* Operations on timevals. */
399 
400 #define	timevalclear(tvp)		((tvp)->tv_sec = (tvp)->tv_usec = 0)
401 #define	timevalisset(tvp)		((tvp)->tv_sec || (tvp)->tv_usec)
402 #define	timevalcmp(tvp, uvp, cmp)					\
403 	(((tvp)->tv_sec == (uvp)->tv_sec) ?				\
404 	    ((tvp)->tv_usec cmp (uvp)->tv_usec) :			\
405 	    ((tvp)->tv_sec cmp (uvp)->tv_sec))
406 
407 /* timevaladd and timevalsub are not inlined */
408 
409 #endif /* _KERNEL */
410 
411 #ifndef _KERNEL			/* NetBSD/OpenBSD compatible interfaces */
412 
413 #define	timerclear(tvp)		((tvp)->tv_sec = (tvp)->tv_usec = 0)
414 #define	timerisset(tvp)		((tvp)->tv_sec || (tvp)->tv_usec)
415 #define	timercmp(tvp, uvp, cmp)					\
416 	(((tvp)->tv_sec == (uvp)->tv_sec) ?				\
417 	    ((tvp)->tv_usec cmp (uvp)->tv_usec) :			\
418 	    ((tvp)->tv_sec cmp (uvp)->tv_sec))
419 #define	timeradd(tvp, uvp, vvp)						\
420 	do {								\
421 		(vvp)->tv_sec = (tvp)->tv_sec + (uvp)->tv_sec;		\
422 		(vvp)->tv_usec = (tvp)->tv_usec + (uvp)->tv_usec;	\
423 		if ((vvp)->tv_usec >= 1000000) {			\
424 			(vvp)->tv_sec++;				\
425 			(vvp)->tv_usec -= 1000000;			\
426 		}							\
427 	} while (0)
428 #define	timersub(tvp, uvp, vvp)						\
429 	do {								\
430 		(vvp)->tv_sec = (tvp)->tv_sec - (uvp)->tv_sec;		\
431 		(vvp)->tv_usec = (tvp)->tv_usec - (uvp)->tv_usec;	\
432 		if ((vvp)->tv_usec < 0) {				\
433 			(vvp)->tv_sec--;				\
434 			(vvp)->tv_usec += 1000000;			\
435 		}							\
436 	} while (0)
437 #endif
438 
439 /*
440  * Names of the interval timers, and structure
441  * defining a timer setting.
442  */
443 #define	ITIMER_REAL	0
444 #define	ITIMER_VIRTUAL	1
445 #define	ITIMER_PROF	2
446 
447 struct itimerval {
448 	struct	timeval it_interval;	/* timer interval */
449 	struct	timeval it_value;	/* current value */
450 };
451 
452 /*
453  * Getkerninfo clock information structure
454  */
455 struct clockinfo {
456 	int	hz;		/* clock frequency */
457 	int	tick;		/* micro-seconds per hz tick */
458 	int	spare;
459 	int	stathz;		/* statistics clock frequency */
460 	int	profhz;		/* profiling clock frequency */
461 };
462 
463 /* These macros are also in time.h. */
464 #ifndef CLOCK_REALTIME
465 #define	CLOCK_REALTIME	0
466 #endif
467 #ifndef CLOCK_VIRTUAL
468 #define	CLOCK_VIRTUAL	1
469 #define	CLOCK_PROF	2
470 #endif
471 #ifndef CLOCK_MONOTONIC
472 #define	CLOCK_MONOTONIC	4
473 #define	CLOCK_UPTIME	5		/* FreeBSD-specific. */
474 #define	CLOCK_UPTIME_PRECISE	7	/* FreeBSD-specific. */
475 #define	CLOCK_UPTIME_FAST	8	/* FreeBSD-specific. */
476 #define	CLOCK_REALTIME_PRECISE	9	/* FreeBSD-specific. */
477 #define	CLOCK_REALTIME_FAST	10	/* FreeBSD-specific. */
478 #define	CLOCK_MONOTONIC_PRECISE	11	/* FreeBSD-specific. */
479 #define	CLOCK_MONOTONIC_FAST	12	/* FreeBSD-specific. */
480 #define	CLOCK_SECOND	13		/* FreeBSD-specific. */
481 #define	CLOCK_THREAD_CPUTIME_ID	14
482 #define	CLOCK_PROCESS_CPUTIME_ID	15
483 #endif
484 
485 #ifndef TIMER_ABSTIME
486 #define	TIMER_RELTIME	0x0	/* relative timer */
487 #define	TIMER_ABSTIME	0x1	/* absolute timer */
488 #endif
489 
490 #if __BSD_VISIBLE
491 #define	CPUCLOCK_WHICH_PID	0
492 #define	CPUCLOCK_WHICH_TID	1
493 #endif
494 
495 #ifdef _KERNEL
496 
497 /*
498  * Kernel to clock driver interface.
