xref: /freebsd/sys/ufs/ffs/ffs_softdep.c (revision aa0a1e58)
1 /*-
2  * Copyright 1998, 2000 Marshall Kirk McKusick.
3  * Copyright 2009, 2010 Jeffrey W. Roberson <jeff@FreeBSD.org>
4  * All rights reserved.
5  *
6  * The soft updates code is derived from the appendix of a University
7  * of Michigan technical report (Gregory R. Ganger and Yale N. Patt,
8  * "Soft Updates: A Solution to the Metadata Update Problem in File
9  * Systems", CSE-TR-254-95, August 1995).
10  *
11  * Further information about soft updates can be obtained from:
12  *
13  *	Marshall Kirk McKusick		http://www.mckusick.com/softdep/
14  *	1614 Oxford Street		mckusick@mckusick.com
15  *	Berkeley, CA 94709-1608		+1-510-843-9542
16  *	USA
17  *
18  * Redistribution and use in source and binary forms, with or without
19  * modification, are permitted provided that the following conditions
20  * are met:
21  *
22  * 1. Redistributions of source code must retain the above copyright
23  *    notice, this list of conditions and the following disclaimer.
24  * 2. Redistributions in binary form must reproduce the above copyright
25  *    notice, this list of conditions and the following disclaimer in the
26  *    documentation and/or other materials provided with the distribution.
27  *
28  * THIS SOFTWARE IS PROVIDED BY THE AUTHORS ``AS IS'' AND ANY EXPRESS OR
29  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
30  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
31  * IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY DIRECT, INDIRECT,
32  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
33  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
34  * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
35  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
36  * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
37  * USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
38  *
39  *	from: @(#)ffs_softdep.c	9.59 (McKusick) 6/21/00
40  */
41 
42 #include <sys/cdefs.h>
43 __FBSDID("$FreeBSD$");
44 
45 #include "opt_ffs.h"
46 #include "opt_ddb.h"
47 
48 /*
49  * For now we want the safety net that the DEBUG flag provides.
50  */
51 #ifndef DEBUG
52 #define DEBUG
53 #endif
54 
55 #include <sys/param.h>
56 #include <sys/kernel.h>
57 #include <sys/systm.h>
58 #include <sys/bio.h>
59 #include <sys/buf.h>
60 #include <sys/kdb.h>
61 #include <sys/kthread.h>
62 #include <sys/lock.h>
63 #include <sys/malloc.h>
64 #include <sys/mount.h>
65 #include <sys/mutex.h>
66 #include <sys/namei.h>
67 #include <sys/proc.h>
68 #include <sys/stat.h>
69 #include <sys/sysctl.h>
70 #include <sys/syslog.h>
71 #include <sys/vnode.h>
72 #include <sys/conf.h>
73 #include <ufs/ufs/dir.h>
74 #include <ufs/ufs/extattr.h>
75 #include <ufs/ufs/quota.h>
76 #include <ufs/ufs/inode.h>
77 #include <ufs/ufs/ufsmount.h>
78 #include <ufs/ffs/fs.h>
79 #include <ufs/ffs/softdep.h>
80 #include <ufs/ffs/ffs_extern.h>
81 #include <ufs/ufs/ufs_extern.h>
82 
83 #include <vm/vm.h>
84 
85 #include <ddb/ddb.h>
86 
87 #ifndef SOFTUPDATES
88 
89 int
90 softdep_flushfiles(oldmnt, flags, td)
91 	struct mount *oldmnt;
92 	int flags;
93 	struct thread *td;
94 {
95 
96 	panic("softdep_flushfiles called");
97 }
98 
99 int
100 softdep_mount(devvp, mp, fs, cred)
101 	struct vnode *devvp;
102 	struct mount *mp;
103 	struct fs *fs;
104 	struct ucred *cred;
105 {
106 
107 	return (0);
108 }
109 
110 void
111 softdep_initialize()
112 {
113 
114 	return;
115 }
116 
117 void
118 softdep_uninitialize()
119 {
120 
121 	return;
122 }
123 
124 void
125 softdep_unmount(mp)
126 	struct mount *mp;
127 {
128 
129 }
130 
131 void
132 softdep_setup_sbupdate(ump, fs, bp)
133 	struct ufsmount *ump;
134 	struct fs *fs;
135 	struct buf *bp;
136 {
137 }
138 
139 void
140 softdep_setup_inomapdep(bp, ip, newinum)
141 	struct buf *bp;
142 	struct inode *ip;
143 	ino_t newinum;
144 {
145 
146 	panic("softdep_setup_inomapdep called");
147 }
148 
149 void
150 softdep_setup_blkmapdep(bp, mp, newblkno, frags, oldfrags)
151 	struct buf *bp;
152 	struct mount *mp;
153 	ufs2_daddr_t newblkno;
154 	int frags;
155 	int oldfrags;
156 {
157 
158 	panic("softdep_setup_blkmapdep called");
159 }
160 
161 void
162 softdep_setup_allocdirect(ip, lbn, newblkno, oldblkno, newsize, oldsize, bp)
163 	struct inode *ip;
164 	ufs_lbn_t lbn;
165 	ufs2_daddr_t newblkno;
166 	ufs2_daddr_t oldblkno;
167 	long newsize;
168 	long oldsize;
169 	struct buf *bp;
170 {
171 
172 	panic("softdep_setup_allocdirect called");
173 }
174 
175 void
176 softdep_setup_allocext(ip, lbn, newblkno, oldblkno, newsize, oldsize, bp)
177 	struct inode *ip;
178 	ufs_lbn_t lbn;
179 	ufs2_daddr_t newblkno;
180 	ufs2_daddr_t oldblkno;
181 	long newsize;
182 	long oldsize;
183 	struct buf *bp;
184 {
185 
186 	panic("softdep_setup_allocext called");
187 }
188 
189 void
190 softdep_setup_allocindir_page(ip, lbn, bp, ptrno, newblkno, oldblkno, nbp)
191 	struct inode *ip;
192 	ufs_lbn_t lbn;
193 	struct buf *bp;
194 	int ptrno;
195 	ufs2_daddr_t newblkno;
196 	ufs2_daddr_t oldblkno;
197 	struct buf *nbp;
198 {
199 
200 	panic("softdep_setup_allocindir_page called");
201 }
202 
203 void
204 softdep_setup_allocindir_meta(nbp, ip, bp, ptrno, newblkno)
205 	struct buf *nbp;
206 	struct inode *ip;
207 	struct buf *bp;
208 	int ptrno;
209 	ufs2_daddr_t newblkno;
210 {
211 
212 	panic("softdep_setup_allocindir_meta called");
213 }
214 
215 void
216 softdep_setup_freeblocks(ip, length, flags)
217 	struct inode *ip;
218 	off_t length;
219 	int flags;
220 {
221 
222 	panic("softdep_setup_freeblocks called");
223 }
224 
225 void
226 softdep_freefile(pvp, ino, mode)
227 		struct vnode *pvp;
228 		ino_t ino;
229 		int mode;
230 {
231 
232 	panic("softdep_freefile called");
233 }
234 
235 int
236 softdep_setup_directory_add(bp, dp, diroffset, newinum, newdirbp, isnewblk)
237 	struct buf *bp;
238 	struct inode *dp;
239 	off_t diroffset;
240 	ino_t newinum;
241 	struct buf *newdirbp;
242 	int isnewblk;
243 {
244 
245 	panic("softdep_setup_directory_add called");
246 }
247 
248 void
249 softdep_change_directoryentry_offset(bp, dp, base, oldloc, newloc, entrysize)
250 	struct buf *bp;
251 	struct inode *dp;
252 	caddr_t base;
253 	caddr_t oldloc;
254 	caddr_t newloc;
255 	int entrysize;
256 {
257 
258 	panic("softdep_change_directoryentry_offset called");
259 }
260 
261 void
262 softdep_setup_remove(bp, dp, ip, isrmdir)
263 	struct buf *bp;
264 	struct inode *dp;
265 	struct inode *ip;
266 	int isrmdir;
267 {
268 
269 	panic("softdep_setup_remove called");
270 }
271 
272 void
273 softdep_setup_directory_change(bp, dp, ip, newinum, isrmdir)
274 	struct buf *bp;
275 	struct inode *dp;
276 	struct inode *ip;
277 	ino_t newinum;
278 	int isrmdir;
279 {
280 
281 	panic("softdep_setup_directory_change called");
282 }
283 
284 void *
285 softdep_setup_trunc(vp, length, flags)
286 	struct vnode *vp;
287 	off_t length;
288 	int flags;
289 {
290 
291 	panic("%s called", __FUNCTION__);
292 
293 	return (NULL);
294 }
295 
296 int
297 softdep_complete_trunc(vp, cookie)
298 	struct vnode *vp;
299 	void *cookie;
300 {
301 
302 	panic("%s called", __FUNCTION__);
303 
304 	return (0);
305 }
306 
307 void
308 softdep_setup_blkfree(mp, bp, blkno, frags, wkhd)
309 	struct mount *mp;
310 	struct buf *bp;
311 	ufs2_daddr_t blkno;
312 	int frags;
313 	struct workhead *wkhd;
314 {
315 
316 	panic("%s called", __FUNCTION__);
317 }
318 
319 void
320 softdep_setup_inofree(mp, bp, ino, wkhd)
321 	struct mount *mp;
322 	struct buf *bp;
323 	ino_t ino;
324 	struct workhead *wkhd;
325 {
326 
327 	panic("%s called", __FUNCTION__);
328 }
329 
330 void
331 softdep_setup_unlink(dp, ip)
332 	struct inode *dp;
333 	struct inode *ip;
334 {
335 
336 	panic("%s called", __FUNCTION__);
337 }
338 
339 void
340 softdep_setup_link(dp, ip)
341 	struct inode *dp;
342 	struct inode *ip;
343 {
344 
345 	panic("%s called", __FUNCTION__);
346 }
347 
348 void
349 softdep_revert_link(dp, ip)
350 	struct inode *dp;
351 	struct inode *ip;
352 {
353 
354 	panic("%s called", __FUNCTION__);
355 }
356 
357 void
358 softdep_setup_rmdir(dp, ip)
359 	struct inode *dp;
360 	struct inode *ip;
361 {
362 
363 	panic("%s called", __FUNCTION__);
364 }
365 
366 void
367 softdep_revert_rmdir(dp, ip)
368 	struct inode *dp;
369 	struct inode *ip;
370 {
371 
372 	panic("%s called", __FUNCTION__);
373 }
374 
375 void
376 softdep_setup_create(dp, ip)
377 	struct inode *dp;
378 	struct inode *ip;
379 {
380 
381 	panic("%s called", __FUNCTION__);
382 }
383 
384 void
385 softdep_revert_create(dp, ip)
386 	struct inode *dp;
387 	struct inode *ip;
388 {
389 
390 	panic("%s called", __FUNCTION__);
391 }
392 
393 void
394 softdep_setup_mkdir(dp, ip)
395 	struct inode *dp;
396 	struct inode *ip;
397 {
398 
399 	panic("%s called", __FUNCTION__);
400 }
401 
402 void
403 softdep_revert_mkdir(dp, ip)
404 	struct inode *dp;
405 	struct inode *ip;
406 {
407 
408 	panic("%s called", __FUNCTION__);
409 }
410 
411 void
412 softdep_setup_dotdot_link(dp, ip)
413 	struct inode *dp;
414 	struct inode *ip;
415 {
416 
417 	panic("%s called", __FUNCTION__);
418 }
419 
420 int
421 softdep_prealloc(vp, waitok)
422 	struct vnode *vp;
423 	int waitok;
424 {
425 
426 	panic("%s called", __FUNCTION__);
427 
428 	return (0);
429 }
430 
431 int
432 softdep_journal_lookup(mp, vpp)
433 	struct mount *mp;
434 	struct vnode **vpp;
435 {
436 
437 	return (ENOENT);
438 }
439 
440 void
441 softdep_change_linkcnt(ip)
442 	struct inode *ip;
443 {
444 
445 	panic("softdep_change_linkcnt called");
446 }
447 
448 void
449 softdep_load_inodeblock(ip)
450 	struct inode *ip;
451 {
452 
453 	panic("softdep_load_inodeblock called");
454 }
455 
456 void
457 softdep_update_inodeblock(ip, bp, waitfor)
458 	struct inode *ip;
459 	struct buf *bp;
460 	int waitfor;
461 {
462 
463 	panic("softdep_update_inodeblock called");
464 }
465 
466 int
467 softdep_fsync(vp)
468 	struct vnode *vp;	/* the "in_core" copy of the inode */
469 {
470 
471 	return (0);
472 }
473 
474 void
475 softdep_fsync_mountdev(vp)
476 	struct vnode *vp;
477 {
478 
479 	return;
480 }
481 
482 int
483 softdep_flushworklist(oldmnt, countp, td)
484 	struct mount *oldmnt;
485 	int *countp;
486 	struct thread *td;
487 {
488 
489 	*countp = 0;
490 	return (0);
491 }
492 
493 int
494 softdep_sync_metadata(struct vnode *vp)
495 {
496 
497 	return (0);
498 }
499 
500 int
501 softdep_slowdown(vp)
502 	struct vnode *vp;
503 {
504 
505 	panic("softdep_slowdown called");
506 }
507 
508 void
509 softdep_releasefile(ip)
510 	struct inode *ip;	/* inode with the zero effective link count */
511 {
512 
513 	panic("softdep_releasefile called");
514 }
515 
516 int
517 softdep_request_cleanup(fs, vp)
518 	struct fs *fs;
519 	struct vnode *vp;
520 {
521 
522 	return (0);
523 }
524 
525 int
526 softdep_check_suspend(struct mount *mp,
527 		      struct vnode *devvp,
528 		      int softdep_deps,
529 		      int softdep_accdeps,
530 		      int secondary_writes,
531 		      int secondary_accwrites)
532 {
533 	struct bufobj *bo;
534 	int error;
535 
536 	(void) softdep_deps,
537 	(void) softdep_accdeps;
538 
539 	bo = &devvp->v_bufobj;
540 	ASSERT_BO_LOCKED(bo);
541 
542 	MNT_ILOCK(mp);
543 	while (mp->mnt_secondary_writes != 0) {
544 		BO_UNLOCK(bo);
545 		msleep(&mp->mnt_secondary_writes, MNT_MTX(mp),
546 		    (PUSER - 1) | PDROP, "secwr", 0);
547 		BO_LOCK(bo);
548 		MNT_ILOCK(mp);
549 	}
550 
551 	/*
552 	 * Reasons for needing more work before suspend:
553 	 * - Dirty buffers on devvp.
554 	 * - Secondary writes occurred after start of vnode sync loop
555 	 */
556 	error = 0;
557 	if (bo->bo_numoutput > 0 ||
558 	    bo->bo_dirty.bv_cnt > 0 ||
559 	    secondary_writes != 0 ||
560 	    mp->mnt_secondary_writes != 0 ||
561 	    secondary_accwrites != mp->mnt_secondary_accwrites)
562 		error = EAGAIN;
563 	BO_UNLOCK(bo);
564 	return (error);
565 }
566 
567 void
568 softdep_get_depcounts(struct mount *mp,
569 		      int *softdepactivep,
570 		      int *softdepactiveaccp)
571 {
572 	(void) mp;
573 	*softdepactivep = 0;
574 	*softdepactiveaccp = 0;
575 }
576 
577 #else
578 
579 FEATURE(softupdates, "FFS soft-updates support");
580 
581 /*
582  * These definitions need to be adapted to the system to which
583  * this file is being ported.
584  */
585 
586 #define M_SOFTDEP_FLAGS	(M_WAITOK)
587 
588 #define	D_PAGEDEP	0
589 #define	D_INODEDEP	1
590 #define	D_BMSAFEMAP	2
591 #define	D_NEWBLK	3
592 #define	D_ALLOCDIRECT	4
593 #define	D_INDIRDEP	5
594 #define	D_ALLOCINDIR	6
595 #define	D_FREEFRAG	7
596 #define	D_FREEBLKS	8
597 #define	D_FREEFILE	9
598 #define	D_DIRADD	10
599 #define	D_MKDIR		11
600 #define	D_DIRREM	12
601 #define	D_NEWDIRBLK	13
602 #define	D_FREEWORK	14
603 #define	D_FREEDEP	15
604 #define	D_JADDREF	16
605 #define	D_JREMREF	17
606 #define	D_JMVREF	18
607 #define	D_JNEWBLK	19
608 #define	D_JFREEBLK	20
609 #define	D_JFREEFRAG	21
610 #define	D_JSEG		22
611 #define	D_JSEGDEP	23
612 #define	D_SBDEP		24
613 #define	D_JTRUNC	25
614 #define	D_LAST		D_JTRUNC
615 
616 unsigned long dep_current[D_LAST + 1];
617 unsigned long dep_total[D_LAST + 1];
618 
619 
620 SYSCTL_NODE(_debug, OID_AUTO, softdep, CTLFLAG_RW, 0, "soft updates stats");
621 SYSCTL_NODE(_debug_softdep, OID_AUTO, total, CTLFLAG_RW, 0,
622     "total dependencies allocated");
623 SYSCTL_NODE(_debug_softdep, OID_AUTO, current, CTLFLAG_RW, 0,
624     "current dependencies allocated");
625 
626 #define	SOFTDEP_TYPE(type, str, long)					\
627     static MALLOC_DEFINE(M_ ## type, #str, long);			\
628     SYSCTL_ULONG(_debug_softdep_total, OID_AUTO, str, CTLFLAG_RD,	\
629 	&dep_total[D_ ## type], 0, "");					\
630     SYSCTL_ULONG(_debug_softdep_current, OID_AUTO, str, CTLFLAG_RD, 	\
631 	&dep_current[D_ ## type], 0, "");
632 
633 SOFTDEP_TYPE(PAGEDEP, pagedep, "File page dependencies");
634 SOFTDEP_TYPE(INODEDEP, inodedep, "Inode dependencies");
635 SOFTDEP_TYPE(BMSAFEMAP, bmsafemap,
636     "Block or frag allocated from cyl group map");
637 SOFTDEP_TYPE(NEWBLK, newblk, "New block or frag allocation dependency");
638 SOFTDEP_TYPE(ALLOCDIRECT, allocdirect, "Block or frag dependency for an inode");
639 SOFTDEP_TYPE(INDIRDEP, indirdep, "Indirect block dependencies");
640 SOFTDEP_TYPE(ALLOCINDIR, allocindir, "Block dependency for an indirect block");
641 SOFTDEP_TYPE(FREEFRAG, freefrag, "Previously used frag for an inode");
642 SOFTDEP_TYPE(FREEBLKS, freeblks, "Blocks freed from an inode");
643 SOFTDEP_TYPE(FREEFILE, freefile, "Inode deallocated");
644 SOFTDEP_TYPE(DIRADD, diradd, "New directory entry");
645 SOFTDEP_TYPE(MKDIR, mkdir, "New directory");
646 SOFTDEP_TYPE(DIRREM, dirrem, "Directory entry deleted");
647 SOFTDEP_TYPE(NEWDIRBLK, newdirblk, "Unclaimed new directory block");
648 SOFTDEP_TYPE(FREEWORK, freework, "free an inode block");
649 SOFTDEP_TYPE(FREEDEP, freedep, "track a block free");
650 SOFTDEP_TYPE(JADDREF, jaddref, "Journal inode ref add");
651 SOFTDEP_TYPE(JREMREF, jremref, "Journal inode ref remove");
652 SOFTDEP_TYPE(JMVREF, jmvref, "Journal inode ref move");
653 SOFTDEP_TYPE(JNEWBLK, jnewblk, "Journal new block");
654 SOFTDEP_TYPE(JFREEBLK, jfreeblk, "Journal free block");
655 SOFTDEP_TYPE(JFREEFRAG, jfreefrag, "Journal free frag");
656 SOFTDEP_TYPE(JSEG, jseg, "Journal segment");
657 SOFTDEP_TYPE(JSEGDEP, jsegdep, "Journal segment complete");
658 SOFTDEP_TYPE(SBDEP, sbdep, "Superblock write dependency");
659 SOFTDEP_TYPE(JTRUNC, jtrunc, "Journal inode truncation");
660 
661 static MALLOC_DEFINE(M_SAVEDINO, "savedino", "Saved inodes");
662 static MALLOC_DEFINE(M_JBLOCKS, "jblocks", "Journal block locations");
663 
664 /*
665  * translate from workitem type to memory type
666  * MUST match the defines above, such that memtype[D_XXX] == M_XXX
667  */
668 static struct malloc_type *memtype[] = {
669 	M_PAGEDEP,
670 	M_INODEDEP,
671 	M_BMSAFEMAP,
672 	M_NEWBLK,
673 	M_ALLOCDIRECT,
674 	M_INDIRDEP,
675 	M_ALLOCINDIR,
676 	M_FREEFRAG,
677 	M_FREEBLKS,
678 	M_FREEFILE,
679 	M_DIRADD,
680 	M_MKDIR,
681 	M_DIRREM,
682 	M_NEWDIRBLK,
683 	M_FREEWORK,
684 	M_FREEDEP,
685 	M_JADDREF,
686 	M_JREMREF,
687 	M_JMVREF,
688 	M_JNEWBLK,
689 	M_JFREEBLK,
690 	M_JFREEFRAG,
691 	M_JSEG,
692 	M_JSEGDEP,
693 	M_SBDEP,
694 	M_JTRUNC
695 };
696 
697 static LIST_HEAD(mkdirlist, mkdir) mkdirlisthd;
698 
699 #define DtoM(type) (memtype[type])
700 
701 /*
702  * Names of malloc types.
703  */
704 #define TYPENAME(type)  \
705 	((unsigned)(type) <= D_LAST ? memtype[type]->ks_shortdesc : "???")
706 /*
707  * End system adaptation definitions.
708  */
709 
710 #define	DOTDOT_OFFSET	offsetof(struct dirtemplate, dotdot_ino)
711 #define	DOT_OFFSET	offsetof(struct dirtemplate, dot_ino)
712 
713 /*
714  * Forward declarations.
715  */
716 struct inodedep_hashhead;
717 struct newblk_hashhead;
718 struct pagedep_hashhead;
719 struct bmsafemap_hashhead;
720 
721 /*
722  * Internal function prototypes.
723  */
724 static	void softdep_error(char *, int);
725 static	void drain_output(struct vnode *);
726 static	struct buf *getdirtybuf(struct buf *, struct mtx *, int);
727 static	void clear_remove(struct thread *);
728 static	void clear_inodedeps(struct thread *);
729 static	void unlinked_inodedep(struct mount *, struct inodedep *);
730 static	void clear_unlinked_inodedep(struct inodedep *);
731 static	struct inodedep *first_unlinked_inodedep(struct ufsmount *);
732 static	int flush_pagedep_deps(struct vnode *, struct mount *,
733 	    struct diraddhd *);
734 static	void free_pagedep(struct pagedep *);
735 static	int flush_newblk_dep(struct vnode *, struct mount *, ufs_lbn_t);
736 static	int flush_inodedep_deps(struct mount *, ino_t);
737 static	int flush_deplist(struct allocdirectlst *, int, int *);
738 static	int handle_written_filepage(struct pagedep *, struct buf *);
739 static	int handle_written_sbdep(struct sbdep *, struct buf *);
740 static	void initiate_write_sbdep(struct sbdep *);
741 static  void diradd_inode_written(struct diradd *, struct inodedep *);
742 static	int handle_written_indirdep(struct indirdep *, struct buf *,
743 	    struct buf**);
744 static	int handle_written_inodeblock(struct inodedep *, struct buf *);
745 static	int handle_written_bmsafemap(struct bmsafemap *, struct buf *);
746 static	void handle_written_jaddref(struct jaddref *);
747 static	void handle_written_jremref(struct jremref *);
748 static	void handle_written_jseg(struct jseg *, struct buf *);
749 static	void handle_written_jnewblk(struct jnewblk *);
750 static	void handle_written_jfreeblk(struct jfreeblk *);
751 static	void handle_written_jfreefrag(struct jfreefrag *);
752 static	void complete_jseg(struct jseg *);
753 static	void jseg_write(struct ufsmount *ump, struct jblocks *, struct jseg *,
754 	    uint8_t *);
755 static	void jaddref_write(struct jaddref *, struct jseg *, uint8_t *);
756 static	void jremref_write(struct jremref *, struct jseg *, uint8_t *);
757 static	void jmvref_write(struct jmvref *, struct jseg *, uint8_t *);
758 static	void jtrunc_write(struct jtrunc *, struct jseg *, uint8_t *);
759 static	void jnewblk_write(struct jnewblk *, struct jseg *, uint8_t *);
760 static	void jfreeblk_write(struct jfreeblk *, struct jseg *, uint8_t *);
761 static	void jfreefrag_write(struct jfreefrag *, struct jseg *, uint8_t *);
762 static	inline void inoref_write(struct inoref *, struct jseg *,
763 	    struct jrefrec *);
764 static	void handle_allocdirect_partdone(struct allocdirect *,
765 	    struct workhead *);
766 static	void cancel_newblk(struct newblk *, struct workhead *);
767 static	void indirdep_complete(struct indirdep *);
768 static	void handle_allocindir_partdone(struct allocindir *);
769 static	void initiate_write_filepage(struct pagedep *, struct buf *);
770 static	void initiate_write_indirdep(struct indirdep*, struct buf *);
771 static	void handle_written_mkdir(struct mkdir *, int);
772 static	void initiate_write_bmsafemap(struct bmsafemap *, struct buf *);
773 static	void initiate_write_inodeblock_ufs1(struct inodedep *, struct buf *);
774 static	void initiate_write_inodeblock_ufs2(struct inodedep *, struct buf *);
775 static	void handle_workitem_freefile(struct freefile *);
776 static	void handle_workitem_remove(struct dirrem *, struct vnode *);
777 static	struct dirrem *newdirrem(struct buf *, struct inode *,
778 	    struct inode *, int, struct dirrem **);
779 static	void cancel_indirdep(struct indirdep *, struct buf *, struct inodedep *,
780 	    struct freeblks *);
781 static	void free_indirdep(struct indirdep *);
782 static	void free_diradd(struct diradd *, struct workhead *);
783 static	void merge_diradd(struct inodedep *, struct diradd *);
784 static	void complete_diradd(struct diradd *);
785 static	struct diradd *diradd_lookup(struct pagedep *, int);
786 static	struct jremref *cancel_diradd_dotdot(struct inode *, struct dirrem *,
787 	    struct jremref *);
788 static	struct jremref *cancel_mkdir_dotdot(struct inode *, struct dirrem *,
789 	    struct jremref *);
790 static	void cancel_diradd(struct diradd *, struct dirrem *, struct jremref *,
791 	    struct jremref *, struct jremref *);
792 static	void dirrem_journal(struct dirrem *, struct jremref *, struct jremref *,
793 	    struct jremref *);
794 static	void cancel_allocindir(struct allocindir *, struct inodedep *,
795 	    struct freeblks *);
796 static	void complete_mkdir(struct mkdir *);
797 static	void free_newdirblk(struct newdirblk *);
798 static	void free_jremref(struct jremref *);
799 static	void free_jaddref(struct jaddref *);
800 static	void free_jsegdep(struct jsegdep *);
801 static	void free_jseg(struct jseg *);
802 static	void free_jnewblk(struct jnewblk *);
803 static	void free_jfreeblk(struct jfreeblk *);
804 static	void free_jfreefrag(struct jfreefrag *);
805 static	void free_freedep(struct freedep *);
806 static	void journal_jremref(struct dirrem *, struct jremref *,
807 	    struct inodedep *);
808 static	void cancel_jnewblk(struct jnewblk *, struct workhead *);
809 static	int cancel_jaddref(struct jaddref *, struct inodedep *,
810 	    struct workhead *);
811 static	void cancel_jfreefrag(struct jfreefrag *);
812 static	void indir_trunc(struct freework *, ufs2_daddr_t, ufs_lbn_t);
813 static	int deallocate_dependencies(struct buf *, struct inodedep *,
814 	    struct freeblks *);
815 static	void free_newblk(struct newblk *);
816 static	void cancel_allocdirect(struct allocdirectlst *,
817 	    struct allocdirect *, struct freeblks *, int);
818 static	int check_inode_unwritten(struct inodedep *);
819 static	int free_inodedep(struct inodedep *);
820 static	void freework_freeblock(struct freework *);
821 static	void handle_workitem_freeblocks(struct freeblks *, int);
822 static	void handle_complete_freeblocks(struct freeblks *);
823 static	void handle_workitem_indirblk(struct freework *);
824 static	void handle_written_freework(struct freework *);
825 static	void merge_inode_lists(struct allocdirectlst *,struct allocdirectlst *);
826 static	void setup_allocindir_phase2(struct buf *, struct inode *,
827 	    struct inodedep *, struct allocindir *, ufs_lbn_t);
828 static	struct allocindir *newallocindir(struct inode *, int, ufs2_daddr_t,
829 	    ufs2_daddr_t, ufs_lbn_t);
830 static	void handle_workitem_freefrag(struct freefrag *);
831 static	struct freefrag *newfreefrag(struct inode *, ufs2_daddr_t, long,
832 	    ufs_lbn_t);
833 static	void allocdirect_merge(struct allocdirectlst *,
834 	    struct allocdirect *, struct allocdirect *);
835 static	struct freefrag *allocindir_merge(struct allocindir *,
836 	    struct allocindir *);
837 static	int bmsafemap_find(struct bmsafemap_hashhead *, struct mount *, int,
838 	    struct bmsafemap **);
839 static	struct bmsafemap *bmsafemap_lookup(struct mount *, struct buf *,
840 	    int cg);
841 static	int newblk_find(struct newblk_hashhead *, struct mount *, ufs2_daddr_t,
842 	    int, struct newblk **);
843 static	int newblk_lookup(struct mount *, ufs2_daddr_t, int, struct newblk **);
844 static	int inodedep_find(struct inodedep_hashhead *, struct fs *, ino_t,
845 	    struct inodedep **);
846 static	int inodedep_lookup(struct mount *, ino_t, int, struct inodedep **);
847 static	int pagedep_lookup(struct mount *, ino_t, ufs_lbn_t, int,
848 	    struct pagedep **);
849 static	int pagedep_find(struct pagedep_hashhead *, ino_t, ufs_lbn_t,
850 	    struct mount *mp, int, struct pagedep **);
851 static	void pause_timer(void *);
852 static	int request_cleanup(struct mount *, int);
853 static	int process_worklist_item(struct mount *, int);
854 static	void process_removes(struct vnode *);
855 static	void jwork_move(struct workhead *, struct workhead *);
856 static	void add_to_worklist(struct worklist *, int);
857 static	void remove_from_worklist(struct worklist *);
858 static	void softdep_flush(void);
859 static	int softdep_speedup(void);
860 static	void worklist_speedup(void);
861 static	int journal_mount(struct mount *, struct fs *, struct ucred *);
862 static	void journal_unmount(struct mount *);
863 static	int journal_space(struct ufsmount *, int);
864 static	void journal_suspend(struct ufsmount *);
865 static	int journal_unsuspend(struct ufsmount *ump);
866 static	void softdep_prelink(struct vnode *, struct vnode *);
867 static	void add_to_journal(struct worklist *);
868 static	void remove_from_journal(struct worklist *);
869 static	void softdep_process_journal(struct mount *, int);
870 static	struct jremref *newjremref(struct dirrem *, struct inode *,
871 	    struct inode *ip, off_t, nlink_t);
872 static	struct jaddref *newjaddref(struct inode *, ino_t, off_t, int16_t,
873 	    uint16_t);
874 static inline void newinoref(struct inoref *, ino_t, ino_t, off_t, nlink_t,
875 	    uint16_t);
876 static inline struct jsegdep *inoref_jseg(struct inoref *);
877 static	struct jmvref *newjmvref(struct inode *, ino_t, off_t, off_t);
878 static	struct jfreeblk *newjfreeblk(struct freeblks *, ufs_lbn_t,
879 	    ufs2_daddr_t, int);
880 static	struct jfreefrag *newjfreefrag(struct freefrag *, struct inode *,
881 	    ufs2_daddr_t, long, ufs_lbn_t);
882 static	struct freework *newfreework(struct ufsmount *, struct freeblks *,
883 	    struct freework *, ufs_lbn_t, ufs2_daddr_t, int, int);
884 static	void jwait(struct worklist *wk);
885 static	struct inodedep *inodedep_lookup_ip(struct inode *);
886 static	int bmsafemap_rollbacks(struct bmsafemap *);
887 static	struct freefile *handle_bufwait(struct inodedep *, struct workhead *);
888 static	void handle_jwork(struct workhead *);
889 static	struct mkdir *setup_newdir(struct diradd *, ino_t, ino_t, struct buf *,
890 	    struct mkdir **);
891 static	struct jblocks *jblocks_create(void);
892 static	ufs2_daddr_t jblocks_alloc(struct jblocks *, int, int *);
893 static	void jblocks_free(struct jblocks *, struct mount *, int);
894 static	void jblocks_destroy(struct jblocks *);
895 static	void jblocks_add(struct jblocks *, ufs2_daddr_t, int);
896 
897 /*
898  * Exported softdep operations.
899  */
900 static	void softdep_disk_io_initiation(struct buf *);
901 static	void softdep_disk_write_complete(struct buf *);
902 static	void softdep_deallocate_dependencies(struct buf *);
903 static	int softdep_count_dependencies(struct buf *bp, int);
904 
905 static struct mtx lk;
906 MTX_SYSINIT(softdep_lock, &lk, "Softdep Lock", MTX_DEF);
907 
908 #define TRY_ACQUIRE_LOCK(lk)		mtx_trylock(lk)
909 #define ACQUIRE_LOCK(lk)		mtx_lock(lk)
910 #define FREE_LOCK(lk)			mtx_unlock(lk)
911 
912 #define	BUF_AREC(bp)			lockallowrecurse(&(bp)->b_lock)
913 #define	BUF_NOREC(bp)			lockdisablerecurse(&(bp)->b_lock)
914 
915 /*
916  * Worklist queue management.
917  * These routines require that the lock be held.
918  */
919 #ifndef /* NOT */ DEBUG
920 #define WORKLIST_INSERT(head, item) do {	\
921 	(item)->wk_state |= ONWORKLIST;		\
922 	LIST_INSERT_HEAD(head, item, wk_list);	\
923 } while (0)
924 #define WORKLIST_REMOVE(item) do {		\
925 	(item)->wk_state &= ~ONWORKLIST;	\
926 	LIST_REMOVE(item, wk_list);		\
927 } while (0)
928 #define WORKLIST_INSERT_UNLOCKED	WORKLIST_INSERT
929 #define WORKLIST_REMOVE_UNLOCKED	WORKLIST_REMOVE
930 
931 #else /* DEBUG */
932 static	void worklist_insert(struct workhead *, struct worklist *, int);
933 static	void worklist_remove(struct worklist *, int);
934 
935 #define WORKLIST_INSERT(head, item) worklist_insert(head, item, 1)
936 #define WORKLIST_INSERT_UNLOCKED(head, item) worklist_insert(head, item, 0)
937 #define WORKLIST_REMOVE(item) worklist_remove(item, 1)
938 #define WORKLIST_REMOVE_UNLOCKED(item) worklist_remove(item, 0)
939 
940 static void
941 worklist_insert(head, item, locked)
942 	struct workhead *head;
943 	struct worklist *item;
944 	int locked;
945 {
946 
947 	if (locked)
948 		mtx_assert(&lk, MA_OWNED);
949 	if (item->wk_state & ONWORKLIST)
950 		panic("worklist_insert: %p %s(0x%X) already on list",
951 		    item, TYPENAME(item->wk_type), item->wk_state);
952 	item->wk_state |= ONWORKLIST;
953 	LIST_INSERT_HEAD(head, item, wk_list);
954 }
955 
956 static void
957 worklist_remove(item, locked)
958 	struct worklist *item;
959 	int locked;
960 {
961 
962 	if (locked)
963 		mtx_assert(&lk, MA_OWNED);
964 	if ((item->wk_state & ONWORKLIST) == 0)
965 		panic("worklist_remove: %p %s(0x%X) not on list",
966 		    item, TYPENAME(item->wk_type), item->wk_state);
967 	item->wk_state &= ~ONWORKLIST;
968 	LIST_REMOVE(item, wk_list);
969 }
970 #endif /* DEBUG */
971 
972 /*
973  * Merge two jsegdeps keeping only the oldest one as newer references
974  * can't be discarded until after older references.
975  */
976 static inline struct jsegdep *
977 jsegdep_merge(struct jsegdep *one, struct jsegdep *two)
978 {
979 	struct jsegdep *swp;
980 
981 	if (two == NULL)
982 		return (one);
983 
984 	if (one->jd_seg->js_seq > two->jd_seg->js_seq) {
985 		swp = one;
986 		one = two;
987 		two = swp;
988 	}
989 	WORKLIST_REMOVE(&two->jd_list);
990 	free_jsegdep(two);
991 
992 	return (one);
993 }
994 
995 /*
996  * If two freedeps are compatible free one to reduce list size.
997  */
998 static inline struct freedep *
999 freedep_merge(struct freedep *one, struct freedep *two)
1000 {
1001 	if (two == NULL)
1002 		return (one);
1003 
1004 	if (one->fd_freework == two->fd_freework) {
1005 		WORKLIST_REMOVE(&two->fd_list);
1006 		free_freedep(two);
1007 	}
1008 	return (one);
1009 }
1010 
1011 /*
1012  * Move journal work from one list to another.  Duplicate freedeps and
1013  * jsegdeps are coalesced to keep the lists as small as possible.
1014  */
1015 static void
1016 jwork_move(dst, src)
1017 	struct workhead *dst;
1018 	struct workhead *src;
1019 {
1020 	struct freedep *freedep;
1021 	struct jsegdep *jsegdep;
1022 	struct worklist *wkn;
1023 	struct worklist *wk;
1024 
1025 	KASSERT(dst != src,
1026 	    ("jwork_move: dst == src"));
1027 	freedep = NULL;
1028 	jsegdep = NULL;
1029 	LIST_FOREACH_SAFE(wk, dst, wk_list, wkn) {
1030 		if (wk->wk_type == D_JSEGDEP)
1031 			jsegdep = jsegdep_merge(WK_JSEGDEP(wk), jsegdep);
1032 		if (wk->wk_type == D_FREEDEP)
1033 			freedep = freedep_merge(WK_FREEDEP(wk), freedep);
1034 	}
1035 
1036 	mtx_assert(&lk, MA_OWNED);
1037 	while ((wk = LIST_FIRST(src)) != NULL) {
1038 		WORKLIST_REMOVE(wk);
1039 		WORKLIST_INSERT(dst, wk);
1040 		if (wk->wk_type == D_JSEGDEP) {
1041 			jsegdep = jsegdep_merge(WK_JSEGDEP(wk), jsegdep);
1042 			continue;
1043 		}
1044 		if (wk->wk_type == D_FREEDEP)
1045 			freedep = freedep_merge(WK_FREEDEP(wk), freedep);
1046 	}
1047 }
1048 
1049 /*
1050  * Routines for tracking and managing workitems.
1051  */
1052 static	void workitem_free(struct worklist *, int);
1053 static	void workitem_alloc(struct worklist *, int, struct mount *);
1054 
1055 #define	WORKITEM_FREE(item, type) workitem_free((struct worklist *)(item), (type))
1056 
1057 static void
1058 workitem_free(item, type)
1059 	struct worklist *item;
1060 	int type;
1061 {
1062 	struct ufsmount *ump;
1063 	mtx_assert(&lk, MA_OWNED);
1064 
1065 #ifdef DEBUG
1066 	if (item->wk_state & ONWORKLIST)
1067 		panic("workitem_free: %s(0x%X) still on list",
1068 		    TYPENAME(item->wk_type), item->wk_state);
1069 	if (item->wk_type != type)
1070 		panic("workitem_free: type mismatch %s != %s",
1071 		    TYPENAME(item->wk_type), TYPENAME(type));
1072 #endif
1073 	ump = VFSTOUFS(item->wk_mp);
1074 	if (--ump->softdep_deps == 0 && ump->softdep_req)
1075 		wakeup(&ump->softdep_deps);
1076 	dep_current[type]--;
1077 	free(item, DtoM(type));
1078 }
1079 
1080 static void
1081 workitem_alloc(item, type, mp)
1082 	struct worklist *item;
1083 	int type;
1084 	struct mount *mp;
1085 {
1086 	item->wk_type = type;
1087 	item->wk_mp = mp;
1088 	item->wk_state = 0;
1089 	ACQUIRE_LOCK(&lk);
1090 	dep_current[type]++;
1091 	dep_total[type]++;
1092 	VFSTOUFS(mp)->softdep_deps++;
1093 	VFSTOUFS(mp)->softdep_accdeps++;
1094 	FREE_LOCK(&lk);
1095 }
1096 
1097 /*
1098  * Workitem queue management
1099  */
1100 static int max_softdeps;	/* maximum number of structs before slowdown */
1101 static int maxindirdeps = 50;	/* max number of indirdeps before slowdown */
1102 static int tickdelay = 2;	/* number of ticks to pause during slowdown */
1103 static int proc_waiting;	/* tracks whether we have a timeout posted */
1104 static int *stat_countp;	/* statistic to count in proc_waiting timeout */
1105 static struct callout softdep_callout;
1106 static int req_pending;
1107 static int req_clear_inodedeps;	/* syncer process flush some inodedeps */
1108 #define FLUSH_INODES		1
1109 static int req_clear_remove;	/* syncer process flush some freeblks */
1110 #define FLUSH_REMOVE		2
1111 #define FLUSH_REMOVE_WAIT	3
1112 static long num_freeblkdep;	/* number of freeblks workitems allocated */
1113 
1114 /*
1115  * runtime statistics
1116  */
1117 static int stat_worklist_push;	/* number of worklist cleanups */
1118 static int stat_blk_limit_push;	/* number of times block limit neared */
1119 static int stat_ino_limit_push;	/* number of times inode limit neared */
1120 static int stat_blk_limit_hit;	/* number of times block slowdown imposed */
1121 static int stat_ino_limit_hit;	/* number of times inode slowdown imposed */
1122 static int stat_sync_limit_hit;	/* number of synchronous slowdowns imposed */
1123 static int stat_indir_blk_ptrs;	/* bufs redirtied as indir ptrs not written */
1124 static int stat_inode_bitmap;	/* bufs redirtied as inode bitmap not written */
1125 static int stat_direct_blk_ptrs;/* bufs redirtied as direct ptrs not written */
1126 static int stat_dir_entry;	/* bufs redirtied as dir entry cannot write */
1127 static int stat_jaddref;	/* bufs redirtied as ino bitmap can not write */
1128 static int stat_jnewblk;	/* bufs redirtied as blk bitmap can not write */
1129 static int stat_journal_min;	/* Times hit journal min threshold */
1130 static int stat_journal_low;	/* Times hit journal low threshold */
1131 static int stat_journal_wait;	/* Times blocked in jwait(). */
1132 static int stat_jwait_filepage;	/* Times blocked in jwait() for filepage. */
1133 static int stat_jwait_freeblks;	/* Times blocked in jwait() for freeblks. */
1134 static int stat_jwait_inode;	/* Times blocked in jwait() for inodes. */
1135 static int stat_jwait_newblk;	/* Times blocked in jwait() for newblks. */
1136 
1137 SYSCTL_INT(_debug_softdep, OID_AUTO, max_softdeps, CTLFLAG_RW,
1138     &max_softdeps, 0, "");
1139 SYSCTL_INT(_debug_softdep, OID_AUTO, tickdelay, CTLFLAG_RW,
1140     &tickdelay, 0, "");
1141 SYSCTL_INT(_debug_softdep, OID_AUTO, maxindirdeps, CTLFLAG_RW,
1142     &maxindirdeps, 0, "");
1143 SYSCTL_INT(_debug_softdep, OID_AUTO, worklist_push, CTLFLAG_RW,
1144     &stat_worklist_push, 0,"");
1145 SYSCTL_INT(_debug_softdep, OID_AUTO, blk_limit_push, CTLFLAG_RW,
1146     &stat_blk_limit_push, 0,"");
1147 SYSCTL_INT(_debug_softdep, OID_AUTO, ino_limit_push, CTLFLAG_RW,
1148     &stat_ino_limit_push, 0,"");
1149 SYSCTL_INT(_debug_softdep, OID_AUTO, blk_limit_hit, CTLFLAG_RW,
1150     &stat_blk_limit_hit, 0, "");
1151 SYSCTL_INT(_debug_softdep, OID_AUTO, ino_limit_hit, CTLFLAG_RW,
1152     &stat_ino_limit_hit, 0, "");
1153 SYSCTL_INT(_debug_softdep, OID_AUTO, sync_limit_hit, CTLFLAG_RW,
1154     &stat_sync_limit_hit, 0, "");
1155 SYSCTL_INT(_debug_softdep, OID_AUTO, indir_blk_ptrs, CTLFLAG_RW,
1156     &stat_indir_blk_ptrs, 0, "");
1157 SYSCTL_INT(_debug_softdep, OID_AUTO, inode_bitmap, CTLFLAG_RW,
1158     &stat_inode_bitmap, 0, "");
1159 SYSCTL_INT(_debug_softdep, OID_AUTO, direct_blk_ptrs, CTLFLAG_RW,
1160     &stat_direct_blk_ptrs, 0, "");
1161 SYSCTL_INT(_debug_softdep, OID_AUTO, dir_entry, CTLFLAG_RW,
1162     &stat_dir_entry, 0, "");
1163 SYSCTL_INT(_debug_softdep, OID_AUTO, jaddref_rollback, CTLFLAG_RW,
1164     &stat_jaddref, 0, "");
1165 SYSCTL_INT(_debug_softdep, OID_AUTO, jnewblk_rollback, CTLFLAG_RW,
1166     &stat_jnewblk, 0, "");
1167 SYSCTL_INT(_debug_softdep, OID_AUTO, journal_low, CTLFLAG_RW,
1168     &stat_journal_low, 0, "");
1169 SYSCTL_INT(_debug_softdep, OID_AUTO, journal_min, CTLFLAG_RW,
1170     &stat_journal_min, 0, "");
1171 SYSCTL_INT(_debug_softdep, OID_AUTO, journal_wait, CTLFLAG_RW,
1172     &stat_journal_wait, 0, "");
1173 SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_filepage, CTLFLAG_RW,
1174     &stat_jwait_filepage, 0, "");
1175 SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_freeblks, CTLFLAG_RW,
1176     &stat_jwait_freeblks, 0, "");
1177 SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_inode, CTLFLAG_RW,
1178     &stat_jwait_inode, 0, "");
1179 SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_newblk, CTLFLAG_RW,
1180     &stat_jwait_newblk, 0, "");
1181 
1182 SYSCTL_DECL(_vfs_ffs);
1183 
1184 LIST_HEAD(bmsafemap_hashhead, bmsafemap) *bmsafemap_hashtbl;
1185 static u_long	bmsafemap_hash;	/* size of hash table - 1 */
1186 
1187 static int compute_summary_at_mount = 0;	/* Whether to recompute the summary at mount time */
1188 SYSCTL_INT(_vfs_ffs, OID_AUTO, compute_summary_at_mount, CTLFLAG_RW,
1189 	   &compute_summary_at_mount, 0, "Recompute summary at mount");
1190 
1191 static struct proc *softdepproc;
1192 static struct kproc_desc softdep_kp = {
1193 	"softdepflush",
1194 	softdep_flush,
1195 	&softdepproc
1196 };
1197 SYSINIT(sdproc, SI_SUB_KTHREAD_UPDATE, SI_ORDER_ANY, kproc_start,
1198     &softdep_kp);
1199 
1200 static void
1201 softdep_flush(void)
1202 {
1203 	struct mount *nmp;
1204 	struct mount *mp;
1205 	struct ufsmount *ump;
1206 	struct thread *td;
1207 	int remaining;
1208 	int progress;
1209 	int vfslocked;
1210 
1211 	td = curthread;
1212 	td->td_pflags |= TDP_NORUNNINGBUF;
1213 
1214 	for (;;) {
1215 		kproc_suspend_check(softdepproc);
1216 		vfslocked = VFS_LOCK_GIANT((struct mount *)NULL);
1217 		ACQUIRE_LOCK(&lk);
1218 		/*
1219 		 * If requested, try removing inode or removal dependencies.
1220 		 */
1221 		if (req_clear_inodedeps) {
1222 			clear_inodedeps(td);
1223 			req_clear_inodedeps -= 1;
1224 			wakeup_one(&proc_waiting);
1225 		}
1226 		if (req_clear_remove) {
1227 			clear_remove(td);
1228 			req_clear_remove -= 1;
1229 			wakeup_one(&proc_waiting);
1230 		}
1231 		FREE_LOCK(&lk);
1232 		VFS_UNLOCK_GIANT(vfslocked);
1233 		remaining = progress = 0;
1234 		mtx_lock(&mountlist_mtx);
1235 		for (mp = TAILQ_FIRST(&mountlist); mp != NULL; mp = nmp)  {
1236 			nmp = TAILQ_NEXT(mp, mnt_list);
1237 			if ((mp->mnt_flag & MNT_SOFTDEP) == 0)
1238 				continue;
1239 			if (vfs_busy(mp, MBF_NOWAIT | MBF_MNTLSTLOCK))
1240 				continue;
1241 			vfslocked = VFS_LOCK_GIANT(mp);
1242 			progress += softdep_process_worklist(mp, 0);
1243 			ump = VFSTOUFS(mp);
1244 			remaining += ump->softdep_on_worklist -
1245 				ump->softdep_on_worklist_inprogress;
1246 			VFS_UNLOCK_GIANT(vfslocked);
1247 			mtx_lock(&mountlist_mtx);
1248 			nmp = TAILQ_NEXT(mp, mnt_list);
1249 			vfs_unbusy(mp);
1250 		}
1251 		mtx_unlock(&mountlist_mtx);
1252 		if (remaining && progress)
1253 			continue;
1254 		ACQUIRE_LOCK(&lk);
1255 		if (!req_pending)
1256 			msleep(&req_pending, &lk, PVM, "sdflush", hz);
1257 		req_pending = 0;
1258 		FREE_LOCK(&lk);
1259 	}
1260 }
1261 
1262 static void
1263 worklist_speedup(void)
1264 {
1265 	mtx_assert(&lk, MA_OWNED);
1266 	if (req_pending == 0) {
1267 		req_pending = 1;
1268 		wakeup(&req_pending);
1269 	}
1270 }
1271 
1272 static int
1273 softdep_speedup(void)
1274 {
1275 
1276 	worklist_speedup();
1277 	bd_speedup();
1278 	return speedup_syncer();
1279 }
1280 
1281 /*
1282  * Add an item to the end of the work queue.
1283  * This routine requires that the lock be held.
1284  * This is the only routine that adds items to the list.
1285  * The following routine is the only one that removes items
1286  * and does so in order from first to last.
1287  */
1288 static void
1289 add_to_worklist(wk, nodelay)
1290 	struct worklist *wk;
1291 	int nodelay;
1292 {
1293 	struct ufsmount *ump;
1294 
1295 	mtx_assert(&lk, MA_OWNED);
1296 	ump = VFSTOUFS(wk->wk_mp);
1297 	if (wk->wk_state & ONWORKLIST)
1298 		panic("add_to_worklist: %s(0x%X) already on list",
1299 		    TYPENAME(wk->wk_type), wk->wk_state);
1300 	wk->wk_state |= ONWORKLIST;
1301 	if (LIST_EMPTY(&ump->softdep_workitem_pending))
1302 		LIST_INSERT_HEAD(&ump->softdep_workitem_pending, wk, wk_list);
1303 	else
1304 		LIST_INSERT_AFTER(ump->softdep_worklist_tail, wk, wk_list);
1305 	ump->softdep_worklist_tail = wk;
1306 	ump->softdep_on_worklist += 1;
1307 	if (nodelay)
1308 		worklist_speedup();
1309 }
1310 
1311 /*
1312  * Remove the item to be processed. If we are removing the last
1313  * item on the list, we need to recalculate the tail pointer.
1314  */
1315 static void
1316 remove_from_worklist(wk)
1317 	struct worklist *wk;
1318 {
1319 	struct ufsmount *ump;
1320 	struct worklist *wkend;
1321 
1322 	ump = VFSTOUFS(wk->wk_mp);
1323 	WORKLIST_REMOVE(wk);
1324 	if (wk == ump->softdep_worklist_tail) {
1325 		LIST_FOREACH(wkend, &ump->softdep_workitem_pending, wk_list)
1326 			if (LIST_NEXT(wkend, wk_list) == NULL)
1327 				break;
1328 		ump->softdep_worklist_tail = wkend;
1329 	}
1330 	ump->softdep_on_worklist -= 1;
1331 }
1332 
1333 /*
1334  * Process that runs once per second to handle items in the background queue.
1335  *
1336  * Note that we ensure that everything is done in the order in which they
1337  * appear in the queue. The code below depends on this property to ensure
1338  * that blocks of a file are freed before the inode itself is freed. This
1339  * ordering ensures that no new <vfsid, inum, lbn> triples will be generated
1340  * until all the old ones have been purged from the dependency lists.
1341  */
1342 int
1343 softdep_process_worklist(mp, full)
1344 	struct mount *mp;
1345 	int full;
1346 {
1347 	struct thread *td = curthread;
1348 	int cnt, matchcnt;
1349 	struct ufsmount *ump;
1350 	long starttime;
1351 
1352 	KASSERT(mp != NULL, ("softdep_process_worklist: NULL mp"));
1353 	/*
1354 	 * Record the process identifier of our caller so that we can give
1355 	 * this process preferential treatment in request_cleanup below.
1356 	 */
1357 	matchcnt = 0;
1358 	ump = VFSTOUFS(mp);
1359 	ACQUIRE_LOCK(&lk);
1360 	starttime = time_second;
1361 	softdep_process_journal(mp, full?MNT_WAIT:0);
1362 	while (ump->softdep_on_worklist > 0) {
1363 		if ((cnt = process_worklist_item(mp, LK_NOWAIT)) == -1)
1364 			break;
1365 		else
1366 			matchcnt += cnt;
1367 		/*
1368 		 * If requested, try removing inode or removal dependencies.
1369 		 */
1370 		if (req_clear_inodedeps) {
1371 			clear_inodedeps(td);
1372 			req_clear_inodedeps -= 1;
1373 			wakeup_one(&proc_waiting);
1374 		}
1375 		if (req_clear_remove) {
1376 			clear_remove(td);
1377 			req_clear_remove -= 1;
1378 			wakeup_one(&proc_waiting);
1379 		}
1380 		/*
1381 		 * We do not generally want to stop for buffer space, but if
1382 		 * we are really being a buffer hog, we will stop and wait.
1383 		 */
1384 		if (should_yield()) {
1385 			FREE_LOCK(&lk);
1386 			kern_yield(-1);
1387 			bwillwrite();
1388 			ACQUIRE_LOCK(&lk);
1389 		}
1390 		/*
1391 		 * Never allow processing to run for more than one
1392 		 * second. Otherwise the other mountpoints may get
1393 		 * excessively backlogged.
1394 		 */
1395 		if (!full && starttime != time_second)
1396 			break;
1397 	}
1398 	if (full == 0)
1399 		journal_unsuspend(ump);
1400 	FREE_LOCK(&lk);
1401 	return (matchcnt);
1402 }
1403 
1404 /*
1405  * Process all removes associated with a vnode if we are running out of
1406  * journal space.  Any other process which attempts to flush these will
1407  * be unable as we have the vnodes locked.
1408  */
1409 static void
1410 process_removes(vp)
1411 	struct vnode *vp;
1412 {
1413 	struct inodedep *inodedep;
1414 	struct dirrem *dirrem;
1415 	struct mount *mp;
1416 	ino_t inum;
1417 
1418 	mtx_assert(&lk, MA_OWNED);
1419 
1420 	mp = vp->v_mount;
1421 	inum = VTOI(vp)->i_number;
1422 	for (;;) {
1423 		if (inodedep_lookup(mp, inum, 0, &inodedep) == 0)
1424 			return;
1425 		LIST_FOREACH(dirrem, &inodedep->id_dirremhd, dm_inonext)
1426 			if ((dirrem->dm_state & (COMPLETE | ONWORKLIST)) ==
1427 			    (COMPLETE | ONWORKLIST))
1428 				break;
1429 		if (dirrem == NULL)
1430 			return;
1431 		/*
1432 		 * If another thread is trying to lock this vnode it will
1433 		 * fail but we must wait for it to do so before we can
1434 		 * proceed.
1435 		 */
1436 		if (dirrem->dm_state & INPROGRESS) {
1437 			dirrem->dm_state |= IOWAITING;
1438 			msleep(&dirrem->dm_list, &lk, PVM, "pwrwait", 0);
1439 			continue;
1440 		}
1441 		remove_from_worklist(&dirrem->dm_list);
1442 		FREE_LOCK(&lk);
1443 		if (vn_start_secondary_write(NULL, &mp, V_NOWAIT))
1444 			panic("process_removes: suspended filesystem");
1445 		handle_workitem_remove(dirrem, vp);
1446 		vn_finished_secondary_write(mp);
1447 		ACQUIRE_LOCK(&lk);
1448 	}
1449 }
1450 
1451 /*
1452  * Process one item on the worklist.
1453  */
1454 static int
1455 process_worklist_item(mp, flags)
1456 	struct mount *mp;
1457 	int flags;
1458 {
1459 	struct worklist *wk;
1460 	struct ufsmount *ump;
1461 	struct vnode *vp;
1462 	int matchcnt = 0;
1463 
1464 	mtx_assert(&lk, MA_OWNED);
1465 	KASSERT(mp != NULL, ("process_worklist_item: NULL mp"));
1466 	/*
1467 	 * If we are being called because of a process doing a
1468 	 * copy-on-write, then it is not safe to write as we may
1469 	 * recurse into the copy-on-write routine.
1470 	 */
1471 	if (curthread->td_pflags & TDP_COWINPROGRESS)
1472 		return (-1);
1473 	/*
1474 	 * Normally we just process each item on the worklist in order.
1475 	 * However, if we are in a situation where we cannot lock any
1476 	 * inodes, we have to skip over any dirrem requests whose
1477 	 * vnodes are resident and locked.
1478 	 */
1479 	vp = NULL;
1480 	ump = VFSTOUFS(mp);
1481 	LIST_FOREACH(wk, &ump->softdep_workitem_pending, wk_list) {
1482 		if (wk->wk_state & INPROGRESS)
1483 			continue;
1484 		if ((flags & LK_NOWAIT) == 0 || wk->wk_type != D_DIRREM)
1485 			break;
1486 		wk->wk_state |= INPROGRESS;
1487 		ump->softdep_on_worklist_inprogress++;
1488 		FREE_LOCK(&lk);
1489 		ffs_vgetf(mp, WK_DIRREM(wk)->dm_oldinum,
1490 		    LK_NOWAIT | LK_EXCLUSIVE, &vp, FFSV_FORCEINSMQ);
1491 		ACQUIRE_LOCK(&lk);
1492 		if (wk->wk_state & IOWAITING) {
1493 			wk->wk_state &= ~IOWAITING;
1494 			wakeup(wk);
1495 		}
1496 		wk->wk_state &= ~INPROGRESS;
1497 		ump->softdep_on_worklist_inprogress--;
1498 		if (vp != NULL)
1499 			break;
1500 	}
1501 	if (wk == 0)
1502 		return (-1);
1503 	remove_from_worklist(wk);
1504 	FREE_LOCK(&lk);
1505 	if (vn_start_secondary_write(NULL, &mp, V_NOWAIT))
1506 		panic("process_worklist_item: suspended filesystem");
1507 	matchcnt++;
1508 	switch (wk->wk_type) {
1509 
1510 	case D_DIRREM:
1511 		/* removal of a directory entry */
1512 		handle_workitem_remove(WK_DIRREM(wk), vp);
1513 		if (vp)
1514 			vput(vp);
1515 		break;
1516 
1517 	case D_FREEBLKS:
1518 		/* releasing blocks and/or fragments from a file */
1519 		handle_workitem_freeblocks(WK_FREEBLKS(wk), flags & LK_NOWAIT);
1520 		break;
1521 
1522 	case D_FREEFRAG:
1523 		/* releasing a fragment when replaced as a file grows */
1524 		handle_workitem_freefrag(WK_FREEFRAG(wk));
1525 		break;
1526 
1527 	case D_FREEFILE:
1528 		/* releasing an inode when its link count drops to 0 */
1529 		handle_workitem_freefile(WK_FREEFILE(wk));
1530 		break;
1531 
1532 	case D_FREEWORK:
1533 		/* Final block in an indirect was freed. */
1534 		handle_workitem_indirblk(WK_FREEWORK(wk));
1535 		break;
1536 
1537 	default:
1538 		panic("%s_process_worklist: Unknown type %s",
1539 		    "softdep", TYPENAME(wk->wk_type));
1540 		/* NOTREACHED */
1541 	}
1542 	vn_finished_secondary_write(mp);
1543 	ACQUIRE_LOCK(&lk);
1544 	return (matchcnt);
1545 }
1546 
1547 /*
1548  * Move dependencies from one buffer to another.
1549  */
1550 int
1551 softdep_move_dependencies(oldbp, newbp)
1552 	struct buf *oldbp;
1553 	struct buf *newbp;
1554 {
1555 	struct worklist *wk, *wktail;
1556 	int dirty;
1557 
1558 	dirty = 0;
1559 	wktail = NULL;
1560 	ACQUIRE_LOCK(&lk);
1561 	while ((wk = LIST_FIRST(&oldbp->b_dep)) != NULL) {
1562 		LIST_REMOVE(wk, wk_list);
1563 		if (wk->wk_type == D_BMSAFEMAP &&
1564 		    bmsafemap_rollbacks(WK_BMSAFEMAP(wk)))
1565 			dirty = 1;
1566 		if (wktail == 0)
1567 			LIST_INSERT_HEAD(&newbp->b_dep, wk, wk_list);
1568 		else
1569 			LIST_INSERT_AFTER(wktail, wk, wk_list);
1570 		wktail = wk;
1571 	}
1572 	FREE_LOCK(&lk);
1573 
1574 	return (dirty);
1575 }
1576 
1577 /*
1578  * Purge the work list of all items associated with a particular mount point.
1579  */
1580 int
1581 softdep_flushworklist(oldmnt, countp, td)
1582 	struct mount *oldmnt;
1583 	int *countp;
1584 	struct thread *td;
1585 {
1586 	struct vnode *devvp;
1587 	int count, error = 0;
1588 	struct ufsmount *ump;
1589 
1590 	/*
1591 	 * Alternately flush the block device associated with the mount
1592 	 * point and process any dependencies that the flushing
1593 	 * creates. We continue until no more worklist dependencies
1594 	 * are found.
1595 	 */
1596 	*countp = 0;
1597 	ump = VFSTOUFS(oldmnt);
1598 	devvp = ump->um_devvp;
1599 	while ((count = softdep_process_worklist(oldmnt, 1)) > 0) {
1600 		*countp += count;
1601 		vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY);
1602 		error = VOP_FSYNC(devvp, MNT_WAIT, td);
1603 		VOP_UNLOCK(devvp, 0);
1604 		if (error)
1605 			break;
1606 	}
1607 	return (error);
1608 }
1609 
1610 int
1611 softdep_waitidle(struct mount *mp)
1612 {
1613 	struct ufsmount *ump;
1614 	int error;
1615 	int i;
1616 
1617 	ump = VFSTOUFS(mp);
1618 	ACQUIRE_LOCK(&lk);
1619 	for (i = 0; i < 10 && ump->softdep_deps; i++) {
1620 		ump->softdep_req = 1;
1621 		if (ump->softdep_on_worklist)
1622 			panic("softdep_waitidle: work added after flush.");
1623 		msleep(&ump->softdep_deps, &lk, PVM, "softdeps", 1);
1624 	}
1625 	ump->softdep_req = 0;
1626 	FREE_LOCK(&lk);
1627 	error = 0;
1628 	if (i == 10) {
1629 		error = EBUSY;
1630 		printf("softdep_waitidle: Failed to flush worklist for %p\n",
1631 		    mp);
1632 	}
1633 
1634 	return (error);
1635 }
1636 
1637 /*
1638  * Flush all vnodes and worklist items associated with a specified mount point.
1639  */
1640 int
1641 softdep_flushfiles(oldmnt, flags, td)
1642 	struct mount *oldmnt;
1643 	int flags;
1644 	struct thread *td;
1645 {
1646 	int error, depcount, loopcnt, retry_flush_count, retry;
1647 
1648 	loopcnt = 10;
1649 	retry_flush_count = 3;
1650 retry_flush:
1651 	error = 0;
1652 
1653 	/*
1654 	 * Alternately flush the vnodes associated with the mount
1655 	 * point and process any dependencies that the flushing
1656 	 * creates. In theory, this loop can happen at most twice,
1657 	 * but we give it a few extra just to be sure.
1658 	 */
1659 	for (; loopcnt > 0; loopcnt--) {
1660 		/*
1661 		 * Do another flush in case any vnodes were brought in
1662 		 * as part of the cleanup operations.
1663 		 */
1664 		if ((error = ffs_flushfiles(oldmnt, flags, td)) != 0)
1665 			break;
1666 		if ((error = softdep_flushworklist(oldmnt, &depcount, td)) != 0 ||
1667 		    depcount == 0)
1668 			break;
1669 	}
1670 	/*
1671 	 * If we are unmounting then it is an error to fail. If we
1672 	 * are simply trying to downgrade to read-only, then filesystem
1673 	 * activity can keep us busy forever, so we just fail with EBUSY.
1674 	 */
1675 	if (loopcnt == 0) {
1676 		if (oldmnt->mnt_kern_flag & MNTK_UNMOUNT)
1677 			panic("softdep_flushfiles: looping");
1678 		error = EBUSY;
1679 	}
1680 	if (!error)
1681 		error = softdep_waitidle(oldmnt);
1682 	if (!error) {
1683 		if (oldmnt->mnt_kern_flag & MNTK_UNMOUNT) {
1684 			retry = 0;
1685 			MNT_ILOCK(oldmnt);
1686 			KASSERT((oldmnt->mnt_kern_flag & MNTK_NOINSMNTQ) != 0,
1687 			    ("softdep_flushfiles: !MNTK_NOINSMNTQ"));
1688 			if (oldmnt->mnt_nvnodelistsize > 0) {
1689 				if (--retry_flush_count > 0) {
1690 					retry = 1;
1691 					loopcnt = 3;
1692 				} else
1693 					error = EBUSY;
1694 			}
1695 			MNT_IUNLOCK(oldmnt);
1696 			if (retry)
1697 				goto retry_flush;
1698 		}
1699 	}
1700 	return (error);
1701 }
1702 
1703 /*
1704  * Structure hashing.
1705  *
1706  * There are three types of structures that can be looked up:
1707  *	1) pagedep structures identified by mount point, inode number,
1708  *	   and logical block.
1709  *	2) inodedep structures identified by mount point and inode number.
1710  *	3) newblk structures identified by mount point and
1711  *	   physical block number.
1712  *
1713  * The "pagedep" and "inodedep" dependency structures are hashed
1714  * separately from the file blocks and inodes to which they correspond.
1715  * This separation helps when the in-memory copy of an inode or
1716  * file block must be replaced. It also obviates the need to access
1717  * an inode or file page when simply updating (or de-allocating)
1718  * dependency structures. Lookup of newblk structures is needed to
1719  * find newly allocated blocks when trying to associate them with
1720  * their allocdirect or allocindir structure.
1721  *
1722  * The lookup routines optionally create and hash a new instance when
1723  * an existing entry is not found.
1724  */
1725 #define DEPALLOC	0x0001	/* allocate structure if lookup fails */
1726 #define NODELAY		0x0002	/* cannot do background work */
1727 
1728 /*
1729  * Structures and routines associated with pagedep caching.
1730  */
1731 LIST_HEAD(pagedep_hashhead, pagedep) *pagedep_hashtbl;
1732 u_long	pagedep_hash;		/* size of hash table - 1 */
1733 #define	PAGEDEP_HASH(mp, inum, lbn) \
1734 	(&pagedep_hashtbl[((((register_t)(mp)) >> 13) + (inum) + (lbn)) & \
1735 	    pagedep_hash])
1736 
1737 static int
1738 pagedep_find(pagedephd, ino, lbn, mp, flags, pagedeppp)
1739 	struct pagedep_hashhead *pagedephd;
1740 	ino_t ino;
1741 	ufs_lbn_t lbn;
1742 	struct mount *mp;
1743 	int flags;
1744 	struct pagedep **pagedeppp;
1745 {
1746 	struct pagedep *pagedep;
1747 
1748 	LIST_FOREACH(pagedep, pagedephd, pd_hash)
1749 		if (ino == pagedep->pd_ino &&
1750 		    lbn == pagedep->pd_lbn &&
1751 		    mp == pagedep->pd_list.wk_mp)
1752 			break;
1753 	if (pagedep) {
1754 		*pagedeppp = pagedep;
1755 		if ((flags & DEPALLOC) != 0 &&
1756 		    (pagedep->pd_state & ONWORKLIST) == 0)
1757 			return (0);
1758 		return (1);
1759 	}
1760 	*pagedeppp = NULL;
1761 	return (0);
1762 }
1763 /*
1764  * Look up a pagedep. Return 1 if found, 0 if not found or found
1765  * when asked to allocate but not associated with any buffer.
1766  * If not found, allocate if DEPALLOC flag is passed.
1767  * Found or allocated entry is returned in pagedeppp.
1768  * This routine must be called with splbio interrupts blocked.
1769  */
1770 static int
1771 pagedep_lookup(mp, ino, lbn, flags, pagedeppp)
1772 	struct mount *mp;
1773 	ino_t ino;
1774 	ufs_lbn_t lbn;
1775 	int flags;
1776 	struct pagedep **pagedeppp;
1777 {
1778 	struct pagedep *pagedep;
1779 	struct pagedep_hashhead *pagedephd;
1780 	int ret;
1781 	int i;
1782 
1783 	mtx_assert(&lk, MA_OWNED);
1784 	pagedephd = PAGEDEP_HASH(mp, ino, lbn);
1785 
1786 	ret = pagedep_find(pagedephd, ino, lbn, mp, flags, pagedeppp);
1787 	if (*pagedeppp || (flags & DEPALLOC) == 0)
1788 		return (ret);
1789 	FREE_LOCK(&lk);
1790 	pagedep = malloc(sizeof(struct pagedep),
1791 	    M_PAGEDEP, M_SOFTDEP_FLAGS|M_ZERO);
1792 	workitem_alloc(&pagedep->pd_list, D_PAGEDEP, mp);
1793 	ACQUIRE_LOCK(&lk);
1794 	ret = pagedep_find(pagedephd, ino, lbn, mp, flags, pagedeppp);
1795 	if (*pagedeppp) {
1796 		WORKITEM_FREE(pagedep, D_PAGEDEP);
1797 		return (ret);
1798 	}
1799 	pagedep->pd_ino = ino;
1800 	pagedep->pd_lbn = lbn;
1801 	LIST_INIT(&pagedep->pd_dirremhd);
1802 	LIST_INIT(&pagedep->pd_pendinghd);
1803 	for (i = 0; i < DAHASHSZ; i++)
1804 		LIST_INIT(&pagedep->pd_diraddhd[i]);
1805 	LIST_INSERT_HEAD(pagedephd, pagedep, pd_hash);
1806 	*pagedeppp = pagedep;
1807 	return (0);
1808 }
1809 
1810 /*
1811  * Structures and routines associated with inodedep caching.
1812  */
1813 LIST_HEAD(inodedep_hashhead, inodedep) *inodedep_hashtbl;
1814 static u_long	inodedep_hash;	/* size of hash table - 1 */
1815 static long	num_inodedep;	/* number of inodedep allocated */
1816 #define	INODEDEP_HASH(fs, inum) \
1817       (&inodedep_hashtbl[((((register_t)(fs)) >> 13) + (inum)) & inodedep_hash])
1818 
1819 static int
1820 inodedep_find(inodedephd, fs, inum, inodedeppp)
1821 	struct inodedep_hashhead *inodedephd;
1822 	struct fs *fs;
1823 	ino_t inum;
1824 	struct inodedep **inodedeppp;
1825 {
1826 	struct inodedep *inodedep;
1827 
1828 	LIST_FOREACH(inodedep, inodedephd, id_hash)
1829 		if (inum == inodedep->id_ino && fs == inodedep->id_fs)
1830 			break;
1831 	if (inodedep) {
1832 		*inodedeppp = inodedep;
1833 		return (1);
1834 	}
1835 	*inodedeppp = NULL;
1836 
1837 	return (0);
1838 }
1839 /*
1840  * Look up an inodedep. Return 1 if found, 0 if not found.
1841  * If not found, allocate if DEPALLOC flag is passed.
1842  * Found or allocated entry is returned in inodedeppp.
1843  * This routine must be called with splbio interrupts blocked.
1844  */
1845 static int
1846 inodedep_lookup(mp, inum, flags, inodedeppp)
1847 	struct mount *mp;
1848 	ino_t inum;
1849 	int flags;
1850 	struct inodedep **inodedeppp;
1851 {
1852 	struct inodedep *inodedep;
1853 	struct inodedep_hashhead *inodedephd;
1854 	struct fs *fs;
1855 
1856 	mtx_assert(&lk, MA_OWNED);
1857 	fs = VFSTOUFS(mp)->um_fs;
1858 	inodedephd = INODEDEP_HASH(fs, inum);
1859 
1860 	if (inodedep_find(inodedephd, fs, inum, inodedeppp))
1861 		return (1);
1862 	if ((flags & DEPALLOC) == 0)
1863 		return (0);
1864 	/*
1865 	 * If we are over our limit, try to improve the situation.
1866 	 */
1867 	if (num_inodedep > max_softdeps && (flags & NODELAY) == 0)
1868 		request_cleanup(mp, FLUSH_INODES);
1869 	FREE_LOCK(&lk);
1870 	inodedep = malloc(sizeof(struct inodedep),
1871 		M_INODEDEP, M_SOFTDEP_FLAGS);
1872 	workitem_alloc(&inodedep->id_list, D_INODEDEP, mp);
1873 	ACQUIRE_LOCK(&lk);
1874 	if (inodedep_find(inodedephd, fs, inum, inodedeppp)) {
1875 		WORKITEM_FREE(inodedep, D_INODEDEP);
1876 		return (1);
1877 	}
1878 	num_inodedep += 1;
1879 	inodedep->id_fs = fs;
1880 	inodedep->id_ino = inum;
1881 	inodedep->id_state = ALLCOMPLETE;
1882 	inodedep->id_nlinkdelta = 0;
1883 	inodedep->id_savedino1 = NULL;
1884 	inodedep->id_savedsize = -1;
1885 	inodedep->id_savedextsize = -1;
1886 	inodedep->id_savednlink = -1;
1887 	inodedep->id_bmsafemap = NULL;
1888 	inodedep->id_mkdiradd = NULL;
1889 	LIST_INIT(&inodedep->id_dirremhd);
1890 	LIST_INIT(&inodedep->id_pendinghd);
1891 	LIST_INIT(&inodedep->id_inowait);
1892 	LIST_INIT(&inodedep->id_bufwait);
1893 	TAILQ_INIT(&inodedep->id_inoreflst);
1894 	TAILQ_INIT(&inodedep->id_inoupdt);
1895 	TAILQ_INIT(&inodedep->id_newinoupdt);
1896 	TAILQ_INIT(&inodedep->id_extupdt);
1897 	TAILQ_INIT(&inodedep->id_newextupdt);
1898 	LIST_INSERT_HEAD(inodedephd, inodedep, id_hash);
1899 	*inodedeppp = inodedep;
1900 	return (0);
1901 }
1902 
1903 /*
1904  * Structures and routines associated with newblk caching.
1905  */
1906 LIST_HEAD(newblk_hashhead, newblk) *newblk_hashtbl;
1907 u_long	newblk_hash;		/* size of hash table - 1 */
1908 #define	NEWBLK_HASH(fs, inum) \
1909 	(&newblk_hashtbl[((((register_t)(fs)) >> 13) + (inum)) & newblk_hash])
1910 
1911 static int
1912 newblk_find(newblkhd, mp, newblkno, flags, newblkpp)
1913 	struct newblk_hashhead *newblkhd;
1914 	struct mount *mp;
1915 	ufs2_daddr_t newblkno;
1916 	int flags;
1917 	struct newblk **newblkpp;
1918 {
1919 	struct newblk *newblk;
1920 
1921 	LIST_FOREACH(newblk, newblkhd, nb_hash) {
1922 		if (newblkno != newblk->nb_newblkno)
1923 			continue;
1924 		if (mp != newblk->nb_list.wk_mp)
1925 			continue;
1926 		/*
1927 		 * If we're creating a new dependency don't match those that
1928 		 * have already been converted to allocdirects.  This is for
1929 		 * a frag extend.
1930 		 */
1931 		if ((flags & DEPALLOC) && newblk->nb_list.wk_type != D_NEWBLK)
1932 			continue;
1933 		break;
1934 	}
1935 	if (newblk) {
1936 		*newblkpp = newblk;
1937 		return (1);
1938 	}
1939 	*newblkpp = NULL;
1940 	return (0);
1941 }
1942 
1943 /*
1944  * Look up a newblk. Return 1 if found, 0 if not found.
1945  * If not found, allocate if DEPALLOC flag is passed.
1946  * Found or allocated entry is returned in newblkpp.
1947  */
1948 static int
1949 newblk_lookup(mp, newblkno, flags, newblkpp)
1950 	struct mount *mp;
1951 	ufs2_daddr_t newblkno;
1952 	int flags;
1953 	struct newblk **newblkpp;
1954 {
1955 	struct newblk *newblk;
1956 	struct newblk_hashhead *newblkhd;
1957 
1958 	newblkhd = NEWBLK_HASH(VFSTOUFS(mp)->um_fs, newblkno);
1959 	if (newblk_find(newblkhd, mp, newblkno, flags, newblkpp))
1960 		return (1);
1961 	if ((flags & DEPALLOC) == 0)
1962 		return (0);
1963 	FREE_LOCK(&lk);
1964 	newblk = malloc(sizeof(union allblk), M_NEWBLK,
1965 	    M_SOFTDEP_FLAGS | M_ZERO);
1966 	workitem_alloc(&newblk->nb_list, D_NEWBLK, mp);
1967 	ACQUIRE_LOCK(&lk);
1968 	if (newblk_find(newblkhd, mp, newblkno, flags, newblkpp)) {
1969 		WORKITEM_FREE(newblk, D_NEWBLK);
1970 		return (1);
1971 	}
1972 	newblk->nb_freefrag = NULL;
1973 	LIST_INIT(&newblk->nb_indirdeps);
1974 	LIST_INIT(&newblk->nb_newdirblk);
1975 	LIST_INIT(&newblk->nb_jwork);
1976 	newblk->nb_state = ATTACHED;
1977 	newblk->nb_newblkno = newblkno;
1978 	LIST_INSERT_HEAD(newblkhd, newblk, nb_hash);
1979 	*newblkpp = newblk;
1980 	return (0);
1981 }
1982 
1983 /*
1984  * Executed during filesystem system initialization before
1985  * mounting any filesystems.
1986  */
1987 void
1988 softdep_initialize()
1989 {
1990 
1991 	LIST_INIT(&mkdirlisthd);
1992 	max_softdeps = desiredvnodes * 4;
1993 	pagedep_hashtbl = hashinit(desiredvnodes / 5, M_PAGEDEP, &pagedep_hash);
1994 	inodedep_hashtbl = hashinit(desiredvnodes, M_INODEDEP, &inodedep_hash);
1995 	newblk_hashtbl = hashinit(desiredvnodes / 5,  M_NEWBLK, &newblk_hash);
1996 	bmsafemap_hashtbl = hashinit(1024, M_BMSAFEMAP, &bmsafemap_hash);
1997 
1998 	/* initialise bioops hack */
1999 	bioops.io_start = softdep_disk_io_initiation;
2000 	bioops.io_complete = softdep_disk_write_complete;
2001 	bioops.io_deallocate = softdep_deallocate_dependencies;
2002 	bioops.io_countdeps = softdep_count_dependencies;
2003 
2004 	/* Initialize the callout with an mtx. */
2005 	callout_init_mtx(&softdep_callout, &lk, 0);
2006 }
2007 
2008 /*
2009  * Executed after all filesystems have been unmounted during
2010  * filesystem module unload.
2011  */
2012 void
2013 softdep_uninitialize()
2014 {
2015 
2016 	callout_drain(&softdep_callout);
2017 	hashdestroy(pagedep_hashtbl, M_PAGEDEP, pagedep_hash);
2018 	hashdestroy(inodedep_hashtbl, M_INODEDEP, inodedep_hash);
2019 	hashdestroy(newblk_hashtbl, M_NEWBLK, newblk_hash);
2020 	hashdestroy(bmsafemap_hashtbl, M_BMSAFEMAP, bmsafemap_hash);
2021 }
2022 
2023 /*
2024  * Called at mount time to notify the dependency code that a
2025  * filesystem wishes to use it.
2026  */
2027 int
2028 softdep_mount(devvp, mp, fs, cred)
2029 	struct vnode *devvp;
2030 	struct mount *mp;
2031 	struct fs *fs;
2032 	struct ucred *cred;
2033 {
2034 	struct csum_total cstotal;
2035 	struct ufsmount *ump;
2036 	struct cg *cgp;
2037 	struct buf *bp;
2038 	int error, cyl;
2039 
2040 	MNT_ILOCK(mp);
2041 	mp->mnt_flag = (mp->mnt_flag & ~MNT_ASYNC) | MNT_SOFTDEP;
2042 	if ((mp->mnt_kern_flag & MNTK_SOFTDEP) == 0) {
2043 		mp->mnt_kern_flag = (mp->mnt_kern_flag & ~MNTK_ASYNC) |
2044 			MNTK_SOFTDEP;
2045 		mp->mnt_noasync++;
2046 	}
2047 	MNT_IUNLOCK(mp);
2048 	ump = VFSTOUFS(mp);
2049 	LIST_INIT(&ump->softdep_workitem_pending);
2050 	LIST_INIT(&ump->softdep_journal_pending);
2051 	TAILQ_INIT(&ump->softdep_unlinked);
2052 	ump->softdep_worklist_tail = NULL;
2053 	ump->softdep_on_worklist = 0;
2054 	ump->softdep_deps = 0;
2055 	if ((fs->fs_flags & FS_SUJ) &&
2056 	    (error = journal_mount(mp, fs, cred)) != 0) {
2057 		printf("Failed to start journal: %d\n", error);
2058 		return (error);
2059 	}
2060 	/*
2061 	 * When doing soft updates, the counters in the
2062 	 * superblock may have gotten out of sync. Recomputation
2063 	 * can take a long time and can be deferred for background
2064 	 * fsck.  However, the old behavior of scanning the cylinder
2065 	 * groups and recalculating them at mount time is available
2066 	 * by setting vfs.ffs.compute_summary_at_mount to one.
2067 	 */
2068 	if (compute_summary_at_mount == 0 || fs->fs_clean != 0)
2069 		return (0);
2070 	bzero(&cstotal, sizeof cstotal);
2071 	for (cyl = 0; cyl < fs->fs_ncg; cyl++) {
2072 		if ((error = bread(devvp, fsbtodb(fs, cgtod(fs, cyl)),
2073 		    fs->fs_cgsize, cred, &bp)) != 0) {
2074 			brelse(bp);
2075 			return (error);
2076 		}
2077 		cgp = (struct cg *)bp->b_data;
2078 		cstotal.cs_nffree += cgp->cg_cs.cs_nffree;
2079 		cstotal.cs_nbfree += cgp->cg_cs.cs_nbfree;
2080 		cstotal.cs_nifree += cgp->cg_cs.cs_nifree;
2081 		cstotal.cs_ndir += cgp->cg_cs.cs_ndir;
2082 		fs->fs_cs(fs, cyl) = cgp->cg_cs;
2083 		brelse(bp);
2084 	}
2085 #ifdef DEBUG
2086 	if (bcmp(&cstotal, &fs->fs_cstotal, sizeof cstotal))
2087 		printf("%s: superblock summary recomputed\n", fs->fs_fsmnt);
2088 #endif
2089 	bcopy(&cstotal, &fs->fs_cstotal, sizeof cstotal);
2090 	return (0);
2091 }
2092 
2093 void
2094 softdep_unmount(mp)
2095 	struct mount *mp;
2096 {
2097 
2098 	if (mp->mnt_kern_flag & MNTK_SUJ)
2099 		journal_unmount(mp);
2100 }
2101 
2102 struct jblocks {
2103 	struct jseglst	jb_segs;	/* TAILQ of current segments. */
2104 	struct jseg	*jb_writeseg;	/* Next write to complete. */
2105 	struct jextent	*jb_extent;	/* Extent array. */
2106 	uint64_t	jb_nextseq;	/* Next sequence number. */
2107 	uint64_t	jb_oldestseq;	/* Oldest active sequence number. */
2108 	int		jb_avail;	/* Available extents. */
2109 	int		jb_used;	/* Last used extent. */
2110 	int		jb_head;	/* Allocator head. */
2111 	int		jb_off;		/* Allocator extent offset. */
2112 	int		jb_blocks;	/* Total disk blocks covered. */
2113 	int		jb_free;	/* Total disk blocks free. */
2114 	int		jb_min;		/* Minimum free space. */
2115 	int		jb_low;		/* Low on space. */
2116 	int		jb_age;		/* Insertion time of oldest rec. */
2117 	int		jb_suspended;	/* Did journal suspend writes? */
2118 };
2119 
2120 struct jextent {
2121 	ufs2_daddr_t	je_daddr;	/* Disk block address. */
2122 	int		je_blocks;	/* Disk block count. */
2123 };
2124 
2125 static struct jblocks *
2126 jblocks_create(void)
2127 {
2128 	struct jblocks *jblocks;
2129 
2130 	jblocks = malloc(sizeof(*jblocks), M_JBLOCKS, M_WAITOK | M_ZERO);
2131 	TAILQ_INIT(&jblocks->jb_segs);
2132 	jblocks->jb_avail = 10;
2133 	jblocks->jb_extent = malloc(sizeof(struct jextent) * jblocks->jb_avail,
2134 	    M_JBLOCKS, M_WAITOK | M_ZERO);
2135 
2136 	return (jblocks);
2137 }
2138 
2139 static ufs2_daddr_t
2140 jblocks_alloc(jblocks, bytes, actual)
2141 	struct jblocks *jblocks;
2142 	int bytes;
2143 	int *actual;
2144 {
2145 	ufs2_daddr_t daddr;
2146 	struct jextent *jext;
2147 	int freecnt;
2148 	int blocks;
2149 
2150 	blocks = bytes / DEV_BSIZE;
2151 	jext = &jblocks->jb_extent[jblocks->jb_head];
2152 	freecnt = jext->je_blocks - jblocks->jb_off;
2153 	if (freecnt == 0) {
2154 		jblocks->jb_off = 0;
2155 		if (++jblocks->jb_head > jblocks->jb_used)
2156 			jblocks->jb_head = 0;
2157 		jext = &jblocks->jb_extent[jblocks->jb_head];
2158 		freecnt = jext->je_blocks;
2159 	}
2160 	if (freecnt > blocks)
2161 		freecnt = blocks;
2162 	*actual = freecnt * DEV_BSIZE;
2163 	daddr = jext->je_daddr + jblocks->jb_off;
2164 	jblocks->jb_off += freecnt;
2165 	jblocks->jb_free -= freecnt;
2166 
2167 	return (daddr);
2168 }
2169 
2170 static void
2171 jblocks_free(jblocks, mp, bytes)
2172 	struct jblocks *jblocks;
2173 	struct mount *mp;
2174 	int bytes;
2175 {
2176 
2177 	jblocks->jb_free += bytes / DEV_BSIZE;
2178 	if (jblocks->jb_suspended)
2179 		worklist_speedup();
2180 	wakeup(jblocks);
2181 }
2182 
2183 static void
2184 jblocks_destroy(jblocks)
2185 	struct jblocks *jblocks;
2186 {
2187 
2188 	if (jblocks->jb_extent)
2189 		free(jblocks->jb_extent, M_JBLOCKS);
2190 	free(jblocks, M_JBLOCKS);
2191 }
2192 
2193 static void
2194 jblocks_add(jblocks, daddr, blocks)
2195 	struct jblocks *jblocks;
2196 	ufs2_daddr_t daddr;
2197 	int blocks;
2198 {
2199 	struct jextent *jext;
2200 
2201 	jblocks->jb_blocks += blocks;
2202 	jblocks->jb_free += blocks;
2203 	jext = &jblocks->jb_extent[jblocks->jb_used];
2204 	/* Adding the first block. */
2205 	if (jext->je_daddr == 0) {
2206 		jext->je_daddr = daddr;
2207 		jext->je_blocks = blocks;
2208 		return;
2209 	}
2210 	/* Extending the last extent. */
2211 	if (jext->je_daddr + jext->je_blocks == daddr) {
2212 		jext->je_blocks += blocks;
2213 		return;
2214 	}
2215 	/* Adding a new extent. */
2216 	if (++jblocks->jb_used == jblocks->jb_avail) {
2217 		jblocks->jb_avail *= 2;
2218 		jext = malloc(sizeof(struct jextent) * jblocks->jb_avail,
2219 		    M_JBLOCKS, M_WAITOK | M_ZERO);
2220 		memcpy(jext, jblocks->jb_extent,
2221 		    sizeof(struct jextent) * jblocks->jb_used);
2222 		free(jblocks->jb_extent, M_JBLOCKS);
2223 		jblocks->jb_extent = jext;
2224 	}
2225 	jext = &jblocks->jb_extent[jblocks->jb_used];
2226 	jext->je_daddr = daddr;
2227 	jext->je_blocks = blocks;
2228 	return;
2229 }
2230 
2231 int
2232 softdep_journal_lookup(mp, vpp)
2233 	struct mount *mp;
2234 	struct vnode **vpp;
2235 {
2236 	struct componentname cnp;
2237 	struct vnode *dvp;
2238 	ino_t sujournal;
2239 	int error;
2240 
2241 	error = VFS_VGET(mp, ROOTINO, LK_EXCLUSIVE, &dvp);
2242 	if (error)
2243 		return (error);
2244 	bzero(&cnp, sizeof(cnp));
2245 	cnp.cn_nameiop = LOOKUP;
2246 	cnp.cn_flags = ISLASTCN;
2247 	cnp.cn_thread = curthread;
2248 	cnp.cn_cred = curthread->td_ucred;
2249 	cnp.cn_pnbuf = SUJ_FILE;
2250 	cnp.cn_nameptr = SUJ_FILE;
2251 	cnp.cn_namelen = strlen(SUJ_FILE);
2252 	error = ufs_lookup_ino(dvp, NULL, &cnp, &sujournal);
2253 	vput(dvp);
2254 	if (error != 0)
2255 		return (error);
2256 	error = VFS_VGET(mp, sujournal, LK_EXCLUSIVE, vpp);
2257 	return (error);
2258 }
2259 
2260 /*
2261  * Open and verify the journal file.
2262  */
2263 static int
2264 journal_mount(mp, fs, cred)
2265 	struct mount *mp;
2266 	struct fs *fs;
2267 	struct ucred *cred;
2268 {
2269 	struct jblocks *jblocks;
2270 	struct vnode *vp;
2271 	struct inode *ip;
2272 	ufs2_daddr_t blkno;
2273 	int bcount;
2274 	int error;
2275 	int i;
2276 
2277 	error = softdep_journal_lookup(mp, &vp);
2278 	if (error != 0) {
2279 		printf("Failed to find journal.  Use tunefs to create one\n");
2280 		return (error);
2281 	}
2282 	ip = VTOI(vp);
2283 	if (ip->i_size < SUJ_MIN) {
2284 		error = ENOSPC;
2285 		goto out;
2286 	}
2287 	bcount = lblkno(fs, ip->i_size);	/* Only use whole blocks. */
2288 	jblocks = jblocks_create();
2289 	for (i = 0; i < bcount; i++) {
2290 		error = ufs_bmaparray(vp, i, &blkno, NULL, NULL, NULL);
2291 		if (error)
2292 			break;
2293 		jblocks_add(jblocks, blkno, fsbtodb(fs, fs->fs_frag));
2294 	}
2295 	if (error) {
2296 		jblocks_destroy(jblocks);
2297 		goto out;
2298 	}
2299 	jblocks->jb_low = jblocks->jb_free / 3;	/* Reserve 33%. */
2300 	jblocks->jb_min = jblocks->jb_free / 10; /* Suspend at 10%. */
2301 	VFSTOUFS(mp)->softdep_jblocks = jblocks;
2302 out:
2303 	if (error == 0) {
2304 		MNT_ILOCK(mp);
2305 		mp->mnt_kern_flag |= MNTK_SUJ;
2306 		MNT_IUNLOCK(mp);
2307 		/*
2308 		 * Only validate the journal contents if the
2309 		 * filesystem is clean, otherwise we write the logs
2310 		 * but they'll never be used.  If the filesystem was
2311 		 * still dirty when we mounted it the journal is
2312 		 * invalid and a new journal can only be valid if it
2313 		 * starts from a clean mount.
2314 		 */
2315 		if (fs->fs_clean) {
2316 			DIP_SET(ip, i_modrev, fs->fs_mtime);
2317 			ip->i_flags |= IN_MODIFIED;
2318 			ffs_update(vp, 1);
2319 		}
2320 	}
2321 	vput(vp);
2322 	return (error);
2323 }
2324 
2325 static void
2326 journal_unmount(mp)
2327 	struct mount *mp;
2328 {
2329 	struct ufsmount *ump;
2330 
2331 	ump = VFSTOUFS(mp);
2332 	if (ump->softdep_jblocks)
2333 		jblocks_destroy(ump->softdep_jblocks);
2334 	ump->softdep_jblocks = NULL;
2335 }
2336 
2337 /*
2338  * Called when a journal record is ready to be written.  Space is allocated
2339  * and the journal entry is created when the journal is flushed to stable
2340  * store.
2341  */
2342 static void
2343 add_to_journal(wk)
2344 	struct worklist *wk;
2345 {
2346 	struct ufsmount *ump;
2347 
2348 	mtx_assert(&lk, MA_OWNED);
2349 	ump = VFSTOUFS(wk->wk_mp);
2350 	if (wk->wk_state & ONWORKLIST)
2351 		panic("add_to_journal: %s(0x%X) already on list",
2352 		    TYPENAME(wk->wk_type), wk->wk_state);
2353 	wk->wk_state |= ONWORKLIST | DEPCOMPLETE;
2354 	if (LIST_EMPTY(&ump->softdep_journal_pending)) {
2355 		ump->softdep_jblocks->jb_age = ticks;
2356 		LIST_INSERT_HEAD(&ump->softdep_journal_pending, wk, wk_list);
2357 	} else
2358 		LIST_INSERT_AFTER(ump->softdep_journal_tail, wk, wk_list);
2359 	ump->softdep_journal_tail = wk;
2360 	ump->softdep_on_journal += 1;
2361 }
2362 
2363 /*
2364  * Remove an arbitrary item for the journal worklist maintain the tail
2365  * pointer.  This happens when a new operation obviates the need to
2366  * journal an old operation.
2367  */
2368 static void
2369 remove_from_journal(wk)
2370 	struct worklist *wk;
2371 {
2372 	struct ufsmount *ump;
2373 
2374 	mtx_assert(&lk, MA_OWNED);
2375 	ump = VFSTOUFS(wk->wk_mp);
2376 #ifdef SUJ_DEBUG
2377 	{
2378 		struct worklist *wkn;
2379 
2380 		LIST_FOREACH(wkn, &ump->softdep_journal_pending, wk_list)
2381 			if (wkn == wk)
2382 				break;
2383 		if (wkn == NULL)
2384 			panic("remove_from_journal: %p is not in journal", wk);
2385 	}
2386 #endif
2387 	/*
2388 	 * We emulate a TAILQ to save space in most structures which do not
2389 	 * require TAILQ semantics.  Here we must update the tail position
2390 	 * when removing the tail which is not the final entry. This works
2391 	 * only if the worklist linkage are at the beginning of the structure.
2392 	 */
2393 	if (ump->softdep_journal_tail == wk)
2394 		ump->softdep_journal_tail =
2395 		    (struct worklist *)wk->wk_list.le_prev;
2396 
2397 	WORKLIST_REMOVE(wk);
2398 	ump->softdep_on_journal -= 1;
2399 }
2400 
2401 /*
2402  * Check for journal space as well as dependency limits so the prelink
2403  * code can throttle both journaled and non-journaled filesystems.
2404  * Threshold is 0 for low and 1 for min.
2405  */
2406 static int
2407 journal_space(ump, thresh)
2408 	struct ufsmount *ump;
2409 	int thresh;
2410 {
2411 	struct jblocks *jblocks;
2412 	int avail;
2413 
2414 	jblocks = ump->softdep_jblocks;
2415 	if (jblocks == NULL)
2416 		return (1);
2417 	/*
2418 	 * We use a tighter restriction here to prevent request_cleanup()
2419 	 * running in threads from running into locks we currently hold.
2420 	 */
2421 	if (num_inodedep > (max_softdeps / 10) * 9)
2422 		return (0);
2423 	if (thresh)
2424 		thresh = jblocks->jb_min;
2425 	else
2426 		thresh = jblocks->jb_low;
2427 	avail = (ump->softdep_on_journal * JREC_SIZE) / DEV_BSIZE;
2428 	avail = jblocks->jb_free - avail;
2429 
2430 	return (avail > thresh);
2431 }
2432 
2433 static void
2434 journal_suspend(ump)
2435 	struct ufsmount *ump;
2436 {
2437 	struct jblocks *jblocks;
2438 	struct mount *mp;
2439 
2440 	mp = UFSTOVFS(ump);
2441 	jblocks = ump->softdep_jblocks;
2442 	MNT_ILOCK(mp);
2443 	if ((mp->mnt_kern_flag & MNTK_SUSPEND) == 0) {
2444 		stat_journal_min++;
2445 		mp->mnt_kern_flag |= MNTK_SUSPEND;
2446 		mp->mnt_susp_owner = FIRST_THREAD_IN_PROC(softdepproc);
2447 	}
2448 	jblocks->jb_suspended = 1;
2449 	MNT_IUNLOCK(mp);
2450 }
2451 
2452 static int
2453 journal_unsuspend(struct ufsmount *ump)
2454 {
2455 	struct jblocks *jblocks;
2456 	struct mount *mp;
2457 
2458 	mp = UFSTOVFS(ump);
2459 	jblocks = ump->softdep_jblocks;
2460 
2461 	if (jblocks != NULL && jblocks->jb_suspended &&
2462 	    journal_space(ump, jblocks->jb_min)) {
2463 		jblocks->jb_suspended = 0;
2464 		FREE_LOCK(&lk);
2465 		mp->mnt_susp_owner = curthread;
2466 		vfs_write_resume(mp);
2467 		ACQUIRE_LOCK(&lk);
2468 		return (1);
2469 	}
2470 	return (0);
2471 }
2472 
2473 /*
2474  * Called before any allocation function to be certain that there is
2475  * sufficient space in the journal prior to creating any new records.
2476  * Since in the case of block allocation we may have multiple locked
2477  * buffers at the time of the actual allocation we can not block
2478  * when the journal records are created.  Doing so would create a deadlock
2479  * if any of these buffers needed to be flushed to reclaim space.  Instead
2480  * we require a sufficiently large amount of available space such that
2481  * each thread in the system could have passed this allocation check and
2482  * still have sufficient free space.  With 20% of a minimum journal size
2483  * of 1MB we have 6553 records available.
2484  */
2485 int
2486 softdep_prealloc(vp, waitok)
2487 	struct vnode *vp;
2488 	int waitok;
2489 {
2490 	struct ufsmount *ump;
2491 
2492 	if (DOINGSUJ(vp) == 0)
2493 		return (0);
2494 	ump = VFSTOUFS(vp->v_mount);
2495 	ACQUIRE_LOCK(&lk);
2496 	if (journal_space(ump, 0)) {
2497 		FREE_LOCK(&lk);
2498 		return (0);
2499 	}
2500 	stat_journal_low++;
2501 	FREE_LOCK(&lk);
2502 	if (waitok == MNT_NOWAIT)
2503 		return (ENOSPC);
2504 	/*
2505 	 * Attempt to sync this vnode once to flush any journal
2506 	 * work attached to it.
2507 	 */
2508 	if ((curthread->td_pflags & TDP_COWINPROGRESS) == 0)
2509 		ffs_syncvnode(vp, waitok);
2510 	ACQUIRE_LOCK(&lk);
2511 	process_removes(vp);
2512 	if (journal_space(ump, 0) == 0) {
2513 		softdep_speedup();
2514 		if (journal_space(ump, 1) == 0)
2515 			journal_suspend(ump);
2516 	}
2517 	FREE_LOCK(&lk);
2518 
2519 	return (0);
2520 }
2521 
2522 /*
2523  * Before adjusting a link count on a vnode verify that we have sufficient
2524  * journal space.  If not, process operations that depend on the currently
2525  * locked pair of vnodes to try to flush space as the syncer, buf daemon,
2526  * and softdep flush threads can not acquire these locks to reclaim space.
2527  */
2528 static void
2529 softdep_prelink(dvp, vp)
2530 	struct vnode *dvp;
2531 	struct vnode *vp;
2532 {
2533 	struct ufsmount *ump;
2534 
2535 	ump = VFSTOUFS(dvp->v_mount);
2536 	mtx_assert(&lk, MA_OWNED);
2537 	if (journal_space(ump, 0))
2538 		return;
2539 	stat_journal_low++;
2540 	FREE_LOCK(&lk);
2541 	if (vp)
2542 		ffs_syncvnode(vp, MNT_NOWAIT);
2543 	ffs_syncvnode(dvp, MNT_WAIT);
2544 	ACQUIRE_LOCK(&lk);
2545 	/* Process vp before dvp as it may create .. removes. */
2546 	if (vp)
2547 		process_removes(vp);
2548 	process_removes(dvp);
2549 	softdep_speedup();
2550 	process_worklist_item(UFSTOVFS(ump), LK_NOWAIT);
2551 	process_worklist_item(UFSTOVFS(ump), LK_NOWAIT);
2552 	if (journal_space(ump, 0) == 0) {
2553 		softdep_speedup();
2554 		if (journal_space(ump, 1) == 0)
2555 			journal_suspend(ump);
2556 	}
2557 }
2558 
2559 static void
2560 jseg_write(ump, jblocks, jseg, data)
2561 	struct ufsmount *ump;
2562 	struct jblocks *jblocks;
2563 	struct jseg *jseg;
2564 	uint8_t *data;
2565 {
2566 	struct jsegrec *rec;
2567 
2568 	rec = (struct jsegrec *)data;
2569 	rec->jsr_seq = jseg->js_seq;
2570 	rec->jsr_oldest = jblocks->jb_oldestseq;
2571 	rec->jsr_cnt = jseg->js_cnt;
2572 	rec->jsr_blocks = jseg->js_size / ump->um_devvp->v_bufobj.bo_bsize;
2573 	rec->jsr_crc = 0;
2574 	rec->jsr_time = ump->um_fs->fs_mtime;
2575 }
2576 
2577 static inline void
2578 inoref_write(inoref, jseg, rec)
2579 	struct inoref *inoref;
2580 	struct jseg *jseg;
2581 	struct jrefrec *rec;
2582 {
2583 
2584 	inoref->if_jsegdep->jd_seg = jseg;
2585 	rec->jr_ino = inoref->if_ino;
2586 	rec->jr_parent = inoref->if_parent;
2587 	rec->jr_nlink = inoref->if_nlink;
2588 	rec->jr_mode = inoref->if_mode;
2589 	rec->jr_diroff = inoref->if_diroff;
2590 }
2591 
2592 static void
2593 jaddref_write(jaddref, jseg, data)
2594 	struct jaddref *jaddref;
2595 	struct jseg *jseg;
2596 	uint8_t *data;
2597 {
2598 	struct jrefrec *rec;
2599 
2600 	rec = (struct jrefrec *)data;
2601 	rec->jr_op = JOP_ADDREF;
2602 	inoref_write(&jaddref->ja_ref, jseg, rec);
2603 }
2604 
2605 static void
2606 jremref_write(jremref, jseg, data)
2607 	struct jremref *jremref;
2608 	struct jseg *jseg;
2609 	uint8_t *data;
2610 {
2611 	struct jrefrec *rec;
2612 
2613 	rec = (struct jrefrec *)data;
2614 	rec->jr_op = JOP_REMREF;
2615 	inoref_write(&jremref->jr_ref, jseg, rec);
2616 }
2617 
2618 static void
2619 jmvref_write(jmvref, jseg, data)
2620 	struct jmvref *jmvref;
2621 	struct jseg *jseg;
2622 	uint8_t *data;
2623 {
2624 	struct jmvrec *rec;
2625 
2626 	rec = (struct jmvrec *)data;
2627 	rec->jm_op = JOP_MVREF;
2628 	rec->jm_ino = jmvref->jm_ino;
2629 	rec->jm_parent = jmvref->jm_parent;
2630 	rec->jm_oldoff = jmvref->jm_oldoff;
2631 	rec->jm_newoff = jmvref->jm_newoff;
2632 }
2633 
2634 static void
2635 jnewblk_write(jnewblk, jseg, data)
2636 	struct jnewblk *jnewblk;
2637 	struct jseg *jseg;
2638 	uint8_t *data;
2639 {
2640 	struct jblkrec *rec;
2641 
2642 	jnewblk->jn_jsegdep->jd_seg = jseg;
2643 	rec = (struct jblkrec *)data;
2644 	rec->jb_op = JOP_NEWBLK;
2645 	rec->jb_ino = jnewblk->jn_ino;
2646 	rec->jb_blkno = jnewblk->jn_blkno;
2647 	rec->jb_lbn = jnewblk->jn_lbn;
2648 	rec->jb_frags = jnewblk->jn_frags;
2649 	rec->jb_oldfrags = jnewblk->jn_oldfrags;
2650 }
2651 
2652 static void
2653 jfreeblk_write(jfreeblk, jseg, data)
2654 	struct jfreeblk *jfreeblk;
2655 	struct jseg *jseg;
2656 	uint8_t *data;
2657 {
2658 	struct jblkrec *rec;
2659 
2660 	jfreeblk->jf_jsegdep->jd_seg = jseg;
2661 	rec = (struct jblkrec *)data;
2662 	rec->jb_op = JOP_FREEBLK;
2663 	rec->jb_ino = jfreeblk->jf_ino;
2664 	rec->jb_blkno = jfreeblk->jf_blkno;
2665 	rec->jb_lbn = jfreeblk->jf_lbn;
2666 	rec->jb_frags = jfreeblk->jf_frags;
2667 	rec->jb_oldfrags = 0;
2668 }
2669 
2670 static void
2671 jfreefrag_write(jfreefrag, jseg, data)
2672 	struct jfreefrag *jfreefrag;
2673 	struct jseg *jseg;
2674 	uint8_t *data;
2675 {
2676 	struct jblkrec *rec;
2677 
2678 	jfreefrag->fr_jsegdep->jd_seg = jseg;
2679 	rec = (struct jblkrec *)data;
2680 	rec->jb_op = JOP_FREEBLK;
2681 	rec->jb_ino = jfreefrag->fr_ino;
2682 	rec->jb_blkno = jfreefrag->fr_blkno;
2683 	rec->jb_lbn = jfreefrag->fr_lbn;
2684 	rec->jb_frags = jfreefrag->fr_frags;
2685 	rec->jb_oldfrags = 0;
2686 }
2687 
2688 static void
2689 jtrunc_write(jtrunc, jseg, data)
2690 	struct jtrunc *jtrunc;
2691 	struct jseg *jseg;
2692 	uint8_t *data;
2693 {
2694 	struct jtrncrec *rec;
2695 
2696 	rec = (struct jtrncrec *)data;
2697 	rec->jt_op = JOP_TRUNC;
2698 	rec->jt_ino = jtrunc->jt_ino;
2699 	rec->jt_size = jtrunc->jt_size;
2700 	rec->jt_extsize = jtrunc->jt_extsize;
2701 }
2702 
2703 /*
2704  * Flush some journal records to disk.
2705  */
2706 static void
2707 softdep_process_journal(mp, flags)
2708 	struct mount *mp;
2709 	int flags;
2710 {
2711 	struct jblocks *jblocks;
2712 	struct ufsmount *ump;
2713 	struct worklist *wk;
2714 	struct jseg *jseg;
2715 	struct buf *bp;
2716 	uint8_t *data;
2717 	struct fs *fs;
2718 	int segwritten;
2719 	int jrecmin;	/* Minimum records per block. */
2720 	int jrecmax;	/* Maximum records per block. */
2721 	int size;
2722 	int cnt;
2723 	int off;
2724 	int devbsize;
2725 
2726 	if ((mp->mnt_kern_flag & MNTK_SUJ) == 0)
2727 		return;
2728 	ump = VFSTOUFS(mp);
2729 	fs = ump->um_fs;
2730 	jblocks = ump->softdep_jblocks;
2731 	devbsize = ump->um_devvp->v_bufobj.bo_bsize;
2732 	/*
2733 	 * We write anywhere between a disk block and fs block.  The upper
2734 	 * bound is picked to prevent buffer cache fragmentation and limit
2735 	 * processing time per I/O.
2736 	 */
2737 	jrecmin = (devbsize / JREC_SIZE) - 1; /* -1 for seg header */
2738 	jrecmax = (fs->fs_bsize / devbsize) * jrecmin;
2739 	segwritten = 0;
2740 	while ((cnt = ump->softdep_on_journal) != 0) {
2741 		/*
2742 		 * Create a new segment to hold as many as 'cnt' journal
2743 		 * entries and add them to the segment.  Notice cnt is
2744 		 * off by one to account for the space required by the
2745 		 * jsegrec.  If we don't have a full block to log skip it
2746 		 * unless we haven't written anything.
2747 		 */
2748 		cnt++;
2749 		if (cnt < jrecmax && segwritten)
2750 			break;
2751 		/*
2752 		 * Verify some free journal space.  softdep_prealloc() should
2753 	 	 * guarantee that we don't run out so this is indicative of
2754 		 * a problem with the flow control.  Try to recover
2755 		 * gracefully in any event.
2756 		 */
2757 		while (jblocks->jb_free == 0) {
2758 			if (flags != MNT_WAIT)
2759 				break;
2760 			printf("softdep: Out of journal space!\n");
2761 			softdep_speedup();
2762 			msleep(jblocks, &lk, PRIBIO, "jblocks", hz);
2763 		}
2764 		FREE_LOCK(&lk);
2765 		jseg = malloc(sizeof(*jseg), M_JSEG, M_SOFTDEP_FLAGS);
2766 		workitem_alloc(&jseg->js_list, D_JSEG, mp);
2767 		LIST_INIT(&jseg->js_entries);
2768 		jseg->js_state = ATTACHED;
2769 		jseg->js_jblocks = jblocks;
2770 		bp = geteblk(fs->fs_bsize, 0);
2771 		ACQUIRE_LOCK(&lk);
2772 		/*
2773 		 * If there was a race while we were allocating the block
2774 		 * and jseg the entry we care about was likely written.
2775 		 * We bail out in both the WAIT and NOWAIT case and assume
2776 		 * the caller will loop if the entry it cares about is
2777 		 * not written.
2778 		 */
2779 		if (ump->softdep_on_journal == 0 || jblocks->jb_free == 0) {
2780 			bp->b_flags |= B_INVAL | B_NOCACHE;
2781 			WORKITEM_FREE(jseg, D_JSEG);
2782 			FREE_LOCK(&lk);
2783 			brelse(bp);
2784 			ACQUIRE_LOCK(&lk);
2785 			break;
2786 		}
2787 		/*
2788 		 * Calculate the disk block size required for the available
2789 		 * records rounded to the min size.
2790 		 */
2791 		cnt = ump->softdep_on_journal;
2792 		if (cnt < jrecmax)
2793 			size = howmany(cnt, jrecmin) * devbsize;
2794 		else
2795 			size = fs->fs_bsize;
2796 		/*
2797 		 * Allocate a disk block for this journal data and account
2798 		 * for truncation of the requested size if enough contiguous
2799 		 * space was not available.
2800 		 */
2801 		bp->b_blkno = jblocks_alloc(jblocks, size, &size);
2802 		bp->b_lblkno = bp->b_blkno;
2803 		bp->b_offset = bp->b_blkno * DEV_BSIZE;
2804 		bp->b_bcount = size;
2805 		bp->b_bufobj = &ump->um_devvp->v_bufobj;
2806 		bp->b_flags &= ~B_INVAL;
2807 		bp->b_flags |= B_VALIDSUSPWRT | B_NOCOPY;
2808 		/*
2809 		 * Initialize our jseg with cnt records.  Assign the next
2810 		 * sequence number to it and link it in-order.