499  */
500 void	inittodr(time_t base);
501 void	resettodr(void);
502 
503 extern volatile time_t	time_second;
504 extern volatile time_t	time_uptime;
505 extern struct bintime tc_tick_bt;
506 extern sbintime_t tc_tick_sbt;
507 extern struct bintime tick_bt;
508 extern sbintime_t tick_sbt;
509 extern int tc_precexp;
510 extern int tc_timepercentage;
511 extern struct bintime bt_timethreshold;
512 extern struct bintime bt_tickthreshold;
513 extern sbintime_t sbt_timethreshold;
514 extern sbintime_t sbt_tickthreshold;
515 
516 extern volatile int rtc_generation;
517 
518 /*
519  * Functions for looking at our clock: [get]{bin,nano,micro}[up]time()
520  *
521  * Functions without the "get" prefix returns the best timestamp
522  * we can produce in the given format.
523  *
524  * "bin"   == struct bintime  == seconds + 64 bit fraction of seconds.
525  * "nano"  == struct timespec == seconds + nanoseconds.
526  * "micro" == struct timeval  == seconds + microseconds.
527  *
528  * Functions containing "up" returns time relative to boot and
529  * should be used for calculating time intervals.
530  *
531  * Functions without "up" returns UTC time.
532  *
533  * Functions with the "get" prefix returns a less precise result
534  * much faster than the functions without "get" prefix and should
535  * be used where a precision of 1/hz seconds is acceptable or where
536  * performance is priority. (NB: "precision", _not_ "resolution" !)
537  */
538 
539 void	binuptime(struct bintime *bt);
540 void	nanouptime(struct timespec *tsp);
541 void	microuptime(struct timeval *tvp);
542 
543 static __inline sbintime_t
544 sbinuptime(void)
545 {
546 	struct bintime _bt;
547 
548 	binuptime(&_bt);
549 	return (bttosbt(_bt));
550 }
551 
552 void	bintime(struct bintime *bt);
553 void	nanotime(struct timespec *tsp);
554 void	microtime(struct timeval *tvp);
555 
556 void	getbinuptime(struct bintime *bt);
557 void	getnanouptime(struct timespec *tsp);
558 void	getmicrouptime(struct timeval *tvp);
559 
560 static __inline sbintime_t
561 getsbinuptime(void)
562 {
563 	struct bintime _bt;
564 
565 	getbinuptime(&_bt);
566 	return (bttosbt(_bt));
567 }
568 
569 void	getbintime(struct bintime *bt);
570 void	getnanotime(struct timespec *tsp);
571 void	getmicrotime(struct timeval *tvp);
572 
573 void	getboottime(struct timeval *boottime);
574 void	getboottimebin(struct bintime *boottimebin);
575 
576 /* Other functions */
577 int	itimerdecr(struct itimerval *itp, int usec);
578 int	itimerfix(struct timeval *tv);
579 int	ppsratecheck(struct timeval *, int *, int);
580 int	ratecheck(struct timeval *, const struct timeval *);
581 void	timevaladd(struct timeval *t1, const struct timeval *t2);
582 void	timevalsub(struct timeval *t1, const struct timeval *t2);
583 int	tvtohz(struct timeval *tv);
584 
585 #define	TC_DEFAULTPERC		5
586 
587 #define	BT2FREQ(bt)                                                     \
588 	(((uint64_t)0x8000000000000000 + ((bt)->frac >> 2)) /           \
589 	    ((bt)->frac >> 1))
590 
591 #define	SBT2FREQ(sbt)	((SBT_1S + ((sbt) >> 1)) / (sbt))
592 
593 #define	FREQ2BT(freq, bt)                                               \
594 {									\
595 	(bt)->sec = 0;                                                  \
596 	(bt)->frac = ((uint64_t)0x8000000000000000  / (freq)) << 1;     \
597 }
598 
599 #define	TIMESEL(sbt, sbt2)						\
600 	(((sbt2) >= sbt_timethreshold) ?				\
601 	    ((*(sbt) = getsbinuptime()), 1) : ((*(sbt) = sbinuptime()), 0))
602 
603 #else /* !_KERNEL */
604 #include <time.h>
605 
606 #include <sys/cdefs.h>
607 #include <sys/select.h>
608 
609 __BEGIN_DECLS
610 int	setitimer(int, const struct itimerval *, struct itimerval *);
611 int	utimes(const char *, const struct timeval *);
612 
613 #if __BSD_VISIBLE
614 int	adjtime(const struct timeval *, struct timeval *);
615 int	clock_getcpuclockid2(id_t, int, clockid_t *);
616 int	futimes(int, const struct timeval *);
617 int	futimesat(int, const char *, const struct timeval [2]);
618 int	lutimes(const char *, const struct timeval *);
619 int	settimeofday(const struct timeval *, const struct timezone *);
620 #endif
621 
622 #if __XSI_VISIBLE
623 int	getitimer(int, struct itimerval *);
624 int	gettimeofday(struct timeval *, struct timezone *);
625 #endif
626 
627 __END_DECLS
628 
629 #endif /* !_KERNEL */
630 
631 #endif /* !_SYS_TIME_H_ */
632