2811 		 */
2812 		cnt = MIN(ump->softdep_on_journal,
2813 		    (size / devbsize) * jrecmin);
2814 		jseg->js_buf = bp;
2815 		jseg->js_cnt = cnt;
2816 		jseg->js_refs = cnt + 1;	/* Self ref. */
2817 		jseg->js_size = size;
2818 		jseg->js_seq = jblocks->jb_nextseq++;
2819 		if (TAILQ_EMPTY(&jblocks->jb_segs))
2820 			jblocks->jb_oldestseq = jseg->js_seq;
2821 		TAILQ_INSERT_TAIL(&jblocks->jb_segs, jseg, js_next);
2822 		if (jblocks->jb_writeseg == NULL)
2823 			jblocks->jb_writeseg = jseg;
2824 		/*
2825 		 * Start filling in records from the pending list.
2826 		 */
2827 		data = bp->b_data;
2828 		off = 0;
2829 		while ((wk = LIST_FIRST(&ump->softdep_journal_pending))
2830 		    != NULL) {
2831 			/* Place a segment header on every device block. */
2832 			if ((off % devbsize) == 0) {
2833 				jseg_write(ump, jblocks, jseg, data);
2834 				off += JREC_SIZE;
2835 				data = bp->b_data + off;
2836 			}
2837 			remove_from_journal(wk);
2838 			wk->wk_state |= IOSTARTED;
2839 			WORKLIST_INSERT(&jseg->js_entries, wk);
2840 			switch (wk->wk_type) {
2841 			case D_JADDREF:
2842 				jaddref_write(WK_JADDREF(wk), jseg, data);
2843 				break;
2844 			case D_JREMREF:
2845 				jremref_write(WK_JREMREF(wk), jseg, data);
2846 				break;
2847 			case D_JMVREF:
2848 				jmvref_write(WK_JMVREF(wk), jseg, data);
2849 				break;
2850 			case D_JNEWBLK:
2851 				jnewblk_write(WK_JNEWBLK(wk), jseg, data);
2852 				break;
2853 			case D_JFREEBLK:
2854 				jfreeblk_write(WK_JFREEBLK(wk), jseg, data);
2855 				break;
2856 			case D_JFREEFRAG:
2857 				jfreefrag_write(WK_JFREEFRAG(wk), jseg, data);
2858 				break;
2859 			case D_JTRUNC:
2860 				jtrunc_write(WK_JTRUNC(wk), jseg, data);
2861 				break;
2862 			default:
2863 				panic("process_journal: Unknown type %s",
2864 				    TYPENAME(wk->wk_type));
2865 				/* NOTREACHED */
2866 			}
2867 			if (--cnt == 0)
2868 				break;
2869 			off += JREC_SIZE;
2870 			data = bp->b_data + off;
2871 		}
2872 		/*
2873 		 * Write this one buffer and continue.
2874 		 */
2875 		WORKLIST_INSERT(&bp->b_dep, &jseg->js_list);
2876 		FREE_LOCK(&lk);
2877 		BO_LOCK(bp->b_bufobj);
2878 		bgetvp(ump->um_devvp, bp);
2879 		BO_UNLOCK(bp->b_bufobj);
2880 		if (flags == MNT_NOWAIT)
2881 			bawrite(bp);
2882 		else
2883 			bwrite(bp);
2884 		ACQUIRE_LOCK(&lk);
2885 	}
2886 	/*
2887 	 * If we've suspended the filesystem because we ran out of journal
2888 	 * space either try to sync it here to make some progress or
2889 	 * unsuspend it if we already have.
2890 	 */
2891 	if (flags == 0 && jblocks->jb_suspended) {
2892 		if (journal_unsuspend(ump))
2893 			return;
2894 		FREE_LOCK(&lk);
2895 		VFS_SYNC(mp, MNT_NOWAIT);
2896 		ffs_sbupdate(ump, MNT_WAIT, 0);
2897 		ACQUIRE_LOCK(&lk);
2898 	}
2899 }
2900 
2901 /*
2902  * Complete a jseg, allowing all dependencies awaiting journal writes
2903  * to proceed.  Each journal dependency also attaches a jsegdep to dependent
2904  * structures so that the journal segment can be freed to reclaim space.
2905  */
2906 static void
2907 complete_jseg(jseg)
2908 	struct jseg *jseg;
2909 {
2910 	struct worklist *wk;
2911 	struct jmvref *jmvref;
2912 	int waiting;
2913 #ifdef INVARIANTS
2914 	int i = 0;
2915 #endif
2916 
2917 	while ((wk = LIST_FIRST(&jseg->js_entries)) != NULL) {
2918 		WORKLIST_REMOVE(wk);
2919 		waiting = wk->wk_state & IOWAITING;
2920 		wk->wk_state &= ~(IOSTARTED | IOWAITING);
2921 		wk->wk_state |= COMPLETE;
2922 		KASSERT(i++ < jseg->js_cnt,
2923 		    ("handle_written_jseg: overflow %d >= %d",
2924 		    i - 1, jseg->js_cnt));
2925 		switch (wk->wk_type) {
2926 		case D_JADDREF:
2927 			handle_written_jaddref(WK_JADDREF(wk));
2928 			break;
2929 		case D_JREMREF:
2930 			handle_written_jremref(WK_JREMREF(wk));
2931 			break;
2932 		case D_JMVREF:
2933 			/* No jsegdep here. */
2934 			free_jseg(jseg);
2935 			jmvref = WK_JMVREF(wk);
2936 			LIST_REMOVE(jmvref, jm_deps);
2937 			free_pagedep(jmvref->jm_pagedep);
2938 			WORKITEM_FREE(jmvref, D_JMVREF);
2939 			break;
2940 		case D_JNEWBLK:
2941 			handle_written_jnewblk(WK_JNEWBLK(wk));
2942 			break;
2943 		case D_JFREEBLK:
2944 			handle_written_jfreeblk(WK_JFREEBLK(wk));
2945 			break;
2946 		case D_JFREEFRAG:
2947 			handle_written_jfreefrag(WK_JFREEFRAG(wk));
2948 			break;
2949 		case D_JTRUNC:
2950 			WK_JTRUNC(wk)->jt_jsegdep->jd_seg = jseg;
2951 			WORKITEM_FREE(wk, D_JTRUNC);
2952 			break;
2953 		default:
2954 			panic("handle_written_jseg: Unknown type %s",
2955 			    TYPENAME(wk->wk_type));
2956 			/* NOTREACHED */
2957 		}
2958 		if (waiting)
2959 			wakeup(wk);
2960 	}
2961 	/* Release the self reference so the structure may be freed. */
2962 	free_jseg(jseg);
2963 }
2964 
2965 /*
2966  * Mark a jseg as DEPCOMPLETE and throw away the buffer.  Handle jseg
2967  * completions in order only.
2968  */
2969 static void
2970 handle_written_jseg(jseg, bp)
2971 	struct jseg *jseg;
2972 	struct buf *bp;
2973 {
2974 	struct jblocks *jblocks;
2975 	struct jseg *jsegn;
2976 
2977 	if (jseg->js_refs == 0)
2978 		panic("handle_written_jseg: No self-reference on %p", jseg);
2979 	jseg->js_state |= DEPCOMPLETE;
2980 	/*
2981 	 * We'll never need this buffer again, set flags so it will be
2982 	 * discarded.
2983 	 */
2984 	bp->b_flags |= B_INVAL | B_NOCACHE;
2985 	jblocks = jseg->js_jblocks;
2986 	/*
2987 	 * Don't allow out of order completions.  If this isn't the first
2988 	 * block wait for it to write before we're done.
2989 	 */
2990 	if (jseg != jblocks->jb_writeseg)
2991 		return;
2992 	/* Iterate through available jsegs processing their entries. */
2993 	do {
2994 		jsegn = TAILQ_NEXT(jseg, js_next);
2995 		complete_jseg(jseg);
2996 		jseg = jsegn;
2997 	} while (jseg && jseg->js_state & DEPCOMPLETE);
2998 	jblocks->jb_writeseg = jseg;
2999 }
3000 
3001 static inline struct jsegdep *
3002 inoref_jseg(inoref)
3003 	struct inoref *inoref;
3004 {
3005 	struct jsegdep *jsegdep;
3006 
3007 	jsegdep = inoref->if_jsegdep;
3008 	inoref->if_jsegdep = NULL;
3009 
3010 	return (jsegdep);
3011 }
3012 
3013 /*
3014  * Called once a jremref has made it to stable store.  The jremref is marked
3015  * complete and we attempt to free it.  Any pagedeps writes sleeping waiting
3016  * for the jremref to complete will be awoken by free_jremref.
3017  */
3018 static void
3019 handle_written_jremref(jremref)
3020 	struct jremref *jremref;
3021 {
3022 	struct inodedep *inodedep;
3023 	struct jsegdep *jsegdep;
3024 	struct dirrem *dirrem;
3025 
3026 	/* Grab the jsegdep. */
3027 	jsegdep = inoref_jseg(&jremref->jr_ref);
3028 	/*
3029 	 * Remove us from the inoref list.
3030 	 */
3031 	if (inodedep_lookup(jremref->jr_list.wk_mp, jremref->jr_ref.if_ino,
3032 	    0, &inodedep) == 0)
3033 		panic("handle_written_jremref: Lost inodedep");
3034 	TAILQ_REMOVE(&inodedep->id_inoreflst, &jremref->jr_ref, if_deps);
3035 	/*
3036 	 * Complete the dirrem.
3037 	 */
3038 	dirrem = jremref->jr_dirrem;
3039 	jremref->jr_dirrem = NULL;
3040 	LIST_REMOVE(jremref, jr_deps);
3041 	jsegdep->jd_state |= jremref->jr_state & MKDIR_PARENT;
3042 	WORKLIST_INSERT(&dirrem->dm_jwork, &jsegdep->jd_list);
3043 	if (LIST_EMPTY(&dirrem->dm_jremrefhd) &&
3044 	    (dirrem->dm_state & COMPLETE) != 0)
3045 		add_to_worklist(&dirrem->dm_list, 0);
3046 	free_jremref(jremref);
3047 }
3048 
3049 /*
3050  * Called once a jaddref has made it to stable store.  The dependency is
3051  * marked complete and any dependent structures are added to the inode
3052  * bufwait list to be completed as soon as it is written.  If a bitmap write
3053  * depends on this entry we move the inode into the inodedephd of the
3054  * bmsafemap dependency and attempt to remove the jaddref from the bmsafemap.
3055  */
3056 static void
3057 handle_written_jaddref(jaddref)
3058 	struct jaddref *jaddref;
3059 {
3060 	struct jsegdep *jsegdep;
3061 	struct inodedep *inodedep;
3062 	struct diradd *diradd;
3063 	struct mkdir *mkdir;
3064 
3065 	/* Grab the jsegdep. */
3066 	jsegdep = inoref_jseg(&jaddref->ja_ref);
3067 	mkdir = NULL;
3068 	diradd = NULL;
3069 	if (inodedep_lookup(jaddref->ja_list.wk_mp, jaddref->ja_ino,
3070 	    0, &inodedep) == 0)
3071 		panic("handle_written_jaddref: Lost inodedep.");
3072 	if (jaddref->ja_diradd == NULL)
3073 		panic("handle_written_jaddref: No dependency");
3074 	if (jaddref->ja_diradd->da_list.wk_type == D_DIRADD) {
3075 		diradd = jaddref->ja_diradd;
3076 		WORKLIST_INSERT(&inodedep->id_bufwait, &diradd->da_list);
3077 	} else if (jaddref->ja_state & MKDIR_PARENT) {
3078 		mkdir = jaddref->ja_mkdir;
3079 		WORKLIST_INSERT(&inodedep->id_bufwait, &mkdir->md_list);
3080 	} else if (jaddref->ja_state & MKDIR_BODY)
3081 		mkdir = jaddref->ja_mkdir;
3082 	else
3083 		panic("handle_written_jaddref: Unknown dependency %p",
3084 		    jaddref->ja_diradd);
3085 	jaddref->ja_diradd = NULL;	/* also clears ja_mkdir */
3086 	/*
3087 	 * Remove us from the inode list.
3088 	 */
3089 	TAILQ_REMOVE(&inodedep->id_inoreflst, &jaddref->ja_ref, if_deps);
3090 	/*
3091 	 * The mkdir may be waiting on the jaddref to clear before freeing.
3092 	 */
3093 	if (mkdir) {
3094 		KASSERT(mkdir->md_list.wk_type == D_MKDIR,
3095 		    ("handle_written_jaddref: Incorrect type for mkdir %s",
3096 		    TYPENAME(mkdir->md_list.wk_type)));
3097 		mkdir->md_jaddref = NULL;
3098 		diradd = mkdir->md_diradd;
3099 		mkdir->md_state |= DEPCOMPLETE;
3100 		complete_mkdir(mkdir);
3101 	}
3102 	WORKLIST_INSERT(&diradd->da_jwork, &jsegdep->jd_list);
3103 	if (jaddref->ja_state & NEWBLOCK) {
3104 		inodedep->id_state |= ONDEPLIST;
3105 		LIST_INSERT_HEAD(&inodedep->id_bmsafemap->sm_inodedephd,
3106 		    inodedep, id_deps);
3107 	}
3108 	free_jaddref(jaddref);
3109 }
3110 
3111 /*
3112  * Called once a jnewblk journal is written.  The allocdirect or allocindir
3113  * is placed in the bmsafemap to await notification of a written bitmap.
3114  */
3115 static void
3116 handle_written_jnewblk(jnewblk)
3117 	struct jnewblk *jnewblk;
3118 {
3119 	struct bmsafemap *bmsafemap;
3120 	struct jsegdep *jsegdep;
3121 	struct newblk *newblk;
3122 
3123 	/* Grab the jsegdep. */
3124 	jsegdep = jnewblk->jn_jsegdep;
3125 	jnewblk->jn_jsegdep = NULL;
3126 	/*
3127 	 * Add the written block to the bmsafemap so it can be notified when
3128 	 * the bitmap is on disk.
3129 	 */
3130 	newblk = jnewblk->jn_newblk;
3131 	jnewblk->jn_newblk = NULL;
3132 	if (newblk == NULL)
3133 		panic("handle_written_jnewblk: No dependency for the segdep.");
3134 
3135 	newblk->nb_jnewblk = NULL;
3136 	bmsafemap = newblk->nb_bmsafemap;
3137 	WORKLIST_INSERT(&newblk->nb_jwork, &jsegdep->jd_list);
3138 	newblk->nb_state |= ONDEPLIST;
3139 	LIST_INSERT_HEAD(&bmsafemap->sm_newblkhd, newblk, nb_deps);
3140 	free_jnewblk(jnewblk);
3141 }
3142 
3143 /*
3144  * Cancel a jfreefrag that won't be needed, probably due to colliding with
3145  * an in-flight allocation that has not yet been committed.  Divorce us
3146  * from the freefrag and mark it DEPCOMPLETE so that it may be added
3147  * to the worklist.
3148  */
3149 static void
3150 cancel_jfreefrag(jfreefrag)
3151 	struct jfreefrag *jfreefrag;
3152 {
3153 	struct freefrag *freefrag;
3154 
3155 	if (jfreefrag->fr_jsegdep) {
3156 		free_jsegdep(jfreefrag->fr_jsegdep);
3157 		jfreefrag->fr_jsegdep = NULL;
3158 	}
3159 	freefrag = jfreefrag->fr_freefrag;
3160 	jfreefrag->fr_freefrag = NULL;
3161 	freefrag->ff_jfreefrag = NULL;
3162 	free_jfreefrag(jfreefrag);
3163 	freefrag->ff_state |= DEPCOMPLETE;
3164 }
3165 
3166 /*
3167  * Free a jfreefrag when the parent freefrag is rendered obsolete.
3168  */
3169 static void
3170 free_jfreefrag(jfreefrag)
3171 	struct jfreefrag *jfreefrag;
3172 {
3173 
3174 	if (jfreefrag->fr_state & IOSTARTED)
3175 		WORKLIST_REMOVE(&jfreefrag->fr_list);
3176 	else if (jfreefrag->fr_state & ONWORKLIST)
3177 		remove_from_journal(&jfreefrag->fr_list);
3178 	if (jfreefrag->fr_freefrag != NULL)
3179 		panic("free_jfreefrag:  Still attached to a freefrag.");
3180 	WORKITEM_FREE(jfreefrag, D_JFREEFRAG);
3181 }
3182 
3183 /*
3184  * Called when the journal write for a jfreefrag completes.  The parent
3185  * freefrag is added to the worklist if this completes its dependencies.
3186  */
3187 static void
3188 handle_written_jfreefrag(jfreefrag)
3189 	struct jfreefrag *jfreefrag;
3190 {
3191 	struct jsegdep *jsegdep;
3192 	struct freefrag *freefrag;
3193 
3194 	/* Grab the jsegdep. */
3195 	jsegdep = jfreefrag->fr_jsegdep;
3196 	jfreefrag->fr_jsegdep = NULL;
3197 	freefrag = jfreefrag->fr_freefrag;
3198 	if (freefrag == NULL)
3199 		panic("handle_written_jfreefrag: No freefrag.");
3200 	freefrag->ff_state |= DEPCOMPLETE;
3201 	freefrag->ff_jfreefrag = NULL;
3202 	WORKLIST_INSERT(&freefrag->ff_jwork, &jsegdep->jd_list);
3203 	if ((freefrag->ff_state & ALLCOMPLETE) == ALLCOMPLETE)
3204 		add_to_worklist(&freefrag->ff_list, 0);
3205 	jfreefrag->fr_freefrag = NULL;
3206 	free_jfreefrag(jfreefrag);
3207 }
3208 
3209 /*
3210  * Called when the journal write for a jfreeblk completes.  The jfreeblk
3211  * is removed from the freeblks list of pending journal writes and the
3212  * jsegdep is moved to the freeblks jwork to be completed when all blocks
3213  * have been reclaimed.
3214  */
3215 static void
3216 handle_written_jfreeblk(jfreeblk)
3217 	struct jfreeblk *jfreeblk;
3218 {
3219 	struct freeblks *freeblks;
3220 	struct jsegdep *jsegdep;
3221 
3222 	/* Grab the jsegdep. */
3223 	jsegdep = jfreeblk->jf_jsegdep;
3224 	jfreeblk->jf_jsegdep = NULL;
3225 	freeblks = jfreeblk->jf_freeblks;
3226 	LIST_REMOVE(jfreeblk, jf_deps);
3227 	WORKLIST_INSERT(&freeblks->fb_jwork, &jsegdep->jd_list);
3228 	/*
3229 	 * If the freeblks is all journaled, we can add it to the worklist.
3230 	 */
3231 	if (LIST_EMPTY(&freeblks->fb_jfreeblkhd) &&
3232 	    (freeblks->fb_state & ALLCOMPLETE) == ALLCOMPLETE) {
3233 		/* Remove from the b_dep that is waiting on this write. */
3234 		if (freeblks->fb_state & ONWORKLIST)
3235 			WORKLIST_REMOVE(&freeblks->fb_list);
3236 		add_to_worklist(&freeblks->fb_list, 1);
3237 	}
3238 
3239 	free_jfreeblk(jfreeblk);
3240 }
3241 
3242 static struct jsegdep *
3243 newjsegdep(struct worklist *wk)
3244 {
3245 	struct jsegdep *jsegdep;
3246 
3247 	jsegdep = malloc(sizeof(*jsegdep), M_JSEGDEP, M_SOFTDEP_FLAGS);
3248 	workitem_alloc(&jsegdep->jd_list, D_JSEGDEP, wk->wk_mp);
3249 	jsegdep->jd_seg = NULL;
3250 
3251 	return (jsegdep);
3252 }
3253 
3254 static struct jmvref *
3255 newjmvref(dp, ino, oldoff, newoff)
3256 	struct inode *dp;
3257 	ino_t ino;
3258 	off_t oldoff;
3259 	off_t newoff;
3260 {
3261 	struct jmvref *jmvref;
3262 
3263 	jmvref = malloc(sizeof(*jmvref), M_JMVREF, M_SOFTDEP_FLAGS);
3264 	workitem_alloc(&jmvref->jm_list, D_JMVREF, UFSTOVFS(dp->i_ump));
3265 	jmvref->jm_list.wk_state = ATTACHED | DEPCOMPLETE;
3266 	jmvref->jm_parent = dp->i_number;
3267 	jmvref->jm_ino = ino;
3268 	jmvref->jm_oldoff = oldoff;
3269 	jmvref->jm_newoff = newoff;
3270 
3271 	return (jmvref);
3272 }
3273 
3274 /*
3275  * Allocate a new jremref that tracks the removal of ip from dp with the
3276  * directory entry offset of diroff.  Mark the entry as ATTACHED and
3277  * DEPCOMPLETE as we have all the information required for the journal write
3278  * and the directory has already been removed from the buffer.  The caller
3279  * is responsible for linking the jremref into the pagedep and adding it
3280  * to the journal to write.  The MKDIR_PARENT flag is set if we're doing
3281  * a DOTDOT addition so handle_workitem_remove() can properly assign
3282  * the jsegdep when we're done.
3283  */
3284 static struct jremref *
3285 newjremref(struct dirrem *dirrem, struct inode *dp, struct inode *ip,
3286     off_t diroff, nlink_t nlink)
3287 {
3288 	struct jremref *jremref;
3289 
3290 	jremref = malloc(sizeof(*jremref), M_JREMREF, M_SOFTDEP_FLAGS);
3291 	workitem_alloc(&jremref->jr_list, D_JREMREF, UFSTOVFS(dp->i_ump));
3292 	jremref->jr_state = ATTACHED;
3293 	newinoref(&jremref->jr_ref, ip->i_number, dp->i_number, diroff,
3294 	   nlink, ip->i_mode);
3295 	jremref->jr_dirrem = dirrem;
3296 
3297 	return (jremref);
3298 }
3299 
3300 static inline void
3301 newinoref(struct inoref *inoref, ino_t ino, ino_t parent, off_t diroff,
3302     nlink_t nlink, uint16_t mode)
3303 {
3304 
3305 	inoref->if_jsegdep = newjsegdep(&inoref->if_list);
3306 	inoref->if_diroff = diroff;
3307 	inoref->if_ino = ino;
3308 	inoref->if_parent = parent;
3309 	inoref->if_nlink = nlink;
3310 	inoref->if_mode = mode;
3311 }
3312 
3313 /*
3314  * Allocate a new jaddref to track the addition of ino to dp at diroff.  The
3315  * directory offset may not be known until later.  The caller is responsible
3316  * adding the entry to the journal when this information is available.  nlink
3317  * should be the link count prior to the addition and mode is only required
3318  * to have the correct FMT.
3319  */
3320 static struct jaddref *
3321 newjaddref(struct inode *dp, ino_t ino, off_t diroff, int16_t nlink,
3322     uint16_t mode)
3323 {
3324 	struct jaddref *jaddref;
3325 
3326 	jaddref = malloc(sizeof(*jaddref), M_JADDREF, M_SOFTDEP_FLAGS);
3327 	workitem_alloc(&jaddref->ja_list, D_JADDREF, UFSTOVFS(dp->i_ump));
3328 	jaddref->ja_state = ATTACHED;
3329 	jaddref->ja_mkdir = NULL;
3330 	newinoref(&jaddref->ja_ref, ino, dp->i_number, diroff, nlink, mode);
3331 
3332 	return (jaddref);
3333 }
3334 
3335 /*
3336  * Create a new free dependency for a freework.  The caller is responsible
3337  * for adjusting the reference count when it has the lock held.  The freedep
3338  * will track an outstanding bitmap write that will ultimately clear the
3339  * freework to continue.
3340  */
3341 static struct freedep *
3342 newfreedep(struct freework *freework)
3343 {
3344 	struct freedep *freedep;
3345 
3346 	freedep = malloc(sizeof(*freedep), M_FREEDEP, M_SOFTDEP_FLAGS);
3347 	workitem_alloc(&freedep->fd_list, D_FREEDEP, freework->fw_list.wk_mp);
3348 	freedep->fd_freework = freework;
3349 
3350 	return (freedep);
3351 }
3352 
3353 /*
3354  * Free a freedep structure once the buffer it is linked to is written.  If
3355  * this is the last reference to the freework schedule it for completion.
3356  */
3357 static void
3358 free_freedep(freedep)
3359 	struct freedep *freedep;
3360 {
3361 
3362 	if (--freedep->fd_freework->fw_ref == 0)
3363 		add_to_worklist(&freedep->fd_freework->fw_list, 1);
3364 	WORKITEM_FREE(freedep, D_FREEDEP);
3365 }
3366 
3367 /*
3368  * Allocate a new freework structure that may be a level in an indirect
3369  * when parent is not NULL or a top level block when it is.  The top level
3370  * freework structures are allocated without lk held and before the freeblks
3371  * is visible outside of softdep_setup_freeblocks().
3372  */
3373 static struct freework *
3374 newfreework(ump, freeblks, parent, lbn, nb, frags, journal)
3375 	struct ufsmount *ump;
3376 	struct freeblks *freeblks;
3377 	struct freework *parent;
3378 	ufs_lbn_t lbn;
3379 	ufs2_daddr_t nb;
3380 	int frags;
3381 	int journal;
3382 {
3383 	struct freework *freework;
3384 
3385 	freework = malloc(sizeof(*freework), M_FREEWORK, M_SOFTDEP_FLAGS);
3386 	workitem_alloc(&freework->fw_list, D_FREEWORK, freeblks->fb_list.wk_mp);
3387 	freework->fw_freeblks = freeblks;
3388 	freework->fw_parent = parent;
3389 	freework->fw_lbn = lbn;
3390 	freework->fw_blkno = nb;
3391 	freework->fw_frags = frags;
3392 	freework->fw_ref = ((UFSTOVFS(ump)->mnt_kern_flag & MNTK_SUJ) == 0 ||
3393 	    lbn >= -NXADDR) ? 0 : NINDIR(ump->um_fs) + 1;
3394 	freework->fw_off = 0;
3395 	LIST_INIT(&freework->fw_jwork);
3396 
3397 	if (parent == NULL) {
3398 		WORKLIST_INSERT_UNLOCKED(&freeblks->fb_freeworkhd,
3399 		    &freework->fw_list);
3400 		freeblks->fb_ref++;
3401 	}
3402 	if (journal)
3403 		newjfreeblk(freeblks, lbn, nb, frags);
3404 
3405 	return (freework);
3406 }
3407 
3408 /*
3409  * Allocate a new jfreeblk to journal top level block pointer when truncating
3410  * a file.  The caller must add this to the worklist when lk is held.
3411  */
3412 static struct jfreeblk *
3413 newjfreeblk(freeblks, lbn, blkno, frags)
3414 	struct freeblks *freeblks;
3415 	ufs_lbn_t lbn;
3416 	ufs2_daddr_t blkno;
3417 	int frags;
3418 {
3419 	struct jfreeblk *jfreeblk;
3420 
3421 	jfreeblk = malloc(sizeof(*jfreeblk), M_JFREEBLK, M_SOFTDEP_FLAGS);
3422 	workitem_alloc(&jfreeblk->jf_list, D_JFREEBLK, freeblks->fb_list.wk_mp);
3423 	jfreeblk->jf_jsegdep = newjsegdep(&jfreeblk->jf_list);
3424 	jfreeblk->jf_state = ATTACHED | DEPCOMPLETE;
3425 	jfreeblk->jf_ino = freeblks->fb_previousinum;
3426 	jfreeblk->jf_lbn = lbn;
3427 	jfreeblk->jf_blkno = blkno;
3428 	jfreeblk->jf_frags = frags;
3429 	jfreeblk->jf_freeblks = freeblks;
3430 	LIST_INSERT_HEAD(&freeblks->fb_jfreeblkhd, jfreeblk, jf_deps);
3431 
3432 	return (jfreeblk);
3433 }
3434 
3435 static void move_newblock_dep(struct jaddref *, struct inodedep *);
3436 /*
3437  * If we're canceling a new bitmap we have to search for another ref
3438  * to move into the bmsafemap dep.  This might be better expressed
3439  * with another structure.
3440  */
3441 static void
3442 move_newblock_dep(jaddref, inodedep)
3443 	struct jaddref *jaddref;
3444 	struct inodedep *inodedep;
3445 {
3446 	struct inoref *inoref;
3447 	struct jaddref *jaddrefn;
3448 
3449 	jaddrefn = NULL;
3450 	for (inoref = TAILQ_NEXT(&jaddref->ja_ref, if_deps); inoref;
3451 	    inoref = TAILQ_NEXT(inoref, if_deps)) {
3452 		if ((jaddref->ja_state & NEWBLOCK) &&
3453 		    inoref->if_list.wk_type == D_JADDREF) {
3454 			jaddrefn = (struct jaddref *)inoref;
3455 			break;
3456 		}
3457 	}
3458 	if (jaddrefn == NULL)
3459 		return;
3460 	jaddrefn->ja_state &= ~(ATTACHED | UNDONE);
3461 	jaddrefn->ja_state |= jaddref->ja_state &
3462 	    (ATTACHED | UNDONE | NEWBLOCK);
3463 	jaddref->ja_state &= ~(ATTACHED | UNDONE | NEWBLOCK);
3464 	jaddref->ja_state |= ATTACHED;
3465 	LIST_REMOVE(jaddref, ja_bmdeps);
3466 	LIST_INSERT_HEAD(&inodedep->id_bmsafemap->sm_jaddrefhd, jaddrefn,
3467 	    ja_bmdeps);
3468 }
3469 
3470 /*
3471  * Cancel a jaddref either before it has been written or while it is being
3472  * written.  This happens when a link is removed before the add reaches
3473  * the disk.  The jaddref dependency is kept linked into the bmsafemap
3474  * and inode to prevent the link count or bitmap from reaching the disk
3475  * until handle_workitem_remove() re-adjusts the counts and bitmaps as
3476  * required.
3477  *
3478  * Returns 1 if the canceled addref requires journaling of the remove and
3479  * 0 otherwise.
3480  */
3481 static int
3482 cancel_jaddref(jaddref, inodedep, wkhd)
3483 	struct jaddref *jaddref;
3484 	struct inodedep *inodedep;
3485 	struct workhead *wkhd;
3486 {
3487 	struct inoref *inoref;
3488 	struct jsegdep *jsegdep;
3489 	int needsj;
3490 
3491 	KASSERT((jaddref->ja_state & COMPLETE) == 0,
3492 	    ("cancel_jaddref: Canceling complete jaddref"));
3493 	if (jaddref->ja_state & (IOSTARTED | COMPLETE))
3494 		needsj = 1;
3495 	else
3496 		needsj = 0;
3497 	if (inodedep == NULL)
3498 		if (inodedep_lookup(jaddref->ja_list.wk_mp, jaddref->ja_ino,
3499 		    0, &inodedep) == 0)
3500 			panic("cancel_jaddref: Lost inodedep");
3501 	/*
3502 	 * We must adjust the nlink of any reference operation that follows
3503 	 * us so that it is consistent with the in-memory reference.  This
3504 	 * ensures that inode nlink rollbacks always have the correct link.
3505 	 */
3506 	if (needsj == 0)
3507 		for (inoref = TAILQ_NEXT(&jaddref->ja_ref, if_deps); inoref;
3508 		    inoref = TAILQ_NEXT(inoref, if_deps))
3509 			inoref->if_nlink--;
3510 	jsegdep = inoref_jseg(&jaddref->ja_ref);
3511 	if (jaddref->ja_state & NEWBLOCK)
3512 		move_newblock_dep(jaddref, inodedep);
3513 	if (jaddref->ja_state & IOWAITING) {
3514 		jaddref->ja_state &= ~IOWAITING;
3515 		wakeup(&jaddref->ja_list);
3516 	}
3517 	jaddref->ja_mkdir = NULL;
3518 	if (jaddref->ja_state & IOSTARTED) {
3519 		jaddref->ja_state &= ~IOSTARTED;
3520 		WORKLIST_REMOVE(&jaddref->ja_list);
3521 		WORKLIST_INSERT(wkhd, &jsegdep->jd_list);
3522 	} else {
3523 		free_jsegdep(jsegdep);
3524 		if (jaddref->ja_state & DEPCOMPLETE)
3525 			remove_from_journal(&jaddref->ja_list);
3526 	}
3527 	/*
3528 	 * Leave NEWBLOCK jaddrefs on the inodedep so handle_workitem_remove
3529 	 * can arrange for them to be freed with the bitmap.  Otherwise we
3530 	 * no longer need this addref attached to the inoreflst and it
3531 	 * will incorrectly adjust nlink if we leave it.
3532 	 */
3533 	if ((jaddref->ja_state & NEWBLOCK) == 0) {
3534 		TAILQ_REMOVE(&inodedep->id_inoreflst, &jaddref->ja_ref,
3535 		    if_deps);
3536 		jaddref->ja_state |= COMPLETE;
3537 		free_jaddref(jaddref);
3538 		return (needsj);
3539 	}
3540 	jaddref->ja_state |= GOINGAWAY;
3541 	/*
3542 	 * Leave the head of the list for jsegdeps for fast merging.
3543 	 */
3544 	if (LIST_FIRST(wkhd) != NULL) {
3545 		jaddref->ja_state |= ONWORKLIST;
3546 		LIST_INSERT_AFTER(LIST_FIRST(wkhd), &jaddref->ja_list, wk_list);
3547 	} else
3548 		WORKLIST_INSERT(wkhd, &jaddref->ja_list);
3549 
3550 	return (needsj);
3551 }
3552 
3553 /*
3554  * Attempt to free a jaddref structure when some work completes.  This
3555  * should only succeed once the entry is written and all dependencies have
3556  * been notified.
3557  */
3558 static void
3559 free_jaddref(jaddref)
3560 	struct jaddref *jaddref;
3561 {
3562 
3563 	if ((jaddref->ja_state & ALLCOMPLETE) != ALLCOMPLETE)
3564 		return;
3565 	if (jaddref->ja_ref.if_jsegdep)
3566 		panic("free_jaddref: segdep attached to jaddref %p(0x%X)\n",
3567 		    jaddref, jaddref->ja_state);
3568 	if (jaddref->ja_state & NEWBLOCK)
3569 		LIST_REMOVE(jaddref, ja_bmdeps);
3570 	if (jaddref->ja_state & (IOSTARTED | ONWORKLIST))
3571 		panic("free_jaddref: Bad state %p(0x%X)",
3572 		    jaddref, jaddref->ja_state);
3573 	if (jaddref->ja_mkdir != NULL)
3574 		panic("free_jaddref: Work pending, 0x%X\n", jaddref->ja_state);
3575 	WORKITEM_FREE(jaddref, D_JADDREF);
3576 }
3577 
3578 /*
3579  * Free a jremref structure once it has been written or discarded.
3580  */
3581 static void
3582 free_jremref(jremref)
3583 	struct jremref *jremref;
3584 {
3585 
3586 	if (jremref->jr_ref.if_jsegdep)
3587 		free_jsegdep(jremref->jr_ref.if_jsegdep);
3588 	if (jremref->jr_state & IOSTARTED)
3589 		panic("free_jremref: IO still pending");
3590 	WORKITEM_FREE(jremref, D_JREMREF);
3591 }
3592 
3593 /*
3594  * Free a jnewblk structure.
3595  */
3596 static void
3597 free_jnewblk(jnewblk)
3598 	struct jnewblk *jnewblk;
3599 {
3600 
3601 	if ((jnewblk->jn_state & ALLCOMPLETE) != ALLCOMPLETE)
3602 		return;
3603 	LIST_REMOVE(jnewblk, jn_deps);
3604 	if (jnewblk->jn_newblk != NULL)
3605 		panic("free_jnewblk: Dependency still attached.");
3606 	WORKITEM_FREE(jnewblk, D_JNEWBLK);
3607 }
3608 
3609 /*
3610  * Cancel a jnewblk which has been superseded by a freeblk.  The jnewblk
3611  * is kept linked into the bmsafemap until the free completes, thus
3612  * preventing the modified state from ever reaching disk.  The free
3613  * routine must pass this structure via ffs_blkfree() to
3614  * softdep_setup_freeblks() so there is no race in releasing the space.
3615  */
3616 static void
3617 cancel_jnewblk(jnewblk, wkhd)
3618 	struct jnewblk *jnewblk;
3619 	struct workhead *wkhd;
3620 {
3621 	struct jsegdep *jsegdep;
3622 
3623 	jsegdep = jnewblk->jn_jsegdep;
3624 	jnewblk->jn_jsegdep  = NULL;
3625 	free_jsegdep(jsegdep);
3626 	jnewblk->jn_newblk = NULL;
3627 	jnewblk->jn_state |= GOINGAWAY;
3628 	if (jnewblk->jn_state & IOSTARTED) {
3629 		jnewblk->jn_state &= ~IOSTARTED;
3630 		WORKLIST_REMOVE(&jnewblk->jn_list);
3631 	} else
3632 		remove_from_journal(&jnewblk->jn_list);
3633 	/*
3634 	 * Leave the head of the list for jsegdeps for fast merging.
3635 	 */
3636 	if (LIST_FIRST(wkhd) != NULL) {
3637 		jnewblk->jn_state |= ONWORKLIST;
3638 		LIST_INSERT_AFTER(LIST_FIRST(wkhd), &jnewblk->jn_list, wk_list);
3639 	} else
3640 		WORKLIST_INSERT(wkhd, &jnewblk->jn_list);
3641 	if (jnewblk->jn_state & IOWAITING) {
3642 		jnewblk->jn_state &= ~IOWAITING;
3643 		wakeup(&jnewblk->jn_list);
3644 	}
3645 }
3646 
3647 static void
3648 free_jfreeblk(jfreeblk)
3649 	struct jfreeblk *jfreeblk;
3650 {
3651 
3652 	WORKITEM_FREE(jfreeblk, D_JFREEBLK);
3653 }
3654 
3655 /*
3656  * Release one reference to a jseg and free it if the count reaches 0.  This
3657  * should eventually reclaim journal space as well.
3658  */
3659 static void
3660 free_jseg(jseg)
3661 	struct jseg *jseg;
3662 {
3663 	struct jblocks *jblocks;
3664 
3665 	KASSERT(jseg->js_refs > 0,
3666 	    ("free_jseg: Invalid refcnt %d", jseg->js_refs));
3667 	if (--jseg->js_refs != 0)
3668 		return;
3669 	/*
3670 	 * Free only those jsegs which have none allocated before them to
3671 	 * preserve the journal space ordering.
3672 	 */
3673 	jblocks = jseg->js_jblocks;
3674 	while ((jseg = TAILQ_FIRST(&jblocks->jb_segs)) != NULL) {
3675 		jblocks->jb_oldestseq = jseg->js_seq;
3676 		if (jseg->js_refs != 0)
3677 			break;
3678 		TAILQ_REMOVE(&jblocks->jb_segs, jseg, js_next);
3679 		jblocks_free(jblocks, jseg->js_list.wk_mp, jseg->js_size);
3680 		KASSERT(LIST_EMPTY(&jseg->js_entries),
3681 		    ("free_jseg: Freed jseg has valid entries."));
3682 		WORKITEM_FREE(jseg, D_JSEG);
3683 	}
3684 }
3685 
3686 /*
3687  * Release a jsegdep and decrement the jseg count.
3688  */
3689 static void
3690 free_jsegdep(jsegdep)
3691 	struct jsegdep *jsegdep;
3692 {
3693 
3694 	if (jsegdep->jd_seg)
3695 		free_jseg(jsegdep->jd_seg);
3696 	WORKITEM_FREE(jsegdep, D_JSEGDEP);
3697 }
3698 
3699 /*
3700  * Wait for a journal item to make it to disk.  Initiate journal processing
3701  * if required.
3702  */
3703 static void
3704 jwait(wk)
3705 	struct worklist *wk;
3706 {
3707 
3708 	stat_journal_wait++;
3709 	/*
3710 	 * If IO has not started we process the journal.  We can't mark the
3711 	 * worklist item as IOWAITING because we drop the lock while
3712 	 * processing the journal and the worklist entry may be freed after
3713 	 * this point.  The caller may call back in and re-issue the request.
3714 	 */
3715 	if ((wk->wk_state & IOSTARTED) == 0) {
3716 		softdep_process_journal(wk->wk_mp, MNT_WAIT);
3717 		return;
3718 	}
3719 	wk->wk_state |= IOWAITING;
3720 	msleep(wk, &lk, PRIBIO, "jwait", 0);
3721 }
3722 
3723 /*
3724  * Lookup an inodedep based on an inode pointer and set the nlinkdelta as
3725  * appropriate.  This is a convenience function to reduce duplicate code
3726  * for the setup and revert functions below.
3727  */
3728 static struct inodedep *
3729 inodedep_lookup_ip(ip)
3730 	struct inode *ip;
3731 {
3732 	struct inodedep *inodedep;
3733 
3734 	KASSERT(ip->i_nlink >= ip->i_effnlink,
3735 	    ("inodedep_lookup_ip: bad delta"));
3736 	(void) inodedep_lookup(UFSTOVFS(ip->i_ump), ip->i_number,
3737 	    DEPALLOC, &inodedep);
3738 	inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink;
3739 
3740 	return (inodedep);
3741 }
3742 
3743 /*
3744  * Create a journal entry that describes a truncate that we're about to
3745  * perform.  The inode allocations and frees between here and the completion
3746  * of the operation are done asynchronously and without journaling.  At
3747  * the end of the operation the vnode is sync'd and the journal space
3748  * is released.  Recovery will discover the partially completed truncate
3749  * and complete it.
3750  */
3751 void *
3752 softdep_setup_trunc(vp, length, flags)
3753 	struct vnode *vp;
3754 	off_t length;
3755 	int flags;
3756 {
3757 	struct jsegdep *jsegdep;
3758 	struct jtrunc *jtrunc;
3759 	struct ufsmount *ump;
3760 	struct inode *ip;
3761 
3762 	softdep_prealloc(vp, MNT_WAIT);
3763 	ip = VTOI(vp);
3764 	ump = VFSTOUFS(vp->v_mount);
3765 	jtrunc = malloc(sizeof(*jtrunc), M_JTRUNC, M_SOFTDEP_FLAGS);
3766 	workitem_alloc(&jtrunc->jt_list, D_JTRUNC, vp->v_mount);
3767 	jsegdep = jtrunc->jt_jsegdep = newjsegdep(&jtrunc->jt_list);
3768 	jtrunc->jt_ino = ip->i_number;
3769 	jtrunc->jt_extsize = 0;
3770 	jtrunc->jt_size = length;
3771 	if ((flags & IO_EXT) == 0 && ump->um_fstype == UFS2)
3772 		jtrunc->jt_extsize = ip->i_din2->di_extsize;
3773 	if ((flags & IO_NORMAL) == 0)
3774 		jtrunc->jt_size = DIP(ip, i_size);
3775 	ACQUIRE_LOCK(&lk);
3776 	add_to_journal(&jtrunc->jt_list);
3777 	while (jsegdep->jd_seg == NULL) {
3778 		stat_jwait_freeblks++;
3779 		jwait(&jtrunc->jt_list);
3780 	}
3781 	FREE_LOCK(&lk);
3782 
3783 	return (jsegdep);
3784 }
3785 
3786 /*
3787  * After synchronous truncation is complete we free sync the vnode and
3788  * release the jsegdep so the journal space can be freed.
3789  */
3790 int
3791 softdep_complete_trunc(vp, cookie)
3792 	struct vnode *vp;
3793 	void *cookie;
3794 {
3795 	int error;
3796 
3797 	error = ffs_syncvnode(vp, MNT_WAIT);
3798 	ACQUIRE_LOCK(&lk);
3799 	free_jsegdep((struct jsegdep *)cookie);
3800 	FREE_LOCK(&lk);
3801 
3802 	return (error);
3803 }
3804 
3805 /*
3806  * Called prior to creating a new inode and linking it to a directory.  The
3807  * jaddref structure must already be allocated by softdep_setup_inomapdep
3808  * and it is discovered here so we can initialize the mode and update
3809  * nlinkdelta.
3810  */
3811 void
3812 softdep_setup_create(dp, ip)
3813 	struct inode *dp;
3814 	struct inode *ip;
3815 {
3816 	struct inodedep *inodedep;
3817 	struct jaddref *jaddref;
3818 	struct vnode *dvp;
3819 
3820 	KASSERT(ip->i_nlink == 1,
3821 	    ("softdep_setup_create: Invalid link count."));
3822 	dvp = ITOV(dp);
3823 	ACQUIRE_LOCK(&lk);
3824 	inodedep = inodedep_lookup_ip(ip);
3825 	if (DOINGSUJ(dvp)) {
3826 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
3827 		    inoreflst);
3828 		KASSERT(jaddref != NULL && jaddref->ja_parent == dp->i_number,
3829 		    ("softdep_setup_create: No addref structure present."));
3830 		jaddref->ja_mode = ip->i_mode;
3831 	}
3832 	softdep_prelink(dvp, NULL);
3833 	FREE_LOCK(&lk);
3834 }
3835 
3836 /*
3837  * Create a jaddref structure to track the addition of a DOTDOT link when
3838  * we are reparenting an inode as part of a rename.  This jaddref will be
3839  * found by softdep_setup_directory_change.  Adjusts nlinkdelta for
3840  * non-journaling softdep.
3841  */
3842 void
3843 softdep_setup_dotdot_link(dp, ip)
3844 	struct inode *dp;
3845 	struct inode *ip;
3846 {
3847 	struct inodedep *inodedep;
3848 	struct jaddref *jaddref;
3849 	struct vnode *dvp;
3850 	struct vnode *vp;
3851 
3852 	dvp = ITOV(dp);
3853 	vp = ITOV(ip);
3854 	jaddref = NULL;
3855 	/*
3856 	 * We don't set MKDIR_PARENT as this is not tied to a mkdir and
3857 	 * is used as a normal link would be.
3858 	 */
3859 	if (DOINGSUJ(dvp))
3860 		jaddref = newjaddref(ip, dp->i_number, DOTDOT_OFFSET,
3861 		    dp->i_effnlink - 1, dp->i_mode);
3862 	ACQUIRE_LOCK(&lk);
3863 	inodedep = inodedep_lookup_ip(dp);
3864 	if (jaddref)
3865 		TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jaddref->ja_ref,
3866 		    if_deps);
3867 	softdep_prelink(dvp, ITOV(ip));
3868 	FREE_LOCK(&lk);
3869 }
3870 
3871 /*
3872  * Create a jaddref structure to track a new link to an inode.  The directory
3873  * offset is not known until softdep_setup_directory_add or
3874  * softdep_setup_directory_change.  Adjusts nlinkdelta for non-journaling
3875  * softdep.
3876  */
3877 void
3878 softdep_setup_link(dp, ip)
3879 	struct inode *dp;
3880 	struct inode *ip;
3881 {
3882 	struct inodedep *inodedep;
3883 	struct jaddref *jaddref;
3884 	struct vnode *dvp;
3885 
3886 	dvp = ITOV(dp);
3887 	jaddref = NULL;
3888 	if (DOINGSUJ(dvp))
3889 		jaddref = newjaddref(dp, ip->i_number, 0, ip->i_effnlink - 1,
3890 		    ip->i_mode);
3891 	ACQUIRE_LOCK(&lk);
3892 	inodedep = inodedep_lookup_ip(ip);
3893 	if (jaddref)
3894 		TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jaddref->ja_ref,
3895 		    if_deps);
3896 	softdep_prelink(dvp, ITOV(ip));
3897 	FREE_LOCK(&lk);
3898 }
3899 
3900 /*
3901  * Called to create the jaddref structures to track . and .. references as
3902  * well as lookup and further initialize the incomplete jaddref created
3903  * by softdep_setup_inomapdep when the inode was allocated.  Adjusts
3904  * nlinkdelta for non-journaling softdep.
3905  */
3906 void
3907 softdep_setup_mkdir(dp, ip)
3908 	struct inode *dp;
3909 	struct inode *ip;
3910 {
3911 	struct inodedep *inodedep;
3912 	struct jaddref *dotdotaddref;
3913 	struct jaddref *dotaddref;
3914 	struct jaddref *jaddref;
3915 	struct vnode *dvp;
3916 
3917 	dvp = ITOV(dp);
3918 	dotaddref = dotdotaddref = NULL;
3919 	if (DOINGSUJ(dvp)) {
3920 		dotaddref = newjaddref(ip, ip->i_number, DOT_OFFSET, 1,
3921 		    ip->i_mode);
3922 		dotaddref->ja_state |= MKDIR_BODY;
3923 		dotdotaddref = newjaddref(ip, dp->i_number, DOTDOT_OFFSET,
3924 		    dp->i_effnlink - 1, dp->i_mode);
3925 		dotdotaddref->ja_state |= MKDIR_PARENT;
3926 	}
3927 	ACQUIRE_LOCK(&lk);
3928 	inodedep = inodedep_lookup_ip(ip);
3929 	if (DOINGSUJ(dvp)) {
3930 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
3931 		    inoreflst);
3932 		KASSERT(jaddref != NULL,
3933 		    ("softdep_setup_mkdir: No addref structure present."));
3934 		KASSERT(jaddref->ja_parent == dp->i_number,
3935 		    ("softdep_setup_mkdir: bad parent %d",
3936 		    jaddref->ja_parent));
3937 		jaddref->ja_mode = ip->i_mode;
3938 		TAILQ_INSERT_BEFORE(&jaddref->ja_ref, &dotaddref->ja_ref,
3939 		    if_deps);
3940 	}
3941 	inodedep = inodedep_lookup_ip(dp);
3942 	if (DOINGSUJ(dvp))
3943 		TAILQ_INSERT_TAIL(&inodedep->id_inoreflst,
3944 		    &dotdotaddref->ja_ref, if_deps);
3945 	softdep_prelink(ITOV(dp), NULL);
3946 	FREE_LOCK(&lk);
3947 }
3948 
3949 /*
3950  * Called to track nlinkdelta of the inode and parent directories prior to
3951  * unlinking a directory.
3952  */
3953 void
3954 softdep_setup_rmdir(dp, ip)
3955 	struct inode *dp;
3956 	struct inode *ip;
3957 {
3958 	struct vnode *dvp;
3959 
3960 	dvp = ITOV(dp);
3961 	ACQUIRE_LOCK(&lk);
3962 	(void) inodedep_lookup_ip(ip);
3963 	(void) inodedep_lookup_ip(dp);
3964 	softdep_prelink(dvp, ITOV(ip));
3965 	FREE_LOCK(&lk);
3966 }
3967 
3968 /*
3969  * Called to track nlinkdelta of the inode and parent directories prior to
3970  * unlink.
3971  */
3972 void
3973 softdep_setup_unlink(dp, ip)
3974 	struct inode *dp;
3975 	struct inode *ip;
3976 {
3977 	struct vnode *dvp;
3978 
3979 	dvp = ITOV(dp);
3980 	ACQUIRE_LOCK(&lk);
3981 	(void) inodedep_lookup_ip(ip);
3982 	(void) inodedep_lookup_ip(dp);
3983 	softdep_prelink(dvp, ITOV(ip));
3984 	FREE_LOCK(&lk);
3985 }
3986 
3987 /*
3988  * Called to release the journal structures created by a failed non-directory
3989  * creation.  Adjusts nlinkdelta for non-journaling softdep.
3990  */
3991 void
3992 softdep_revert_create(dp, ip)
3993 	struct inode *dp;
3994 	struct inode *ip;
3995 {
3996 	struct inodedep *inodedep;
3997 	struct jaddref *jaddref;
3998 	struct vnode *dvp;
3999 
4000 	dvp = ITOV(dp);
4001 	ACQUIRE_LOCK(&lk);
4002 	inodedep = inodedep_lookup_ip(ip);
4003 	if (DOINGSUJ(dvp)) {
4004 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
4005 		    inoreflst);
4006 		KASSERT(jaddref->ja_parent == dp->i_number,
4007 		    ("softdep_revert_create: addref parent mismatch"));
4008 		cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait);
4009 	}
4010 	FREE_LOCK(&lk);
4011 }
4012 
4013 /*
4014  * Called to release the journal structures created by a failed dotdot link
4015  * creation.  Adjusts nlinkdelta for non-journaling softdep.
4016  */
4017 void
4018 softdep_revert_dotdot_link(dp, ip)
4019 	struct inode *dp;
4020 	struct inode *ip;
4021 {
4022 	struct inodedep *inodedep;
4023 	struct jaddref *jaddref;
4024 	struct vnode *dvp;
4025 
4026 	dvp = ITOV(dp);
4027 	ACQUIRE_LOCK(&lk);
4028 	inodedep = inodedep_lookup_ip(dp);
4029 	if (DOINGSUJ(dvp)) {
4030 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
4031 		    inoreflst);
4032 		KASSERT(jaddref->ja_parent == ip->i_number,
4033 		    ("softdep_revert_dotdot_link: addref parent mismatch"));
4034 		cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait);
4035 	}
4036 	FREE_LOCK(&lk);
4037 }
4038 
4039 /*
4040  * Called to release the journal structures created by a failed link
4041  * addition.  Adjusts nlinkdelta for non-journaling softdep.
4042  */
4043 void
4044 softdep_revert_link(dp, ip)
4045 	struct inode *dp;
4046 	struct inode *ip;
4047 {
4048 	struct inodedep *inodedep;
4049 	struct jaddref *jaddref;
4050 	struct vnode *dvp;
4051 
4052 	dvp = ITOV(dp);
4053 	ACQUIRE_LOCK(&lk);
4054 	inodedep = inodedep_lookup_ip(ip);
4055 	if (DOINGSUJ(dvp)) {
4056 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
4057 		    inoreflst);
4058 		KASSERT(jaddref->ja_parent == dp->i_number,
4059 		    ("softdep_revert_link: addref parent mismatch"));
4060 		cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait);
4061 	}
4062 	FREE_LOCK(&lk);
4063 }
4064 
4065 /*
4066  * Called to release the journal structures created by a failed mkdir
4067  * attempt.  Adjusts nlinkdelta for non-journaling softdep.
4068  */
4069 void
4070 softdep_revert_mkdir(dp, ip)
4071 	struct inode *dp;
4072 	struct inode *ip;
4073 {
4074 	struct inodedep *inodedep;
4075 	struct jaddref *jaddref;
4076 	struct vnode *dvp;
4077 
4078 	dvp = ITOV(dp);
4079 
4080 	ACQUIRE_LOCK(&lk);
4081 	inodedep = inodedep_lookup_ip(dp);
4082 	if (DOINGSUJ(dvp)) {
4083 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
4084 		    inoreflst);
4085 		KASSERT(jaddref->ja_parent == ip->i_number,
4086 		    ("softdep_revert_mkdir: dotdot addref parent mismatch"));
4087 		cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait);
4088 	}
4089 	inodedep = inodedep_lookup_ip(ip);
4090 	if (DOINGSUJ(dvp)) {
4091 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
4092 		    inoreflst);
4093 		KASSERT(jaddref->ja_parent == dp->i_number,
4094 		    ("softdep_revert_mkdir: addref parent mismatch"));
4095 		cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait);
4096 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
4097 		    inoreflst);
4098 		KASSERT(jaddref->ja_parent == ip->i_number,
4099 		    ("softdep_revert_mkdir: dot addref parent mismatch"));
4100 		cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait);
4101 	}
4102 	FREE_LOCK(&lk);
4103 }
4104 
4105 /*
4106  * Called to correct nlinkdelta after a failed rmdir.
4107  */
4108 void
4109 softdep_revert_rmdir(dp, ip)
4110 	struct inode *dp;
4111 	struct inode *ip;
4112 {
4113 
4114 	ACQUIRE_LOCK(&lk);
4115 	(void) inodedep_lookup_ip(ip);
4116 	(void) inodedep_lookup_ip(dp);
4117 	FREE_LOCK(&lk);
4118 }
4119 
4120 /*
4121  * Protecting the freemaps (or bitmaps).
4122  *
4123  * To eliminate the need to execute fsck before mounting a filesystem
4124  * after a power failure, one must (conservatively) guarantee that the
4125  * on-disk copy of the bitmaps never indicate that a live inode or block is
4126  * free.  So, when a block or inode is allocated, the bitmap should be
4127  * updated (on disk) before any new pointers.  When a block or inode is
4128  * freed, the bitmap should not be updated until all pointers have been
4129  * reset.  The latter dependency is handled by the delayed de-allocation
4130  * approach described below for block and inode de-allocation.  The former
4131  * dependency is handled by calling the following procedure when a block or
4132  * inode is allocated. When an inode is allocated an "inodedep" is created
4133  * with its DEPCOMPLETE flag cleared until its bitmap is written to disk.
4134  * Each "inodedep" is also inserted into the hash indexing structure so
4135  * that any additional link additions can be made dependent on the inode
4136  * allocation.
4137  *
4138  * The ufs filesystem maintains a number of free block counts (e.g., per
4139  * cylinder group, per cylinder and per <cylinder, rotational position> pair)
4140  * in addition to the bitmaps.  These counts are used to improve efficiency
4141  * during allocation and therefore must be consistent with the bitmaps.
4142  * There is no convenient way to guarantee post-crash consistency of these
4143  * counts with simple update ordering, for two main reasons: (1) The counts
4144  * and bitmaps for a single cylinder group block are not in the same disk
4145  * sector.  If a disk write is interrupted (e.g., by power failure), one may
4146  * be written and the other not.  (2) Some of the counts are located in the
4147  * superblock rather than the cylinder group block. So, we focus our soft
4148  * updates implementation on protecting the bitmaps. When mounting a
4149  * filesystem, we recompute the auxiliary counts from the bitmaps.
4150  */
4151 
4152 /*
4153  * Called just after updating the cylinder group block to allocate an inode.
4154  */
4155 void
4156 softdep_setup_inomapdep(bp, ip, newinum)
4157 	struct buf *bp;		/* buffer for cylgroup block with inode map */
4158 	struct inode *ip;	/* inode related to allocation */
4159 	ino_t newinum;		/* new inode number being allocated */
4160 {
4161 	struct inodedep *inodedep;
4162 	struct bmsafemap *bmsafemap;
4163 	struct jaddref *jaddref;
4164 	struct mount *mp;
4165 	struct fs *fs;
4166 
4167 	mp = UFSTOVFS(ip->i_ump);
4168 	fs = ip->i_ump->um_fs;
4169 	jaddref = NULL;
4170 
4171 	/*
4172 	 * Allocate the journal reference add structure so that the bitmap
4173 	 * can be dependent on it.
4174 	 */
4175 	if (mp->mnt_kern_flag & MNTK_SUJ) {
4176 		jaddref = newjaddref(ip, newinum, 0, 0, 0);
4177 		jaddref->ja_state |= NEWBLOCK;
4178 	}
4179 
4180 	/*
4181 	 * Create a dependency for the newly allocated inode.
4182 	 * Panic if it already exists as something is seriously wrong.
4183 	 * Otherwise add it to the dependency list for the buffer holding
4184 	 * the cylinder group map from which it was allocated.
4185 	 */
4186 	ACQUIRE_LOCK(&lk);
4187 	if ((inodedep_lookup(mp, newinum, DEPALLOC|NODELAY, &inodedep)))
4188 		panic("softdep_setup_inomapdep: dependency %p for new"
4189 		    "inode already exists", inodedep);
4190 	bmsafemap = bmsafemap_lookup(mp, bp, ino_to_cg(fs, newinum));
4191 	if (jaddref) {
4192 		LIST_INSERT_HEAD(&bmsafemap->sm_jaddrefhd, jaddref, ja_bmdeps);
4193 		TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jaddref->ja_ref,
4194 		    if_deps);
4195 	} else {
4196 		inodedep->id_state |= ONDEPLIST;
4197 		LIST_INSERT_HEAD(&bmsafemap->sm_inodedephd, inodedep, id_deps);
4198 	}
4199 	inodedep->id_bmsafemap = bmsafemap;
4200 	inodedep->id_state &= ~DEPCOMPLETE;
4201 	FREE_LOCK(&lk);
4202 }
4203 
4204 /*
4205  * Called just after updating the cylinder group block to
4206  * allocate block or fragment.
4207  */
4208 void
4209 softdep_setup_blkmapdep(bp, mp, newblkno, frags, oldfrags)
4210 	struct buf *bp;		/* buffer for cylgroup block with block map */
4211 	struct mount *mp;	/* filesystem doing allocation */
4212 	ufs2_daddr_t newblkno;	/* number of newly allocated block */
4213 	int frags;		/* Number of fragments. */
4214 	int oldfrags;		/* Previous number of fragments for extend. */
4215 {
4216 	struct newblk *newblk;
4217 	struct bmsafemap *bmsafemap;
4218 	struct jnewblk *jnewblk;
4219 	struct fs *fs;
4220 
4221 	fs = VFSTOUFS(mp)->um_fs;
4222 	jnewblk = NULL;
4223 	/*
4224 	 * Create a dependency for the newly allocated block.
4225 	 * Add it to the dependency list for the buffer holding
4226 	 * the cylinder group map from which it was allocated.
4227 	 */
4228 	if (mp->mnt_kern_flag & MNTK_SUJ) {
4229 		jnewblk = malloc(sizeof(*jnewblk), M_JNEWBLK, M_SOFTDEP_FLAGS);
4230 		workitem_alloc(&jnewblk->jn_list, D_JNEWBLK, mp);
4231 		jnewblk->jn_jsegdep = newjsegdep(&jnewblk->jn_list);
4232 		jnewblk->jn_state = ATTACHED;
4233 		jnewblk->jn_blkno = newblkno;
4234 		jnewblk->jn_frags = frags;
4235 		jnewblk->jn_oldfrags = oldfrags;
4236 #ifdef SUJ_DEBUG
4237 		{
4238 			struct cg *cgp;
4239 			uint8_t *blksfree;
4240 			long bno;
4241 			int i;
4242 
4243 			cgp = (struct cg *)bp->b_data;
4244 			blksfree = cg_blksfree(cgp);
4245 			bno = dtogd(fs, jnewblk->jn_blkno);
4246 			for (i = jnewblk->jn_oldfrags; i < jnewblk->jn_frags;
4247 			    i++) {
4248 				if (isset(blksfree, bno + i))
4249 					panic("softdep_setup_blkmapdep: "
4250 					    "free fragment %d from %d-%d "
4251 					    "state 0x%X dep %p", i,
4252 					    jnewblk->jn_oldfrags,
4253 					    jnewblk->jn_frags,
4254 					    jnewblk->jn_state,
4255 					    jnewblk->jn_newblk);
4256 			}
4257 		}
4258 #endif
4259 	}
4260 	ACQUIRE_LOCK(&lk);
4261 	if (newblk_lookup(mp, newblkno, DEPALLOC, &newblk) != 0)
4262 		panic("softdep_setup_blkmapdep: found block");
4263 	newblk->nb_bmsafemap = bmsafemap = bmsafemap_lookup(mp, bp,
4264 	    dtog(fs, newblkno));
4265 	if (jnewblk) {
4266 		jnewblk->jn_newblk = newblk;
4267 		LIST_INSERT_HEAD(&bmsafemap->sm_jnewblkhd, jnewblk, jn_deps);
4268 	} else {
4269 		newblk->nb_state |= ONDEPLIST;
4270 		LIST_INSERT_HEAD(&bmsafemap->sm_newblkhd, newblk, nb_deps);
4271 	}
4272 	newblk->nb_bmsafemap = bmsafemap;
4273 	newblk->nb_jnewblk = jnewblk;
4274 	FREE_LOCK(&lk);
4275 }
4276 
4277 #define	BMSAFEMAP_HASH(fs, cg) \
4278       (&bmsafemap_hashtbl[((((register_t)(fs)) >> 13) + (cg)) & bmsafemap_hash])
4279 
4280 static int
4281 bmsafemap_find(bmsafemaphd, mp, cg, bmsafemapp)
4282 	struct bmsafemap_hashhead *bmsafemaphd;
4283 	struct mount *mp;
4284 	int cg;
4285 	struct bmsafemap **bmsafemapp;
4286 {
4287 	struct bmsafemap *bmsafemap;
4288 
4289 	LIST_FOREACH(bmsafemap, bmsafemaphd, sm_hash)
4290 		if (bmsafemap->sm_list.wk_mp == mp && bmsafemap->sm_cg == cg)
4291 			break;
4292 	if (bmsafemap) {
4293 		*bmsafemapp = bmsafemap;
4294 		return (1);
4295 	}
4296 	*bmsafemapp = NULL;
4297 
4298 	return (0);
4299 }
4300 
4301 /*
4302  * Find the bmsafemap associated with a cylinder group buffer.
4303  * If none exists, create one. The buffer must be locked when
4304  * this routine is called and this routine must be called with
4305  * splbio interrupts blocked.
4306  */
4307 static struct bmsafemap *
4308 bmsafemap_lookup(mp, bp, cg)
4309 	struct mount *mp;
4310 	struct buf *bp;
4311 	int cg;
4312 {
4313 	struct bmsafemap_hashhead *bmsafemaphd;
4314 	struct bmsafemap *bmsafemap, *collision;
4315 	struct worklist *wk;
4316 	struct fs *fs;
4317 
4318 	mtx_assert(&lk, MA_OWNED);
4319 	if (bp)
4320 		LIST_FOREACH(wk, &bp->b_dep, wk_list)
4321 			if (wk->wk_type == D_BMSAFEMAP)
4322 				return (WK_BMSAFEMAP(wk));
4323 	fs = VFSTOUFS(mp)->um_fs;
4324 	bmsafemaphd = BMSAFEMAP_HASH(fs, cg);
4325 	if (bmsafemap_find(bmsafemaphd, mp, cg, &bmsafemap) == 1)
4326 		return (bmsafemap);
4327 	FREE_LOCK(&lk);
4328 	bmsafemap = malloc(sizeof(struct bmsafemap),
4329 		M_BMSAFEMAP, M_SOFTDEP_FLAGS);
4330 	workitem_alloc(&bmsafemap->sm_list, D_BMSAFEMAP, mp);
4331 	bmsafemap->sm_buf = bp;
4332 	LIST_INIT(&bmsafemap->sm_inodedephd);
4333 	LIST_INIT(&bmsafemap->sm_inodedepwr);
4334 	LIST_INIT(&bmsafemap->sm_newblkhd);
4335 	LIST_INIT(&bmsafemap->sm_newblkwr);
4336 	LIST_INIT(&bmsafemap->sm_jaddrefhd);
4337 	LIST_INIT(&bmsafemap->sm_jnewblkhd);
4338 	ACQUIRE_LOCK(&lk);
4339 	if (bmsafemap_find(bmsafemaphd, mp, cg, &collision) == 1) {
4340 		WORKITEM_FREE(bmsafemap, D_BMSAFEMAP);
4341 		return (collision);
4342 	}
4343 	bmsafemap->sm_cg = cg;
4344 	LIST_INSERT_HEAD(bmsafemaphd, bmsafemap, sm_hash);
4345 	WORKLIST_INSERT(&bp->b_dep, &bmsafemap->sm_list);
4346 	return (bmsafemap);
4347 }
4348 
4349 /*
4350  * Direct block allocation dependencies.
4351  *
4352  * When a new block is allocated, the corresponding disk locations must be
4353  * initialized (with zeros or new data) before the on-disk inode points to
4354  * them.  Also, the freemap from which the block was allocated must be
4355  * updated (on disk) before the inode's pointer. These two dependencies are
4356  * independent of each other and are needed for all file blocks and indirect
4357  * blocks that are pointed to directly by the inode.  Just before the
4358  * "in-core" version of the inode is updated with a newly allocated block
4359  * number, a procedure (below) is called to setup allocation dependency
4360  * structures.  These structures are removed when the corresponding
4361  * dependencies are satisfied or when the block allocation becomes obsolete
4362  * (i.e., the file is deleted, the block is de-allocated, or the block is a
4363  * fragment that gets upgraded).  All of these cases are handled in
4364  * procedures described later.
4365  *
4366  * When a file extension causes a fragment to be upgraded, either to a larger
4367  * fragment or to a full block, the on-disk location may change (if the
4368  * previous fragment could not simply be extended). In this case, the old
4369  * fragment must be de-allocated, but not until after the inode's pointer has
4370  * been updated. In most cases, this is handled by later procedures, which
4371  * will construct a "freefrag" structure to be added to the workitem queue
4372  * when the inode update is complete (or obsolete).  The main exception to
4373  * this is when an allocation occurs while a pending allocation dependency
4374  * (for the same block pointer) remains.  This case is handled in the main
4375  * allocation dependency setup procedure by immediately freeing the
4376  * unreferenced fragments.
4377  */
4378 void
4379 softdep_setup_allocdirect(ip, off, newblkno, oldblkno, newsize, oldsize, bp)
4380 	struct inode *ip;	/* inode to which block is being added */
4381 	ufs_lbn_t off;		/* block pointer within inode */
4382 	ufs2_daddr_t newblkno;	/* disk block number being added */
4383 	ufs2_daddr_t oldblkno;	/* previous block number, 0 unless frag */
4384 	long newsize;		/* size of new block */
4385 	long oldsize;		/* size of new block */
4386 	struct buf *bp;		/* bp for allocated block */
4387 {
4388 	struct allocdirect *adp, *oldadp;
4389 	struct allocdirectlst *adphead;
4390 	struct freefrag *freefrag;
4391 	struct inodedep *inodedep;
4392 	struct pagedep *pagedep;
4393 	struct jnewblk *jnewblk;
4394 	struct newblk *newblk;
4395 	struct mount *mp;
4396 	ufs_lbn_t lbn;
4397 
4398 	lbn = bp->b_lblkno;
4399 	mp = UFSTOVFS(ip->i_ump);
4400 	if (oldblkno && oldblkno != newblkno)
4401 		freefrag = newfreefrag(ip, oldblkno, oldsize, lbn);
4402 	else
4403 		freefrag = NULL;
4404 
4405 	ACQUIRE_LOCK(&lk);
4406 	if (off >= NDADDR) {
4407 		if (lbn > 0)
4408 			panic("softdep_setup_allocdirect: bad lbn %jd, off %jd",
4409 			    lbn, off);
4410 		/* allocating an indirect block */
4411 		if (oldblkno != 0)
4412 			panic("softdep_setup_allocdirect: non-zero indir");
4413 	} else {
4414 		if (off != lbn)
4415 			panic("softdep_setup_allocdirect: lbn %jd != off %jd",
4416 			    lbn, off);
4417 		/*
4418 		 * Allocating a direct block.
4419 		 *
4420 		 * If we are allocating a directory block, then we must
4421 		 * allocate an associated pagedep to track additions and
4422 		 * deletions.
4423 		 */
4424 		if ((ip->i_mode & IFMT) == IFDIR &&
4425 		    pagedep_lookup(mp, ip->i_number, off, DEPALLOC,
4426 		    &pagedep) == 0)
4427 			WORKLIST_INSERT(&bp->b_dep, &pagedep->pd_list);
4428 	}
4429 	if (newblk_lookup(mp, newblkno, 0, &newblk) == 0)
4430 		panic("softdep_setup_allocdirect: lost block");
4431 	KASSERT(newblk->nb_list.wk_type == D_NEWBLK,
4432 	    ("softdep_setup_allocdirect: newblk already initialized"));
4433 	/*
4434 	 * Convert the newblk to an allocdirect.
4435 	 */
4436 	newblk->nb_list.wk_type = D_ALLOCDIRECT;
4437 	adp = (struct allocdirect *)newblk;
4438 	newblk->nb_freefrag = freefrag;
4439 	adp->ad_offset = off;
4440 	adp->ad_oldblkno = oldblkno;
4441 	adp->ad_newsize = newsize;
4442 	adp->ad_oldsize = oldsize;
4443 
4444 	/*
4445 	 * Finish initializing the journal.
4446 	 */
4447 	if ((jnewblk = newblk->nb_jnewblk) != NULL) {
4448 		jnewblk->jn_ino = ip->i_number;
4449 		jnewblk->jn_lbn = lbn;
4450 		add_to_journal(&jnewblk->jn_list);
4451 	}
4452 	if (freefrag && freefrag->ff_jfreefrag != NULL)
4453 		add_to_journal(&freefrag->ff_jfreefrag->fr_list);
4454 	inodedep_lookup(mp, ip->i_number, DEPALLOC | NODELAY, &inodedep);
4455 	adp->ad_inodedep = inodedep;
4456 
4457 	WORKLIST_INSERT(&bp->b_dep, &newblk->nb_list);
4458 	/*
4459 	 * The list of allocdirects must be kept in sorted and ascending
4460 	 * order so that the rollback routines can quickly determine the
4461 	 * first uncommitted block (the size of the file stored on disk
4462 	 * ends at the end of the lowest committed fragment, or if there
4463 	 * are no fragments, at the end of the highest committed block).
4464 	 * Since files generally grow, the typical case is that the new
4465 	 * block is to be added at the end of the list. We speed this
4466 	 * special case by checking against the last allocdirect in the
4467 	 * list before laboriously traversing the list looking for the
4468 	 * insertion point.
4469 	 */
4470 	adphead = &inodedep->id_newinoupdt;
4471 	oldadp = TAILQ_LAST(adphead, allocdirectlst);
4472 	if (oldadp == NULL || oldadp->ad_offset <= off) {
4473 		/* insert at end of list */
4474 		TAILQ_INSERT_TAIL(adphead, adp, ad_next);
4475 		if (oldadp != NULL && oldadp->ad_offset == off)
4476 			allocdirect_merge(adphead, adp, oldadp);
4477 		FREE_LOCK(&lk);
4478 		return;
4479 	}
4480 	TAILQ_FOREACH(oldadp, adphead, ad_next) {
4481 		if (oldadp->ad_offset >= off)
4482 			break;
4483 	}
4484 	if (oldadp == NULL)
4485 		panic("softdep_setup_allocdirect: lost entry");
4486 	/* insert in middle of list */
4487 	TAILQ_INSERT_BEFORE(oldadp, adp, ad_next);
4488 	if (oldadp->ad_offset == off)
4489 		allocdirect_merge(adphead, adp, oldadp);
4490 
4491 	FREE_LOCK(&lk);
4492 }
4493 
4494 /*
4495  * Replace an old allocdirect dependency with a newer one.
4496  * This routine must be called with splbio interrupts blocked.
4497  */
4498 static void
4499 allocdirect_merge(adphead, newadp, oldadp)
4500 	struct allocdirectlst *adphead;	/* head of list holding allocdirects */
4501 	struct allocdirect *newadp;	/* allocdirect being added */
4502 	struct allocdirect *oldadp;	/* existing allocdirect being checked */
4503 {
4504 	struct worklist *wk;
4505 	struct freefrag *freefrag;
4506 	struct newdirblk *newdirblk;
4507 
4508 	freefrag = NULL;
4509 	mtx_assert(&lk, MA_OWNED);
4510 	if (newadp->ad_oldblkno != oldadp->ad_newblkno ||
4511 	    newadp->ad_oldsize != oldadp->ad_newsize ||
4512 	    newadp->ad_offset >= NDADDR)
4513 		panic("%s %jd != new %jd || old size %ld != new %ld",
4514 		    "allocdirect_merge: old blkno",
4515 		    (intmax_t)newadp->ad_oldblkno,
4516 		    (intmax_t)oldadp->ad_newblkno,
4517 		    newadp->ad_oldsize, oldadp->ad_newsize);
4518 	newadp->ad_oldblkno = oldadp->ad_oldblkno;
4519 	newadp->ad_oldsize = oldadp->ad_oldsize;
4520 	/*
4521 	 * If the old dependency had a fragment to free or had never
4522 	 * previously had a block allocated, then the new dependency
4523 	 * can immediately post its freefrag and adopt the old freefrag.
4524 	 * This action is done by swapping the freefrag dependencies.
4525 	 * The new dependency gains the old one's freefrag, and the
4526 	 * old one gets the new one and then immediately puts it on
4527 	 * the worklist when it is freed by free_newblk. It is
4528 	 * not possible to do this swap when the old dependency had a
4529 	 * non-zero size but no previous fragment to free. This condition
4530 	 * arises when the new block is an extension of the old block.
4531 	 * Here, the first part of the fragment allocated to the new
4532 	 * dependency is part of the block currently claimed on disk by
4533 	 * the old dependency, so cannot legitimately be freed until the
4534 	 * conditions for the new dependency are fulfilled.
4535 	 */
4536 	freefrag = newadp->ad_freefrag;
4537 	if (oldadp->ad_freefrag != NULL || oldadp->ad_oldblkno == 0) {
4538 		newadp->ad_freefrag = oldadp->ad_freefrag;
4539 		oldadp->ad_freefrag = freefrag;
4540 	}
4541 	/*
4542 	 * If we are tracking a new directory-block allocation,
4543 	 * move it from the old allocdirect to the new allocdirect.
4544 	 */
4545 	if ((wk = LIST_FIRST(&oldadp->ad_newdirblk)) != NULL) {
4546 		newdirblk = WK_NEWDIRBLK(wk);
4547 		WORKLIST_REMOVE(&newdirblk->db_list);
4548 		if (!LIST_EMPTY(&oldadp->ad_newdirblk))
4549 			panic("allocdirect_merge: extra newdirblk");
4550 		WORKLIST_INSERT(&newadp->ad_newdirblk, &newdirblk->db_list);
4551 	}
4552 	TAILQ_REMOVE(adphead, oldadp, ad_next);
4553 	/*
4554 	 * We need to move any journal dependencies over to the freefrag
4555 	 * that releases this block if it exists.  Otherwise we are
4556 	 * extending an existing block and we'll wait until that is
4557 	 * complete to release the journal space and extend the
4558 	 * new journal to cover this old space as well.
4559 	 */
4560 	if (freefrag == NULL) {
4561 		struct jnewblk *jnewblk;
4562 		struct jnewblk *njnewblk;
4563 
4564 		if (oldadp->ad_newblkno != newadp->ad_newblkno)
4565 			panic("allocdirect_merge: %jd != %jd",
4566 			    oldadp->ad_newblkno, newadp->ad_newblkno);
4567 		jnewblk = oldadp->ad_block.nb_jnewblk;
4568 		cancel_newblk(&oldadp->ad_block, &newadp->ad_block.nb_jwork);
4569 		/*
4570 		 * We have an unwritten jnewblk, we need to merge the
4571 		 * frag bits with our own.  The newer adp's journal can not
4572 		 * be written prior to the old one so no need to check for
4573 		 * it here.
4574 		 */
4575 		if (jnewblk) {
4576 			njnewblk = newadp->ad_block.nb_jnewblk;
4577 			if (njnewblk == NULL)
4578 				panic("allocdirect_merge: No jnewblk");
4579 			if (jnewblk->jn_state & UNDONE) {
4580 				njnewblk->jn_state |= UNDONE | NEWBLOCK;
4581 				njnewblk->jn_state &= ~ATTACHED;
4582 				jnewblk->jn_state &= ~UNDONE;
4583 			}
4584 			njnewblk->jn_oldfrags = jnewblk->jn_oldfrags;
4585 			WORKLIST_REMOVE(&jnewblk->jn_list);
4586 			jnewblk->jn_state |= ATTACHED | COMPLETE;
4587 			free_jnewblk(jnewblk);
4588 		}
4589 	} else {
4590 		/*
4591 		 * We can skip journaling for this freefrag and just complete
4592 		 * any pending journal work for the allocdirect that is being
4593 		 * removed after the freefrag completes.
4594 		 */
4595 		if (freefrag->ff_jfreefrag)
4596 			cancel_jfreefrag(freefrag->ff_jfreefrag);
4597 		cancel_newblk(&oldadp->ad_block, &freefrag->ff_jwork);
4598 	}
4599 	free_newblk(&oldadp->ad_block);
4600 }
4601 
4602 /*
4603  * Allocate a jfreefrag structure to journal a single block free.
4604  */
4605 static struct jfreefrag *
4606 newjfreefrag(freefrag, ip, blkno, size, lbn)
4607 	struct freefrag *freefrag;
4608 	struct inode *ip;
4609 	ufs2_daddr_t blkno;
4610 	long size;
4611 	ufs_lbn_t lbn;
4612 {
4613 	struct jfreefrag *jfreefrag;
4614 	struct fs *fs;
4615 
4616 	fs = ip->i_fs;
4617 	jfreefrag = malloc(sizeof(struct jfreefrag), M_JFREEFRAG,
4618 	    M_SOFTDEP_FLAGS);
4619 	workitem_alloc(&jfreefrag->fr_list, D_JFREEFRAG, UFSTOVFS(ip->i_ump));
4620 	jfreefrag->fr_jsegdep = newjsegdep(&jfreefrag->fr_list);
4621 	jfreefrag->fr_state = ATTACHED | DEPCOMPLETE;
4622 	jfreefrag->fr_ino = ip->i_number;
4623 	jfreefrag->fr_lbn = lbn;
4624 	jfreefrag->fr_blkno = blkno;
4625 	jfreefrag->fr_frags = numfrags(fs, size);
4626 	jfreefrag->fr_freefrag = freefrag;
4627 
4628 	return (jfreefrag);
4629 }
4630 
4631 /*
4632  * Allocate a new freefrag structure.
4633  */
4634 static struct freefrag *
4635 newfreefrag(ip, blkno, size, lbn)
4636 	struct inode *ip;
4637 	ufs2_daddr_t blkno;
4638 	long size;
4639 	ufs_lbn_t lbn;
4640 {
4641 	struct freefrag *freefrag;
4642 	struct fs *fs;
4643 
4644 	fs = ip->i_fs;
4645 	if (fragnum(fs, blkno) + numfrags(fs, size) > fs->fs_frag)
4646 		panic("newfreefrag: frag size");
4647 	freefrag = malloc(sizeof(struct freefrag),
4648 	    M_FREEFRAG, M_SOFTDEP_FLAGS);
4649 	workitem_alloc(&freefrag->ff_list, D_FREEFRAG, UFSTOVFS(ip->i_ump));
4650 	freefrag->ff_state = ATTACHED;
4651 	LIST_INIT(&freefrag->ff_jwork);
4652 	freefrag->ff_inum = ip->i_number;
4653 	freefrag->ff_blkno = blkno;
4654 	freefrag->ff_fragsize = size;
4655 
4656 	if (fs->fs_flags & FS_SUJ) {
4657 		freefrag->ff_jfreefrag =
4658 		    newjfreefrag(freefrag, ip, blkno, size, lbn);
4659 	} else {
4660 		freefrag->ff_state |= DEPCOMPLETE;
4661 		freefrag->ff_jfreefrag = NULL;
4662 	}
4663 
4664 	return (freefrag);
4665 }
4666 
4667 /*
4668  * This workitem de-allocates fragments that were replaced during
4669  * file block allocation.
4670  */
4671 static void
4672 handle_workitem_freefrag(freefrag)
4673 	struct freefrag *freefrag;
4674 {
4675 	struct ufsmount *ump = VFSTOUFS(freefrag->ff_list.wk_mp);
4676 	struct workhead wkhd;
4677 
4678 	/*
4679 	 * It would be illegal to add new completion items to the
4680 	 * freefrag after it was schedule to be done so it must be
4681 	 * safe to modify the list head here.
4682 	 */
4683 	LIST_INIT(&wkhd);
4684 	LIST_SWAP(&freefrag->ff_jwork, &wkhd, worklist, wk_list);
4685 	ffs_blkfree(ump, ump->um_fs, ump->um_devvp, freefrag->ff_blkno,
4686 	    freefrag->ff_fragsize, freefrag->ff_inum, &wkhd);
4687 	ACQUIRE_LOCK(&lk);
4688 	WORKITEM_FREE(freefrag, D_FREEFRAG);
4689 	FREE_LOCK(&lk);
4690 }
4691 
4692 /*
4693  * Set up a dependency structure for an external attributes data block.
4694  * This routine follows much of the structure of softdep_setup_allocdirect.
4695  * See the description of softdep_setup_allocdirect above for details.
4696  */
4697 void
4698 softdep_setup_allocext(ip, off, newblkno, oldblkno, newsize, oldsize, bp)
4699 	struct inode *ip;
4700 	ufs_lbn_t off;
4701 	ufs2_daddr_t newblkno;
4702 	ufs2_daddr_t oldblkno;
4703 	long newsize;
4704 	long oldsize;
4705 	struct buf *bp;
4706 {
4707 	struct allocdirect *adp, *oldadp;
4708 	struct allocdirectlst *adphead;
4709 	struct freefrag *freefrag;
4710 	struct inodedep *inodedep;
4711 	struct jnewblk *jnewblk;
4712 	struct newblk *newblk;
4713 	struct mount *mp;
4714 	ufs_lbn_t lbn;
4715 
4716 	if (off >= NXADDR)
4717 		panic("softdep_setup_allocext: lbn %lld > NXADDR",
4718 		    (long long)off);
4719 
4720 	lbn = bp->b_lblkno;
4721 	mp = UFSTOVFS(ip->i_ump);
4722 	if (oldblkno && oldblkno != newblkno)
4723 		freefrag = newfreefrag(ip, oldblkno, oldsize, lbn);
4724 	else
4725 		freefrag = NULL;
4726 
4727 	ACQUIRE_LOCK(&lk);
4728 	if (newblk_lookup(mp, newblkno, 0, &newblk) == 0)
4729 		panic("softdep_setup_allocext: lost block");
4730 	KASSERT(newblk->nb_list.wk_type == D_NEWBLK,
4731 	    ("softdep_setup_allocext: newblk already initialized"));
4732 	/*
4733 	 * Convert the newblk to an allocdirect.
4734 	 */
4735 	newblk->nb_list.wk_type = D_ALLOCDIRECT;
4736 	adp = (struct allocdirect *)newblk;
4737 	newblk->nb_freefrag = freefrag;
4738 	adp->ad_offset = off;
4739 	adp->ad_oldblkno = oldblkno;
4740 	adp->ad_newsize = newsize;
4741 	adp->ad_oldsize = oldsize;
4742 	adp->ad_state |=  EXTDATA;
4743 
4744 	/*
4745 	 * Finish initializing the journal.
4746 	 */
4747 	if ((jnewblk = newblk->nb_jnewblk) != NULL) {
4748 		jnewblk->jn_ino = ip->i_number;
4749 		jnewblk->jn_lbn = lbn;
4750 		add_to_journal(&jnewblk->jn_list);
4751 	}
4752 	if (freefrag && freefrag->ff_jfreefrag != NULL)
4753 		add_to_journal(&freefrag->ff_jfreefrag->fr_list);
4754 	inodedep_lookup(mp, ip->i_number, DEPALLOC | NODELAY, &inodedep);
4755 	adp->ad_inodedep = inodedep;
4756 
4757 	WORKLIST_INSERT(&bp->b_dep, &newblk->nb_list);
4758 	/*
4759 	 * The list of allocdirects must be kept in sorted and ascending
4760 	 * order so that the rollback routines can quickly determine the
4761 	 * first uncommitted block (the size of the file stored on disk
4762 	 * ends at the end of the lowest committed fragment, or if there
4763 	 * are no fragments, at the end of the highest committed block).
4764 	 * Since files generally grow, the typical case is that the new
4765 	 * block is to be added at the end of the list. We speed this
4766 	 * special case by checking against the last allocdirect in the
4767 	 * list before laboriously traversing the list looking for the
4768 	 * insertion point.
4769 	 */
4770 	adphead = &inodedep->id_newextupdt;
4771 	oldadp = TAILQ_LAST(adphead, allocdirectlst);
4772 	if (oldadp == NULL || oldadp->ad_offset <= off) {
4773 		/* insert at end of list */
4774 		TAILQ_INSERT_TAIL(adphead, adp, ad_next);
4775 		if (oldadp != NULL && oldadp->ad_offset == off)
4776 			allocdirect_merge(adphead, adp, oldadp);
4777 		FREE_LOCK(&lk);
4778 		return;
4779 	}
4780 	TAILQ_FOREACH(oldadp, adphead, ad_next) {
4781 		if (oldadp->ad_offset >= off)
4782 			break;
4783 	}
4784 	if (oldadp == NULL)
4785 		panic("softdep_setup_allocext: lost entry");
4786 	/* insert in middle of list */
4787 	TAILQ_INSERT_BEFORE(oldadp, adp, ad_next);
4788 	if (oldadp->ad_offset == off)
4789 		allocdirect_merge(adphead, adp, oldadp);
4790 	FREE_LOCK(&lk);
4791 }
4792 
4793 /*
4794  * Indirect block allocation dependencies.
4795  *
4796  * The same dependencies that exist for a direct block also exist when
4797  * a new block is allocated and pointed to by an entry in a block of
4798  * indirect pointers. The undo/redo states described above are also
4799  * used here. Because an indirect block contains many pointers that
4800  * may have dependencies, a second copy of the entire in-memory indirect
4801  * block is kept. The buffer cache copy is always completely up-to-date.
4802  * The second copy, which is used only as a source for disk writes,
4803  * contains only the safe pointers (i.e., those that have no remaining
4804  * update dependencies). The second copy is freed when all pointers
4805  * are safe. The cache is not allowed to replace indirect blocks with
4806  * pending update dependencies. If a buffer containing an indirect
4807  * block with dependencies is written, these routines will mark it
4808  * dirty again. It can only be successfully written once all the
4809  * dependencies are removed. The ffs_fsync routine in conjunction with
4810  * softdep_sync_metadata work together to get all the dependencies
4811  * removed so that a file can be successfully written to disk. Three
4812  * procedures are used when setting up indirect block pointer
4813  * dependencies. The division is necessary because of the organization
4814  * of the "balloc" routine and because of the distinction between file
4815  * pages and file metadata blocks.
4816  */
4817 
4818 /*
4819  * Allocate a new allocindir structure.
4820  */
4821 static struct allocindir *
4822 newallocindir(ip, ptrno, newblkno, oldblkno, lbn)
4823 	struct inode *ip;	/* inode for file being extended */
4824 	int ptrno;		/* offset of pointer in indirect block */
4825 	ufs2_daddr_t newblkno;	/* disk block number being added */
4826 	ufs2_daddr_t oldblkno;	/* previous block number, 0 if none */
4827 	ufs_lbn_t lbn;
4828 {
4829 	struct newblk *newblk;
4830 	struct allocindir *aip;
4831 	struct freefrag *freefrag;
4832 	struct jnewblk *jnewblk;
4833 
4834 	if (oldblkno)
4835 		freefrag = newfreefrag(ip, oldblkno, ip->i_fs->fs_bsize, lbn);
4836 	else
4837 		freefrag = NULL;
4838 	ACQUIRE_LOCK(&lk);
4839 	if (newblk_lookup(UFSTOVFS(ip->i_ump), newblkno, 0, &newblk) == 0)
4840 		panic("new_allocindir: lost block");
4841 	KASSERT(newblk->nb_list.wk_type == D_NEWBLK,
4842 	    ("newallocindir: newblk already initialized"));
4843 	newblk->nb_list.wk_type = D_ALLOCINDIR;
4844 	newblk->nb_freefrag = freefrag;
4845 	aip = (struct allocindir *)newblk;
4846 	aip->ai_offset = ptrno;
4847 	aip->ai_oldblkno = oldblkno;
4848 	if ((jnewblk = newblk->nb_jnewblk) != NULL) {
4849 		jnewblk->jn_ino = ip->i_number;
4850 		jnewblk->jn_lbn = lbn;
4851 		add_to_journal(&jnewblk->jn_list);
4852 	}
4853 	if (freefrag && freefrag->ff_jfreefrag != NULL)
4854 		add_to_journal(&freefrag->ff_jfreefrag->fr_list);
4855 	return (aip);
4856 }
4857 
4858 /*
4859  * Called just before setting an indirect block pointer
4860  * to a newly allocated file page.
4861  */
4862 void
4863 softdep_setup_allocindir_page(ip, lbn, bp, ptrno, newblkno, oldblkno, nbp)
4864 	struct inode *ip;	/* inode for file being extended */
4865 	ufs_lbn_t lbn;		/* allocated block number within file */
4866 	struct buf *bp;		/* buffer with indirect blk referencing page */
4867 	int ptrno;		/* offset of pointer in indirect block */
4868 	ufs2_daddr_t newblkno;	/* disk block number being added */
4869 	ufs2_daddr_t oldblkno;	/* previous block number, 0 if none */
4870 	struct buf *nbp;	/* buffer holding allocated page */
4871 {
4872 	struct inodedep *inodedep;
4873 	struct allocindir *aip;
4874 	struct pagedep *pagedep;
4875 	struct mount *mp;
4876 
4877 	if (lbn != nbp->b_lblkno)
4878 		panic("softdep_setup_allocindir_page: lbn %jd != lblkno %jd",
4879 		    lbn, bp->b_lblkno);
4880 	ASSERT_VOP_LOCKED(ITOV(ip), "softdep_setup_allocindir_page");
4881 	mp = UFSTOVFS(ip->i_ump);
4882 	aip = newallocindir(ip, ptrno, newblkno, oldblkno, lbn);
4883 	(void) inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep);
4884 	/*
4885 	 * If we are allocating a directory page, then we must
4886 	 * allocate an associated pagedep to track additions and
4887 	 * deletions.
4888 	 */
4889 	if ((ip->i_mode & IFMT) == IFDIR &&
4890 	    pagedep_lookup(mp, ip->i_number, lbn, DEPALLOC, &pagedep) == 0)
4891 		WORKLIST_INSERT(&nbp->b_dep, &pagedep->pd_list);
4892 	WORKLIST_INSERT(&nbp->b_dep, &aip->ai_block.nb_list);
4893 	setup_allocindir_phase2(bp, ip, inodedep, aip, lbn);
4894 	FREE_LOCK(&lk);
4895 }
4896 
4897 /*
4898  * Called just before setting an indirect block pointer to a
4899  * newly allocated indirect block.
4900  */
4901 void
4902 softdep_setup_allocindir_meta(nbp, ip, bp, ptrno, newblkno)
4903 	struct buf *nbp;	/* newly allocated indirect block */
4904 	struct inode *ip;	/* inode for file being extended */
4905 	struct buf *bp;		/* indirect block referencing allocated block */
4906 	int ptrno;		/* offset of pointer in indirect block */
4907 	ufs2_daddr_t newblkno;	/* disk block number being added */
4908 {
4909 	struct inodedep *inodedep;
4910 	struct allocindir *aip;
4911 	ufs_lbn_t lbn;
4912 
4913 	lbn = nbp->b_lblkno;
4914 	ASSERT_VOP_LOCKED(ITOV(ip), "softdep_setup_allocindir_meta");
4915 	aip = newallocindir(ip, ptrno, newblkno, 0, lbn);
4916 	inodedep_lookup(UFSTOVFS(ip->i_ump), ip->i_number, DEPALLOC, &inodedep);
4917 	WORKLIST_INSERT(&nbp->b_dep, &aip->ai_block.nb_list);
4918 	setup_allocindir_phase2(bp, ip, inodedep, aip, lbn);
4919 	FREE_LOCK(&lk);
4920 }
4921 
4922 static void
4923 indirdep_complete(indirdep)
4924 	struct indirdep *indirdep;
4925 {
4926 	struct allocindir *aip;
4927 
4928 	LIST_REMOVE(indirdep, ir_next);
4929 	indirdep->ir_state &= ~ONDEPLIST;
4930 
4931 	while ((aip = LIST_FIRST(&indirdep->ir_completehd)) != NULL) {
4932 		LIST_REMOVE(aip, ai_next);
4933 		free_newblk(&aip->ai_block);
4934 	}
4935 	/*
4936 	 * If this indirdep is not attached to a buf it was simply waiting
4937 	 * on completion to clear completehd.  free_indirdep() asserts
4938 	 * that nothing is dangling.
4939 	 */
4940 	if ((indirdep->ir_state & ONWORKLIST) == 0)
4941 		free_indirdep(indirdep);
4942 }
4943 
4944 /*
4945  * Called to finish the allocation of the "aip" allocated
4946  * by one of the two routines above.
4947  */
4948 static void
4949 setup_allocindir_phase2(bp, ip, inodedep, aip, lbn)
4950 	struct buf *bp;		/* in-memory copy of the indirect block */
4951 	struct inode *ip;	/* inode for file being extended */
4952 	struct inodedep *inodedep; /* Inodedep for ip */
4953 	struct allocindir *aip;	/* allocindir allocated by the above routines */
4954 	ufs_lbn_t lbn;		/* Logical block number for this block. */
4955 {
4956 	struct worklist *wk;
4957 	struct fs *fs;
4958 	struct newblk *newblk;
4959 	struct indirdep *indirdep, *newindirdep;
4960 	struct allocindir *oldaip;
4961 	struct freefrag *freefrag;
4962 	struct mount *mp;
4963 	ufs2_daddr_t blkno;
4964 
4965 	mp = UFSTOVFS(ip->i_ump);
4966 	fs = ip->i_fs;
4967 	mtx_assert(&lk, MA_OWNED);
4968 	if (bp->b_lblkno >= 0)
4969 		panic("setup_allocindir_phase2: not indir blk");
4970 	for (freefrag = NULL, indirdep = NULL, newindirdep = NULL; ; ) {
4971 		LIST_FOREACH(wk, &bp->b_dep, wk_list) {
4972 			if (wk->wk_type != D_INDIRDEP)
4973 				continue;
4974 			indirdep = WK_INDIRDEP(wk);
4975 			break;
4976 		}
4977 		if (indirdep == NULL && newindirdep) {
4978 			indirdep = newindirdep;
4979 			newindirdep = NULL;
4980 			WORKLIST_INSERT(&bp->b_dep, &indirdep->ir_list);
4981 			if (newblk_lookup(mp, dbtofsb(fs, bp->b_blkno), 0,
4982 			    &newblk)) {
4983 				indirdep->ir_state |= ONDEPLIST;
4984 				LIST_INSERT_HEAD(&newblk->nb_indirdeps,
4985 				    indirdep, ir_next);
4986 			} else
4987 				indirdep->ir_state |= DEPCOMPLETE;
4988 		}
4989 		if (indirdep) {
4990 			aip->ai_indirdep = indirdep;
4991 			/*
4992 			 * Check to see if there is an existing dependency
4993 			 * for this block. If there is, merge the old
4994 			 * dependency into the new one.  This happens
4995 			 * as a result of reallocblk only.
4996 			 */
4997 			if (aip->ai_oldblkno == 0)
4998 				oldaip = NULL;
4999 			else
5000 
5001 				LIST_FOREACH(oldaip, &indirdep->ir_deplisthd,
5002 				    ai_next)
5003 					if (oldaip->ai_offset == aip->ai_offset)
5004 						break;
5005 			if (oldaip != NULL)
5006 				freefrag = allocindir_merge(aip, oldaip);
5007 			LIST_INSERT_HEAD(&indirdep->ir_deplisthd, aip, ai_next);
5008 			KASSERT(aip->ai_offset >= 0 &&
5009 			    aip->ai_offset < NINDIR(ip->i_ump->um_fs),
5010 			    ("setup_allocindir_phase2: Bad offset %d",
5011 			    aip->ai_offset));
5012 			KASSERT(indirdep->ir_savebp != NULL,
5013 			    ("setup_allocindir_phase2 NULL ir_savebp"));
5014 			if (ip->i_ump->um_fstype == UFS1)
5015 				((ufs1_daddr_t *)indirdep->ir_savebp->b_data)
5016 				    [aip->ai_offset] = aip->ai_oldblkno;
5017 			else
5018 				((ufs2_daddr_t *)indirdep->ir_savebp->b_data)
5019 				    [aip->ai_offset] = aip->ai_oldblkno;
5020 			FREE_LOCK(&lk);
5021 			if (freefrag != NULL)
5022 				handle_workitem_freefrag(freefrag);
5023 		} else
5024 			FREE_LOCK(&lk);
5025 		if (newindirdep) {
5026 			newindirdep->ir_savebp->b_flags |= B_INVAL | B_NOCACHE;
5027 			brelse(newindirdep->ir_savebp);
5028 			ACQUIRE_LOCK(&lk);
5029 			WORKITEM_FREE((caddr_t)newindirdep, D_INDIRDEP);
5030 			if (indirdep)
5031 				break;
5032 			FREE_LOCK(&lk);
5033 		}
5034 		if (indirdep) {
5035 			ACQUIRE_LOCK(&lk);
5036 			break;
5037 		}
5038 		newindirdep = malloc(sizeof(struct indirdep),
5039 			M_INDIRDEP, M_SOFTDEP_FLAGS);
5040 		workitem_alloc(&newindirdep->ir_list, D_INDIRDEP, mp);
5041 		newindirdep->ir_state = ATTACHED;
5042 		if (ip->i_ump->um_fstype == UFS1)
5043 			newindirdep->ir_state |= UFS1FMT;
5044 		newindirdep->ir_saveddata = NULL;
5045 		LIST_INIT(&newindirdep->ir_deplisthd);
5046 		LIST_INIT(&newindirdep->ir_donehd);
5047 		LIST_INIT(&newindirdep->ir_writehd);
5048 		LIST_INIT(&newindirdep->ir_completehd);
5049 		LIST_INIT(&newindirdep->ir_jwork);
5050 		if (bp->b_blkno == bp->b_lblkno) {
5051 			ufs_bmaparray(bp->b_vp, bp->b_lblkno, &blkno, bp,
5052 			    NULL, NULL);
5053 			bp->b_blkno = blkno;
5054 		}
5055 		newindirdep->ir_savebp =
5056 		    getblk(ip->i_devvp, bp->b_blkno, bp->b_bcount, 0, 0, 0);
5057 		BUF_KERNPROC(newindirdep->ir_savebp);
5058 		bcopy(bp->b_data, newindirdep->ir_savebp->b_data, bp->b_bcount);
5059 		ACQUIRE_LOCK(&lk);
5060 	}
5061 }
5062 
5063 /*
5064  * Merge two allocindirs which refer to the same block.  Move newblock
5065  * dependencies and setup the freefrags appropriately.
5066  */
5067 static struct freefrag *
5068 allocindir_merge(aip, oldaip)
5069 	struct allocindir *aip;
5070 	struct allocindir *oldaip;
5071 {
5072 	struct newdirblk *newdirblk;
5073 	struct freefrag *freefrag;
5074 	struct worklist *wk;
5075 
5076 	if (oldaip->ai_newblkno != aip->ai_oldblkno)
5077 		panic("allocindir_merge: blkno");
5078 	aip->ai_oldblkno = oldaip->ai_oldblkno;
5079 	freefrag = aip->ai_freefrag;
5080 	aip->ai_freefrag = oldaip->ai_freefrag;
5081 	oldaip->ai_freefrag = NULL;
5082 	KASSERT(freefrag != NULL, ("setup_allocindir_phase2: No freefrag"));
5083 	/*
5084 	 * If we are tracking a new directory-block allocation,
5085 	 * move it from the old allocindir to the new allocindir.
5086 	 */
5087 	if ((wk = LIST_FIRST(&oldaip->ai_newdirblk)) != NULL) {
5088 		newdirblk = WK_NEWDIRBLK(wk);
5089 		WORKLIST_REMOVE(&newdirblk->db_list);
5090 		if (!LIST_EMPTY(&oldaip->ai_newdirblk))
5091 			panic("allocindir_merge: extra newdirblk");
5092 		WORKLIST_INSERT(&aip->ai_newdirblk, &newdirblk->db_list);
5093 	}
5094 	/*
5095 	 * We can skip journaling for this freefrag and just complete
5096 	 * any pending journal work for the allocindir that is being
5097 	 * removed after the freefrag completes.
5098 	 */
5099 	if (freefrag->ff_jfreefrag)
5100 		cancel_jfreefrag(freefrag->ff_jfreefrag);
5101 	LIST_REMOVE(oldaip, ai_next);
5102 	cancel_newblk(&oldaip->ai_block, &freefrag->ff_jwork);
5103 	free_newblk(&oldaip->ai_block);
5104 
5105 	return (freefrag);
5106 }
5107 
5108 /*
5109  * Block de-allocation dependencies.
5110  *
5111  * When blocks are de-allocated, the on-disk pointers must be nullified before
5112  * the blocks are made available for use by other files.  (The true
5113  * requirement is that old pointers must be nullified before new on-disk
5114  * pointers are set.  We chose this slightly more stringent requirement to
5115  * reduce complexity.) Our implementation handles this dependency by updating
5116  * the inode (or indirect block) appropriately but delaying the actual block
5117  * de-allocation (i.e., freemap and free space count manipulation) until
5118  * after the updated versions reach stable storage.  After the disk is
5119  * updated, the blocks can be safely de-allocated whenever it is convenient.
5120  * This implementation handles only the common case of reducing a file's
5121  * length to zero. Other cases are handled by the conventional synchronous
5122  * write approach.
5123  *
5124  * The ffs implementation with which we worked double-checks
5125  * the state of the block pointers and file size as it reduces
5126  * a file's length.  Some of this code is replicated here in our
5127  * soft updates implementation.  The freeblks->fb_chkcnt field is
5128  * used to transfer a part of this information to the procedure
5129  * that eventually de-allocates the blocks.
5130  *
5131  * This routine should be called from the routine that shortens
5132  * a file's length, before the inode's size or block pointers
5133  * are modified. It will save the block pointer information for
5134  * later release and zero the inode so that the calling routine
5135  * can release it.
5136  */
5137 void
5138 softdep_setup_freeblocks(ip, length, flags)
5139 	struct inode *ip;	/* The inode whose length is to be reduced */
5140 	off_t length;		/* The new length for the file */
5141 	int flags;		/* IO_EXT and/or IO_NORMAL */
5142 {
5143 	struct ufs1_dinode *dp1;
5144 	struct ufs2_dinode *dp2;
5145 	struct freeblks *freeblks;
5146 	struct inodedep *inodedep;
5147 	struct allocdirect *adp;
5148 	struct jfreeblk *jfreeblk;
5149 	struct bufobj *bo;
5150 	struct vnode *vp;
5151 	struct buf *bp;
5152 	struct fs *fs;
5153 	ufs2_daddr_t extblocks, datablocks;
5154 	struct mount *mp;
5155 	int i, delay, error;
5156 	ufs2_daddr_t blkno;
5157 	ufs_lbn_t tmpval;
5158 	ufs_lbn_t lbn;
5159 	long oldextsize;
5160 	long oldsize;
5161 	int frags;
5162 	int needj;
5163 
5164 	fs = ip->i_fs;
5165 	mp = UFSTOVFS(ip->i_ump);
5166 	if (length != 0)
5167 		panic("softdep_setup_freeblocks: non-zero length");
5168 	freeblks = malloc(sizeof(struct freeblks),
5169 		M_FREEBLKS, M_SOFTDEP_FLAGS|M_ZERO);
5170 	workitem_alloc(&freeblks->fb_list, D_FREEBLKS, mp);
5171 	LIST_INIT(&freeblks->fb_jfreeblkhd);
5172 	LIST_INIT(&freeblks->fb_jwork);
5173 	freeblks->fb_state = ATTACHED;
5174 	freeblks->fb_uid = ip->i_uid;
5175 	freeblks->fb_previousinum = ip->i_number;
5176 	freeblks->fb_devvp = ip->i_devvp;
5177 	freeblks->fb_chkcnt = 0;
5178 	ACQUIRE_LOCK(&lk);
5179 	/*
5180 	 * If we're truncating a removed file that will never be written
5181 	 * we don't need to journal the block frees.  The canceled journals
5182 	 * for the allocations will suffice.
5183 	 */
5184 	inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep);
5185 	if ((inodedep->id_state & (UNLINKED | DEPCOMPLETE)) == UNLINKED ||
5186 	    (fs->fs_flags & FS_SUJ) == 0)
5187 		needj = 0;
5188 	else
5189 		needj = 1;
5190 	num_freeblkdep++;
5191 	FREE_LOCK(&lk);
5192 	extblocks = 0;
5193 	if (fs->fs_magic == FS_UFS2_MAGIC)
5194 		extblocks = btodb(fragroundup(fs, ip->i_din2->di_extsize));
5195 	datablocks = DIP(ip, i_blocks) - extblocks;
5196 	if ((flags & IO_NORMAL) != 0) {
5197 		oldsize = ip->i_size;
5198 		ip->i_size = 0;
5199 		DIP_SET(ip, i_size, 0);
5200 		freeblks->fb_chkcnt = datablocks;
5201 		for (i = 0; i < NDADDR; i++) {
5202 			blkno = DIP(ip, i_db[i]);
5203 			DIP_SET(ip, i_db[i], 0);
5204 			if (blkno == 0)
5205 				continue;
5206 			frags = sblksize(fs, oldsize, i);
5207 			frags = numfrags(fs, frags);
5208 			newfreework(ip->i_ump, freeblks, NULL, i, blkno, frags,
5209 			    needj);
5210 		}
5211 		for (i = 0, tmpval = NINDIR(fs), lbn = NDADDR; i < NIADDR;
5212 		    i++, tmpval *= NINDIR(fs)) {
5213 			blkno = DIP(ip, i_ib[i]);
5214 			DIP_SET(ip, i_ib[i], 0);
5215 			if (blkno)
5216 				newfreework(ip->i_ump, freeblks, NULL, -lbn - i,
5217 				    blkno, fs->fs_frag, needj);
5218 			lbn += tmpval;
5219 		}
5220 		UFS_LOCK(ip->i_ump);
5221 		fs->fs_pendingblocks += datablocks;
5222 		UFS_UNLOCK(ip->i_ump);
5223 	}
5224 	if ((flags & IO_EXT) != 0) {
5225 		oldextsize = ip->i_din2->di_extsize;
5226 		ip->i_din2->di_extsize = 0;
5227 		freeblks->fb_chkcnt += extblocks;
5228 		for (i = 0; i < NXADDR; i++) {
5229 			blkno = ip->i_din2->di_extb[i];
5230 			ip->i_din2->di_extb[i] = 0;
5231 			if (blkno == 0)
5232 				continue;
5233 			frags = sblksize(fs, oldextsize, i);
5234 			frags = numfrags(fs, frags);
5235 			newfreework(ip->i_ump, freeblks, NULL, -1 - i, blkno,
5236 			    frags, needj);
5237 		}
5238 	}
5239 	if (LIST_EMPTY(&freeblks->fb_jfreeblkhd))
5240 		needj = 0;
5241 	DIP_SET(ip, i_blocks, DIP(ip, i_blocks) - freeblks->fb_chkcnt);
5242 	/*
5243 	 * Push the zero'ed inode to to its disk buffer so that we are free
5244 	 * to delete its dependencies below. Once the dependencies are gone
5245 	 * the buffer can be safely released.
5246 	 */
5247 	if ((error = bread(ip->i_devvp,
5248 	    fsbtodb(fs, ino_to_fsba(fs, ip->i_number)),
5249 	    (int)fs->fs_bsize, NOCRED, &bp)) != 0) {
5250 		brelse(bp);
5251 		softdep_error("softdep_setup_freeblocks", error);
5252 	}
5253 	if (ip->i_ump->um_fstype == UFS1) {
5254 		dp1 = ((struct ufs1_dinode *)bp->b_data +
5255 		    ino_to_fsbo(fs, ip->i_number));
5256 		ip->i_din1->di_freelink = dp1->di_freelink;
5257 		*dp1 = *ip->i_din1;
5258 	} else {
5259 		dp2 = ((struct ufs2_dinode *)bp->b_data +
5260 		    ino_to_fsbo(fs, ip->i_number));
5261 		ip->i_din2->di_freelink = dp2->di_freelink;
5262 		*dp2 = *ip->i_din2;
5263 	}
5264 	/*
5265 	 * Find and eliminate any inode dependencies.
5266 	 */
5267 	ACQUIRE_LOCK(&lk);
5268 	(void) inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep);
5269 	if ((inodedep->id_state & IOSTARTED) != 0)
5270 		panic("softdep_setup_freeblocks: inode busy");
5271 	/*
5272 	 * Add the freeblks structure to the list of operations that
5273 	 * must await the zero'ed inode being written to disk. If we
5274 	 * still have a bitmap dependency (delay == 0), then the inode
5275 	 * has never been written to disk, so we can process the
5276 	 * freeblks below once we have deleted the dependencies.
5277 	 */
5278 	delay = (inodedep->id_state & DEPCOMPLETE);
5279 	if (delay)
5280 		WORKLIST_INSERT(&bp->b_dep, &freeblks->fb_list);
5281 	else if (needj)
5282 		freeblks->fb_state |= COMPLETE;
5283 	/*
5284 	 * Because the file length has been truncated to zero, any
5285 	 * pending block allocation dependency structures associated
5286 	 * with this inode are obsolete and can simply be de-allocated.
5287 	 * We must first merge the two dependency lists to get rid of
5288 	 * any duplicate freefrag structures, then purge the merged list.
5289 	 * If we still have a bitmap dependency, then the inode has never
5290 	 * been written to disk, so we can free any fragments without delay.
5291 	 */
5292 	if (flags & IO_NORMAL) {
5293 		merge_inode_lists(&inodedep->id_newinoupdt,
5294 		    &inodedep->id_inoupdt);
5295 		while ((adp = TAILQ_FIRST(&inodedep->id_inoupdt)) != 0)
5296 			cancel_allocdirect(&inodedep->id_inoupdt, adp,
5297 			    freeblks, delay);
5298 	}
5299 	if (flags & IO_EXT) {
5300 		merge_inode_lists(&inodedep->id_newextupdt,
5301 		    &inodedep->id_extupdt);
5302 		while ((adp = TAILQ_FIRST(&inodedep->id_extupdt)) != 0)
5303 			cancel_allocdirect(&inodedep->id_extupdt, adp,
5304 			    freeblks, delay);
5305 	}
5306 	LIST_FOREACH(jfreeblk, &freeblks->fb_jfreeblkhd, jf_deps)
5307 		add_to_journal(&jfreeblk->jf_list);
5308 
5309 	FREE_LOCK(&lk);
5310 	bdwrite(bp);
5311 	/*
5312 	 * We must wait for any I/O in progress to finish so that
5313 	 * all potential buffers on the dirty list will be visible.
5314 	 * Once they are all there, walk the list and get rid of
5315 	 * any dependencies.
5316 	 */
5317 	vp = ITOV(ip);
5318 	bo = &vp->v_bufobj;
5319 	BO_LOCK(bo);
5320 	drain_output(vp);
5321 restart:
5322 	TAILQ_FOREACH(bp, &bo->bo_dirty.bv_hd, b_bobufs) {
5323 		if (((flags & IO_EXT) == 0 && (bp->b_xflags & BX_ALTDATA)) ||
5324 		    ((flags & IO_NORMAL) == 0 &&
5325 		      (bp->b_xflags & BX_ALTDATA) == 0))
5326 			continue;
5327 		if ((bp = getdirtybuf(bp, BO_MTX(bo), MNT_WAIT)) == NULL)
5328 			goto restart;
5329 		BO_UNLOCK(bo);
5330 		ACQUIRE_LOCK(&lk);
5331 		(void) inodedep_lookup(mp, ip->i_number, 0, &inodedep);
5332 		if (deallocate_dependencies(bp, inodedep, freeblks))
5333 			bp->b_flags |= B_INVAL | B_NOCACHE;
5334 		FREE_LOCK(&lk);
5335 		brelse(bp);
5336 		BO_LOCK(bo);
5337 		goto restart;
5338 	}
5339 	BO_UNLOCK(bo);
5340 	ACQUIRE_LOCK(&lk);
5341 	if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) != 0)
5342 		(void) free_inodedep(inodedep);
5343 
5344 	if (delay || needj)
5345 		freeblks->fb_state |= DEPCOMPLETE;
5346 	if (delay) {
5347 		/*
5348 		 * If the inode with zeroed block pointers is now on disk
5349 		 * we can start freeing blocks. Add freeblks to the worklist
5350 		 * instead of calling  handle_workitem_freeblocks directly as
5351 		 * it is more likely that additional IO is needed to complete
5352 		 * the request here than in the !delay case.
5353 		 */
5354 		if ((freeblks->fb_state & ALLCOMPLETE) == ALLCOMPLETE)
5355 			add_to_worklist(&freeblks->fb_list, 1);
5356 	}
5357 	if (needj && LIST_EMPTY(&freeblks->fb_jfreeblkhd))
5358 		needj = 0;
5359 
5360 	FREE_LOCK(&lk);
5361 	/*
5362 	 * If the inode has never been written to disk (delay == 0) and
5363 	 * we're not waiting on any journal writes, then we can process the
5364 	 * freeblks now that we have deleted the dependencies.
5365 	 */
5366 	if (!delay && !needj)
5367 		handle_workitem_freeblocks(freeblks, 0);
5368 }
5369 
5370 /*
5371  * Reclaim any dependency structures from a buffer that is about to
5372  * be reallocated to a new vnode. The buffer must be locked, thus,
5373  * no I/O completion operations can occur while we are manipulating
5374  * its associated dependencies. The mutex is held so that other I/O's
5375  * associated with related dependencies do not occur.  Returns 1 if
5376  * all dependencies were cleared, 0 otherwise.
5377  */
5378 static int
5379 deallocate_dependencies(bp, inodedep, freeblks)
5380 	struct buf *bp;
5381 	struct inodedep *inodedep;
5382 	struct freeblks *freeblks;
5383 {
5384 	struct worklist *wk;
5385 	struct indirdep *indirdep;
5386 	struct newdirblk *newdirblk;
5387 	struct allocindir *aip;
5388 	struct pagedep *pagedep;
5389 	struct jremref *jremref;
5390 	struct jmvref *jmvref;
5391 	struct dirrem *dirrem;
5392 	int i;
5393 
5394 	mtx_assert(&lk, MA_OWNED);
5395 	while ((wk = LIST_FIRST(&bp->b_dep)) != NULL) {
5396 		switch (wk->wk_type) {
5397 
5398 		case D_INDIRDEP:
5399 			indirdep = WK_INDIRDEP(wk);
5400 			if (bp->b_lblkno >= 0 ||
5401 			    bp->b_blkno != indirdep->ir_savebp->b_lblkno)
5402 				panic("deallocate_dependencies: not indir");
5403 			cancel_indirdep(indirdep, bp, inodedep, freeblks);
5404 			continue;
5405 
5406 		case D_PAGEDEP:
5407 			pagedep = WK_PAGEDEP(wk);
5408 			/*
5409 			 * There should be no directory add dependencies present
5410 			 * as the directory could not be truncated until all
5411 			 * children were removed.
5412 			 */
5413 			KASSERT(LIST_FIRST(&pagedep->pd_pendinghd) == NULL,
5414 			    ("deallocate_dependencies: pendinghd != NULL"));
5415 			for (i = 0; i < DAHASHSZ; i++)
5416 				KASSERT(LIST_FIRST(&pagedep->pd_diraddhd[i]) == NULL,
5417 				    ("deallocate_dependencies: diraddhd != NULL"));
5418 			/*
5419 			 * Copy any directory remove dependencies to the list
5420 			 * to be processed after the zero'ed inode is written.
5421 			 * If the inode has already been written, then they
5422 			 * can be dumped directly onto the work list.
5423 			 */
5424 			LIST_FOREACH(dirrem, &pagedep->pd_dirremhd, dm_next) {
5425 				/*
5426 				 * If there are any dirrems we wait for
5427 				 * the journal write to complete and
5428 				 * then restart the buf scan as the lock
5429 				 * has been dropped.
5430 				 */
5431 				while ((jremref =
5432 				    LIST_FIRST(&dirrem->dm_jremrefhd))
5433 				    != NULL) {
5434 					stat_jwait_filepage++;
5435 					jwait(&jremref->jr_list);
5436 					return (0);
5437 				}
5438 				LIST_REMOVE(dirrem, dm_next);
5439 				dirrem->dm_dirinum = pagedep->pd_ino;
5440 				if (inodedep == NULL ||
5441 				    (inodedep->id_state & ALLCOMPLETE) ==
5442 				     ALLCOMPLETE) {
5443 					dirrem->dm_state |= COMPLETE;
5444 					add_to_worklist(&dirrem->dm_list, 0);
5445 				} else
5446 					WORKLIST_INSERT(&inodedep->id_bufwait,
5447 					    &dirrem->dm_list);
5448 			}
5449 			if ((pagedep->pd_state & NEWBLOCK) != 0) {
5450 				newdirblk = pagedep->pd_newdirblk;
5451 				WORKLIST_REMOVE(&newdirblk->db_list);
5452 				free_newdirblk(newdirblk);
5453 			}
5454 			while ((jmvref = LIST_FIRST(&pagedep->pd_jmvrefhd))
5455 			    != NULL) {
5456 				stat_jwait_filepage++;
5457 				jwait(&jmvref->jm_list);
5458 				return (0);
5459 			}
5460 			WORKLIST_REMOVE(&pagedep->pd_list);
5461 			LIST_REMOVE(pagedep, pd_hash);
5462 			WORKITEM_FREE(pagedep, D_PAGEDEP);
5463 			continue;
5464 
5465 		case D_ALLOCINDIR:
5466 			aip = WK_ALLOCINDIR(wk);
5467 			cancel_allocindir(aip, inodedep, freeblks);
5468 			continue;
5469 
5470 		case D_ALLOCDIRECT:
5471 		case D_INODEDEP:
5472 			panic("deallocate_dependencies: Unexpected type %s",
5473 			    TYPENAME(wk->wk_type));
5474 			/* NOTREACHED */
5475 
5476 		default:
5477 			panic("deallocate_dependencies: Unknown type %s",
5478 			    TYPENAME(wk->wk_type));
5479 			/* NOTREACHED */
5480 		}
5481 	}
5482 
5483 	return (1);
5484 }
5485 
5486 /*
5487  * An allocdirect is being canceled due to a truncate.  We must make sure
5488  * the journal entry is released in concert with the blkfree that releases
5489  * the storage.  Completed journal entries must not be released until the
5490  * space is no longer pointed to by the inode or in the bitmap.
5491  */
5492 static void
5493 cancel_allocdirect(adphead, adp, freeblks, delay)
5494 	struct allocdirectlst *adphead;
5495 	struct allocdirect *adp;
5496 	struct freeblks *freeblks;
5497 	int delay;
5498 {
5499 	struct freework *freework;
5500 	struct newblk *newblk;
5501 	struct worklist *wk;
5502 	ufs_lbn_t lbn;
5503 
5504 	TAILQ_REMOVE(adphead, adp, ad_next);
5505 	newblk = (struct newblk *)adp;
5506 	/*
5507 	 * If the journal hasn't been written the jnewblk must be passed
5508 	 * to the call to ffs_blkfree that reclaims the space.  We accomplish
5509 	 * this by linking the journal dependency into the freework to be
5510 	 * freed when freework_freeblock() is called.  If the journal has
5511 	 * been written we can simply reclaim the journal space when the
5512 	 * freeblks work is complete.
5513 	 */
5514 	if (newblk->nb_jnewblk == NULL) {
5515 		cancel_newblk(newblk, &freeblks->fb_jwork);
5516 		goto found;
5517 	}
5518 	lbn = newblk->nb_jnewblk->jn_lbn;
5519 	/*
5520 	 * Find the correct freework structure so it releases the canceled
5521 	 * journal when the bitmap is cleared.  This preserves rollback
5522 	 * until the allocation is reverted.
5523 	 */
5524 	LIST_FOREACH(wk, &freeblks->fb_freeworkhd, wk_list) {
5525 		freework = WK_FREEWORK(wk);
5526 		if (freework->fw_lbn != lbn)
5527 			continue;
5528 		cancel_newblk(newblk, &freework->fw_jwork);
5529 		goto found;
5530 	}
5531 	panic("cancel_allocdirect: Freework not found for lbn %jd\n", lbn);
5532 found:
5533 	if (delay)
5534 		WORKLIST_INSERT(&adp->ad_inodedep->id_bufwait,
5535 		    &newblk->nb_list);
5536 	else
5537 		free_newblk(newblk);
5538 	return;
5539 }
5540 
5541 
5542 static void
5543 cancel_newblk(newblk, wkhd)
5544 	struct newblk *newblk;
5545 	struct workhead *wkhd;
5546 {
5547 	struct indirdep *indirdep;
5548 	struct allocindir *aip;
5549 
5550 	while ((indirdep = LIST_FIRST(&newblk->nb_indirdeps)) != NULL) {
5551 		indirdep->ir_state &= ~ONDEPLIST;
5552 		LIST_REMOVE(indirdep, ir_next);
5553 		/*
5554 		 * If an indirdep is not on the buf worklist we need to
5555 		 * free it here as deallocate_dependencies() will never
5556 		 * find it.  These pointers were never visible on disk and
5557 		 * can be discarded immediately.
5558 		 */
5559 		while ((aip = LIST_FIRST(&indirdep->ir_completehd)) != NULL) {
5560 			LIST_REMOVE(aip, ai_next);
5561 			cancel_newblk(&aip->ai_block, wkhd);
5562 			free_newblk(&aip->ai_block);
5563 		}
5564 		/*
5565 		 * If this indirdep is not attached to a buf it was simply
5566 		 * waiting on completion to clear completehd.  free_indirdep()
5567 		 * asserts that nothing is dangling.
5568 		 */
5569 		if ((indirdep->ir_state & ONWORKLIST) == 0)
5570 			free_indirdep(indirdep);
5571 	}
5572 	if (newblk->nb_state & ONDEPLIST) {
5573 		newblk->nb_state &= ~ONDEPLIST;
5574 		LIST_REMOVE(newblk, nb_deps);
5575 	}
5576 	if (newblk->nb_state & ONWORKLIST)
5577 		WORKLIST_REMOVE(&newblk->nb_list);
5578 	/*
5579 	 * If the journal entry hasn't been written we hold onto the dep
5580 	 * until it is safe to free along with the other journal work.
5581 	 */
5582 	if (newblk->nb_jnewblk != NULL) {
5583 		cancel_jnewblk(newblk->nb_jnewblk, wkhd);
5584 		newblk->nb_jnewblk = NULL;
5585 	}
5586 	if (!LIST_EMPTY(&newblk->nb_jwork))
5587 		jwork_move(wkhd, &newblk->nb_jwork);
5588 }
5589 
5590 /*
5591  * Free a newblk. Generate a new freefrag work request if appropriate.
5592  * This must be called after the inode pointer and any direct block pointers
5593  * are valid or fully removed via truncate or frag extension.
5594  */
5595 static void
5596 free_newblk(newblk)
5597 	struct newblk *newblk;
5598 {
5599 	struct indirdep *indirdep;
5600 	struct newdirblk *newdirblk;
5601 	struct freefrag *freefrag;
5602 	struct worklist *wk;
5603 
5604 	mtx_assert(&lk, MA_OWNED);
5605 	if (newblk->nb_state & ONDEPLIST)
5606 		LIST_REMOVE(newblk, nb_deps);
5607 	if (newblk->nb_state & ONWORKLIST)
5608 		WORKLIST_REMOVE(&newblk->nb_list);
5609 	LIST_REMOVE(newblk, nb_hash);
5610 	if ((freefrag = newblk->nb_freefrag) != NULL) {
5611 		freefrag->ff_state |= COMPLETE;
5612 		if ((freefrag->ff_state & ALLCOMPLETE) == ALLCOMPLETE)
5613 			add_to_worklist(&freefrag->ff_list, 0);
5614 	}
5615 	if ((wk = LIST_FIRST(&newblk->nb_newdirblk)) != NULL) {
5616 		newdirblk = WK_NEWDIRBLK(wk);
5617 		WORKLIST_REMOVE(&newdirblk->db_list);
5618 		if (!LIST_EMPTY(&newblk->nb_newdirblk))
5619 			panic("free_newblk: extra newdirblk");
5620 		free_newdirblk(newdirblk);
5621 	}
5622 	while ((indirdep = LIST_FIRST(&newblk->nb_indirdeps)) != NULL) {
5623 		indirdep->ir_state |= DEPCOMPLETE;
5624 		indirdep_complete(indirdep);
5625 	}
5626 	KASSERT(newblk->nb_jnewblk == NULL,
5627 	    ("free_newblk; jnewblk %p still attached", newblk->nb_jnewblk));
5628 	handle_jwork(&newblk->nb_jwork);
5629 	newblk->nb_list.wk_type = D_NEWBLK;
5630 	WORKITEM_FREE(newblk, D_NEWBLK);
5631 }
5632 
5633 /*
5634  * Free a newdirblk. Clear the NEWBLOCK flag on its associated pagedep.
5635  * This routine must be called with splbio interrupts blocked.
5636  */
5637 static void
5638 free_newdirblk(newdirblk)
5639 	struct newdirblk *newdirblk;
5640 {
5641 	struct pagedep *pagedep;
5642 	struct diradd *dap;
5643 	struct worklist *wk;
5644 	int i;
5645 
5646 	mtx_assert(&lk, MA_OWNED);
5647 	/*
5648 	 * If the pagedep is still linked onto the directory buffer
5649 	 * dependency chain, then some of the entries on the
5650 	 * pd_pendinghd list may not be committed to disk yet. In
5651 	 * this case, we will simply clear the NEWBLOCK flag and
5652 	 * let the pd_pendinghd list be processed when the pagedep
5653 	 * is next written. If the pagedep is no longer on the buffer
5654 	 * dependency chain, then all the entries on the pd_pending
5655 	 * list are committed to disk and we can free them here.
5656 	 */
5657 	pagedep = newdirblk->db_pagedep;
5658 	pagedep->pd_state &= ~NEWBLOCK;
5659 	if ((pagedep->pd_state & ONWORKLIST) == 0)
5660 		while ((dap = LIST_FIRST(&pagedep->pd_pendinghd)) != NULL)
5661 			free_diradd(dap, NULL);
5662 	/*
5663 	 * If no dependencies remain, the pagedep will be freed.
5664 	 */
5665 	for (i = 0; i < DAHASHSZ; i++)
5666 		if (!LIST_EMPTY(&pagedep->pd_diraddhd[i]))
5667 			break;
5668 	if (i == DAHASHSZ && (pagedep->pd_state & ONWORKLIST) == 0 &&
5669 	    LIST_EMPTY(&pagedep->pd_jmvrefhd)) {
5670 		KASSERT(LIST_FIRST(&pagedep->pd_dirremhd) == NULL,
5671 		    ("free_newdirblk: Freeing non-free pagedep %p", pagedep));
5672 		LIST_REMOVE(pagedep, pd_hash);
5673 		WORKITEM_FREE(pagedep, D_PAGEDEP);
5674 	}
5675 	/* Should only ever be one item in the list. */
5676 	while ((wk = LIST_FIRST(&newdirblk->db_mkdir)) != NULL) {
5677 		WORKLIST_REMOVE(wk);
5678 		handle_written_mkdir(WK_MKDIR(wk), MKDIR_BODY);
5679 	}
5680 	WORKITEM_FREE(newdirblk, D_NEWDIRBLK);
5681 }
5682 
5683 /*
5684  * Prepare an inode to be freed. The actual free operation is not
5685  * done until the zero'ed inode has been written to disk.
5686  */
5687 void
5688 softdep_freefile(pvp, ino, mode)
5689 	struct vnode *pvp;
5690 	ino_t ino;
5691 	int mode;
5692 {
5693 	struct inode *ip = VTOI(pvp);
5694 	struct inodedep *inodedep;
5695 	struct freefile *freefile;
5696 
5697 	/*
5698 	 * This sets up the inode de-allocation dependency.
5699 	 */
5700 	freefile = malloc(sizeof(struct freefile),
5701 		M_FREEFILE, M_SOFTDEP_FLAGS);
5702 	workitem_alloc(&freefile->fx_list, D_FREEFILE, pvp->v_mount);
5703 	freefile->fx_mode = mode;
5704 	freefile->fx_oldinum = ino;
5705 	freefile->fx_devvp = ip->i_devvp;
5706 	LIST_INIT(&freefile->fx_jwork);
5707 	UFS_LOCK(ip->i_ump);
5708 	ip->i_fs->fs_pendinginodes += 1;
5709 	UFS_UNLOCK(ip->i_ump);
5710 
5711 	/*
5712 	 * If the inodedep does not exist, then the zero'ed inode has
5713 	 * been written to disk. If the allocated inode has never been
5714 	 * written to disk, then the on-disk inode is zero'ed. In either
5715 	 * case we can free the file immediately.  If the journal was
5716 	 * canceled before being written the inode will never make it to
5717 	 * disk and we must send the canceled journal entrys to
5718 	 * ffs_freefile() to be cleared in conjunction with the bitmap.
5719 	 * Any blocks waiting on the inode to write can be safely freed
5720 	 * here as it will never been written.
5721 	 */
5722 	ACQUIRE_LOCK(&lk);
5723 	inodedep_lookup(pvp->v_mount, ino, 0, &inodedep);
5724 	/*
5725 	 * Remove this inode from the unlinked list and set
5726 	 * GOINGAWAY as appropriate to indicate that this inode
5727 	 * will never be written.
5728 	 */
5729 	if (inodedep && inodedep->id_state & UNLINKED) {
5730 		/*
5731 		 * Save the journal work to be freed with the bitmap
5732 		 * before we clear UNLINKED.  Otherwise it can be lost
5733 		 * if the inode block is written.
5734 		 */
5735 		handle_bufwait(inodedep, &freefile->fx_jwork);
5736 		clear_unlinked_inodedep(inodedep);
5737 		/* Re-acquire inodedep as we've dropped lk. */
5738 		inodedep_lookup(pvp->v_mount, ino, 0, &inodedep);
5739 		if (inodedep && (inodedep->id_state & DEPCOMPLETE) == 0)
5740 			inodedep->id_state |= GOINGAWAY;
5741 	}
5742 	if (inodedep == NULL || check_inode_unwritten(inodedep)) {
5743 		FREE_LOCK(&lk);
5744 		handle_workitem_freefile(freefile);
5745 		return;
5746 	}
5747 	WORKLIST_INSERT(&inodedep->id_inowait, &freefile->fx_list);
5748 	FREE_LOCK(&lk);
5749 	if (ip->i_number == ino)
5750 		ip->i_flag |= IN_MODIFIED;
5751 }
5752 
5753 /*
5754  * Check to see if an inode has never been written to disk. If
5755  * so free the inodedep and return success, otherwise return failure.
5756  * This routine must be called with splbio interrupts blocked.
5757  *
5758  * If we still have a bitmap dependency, then the inode has never
5759  * been written to disk. Drop the dependency as it is no longer
5760  * necessary since the inode is being deallocated. We set the
5761  * ALLCOMPLETE flags since the bitmap now properly shows that the
5762  * inode is not allocated. Even if the inode is actively being
5763  * written, it has been rolled back to its zero'ed state, so we
5764  * are ensured that a zero inode is what is on the disk. For short
5765  * lived files, this change will usually result in removing all the
5766  * dependencies from the inode so that it can be freed immediately.
5767  */
5768 static int
5769 check_inode_unwritten(inodedep)
5770 	struct inodedep *inodedep;
5771 {
5772 
5773 	mtx_assert(&lk, MA_OWNED);
5774 
5775 	if ((inodedep->id_state & (DEPCOMPLETE | UNLINKED)) != 0 ||
5776 	    !LIST_EMPTY(&inodedep->id_pendinghd) ||
5777 	    !LIST_EMPTY(&inodedep->id_bufwait) ||
5778 	    !LIST_EMPTY(&inodedep->id_inowait) ||
5779 	    !TAILQ_EMPTY(&inodedep->id_inoupdt) ||
5780 	    !TAILQ_EMPTY(&inodedep->id_newinoupdt) ||
5781 	    !TAILQ_EMPTY(&inodedep->id_extupdt) ||
5782 	    !TAILQ_EMPTY(&inodedep->id_newextupdt) ||
5783 	    inodedep->id_mkdiradd != NULL ||
5784 	    inodedep->id_nlinkdelta != 0)
5785 		return (0);
5786 	/*
5787 	 * Another process might be in initiate_write_inodeblock_ufs[12]
5788 	 * trying to allocate memory without holding "Softdep Lock".
5789 	 */
5790 	if ((inodedep->id_state & IOSTARTED) != 0 &&
5791 	    inodedep->id_savedino1 == NULL)
5792 		return (0);
5793 
5794 	if (inodedep->id_state & ONDEPLIST)
5795 		LIST_REMOVE(inodedep, id_deps);
5796 	inodedep->id_state &= ~ONDEPLIST;
5797 	inodedep->id_state |= ALLCOMPLETE;
5798 	inodedep->id_bmsafemap = NULL;
5799 	if (inodedep->id_state & ONWORKLIST)
5800 		WORKLIST_REMOVE(&inodedep->id_list);
5801 	if (inodedep->id_savedino1 != NULL) {
5802 		free(inodedep->id_savedino1, M_SAVEDINO);
5803 		inodedep->id_savedino1 = NULL;
5804 	}
5805 	if (free_inodedep(inodedep) == 0)
5806 		panic("check_inode_unwritten: busy inode");
5807 	return (1);
5808 }
5809 
5810 /*
5811  * Try to free an inodedep structure. Return 1 if it could be freed.
5812  */
5813 static int
5814 free_inodedep(inodedep)
5815 	struct inodedep *inodedep;
5816 {
5817 
5818 	mtx_assert(&lk, MA_OWNED);
5819 	if ((inodedep->id_state & (ONWORKLIST | UNLINKED)) != 0 ||
5820 	    (inodedep->id_state & ALLCOMPLETE) != ALLCOMPLETE ||
5821 	    !LIST_EMPTY(&inodedep->id_dirremhd) ||
5822 	    !LIST_EMPTY(&inodedep->id_pendinghd) ||
5823 	    !LIST_EMPTY(&inodedep->id_bufwait) ||
5824 	    !LIST_EMPTY(&inodedep->id_inowait) ||
5825 	    !TAILQ_EMPTY(&inodedep->id_inoreflst) ||
5826 	    !TAILQ_EMPTY(&inodedep->id_inoupdt) ||
5827 	    !TAILQ_EMPTY(&inodedep->id_newinoupdt) ||
5828 	    !TAILQ_EMPTY(&inodedep->id_extupdt) ||
5829 	    !TAILQ_EMPTY(&inodedep->id_newextupdt) ||
5830 	    inodedep->id_mkdiradd != NULL ||
5831 	    inodedep->id_nlinkdelta != 0 ||
5832 	    inodedep->id_savedino1 != NULL)
5833 		return (0);
5834 	if (inodedep->id_state & ONDEPLIST)
5835 		LIST_REMOVE(inodedep, id_deps);
5836 	LIST_REMOVE(inodedep, id_hash);
5837 	WORKITEM_FREE(inodedep, D_INODEDEP);
5838 	num_inodedep -= 1;
5839 	return (1);
5840 }
5841 
5842 /*
5843  * Free the block referenced by a freework structure.  The parent freeblks
5844  * structure is released and completed when the final cg bitmap reaches
5845  * the disk.  This routine may be freeing a jnewblk which never made it to
5846  * disk in which case we do not have to wait as the operation is undone
5847  * in memory immediately.
5848  */
5849 static void
5850 freework_freeblock(freework)
5851 	struct freework *freework;
5852 {
5853 	struct freeblks *freeblks;
5854 	struct ufsmount *ump;
5855 	struct workhead wkhd;
5856 	struct fs *fs;
5857 	int complete;
5858 	int pending;
5859 	int bsize;
5860 	int needj;
5861 
5862 	freeblks = freework->fw_freeblks;
5863 	ump = VFSTOUFS(freeblks->fb_list.wk_mp);
5864 	fs = ump->um_fs;
5865 	needj = freeblks->fb_list.wk_mp->mnt_kern_flag & MNTK_SUJ;
5866 	complete = 0;
5867 	LIST_INIT(&wkhd);
5868 	/*
5869 	 * If we are canceling an existing jnewblk pass it to the free
5870 	 * routine, otherwise pass the freeblk which will ultimately
5871 	 * release the freeblks.  If we're not journaling, we can just
5872 	 * free the freeblks immediately.
5873 	 */
5874 	if (!LIST_EMPTY(&freework->fw_jwork)) {
5875 		LIST_SWAP(&wkhd, &freework->fw_jwork, worklist, wk_list);
5876 		complete = 1;
5877 	} else if (needj)
5878 		WORKLIST_INSERT_UNLOCKED(&wkhd, &freework->fw_list);
5879 	bsize = lfragtosize(fs, freework->fw_frags);
5880 	pending = btodb(bsize);
5881 	ACQUIRE_LOCK(&lk);
5882 	freeblks->fb_chkcnt -= pending;
5883 	FREE_LOCK(&lk);
5884 	/*
5885 	 * extattr blocks don't show up in pending blocks.  XXX why?
5886 	 */
5887 	if (freework->fw_lbn >= 0 || freework->fw_lbn <= -NDADDR) {
5888 		UFS_LOCK(ump);
5889 		fs->fs_pendingblocks -= pending;
5890 		UFS_UNLOCK(ump);
5891 	}
5892 	ffs_blkfree(ump, fs, freeblks->fb_devvp, freework->fw_blkno,
5893 	    bsize, freeblks->fb_previousinum, &wkhd);
5894 	if (complete == 0 && needj)
5895 		return;
5896 	/*
5897 	 * The jnewblk will be discarded and the bits in the map never
5898 	 * made it to disk.  We can immediately free the freeblk.
5899 	 */
5900 	ACQUIRE_LOCK(&lk);
5901 	handle_written_freework(freework);
5902 	FREE_LOCK(&lk);
5903 }
5904 
5905 /*
5906  * Start, continue, or finish the process of freeing an indirect block tree.
5907  * The free operation may be paused at any point with fw_off containing the
5908  * offset to restart from.  This enables us to implement some flow control
5909  * for large truncates which may fan out and generate a huge number of
5910  * dependencies.
5911  */
5912 static void
5913 handle_workitem_indirblk(freework)
5914 	struct freework *freework;
5915 {
5916 	struct freeblks *freeblks;
5917 	struct ufsmount *ump;
5918 	struct fs *fs;
5919 
5920 
5921 	freeblks = freework->fw_freeblks;
5922 	ump = VFSTOUFS(freeblks->fb_list.wk_mp);
5923 	fs = ump->um_fs;
5924 	if (freework->fw_off == NINDIR(fs))
5925 		freework_freeblock(freework);
5926 	else
5927 		indir_trunc(freework, fsbtodb(fs, freework->fw_blkno),
5928 		    freework->fw_lbn);
5929 }
5930 
5931 /*
5932  * Called when a freework structure attached to a cg buf is written.  The
5933  * ref on either the parent or the freeblks structure is released and
5934  * either may be added to the worklist if it is the final ref.
5935  */
5936 static void
5937 handle_written_freework(freework)
5938 	struct freework *freework;
5939 {
5940 	struct freeblks *freeblks;
5941 	struct freework *parent;
5942 
5943 	freeblks = freework->fw_freeblks;
5944 	parent = freework->fw_parent;
5945 	if (parent) {
5946 		if (--parent->fw_ref != 0)
5947 			parent = NULL;
5948 		freeblks = NULL;
5949 	} else if (--freeblks->fb_ref != 0)
5950 		freeblks = NULL;
5951 	WORKITEM_FREE(freework, D_FREEWORK);
5952 	/*
5953 	 * Don't delay these block frees or it takes an intolerable amount
5954 	 * of time to process truncates and free their journal entries.
5955 	 */
5956 	if (freeblks)
5957 		add_to_worklist(&freeblks->fb_list, 1);
5958 	if (parent)
5959 		add_to_worklist(&parent->fw_list, 1);
5960 }
5961 
5962 /*
5963  * This workitem routine performs the block de-allocation.
5964  * The workitem is added to the pending list after the updated
5965  * inode block has been written to disk.  As mentioned above,
5966  * checks regarding the number of blocks de-allocated (compared
5967  * to the number of blocks allocated for the file) are also
5968  * performed in this function.
5969  */
5970 static void
5971 handle_workitem_freeblocks(freeblks, flags)
5972 	struct freeblks *freeblks;
5973 	int flags;
5974 {
5975 	struct freework *freework;
5976 	struct worklist *wk;
5977 
5978 	KASSERT(LIST_EMPTY(&freeblks->fb_jfreeblkhd),
5979 	    ("handle_workitem_freeblocks: Journal entries not written."));
5980 	if (LIST_EMPTY(&freeblks->fb_freeworkhd)) {
5981 		handle_complete_freeblocks(freeblks);
5982 		return;
5983 	}
5984 	freeblks->fb_ref++;
5985 	while ((wk = LIST_FIRST(&freeblks->fb_freeworkhd)) != NULL) {
5986 		KASSERT(wk->wk_type == D_FREEWORK,
5987 		    ("handle_workitem_freeblocks: Unknown type %s",
5988 		    TYPENAME(wk->wk_type)));
5989 		WORKLIST_REMOVE_UNLOCKED(wk);
5990 		freework = WK_FREEWORK(wk);
5991 		if (freework->fw_lbn <= -NDADDR)
5992 			handle_workitem_indirblk(freework);
5993 		else
5994 			freework_freeblock(freework);
5995 	}
5996 	ACQUIRE_LOCK(&lk);
5997 	if (--freeblks->fb_ref != 0)
5998 		freeblks = NULL;
5999 	FREE_LOCK(&lk);
6000 	if (freeblks)
6001 		handle_complete_freeblocks(freeblks);
6002 }
6003 
6004 /*
6005  * Once all of the freework workitems are complete we can retire the
6006  * freeblocks dependency and any journal work awaiting completion.  This
6007  * can not be called until all other dependencies are stable on disk.
6008  */
6009 static void
6010 handle_complete_freeblocks(freeblks)
6011 	struct freeblks *freeblks;
6012 {
6013 	struct inode *ip;
6014 	struct vnode *vp;
6015 	struct fs *fs;
6016 	struct ufsmount *ump;
6017 	int flags;
6018 
6019 	ump = VFSTOUFS(freeblks->fb_list.wk_mp);
6020 	fs = ump->um_fs;
6021 	flags = LK_NOWAIT;
6022 
6023 	/*
6024 	 * If we still have not finished background cleanup, then check
6025 	 * to see if the block count needs to be adjusted.
6026 	 */
6027 	if (freeblks->fb_chkcnt != 0 && (fs->fs_flags & FS_UNCLEAN) != 0 &&
6028 	    ffs_vgetf(freeblks->fb_list.wk_mp, freeblks->fb_previousinum,
6029 	    (flags & LK_NOWAIT) | LK_EXCLUSIVE, &vp, FFSV_FORCEINSMQ) == 0) {
6030 		ip = VTOI(vp);
6031 		DIP_SET(ip, i_blocks, DIP(ip, i_blocks) + freeblks->fb_chkcnt);
6032 		ip->i_flag |= IN_CHANGE;
6033 		vput(vp);
6034 	}
6035 
6036 	if (!(freeblks->fb_chkcnt == 0 ||
6037 	    ((fs->fs_flags & FS_UNCLEAN) != 0 && (flags & LK_NOWAIT) == 0)))
6038 	        printf(
6039 	"handle_workitem_freeblocks: inode %ju block count %jd\n",
6040 		   (uintmax_t)freeblks->fb_previousinum,
6041 		   (intmax_t)freeblks->fb_chkcnt);
6042 
6043 	ACQUIRE_LOCK(&lk);
6044 	/*
6045 	 * All of the freeblock deps must be complete prior to this call
6046 	 * so it's now safe to complete earlier outstanding journal entries.
6047 	 */
6048 	handle_jwork(&freeblks->fb_jwork);
6049 	WORKITEM_FREE(freeblks, D_FREEBLKS);
6050 	num_freeblkdep--;
6051 	FREE_LOCK(&lk);
6052 }
6053 
6054 /*
6055  * Release blocks associated with the inode ip and stored in the indirect
6056  * block dbn. If level is greater than SINGLE, the block is an indirect block
6057  * and recursive calls to indirtrunc must be used to cleanse other indirect
6058  * blocks.
6059  */
6060 static void
6061 indir_trunc(freework, dbn, lbn)
6062 	struct freework *freework;
6063 	ufs2_daddr_t dbn;
6064 	ufs_lbn_t lbn;
6065 {
6066 	struct freework *nfreework;
6067 	struct workhead wkhd;
6068 	struct jnewblk *jnewblk;
6069 	struct freeblks *freeblks;
6070 	struct buf *bp;
6071 	struct fs *fs;
6072 	struct worklist *wkn;
6073 	struct worklist *wk;
6074 	struct indirdep *indirdep;
6075 	struct ufsmount *ump;
6076 	ufs1_daddr_t *bap1 = 0;
6077 	ufs2_daddr_t nb, nnb, *bap2 = 0;
6078 	ufs_lbn_t lbnadd;
6079 	int i, nblocks, ufs1fmt;
6080 	int fs_pendingblocks;
6081 	int freedeps;
6082 	int needj;
6083 	int level;
6084 	int cnt;
6085 
6086 	LIST_INIT(&wkhd);
6087 	level = lbn_level(lbn);
6088 	if (level == -1)
6089 		panic("indir_trunc: Invalid lbn %jd\n", lbn);
6090 	freeblks = freework->fw_freeblks;
6091 	ump = VFSTOUFS(freeblks->fb_list.wk_mp);
6092 	fs = ump->um_fs;
6093 	fs_pendingblocks = 0;
6094 	freedeps = 0;
6095 	needj = UFSTOVFS(ump)->mnt_kern_flag & MNTK_SUJ;
6096 	lbnadd = lbn_offset(fs, level);
6097 	/*
6098 	 * Get buffer of block pointers to be freed. This routine is not
6099 	 * called until the zero'ed inode has been written, so it is safe
6100 	 * to free blocks as they are encountered. Because the inode has
6101 	 * been zero'ed, calls to bmap on these blocks will fail. So, we
6102 	 * have to use the on-disk address and the block device for the
6103 	 * filesystem to look them up. If the file was deleted before its
6104 	 * indirect blocks were all written to disk, the routine that set
6105 	 * us up (deallocate_dependencies) will have arranged to leave
6106 	 * a complete copy of the indirect block in memory for our use.
6107 	 * Otherwise we have to read the blocks in from the disk.
6108 	 */
6109 #ifdef notyet
6110 	bp = getblk(freeblks->fb_devvp, dbn, (int)fs->fs_bsize, 0, 0,
6111 	    GB_NOCREAT);
6112 #else
6113 	bp = incore(&freeblks->fb_devvp->v_bufobj, dbn);
6114 #endif
6115 	ACQUIRE_LOCK(&lk);
6116 	if (bp != NULL && (wk = LIST_FIRST(&bp->b_dep)) != NULL) {
6117 		if (wk->wk_type != D_INDIRDEP ||
6118 		    (wk->wk_state & GOINGAWAY) == 0)
6119 			panic("indir_trunc: lost indirdep %p", wk);
6120 		indirdep = WK_INDIRDEP(wk);
6121 		LIST_SWAP(&wkhd, &indirdep->ir_jwork, worklist, wk_list);
6122 		free_indirdep(indirdep);
6123 		if (!LIST_EMPTY(&bp->b_dep))
6124 			panic("indir_trunc: dangling dep %p",
6125 			    LIST_FIRST(&bp->b_dep));
6126 		ump->um_numindirdeps -= 1;
6127 		FREE_LOCK(&lk);
6128 	} else {
6129 #ifdef notyet
6130 		if (bp)
6131 			brelse(bp);
6132 #endif
6133 		FREE_LOCK(&lk);
6134 		if (bread(freeblks->fb_devvp, dbn, (int)fs->fs_bsize,
6135 		    NOCRED, &bp) != 0) {
6136 			brelse(bp);
6137 			return;
6138 		}
6139 	}
6140 	/*
6141 	 * Recursively free indirect blocks.
6142 	 */
6143 	if (ump->um_fstype == UFS1) {
6144 		ufs1fmt = 1;
6145 		bap1 = (ufs1_daddr_t *)bp->b_data;
6146 	} else {
6147 		ufs1fmt = 0;
6148 		bap2 = (ufs2_daddr_t *)bp->b_data;
6149 	}
6150 
6151 	/*
6152 	 * Reclaim indirect blocks which never made it to disk.
6153 	 */
6154 	cnt = 0;
6155 	LIST_FOREACH_SAFE(wk, &wkhd, wk_list, wkn) {
6156 		if (wk->wk_type != D_JNEWBLK)
6157 			continue;
6158 		ACQUIRE_LOCK(&lk);
6159 		WORKLIST_REMOVE(wk);
6160 		FREE_LOCK(&lk);
6161 		jnewblk = WK_JNEWBLK(wk);
6162 		if (jnewblk->jn_lbn > 0)
6163 			i = (jnewblk->jn_lbn - -lbn) / lbnadd;
6164 		else
6165 			i = (-(jnewblk->jn_lbn + level - 1) - -(lbn + level)) /
6166 			    lbnadd;
6167 		KASSERT(i >= 0 && i < NINDIR(fs),
6168 		    ("indir_trunc: Index out of range %d parent %jd lbn %jd level %d",
6169 		    i, lbn, jnewblk->jn_lbn, level));
6170 		/* Clear the pointer so it isn't found below. */
6171 		if (ufs1fmt) {
6172 			nb = bap1[i];
6173 			bap1[i] = 0;
6174 		} else {
6175 			nb = bap2[i];
6176 			bap2[i] = 0;
6177 		}
6178 		KASSERT(nb == jnewblk->jn_blkno,
6179 		    ("indir_trunc: Block mismatch %jd != %jd",
6180 		    nb, jnewblk->jn_blkno));
6181 		if (level != 0) {
6182 			ufs_lbn_t nlbn;
6183 
6184 			nlbn = (lbn + 1) - (i * lbnadd);
6185 			nfreework = newfreework(ump, freeblks, freework,
6186 			    nlbn, nb, fs->fs_frag, 0);
6187 			WORKLIST_INSERT_UNLOCKED(&nfreework->fw_jwork, wk);
6188 			freedeps++;
6189 			indir_trunc(nfreework, fsbtodb(fs, nb), nlbn);
6190 		} else {
6191 			struct workhead freewk;
6192 
6193 			LIST_INIT(&freewk);
6194 			ACQUIRE_LOCK(&lk);
6195 			WORKLIST_INSERT(&freewk, wk);
6196 			FREE_LOCK(&lk);
6197 			ffs_blkfree(ump, fs, freeblks->fb_devvp,
6198 			    jnewblk->jn_blkno, fs->fs_bsize,
6199 			    freeblks->fb_previousinum, &freewk);
6200 		}
6201 		cnt++;
6202 	}
6203 	ACQUIRE_LOCK(&lk);
6204 	/* Any remaining journal work can be completed with freeblks. */
6205 	jwork_move(&freeblks->fb_jwork, &wkhd);
6206 	FREE_LOCK(&lk);
6207 	nblocks = btodb(fs->fs_bsize);
6208 	if (ufs1fmt)
6209 		nb = bap1[0];
6210 	else
6211 		nb = bap2[0];
6212 	nfreework = freework;
6213 	/*
6214 	 * Reclaim on disk blocks.
6215 	 */
6216 	for (i = freework->fw_off; i < NINDIR(fs); i++, nb = nnb) {
6217 		if (i != NINDIR(fs) - 1) {
6218 			if (ufs1fmt)
6219 				nnb = bap1[i+1];
6220 			else
6221 				nnb = bap2[i+1];
6222 		} else
6223 			nnb = 0;
6224 		if (nb == 0)
6225 			continue;
6226 		cnt++;
6227 		if (level != 0) {
6228 			ufs_lbn_t nlbn;
6229 
6230 			nlbn = (lbn + 1) - (i * lbnadd);
6231 			if (needj != 0) {
6232 				nfreework = newfreework(ump, freeblks, freework,
6233 				    nlbn, nb, fs->fs_frag, 0);
6234 				freedeps++;
6235 			}
6236 			indir_trunc(nfreework, fsbtodb(fs, nb), nlbn);
6237 		} else {
6238 			struct freedep *freedep;
6239 
6240 			/*
6241 			 * Attempt to aggregate freedep dependencies for
6242 			 * all blocks being released to the same CG.
6243 			 */
6244 			LIST_INIT(&wkhd);
6245 			if (needj != 0 &&
6246 			    (nnb == 0 || (dtog(fs, nb) != dtog(fs, nnb)))) {
6247 				freedep = newfreedep(freework);
6248 				WORKLIST_INSERT_UNLOCKED(&wkhd,
6249 				    &freedep->fd_list);
6250 				freedeps++;
6251 			}
6252 			ffs_blkfree(ump, fs, freeblks->fb_devvp, nb,
6253 			    fs->fs_bsize, freeblks->fb_previousinum, &wkhd);
6254 		}
6255 	}
6256 	if (level == 0)
6257 		fs_pendingblocks = (nblocks * cnt);
6258 	/*
6259 	 * If we're not journaling we can free the indirect now.  Otherwise
6260 	 * setup the ref counts and offset so this indirect can be completed
6261 	 * when its children are free.
6262 	 */
6263 	if (needj == 0) {
6264 		fs_pendingblocks += nblocks;
6265 		dbn = dbtofsb(fs, dbn);
6266 		ffs_blkfree(ump, fs, freeblks->fb_devvp, dbn, fs->fs_bsize,
6267 		    freeblks->fb_previousinum, NULL);
6268 		ACQUIRE_LOCK(&lk);
6269 		freeblks->fb_chkcnt -= fs_pendingblocks;
6270 		if (freework->fw_blkno == dbn)
6271 			handle_written_freework(freework);
6272 		FREE_LOCK(&lk);
6273 		freework = NULL;
6274 	} else {
6275 		ACQUIRE_LOCK(&lk);
6276 		freework->fw_off = i;
6277 		freework->fw_ref += freedeps;
6278 		freework->fw_ref -= NINDIR(fs) + 1;
6279 		if (freework->fw_ref != 0)
6280 			freework = NULL;
6281 		freeblks->fb_chkcnt -= fs_pendingblocks;
6282 		FREE_LOCK(&lk);
6283 	}
6284 	if (fs_pendingblocks) {
6285 		UFS_LOCK(ump);
6286 		fs->fs_pendingblocks -= fs_pendingblocks;
6287 		UFS_UNLOCK(ump);
6288 	}
6289 	bp->b_flags |= B_INVAL | B_NOCACHE;
6290 	brelse(bp);
6291 	if (freework)
6292 		handle_workitem_indirblk(freework);
6293 	return;
6294 }
6295 
6296 /*
6297  * Cancel an allocindir when it is removed via truncation.
6298  */
6299 static void
6300 cancel_allocindir(aip, inodedep, freeblks)
6301 	struct allocindir *aip;
6302 	struct inodedep *inodedep;
6303 	struct freeblks *freeblks;
6304 {
6305 	struct newblk *newblk;
6306 
6307 	/*
6308 	 * If the journal hasn't been written the jnewblk must be passed
6309 	 * to the call to ffs_blkfree that reclaims the space.  We accomplish
6310 	 * this by linking the journal dependency into the indirdep to be
6311 	 * freed when indir_trunc() is called.  If the journal has already
6312 	 * been written we can simply reclaim the journal space when the
6313 	 * freeblks work is complete.
6314 	 */
6315 	LIST_REMOVE(aip, ai_next);
6316 	newblk = (struct newblk *)aip;
6317 	if (newblk->nb_jnewblk == NULL)
6318 		cancel_newblk(newblk, &freeblks->fb_jwork);
6319 	else
6320 		cancel_newblk(newblk, &aip->ai_indirdep->ir_jwork);
6321 	if (inodedep && inodedep->id_state & DEPCOMPLETE)
6322 		WORKLIST_INSERT(&inodedep->id_bufwait, &newblk->nb_list);
6323 	else
6324 		free_newblk(newblk);
6325 }
6326 
6327 /*
6328  * Create the mkdir dependencies for . and .. in a new directory.  Link them
6329  * in to a newdirblk so any subsequent additions are tracked properly.  The
6330  * caller is responsible for adding the mkdir1 dependency to the journal
6331  * and updating id_mkdiradd.  This function returns with lk held.
6332  */
6333 static struct mkdir *
6334 setup_newdir(dap, newinum, dinum, newdirbp, mkdirp)
6335 	struct diradd *dap;
6336 	ino_t newinum;
6337 	ino_t dinum;
6338 	struct buf *newdirbp;
6339 	struct mkdir **mkdirp;
6340 {
6341 	struct newblk *newblk;
6342 	struct pagedep *pagedep;
6343 	struct inodedep *inodedep;
6344 	struct newdirblk *newdirblk = 0;
6345 	struct mkdir *mkdir1, *mkdir2;
6346 	struct worklist *wk;
6347 	struct jaddref *jaddref;
6348 	struct mount *mp;
6349 
6350 	mp = dap->da_list.wk_mp;
6351 	newdirblk = malloc(sizeof(struct newdirblk), M_NEWDIRBLK,
6352 	    M_SOFTDEP_FLAGS);
6353 	workitem_alloc(&newdirblk->db_list, D_NEWDIRBLK, mp);
6354 	LIST_INIT(&newdirblk->db_mkdir);
6355 	mkdir1 = malloc(sizeof(struct mkdir), M_MKDIR, M_SOFTDEP_FLAGS);
6356 	workitem_alloc(&mkdir1->md_list, D_MKDIR, mp);
6357 	mkdir1->md_state = ATTACHED | MKDIR_BODY;
6358 	mkdir1->md_diradd = dap;
6359 	mkdir1->md_jaddref = NULL;
6360 	mkdir2 = malloc(sizeof(struct mkdir), M_MKDIR, M_SOFTDEP_FLAGS);
6361 	workitem_alloc(&mkdir2->md_list, D_MKDIR, mp);
6362 	mkdir2->md_state = ATTACHED | MKDIR_PARENT;
6363 	mkdir2->md_diradd = dap;
6364 	mkdir2->md_jaddref = NULL;
6365 	if ((mp->mnt_kern_flag & MNTK_SUJ) == 0) {
6366 		mkdir1->md_state |= DEPCOMPLETE;
6367 		mkdir2->md_state |= DEPCOMPLETE;
6368 	}
6369 	/*
6370 	 * Dependency on "." and ".." being written to disk.
6371 	 */
6372 	mkdir1->md_buf = newdirbp;
6373 	ACQUIRE_LOCK(&lk);
6374 	LIST_INSERT_HEAD(&mkdirlisthd, mkdir1, md_mkdirs);
6375 	/*
6376 	 * We must link the pagedep, allocdirect, and newdirblk for
6377 	 * the initial file page so the pointer to the new directory
6378 	 * is not written until the directory contents are live and
6379 	 * any subsequent additions are not marked live until the
6380 	 * block is reachable via the inode.
6381 	 */
6382 	if (pagedep_lookup(mp, newinum, 0, 0, &pagedep) == 0)
6383 		panic("setup_newdir: lost pagedep");
6384 	LIST_FOREACH(wk, &newdirbp->b_dep, wk_list)
6385 		if (wk->wk_type == D_ALLOCDIRECT)
6386 			break;
6387 	if (wk == NULL)
6388 		panic("setup_newdir: lost allocdirect");
6389 	newblk = WK_NEWBLK(wk);
6390 	pagedep->pd_state |= NEWBLOCK;
6391 	pagedep->pd_newdirblk = newdirblk;
6392 	newdirblk->db_pagedep = pagedep;
6393 	WORKLIST_INSERT(&newblk->nb_newdirblk, &newdirblk->db_list);
6394 	WORKLIST_INSERT(&newdirblk->db_mkdir, &mkdir1->md_list);
6395 	/*
6396 	 * Look up the inodedep for the parent directory so that we
6397 	 * can link mkdir2 into the pending dotdot jaddref or
6398 	 * the inode write if there is none.  If the inode is
6399 	 * ALLCOMPLETE and no jaddref is present all dependencies have
6400 	 * been satisfied and mkdir2 can be freed.
6401 	 */
6402 	inodedep_lookup(mp, dinum, 0, &inodedep);
6403 	if (mp->mnt_kern_flag & MNTK_SUJ) {
6404 		if (inodedep == NULL)
6405 			panic("setup_newdir: Lost parent.");
6406 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
6407 		    inoreflst);
6408 		KASSERT(jaddref != NULL && jaddref->ja_parent == newinum &&
6409 		    (jaddref->ja_state & MKDIR_PARENT),
6410 		    ("setup_newdir: bad dotdot jaddref %p", jaddref));
6411 		LIST_INSERT_HEAD(&mkdirlisthd, mkdir2, md_mkdirs);
6412 		mkdir2->md_jaddref = jaddref;
6413 		jaddref->ja_mkdir = mkdir2;
6414 	} else if (inodedep == NULL ||
6415 	    (inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE) {
6416 		dap->da_state &= ~MKDIR_PARENT;
6417 		WORKITEM_FREE(mkdir2, D_MKDIR);
6418 	} else {
6419 		LIST_INSERT_HEAD(&mkdirlisthd, mkdir2, md_mkdirs);
6420 		WORKLIST_INSERT(&inodedep->id_bufwait,&mkdir2->md_list);
6421 	}
6422 	*mkdirp = mkdir2;
6423 
6424 	return (mkdir1);
6425 }
6426 
6427 /*
6428  * Directory entry addition dependencies.
6429  *
6430  * When adding a new directory entry, the inode (with its incremented link
6431  * count) must be written to disk before the directory entry's pointer to it.
6432  * Also, if the inode is newly allocated, the corresponding freemap must be
6433  * updated (on disk) before the directory entry's pointer. These requirements
6434  * are met via undo/redo on the directory entry's pointer, which consists
6435  * simply of the inode number.
6436  *
6437  * As directory entries are added and deleted, the free space within a
6438  * directory block can become fragmented.  The ufs filesystem will compact
6439  * a fragmented directory block to make space for a new entry. When this
6440  * occurs, the offsets of previously added entries change. Any "diradd"
6441  * dependency structures corresponding to these entries must be updated with
6442  * the new offsets.
6443  */
6444 
6445 /*
6446  * This routine is called after the in-memory inode's link
6447  * count has been incremented, but before the directory entry's
6448  * pointer to the inode has been set.
6449  */
6450 int
6451 softdep_setup_directory_add(bp, dp, diroffset, newinum, newdirbp, isnewblk)
6452 	struct buf *bp;		/* buffer containing directory block */
6453 	struct inode *dp;	/* inode for directory */
6454 	off_t diroffset;	/* offset of new entry in directory */
6455 	ino_t newinum;		/* inode referenced by new directory entry */
6456 	struct buf *newdirbp;	/* non-NULL => contents of new mkdir */
6457 	int isnewblk;		/* entry is in a newly allocated block */
6458 {
6459 	int offset;		/* offset of new entry within directory block */
6460 	ufs_lbn_t lbn;		/* block in directory containing new entry */
6461 	struct fs *fs;
6462 	struct diradd *dap;
6463 	struct newblk *newblk;
6464 	struct pagedep *pagedep;
6465 	struct inodedep *inodedep;
6466 	struct newdirblk *newdirblk = 0;
6467 	struct mkdir *mkdir1, *mkdir2;
6468 	struct jaddref *jaddref;
6469 	struct mount *mp;
6470 	int isindir;
6471 
6472 	/*
6473 	 * Whiteouts have no dependencies.
6474 	 */
6475 	if (newinum == WINO) {
6476 		if (newdirbp != NULL)
6477 			bdwrite(newdirbp);
6478 		return (0);
6479 	}
6480 	jaddref = NULL;
6481 	mkdir1 = mkdir2 = NULL;
6482 	mp = UFSTOVFS(dp->i_ump);
6483 	fs = dp->i_fs;
6484 	lbn = lblkno(fs, diroffset);
6485 	offset = blkoff(fs, diroffset);
6486 	dap = malloc(sizeof(struct diradd), M_DIRADD,
6487 		M_SOFTDEP_FLAGS|M_ZERO);
6488 	workitem_alloc(&dap->da_list, D_DIRADD, mp);
6489 	dap->da_offset = offset;
6490 	dap->da_newinum = newinum;
6491 	dap->da_state = ATTACHED;
6492 	LIST_INIT(&dap->da_jwork);
6493 	isindir = bp->b_lblkno >= NDADDR;
6494 	if (isnewblk &&
6495 	    (isindir ? blkoff(fs, diroffset) : fragoff(fs, diroffset)) == 0) {
6496 		newdirblk = malloc(sizeof(struct newdirblk),
6497 		    M_NEWDIRBLK, M_SOFTDEP_FLAGS);
6498 		workitem_alloc(&newdirblk->db_list, D_NEWDIRBLK, mp);
6499 		LIST_INIT(&newdirblk->db_mkdir);
6500 	}
6501 	/*
6502 	 * If we're creating a new directory setup the dependencies and set
6503 	 * the dap state to wait for them.  Otherwise it's COMPLETE and
6504 	 * we can move on.
6505 	 */
6506 	if (newdirbp == NULL) {
6507 		dap->da_state |= DEPCOMPLETE;
6508 		ACQUIRE_LOCK(&lk);
6509 	} else {
6510 		dap->da_state |= MKDIR_BODY | MKDIR_PARENT;
6511 		mkdir1 = setup_newdir(dap, newinum, dp->i_number, newdirbp,
6512 		    &mkdir2);
6513 	}
6514 	/*
6515 	 * Link into parent directory pagedep to await its being written.
6516 	 */
6517 	if (pagedep_lookup(mp, dp->i_number, lbn, DEPALLOC, &pagedep) == 0)
6518 		WORKLIST_INSERT(&bp->b_dep, &pagedep->pd_list);
6519 #ifdef DEBUG
6520 	if (diradd_lookup(pagedep, offset) != NULL)
6521 		panic("softdep_setup_directory_add: %p already at off %d\n",
6522 		    diradd_lookup(pagedep, offset), offset);
6523 #endif
6524 	dap->da_pagedep = pagedep;
6525 	LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)], dap,
6526 	    da_pdlist);
6527 	inodedep_lookup(mp, newinum, DEPALLOC, &inodedep);
6528 	/*
6529 	 * If we're journaling, link the diradd into the jaddref so it
6530 	 * may be completed after the journal entry is written.  Otherwise,
6531 	 * link the diradd into its inodedep.  If the inode is not yet
6532 	 * written place it on the bufwait list, otherwise do the post-inode
6533 	 * write processing to put it on the id_pendinghd list.
6534 	 */
6535 	if (mp->mnt_kern_flag & MNTK_SUJ) {
6536 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
6537 		    inoreflst);
6538 		KASSERT(jaddref != NULL && jaddref->ja_parent == dp->i_number,
6539 		    ("softdep_setup_directory_add: bad jaddref %p", jaddref));
6540 		jaddref->ja_diroff = diroffset;
6541 		jaddref->ja_diradd = dap;
6542 		add_to_journal(&jaddref->ja_list);
6543 	} else if ((inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE)
6544 		diradd_inode_written(dap, inodedep);
6545 	else
6546 		WORKLIST_INSERT(&inodedep->id_bufwait, &dap->da_list);
6547 	/*
6548 	 * Add the journal entries for . and .. links now that the primary
6549 	 * link is written.
6550 	 */
6551 	if (mkdir1 != NULL && mp->mnt_kern_flag & MNTK_SUJ) {
6552 		jaddref = (struct jaddref *)TAILQ_PREV(&jaddref->ja_ref,
6553 		    inoreflst, if_deps);
6554 		KASSERT(jaddref != NULL &&
6555 		    jaddref->ja_ino == jaddref->ja_parent &&
6556 		    (jaddref->ja_state & MKDIR_BODY),
6557 		    ("softdep_setup_directory_add: bad dot jaddref %p",
6558 		    jaddref));
6559 		mkdir1->md_jaddref = jaddref;
6560 		jaddref->ja_mkdir = mkdir1;
6561 		/*
6562 		 * It is important that the dotdot journal entry
6563 		 * is added prior to the dot entry since dot writes
6564 		 * both the dot and dotdot links.  These both must
6565 		 * be added after the primary link for the journal
6566 		 * to remain consistent.
6567 		 */
6568 		add_to_journal(&mkdir2->md_jaddref->ja_list);
6569 		add_to_journal(&jaddref->ja_list);
6570 	}
6571 	/*
6572 	 * If we are adding a new directory remember this diradd so that if
6573 	 * we rename it we can keep the dot and dotdot dependencies.  If
6574 	 * we are adding a new name for an inode that has a mkdiradd we
6575 	 * must be in rename and we have to move the dot and dotdot
6576 	 * dependencies to this new name.  The old name is being orphaned
6577 	 * soon.
6578 	 */
6579 	if (mkdir1 != NULL) {
6580 		if (inodedep->id_mkdiradd != NULL)
6581 			panic("softdep_setup_directory_add: Existing mkdir");
6582 		inodedep->id_mkdiradd = dap;
6583 	} else if (inodedep->id_mkdiradd)
6584 		merge_diradd(inodedep, dap);
6585 	if (newdirblk) {
6586 		/*
6587 		 * There is nothing to do if we are already tracking
6588 		 * this block.
6589 		 */
6590 		if ((pagedep->pd_state & NEWBLOCK) != 0) {
6591 			WORKITEM_FREE(newdirblk, D_NEWDIRBLK);
6592 			FREE_LOCK(&lk);
6593 			return (0);
6594 		}
6595 		if (newblk_lookup(mp, dbtofsb(fs, bp->b_blkno), 0, &newblk)
6596 		    == 0)
6597 			panic("softdep_setup_directory_add: lost entry");
6598 		WORKLIST_INSERT(&newblk->nb_newdirblk, &newdirblk->db_list);
6599 		pagedep->pd_state |= NEWBLOCK;
6600 		pagedep->pd_newdirblk = newdirblk;
6601 		newdirblk->db_pagedep = pagedep;
6602 		FREE_LOCK(&lk);
6603 		/*
6604 		 * If we extended into an indirect signal direnter to sync.
6605 		 */
6606 		if (isindir)
6607 			return (1);
6608 		return (0);
6609 	}
6610 	FREE_LOCK(&lk);
6611 	return (0);
6612 }
6613 
6614 /*
6615  * This procedure is called to change the offset of a directory
6616  * entry when compacting a directory block which must be owned
6617  * exclusively by the caller. Note that the actual entry movement
6618  * must be done in this procedure to ensure that no I/O completions
6619  * occur while the move is in progress.
6620  */
6621 void
6622 softdep_change_directoryentry_offset(bp, dp, base, oldloc, newloc, entrysize)
6623 	struct buf *bp;		/* Buffer holding directory block. */
6624 	struct inode *dp;	/* inode for directory */
6625 	caddr_t base;		/* address of dp->i_offset */
6626 	caddr_t oldloc;		/* address of old directory location */
6627 	caddr_t newloc;		/* address of new directory location */
6628 	int entrysize;		/* size of directory entry */
6629 {
6630 	int offset, oldoffset, newoffset;
6631 	struct pagedep *pagedep;
6632 	struct jmvref *jmvref;
6633 	struct diradd *dap;
6634 	struct direct *de;
6635 	struct mount *mp;
6636 	ufs_lbn_t lbn;
6637 	int flags;
6638 
6639 	mp = UFSTOVFS(dp->i_ump);
6640 	de = (struct direct *)oldloc;
6641 	jmvref = NULL;
6642 	flags = 0;
6643 	/*
6644 	 * Moves are always journaled as it would be too complex to
6645 	 * determine if any affected adds or removes are present in the
6646 	 * journal.
6647 	 */
6648 	if (mp->mnt_kern_flag & MNTK_SUJ)  {
6649 		flags = DEPALLOC;
6650 		jmvref = newjmvref(dp, de->d_ino,
6651 		    dp->i_offset + (oldloc - base),
6652 		    dp->i_offset + (newloc - base));
6653 	}
6654 	lbn = lblkno(dp->i_fs, dp->i_offset);
6655 	offset = blkoff(dp->i_fs, dp->i_offset);
6656 	oldoffset = offset + (oldloc - base);
6657 	newoffset = offset + (newloc - base);
6658 	ACQUIRE_LOCK(&lk);
6659 	if (pagedep_lookup(mp, dp->i_number, lbn, flags, &pagedep) == 0) {
6660 		if (pagedep)
6661 			WORKLIST_INSERT(&bp->b_dep, &pagedep->pd_list);
6662 		goto done;
6663 	}
6664 	dap = diradd_lookup(pagedep, oldoffset);
6665 	if (dap) {
6666 		dap->da_offset = newoffset;
6667 		newoffset = DIRADDHASH(newoffset);
6668 		oldoffset = DIRADDHASH(oldoffset);
6669 		if ((dap->da_state & ALLCOMPLETE) != ALLCOMPLETE &&
6670 		    newoffset != oldoffset) {
6671 			LIST_REMOVE(dap, da_pdlist);
6672 			LIST_INSERT_HEAD(&pagedep->pd_diraddhd[newoffset],
6673 			    dap, da_pdlist);
6674 		}
6675 	}
6676 done:
6677 	if (jmvref) {
6678 		jmvref->jm_pagedep = pagedep;
6679 		LIST_INSERT_HEAD(&pagedep->pd_jmvrefhd, jmvref, jm_deps);
6680 		add_to_journal(&jmvref->jm_list);
6681 	}
6682 	bcopy(oldloc, newloc, entrysize);
6683 	FREE_LOCK(&lk);
6684 }
6685 
6686 /*
6687  * Move the mkdir dependencies and journal work from one diradd to another
6688  * when renaming a directory.  The new name must depend on the mkdir deps
6689  * completing as the old name did.  Directories can only have one valid link
6690  * at a time so one must be canonical.
6691  */
6692 static void
6693 merge_diradd(inodedep, newdap)
6694 	struct inodedep *inodedep;
6695 	struct diradd *newdap;
6696 {
6697 	struct diradd *olddap;
6698 	struct mkdir *mkdir, *nextmd;
6699 	short state;
6700 
6701 	olddap = inodedep->id_mkdiradd;
6702 	inodedep->id_mkdiradd = newdap;
6703 	if ((olddap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) {
6704 		newdap->da_state &= ~DEPCOMPLETE;
6705 		for (mkdir = LIST_FIRST(&mkdirlisthd); mkdir; mkdir = nextmd) {
6706 			nextmd = LIST_NEXT(mkdir, md_mkdirs);
6707 			if (mkdir->md_diradd != olddap)
6708 				continue;
6709 			mkdir->md_diradd = newdap;
6710 			state = mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY);
6711 			newdap->da_state |= state;
6712 			olddap->da_state &= ~state;
6713 			if ((olddap->da_state &
6714 			    (MKDIR_PARENT | MKDIR_BODY)) == 0)
6715 				break;
6716 		}
6717 		if ((olddap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0)
6718 			panic("merge_diradd: unfound ref");
6719 	}
6720 	/*
6721 	 * Any mkdir related journal items are not safe to be freed until
6722 	 * the new name is stable.
6723 	 */
6724 	jwork_move(&newdap->da_jwork, &olddap->da_jwork);
6725 	olddap->da_state |= DEPCOMPLETE;
6726 	complete_diradd(olddap);
6727 }
6728 
6729 /*
6730  * Move the diradd to the pending list when all diradd dependencies are
6731  * complete.
6732  */
6733 static void
6734 complete_diradd(dap)
6735 	struct diradd *dap;
6736 {
6737 	struct pagedep *pagedep;
6738 
6739 	if ((dap->da_state & ALLCOMPLETE) == ALLCOMPLETE) {
6740 		if (dap->da_state & DIRCHG)
6741 			pagedep = dap->da_previous->dm_pagedep;
6742 		else
6743 			pagedep = dap->da_pagedep;
6744 		LIST_REMOVE(dap, da_pdlist);
6745 		LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist);
6746 	}
6747 }
6748 
6749 /*
6750  * Cancel a diradd when a dirrem overlaps with it.  We must cancel the journal
6751  * add entries and conditonally journal the remove.
6752  */
6753 static void
6754 cancel_diradd(dap, dirrem, jremref, dotremref, dotdotremref)
6755 	struct diradd *dap;
6756 	struct dirrem *dirrem;
6757 	struct jremref *jremref;
6758 	struct jremref *dotremref;
6759 	struct jremref *dotdotremref;
6760 {
6761 	struct inodedep *inodedep;
6762 	struct jaddref *jaddref;
6763 	struct inoref *inoref;
6764 	struct mkdir *mkdir;
6765 
6766 	/*
6767 	 * If no remove references were allocated we're on a non-journaled
6768 	 * filesystem and can skip the cancel step.
6769 	 */
6770 	if (jremref == NULL) {
6771 		free_diradd(dap, NULL);
6772 		return;
6773 	}
6774 	/*
6775 	 * Cancel the primary name an free it if it does not require
6776 	 * journaling.
6777 	 */
6778 	if (inodedep_lookup(dap->da_list.wk_mp, dap->da_newinum,
6779 	    0, &inodedep) != 0) {
6780 		/* Abort the addref that reference this diradd.  */
6781 		TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) {
6782 			if (inoref->if_list.wk_type != D_JADDREF)
6783 				continue;
6784 			jaddref = (struct jaddref *)inoref;
6785 			if (jaddref->ja_diradd != dap)
6786 				continue;
6787 			if (cancel_jaddref(jaddref, inodedep,
6788 			    &dirrem->dm_jwork) == 0) {
6789 				free_jremref(jremref);
6790 				jremref = NULL;
6791 			}
6792 			break;
6793 		}
6794 	}
6795 	/*
6796 	 * Cancel subordinate names and free them if they do not require
6797 	 * journaling.
6798 	 */
6799 	if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) {
6800 		LIST_FOREACH(mkdir, &mkdirlisthd, md_mkdirs) {
6801 			if (mkdir->md_diradd != dap)
6802 				continue;
6803 			if ((jaddref = mkdir->md_jaddref) == NULL)
6804 				continue;
6805 			mkdir->md_jaddref = NULL;
6806 			if (mkdir->md_state & MKDIR_PARENT) {
6807 				if (cancel_jaddref(jaddref, NULL,
6808 				    &dirrem->dm_jwork) == 0) {
6809 					free_jremref(dotdotremref);
6810 					dotdotremref = NULL;
6811 				}
6812 			} else {
6813 				if (cancel_jaddref(jaddref, inodedep,
6814 				    &dirrem->dm_jwork) == 0) {
6815 					free_jremref(dotremref);
6816 					dotremref = NULL;
6817 				}
6818 			}
6819 		}
6820 	}
6821 
6822 	if (jremref)
6823 		journal_jremref(dirrem, jremref, inodedep);
6824 	if (dotremref)
6825 		journal_jremref(dirrem, dotremref, inodedep);
6826 	if (dotdotremref)
6827 		journal_jremref(dirrem, dotdotremref, NULL);
6828 	jwork_move(&dirrem->dm_jwork, &dap->da_jwork);
6829 	free_diradd(dap, &dirrem->dm_jwork);
6830 }
6831 
6832 /*
6833  * Free a diradd dependency structure. This routine must be called
6834  * with splbio interrupts blocked.
6835  */
6836 static void
6837 free_diradd(dap, wkhd)
6838 	struct diradd *dap;
6839 	struct workhead *wkhd;
6840 {
6841 	struct dirrem *dirrem;
6842 	struct pagedep *pagedep;
6843 	struct inodedep *inodedep;
6844 	struct mkdir *mkdir, *nextmd;
6845 
6846 	mtx_assert(&lk, MA_OWNED);
6847 	LIST_REMOVE(dap, da_pdlist);
6848 	if (dap->da_state & ONWORKLIST)
6849 		WORKLIST_REMOVE(&dap->da_list);
6850 	if ((dap->da_state & DIRCHG) == 0) {
6851 		pagedep = dap->da_pagedep;
6852 	} else {
6853 		dirrem = dap->da_previous;
6854 		pagedep = dirrem->dm_pagedep;
6855 		dirrem->dm_dirinum = pagedep->pd_ino;
6856 		dirrem->dm_state |= COMPLETE;
6857 		if (LIST_EMPTY(&dirrem->dm_jremrefhd))
6858 			add_to_worklist(&dirrem->dm_list, 0);
6859 	}
6860 	if (inodedep_lookup(pagedep->pd_list.wk_mp, dap->da_newinum,
6861 	    0, &inodedep) != 0)
6862 		if (inodedep->id_mkdiradd == dap)
6863 			inodedep->id_mkdiradd = NULL;
6864 	if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) {
6865 		for (mkdir = LIST_FIRST(&mkdirlisthd); mkdir; mkdir = nextmd) {
6866 			nextmd = LIST_NEXT(mkdir, md_mkdirs);
6867 			if (mkdir->md_diradd != dap)
6868 				continue;
6869 			dap->da_state &=
6870 			    ~(mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY));
6871 			LIST_REMOVE(mkdir, md_mkdirs);
6872 			if (mkdir->md_state & ONWORKLIST)
6873 				WORKLIST_REMOVE(&mkdir->md_list);
6874 			if (mkdir->md_jaddref != NULL)
6875 				panic("free_diradd: Unexpected jaddref");
6876 			WORKITEM_FREE(mkdir, D_MKDIR);
6877 			if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) == 0)
6878 				break;
6879 		}
6880 		if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0)
6881 			panic("free_diradd: unfound ref");
6882 	}
6883 	if (inodedep)
6884 		free_inodedep(inodedep);
6885 	/*
6886 	 * Free any journal segments waiting for the directory write.
6887 	 */
6888 	handle_jwork(&dap->da_jwork);
6889 	WORKITEM_FREE(dap, D_DIRADD);
6890 }
6891 
6892 /*
6893  * Directory entry removal dependencies.
6894  *
6895  * When removing a directory entry, the entry's inode pointer must be
6896  * zero'ed on disk before the corresponding inode's link count is decremented
6897  * (possibly freeing the inode for re-use). This dependency is handled by
6898  * updating the directory entry but delaying the inode count reduction until
6899  * after the directory block has been written to disk. After this point, the
6900  * inode count can be decremented whenever it is convenient.
6901  */
6902 
6903 /*
6904  * This routine should be called immediately after removing
6905  * a directory entry.  The inode's link count should not be
6906  * decremented by the calling procedure -- the soft updates
6907  * code will do this task when it is safe.
6908  */
6909 void
6910 softdep_setup_remove(bp, dp, ip, isrmdir)
6911 	struct buf *bp;		/* buffer containing directory block */
6912 	struct inode *dp;	/* inode for the directory being modified */
6913 	struct inode *ip;	/* inode for directory entry being removed */
6914 	int isrmdir;		/* indicates if doing RMDIR */
6915 {
6916 	struct dirrem *dirrem, *prevdirrem;
6917 	struct inodedep *inodedep;
6918 	int direct;
6919 
6920 	/*
6921 	 * Allocate a new dirrem if appropriate and ACQUIRE_LOCK.  We want
6922 	 * newdirrem() to setup the full directory remove which requires
6923 	 * isrmdir > 1.
6924 	 */
6925 	dirrem = newdirrem(bp, dp, ip, isrmdir, &prevdirrem);
6926 	/*
6927 	 * Add the dirrem to the inodedep's pending remove list for quick
6928 	 * discovery later.
6929 	 */
6930 	if (inodedep_lookup(UFSTOVFS(ip->i_ump), ip->i_number, 0,
6931 	    &inodedep) == 0)
6932 		panic("softdep_setup_remove: Lost inodedep.");
6933 	dirrem->dm_state |= ONDEPLIST;
6934 	LIST_INSERT_HEAD(&inodedep->id_dirremhd, dirrem, dm_inonext);
6935 
6936 	/*
6937 	 * If the COMPLETE flag is clear, then there were no active
6938 	 * entries and we want to roll back to a zeroed entry until
6939 	 * the new inode is committed to disk. If the COMPLETE flag is
6940 	 * set then we have deleted an entry that never made it to
6941 	 * disk. If the entry we deleted resulted from a name change,
6942 	 * then the old name still resides on disk. We cannot delete
6943 	 * its inode (returned to us in prevdirrem) until the zeroed
6944 	 * directory entry gets to disk. The new inode has never been
6945 	 * referenced on the disk, so can be deleted immediately.
6946 	 */
6947 	if ((dirrem->dm_state & COMPLETE) == 0) {
6948 		LIST_INSERT_HEAD(&dirrem->dm_pagedep->pd_dirremhd, dirrem,
6949 		    dm_next);
6950 		FREE_LOCK(&lk);
6951 	} else {
6952 		if (prevdirrem != NULL)
6953 			LIST_INSERT_HEAD(&dirrem->dm_pagedep->pd_dirremhd,
6954 			    prevdirrem, dm_next);
6955 		dirrem->dm_dirinum = dirrem->dm_pagedep->pd_ino;
6956 		direct = LIST_EMPTY(&dirrem->dm_jremrefhd);
6957 		FREE_LOCK(&lk);
6958 		if (direct)
6959 			handle_workitem_remove(dirrem, NULL);
6960 	}
6961 }
6962 
6963 /*
6964  * Check for an entry matching 'offset' on both the pd_dirraddhd list and the
6965  * pd_pendinghd list of a pagedep.
6966  */
6967 static struct diradd *
6968 diradd_lookup(pagedep, offset)
6969 	struct pagedep *pagedep;
6970 	int offset;
6971 {
6972 	struct diradd *dap;
6973 
6974 	LIST_FOREACH(dap, &pagedep->pd_diraddhd[DIRADDHASH(offset)], da_pdlist)
6975 		if (dap->da_offset == offset)
6976 			return (dap);
6977 	LIST_FOREACH(dap, &pagedep->pd_pendinghd, da_pdlist)
6978 		if (dap->da_offset == offset)
6979 			return (dap);
6980 	return (NULL);
6981 }
6982 
6983 /*
6984  * Search for a .. diradd dependency in a directory that is being removed.
6985  * If the directory was renamed to a new parent we have a diradd rather
6986  * than a mkdir for the .. entry.  We need to cancel it now before
6987  * it is found in truncate().
6988  */
6989 static struct jremref *
6990 cancel_diradd_dotdot(ip, dirrem, jremref)
6991 	struct inode *ip;
6992 	struct dirrem *dirrem;
6993 	struct jremref *jremref;
6994 {
6995 	struct pagedep *pagedep;
6996 	struct diradd *dap;
6997 	struct worklist *wk;
6998 
6999 	if (pagedep_lookup(UFSTOVFS(ip->i_ump), ip->i_number, 0, 0,
7000 	    &pagedep) == 0)
7001 		return (jremref);
7002 	dap = diradd_lookup(pagedep, DOTDOT_OFFSET);
7003 	if (dap == NULL)
7004 		return (jremref);
7005 	cancel_diradd(dap, dirrem, jremref, NULL, NULL);
7006 	/*
7007 	 * Mark any journal work as belonging to the parent so it is freed
7008 	 * with the .. reference.
7009 	 */
7010 	LIST_FOREACH(wk, &dirrem->dm_jwork, wk_list)
7011 		wk->wk_state |= MKDIR_PARENT;
7012 	return (NULL);
7013 }
7014 
7015 /*
7016  * Cancel the MKDIR_PARENT mkdir component of a diradd when we're going to
7017  * replace it with a dirrem/diradd pair as a result of re-parenting a
7018  * directory.  This ensures that we don't simultaneously have a mkdir and
7019  * a diradd for the same .. entry.
7020  */
7021 static struct jremref *
7022 cancel_mkdir_dotdot(ip, dirrem, jremref)
7023 	struct inode *ip;
7024 	struct dirrem *dirrem;
7025 	struct jremref *jremref;
7026 {
7027 	struct inodedep *inodedep;
7028 	struct jaddref *jaddref;
7029 	struct mkdir *mkdir;
7030 	struct diradd *dap;
7031 
7032 	if (inodedep_lookup(UFSTOVFS(ip->i_ump), ip->i_number, 0,
7033 	    &inodedep) == 0)
7034 		panic("cancel_mkdir_dotdot: Lost inodedep");
7035 	dap = inodedep->id_mkdiradd;
7036 	if (dap == NULL || (dap->da_state & MKDIR_PARENT) == 0)
7037 		return (jremref);
7038 	for (mkdir = LIST_FIRST(&mkdirlisthd); mkdir;
7039 	    mkdir = LIST_NEXT(mkdir, md_mkdirs))
7040 		if (mkdir->md_diradd == dap && mkdir->md_state & MKDIR_PARENT)
7041 			break;
7042 	if (mkdir == NULL)
7043 		panic("cancel_mkdir_dotdot: Unable to find mkdir\n");
7044 	if ((jaddref = mkdir->md_jaddref) != NULL) {
7045 		mkdir->md_jaddref = NULL;
7046 		jaddref->ja_state &= ~MKDIR_PARENT;
7047 		if (inodedep_lookup(UFSTOVFS(ip->i_ump), jaddref->ja_ino, 0,
7048 		    &inodedep) == 0)
7049 			panic("cancel_mkdir_dotdot: Lost parent inodedep");
7050 		if (cancel_jaddref(jaddref, inodedep, &dirrem->dm_jwork)) {
7051 			journal_jremref(dirrem, jremref, inodedep);
7052 			jremref = NULL;
7053 		}
7054 	}
7055 	if (mkdir->md_state & ONWORKLIST)
7056 		WORKLIST_REMOVE(&mkdir->md_list);
7057 	mkdir->md_state |= ALLCOMPLETE;
7058 	complete_mkdir(mkdir);
7059 	return (jremref);
7060 }
7061 
7062 static void
7063 journal_jremref(dirrem, jremref, inodedep)
7064 	struct dirrem *dirrem;
7065 	struct jremref *jremref;
7066 	struct inodedep *inodedep;
7067 {
7068 
7069 	if (inodedep == NULL)
7070 		if (inodedep_lookup(jremref->jr_list.wk_mp,
7071 		    jremref->jr_ref.if_ino, 0, &inodedep) == 0)
7072 			panic("journal_jremref: Lost inodedep");
7073 	LIST_INSERT_HEAD(&dirrem->dm_jremrefhd, jremref, jr_deps);
7074 	TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jremref->jr_ref, if_deps);
7075 	add_to_journal(&jremref->jr_list);
7076 }
7077 
7078 static void
7079 dirrem_journal(dirrem, jremref, dotremref, dotdotremref)
7080 	struct dirrem *dirrem;
7081 	struct jremref *jremref;
7082 	struct jremref *dotremref;
7083 	struct jremref *dotdotremref;
7084 {
7085 	struct inodedep *inodedep;
7086 
7087 
7088 	if (inodedep_lookup(jremref->jr_list.wk_mp, jremref->jr_ref.if_ino, 0,
7089 	    &inodedep) == 0)
7090 		panic("dirrem_journal: Lost inodedep");
7091 	journal_jremref(dirrem, jremref, inodedep);
7092 	if (dotremref)
7093 		journal_jremref(dirrem, dotremref, inodedep);
7094 	if (dotdotremref)
7095 		journal_jremref(dirrem, dotdotremref, NULL);
7096 }
7097 
7098 /*
7099  * Allocate a new dirrem if appropriate and return it along with
7100  * its associated pagedep. Called without a lock, returns with lock.
7101  */
7102 static long num_dirrem;		/* number of dirrem allocated */
7103 static struct dirrem *
7104 newdirrem(bp, dp, ip, isrmdir, prevdirremp)
7105 	struct buf *bp;		/* buffer containing directory block */
7106 	struct inode *dp;	/* inode for the directory being modified */
7107 	struct inode *ip;	/* inode for directory entry being removed */
7108 	int isrmdir;		/* indicates if doing RMDIR */
7109 	struct dirrem **prevdirremp; /* previously referenced inode, if any */
7110 {
7111 	int offset;
7112 	ufs_lbn_t lbn;
7113 	struct diradd *dap;
7114 	struct dirrem *dirrem;
7115 	struct pagedep *pagedep;
7116 	struct jremref *jremref;
7117 	struct jremref *dotremref;
7118 	struct jremref *dotdotremref;
7119 	struct vnode *dvp;
7120 
7121 	/*
7122 	 * Whiteouts have no deletion dependencies.
7123 	 */
7124 	if (ip == NULL)
7125 		panic("newdirrem: whiteout");
7126 	dvp = ITOV(dp);
7127 	/*
7128 	 * If we are over our limit, try to improve the situation.
7129 	 * Limiting the number of dirrem structures will also limit
7130 	 * the number of freefile and freeblks structures.
7131 	 */
7132 	ACQUIRE_LOCK(&lk);
7133 	if (!(ip->i_flags & SF_SNAPSHOT) && num_dirrem > max_softdeps / 2)
7134 		(void) request_cleanup(ITOV(dp)->v_mount, FLUSH_REMOVE);
7135 	num_dirrem += 1;
7136 	FREE_LOCK(&lk);
7137 	dirrem = malloc(sizeof(struct dirrem),
7138 		M_DIRREM, M_SOFTDEP_FLAGS|M_ZERO);
7139 	workitem_alloc(&dirrem->dm_list, D_DIRREM, dvp->v_mount);
7140 	LIST_INIT(&dirrem->dm_jremrefhd);
7141 	LIST_INIT(&dirrem->dm_jwork);
7142 	dirrem->dm_state = isrmdir ? RMDIR : 0;
7143 	dirrem->dm_oldinum = ip->i_number;
7144 	*prevdirremp = NULL;
7145 	/*
7146 	 * Allocate remove reference structures to track journal write
7147 	 * dependencies.  We will always have one for the link and
7148 	 * when doing directories we will always have one more for dot.
7149 	 * When renaming a directory we skip the dotdot link change so
7150 	 * this is not needed.
7151 	 */
7152 	jremref = dotremref = dotdotremref = NULL;
7153 	if (DOINGSUJ(dvp)) {
7154 		if (isrmdir) {
7155 			jremref = newjremref(dirrem, dp, ip, dp->i_offset,
7156 			    ip->i_effnlink + 2);
7157 			dotremref = newjremref(dirrem, ip, ip, DOT_OFFSET,
7158 			    ip->i_effnlink + 1);
7159 			dotdotremref = newjremref(dirrem, ip, dp, DOTDOT_OFFSET,
7160 			    dp->i_effnlink + 1);
7161 			dotdotremref->jr_state |= MKDIR_PARENT;
7162 		} else
7163 			jremref = newjremref(dirrem, dp, ip, dp->i_offset,
7164 			    ip->i_effnlink + 1);
7165 	}
7166 	ACQUIRE_LOCK(&lk);
7167 	lbn = lblkno(dp->i_fs, dp->i_offset);
7168 	offset = blkoff(dp->i_fs, dp->i_offset);
7169 	if (pagedep_lookup(UFSTOVFS(dp->i_ump), dp->i_number, lbn, DEPALLOC,
7170 	    &pagedep) == 0)
7171 		WORKLIST_INSERT(&bp->b_dep, &pagedep->pd_list);
7172 	dirrem->dm_pagedep = pagedep;
7173 	/*
7174 	 * If we're renaming a .. link to a new directory, cancel any
7175 	 * existing MKDIR_PARENT mkdir.  If it has already been canceled
7176 	 * the jremref is preserved for any potential diradd in this
7177 	 * location.  This can not coincide with a rmdir.
7178 	 */
7179 	if (dp->i_offset == DOTDOT_OFFSET) {
7180 		if (isrmdir)
7181 			panic("newdirrem: .. directory change during remove?");
7182 		jremref = cancel_mkdir_dotdot(dp, dirrem, jremref);
7183 	}
7184 	/*
7185 	 * If we're removing a directory search for the .. dependency now and
7186 	 * cancel it.  Any pending journal work will be added to the dirrem
7187 	 * to be completed when the workitem remove completes.
7188 	 */
7189 	if (isrmdir)
7190 		dotdotremref = cancel_diradd_dotdot(ip, dirrem, dotdotremref);
7191 	/*
7192 	 * Check for a diradd dependency for the same directory entry.
7193 	 * If present, then both dependencies become obsolete and can
7194 	 * be de-allocated.
7195 	 */
7196 	dap = diradd_lookup(pagedep, offset);
7197 	if (dap == NULL) {
7198 		/*
7199 		 * Link the jremref structures into the dirrem so they are
7200 		 * written prior to the pagedep.
7201 		 */
7202 		if (jremref)
7203 			dirrem_journal(dirrem, jremref, dotremref,
7204 			    dotdotremref);
7205 		return (dirrem);
7206 	}
7207 	/*
7208 	 * Must be ATTACHED at this point.
7209 	 */
7210 	if ((dap->da_state & ATTACHED) == 0)
7211 		panic("newdirrem: not ATTACHED");
7212 	if (dap->da_newinum != ip->i_number)
7213 		panic("newdirrem: inum %d should be %d",
7214 		    ip->i_number, dap->da_newinum);
7215 	/*
7216 	 * If we are deleting a changed name that never made it to disk,
7217 	 * then return the dirrem describing the previous inode (which
7218 	 * represents the inode currently referenced from this entry on disk).
7219 	 */
7220 	if ((dap->da_state & DIRCHG) != 0) {
7221 		*prevdirremp = dap->da_previous;
7222 		dap->da_state &= ~DIRCHG;
7223 		dap->da_pagedep = pagedep;
7224 	}
7225 	/*
7226 	 * We are deleting an entry that never made it to disk.
7227 	 * Mark it COMPLETE so we can delete its inode immediately.
7228 	 */
7229 	dirrem->dm_state |= COMPLETE;
7230 	cancel_diradd(dap, dirrem, jremref, dotremref, dotdotremref);
7231 #ifdef SUJ_DEBUG
7232 	if (isrmdir == 0) {
7233 		struct worklist *wk;
7234 
7235 		LIST_FOREACH(wk, &dirrem->dm_jwork, wk_list)
7236 			if (wk->wk_state & (MKDIR_BODY | MKDIR_PARENT))
7237 				panic("bad wk %p (0x%X)\n", wk, wk->wk_state);
7238 	}
7239 #endif
7240 
7241 	return (dirrem);
7242 }
7243 
7244 /*
7245  * Directory entry change dependencies.
7246  *
7247  * Changing an existing directory entry requires that an add operation
7248  * be completed first followed by a deletion. The semantics for the addition
7249  * are identical to the description of adding a new entry above except
7250  * that the rollback is to the old inode number rather than zero. Once
7251  * the addition dependency is completed, the removal is done as described
7252  * in the removal routine above.
7253  */
7254 
7255 /*
7256  * This routine should be called immediately after changing
7257  * a directory entry.  The inode's link count should not be
7258  * decremented by the calling procedure -- the soft updates
7259  * code will perform this task when it is safe.
7260  */
7261 void
7262 softdep_setup_directory_change(bp, dp, ip, newinum, isrmdir)
7263 	struct buf *bp;		/* buffer containing directory block */
7264 	struct inode *dp;	/* inode for the directory being modified */
7265 	struct inode *ip;	/* inode for directory entry being removed */
7266 	ino_t newinum;		/* new inode number for changed entry */
7267 	int isrmdir;		/* indicates if doing RMDIR */
7268 {
7269 	int offset;
7270 	struct diradd *dap = NULL;
7271 	struct dirrem *dirrem, *prevdirrem;
7272 	struct pagedep *pagedep;
7273 	struct inodedep *inodedep;
7274 	struct jaddref *jaddref;
7275 	struct mount *mp;
7276 
7277 	offset = blkoff(dp->i_fs, dp->i_offset);
7278 	mp = UFSTOVFS(dp->i_ump);
7279 
7280 	/*
7281 	 * Whiteouts do not need diradd dependencies.
7282 	 */
7283 	if (newinum != WINO) {
7284 		dap = malloc(sizeof(struct diradd),
7285 		    M_DIRADD, M_SOFTDEP_FLAGS|M_ZERO);
7286 		workitem_alloc(&dap->da_list, D_DIRADD, mp);
7287 		dap->da_state = DIRCHG | ATTACHED | DEPCOMPLETE;
7288 		dap->da_offset = offset;
7289 		dap->da_newinum = newinum;
7290 		LIST_INIT(&dap->da_jwork);
7291 	}
7292 
7293 	/*
7294 	 * Allocate a new dirrem and ACQUIRE_LOCK.
7295 	 */
7296 	dirrem = newdirrem(bp, dp, ip, isrmdir, &prevdirrem);
7297 	pagedep = dirrem->dm_pagedep;
7298 	/*
7299 	 * The possible values for isrmdir:
7300 	 *	0 - non-directory file rename
7301 	 *	1 - directory rename within same directory
7302 	 *   inum - directory rename to new directory of given inode number
7303 	 * When renaming to a new directory, we are both deleting and
7304 	 * creating a new directory entry, so the link count on the new
7305 	 * directory should not change. Thus we do not need the followup
7306 	 * dirrem which is usually done in handle_workitem_remove. We set
7307 	 * the DIRCHG flag to tell handle_workitem_remove to skip the
7308 	 * followup dirrem.
7309 	 */
7310 	if (isrmdir > 1)
7311 		dirrem->dm_state |= DIRCHG;
7312 
7313 	/*
7314 	 * Whiteouts have no additional dependencies,
7315 	 * so just put the dirrem on the correct list.
7316 	 */
7317 	if (newinum == WINO) {
7318 		if ((dirrem->dm_state & COMPLETE) == 0) {
7319 			LIST_INSERT_HEAD(&pagedep->pd_dirremhd, dirrem,
7320 			    dm_next);
7321 		} else {
7322 			dirrem->dm_dirinum = pagedep->pd_ino;
7323 			if (LIST_EMPTY(&dirrem->dm_jremrefhd))
7324 				add_to_worklist(&dirrem->dm_list, 0);
7325 		}
7326 		FREE_LOCK(&lk);
7327 		return;
7328 	}
7329 	/*
7330 	 * Add the dirrem to the inodedep's pending remove list for quick
7331 	 * discovery later.  A valid nlinkdelta ensures that this lookup
7332 	 * will not fail.
7333 	 */
7334 	if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0)
7335 		panic("softdep_setup_directory_change: Lost inodedep.");
7336 	dirrem->dm_state |= ONDEPLIST;
7337 	LIST_INSERT_HEAD(&inodedep->id_dirremhd, dirrem, dm_inonext);
7338 
7339 	/*
7340 	 * If the COMPLETE flag is clear, then there were no active
7341 	 * entries and we want to roll back to the previous inode until
7342 	 * the new inode is committed to disk. If the COMPLETE flag is
7343 	 * set, then we have deleted an entry that never made it to disk.
7344 	 * If the entry we deleted resulted from a name change, then the old
7345 	 * inode reference still resides on disk. Any rollback that we do
7346 	 * needs to be to that old inode (returned to us in prevdirrem). If
7347 	 * the entry we deleted resulted from a create, then there is
7348 	 * no entry on the disk, so we want to roll back to zero rather
7349 	 * than the uncommitted inode. In either of the COMPLETE cases we
7350 	 * want to immediately free the unwritten and unreferenced inode.
7351 	 */
7352 	if ((dirrem->dm_state & COMPLETE) == 0) {
7353 		dap->da_previous = dirrem;
7354 	} else {
7355 		if (prevdirrem != NULL) {
7356 			dap->da_previous = prevdirrem;
7357 		} else {
7358 			dap->da_state &= ~DIRCHG;
7359 			dap->da_pagedep = pagedep;
7360 		}
7361 		dirrem->dm_dirinum = pagedep->pd_ino;
7362 		if (LIST_EMPTY(&dirrem->dm_jremrefhd))
7363 			add_to_worklist(&dirrem->dm_list, 0);
7364 	}
7365 	/*
7366 	 * Lookup the jaddref for this journal entry.  We must finish
7367 	 * initializing it and make the diradd write dependent on it.
7368 	 * If we're not journaling Put it on the id_bufwait list if the inode
7369 	 * is not yet written. If it is written, do the post-inode write
7370 	 * processing to put it on the id_pendinghd list.
7371 	 */
7372 	inodedep_lookup(mp, newinum, DEPALLOC, &inodedep);
7373 	if (mp->mnt_kern_flag & MNTK_SUJ) {
7374 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
7375 		    inoreflst);
7376 		KASSERT(jaddref != NULL && jaddref->ja_parent == dp->i_number,
7377 		    ("softdep_setup_directory_change: bad jaddref %p",
7378 		    jaddref));
7379 		jaddref->ja_diroff = dp->i_offset;
7380 		jaddref->ja_diradd = dap;
7381 		LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)],
7382 		    dap, da_pdlist);
7383 		add_to_journal(&jaddref->ja_list);
7384 	} else if ((inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE) {
7385 		dap->da_state |= COMPLETE;
7386 		LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist);
7387 		WORKLIST_INSERT(&inodedep->id_pendinghd, &dap->da_list);
7388 	} else {
7389 		LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)],
7390 		    dap, da_pdlist);
7391 		WORKLIST_INSERT(&inodedep->id_bufwait, &dap->da_list);
7392 	}
7393 	/*
7394 	 * If we're making a new name for a directory that has not been
7395 	 * committed when need to move the dot and dotdot references to
7396 	 * this new name.
7397 	 */
7398 	if (inodedep->id_mkdiradd && dp->i_offset != DOTDOT_OFFSET)
7399 		merge_diradd(inodedep, dap);
7400 	FREE_LOCK(&lk);
7401 }
7402 
7403 /*
7404  * Called whenever the link count on an inode is changed.
7405  * It creates an inode dependency so that the new reference(s)
7406  * to the inode cannot be committed to disk until the updated
7407  * inode has been written.
7408  */
7409 void
7410 softdep_change_linkcnt(ip)
7411 	struct inode *ip;	/* the inode with the increased link count */
7412 {
7413 	struct inodedep *inodedep;
7414 
7415 	ACQUIRE_LOCK(&lk);
7416 	inodedep_lookup(UFSTOVFS(ip->i_ump), ip->i_number, DEPALLOC, &inodedep);
7417 	if (ip->i_nlink < ip->i_effnlink)
7418 		panic("softdep_change_linkcnt: bad delta");
7419 	inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink;
7420 	FREE_LOCK(&lk);
7421 }
7422 
7423 /*
7424  * Attach a sbdep dependency to the superblock buf so that we can keep
7425  * track of the head of the linked list of referenced but unlinked inodes.
7426  */
7427 void
7428 softdep_setup_sbupdate(ump, fs, bp)
7429 	struct ufsmount *ump;
7430 	struct fs *fs;
7431 	struct buf *bp;
7432 {
7433 	struct sbdep *sbdep;
7434 	struct worklist *wk;
7435 
7436 	if ((fs->fs_flags & FS_SUJ) == 0)
7437 		return;
7438 	LIST_FOREACH(wk, &bp->b_dep, wk_list)
7439 		if (wk->wk_type == D_SBDEP)
7440 			break;
7441 	if (wk != NULL)
7442 		return;
7443 	sbdep = malloc(sizeof(struct sbdep), M_SBDEP, M_SOFTDEP_FLAGS);
7444 	workitem_alloc(&sbdep->sb_list, D_SBDEP, UFSTOVFS(ump));
7445 	sbdep->sb_fs = fs;
7446 	sbdep->sb_ump = ump;
7447 	ACQUIRE_LOCK(&lk);
7448 	WORKLIST_INSERT(&bp->b_dep, &sbdep->sb_list);
7449 	FREE_LOCK(&lk);
7450 }
7451 
7452 /*
7453  * Return the first unlinked inodedep which is ready to be the head of the
7454  * list.  The inodedep and all those after it must have valid next pointers.
7455  */
7456 static struct inodedep *
7457 first_unlinked_inodedep(ump)
7458 	struct ufsmount *ump;
7459 {
7460 	struct inodedep *inodedep;
7461 	struct inodedep *idp;
7462 
7463 	for (inodedep = TAILQ_LAST(&ump->softdep_unlinked, inodedeplst);
7464 	    inodedep; inodedep = idp) {
7465 		if ((inodedep->id_state & UNLINKNEXT) == 0)
7466 			return (NULL);
7467 		idp = TAILQ_PREV(inodedep, inodedeplst, id_unlinked);
7468 		if (idp == NULL || (idp->id_state & UNLINKNEXT) == 0)
7469 			break;
7470 		if ((inodedep->id_state & UNLINKPREV) == 0)
7471 			panic("first_unlinked_inodedep: prev != next");
7472 	}
7473 	if (inodedep == NULL)
7474 		return (NULL);
7475 
7476 	return (inodedep);
7477 }
7478 
7479 /*
7480  * Set the sujfree unlinked head pointer prior to writing a superblock.
7481  */
7482 static void
7483 initiate_write_sbdep(sbdep)
7484 	struct sbdep *sbdep;
7485 {
7486 	struct inodedep *inodedep;
7487 	struct fs *bpfs;
7488 	struct fs *fs;
7489 
7490 	bpfs = sbdep->sb_fs;
7491 	fs = sbdep->sb_ump->um_fs;
7492 	inodedep = first_unlinked_inodedep(sbdep->sb_ump);
7493 	if (inodedep) {
7494 		fs->fs_sujfree = inodedep->id_ino;
7495 		inodedep->id_state |= UNLINKPREV;
7496 	} else
7497 		fs->fs_sujfree = 0;
7498 	bpfs->fs_sujfree = fs->fs_sujfree;
7499 }
7500 
7501 /*
7502  * After a superblock is written determine whether it must be written again
7503  * due to a changing unlinked list head.
7504  */
7505 static int
7506 handle_written_sbdep(sbdep, bp)
7507 	struct sbdep *sbdep;
7508 	struct buf *bp;
7509 {
7510 	struct inodedep *inodedep;
7511 	struct mount *mp;
7512 	struct fs *fs;
7513 
7514 	fs = sbdep->sb_fs;
7515 	mp = UFSTOVFS(sbdep->sb_ump);
7516 	inodedep = first_unlinked_inodedep(sbdep->sb_ump);
7517 	if ((inodedep && fs->fs_sujfree != inodedep->id_ino) ||
7518 	    (inodedep == NULL && fs->fs_sujfree != 0)) {
7519 		bdirty(bp);
7520 		return (1);
7521 	}
7522 	WORKITEM_FREE(sbdep, D_SBDEP);
7523 	if (fs->fs_sujfree == 0)
7524 		return (0);
7525 	if (inodedep_lookup(mp, fs->fs_sujfree, 0, &inodedep) == 0)
7526 		panic("handle_written_sbdep: lost inodedep");
7527 	/*
7528 	 * Now that we have a record of this inode in stable store allow it
7529 	 * to be written to free up pending work.  Inodes may see a lot of
7530 	 * write activity after they are unlinked which we must not hold up.
7531 	 */
7532 	for (; inodedep != NULL; inodedep = TAILQ_NEXT(inodedep, id_unlinked)) {
7533 		if ((inodedep->id_state & UNLINKLINKS) != UNLINKLINKS)
7534 			panic("handle_written_sbdep: Bad inodedep %p (0x%X)",
7535 			    inodedep, inodedep->id_state);
7536 		if (inodedep->id_state & UNLINKONLIST)
7537 			break;
7538 		inodedep->id_state |= DEPCOMPLETE | UNLINKONLIST;
7539 	}
7540 
7541 	return (0);
7542 }
7543 
7544 /*
7545  * Mark an inodedep as unlinked and insert it into the in-memory unlinked list.
7546  */
7547 static void
7548 unlinked_inodedep(mp, inodedep)
7549 	struct mount *mp;
7550 	struct inodedep *inodedep;
7551 {
7552 	struct ufsmount *ump;
7553 
7554 	if ((mp->mnt_kern_flag & MNTK_SUJ) == 0)
7555 		return;
7556 	ump = VFSTOUFS(mp);
7557 	ump->um_fs->fs_fmod = 1;
7558 	inodedep->id_state |= UNLINKED;
7559 	TAILQ_INSERT_HEAD(&ump->softdep_unlinked, inodedep, id_unlinked);
7560 }
7561 
7562 /*
7563  * Remove an inodedep from the unlinked inodedep list.  This may require
7564  * disk writes if the inode has made it that far.
7565  */
7566 static void
7567 clear_unlinked_inodedep(inodedep)
7568 	struct inodedep *inodedep;
7569 {
7570 	struct ufsmount *ump;
7571 	struct inodedep *idp;
7572 	struct inodedep *idn;
7573 	struct fs *fs;
7574 	struct buf *bp;
7575 	ino_t ino;
7576 	ino_t nino;
7577 	ino_t pino;
7578 	int error;
7579 
7580 	ump = VFSTOUFS(inodedep->id_list.wk_mp);
7581 	fs = ump->um_fs;
7582 	ino = inodedep->id_ino;
7583 	error = 0;
7584 	for (;;) {
7585 		/*
7586 		 * If nothing has yet been written simply remove us from
7587 		 * the in memory list and return.  This is the most common
7588 		 * case where handle_workitem_remove() loses the final
7589 		 * reference.
7590 		 */
7591 		if ((inodedep->id_state & UNLINKLINKS) == 0)
7592 			break;
7593 		/*
7594 		 * If we have a NEXT pointer and no PREV pointer we can simply
7595 		 * clear NEXT's PREV and remove ourselves from the list.  Be
7596 		 * careful not to clear PREV if the superblock points at
7597 		 * next as well.
7598 		 */
7599 		idn = TAILQ_NEXT(inodedep, id_unlinked);
7600 		if ((inodedep->id_state & UNLINKLINKS) == UNLINKNEXT) {
7601 			if (idn && fs->fs_sujfree != idn->id_ino)
7602 				idn->id_state &= ~UNLINKPREV;
7603 			break;
7604 		}
7605 		/*
7606 		 * Here we have an inodedep which is actually linked into
7607 		 * the list.  We must remove it by forcing a write to the
7608 		 * link before us, whether it be the superblock or an inode.
7609 		 * Unfortunately the list may change while we're waiting
7610 		 * on the buf lock for either resource so we must loop until
7611 		 * we lock the right one.  If both the superblock and an
7612 		 * inode point to this inode we must clear the inode first
7613 		 * followed by the superblock.
7614 		 */
7615 		idp = TAILQ_PREV(inodedep, inodedeplst, id_unlinked);
7616 		pino = 0;
7617 		if (idp && (idp->id_state & UNLINKNEXT))
7618 			pino = idp->id_ino;
7619 		FREE_LOCK(&lk);
7620 		if (pino == 0)
7621 			bp = getblk(ump->um_devvp, btodb(fs->fs_sblockloc),
7622 			    (int)fs->fs_sbsize, 0, 0, 0);
7623 		else
7624 			error = bread(ump->um_devvp,
7625 			    fsbtodb(fs, ino_to_fsba(fs, pino)),
7626 			    (int)fs->fs_bsize, NOCRED, &bp);
7627 		ACQUIRE_LOCK(&lk);
7628 		if (error)
7629 			break;
7630 		/* If the list has changed restart the loop. */
7631 		idp = TAILQ_PREV(inodedep, inodedeplst, id_unlinked);
7632 		nino = 0;
7633 		if (idp && (idp->id_state & UNLINKNEXT))
7634 			nino = idp->id_ino;
7635 		if (nino != pino ||
7636 		    (inodedep->id_state & UNLINKPREV) != UNLINKPREV) {
7637 			FREE_LOCK(&lk);
7638 			brelse(bp);
7639 			ACQUIRE_LOCK(&lk);
7640 			continue;
7641 		}
7642 		/*
7643 		 * Remove us from the in memory list.  After this we cannot
7644 		 * access the inodedep.
7645 		 */
7646 		idn = TAILQ_NEXT(inodedep, id_unlinked);
7647 		inodedep->id_state &= ~(UNLINKED | UNLINKLINKS);
7648 		TAILQ_REMOVE(&ump->softdep_unlinked, inodedep, id_unlinked);
7649 		/*
7650 		 * Determine the next inode number.
7651 		 */
7652 		nino = 0;
7653 		if (idn) {
7654 			/*
7655 			 * If next isn't on the list we can just clear prev's
7656 			 * state and schedule it to be fixed later.  No need
7657 			 * to synchronously write if we're not in the real
7658 			 * list.
7659 			 */
7660 			if ((idn->id_state & UNLINKPREV) == 0 && pino != 0) {
7661 				idp->id_state &= ~UNLINKNEXT;
7662 				if ((idp->id_state & ONWORKLIST) == 0)
7663 					WORKLIST_INSERT(&bp->b_dep,
7664 					    &idp->id_list);
7665 				FREE_LOCK(&lk);
7666 				bawrite(bp);
7667 				ACQUIRE_LOCK(&lk);
7668 				return;
7669 			}
7670 			nino = idn->id_ino;
7671 		}
7672 		FREE_LOCK(&lk);
7673 		/*
7674 		 * The predecessor's next pointer is manually updated here
7675 		 * so that the NEXT flag is never cleared for an element
7676 		 * that is in the list.
7677 		 */
7678 		if (pino == 0) {
7679 			bcopy((caddr_t)fs, bp->b_data, (u_int)fs->fs_sbsize);
7680 			ffs_oldfscompat_write((struct fs *)bp->b_data, ump);
7681 			softdep_setup_sbupdate(ump, (struct fs *)bp->b_data,
7682 			    bp);
7683 		} else if (fs->fs_magic == FS_UFS1_MAGIC)
7684 			((struct ufs1_dinode *)bp->b_data +
7685 			    ino_to_fsbo(fs, pino))->di_freelink = nino;
7686 		else
7687 			((struct ufs2_dinode *)bp->b_data +
7688 			    ino_to_fsbo(fs, pino))->di_freelink = nino;
7689 		/*
7690 		 * If the bwrite fails we have no recourse to recover.  The
7691 		 * filesystem is corrupted already.
7692 		 */
7693 		bwrite(bp);
7694 		ACQUIRE_LOCK(&lk);
7695 		/*
7696 		 * If the superblock pointer still needs to be cleared force
7697 		 * a write here.
7698 		 */
7699 		if (fs->fs_sujfree == ino) {
7700 			FREE_LOCK(&lk);
7701 			bp = getblk(ump->um_devvp, btodb(fs->fs_sblockloc),
7702 			    (int)fs->fs_sbsize, 0, 0, 0);
7703 			bcopy((caddr_t)fs, bp->b_data, (u_int)fs->fs_sbsize);
7704 			ffs_oldfscompat_write((struct fs *)bp->b_data, ump);
7705 			softdep_setup_sbupdate(ump, (struct fs *)bp->b_data,
7706 			    bp);
7707 			bwrite(bp);
7708 			ACQUIRE_LOCK(&lk);
7709 		}
7710 		if (fs->fs_sujfree != ino)
7711 			return;
7712 		panic("clear_unlinked_inodedep: Failed to clear free head");
7713 	}
7714 	if (inodedep->id_ino == fs->fs_sujfree)
7715 		panic("clear_unlinked_inodedep: Freeing head of free list");
7716 	inodedep->id_state &= ~(UNLINKED | UNLINKLINKS);
7717 	TAILQ_REMOVE(&ump->softdep_unlinked, inodedep, id_unlinked);
7718 	return;
7719 }
7720 
7721 /*
7722  * This workitem decrements the inode's link count.
7723  * If the link count reaches zero, the file is removed.
7724  */
7725 static void
7726 handle_workitem_remove(dirrem, xp)
7727 	struct dirrem *dirrem;
7728 	struct vnode *xp;
7729 {
7730 	struct inodedep *inodedep;
7731 	struct workhead dotdotwk;
7732 	struct worklist *wk;
7733 	struct ufsmount *ump;
7734 	struct mount *mp;
7735 	struct vnode *vp;
7736 	struct inode *ip;
7737 	ino_t oldinum;
7738 	int error;
7739 
7740 	if (dirrem->dm_state & ONWORKLIST)
7741 		panic("handle_workitem_remove: dirrem %p still on worklist",
7742 		    dirrem);
7743 	oldinum = dirrem->dm_oldinum;
7744 	mp = dirrem->dm_list.wk_mp;
7745 	ump = VFSTOUFS(mp);
7746 	if ((vp = xp) == NULL &&
7747 	    (error = ffs_vgetf(mp, oldinum, LK_EXCLUSIVE, &vp,
7748 	    FFSV_FORCEINSMQ)) != 0) {
7749 		softdep_error("handle_workitem_remove: vget", error);
7750 		return;
7751 	}
7752 	ip = VTOI(vp);
7753 	ACQUIRE_LOCK(&lk);
7754 	if ((inodedep_lookup(mp, oldinum, 0, &inodedep)) == 0)
7755 		panic("handle_workitem_remove: lost inodedep");
7756 	if (dirrem->dm_state & ONDEPLIST)
7757 		LIST_REMOVE(dirrem, dm_inonext);
7758 	KASSERT(LIST_EMPTY(&dirrem->dm_jremrefhd),
7759 	    ("handle_workitem_remove:  Journal entries not written."));
7760 
7761 	/*
7762 	 * Move all dependencies waiting on the remove to complete
7763 	 * from the dirrem to the inode inowait list to be completed
7764 	 * after the inode has been updated and written to disk.  Any
7765 	 * marked MKDIR_PARENT are saved to be completed when the .. ref
7766 	 * is removed.
7767 	 */
7768 	LIST_INIT(&dotdotwk);
7769 	while ((wk = LIST_FIRST(&dirrem->dm_jwork)) != NULL) {
7770 		WORKLIST_REMOVE(wk);
7771 		if (wk->wk_state & MKDIR_PARENT) {
7772 			wk->wk_state &= ~MKDIR_PARENT;
7773 			WORKLIST_INSERT(&dotdotwk, wk);
7774 			continue;
7775 		}
7776 		WORKLIST_INSERT(&inodedep->id_inowait, wk);
7777 	}
7778 	LIST_SWAP(&dirrem->dm_jwork, &dotdotwk, worklist, wk_list);
7779 	/*
7780 	 * Normal file deletion.
7781 	 */
7782 	if ((dirrem->dm_state & RMDIR) == 0) {
7783 		ip->i_nlink--;
7784 		DIP_SET(ip, i_nlink, ip->i_nlink);
7785 		ip->i_flag |= IN_CHANGE;
7786 		if (ip->i_nlink < ip->i_effnlink)
7787 			panic("handle_workitem_remove: bad file delta");
7788 		if (ip->i_nlink == 0)
7789 			unlinked_inodedep(mp, inodedep);
7790 		inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink;
7791 		num_dirrem -= 1;
7792 		KASSERT(LIST_EMPTY(&dirrem->dm_jwork),
7793 		    ("handle_workitem_remove: worklist not empty. %s",
7794 		    TYPENAME(LIST_FIRST(&dirrem->dm_jwork)->wk_type)));
7795 		WORKITEM_FREE(dirrem, D_DIRREM);
7796 		FREE_LOCK(&lk);
7797 		goto out;
7798 	}
7799 	/*
7800 	 * Directory deletion. Decrement reference count for both the
7801 	 * just deleted parent directory entry and the reference for ".".
7802 	 * Arrange to have the reference count on the parent decremented
7803 	 * to account for the loss of "..".
7804 	 */
7805 	ip->i_nlink -= 2;
7806 	DIP_SET(ip, i_nlink, ip->i_nlink);
7807 	ip->i_flag |= IN_CHANGE;
7808 	if (ip->i_nlink < ip->i_effnlink)
7809 		panic("handle_workitem_remove: bad dir delta");
7810 	if (ip->i_nlink == 0)
7811 		unlinked_inodedep(mp, inodedep);
7812 	inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink;
7813 	/*
7814 	 * Rename a directory to a new parent. Since, we are both deleting
7815 	 * and creating a new directory entry, the link count on the new
7816 	 * directory should not change. Thus we skip the followup dirrem.
7817 	 */
7818 	if (dirrem->dm_state & DIRCHG) {
7819 		KASSERT(LIST_EMPTY(&dirrem->dm_jwork),
7820 		    ("handle_workitem_remove: DIRCHG and worklist not empty."));
7821 		num_dirrem -= 1;
7822 		WORKITEM_FREE(dirrem, D_DIRREM);
7823 		FREE_LOCK(&lk);
7824 		goto out;
7825 	}
7826 	dirrem->dm_state = ONDEPLIST;
7827 	dirrem->dm_oldinum = dirrem->dm_dirinum;
7828 	/*
7829 	 * Place the dirrem on the parent's diremhd list.
7830 	 */
7831 	if (inodedep_lookup(mp, dirrem->dm_oldinum, 0, &inodedep) == 0)
7832 		panic("handle_workitem_remove: lost dir inodedep");
7833 	LIST_INSERT_HEAD(&inodedep->id_dirremhd, dirrem, dm_inonext);
7834 	/*
7835 	 * If the allocated inode has never been written to disk, then
7836 	 * the on-disk inode is zero'ed and we can remove the file
7837 	 * immediately.  When journaling if the inode has been marked
7838 	 * unlinked and not DEPCOMPLETE we know it can never be written.
7839 	 */
7840 	inodedep_lookup(mp, oldinum, 0, &inodedep);
7841 	if (inodedep == NULL ||
7842 	    (inodedep->id_state & (DEPCOMPLETE | UNLINKED)) == UNLINKED ||
7843 	    check_inode_unwritten(inodedep)) {
7844 		if (xp != NULL)
7845 			add_to_worklist(&dirrem->dm_list, 0);
7846 		FREE_LOCK(&lk);
7847 		if (xp == NULL) {
7848 			vput(vp);
7849 			handle_workitem_remove(dirrem, NULL);
7850 		}
7851 		return;
7852 	}
7853 	WORKLIST_INSERT(&inodedep->id_inowait, &dirrem->dm_list);
7854 	FREE_LOCK(&lk);
7855 	ip->i_flag |= IN_CHANGE;
7856 out:
7857 	ffs_update(vp, 0);
7858 	if (xp == NULL)
7859 		vput(vp);
7860 }
7861 
7862 /*
7863  * Inode de-allocation dependencies.
7864  *
7865  * When an inode's link count is reduced to zero, it can be de-allocated. We
7866  * found it convenient to postpone de-allocation until after the inode is
7867  * written to disk with its new link count (zero).  At this point, all of the
7868  * on-disk inode's block pointers are nullified and, with careful dependency
7869  * list ordering, all dependencies related to the inode will be satisfied and
7870  * the corresponding dependency structures de-allocated.  So, if/when the
7871  * inode is reused, there will be no mixing of old dependencies with new
7872  * ones.  This artificial dependency is set up by the block de-allocation
7873  * procedure above (softdep_setup_freeblocks) and completed by the
7874  * following procedure.
7875  */
7876 static void
7877 handle_workitem_freefile(freefile)
7878 	struct freefile *freefile;
7879 {
7880 	struct workhead wkhd;
7881 	struct fs *fs;
7882 	struct inodedep *idp;
7883 	struct ufsmount *ump;
7884 	int error;
7885 
7886 	ump = VFSTOUFS(freefile->fx_list.wk_mp);
7887 	fs = ump->um_fs;
7888 #ifdef DEBUG
7889 	ACQUIRE_LOCK(&lk);
7890 	error = inodedep_lookup(UFSTOVFS(ump), freefile->fx_oldinum, 0, &idp);
7891 	FREE_LOCK(&lk);
7892 	if (error)
7893 		panic("handle_workitem_freefile: inodedep %p survived", idp);
7894 #endif
7895 	UFS_LOCK(ump);
7896 	fs->fs_pendinginodes -= 1;
7897 	UFS_UNLOCK(ump);
7898 	LIST_INIT(&wkhd);
7899 	LIST_SWAP(&freefile->fx_jwork, &wkhd, worklist, wk_list);
7900 	if ((error = ffs_freefile(ump, fs, freefile->fx_devvp,
7901 	    freefile->fx_oldinum, freefile->fx_mode, &wkhd)) != 0)
7902 		softdep_error("handle_workitem_freefile", error);
7903 	ACQUIRE_LOCK(&lk);
7904 	WORKITEM_FREE(freefile, D_FREEFILE);
7905 	FREE_LOCK(&lk);
7906 }
7907 
7908 
7909 /*
7910  * Helper function which unlinks marker element from work list and returns
7911  * the next element on the list.
7912  */
7913 static __inline struct worklist *
7914 markernext(struct worklist *marker)
7915 {
7916 	struct worklist *next;
7917 
7918 	next = LIST_NEXT(marker, wk_list);
7919 	LIST_REMOVE(marker, wk_list);
7920 	return next;
7921 }
7922 
7923 /*
7924  * Disk writes.
7925  *
7926  * The dependency structures constructed above are most actively used when file
7927  * system blocks are written to disk.  No constraints are placed on when a
7928  * block can be written, but unsatisfied update dependencies are made safe by
7929  * modifying (or replacing) the source memory for the duration of the disk
7930  * write.  When the disk write completes, the memory block is again brought
7931  * up-to-date.
7932  *
7933  * In-core inode structure reclamation.
7934  *
7935  * Because there are a finite number of "in-core" inode structures, they are
7936  * reused regularly.  By transferring all inode-related dependencies to the
7937  * in-memory inode block and indexing them separately (via "inodedep"s), we
7938  * can allow "in-core" inode structures to be reused at any time and avoid
7939  * any increase in contention.
7940  *
7941  * Called just before entering the device driver to initiate a new disk I/O.
7942  * The buffer must be locked, thus, no I/O completion operations can occur
7943  * while we are manipulating its associated dependencies.
7944  */
7945 static void
7946 softdep_disk_io_initiation(bp)
7947 	struct buf *bp;		/* structure describing disk write to occur */
7948 {
7949 	struct worklist *wk;
7950 	struct worklist marker;
7951 	struct inodedep *inodedep;
7952 	struct freeblks *freeblks;
7953 	struct jfreeblk *jfreeblk;
7954 	struct newblk *newblk;
7955 
7956 	/*
7957 	 * We only care about write operations. There should never
7958 	 * be dependencies for reads.
7959 	 */
7960 	if (bp->b_iocmd != BIO_WRITE)
7961 		panic("softdep_disk_io_initiation: not write");
7962 
7963 	if (bp->b_vflags & BV_BKGRDINPROG)
7964 		panic("softdep_disk_io_initiation: Writing buffer with "
7965 		    "background write in progress: %p", bp);
7966 
7967 	marker.wk_type = D_LAST + 1;	/* Not a normal workitem */
7968 	PHOLD(curproc);			/* Don't swap out kernel stack */
7969 
7970 	ACQUIRE_LOCK(&lk);
7971 	/*
7972 	 * Do any necessary pre-I/O processing.
7973 	 */
7974 	for (wk = LIST_FIRST(&bp->b_dep); wk != NULL;
7975 	     wk = markernext(&marker)) {
7976 		LIST_INSERT_AFTER(wk, &marker, wk_list);
7977 		switch (wk->wk_type) {
7978 
7979 		case D_PAGEDEP:
7980 			initiate_write_filepage(WK_PAGEDEP(wk), bp);
7981 			continue;
7982 
7983 		case D_INODEDEP:
7984 			inodedep = WK_INODEDEP(wk);
7985 			if (inodedep->id_fs->fs_magic == FS_UFS1_MAGIC)
7986 				initiate_write_inodeblock_ufs1(inodedep, bp);
7987 			else
7988 				initiate_write_inodeblock_ufs2(inodedep, bp);
7989 			continue;
7990 
7991 		case D_INDIRDEP:
7992 			initiate_write_indirdep(WK_INDIRDEP(wk), bp);
7993 			continue;
7994 
7995 		case D_BMSAFEMAP:
7996 			initiate_write_bmsafemap(WK_BMSAFEMAP(wk), bp);
7997 			continue;
7998 
7999 		case D_JSEG:
8000 			WK_JSEG(wk)->js_buf = NULL;
8001 			continue;
8002 
8003 		case D_FREEBLKS:
8004 			freeblks = WK_FREEBLKS(wk);
8005 			jfreeblk = LIST_FIRST(&freeblks->fb_jfreeblkhd);
8006 			/*
8007 			 * We have to wait for the jfreeblks to be journaled
8008 			 * before we can write an inodeblock with updated
8009 			 * pointers.  Be careful to arrange the marker so
8010 			 * we revisit the jfreeblk if it's not removed by
8011 			 * the first jwait().
8012 			 */
8013 			if (jfreeblk != NULL) {
8014 				LIST_REMOVE(&marker, wk_list);
8015 				LIST_INSERT_BEFORE(wk, &marker, wk_list);
8016 				jwait(&jfreeblk->jf_list);
8017 			}
8018 			continue;
8019 		case D_ALLOCDIRECT:
8020 		case D_ALLOCINDIR:
8021 			/*
8022 			 * We have to wait for the jnewblk to be journaled
8023 			 * before we can write to a block otherwise the
8024 			 * contents may be confused with an earlier file
8025 			 * at recovery time.  Handle the marker as described
8026 			 * above.
8027 			 */
8028 			newblk = WK_NEWBLK(wk);
8029 			if (newblk->nb_jnewblk != NULL) {
8030 				LIST_REMOVE(&marker, wk_list);
8031 				LIST_INSERT_BEFORE(wk, &marker, wk_list);
8032 				jwait(&newblk->nb_jnewblk->jn_list);
8033 			}
8034 			continue;
8035 
8036 		case D_SBDEP:
8037 			initiate_write_sbdep(WK_SBDEP(wk));
8038 			continue;
8039 
8040 		case D_MKDIR:
8041 		case D_FREEWORK:
8042 		case D_FREEDEP:
8043 		case D_JSEGDEP:
8044 			continue;
8045 
8046 		default:
8047 			panic("handle_disk_io_initiation: Unexpected type %s",
8048 			    TYPENAME(wk->wk_type));
8049 			/* NOTREACHED */
8050 		}
8051 	}
8052 	FREE_LOCK(&lk);
8053 	PRELE(curproc);			/* Allow swapout of kernel stack */
8054 }
8055 
8056 /*
8057  * Called from within the procedure above to deal with unsatisfied
8058  * allocation dependencies in a directory. The buffer must be locked,
8059  * thus, no I/O completion operations can occur while we are
8060  * manipulating its associated dependencies.
8061  */
8062 static void
8063 initiate_write_filepage(pagedep, bp)
8064 	struct pagedep *pagedep;
8065 	struct buf *bp;
8066 {
8067 	struct jremref *jremref;
8068 	struct jmvref *jmvref;
8069 	struct dirrem *dirrem;
8070 	struct diradd *dap;
8071 	struct direct *ep;
8072 	int i;
8073 
8074 	if (pagedep->pd_state & IOSTARTED) {
8075 		/*
8076 		 * This can only happen if there is a driver that does not
8077 		 * understand chaining. Here biodone will reissue the call
8078 		 * to strategy for the incomplete buffers.
8079 		 */
8080 		printf("initiate_write_filepage: already started\n");
8081 		return;
8082 	}
8083 	pagedep->pd_state |= IOSTARTED;
8084 	/*
8085 	 * Wait for all journal remove dependencies to hit the disk.
8086 	 * We can not allow any potentially conflicting directory adds
8087 	 * to be visible before removes and rollback is too difficult.
8088 	 * lk may be dropped and re-acquired, however we hold the buf
8089 	 * locked so the dependency can not go away.
8090 	 */
8091 	LIST_FOREACH(dirrem, &pagedep->pd_dirremhd, dm_next)
8092 		while ((jremref = LIST_FIRST(&dirrem->dm_jremrefhd)) != NULL) {
8093 			stat_jwait_filepage++;
8094 			jwait(&jremref->jr_list);
8095 		}
8096 	while ((jmvref = LIST_FIRST(&pagedep->pd_jmvrefhd)) != NULL) {
8097 		stat_jwait_filepage++;
8098 		jwait(&jmvref->jm_list);
8099 	}
8100 	for (i = 0; i < DAHASHSZ; i++) {
8101 		LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist) {
8102 			ep = (struct direct *)
8103 			    ((char *)bp->b_data + dap->da_offset);
8104 			if (ep->d_ino != dap->da_newinum)
8105 				panic("%s: dir inum %d != new %d",
8106 				    "initiate_write_filepage",
8107 				    ep->d_ino, dap->da_newinum);
8108 			if (dap->da_state & DIRCHG)
8109 				ep->d_ino = dap->da_previous->dm_oldinum;
8110 			else
8111 				ep->d_ino = 0;
8112 			dap->da_state &= ~ATTACHED;
8113 			dap->da_state |= UNDONE;
8114 		}
8115 	}
8116 }
8117 
8118 /*
8119  * Version of initiate_write_inodeblock that handles UFS1 dinodes.
8120  * Note that any bug fixes made to this routine must be done in the
8121  * version found below.
8122  *
8123  * Called from within the procedure above to deal with unsatisfied
8124  * allocation dependencies in an inodeblock. The buffer must be
8125  * locked, thus, no I/O completion operations can occur while we
8126  * are manipulating its associated dependencies.
8127  */
8128 static void
8129 initiate_write_inodeblock_ufs1(inodedep, bp)
8130 	struct inodedep *inodedep;
8131 	struct buf *bp;			/* The inode block */
8132 {
8133 	struct allocdirect *adp, *lastadp;
8134 	struct ufs1_dinode *dp;
8135 	struct ufs1_dinode *sip;
8136 	struct inoref *inoref;
8137 	struct fs *fs;
8138 	ufs_lbn_t i;
8139 #ifdef INVARIANTS
8140 	ufs_lbn_t prevlbn = 0;
8141 #endif
8142 	int deplist;
8143 
8144 	if (inodedep->id_state & IOSTARTED)
8145 		panic("initiate_write_inodeblock_ufs1: already started");
8146 	inodedep->id_state |= IOSTARTED;
8147 	fs = inodedep->id_fs;
8148 	dp = (struct ufs1_dinode *)bp->b_data +
8149 	    ino_to_fsbo(fs, inodedep->id_ino);
8150 
8151 	/*
8152 	 * If we're on the unlinked list but have not yet written our
8153 	 * next pointer initialize it here.
8154 	 */
8155 	if ((inodedep->id_state & (UNLINKED | UNLINKNEXT)) == UNLINKED) {
8156 		struct inodedep *inon;
8157 
8158 		inon = TAILQ_NEXT(inodedep, id_unlinked);
8159 		dp->di_freelink = inon ? inon->id_ino : 0;
8160 	}
8161 	/*
8162 	 * If the bitmap is not yet written, then the allocated
8163 	 * inode cannot be written to disk.
8164 	 */
8165 	if ((inodedep->id_state & DEPCOMPLETE) == 0) {
8166 		if (inodedep->id_savedino1 != NULL)
8167 			panic("initiate_write_inodeblock_ufs1: I/O underway");
8168 		FREE_LOCK(&lk);
8169 		sip = malloc(sizeof(struct ufs1_dinode),
8170 		    M_SAVEDINO, M_SOFTDEP_FLAGS);
8171 		ACQUIRE_LOCK(&lk);
8172 		inodedep->id_savedino1 = sip;
8173 		*inodedep->id_savedino1 = *dp;
8174 		bzero((caddr_t)dp, sizeof(struct ufs1_dinode));
8175 		dp->di_gen = inodedep->id_savedino1->di_gen;
8176 		dp->di_freelink = inodedep->id_savedino1->di_freelink;
8177 		return;
8178 	}
8179 	/*
8180 	 * If no dependencies, then there is nothing to roll back.
8181 	 */
8182 	inodedep->id_savedsize = dp->di_size;
8183 	inodedep->id_savedextsize = 0;
8184 	inodedep->id_savednlink = dp->di_nlink;
8185 	if (TAILQ_EMPTY(&inodedep->id_inoupdt) &&
8186 	    TAILQ_EMPTY(&inodedep->id_inoreflst))
8187 		return;
8188 	/*
8189 	 * Revert the link count to that of the first unwritten journal entry.
8190 	 */
8191 	inoref = TAILQ_FIRST(&inodedep->id_inoreflst);
8192 	if (inoref)
8193 		dp->di_nlink = inoref->if_nlink;
8194 	/*
8195 	 * Set the dependencies to busy.
8196 	 */
8197 	for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp;
8198 	     adp = TAILQ_NEXT(adp, ad_next)) {
8199 #ifdef INVARIANTS
8200 		if (deplist != 0 && prevlbn >= adp->ad_offset)
8201 			panic("softdep_write_inodeblock: lbn order");
8202 		prevlbn = adp->ad_offset;
8203 		if (adp->ad_offset < NDADDR &&
8204 		    dp->di_db[adp->ad_offset] != adp->ad_newblkno)
8205 			panic("%s: direct pointer #%jd mismatch %d != %jd",
8206 			    "softdep_write_inodeblock",
8207 			    (intmax_t)adp->ad_offset,
8208 			    dp->di_db[adp->ad_offset],
8209 			    (intmax_t)adp->ad_newblkno);
8210 		if (adp->ad_offset >= NDADDR &&
8211 		    dp->di_ib[adp->ad_offset - NDADDR] != adp->ad_newblkno)
8212 			panic("%s: indirect pointer #%jd mismatch %d != %jd",
8213 			    "softdep_write_inodeblock",
8214 			    (intmax_t)adp->ad_offset - NDADDR,
8215 			    dp->di_ib[adp->ad_offset - NDADDR],
8216 			    (intmax_t)adp->ad_newblkno);
8217 		deplist |= 1 << adp->ad_offset;
8218 		if ((adp->ad_state & ATTACHED) == 0)
8219 			panic("softdep_write_inodeblock: Unknown state 0x%x",
8220 			    adp->ad_state);
8221 #endif /* INVARIANTS */
8222 		adp->ad_state &= ~ATTACHED;
8223 		adp->ad_state |= UNDONE;
8224 	}
8225 	/*
8226 	 * The on-disk inode cannot claim to be any larger than the last
8227 	 * fragment that has been written. Otherwise, the on-disk inode
8228 	 * might have fragments that were not the last block in the file
8229 	 * which would corrupt the filesystem.
8230 	 */
8231 	for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp;
8232 	     lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) {
8233 		if (adp->ad_offset >= NDADDR)
8234 			break;
8235 		dp->di_db[adp->ad_offset] = adp->ad_oldblkno;
8236 		/* keep going until hitting a rollback to a frag */
8237 		if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize)
8238 			continue;
8239 		dp->di_size = fs->fs_bsize * adp->ad_offset + adp->ad_oldsize;
8240 		for (i = adp->ad_offset + 1; i < NDADDR; i++) {
8241 #ifdef INVARIANTS
8242 			if (dp->di_db[i] != 0 && (deplist & (1 << i)) == 0)
8243 				panic("softdep_write_inodeblock: lost dep1");
8244 #endif /* INVARIANTS */
8245 			dp->di_db[i] = 0;
8246 		}
8247 		for (i = 0; i < NIADDR; i++) {
8248 #ifdef INVARIANTS
8249 			if (dp->di_ib[i] != 0 &&
8250 			    (deplist & ((1 << NDADDR) << i)) == 0)
8251 				panic("softdep_write_inodeblock: lost dep2");
8252 #endif /* INVARIANTS */
8253 			dp->di_ib[i] = 0;
8254 		}
8255 		return;
8256 	}
8257 	/*
8258 	 * If we have zero'ed out the last allocated block of the file,
8259 	 * roll back the size to the last currently allocated block.
8260 	 * We know that this last allocated block is a full-sized as
8261 	 * we already checked for fragments in the loop above.
8262 	 */
8263 	if (lastadp != NULL &&
8264 	    dp->di_size <= (lastadp->ad_offset + 1) * fs->fs_bsize) {
8265 		for (i = lastadp->ad_offset; i >= 0; i--)
8266 			if (dp->di_db[i] != 0)
8267 				break;
8268 		dp->di_size = (i + 1) * fs->fs_bsize;
8269 	}
8270 	/*
8271 	 * The only dependencies are for indirect blocks.
8272 	 *
8273 	 * The file size for indirect block additions is not guaranteed.
8274 	 * Such a guarantee would be non-trivial to achieve. The conventional
8275 	 * synchronous write implementation also does not make this guarantee.
8276 	 * Fsck should catch and fix discrepancies. Arguably, the file size
8277 	 * can be over-estimated without destroying integrity when the file
8278 	 * moves into the indirect blocks (i.e., is large). If we want to
8279 	 * postpone fsck, we are stuck with this argument.
8280 	 */
8281 	for (; adp; adp = TAILQ_NEXT(adp, ad_next))
8282 		dp->di_ib[adp->ad_offset - NDADDR] = 0;
8283 }
8284 
8285 /*
8286  * Version of initiate_write_inodeblock that handles UFS2 dinodes.
8287  * Note that any bug fixes made to this routine must be done in the
8288  * version found above.
8289  *
8290  * Called from within the procedure above to deal with unsatisfied
8291  * allocation dependencies in an inodeblock. The buffer must be
8292  * locked, thus, no I/O completion operations can occur while we
8293  * are manipulating its associated dependencies.
8294  */
8295 static void
8296 initiate_write_inodeblock_ufs2(inodedep, bp)
8297 	struct inodedep *inodedep;
8298 	struct buf *bp;			/* The inode block */
8299 {
8300 	struct allocdirect *adp, *lastadp;
8301 	struct ufs2_dinode *dp;
8302 	struct ufs2_dinode *sip;
8303 	struct inoref *inoref;
8304 	struct fs *fs;
8305 	ufs_lbn_t i;
8306 #ifdef INVARIANTS
8307 	ufs_lbn_t prevlbn = 0;
8308 #endif
8309 	int deplist;
8310 
8311 	if (inodedep->id_state & IOSTARTED)
8312 		panic("initiate_write_inodeblock_ufs2: already started");
8313 	inodedep->id_state |= IOSTARTED;
8314 	fs = inodedep->id_fs;
8315 	dp = (struct ufs2_dinode *)bp->b_data +
8316 	    ino_to_fsbo(fs, inodedep->id_ino);
8317 
8318 	/*
8319 	 * If we're on the unlinked list but have not yet written our
8320 	 * next pointer initialize it here.
8321 	 */
8322 	if ((inodedep->id_state & (UNLINKED | UNLINKNEXT)) == UNLINKED) {
8323 		struct inodedep *inon;
8324 
8325 		inon = TAILQ_NEXT(inodedep, id_unlinked);
8326 		dp->di_freelink = inon ? inon->id_ino : 0;
8327 	}
8328 	if ((inodedep->id_state & (UNLINKED | UNLINKNEXT)) ==
8329 	    (UNLINKED | UNLINKNEXT)) {
8330 		struct inodedep *inon;
8331 		ino_t freelink;
8332 
8333 		inon = TAILQ_NEXT(inodedep, id_unlinked);
8334 		freelink = inon ? inon->id_ino : 0;
8335 		if (freelink != dp->di_freelink)
8336 			panic("ino %p(0x%X) %d, %d != %d",
8337 			    inodedep, inodedep->id_state, inodedep->id_ino,
8338 			    freelink, dp->di_freelink);
8339 	}
8340 	/*
8341 	 * If the bitmap is not yet written, then the allocated
8342 	 * inode cannot be written to disk.
8343 	 */
8344 	if ((inodedep->id_state & DEPCOMPLETE) == 0) {
8345 		if (inodedep->id_savedino2 != NULL)
8346 			panic("initiate_write_inodeblock_ufs2: I/O underway");
8347 		FREE_LOCK(&lk);
8348 		sip = malloc(sizeof(struct ufs2_dinode),
8349 		    M_SAVEDINO, M_SOFTDEP_FLAGS);
8350 		ACQUIRE_LOCK(&lk);
8351 		inodedep->id_savedino2 = sip;
8352 		*inodedep->id_savedino2 = *dp;
8353 		bzero((caddr_t)dp, sizeof(struct ufs2_dinode));
8354 		dp->di_gen = inodedep->id_savedino2->di_gen;
8355 		dp->di_freelink = inodedep->id_savedino2->di_freelink;
8356 		return;
8357 	}
8358 	/*
8359 	 * If no dependencies, then there is nothing to roll back.
8360 	 */
8361 	inodedep->id_savedsize = dp->di_size;
8362 	inodedep->id_savedextsize = dp->di_extsize;
8363 	inodedep->id_savednlink = dp->di_nlink;
8364 	if (TAILQ_EMPTY(&inodedep->id_inoupdt) &&
8365 	    TAILQ_EMPTY(&inodedep->id_extupdt) &&
8366 	    TAILQ_EMPTY(&inodedep->id_inoreflst))
8367 		return;
8368 	/*
8369 	 * Revert the link count to that of the first unwritten journal entry.
8370 	 */
8371 	inoref = TAILQ_FIRST(&inodedep->id_inoreflst);
8372 	if (inoref)
8373 		dp->di_nlink = inoref->if_nlink;
8374 
8375 	/*
8376 	 * Set the ext data dependencies to busy.
8377 	 */
8378 	for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_extupdt); adp;
8379 	     adp = TAILQ_NEXT(adp, ad_next)) {
8380 #ifdef INVARIANTS
8381 		if (deplist != 0 && prevlbn >= adp->ad_offset)
8382 			panic("softdep_write_inodeblock: lbn order");
8383 		prevlbn = adp->ad_offset;
8384 		if (dp->di_extb[adp->ad_offset] != adp->ad_newblkno)
8385 			panic("%s: direct pointer #%jd mismatch %jd != %jd",
8386 			    "softdep_write_inodeblock",
8387 			    (intmax_t)adp->ad_offset,
8388 			    (intmax_t)dp->di_extb[adp->ad_offset],
8389 			    (intmax_t)adp->ad_newblkno);
8390 		deplist |= 1 << adp->ad_offset;
8391 		if ((adp->ad_state & ATTACHED) == 0)
8392 			panic("softdep_write_inodeblock: Unknown state 0x%x",
8393 			    adp->ad_state);
8394 #endif /* INVARIANTS */
8395 		adp->ad_state &= ~ATTACHED;
8396 		adp->ad_state |= UNDONE;
8397 	}
8398 	/*
8399 	 * The on-disk inode cannot claim to be any larger than the last
8400 	 * fragment that has been written. Otherwise, the on-disk inode
8401 	 * might have fragments that were not the last block in the ext
8402 	 * data which would corrupt the filesystem.
8403 	 */
8404 	for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_extupdt); adp;
8405 	     lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) {
8406 		dp->di_extb[adp->ad_offset] = adp->ad_oldblkno;
8407 		/* keep going until hitting a rollback to a frag */
8408 		if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize)
8409 			continue;
8410 		dp->di_extsize = fs->fs_bsize * adp->ad_offset + adp->ad_oldsize;
8411 		for (i = adp->ad_offset + 1; i < NXADDR; i++) {
8412 #ifdef INVARIANTS
8413 			if (dp->di_extb[i] != 0 && (deplist & (1 << i)) == 0)
8414 				panic("softdep_write_inodeblock: lost dep1");
8415 #endif /* INVARIANTS */
8416 			dp->di_extb[i] = 0;
8417 		}
8418 		lastadp = NULL;
8419 		break;
8420 	}
8421 	/*
8422 	 * If we have zero'ed out the last allocated block of the ext
8423 	 * data, roll back the size to the last currently allocated block.
8424 	 * We know that this last allocated block is a full-sized as
8425 	 * we already checked for fragments in the loop above.
8426 	 */
8427 	if (lastadp != NULL &&
8428 	    dp->di_extsize <= (lastadp->ad_offset + 1) * fs->fs_bsize) {
8429 		for (i = lastadp->ad_offset; i >= 0; i--)
8430 			if (dp->di_extb[i] != 0)
8431 				break;
8432 		dp->di_extsize = (i + 1) * fs->fs_bsize;
8433 	}
8434 	/*
8435 	 * Set the file data dependencies to busy.
8436 	 */
8437 	for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp;
8438 	     adp = TAILQ_NEXT(adp, ad_next)) {
8439 #ifdef INVARIANTS
8440 		if (deplist != 0 && prevlbn >= adp->ad_offset)
8441 			panic("softdep_write_inodeblock: lbn order");
8442 		prevlbn = adp->ad_offset;
8443 		if (adp->ad_offset < NDADDR &&
8444 		    dp->di_db[adp->ad_offset] != adp->ad_newblkno)
8445 			panic("%s: direct pointer #%jd mismatch %jd != %jd",
8446 			    "softdep_write_inodeblock",
8447 			    (intmax_t)adp->ad_offset,
8448 			    (intmax_t)dp->di_db[adp->ad_offset],
8449 			    (intmax_t)adp->ad_newblkno);
8450 		if (adp->ad_offset >= NDADDR &&
8451 		    dp->di_ib[adp->ad_offset - NDADDR] != adp->ad_newblkno)
8452 			panic("%s indirect pointer #%jd mismatch %jd != %jd",
8453 			    "softdep_write_inodeblock:",
8454 			    (intmax_t)adp->ad_offset - NDADDR,
8455 			    (intmax_t)dp->di_ib[adp->ad_offset - NDADDR],
8456 			    (intmax_t)adp->ad_newblkno);
8457 		deplist |= 1 << adp->ad_offset;
8458 		if ((adp->ad_state & ATTACHED) == 0)
8459 			panic("softdep_write_inodeblock: Unknown state 0x%x",
8460 			    adp->ad_state);
8461 #endif /* INVARIANTS */
8462 		adp->ad_state &= ~ATTACHED;
8463 		adp->ad_state |= UNDONE;
8464 	}
8465 	/*
8466 	 * The on-disk inode cannot claim to be any larger than the last
8467 	 * fragment that has been written. Otherwise, the on-disk inode
8468 	 * might have fragments that were not the last block in the file
8469 	 * which would corrupt the filesystem.
8470 	 */
8471 	for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp;
8472 	     lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) {
8473 		if (adp->ad_offset >= NDADDR)
8474 			break;
8475 		dp->di_db[adp->ad_offset] = adp->ad_oldblkno;
8476 		/* keep going until hitting a rollback to a frag */
8477 		if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize)
8478 			continue;
8479 		dp->di_size = fs->fs_bsize * adp->ad_offset + adp->ad_oldsize;
8480 		for (i = adp->ad_offset + 1; i < NDADDR; i++) {
8481 #ifdef INVARIANTS
8482 			if (dp->di_db[i] != 0 && (deplist & (1 << i)) == 0)
8483 				panic("softdep_write_inodeblock: lost dep2");
8484 #endif /* INVARIANTS */
8485 			dp->di_db[i] = 0;
8486 		}
8487 		for (i = 0; i < NIADDR; i++) {
8488 #ifdef INVARIANTS
8489 			if (dp->di_ib[i] != 0 &&
8490 			    (deplist & ((1 << NDADDR) << i)) == 0)
8491 				panic("softdep_write_inodeblock: lost dep3");
8492 #endif /* INVARIANTS */
8493 			dp->di_ib[i] = 0;
8494 		}
8495 		return;
8496 	}
8497 	/*
8498 	 * If we have zero'ed out the last allocated block of the file,
8499 	 * roll back the size to the last currently allocated block.
8500 	 * We know that this last allocated block is a full-sized as
8501 	 * we already checked for fragments in the loop above.
8502 	 */
8503 	if (lastadp != NULL &&
8504 	    dp->di_size <= (lastadp->ad_offset + 1) * fs->fs_bsize) {
8505 		for (i = lastadp->ad_offset; i >= 0; i--)
8506 			if (dp->di_db[i] != 0)
8507 				break;
8508 		dp->di_size = (i + 1) * fs->fs_bsize;
8509 	}
8510 	/*
8511 	 * The only dependencies are for indirect blocks.
8512 	 *
8513 	 * The file size for indirect block additions is not guaranteed.
8514 	 * Such a guarantee would be non-trivial to achieve. The conventional
8515 	 * synchronous write implementation also does not make this guarantee.
8516 	 * Fsck should catch and fix discrepancies. Arguably, the file size
8517 	 * can be over-estimated without destroying integrity when the file
8518 	 * moves into the indirect blocks (i.e., is large). If we want to
8519 	 * postpone fsck, we are stuck with this argument.
8520 	 */
8521 	for (; adp; adp = TAILQ_NEXT(adp, ad_next))
8522 		dp->di_ib[adp->ad_offset - NDADDR] = 0;
8523 }
8524 
8525 /*
8526  * Cancel an indirdep as a result of truncation.  Release all of the
8527  * children allocindirs and place their journal work on the appropriate
8528  * list.
8529  */
8530 static void
8531 cancel_indirdep(indirdep, bp, inodedep, freeblks)
8532 	struct indirdep *indirdep;
8533 	struct buf *bp;
8534 	struct inodedep *inodedep;
8535 	struct freeblks *freeblks;
8536 {
8537 	struct allocindir *aip;
8538 
8539 	/*
8540 	 * None of the indirect pointers will ever be visible,
8541 	 * so they can simply be tossed. GOINGAWAY ensures
8542 	 * that allocated pointers will be saved in the buffer
8543 	 * cache until they are freed. Note that they will
8544 	 * only be able to be found by their physical address
8545 	 * since the inode mapping the logical address will
8546 	 * be gone. The save buffer used for the safe copy
8547 	 * was allocated in setup_allocindir_phase2 using
8548 	 * the physical address so it could be used for this
8549 	 * purpose. Hence we swap the safe copy with the real
8550 	 * copy, allowing the safe copy to be freed and holding
8551 	 * on to the real copy for later use in indir_trunc.
8552 	 */
8553 	if (indirdep->ir_state & GOINGAWAY)
8554 		panic("cancel_indirdep: already gone");
8555 	if (indirdep->ir_state & ONDEPLIST) {
8556 		indirdep->ir_state &= ~ONDEPLIST;
8557 		LIST_REMOVE(indirdep, ir_next);
8558 	}
8559 	indirdep->ir_state |= GOINGAWAY;
8560 	VFSTOUFS(indirdep->ir_list.wk_mp)->um_numindirdeps += 1;
8561 	while ((aip = LIST_FIRST(&indirdep->ir_deplisthd)) != 0)
8562 		cancel_allocindir(aip, inodedep, freeblks);
8563 	while ((aip = LIST_FIRST(&indirdep->ir_donehd)) != 0)
8564 		cancel_allocindir(aip, inodedep, freeblks);
8565 	while ((aip = LIST_FIRST(&indirdep->ir_writehd)) != 0)
8566 		cancel_allocindir(aip, inodedep, freeblks);
8567 	while ((aip = LIST_FIRST(&indirdep->ir_completehd)) != 0)
8568 		cancel_allocindir(aip, inodedep, freeblks);
8569 	bcopy(bp->b_data, indirdep->ir_savebp->b_data, bp->b_bcount);
8570 	WORKLIST_REMOVE(&indirdep->ir_list);
8571 	WORKLIST_INSERT(&indirdep->ir_savebp->b_dep, &indirdep->ir_list);
8572 	indirdep->ir_savebp = NULL;
8573 }
8574 
8575 /*
8576  * Free an indirdep once it no longer has new pointers to track.
8577  */
8578 static void
8579 free_indirdep(indirdep)
8580 	struct indirdep *indirdep;
8581 {
8582 
8583 	KASSERT(LIST_EMPTY(&indirdep->ir_jwork),
8584 	    ("free_indirdep: Journal work not empty."));
8585 	KASSERT(LIST_EMPTY(&indirdep->ir_completehd),
8586 	    ("free_indirdep: Complete head not empty."));
8587 	KASSERT(LIST_EMPTY(&indirdep->ir_writehd),
8588 	    ("free_indirdep: write head not empty."));
8589 	KASSERT(LIST_EMPTY(&indirdep->ir_donehd),
8590 	    ("free_indirdep: done head not empty."));
8591 	KASSERT(LIST_EMPTY(&indirdep->ir_deplisthd),
8592 	    ("free_indirdep: deplist head not empty."));
8593 	KASSERT(indirdep->ir_savebp == NULL,
8594 	    ("free_indirdep: %p ir_savebp != NULL", indirdep));
8595 	KASSERT((indirdep->ir_state & ONDEPLIST) == 0,
8596 	    ("free_indirdep: %p still on deplist.", indirdep));
8597 	if (indirdep->ir_state & ONWORKLIST)
8598 		WORKLIST_REMOVE(&indirdep->ir_list);
8599 	WORKITEM_FREE(indirdep, D_INDIRDEP);
8600 }
8601 
8602 /*
8603  * Called before a write to an indirdep.  This routine is responsible for
8604  * rolling back pointers to a safe state which includes only those
8605  * allocindirs which have been completed.
8606  */
8607 static void
8608 initiate_write_indirdep(indirdep, bp)
8609 	struct indirdep *indirdep;
8610 	struct buf *bp;
8611 {
8612 
8613 	if (indirdep->ir_state & GOINGAWAY)
8614 		panic("disk_io_initiation: indirdep gone");
8615 
8616 	/*
8617 	 * If there are no remaining dependencies, this will be writing
8618 	 * the real pointers.
8619 	 */
8620 	if (LIST_EMPTY(&indirdep->ir_deplisthd))
8621 		return;
8622 	/*
8623 	 * Replace up-to-date version with safe version.
8624 	 */
8625 	FREE_LOCK(&lk);
8626 	indirdep->ir_saveddata = malloc(bp->b_bcount, M_INDIRDEP,
8627 	    M_SOFTDEP_FLAGS);
8628 	ACQUIRE_LOCK(&lk);
8629 	indirdep->ir_state &= ~ATTACHED;
8630 	indirdep->ir_state |= UNDONE;
8631 	bcopy(bp->b_data, indirdep->ir_saveddata, bp->b_bcount);
8632 	bcopy(indirdep->ir_savebp->b_data, bp->b_data,
8633 	    bp->b_bcount);
8634 }
8635 
8636 /*
8637  * Called when an inode has been cleared in a cg bitmap.  This finally
8638  * eliminates any canceled jaddrefs
8639  */
8640 void
8641 softdep_setup_inofree(mp, bp, ino, wkhd)
8642 	struct mount *mp;
8643 	struct buf *bp;
8644 	ino_t ino;
8645 	struct workhead *wkhd;
8646 {
8647 	struct worklist *wk, *wkn;
8648 	struct inodedep *inodedep;
8649 	uint8_t *inosused;
8650 	struct cg *cgp;
8651 	struct fs *fs;
8652 
8653 	ACQUIRE_LOCK(&lk);
8654 	fs = VFSTOUFS(mp)->um_fs;
8655 	cgp = (struct cg *)bp->b_data;
8656 	inosused = cg_inosused(cgp);
8657 	if (isset(inosused, ino % fs->fs_ipg))
8658 		panic("softdep_setup_inofree: inode %d not freed.", ino);
8659 	if (inodedep_lookup(mp, ino, 0, &inodedep))
8660 		panic("softdep_setup_inofree: ino %d has existing inodedep %p",
8661 		    ino, inodedep);
8662 	if (wkhd) {
8663 		LIST_FOREACH_SAFE(wk, wkhd, wk_list, wkn) {
8664 			if (wk->wk_type != D_JADDREF)
8665 				continue;
8666 			WORKLIST_REMOVE(wk);
8667 			/*
8668 			 * We can free immediately even if the jaddref
8669 			 * isn't attached in a background write as now
8670 			 * the bitmaps are reconciled.
8671 		 	 */
8672 			wk->wk_state |= COMPLETE | ATTACHED;
8673 			free_jaddref(WK_JADDREF(wk));
8674 		}
8675 		jwork_move(&bp->b_dep, wkhd);
8676 	}
8677 	FREE_LOCK(&lk);
8678 }
8679 
8680 
8681 /*
8682  * Called via ffs_blkfree() after a set of frags has been cleared from a cg
8683  * map.  Any dependencies waiting for the write to clear are added to the
8684  * buf's list and any jnewblks that are being canceled are discarded
8685  * immediately.
8686  */
8687 void
8688 softdep_setup_blkfree(mp, bp, blkno, frags, wkhd)
8689 	struct mount *mp;
8690 	struct buf *bp;
8691 	ufs2_daddr_t blkno;
8692 	int frags;
8693 	struct workhead *wkhd;
8694 {
8695 	struct jnewblk *jnewblk;
8696 	struct worklist *wk, *wkn;
8697 #ifdef SUJ_DEBUG
8698 	struct bmsafemap *bmsafemap;
8699 	struct fs *fs;
8700 	uint8_t *blksfree;
8701 	struct cg *cgp;
8702 	ufs2_daddr_t jstart;
8703 	ufs2_daddr_t jend;
8704 	ufs2_daddr_t end;
8705 	long bno;
8706 	int i;
8707 #endif
8708 
8709 	ACQUIRE_LOCK(&lk);
8710 	/*
8711 	 * Detach any jnewblks which have been canceled.  They must linger
8712 	 * until the bitmap is cleared again by ffs_blkfree() to prevent
8713 	 * an unjournaled allocation from hitting the disk.
8714 	 */
8715 	if (wkhd) {
8716 		LIST_FOREACH_SAFE(wk, wkhd, wk_list, wkn) {
8717 			if (wk->wk_type != D_JNEWBLK)
8718 				continue;
8719 			jnewblk = WK_JNEWBLK(wk);
8720 			KASSERT(jnewblk->jn_state & GOINGAWAY,
8721 			    ("softdep_setup_blkfree: jnewblk not canceled."));
8722 			WORKLIST_REMOVE(wk);
8723 #ifdef SUJ_DEBUG
8724 			/*
8725 			 * Assert that this block is free in the bitmap
8726 			 * before we discard the jnewblk.
8727 			 */
8728 			fs = VFSTOUFS(mp)->um_fs;
8729 			cgp = (struct cg *)bp->b_data;
8730 			blksfree = cg_blksfree(cgp);
8731 			bno = dtogd(fs, jnewblk->jn_blkno);
8732 			for (i = jnewblk->jn_oldfrags;
8733 			    i < jnewblk->jn_frags; i++) {
8734 				if (isset(blksfree, bno + i))
8735 					continue;
8736 				panic("softdep_setup_blkfree: not free");
8737 			}
8738 #endif
8739 			/*
8740 			 * Even if it's not attached we can free immediately
8741 			 * as the new bitmap is correct.
8742 			 */
8743 			wk->wk_state |= COMPLETE | ATTACHED;
8744 			free_jnewblk(jnewblk);
8745 		}
8746 		/*
8747 		 * The buf must be locked by the caller otherwise these could
8748 		 * be added while it's being written and the write would
8749 		 * complete them before they made it to disk.
8750 		 */
8751 		jwork_move(&bp->b_dep, wkhd);
8752 	}
8753 
8754 #ifdef SUJ_DEBUG
8755 	/*
8756 	 * Assert that we are not freeing a block which has an outstanding
8757 	 * allocation dependency.
8758 	 */
8759 	fs = VFSTOUFS(mp)->um_fs;
8760 	bmsafemap = bmsafemap_lookup(mp, bp, dtog(fs, blkno));
8761 	end = blkno + frags;
8762 	LIST_FOREACH(jnewblk, &bmsafemap->sm_jnewblkhd, jn_deps) {
8763 		/*
8764 		 * Don't match against blocks that will be freed when the
8765 		 * background write is done.
8766 		 */
8767 		if ((jnewblk->jn_state & (ATTACHED | COMPLETE | DEPCOMPLETE)) ==
8768 		    (COMPLETE | DEPCOMPLETE))
8769 			continue;
8770 		jstart = jnewblk->jn_blkno + jnewblk->jn_oldfrags;
8771 		jend = jnewblk->jn_blkno + jnewblk->jn_frags;
8772 		if ((blkno >= jstart && blkno < jend) ||
8773 		    (end > jstart && end <= jend)) {
8774 			printf("state 0x%X %jd - %d %d dep %p\n",
8775 			    jnewblk->jn_state, jnewblk->jn_blkno,
8776 			    jnewblk->jn_oldfrags, jnewblk->jn_frags,
8777 			    jnewblk->jn_newblk);
8778 			panic("softdep_setup_blkfree: "
8779 			    "%jd-%jd(%d) overlaps with %jd-%jd",
8780 			    blkno, end, frags, jstart, jend);
8781 		}
8782 	}
8783 #endif
8784 	FREE_LOCK(&lk);
8785 }
8786 
8787 static void
8788 initiate_write_bmsafemap(bmsafemap, bp)
8789 	struct bmsafemap *bmsafemap;
8790 	struct buf *bp;			/* The cg block. */
8791 {
8792 	struct jaddref *jaddref;
8793 	struct jnewblk *jnewblk;
8794 	uint8_t *inosused;
8795 	uint8_t *blksfree;
8796 	struct cg *cgp;
8797 	struct fs *fs;
8798 	int cleared;
8799 	ino_t ino;
8800 	long bno;
8801 	int i;
8802 
8803 	if (bmsafemap->sm_state & IOSTARTED)
8804 		panic("initiate_write_bmsafemap: Already started\n");
8805 	bmsafemap->sm_state |= IOSTARTED;
8806 	/*
8807 	 * Clear any inode allocations which are pending journal writes.
8808 	 */
8809 	if (LIST_FIRST(&bmsafemap->sm_jaddrefhd) != NULL) {
8810 		cgp = (struct cg *)bp->b_data;
8811 		fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs;
8812 		inosused = cg_inosused(cgp);
8813 		LIST_FOREACH(jaddref, &bmsafemap->sm_jaddrefhd, ja_bmdeps) {
8814 			ino = jaddref->ja_ino % fs->fs_ipg;
8815 			/*
8816 			 * If this is a background copy the inode may not
8817 			 * be marked used yet.
8818 			 */
8819 			if (isset(inosused, ino)) {
8820 				if ((jaddref->ja_mode & IFMT) == IFDIR)
8821 					cgp->cg_cs.cs_ndir--;
8822 				cgp->cg_cs.cs_nifree++;
8823 				clrbit(inosused, ino);
8824 				jaddref->ja_state &= ~ATTACHED;
8825 				jaddref->ja_state |= UNDONE;
8826 				stat_jaddref++;
8827 			} else if ((bp->b_xflags & BX_BKGRDMARKER) == 0)
8828 				panic("initiate_write_bmsafemap: inode %d "
8829 				    "marked free", jaddref->ja_ino);
8830 		}
8831 	}
8832 	/*
8833 	 * Clear any block allocations which are pending journal writes.
8834 	 */
8835 	if (LIST_FIRST(&bmsafemap->sm_jnewblkhd) != NULL) {
8836 		cgp = (struct cg *)bp->b_data;
8837 		fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs;
8838 		blksfree = cg_blksfree(cgp);
8839 		LIST_FOREACH(jnewblk, &bmsafemap->sm_jnewblkhd, jn_deps) {
8840 			bno = dtogd(fs, jnewblk->jn_blkno);
8841 			cleared = 0;
8842 			for (i = jnewblk->jn_oldfrags; i < jnewblk->jn_frags;
8843 			    i++) {
8844 				if (isclr(blksfree, bno + i)) {
8845 					cleared = 1;
8846 					setbit(blksfree, bno + i);
8847 				}
8848 			}
8849 			/*
8850 			 * We may not clear the block if it's a background
8851 			 * copy.  In that case there is no reason to detach
8852 			 * it.
8853 			 */
8854 			if (cleared) {
8855 				stat_jnewblk++;
8856 				jnewblk->jn_state &= ~ATTACHED;
8857 				jnewblk->jn_state |= UNDONE;
8858 			} else if ((bp->b_xflags & BX_BKGRDMARKER) == 0)
8859 				panic("initiate_write_bmsafemap: block %jd "
8860 				    "marked free", jnewblk->jn_blkno);
8861 		}
8862 	}
8863 	/*
8864 	 * Move allocation lists to the written lists so they can be
8865 	 * cleared once the block write is complete.
8866 	 */
8867 	LIST_SWAP(&bmsafemap->sm_inodedephd, &bmsafemap->sm_inodedepwr,
8868 	    inodedep, id_deps);
8869 	LIST_SWAP(&bmsafemap->sm_newblkhd, &bmsafemap->sm_newblkwr,
8870 	    newblk, nb_deps);
8871 }
8872 
8873 /*
8874  * This routine is called during the completion interrupt
8875  * service routine for a disk write (from the procedure called
8876  * by the device driver to inform the filesystem caches of
8877  * a request completion).  It should be called early in this
8878  * procedure, before the block is made available to other
8879  * processes or other routines are called.
8880  *
8881  */
8882 static void
8883 softdep_disk_write_complete(bp)
8884 	struct buf *bp;		/* describes the completed disk write */
8885 {
8886 	struct worklist *wk;
8887 	struct worklist *owk;
8888 	struct workhead reattach;
8889 	struct buf *sbp;
8890 
8891 	/*
8892 	 * If an error occurred while doing the write, then the data
8893 	 * has not hit the disk and the dependencies cannot be unrolled.
8894 	 */
8895 	if ((bp->b_ioflags & BIO_ERROR) != 0 && (bp->b_flags & B_INVAL) == 0)
8896 		return;
8897 	LIST_INIT(&reattach);
8898 	/*
8899 	 * This lock must not be released anywhere in this code segment.
8900 	 */
8901 	sbp = NULL;
8902 	owk = NULL;
8903 	ACQUIRE_LOCK(&lk);
8904 	while ((wk = LIST_FIRST(&bp->b_dep)) != NULL) {
8905 		WORKLIST_REMOVE(wk);
8906 		if (wk == owk)
8907 			panic("duplicate worklist: %p\n", wk);
8908 		owk = wk;
8909 		switch (wk->wk_type) {
8910 
8911 		case D_PAGEDEP:
8912 			if (handle_written_filepage(WK_PAGEDEP(wk), bp))
8913 				WORKLIST_INSERT(&reattach, wk);
8914 			continue;
8915 
8916 		case D_INODEDEP:
8917 			if (handle_written_inodeblock(WK_INODEDEP(wk), bp))
8918 				WORKLIST_INSERT(&reattach, wk);
8919 			continue;
8920 
8921 		case D_BMSAFEMAP:
8922 			if (handle_written_bmsafemap(WK_BMSAFEMAP(wk), bp))
8923 				WORKLIST_INSERT(&reattach, wk);
8924 			continue;
8925 
8926 		case D_MKDIR:
8927 			handle_written_mkdir(WK_MKDIR(wk), MKDIR_BODY);
8928 			continue;
8929 
8930 		case D_ALLOCDIRECT:
8931 			wk->wk_state |= COMPLETE;
8932 			handle_allocdirect_partdone(WK_ALLOCDIRECT(wk), NULL);
8933 			continue;
8934 
8935 		case D_ALLOCINDIR:
8936 			wk->wk_state |= COMPLETE;
8937 			handle_allocindir_partdone(WK_ALLOCINDIR(wk));
8938 			continue;
8939 
8940 		case D_INDIRDEP:
8941 			if (handle_written_indirdep(WK_INDIRDEP(wk), bp, &sbp))
8942 				WORKLIST_INSERT(&reattach, wk);
8943 			continue;
8944 
8945 		case D_FREEBLKS:
8946 			wk->wk_state |= COMPLETE;
8947 			if ((wk->wk_state & ALLCOMPLETE) == ALLCOMPLETE)
8948 				add_to_worklist(wk, 1);
8949 			continue;
8950 
8951 		case D_FREEWORK:
8952 			handle_written_freework(WK_FREEWORK(wk));
8953 			break;
8954 
8955 		case D_FREEDEP:
8956 			free_freedep(WK_FREEDEP(wk));
8957 			continue;
8958 
8959 		case D_JSEGDEP:
8960 			free_jsegdep(WK_JSEGDEP(wk));
8961 			continue;
8962 
8963 		case D_JSEG:
8964 			handle_written_jseg(WK_JSEG(wk), bp);
8965 			continue;
8966 
8967 		case D_SBDEP:
8968 			if (handle_written_sbdep(WK_SBDEP(wk), bp))
8969 				WORKLIST_INSERT(&reattach, wk);
8970 			continue;
8971 
8972 		default:
8973 			panic("handle_disk_write_complete: Unknown type %s",
8974 			    TYPENAME(wk->wk_type));
8975 			/* NOTREACHED */
8976 		}
8977 	}
8978 	/*
8979 	 * Reattach any requests that must be redone.
8980 	 */
8981 	while ((wk = LIST_FIRST(&reattach)) != NULL) {
8982 		WORKLIST_REMOVE(wk);
8983 		WORKLIST_INSERT(&bp->b_dep, wk);
8984 	}
8985 	FREE_LOCK(&lk);
8986 	if (sbp)
8987 		brelse(sbp);
8988 }
8989 
8990 /*
8991  * Called from within softdep_disk_write_complete above. Note that
8992  * this routine is always called from interrupt level with further
8993  * splbio interrupts blocked.
8994  */
8995 static void
8996 handle_allocdirect_partdone(adp, wkhd)
8997 	struct allocdirect *adp;	/* the completed allocdirect */
8998 	struct workhead *wkhd;		/* Work to do when inode is writtne. */
8999 {
9000 	struct allocdirectlst *listhead;
9001 	struct allocdirect *listadp;
9002 	struct inodedep *inodedep;
9003 	long bsize;
9004 
9005 	if ((adp->ad_state & ALLCOMPLETE) != ALLCOMPLETE)
9006 		return;
9007 	/*
9008 	 * The on-disk inode cannot claim to be any larger than the last
9009 	 * fragment that has been written. Otherwise, the on-disk inode
9010 	 * might have fragments that were not the last block in the file
9011 	 * which would corrupt the filesystem. Thus, we cannot free any
9012 	 * allocdirects after one whose ad_oldblkno claims a fragment as
9013 	 * these blocks must be rolled back to zero before writing the inode.
9014 	 * We check the currently active set of allocdirects in id_inoupdt
9015 	 * or id_extupdt as appropriate.
9016 	 */
9017 	inodedep = adp->ad_inodedep;
9018 	bsize = inodedep->id_fs->fs_bsize;
9019 	if (adp->ad_state & EXTDATA)
9020 		listhead = &inodedep->id_extupdt;
9021 	else
9022 		listhead = &inodedep->id_inoupdt;
9023 	TAILQ_FOREACH(listadp, listhead, ad_next) {
9024 		/* found our block */
9025 		if (listadp == adp)
9026 			break;
9027 		/* continue if ad_oldlbn is not a fragment */
9028 		if (listadp->ad_oldsize == 0 ||
9029 		    listadp->ad_oldsize == bsize)
9030 			continue;
9031 		/* hit a fragment */
9032 		return;
9033 	}
9034 	/*
9035 	 * If we have reached the end of the current list without
9036 	 * finding the just finished dependency, then it must be
9037 	 * on the future dependency list. Future dependencies cannot
9038 	 * be freed until they are moved to the current list.
9039 	 */
9040 	if (listadp == NULL) {
9041 #ifdef DEBUG
9042 		if (adp->ad_state & EXTDATA)
9043 			listhead = &inodedep->id_newextupdt;
9044 		else
9045 			listhead = &inodedep->id_newinoupdt;
9046 		TAILQ_FOREACH(listadp, listhead, ad_next)
9047 			/* found our block */
9048 			if (listadp == adp)
9049 				break;
9050 		if (listadp == NULL)
9051 			panic("handle_allocdirect_partdone: lost dep");
9052 #endif /* DEBUG */
9053 		return;
9054 	}
9055 	/*
9056 	 * If we have found the just finished dependency, then queue
9057 	 * it along with anything that follows it that is complete.
9058 	 * Since the pointer has not yet been written in the inode
9059 	 * as the dependency prevents it, place the allocdirect on the
9060 	 * bufwait list where it will be freed once the pointer is
9061 	 * valid.
9062 	 */
9063 	if (wkhd == NULL)
9064 		wkhd = &inodedep->id_bufwait;
9065 	for (; adp; adp = listadp) {
9066 		listadp = TAILQ_NEXT(adp, ad_next);
9067 		if ((adp->ad_state & ALLCOMPLETE) != ALLCOMPLETE)
9068 			return;
9069 		TAILQ_REMOVE(listhead, adp, ad_next);
9070 		WORKLIST_INSERT(wkhd, &adp->ad_block.nb_list);
9071 	}
9072 }
9073 
9074 /*
9075  * Called from within softdep_disk_write_complete above.  This routine
9076  * completes successfully written allocindirs.
9077  */
9078 static void
9079 handle_allocindir_partdone(aip)
9080 	struct allocindir *aip;		/* the completed allocindir */
9081 {
9082 	struct indirdep *indirdep;
9083 
9084 	if ((aip->ai_state & ALLCOMPLETE) != ALLCOMPLETE)
9085 		return;
9086 	indirdep = aip->ai_indirdep;
9087 	LIST_REMOVE(aip, ai_next);
9088 	if (indirdep->ir_state & UNDONE) {
9089 		LIST_INSERT_HEAD(&indirdep->ir_donehd, aip, ai_next);
9090 		return;
9091 	}
9092 	if (indirdep->ir_state & UFS1FMT)
9093 		((ufs1_daddr_t *)indirdep->ir_savebp->b_data)[aip->ai_offset] =
9094 		    aip->ai_newblkno;
9095 	else
9096 		((ufs2_daddr_t *)indirdep->ir_savebp->b_data)[aip->ai_offset] =
9097 		    aip->ai_newblkno;
9098 	/*
9099 	 * Await the pointer write before freeing the allocindir.
9100 	 */
9101 	LIST_INSERT_HEAD(&indirdep->ir_writehd, aip, ai_next);
9102 }
9103 
9104 /*
9105  * Release segments held on a jwork list.
9106  */
9107 static void
9108 handle_jwork(wkhd)
9109 	struct workhead *wkhd;
9110 {
9111 	struct worklist *wk;
9112 
9113 	while ((wk = LIST_FIRST(wkhd)) != NULL) {
9114 		WORKLIST_REMOVE(wk);
9115 		switch (wk->wk_type) {
9116 		case D_JSEGDEP:
9117 			free_jsegdep(WK_JSEGDEP(wk));
9118 			continue;
9119 		default:
9120 			panic("handle_jwork: Unknown type %s\n",
9121 			    TYPENAME(wk->wk_type));
9122 		}
9123 	}
9124 }
9125 
9126 /*
9127  * Handle the bufwait list on an inode when it is safe to release items
9128  * held there.  This normally happens after an inode block is written but
9129  * may be delayed and handled later if there are pending journal items that
9130  * are not yet safe to be released.
9131  */
9132 static struct freefile *
9133 handle_bufwait(inodedep, refhd)
9134 	struct inodedep *inodedep;
9135 	struct workhead *refhd;
9136 {
9137 	struct jaddref *jaddref;
9138 	struct freefile *freefile;
9139 	struct worklist *wk;
9140 
9141 	freefile = NULL;
9142 	while ((wk = LIST_FIRST(&inodedep->id_bufwait)) != NULL) {
9143 		WORKLIST_REMOVE(wk);
9144 		switch (wk->wk_type) {
9145 		case D_FREEFILE:
9146 			/*
9147 			 * We defer adding freefile to the worklist
9148 			 * until all other additions have been made to
9149 			 * ensure that it will be done after all the
9150 			 * old blocks have been freed.
9151 			 */
9152 			if (freefile != NULL)
9153 				panic("handle_bufwait: freefile");
9154 			freefile = WK_FREEFILE(wk);
9155 			continue;
9156 
9157 		case D_MKDIR:
9158 			handle_written_mkdir(WK_MKDIR(wk), MKDIR_PARENT);
9159 			continue;
9160 
9161 		case D_DIRADD:
9162 			diradd_inode_written(WK_DIRADD(wk), inodedep);
9163 			continue;
9164 
9165 		case D_FREEFRAG:
9166 			wk->wk_state |= COMPLETE;
9167 			if ((wk->wk_state & ALLCOMPLETE) == ALLCOMPLETE)
9168 				add_to_worklist(wk, 0);
9169 			continue;
9170 
9171 		case D_DIRREM:
9172 			wk->wk_state |= COMPLETE;
9173 			add_to_worklist(wk, 0);
9174 			continue;
9175 
9176 		case D_ALLOCDIRECT:
9177 		case D_ALLOCINDIR:
9178 			free_newblk(WK_NEWBLK(wk));
9179 			continue;
9180 
9181 		case D_JNEWBLK:
9182 			wk->wk_state |= COMPLETE;
9183 			free_jnewblk(WK_JNEWBLK(wk));
9184 			continue;
9185 
9186 		/*
9187 		 * Save freed journal segments and add references on
9188 		 * the supplied list which will delay their release
9189 		 * until the cg bitmap is cleared on disk.
9190 		 */
9191 		case D_JSEGDEP:
9192 			if (refhd == NULL)
9193 				free_jsegdep(WK_JSEGDEP(wk));
9194 			else
9195 				WORKLIST_INSERT(refhd, wk);
9196 			continue;
9197 
9198 		case D_JADDREF:
9199 			jaddref = WK_JADDREF(wk);
9200 			TAILQ_REMOVE(&inodedep->id_inoreflst, &jaddref->ja_ref,
9201 			    if_deps);
9202 			/*
9203 			 * Transfer any jaddrefs to the list to be freed with
9204 			 * the bitmap if we're handling a removed file.
9205 			 */
9206 			if (refhd == NULL) {
9207 				wk->wk_state |= COMPLETE;
9208 				free_jaddref(jaddref);
9209 			} else
9210 				WORKLIST_INSERT(refhd, wk);
9211 			continue;
9212 
9213 		default:
9214 			panic("handle_bufwait: Unknown type %p(%s)",
9215 			    wk, TYPENAME(wk->wk_type));
9216 			/* NOTREACHED */
9217 		}
9218 	}
9219 	return (freefile);
9220 }
9221 /*
9222  * Called from within softdep_disk_write_complete above to restore
9223  * in-memory inode block contents to their most up-to-date state. Note
9224  * that this routine is always called from interrupt level with further
9225  * splbio interrupts blocked.
9226  */
9227 static int
9228 handle_written_inodeblock(inodedep, bp)
9229 	struct inodedep *inodedep;
9230 	struct buf *bp;		/* buffer containing the inode block */
9231 {
9232 	struct freefile *freefile;
9233 	struct allocdirect *adp, *nextadp;
9234 	struct ufs1_dinode *dp1 = NULL;
9235 	struct ufs2_dinode *dp2 = NULL;
9236 	struct workhead wkhd;
9237 	int hadchanges, fstype;
9238 	ino_t freelink;
9239 
9240 	LIST_INIT(&wkhd);
9241 	hadchanges = 0;
9242 	freefile = NULL;
9243 	if ((inodedep->id_state & IOSTARTED) == 0)
9244 		panic("handle_written_inodeblock: not started");
9245 	inodedep->id_state &= ~IOSTARTED;
9246 	if (inodedep->id_fs->fs_magic == FS_UFS1_MAGIC) {
9247 		fstype = UFS1;
9248 		dp1 = (struct ufs1_dinode *)bp->b_data +
9249 		    ino_to_fsbo(inodedep->id_fs, inodedep->id_ino);
9250 		freelink = dp1->di_freelink;
9251 	} else {
9252 		fstype = UFS2;
9253 		dp2 = (struct ufs2_dinode *)bp->b_data +
9254 		    ino_to_fsbo(inodedep->id_fs, inodedep->id_ino);
9255 		freelink = dp2->di_freelink;
9256 	}
9257 	/*
9258 	 * If we wrote a valid freelink pointer during the last write
9259 	 * record it here.
9260 	 */
9261 	if ((inodedep->id_state & (UNLINKED | UNLINKNEXT)) == UNLINKED) {
9262 		struct inodedep *inon;
9263 
9264 		inon = TAILQ_NEXT(inodedep, id_unlinked);
9265 		if ((inon == NULL && freelink == 0) ||
9266 		    (inon && inon->id_ino == freelink)) {
9267 			if (inon)
9268 				inon->id_state |= UNLINKPREV;
9269 			inodedep->id_state |= UNLINKNEXT;
9270 		} else
9271 			hadchanges = 1;
9272 	}
9273 	/* Leave this inodeblock dirty until it's in the list. */
9274 	if ((inodedep->id_state & (UNLINKED | UNLINKONLIST)) == UNLINKED)
9275 		hadchanges = 1;
9276 	/*
9277 	 * If we had to rollback the inode allocation because of
9278 	 * bitmaps being incomplete, then simply restore it.
9279 	 * Keep the block dirty so that it will not be reclaimed until
9280 	 * all associated dependencies have been cleared and the
9281 	 * corresponding updates written to disk.
9282 	 */
9283 	if (inodedep->id_savedino1 != NULL) {
9284 		hadchanges = 1;
9285 		if (fstype == UFS1)
9286 			*dp1 = *inodedep->id_savedino1;
9287 		else
9288 			*dp2 = *inodedep->id_savedino2;
9289 		free(inodedep->id_savedino1, M_SAVEDINO);
9290 		inodedep->id_savedino1 = NULL;
9291 		if ((bp->b_flags & B_DELWRI) == 0)
9292 			stat_inode_bitmap++;
9293 		bdirty(bp);
9294 		/*
9295 		 * If the inode is clear here and GOINGAWAY it will never
9296 		 * be written.  Process the bufwait and clear any pending
9297 		 * work which may include the freefile.
9298 		 */
9299 		if (inodedep->id_state & GOINGAWAY)
9300 			goto bufwait;
9301 		return (1);
9302 	}
9303 	inodedep->id_state |= COMPLETE;
9304 	/*
9305 	 * Roll forward anything that had to be rolled back before
9306 	 * the inode could be updated.
9307 	 */
9308 	for (adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; adp = nextadp) {
9309 		nextadp = TAILQ_NEXT(adp, ad_next);
9310 		if (adp->ad_state & ATTACHED)
9311 			panic("handle_written_inodeblock: new entry");
9312 		if (fstype == UFS1) {
9313 			if (adp->ad_offset < NDADDR) {
9314 				if (dp1->di_db[adp->ad_offset]!=adp->ad_oldblkno)
9315 					panic("%s %s #%jd mismatch %d != %jd",
9316 					    "handle_written_inodeblock:",
9317 					    "direct pointer",
9318 					    (intmax_t)adp->ad_offset,
9319 					    dp1->di_db[adp->ad_offset],
9320 					    (intmax_t)adp->ad_oldblkno);
9321 				dp1->di_db[adp->ad_offset] = adp->ad_newblkno;
9322 			} else {
9323 				if (dp1->di_ib[adp->ad_offset - NDADDR] != 0)
9324 					panic("%s: %s #%jd allocated as %d",
9325 					    "handle_written_inodeblock",
9326 					    "indirect pointer",
9327 					    (intmax_t)adp->ad_offset - NDADDR,
9328 					    dp1->di_ib[adp->ad_offset - NDADDR]);
9329 				dp1->di_ib[adp->ad_offset - NDADDR] =
9330 				    adp->ad_newblkno;
9331 			}
9332 		} else {
9333 			if (adp->ad_offset < NDADDR) {
9334 				if (dp2->di_db[adp->ad_offset]!=adp->ad_oldblkno)
9335 					panic("%s: %s #%jd %s %jd != %jd",
9336 					    "handle_written_inodeblock",
9337 					    "direct pointer",
9338 					    (intmax_t)adp->ad_offset, "mismatch",
9339 					    (intmax_t)dp2->di_db[adp->ad_offset],
9340 					    (intmax_t)adp->ad_oldblkno);
9341 				dp2->di_db[adp->ad_offset] = adp->ad_newblkno;
9342 			} else {
9343 				if (dp2->di_ib[adp->ad_offset - NDADDR] != 0)
9344 					panic("%s: %s #%jd allocated as %jd",
9345 					    "handle_written_inodeblock",
9346 					    "indirect pointer",
9347 					    (intmax_t)adp->ad_offset - NDADDR,
9348 					    (intmax_t)
9349 					    dp2->di_ib[adp->ad_offset - NDADDR]);
9350 				dp2->di_ib[adp->ad_offset - NDADDR] =
9351 				    adp->ad_newblkno;
9352 			}
9353 		}
9354 		adp->ad_state &= ~UNDONE;
9355 		adp->ad_state |= ATTACHED;
9356 		hadchanges = 1;
9357 	}
9358 	for (adp = TAILQ_FIRST(&inodedep->id_extupdt); adp; adp = nextadp) {
9359 		nextadp = TAILQ_NEXT(adp, ad_next);
9360 		if (adp->ad_state & ATTACHED)
9361 			panic("handle_written_inodeblock: new entry");
9362 		if (dp2->di_extb[adp->ad_offset] != adp->ad_oldblkno)
9363 			panic("%s: direct pointers #%jd %s %jd != %jd",
9364 			    "handle_written_inodeblock",
9365 			    (intmax_t)adp->ad_offset, "mismatch",
9366 			    (intmax_t)dp2->di_extb[adp->ad_offset],
9367 			    (intmax_t)adp->ad_oldblkno);
9368 		dp2->di_extb[adp->ad_offset] = adp->ad_newblkno;
9369 		adp->ad_state &= ~UNDONE;
9370 		adp->ad_state |= ATTACHED;
9371 		hadchanges = 1;
9372 	}
9373 	if (hadchanges && (bp->b_flags & B_DELWRI) == 0)
9374 		stat_direct_blk_ptrs++;
9375 	/*
9376 	 * Reset the file size to its most up-to-date value.
9377 	 */
9378 	if (inodedep->id_savedsize == -1 || inodedep->id_savedextsize == -1)
9379 		panic("handle_written_inodeblock: bad size");
9380 	if (inodedep->id_savednlink > LINK_MAX)
9381 		panic("handle_written_inodeblock: Invalid link count "
9382 		    "%d for inodedep %p", inodedep->id_savednlink, inodedep);
9383 	if (fstype == UFS1) {
9384 		if (dp1->di_nlink != inodedep->id_savednlink) {
9385 			dp1->di_nlink = inodedep->id_savednlink;
9386 			hadchanges = 1;
9387 		}
9388 		if (dp1->di_size != inodedep->id_savedsize) {
9389 			dp1->di_size = inodedep->id_savedsize;
9390 			hadchanges = 1;
9391 		}
9392 	} else {
9393 		if (dp2->di_nlink != inodedep->id_savednlink) {
9394 			dp2->di_nlink = inodedep->id_savednlink;
9395 			hadchanges = 1;
9396 		}
9397 		if (dp2->di_size != inodedep->id_savedsize) {
9398 			dp2->di_size = inodedep->id_savedsize;
9399 			hadchanges = 1;
9400 		}
9401 		if (dp2->di_extsize != inodedep->id_savedextsize) {
9402 			dp2->di_extsize = inodedep->id_savedextsize;
9403 			hadchanges = 1;
9404 		}
9405 	}
9406 	inodedep->id_savedsize = -1;
9407 	inodedep->id_savedextsize = -1;
9408 	inodedep->id_savednlink = -1;
9409 	/*
9410 	 * If there were any rollbacks in the inode block, then it must be
9411 	 * marked dirty so that its will eventually get written back in
9412 	 * its correct form.
9413 	 */
9414 	if (hadchanges)
9415 		bdirty(bp);
9416 bufwait:
9417 	/*
9418 	 * Process any allocdirects that completed during the update.
9419 	 */
9420 	if ((adp = TAILQ_FIRST(&inodedep->id_inoupdt)) != NULL)
9421 		handle_allocdirect_partdone(adp, &wkhd);
9422 	if ((adp = TAILQ_FIRST(&inodedep->id_extupdt)) != NULL)
9423 		handle_allocdirect_partdone(adp, &wkhd);
9424 	/*
9425 	 * Process deallocations that were held pending until the
9426 	 * inode had been written to disk. Freeing of the inode
9427 	 * is delayed until after all blocks have been freed to
9428 	 * avoid creation of new <vfsid, inum, lbn> triples
9429 	 * before the old ones have been deleted.  Completely
9430 	 * unlinked inodes are not processed until the unlinked
9431 	 * inode list is written or the last reference is removed.
9432 	 */
9433 	if ((inodedep->id_state & (UNLINKED | UNLINKONLIST)) != UNLINKED) {
9434 		freefile = handle_bufwait(inodedep, NULL);
9435 		if (freefile && !LIST_EMPTY(&wkhd)) {
9436 			WORKLIST_INSERT(&wkhd, &freefile->fx_list);
9437 			freefile = NULL;
9438 		}
9439 	}
9440 	/*
9441 	 * Move rolled forward dependency completions to the bufwait list
9442 	 * now that those that were already written have been processed.
9443 	 */
9444 	if (!LIST_EMPTY(&wkhd) && hadchanges == 0)
9445 		panic("handle_written_inodeblock: bufwait but no changes");
9446 	jwork_move(&inodedep->id_bufwait, &wkhd);
9447 
9448 	if (freefile != NULL) {
9449 		/*
9450 		 * If the inode is goingaway it was never written.  Fake up
9451 		 * the state here so free_inodedep() can succeed.
9452 		 */
9453 		if (inodedep->id_state & GOINGAWAY)
9454 			inodedep->id_state |= COMPLETE | DEPCOMPLETE;
9455 		if (free_inodedep(inodedep) == 0)
9456 			panic("handle_written_inodeblock: live inodedep %p",
9457 			    inodedep);
9458 		add_to_worklist(&freefile->fx_list, 0);
9459 		return (0);
9460 	}
9461 
9462 	/*
9463 	 * If no outstanding dependencies, free it.
9464 	 */
9465 	if (free_inodedep(inodedep) ||
9466 	    (TAILQ_FIRST(&inodedep->id_inoreflst) == 0 &&
9467 	     TAILQ_FIRST(&inodedep->id_inoupdt) == 0 &&
9468 	     TAILQ_FIRST(&inodedep->id_extupdt) == 0 &&
9469 	     LIST_FIRST(&inodedep->id_bufwait) == 0))
9470 		return (0);
9471 	return (hadchanges);
9472 }
9473 
9474 static int
9475 handle_written_indirdep(indirdep, bp, bpp)
9476 	struct indirdep *indirdep;
9477 	struct buf *bp;
9478 	struct buf **bpp;
9479 {
9480 	struct allocindir *aip;
9481 	int chgs;
9482 
9483 	if (indirdep->ir_state & GOINGAWAY)
9484 		panic("disk_write_complete: indirdep gone");
9485 	chgs = 0;
9486 	/*
9487 	 * If there were rollbacks revert them here.
9488 	 */
9489 	if (indirdep->ir_saveddata) {
9490 		bcopy(indirdep->ir_saveddata, bp->b_data, bp->b_bcount);
9491 		free(indirdep->ir_saveddata, M_INDIRDEP);
9492 		indirdep->ir_saveddata = 0;
9493 		chgs = 1;
9494 	}
9495 	indirdep->ir_state &= ~UNDONE;
9496 	indirdep->ir_state |= ATTACHED;
9497 	/*
9498 	 * Move allocindirs with written pointers to the completehd if
9499 	 * the indirdep's pointer is not yet written.  Otherwise
9500 	 * free them here.
9501 	 */
9502 	while ((aip = LIST_FIRST(&indirdep->ir_writehd)) != 0) {
9503 		LIST_REMOVE(aip, ai_next);
9504 		if ((indirdep->ir_state & DEPCOMPLETE) == 0) {
9505 			LIST_INSERT_HEAD(&indirdep->ir_completehd, aip,
9506 			    ai_next);
9507 			continue;
9508 		}
9509 		free_newblk(&aip->ai_block);
9510 	}
9511 	/*
9512 	 * Move allocindirs that have finished dependency processing from
9513 	 * the done list to the write list after updating the pointers.
9514 	 */
9515 	while ((aip = LIST_FIRST(&indirdep->ir_donehd)) != 0) {
9516 		handle_allocindir_partdone(aip);
9517 		if (aip == LIST_FIRST(&indirdep->ir_donehd))
9518 			panic("disk_write_complete: not gone");
9519 		chgs = 1;
9520 	}
9521 	/*
9522 	 * If this indirdep has been detached from its newblk during
9523 	 * I/O we need to keep this dep attached to the buffer so
9524 	 * deallocate_dependencies can find it and properly resolve
9525 	 * any outstanding dependencies.
9526 	 */
9527 	if ((indirdep->ir_state & (ONDEPLIST | DEPCOMPLETE)) == 0)
9528 		chgs = 1;
9529 	if ((bp->b_flags & B_DELWRI) == 0)
9530 		stat_indir_blk_ptrs++;
9531 	/*
9532 	 * If there were no changes we can discard the savedbp and detach
9533 	 * ourselves from the buf.  We are only carrying completed pointers
9534 	 * in this case.
9535 	 */
9536 	if (chgs == 0) {
9537 		struct buf *sbp;
9538 
9539 		sbp = indirdep->ir_savebp;
9540 		sbp->b_flags |= B_INVAL | B_NOCACHE;
9541 		indirdep->ir_savebp = NULL;
9542 		if (*bpp != NULL)
9543 			panic("handle_written_indirdep: bp already exists.");
9544 		*bpp = sbp;
9545 	} else
9546 		bdirty(bp);
9547 	/*
9548 	 * If there are no fresh dependencies and none waiting on writes
9549 	 * we can free the indirdep.
9550 	 */
9551 	if ((indirdep->ir_state & DEPCOMPLETE) && chgs == 0) {
9552 		if (indirdep->ir_state & ONDEPLIST)
9553 			LIST_REMOVE(indirdep, ir_next);
9554 		free_indirdep(indirdep);
9555 		return (0);
9556 	}
9557 
9558 	return (chgs);
9559 }
9560 
9561 /*
9562  * Process a diradd entry after its dependent inode has been written.
9563  * This routine must be called with splbio interrupts blocked.
9564  */
9565 static void
9566 diradd_inode_written(dap, inodedep)
9567 	struct diradd *dap;
9568 	struct inodedep *inodedep;
9569 {
9570 
9571 	dap->da_state |= COMPLETE;
9572 	complete_diradd(dap);
9573 	WORKLIST_INSERT(&inodedep->id_pendinghd, &dap->da_list);
9574 }
9575 
9576 /*
9577  * Returns true if the bmsafemap will have rollbacks when written.  Must
9578  * only be called with lk and the buf lock on the cg held.
9579  */
9580 static int
9581 bmsafemap_rollbacks(bmsafemap)
9582 	struct bmsafemap *bmsafemap;
9583 {
9584 
9585 	return (!LIST_EMPTY(&bmsafemap->sm_jaddrefhd) |
9586 	    !LIST_EMPTY(&bmsafemap->sm_jnewblkhd));
9587 }
9588 
9589 /*
9590  * Complete a write to a bmsafemap structure.  Roll forward any bitmap
9591  * changes if it's not a background write.  Set all written dependencies
9592  * to DEPCOMPLETE and free the structure if possible.
9593  */
9594 static int
9595 handle_written_bmsafemap(bmsafemap, bp)
9596 	struct bmsafemap *bmsafemap;
9597 	struct buf *bp;
9598 {
9599 	struct newblk *newblk;
9600 	struct inodedep *inodedep;
9601 	struct jaddref *jaddref, *jatmp;
9602 	struct jnewblk *jnewblk, *jntmp;
9603 	uint8_t *inosused;
9604 	uint8_t *blksfree;
9605 	struct cg *cgp;
9606 	struct fs *fs;
9607 	ino_t ino;
9608 	long bno;
9609 	int chgs;
9610 	int i;
9611 
9612 	if ((bmsafemap->sm_state & IOSTARTED) == 0)
9613 		panic("initiate_write_bmsafemap: Not started\n");
9614 	chgs = 0;
9615 	bmsafemap->sm_state &= ~IOSTARTED;
9616 	/*
9617 	 * Restore unwritten inode allocation pending jaddref writes.
9618 	 */
9619 	if (!LIST_EMPTY(&bmsafemap->sm_jaddrefhd)) {
9620 		cgp = (struct cg *)bp->b_data;
9621 		fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs;
9622 		inosused = cg_inosused(cgp);
9623 		LIST_FOREACH_SAFE(jaddref, &bmsafemap->sm_jaddrefhd,
9624 		    ja_bmdeps, jatmp) {
9625 			if ((jaddref->ja_state & UNDONE) == 0)
9626 				continue;
9627 			ino = jaddref->ja_ino % fs->fs_ipg;
9628 			if (isset(inosused, ino))
9629 				panic("handle_written_bmsafemap: "
9630 				    "re-allocated inode");
9631 			if ((bp->b_xflags & BX_BKGRDMARKER) == 0) {
9632 				if ((jaddref->ja_mode & IFMT) == IFDIR)
9633 					cgp->cg_cs.cs_ndir++;
9634 				cgp->cg_cs.cs_nifree--;
9635 				setbit(inosused, ino);
9636 				chgs = 1;
9637 			}
9638 			jaddref->ja_state &= ~UNDONE;
9639 			jaddref->ja_state |= ATTACHED;
9640 			free_jaddref(jaddref);
9641 		}
9642 	}
9643 	/*
9644 	 * Restore any block allocations which are pending journal writes.
9645 	 */
9646 	if (LIST_FIRST(&bmsafemap->sm_jnewblkhd) != NULL) {
9647 		cgp = (struct cg *)bp->b_data;
9648 		fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs;
9649 		blksfree = cg_blksfree(cgp);
9650 		LIST_FOREACH_SAFE(jnewblk, &bmsafemap->sm_jnewblkhd, jn_deps,
9651 		    jntmp) {
9652 			if ((jnewblk->jn_state & UNDONE) == 0)
9653 				continue;
9654 			bno = dtogd(fs, jnewblk->jn_blkno);
9655 			for (i = jnewblk->jn_oldfrags; i < jnewblk->jn_frags;
9656 			    i++) {
9657 				if (bp->b_xflags & BX_BKGRDMARKER)
9658 					break;
9659 				if ((jnewblk->jn_state & NEWBLOCK) == 0 &&
9660 				    isclr(blksfree, bno + i))
9661 					panic("handle_written_bmsafemap: "
9662 					    "re-allocated fragment");
9663 				clrbit(blksfree, bno + i);
9664 				chgs = 1;
9665 			}
9666 			jnewblk->jn_state &= ~(UNDONE | NEWBLOCK);
9667 			jnewblk->jn_state |= ATTACHED;
9668 			free_jnewblk(jnewblk);
9669 		}
9670 	}
9671 	while ((newblk = LIST_FIRST(&bmsafemap->sm_newblkwr))) {
9672 		newblk->nb_state |= DEPCOMPLETE;
9673 		newblk->nb_state &= ~ONDEPLIST;
9674 		newblk->nb_bmsafemap = NULL;
9675 		LIST_REMOVE(newblk, nb_deps);
9676 		if (newblk->nb_list.wk_type == D_ALLOCDIRECT)
9677 			handle_allocdirect_partdone(
9678 			    WK_ALLOCDIRECT(&newblk->nb_list), NULL);
9679 		else if (newblk->nb_list.wk_type == D_ALLOCINDIR)
9680 			handle_allocindir_partdone(
9681 			    WK_ALLOCINDIR(&newblk->nb_list));
9682 		else if (newblk->nb_list.wk_type != D_NEWBLK)
9683 			panic("handle_written_bmsafemap: Unexpected type: %s",
9684 			    TYPENAME(newblk->nb_list.wk_type));
9685 	}
9686 	while ((inodedep = LIST_FIRST(&bmsafemap->sm_inodedepwr)) != NULL) {
9687 		inodedep->id_state |= DEPCOMPLETE;
9688 		inodedep->id_state &= ~ONDEPLIST;
9689 		LIST_REMOVE(inodedep, id_deps);
9690 		inodedep->id_bmsafemap = NULL;
9691 	}
9692 	if (LIST_EMPTY(&bmsafemap->sm_jaddrefhd) &&
9693 	    LIST_EMPTY(&bmsafemap->sm_jnewblkhd) &&
9694 	    LIST_EMPTY(&bmsafemap->sm_newblkhd) &&
9695 	    LIST_EMPTY(&bmsafemap->sm_inodedephd)) {
9696 		if (chgs)
9697 			bdirty(bp);
9698 		LIST_REMOVE(bmsafemap, sm_hash);
9699 		WORKITEM_FREE(bmsafemap, D_BMSAFEMAP);
9700 		return (0);
9701 	}
9702 	bdirty(bp);
9703 	return (1);
9704 }
9705 
9706 /*
9707  * Try to free a mkdir dependency.
9708  */
9709 static void
9710 complete_mkdir(mkdir)
9711 	struct mkdir *mkdir;
9712 {
9713 	struct diradd *dap;
9714 
9715 	if ((mkdir->md_state & ALLCOMPLETE) != ALLCOMPLETE)
9716 		return;
9717 	LIST_REMOVE(mkdir, md_mkdirs);
9718 	dap = mkdir->md_diradd;
9719 	dap->da_state &= ~(mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY));
9720 	if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) == 0) {
9721 		dap->da_state |= DEPCOMPLETE;
9722 		complete_diradd(dap);
9723 	}
9724 	WORKITEM_FREE(mkdir, D_MKDIR);
9725 }
9726 
9727 /*
9728  * Handle the completion of a mkdir dependency.
9729  */
9730 static void
9731 handle_written_mkdir(mkdir, type)
9732 	struct mkdir *mkdir;
9733 	int type;
9734 {
9735 
9736 	if ((mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY)) != type)
9737 		panic("handle_written_mkdir: bad type");
9738 	mkdir->md_state |= COMPLETE;
9739 	complete_mkdir(mkdir);
9740 }
9741 
9742 static void
9743 free_pagedep(pagedep)
9744 	struct pagedep *pagedep;
9745 {
9746 	int i;
9747 
9748 	if (pagedep->pd_state & (NEWBLOCK | ONWORKLIST))
9749 		return;
9750 	for (i = 0; i < DAHASHSZ; i++)
9751 		if (!LIST_EMPTY(&pagedep->pd_diraddhd[i]))
9752 			return;
9753 	if (!LIST_EMPTY(&pagedep->pd_jmvrefhd))
9754 		return;
9755 	if (!LIST_EMPTY(&pagedep->pd_dirremhd))
9756 		return;
9757 	if (!LIST_EMPTY(&pagedep->pd_pendinghd))
9758 		return;
9759 	LIST_REMOVE(pagedep, pd_hash);
9760 	WORKITEM_FREE(pagedep, D_PAGEDEP);
9761 }
9762 
9763 /*
9764  * Called from within softdep_disk_write_complete above.
9765  * A write operation was just completed. Removed inodes can
9766  * now be freed and associated block pointers may be committed.
9767  * Note that this routine is always called from interrupt level
9768  * with further splbio interrupts blocked.
9769  */
9770 static int
9771 handle_written_filepage(pagedep, bp)
9772 	struct pagedep *pagedep;
9773 	struct buf *bp;		/* buffer containing the written page */
9774 {
9775 	struct dirrem *dirrem;
9776 	struct diradd *dap, *nextdap;
9777 	struct direct *ep;
9778 	int i, chgs;
9779 
9780 	if ((pagedep->pd_state & IOSTARTED) == 0)
9781 		panic("handle_written_filepage: not started");
9782 	pagedep->pd_state &= ~IOSTARTED;
9783 	/*
9784 	 * Process any directory removals that have been committed.
9785 	 */
9786 	while ((dirrem = LIST_FIRST(&pagedep->pd_dirremhd)) != NULL) {
9787 		LIST_REMOVE(dirrem, dm_next);
9788 		dirrem->dm_state |= COMPLETE;
9789 		dirrem->dm_dirinum = pagedep->pd_ino;
9790 		KASSERT(LIST_EMPTY(&dirrem->dm_jremrefhd),
9791 		    ("handle_written_filepage: Journal entries not written."));
9792 		add_to_worklist(&dirrem->dm_list, 0);
9793 	}
9794 	/*
9795 	 * Free any directory additions that have been committed.
9796 	 * If it is a newly allocated block, we have to wait until
9797 	 * the on-disk directory inode claims the new block.
9798 	 */
9799 	if ((pagedep->pd_state & NEWBLOCK) == 0)
9800 		while ((dap = LIST_FIRST(&pagedep->pd_pendinghd)) != NULL)
9801 			free_diradd(dap, NULL);
9802 	/*
9803 	 * Uncommitted directory entries must be restored.
9804 	 */
9805 	for (chgs = 0, i = 0; i < DAHASHSZ; i++) {
9806 		for (dap = LIST_FIRST(&pagedep->pd_diraddhd[i]); dap;
9807 		     dap = nextdap) {
9808 			nextdap = LIST_NEXT(dap, da_pdlist);
9809 			if (dap->da_state & ATTACHED)
9810 				panic("handle_written_filepage: attached");
9811 			ep = (struct direct *)
9812 			    ((char *)bp->b_data + dap->da_offset);
9813 			ep->d_ino = dap->da_newinum;
9814 			dap->da_state &= ~UNDONE;
9815 			dap->da_state |= ATTACHED;
9816 			chgs = 1;
9817 			/*
9818 			 * If the inode referenced by the directory has
9819 			 * been written out, then the dependency can be
9820 			 * moved to the pending list.
9821 			 */
9822 			if ((dap->da_state & ALLCOMPLETE) == ALLCOMPLETE) {
9823 				LIST_REMOVE(dap, da_pdlist);
9824 				LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap,
9825 				    da_pdlist);
9826 			}
9827 		}
9828 	}
9829 	/*
9830 	 * If there were any rollbacks in the directory, then it must be
9831 	 * marked dirty so that its will eventually get written back in
9832 	 * its correct form.
9833 	 */
9834 	if (chgs) {
9835 		if ((bp->b_flags & B_DELWRI) == 0)
9836 			stat_dir_entry++;
9837 		bdirty(bp);
9838 		return (1);
9839 	}
9840 	/*
9841 	 * If we are not waiting for a new directory block to be
9842 	 * claimed by its inode, then the pagedep will be freed.
9843 	 * Otherwise it will remain to track any new entries on
9844 	 * the page in case they are fsync'ed.
9845 	 */
9846 	if ((pagedep->pd_state & NEWBLOCK) == 0 &&
9847 	    LIST_EMPTY(&pagedep->pd_jmvrefhd)) {
9848 		LIST_REMOVE(pagedep, pd_hash);
9849 		WORKITEM_FREE(pagedep, D_PAGEDEP);
9850 	}
9851 	return (0);
9852 }
9853 
9854 /*
9855  * Writing back in-core inode structures.
9856  *
9857  * The filesystem only accesses an inode's contents when it occupies an
9858  * "in-core" inode structure.  These "in-core" structures are separate from
9859  * the page frames used to cache inode blocks.  Only the latter are
9860  * transferred to/from the disk.  So, when the updated contents of the
9861  * "in-core" inode structure are copied to the corresponding in-memory inode
9862  * block, the dependencies are also transferred.  The following procedure is
9863  * called when copying a dirty "in-core" inode to a cached inode block.
9864  */
9865 
9866 /*
9867  * Called when an inode is loaded from disk. If the effective link count
9868  * differed from the actual link count when it was last flushed, then we
9869  * need to ensure that the correct effective link count is put back.
9870  */
9871 void
9872 softdep_load_inodeblock(ip)
9873 	struct inode *ip;	/* the "in_core" copy of the inode */
9874 {
9875 	struct inodedep *inodedep;
9876 
9877 	/*
9878 	 * Check for alternate nlink count.
9879 	 */
9880 	ip->i_effnlink = ip->i_nlink;
9881 	ACQUIRE_LOCK(&lk);
9882 	if (inodedep_lookup(UFSTOVFS(ip->i_ump), ip->i_number, 0,
9883 	    &inodedep) == 0) {
9884 		FREE_LOCK(&lk);
9885 		return;
9886 	}
9887 	ip->i_effnlink -= inodedep->id_nlinkdelta;
9888 	FREE_LOCK(&lk);
9889 }
9890 
9891 /*
9892  * This routine is called just before the "in-core" inode
9893  * information is to be copied to the in-memory inode block.
9894  * Recall that an inode block contains several inodes. If
9895  * the force flag is set, then the dependencies will be
9896  * cleared so that the update can always be made. Note that
9897  * the buffer is locked when this routine is called, so we
9898  * will never be in the middle of writing the inode block
9899  * to disk.
9900  */
9901 void
9902 softdep_update_inodeblock(ip, bp, waitfor)
9903 	struct inode *ip;	/* the "in_core" copy of the inode */
9904 	struct buf *bp;		/* the buffer containing the inode block */
9905 	int waitfor;		/* nonzero => update must be allowed */
9906 {
9907 	struct inodedep *inodedep;
9908 	struct inoref *inoref;
9909 	struct worklist *wk;
9910 	struct mount *mp;
9911 	struct buf *ibp;
9912 	struct fs *fs;
9913 	int error;
9914 
9915 	mp = UFSTOVFS(ip->i_ump);
9916 	fs = ip->i_fs;
9917 	/*
9918 	 * Preserve the freelink that is on disk.  clear_unlinked_inodedep()
9919 	 * does not have access to the in-core ip so must write directly into
9920 	 * the inode block buffer when setting freelink.
9921 	 */
9922 	if (fs->fs_magic == FS_UFS1_MAGIC)
9923 		DIP_SET(ip, i_freelink, ((struct ufs1_dinode *)bp->b_data +
9924 		    ino_to_fsbo(fs, ip->i_number))->di_freelink);
9925 	else
9926 		DIP_SET(ip, i_freelink, ((struct ufs2_dinode *)bp->b_data +
9927 		    ino_to_fsbo(fs, ip->i_number))->di_freelink);
9928 	/*
9929 	 * If the effective link count is not equal to the actual link
9930 	 * count, then we must track the difference in an inodedep while
9931 	 * the inode is (potentially) tossed out of the cache. Otherwise,
9932 	 * if there is no existing inodedep, then there are no dependencies
9933 	 * to track.
9934 	 */
9935 	ACQUIRE_LOCK(&lk);
9936 again:
9937 	if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0) {
9938 		FREE_LOCK(&lk);
9939 		if (ip->i_effnlink != ip->i_nlink)
9940 			panic("softdep_update_inodeblock: bad link count");
9941 		return;
9942 	}
9943 	if (inodedep->id_nlinkdelta != ip->i_nlink - ip->i_effnlink)
9944 		panic("softdep_update_inodeblock: bad delta");
9945 	/*
9946 	 * If we're flushing all dependencies we must also move any waiting
9947 	 * for journal writes onto the bufwait list prior to I/O.
9948 	 */
9949 	if (waitfor) {
9950 		TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) {
9951 			if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY))
9952 			    == DEPCOMPLETE) {
9953 				stat_jwait_inode++;
9954 				jwait(&inoref->if_list);
9955 				goto again;
9956 			}
9957 		}
9958 	}
9959 	/*
9960 	 * Changes have been initiated. Anything depending on these
9961 	 * changes cannot occur until this inode has been written.
9962 	 */
9963 	inodedep->id_state &= ~COMPLETE;
9964 	if ((inodedep->id_state & ONWORKLIST) == 0)
9965 		WORKLIST_INSERT(&bp->b_dep, &inodedep->id_list);
9966 	/*
9967 	 * Any new dependencies associated with the incore inode must
9968 	 * now be moved to the list associated with the buffer holding
9969 	 * the in-memory copy of the inode. Once merged process any
9970 	 * allocdirects that are completed by the merger.
9971 	 */
9972 	merge_inode_lists(&inodedep->id_newinoupdt, &inodedep->id_inoupdt);
9973 	if (!TAILQ_EMPTY(&inodedep->id_inoupdt))
9974 		handle_allocdirect_partdone(TAILQ_FIRST(&inodedep->id_inoupdt),
9975 		    NULL);
9976 	merge_inode_lists(&inodedep->id_newextupdt, &inodedep->id_extupdt);
9977 	if (!TAILQ_EMPTY(&inodedep->id_extupdt))
9978 		handle_allocdirect_partdone(TAILQ_FIRST(&inodedep->id_extupdt),
9979 		    NULL);
9980 	/*
9981 	 * Now that the inode has been pushed into the buffer, the
9982 	 * operations dependent on the inode being written to disk
9983 	 * can be moved to the id_bufwait so that they will be
9984 	 * processed when the buffer I/O completes.
9985 	 */
9986 	while ((wk = LIST_FIRST(&inodedep->id_inowait)) != NULL) {
9987 		WORKLIST_REMOVE(wk);
9988 		WORKLIST_INSERT(&inodedep->id_bufwait, wk);
9989 	}
9990 	/*
9991 	 * Newly allocated inodes cannot be written until the bitmap
9992 	 * that allocates them have been written (indicated by
9993 	 * DEPCOMPLETE being set in id_state). If we are doing a
9994 	 * forced sync (e.g., an fsync on a file), we force the bitmap
9995 	 * to be written so that the update can be done.
9996 	 */
9997 	if (waitfor == 0) {
9998 		FREE_LOCK(&lk);
9999 		return;
10000 	}
10001 retry:
10002 	if ((inodedep->id_state & (DEPCOMPLETE | GOINGAWAY)) != 0) {
10003 		FREE_LOCK(&lk);
10004 		return;
10005 	}
10006 	ibp = inodedep->id_bmsafemap->sm_buf;
10007 	ibp = getdirtybuf(ibp, &lk, MNT_WAIT);
10008 	if (ibp == NULL) {
10009 		/*
10010 		 * If ibp came back as NULL, the dependency could have been
10011 		 * freed while we slept.  Look it up again, and check to see
10012 		 * that it has completed.
10013 		 */
10014 		if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) != 0)
10015 			goto retry;
10016 		FREE_LOCK(&lk);
10017 		return;
10018 	}
10019 	FREE_LOCK(&lk);
10020 	if ((error = bwrite(ibp)) != 0)
10021 		softdep_error("softdep_update_inodeblock: bwrite", error);
10022 }
10023 
10024 /*
10025  * Merge the a new inode dependency list (such as id_newinoupdt) into an
10026  * old inode dependency list (such as id_inoupdt). This routine must be
10027  * called with splbio interrupts blocked.
10028  */
10029 static void
10030 merge_inode_lists(newlisthead, oldlisthead)
10031 	struct allocdirectlst *newlisthead;
10032 	struct allocdirectlst *oldlisthead;
10033 {
10034 	struct allocdirect *listadp, *newadp;
10035 
10036 	newadp = TAILQ_FIRST(newlisthead);
10037 	for (listadp = TAILQ_FIRST(oldlisthead); listadp && newadp;) {
10038 		if (listadp->ad_offset < newadp->ad_offset) {
10039 			listadp = TAILQ_NEXT(listadp, ad_next);
10040 			continue;
10041 		}
10042 		TAILQ_REMOVE(newlisthead, newadp, ad_next);
10043 		TAILQ_INSERT_BEFORE(listadp, newadp, ad_next);
10044 		if (listadp->ad_offset == newadp->ad_offset) {
10045 			allocdirect_merge(oldlisthead, newadp,
10046 			    listadp);
10047 			listadp = newadp;
10048 		}
10049 		newadp = TAILQ_FIRST(newlisthead);
10050 	}
10051 	while ((newadp = TAILQ_FIRST(newlisthead)) != NULL) {
10052 		TAILQ_REMOVE(newlisthead, newadp, ad_next);
10053 		TAILQ_INSERT_TAIL(oldlisthead, newadp, ad_next);
10054 	}
10055 }
10056 
10057 /*
10058  * If we are doing an fsync, then we must ensure that any directory
10059  * entries for the inode have been written after the inode gets to disk.
10060  */
10061 int
10062 softdep_fsync(vp)
10063 	struct vnode *vp;	/* the "in_core" copy of the inode */
10064 {
10065 	struct inodedep *inodedep;
10066 	struct pagedep *pagedep;
10067 	struct inoref *inoref;
10068 	struct worklist *wk;
10069 	struct diradd *dap;
10070 	struct mount *mp;
10071 	struct vnode *pvp;
10072 	struct inode *ip;
10073 	struct buf *bp;
10074 	struct fs *fs;
10075 	struct thread *td = curthread;
10076 	int error, flushparent, pagedep_new_block;
10077 	ino_t parentino;
10078 	ufs_lbn_t lbn;
10079 
10080 	ip = VTOI(vp);
10081 	fs = ip->i_fs;
10082 	mp = vp->v_mount;
10083 	ACQUIRE_LOCK(&lk);
10084 restart:
10085 	if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0) {
10086 		FREE_LOCK(&lk);
10087 		return (0);
10088 	}
10089 	TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) {
10090 		if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY))
10091 		    == DEPCOMPLETE) {
10092 			stat_jwait_inode++;
10093 			jwait(&inoref->if_list);
10094 			goto restart;
10095 		}
10096 	}
10097 	if (!LIST_EMPTY(&inodedep->id_inowait) ||
10098 	    !TAILQ_EMPTY(&inodedep->id_extupdt) ||
10099 	    !TAILQ_EMPTY(&inodedep->id_newextupdt) ||
10100 	    !TAILQ_EMPTY(&inodedep->id_inoupdt) ||
10101 	    !TAILQ_EMPTY(&inodedep->id_newinoupdt))
10102 		panic("softdep_fsync: pending ops %p", inodedep);
10103 	for (error = 0, flushparent = 0; ; ) {
10104 		if ((wk = LIST_FIRST(&inodedep->id_pendinghd)) == NULL)
10105 			break;
10106 		if (wk->wk_type != D_DIRADD)
10107 			panic("softdep_fsync: Unexpected type %s",
10108 			    TYPENAME(wk->wk_type));
10109 		dap = WK_DIRADD(wk);
10110 		/*
10111 		 * Flush our parent if this directory entry has a MKDIR_PARENT
10112 		 * dependency or is contained in a newly allocated block.
10113 		 */
10114 		if (dap->da_state & DIRCHG)
10115 			pagedep = dap->da_previous->dm_pagedep;
10116 		else
10117 			pagedep = dap->da_pagedep;
10118 		parentino = pagedep->pd_ino;
10119 		lbn = pagedep->pd_lbn;
10120 		if ((dap->da_state & (MKDIR_BODY | COMPLETE)) != COMPLETE)
10121 			panic("softdep_fsync: dirty");
10122 		if ((dap->da_state & MKDIR_PARENT) ||
10123 		    (pagedep->pd_state & NEWBLOCK))
10124 			flushparent = 1;
10125 		else
10126 			flushparent = 0;
10127 		/*
10128 		 * If we are being fsync'ed as part of vgone'ing this vnode,
10129 		 * then we will not be able to release and recover the
10130 		 * vnode below, so we just have to give up on writing its
10131 		 * directory entry out. It will eventually be written, just
10132 		 * not now, but then the user was not asking to have it
10133 		 * written, so we are not breaking any promises.
10134 		 */
10135 		if (vp->v_iflag & VI_DOOMED)
10136 			break;
10137 		/*
10138 		 * We prevent deadlock by always fetching inodes from the
10139 		 * root, moving down the directory tree. Thus, when fetching
10140 		 * our parent directory, we first try to get the lock. If
10141 		 * that fails, we must unlock ourselves before requesting
10142 		 * the lock on our parent. See the comment in ufs_lookup
10143 		 * for details on possible races.
10144 		 */
10145 		FREE_LOCK(&lk);
10146 		if (ffs_vgetf(mp, parentino, LK_NOWAIT | LK_EXCLUSIVE, &pvp,
10147 		    FFSV_FORCEINSMQ)) {
10148 			error = vfs_busy(mp, MBF_NOWAIT);
10149 			if (error != 0) {
10150 				vfs_ref(mp);
10151 				VOP_UNLOCK(vp, 0);
10152 				error = vfs_busy(mp, 0);
10153 				vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
10154 				vfs_rel(mp);
10155 				if (error != 0)
10156 					return (ENOENT);
10157 				if (vp->v_iflag & VI_DOOMED) {
10158 					vfs_unbusy(mp);
10159 					return (ENOENT);
10160 				}
10161 			}
10162 			VOP_UNLOCK(vp, 0);
10163 			error = ffs_vgetf(mp, parentino, LK_EXCLUSIVE,
10164 			    &pvp, FFSV_FORCEINSMQ);
10165 			vfs_unbusy(mp);
10166 			vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
10167 			if (vp->v_iflag & VI_DOOMED) {
10168 				if (error == 0)
10169 					vput(pvp);
10170 				error = ENOENT;
10171 			}
10172 			if (error != 0)
10173 				return (error);
10174 		}
10175 		/*
10176 		 * All MKDIR_PARENT dependencies and all the NEWBLOCK pagedeps
10177 		 * that are contained in direct blocks will be resolved by
10178 		 * doing a ffs_update. Pagedeps contained in indirect blocks
10179 		 * may require a complete sync'ing of the directory. So, we
10180 		 * try the cheap and fast ffs_update first, and if that fails,
10181 		 * then we do the slower ffs_syncvnode of the directory.
10182 		 */
10183 		if (flushparent) {
10184 			int locked;
10185 
10186 			if ((error = ffs_update(pvp, 1)) != 0) {
10187 				vput(pvp);
10188 				return (error);
10189 			}
10190 			ACQUIRE_LOCK(&lk);
10191 			locked = 1;
10192 			if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) != 0) {
10193 				if ((wk = LIST_FIRST(&inodedep->id_pendinghd)) != NULL) {
10194 					if (wk->wk_type != D_DIRADD)
10195 						panic("softdep_fsync: Unexpected type %s",
10196 						      TYPENAME(wk->wk_type));
10197 					dap = WK_DIRADD(wk);
10198 					if (dap->da_state & DIRCHG)
10199 						pagedep = dap->da_previous->dm_pagedep;
10200 					else
10201 						pagedep = dap->da_pagedep;
10202 					pagedep_new_block = pagedep->pd_state & NEWBLOCK;
10203 					FREE_LOCK(&lk);
10204 					locked = 0;
10205 					if (pagedep_new_block &&
10206 					    (error = ffs_syncvnode(pvp, MNT_WAIT))) {
10207 						vput(pvp);
10208 						return (error);
10209 					}
10210 				}
10211 			}
10212 			if (locked)
10213 				FREE_LOCK(&lk);
10214 		}
10215 		/*
10216 		 * Flush directory page containing the inode's name.
10217 		 */
10218 		error = bread(pvp, lbn, blksize(fs, VTOI(pvp), lbn), td->td_ucred,
10219 		    &bp);
10220 		if (error == 0)
10221 			error = bwrite(bp);
10222 		else
10223 			brelse(bp);
10224 		vput(pvp);
10225 		if (error != 0)
10226 			return (error);
10227 		ACQUIRE_LOCK(&lk);
10228 		if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0)
10229 			break;
10230 	}
10231 	FREE_LOCK(&lk);
10232 	return (0);
10233 }
10234 
10235 /*
10236  * Flush all the dirty bitmaps associated with the block device
10237  * before flushing the rest of the dirty blocks so as to reduce
10238  * the number of dependencies that will have to be rolled back.
10239  */
10240 void
10241 softdep_fsync_mountdev(vp)
10242 	struct vnode *vp;
10243 {
10244 	struct buf *bp, *nbp;
10245 	struct worklist *wk;
10246 	struct bufobj *bo;
10247 
10248 	if (!vn_isdisk(vp, NULL))
10249 		panic("softdep_fsync_mountdev: vnode not a disk");
10250 	bo = &vp->v_bufobj;
10251 restart:
10252 	BO_LOCK(bo);
10253 	ACQUIRE_LOCK(&lk);
10254 	TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) {
10255 		/*
10256 		 * If it is already scheduled, skip to the next buffer.
10257 		 */
10258 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL))
10259 			continue;
10260 
10261 		if ((bp->b_flags & B_DELWRI) == 0)
10262 			panic("softdep_fsync_mountdev: not dirty");
10263 		/*
10264 		 * We are only interested in bitmaps with outstanding
10265 		 * dependencies.
10266 		 */
10267 		if ((wk = LIST_FIRST(&bp->b_dep)) == NULL ||
10268 		    wk->wk_type != D_BMSAFEMAP ||
10269 		    (bp->b_vflags & BV_BKGRDINPROG)) {
10270 			BUF_UNLOCK(bp);
10271 			continue;
10272 		}
10273 		FREE_LOCK(&lk);
10274 		BO_UNLOCK(bo);
10275 		bremfree(bp);
10276 		(void) bawrite(bp);
10277 		goto restart;
10278 	}
10279 	FREE_LOCK(&lk);
10280 	drain_output(vp);
10281 	BO_UNLOCK(bo);
10282 }
10283 
10284 /*
10285  * This routine is called when we are trying to synchronously flush a
10286  * file. This routine must eliminate any filesystem metadata dependencies
10287  * so that the syncing routine can succeed by pushing the dirty blocks
10288  * associated with the file. If any I/O errors occur, they are returned.
10289  */
10290 int
10291 softdep_sync_metadata(struct vnode *vp)
10292 {
10293 	struct pagedep *pagedep;
10294 	struct allocindir *aip;
10295 	struct newblk *newblk;
10296 	struct buf *bp, *nbp;
10297 	struct worklist *wk;
10298 	struct bufobj *bo;
10299 	int i, error, waitfor;
10300 
10301 	if (!DOINGSOFTDEP(vp))
10302 		return (0);
10303 	/*
10304 	 * Ensure that any direct block dependencies have been cleared.
10305 	 */
10306 	ACQUIRE_LOCK(&lk);
10307 	if ((error = flush_inodedep_deps(vp->v_mount, VTOI(vp)->i_number))) {
10308 		FREE_LOCK(&lk);
10309 		return (error);
10310 	}
10311 	FREE_LOCK(&lk);
10312 	/*
10313 	 * For most files, the only metadata dependencies are the
10314 	 * cylinder group maps that allocate their inode or blocks.
10315 	 * The block allocation dependencies can be found by traversing
10316 	 * the dependency lists for any buffers that remain on their
10317 	 * dirty buffer list. The inode allocation dependency will
10318 	 * be resolved when the inode is updated with MNT_WAIT.
10319 	 * This work is done in two passes. The first pass grabs most
10320 	 * of the buffers and begins asynchronously writing them. The
10321 	 * only way to wait for these asynchronous writes is to sleep
10322 	 * on the filesystem vnode which may stay busy for a long time
10323 	 * if the filesystem is active. So, instead, we make a second
10324 	 * pass over the dependencies blocking on each write. In the
10325 	 * usual case we will be blocking against a write that we
10326 	 * initiated, so when it is done the dependency will have been
10327 	 * resolved. Thus the second pass is expected to end quickly.
10328 	 */
10329 	waitfor = MNT_NOWAIT;
10330 	bo = &vp->v_bufobj;
10331 
10332 top:
10333 	/*
10334 	 * We must wait for any I/O in progress to finish so that
10335 	 * all potential buffers on the dirty list will be visible.
10336 	 */
10337 	BO_LOCK(bo);
10338 	drain_output(vp);
10339 	while ((bp = TAILQ_FIRST(&bo->bo_dirty.bv_hd)) != NULL) {
10340 		bp = getdirtybuf(bp, BO_MTX(bo), MNT_WAIT);
10341 		if (bp)
10342 			break;
10343 	}
10344 	BO_UNLOCK(bo);
10345 	if (bp == NULL)
10346 		return (0);
10347 loop:
10348 	/* While syncing snapshots, we must allow recursive lookups */
10349 	BUF_AREC(bp);
10350 	ACQUIRE_LOCK(&lk);
10351 	/*
10352 	 * As we hold the buffer locked, none of its dependencies
10353 	 * will disappear.
10354 	 */
10355 	LIST_FOREACH(wk, &bp->b_dep, wk_list) {
10356 		switch (wk->wk_type) {
10357 
10358 		case D_ALLOCDIRECT:
10359 		case D_ALLOCINDIR:
10360 			newblk = WK_NEWBLK(wk);
10361 			if (newblk->nb_jnewblk != NULL) {
10362 				stat_jwait_newblk++;
10363 				jwait(&newblk->nb_jnewblk->jn_list);
10364 				goto restart;
10365 			}
10366 			if (newblk->nb_state & DEPCOMPLETE)
10367 				continue;
10368 			nbp = newblk->nb_bmsafemap->sm_buf;
10369 			nbp = getdirtybuf(nbp, &lk, waitfor);
10370 			if (nbp == NULL)
10371 				continue;
10372 			FREE_LOCK(&lk);
10373 			if (waitfor == MNT_NOWAIT) {
10374 				bawrite(nbp);
10375 			} else if ((error = bwrite(nbp)) != 0) {
10376 				break;
10377 			}
10378 			ACQUIRE_LOCK(&lk);
10379 			continue;
10380 
10381 		case D_INDIRDEP:
10382 		restart:
10383 
10384 			LIST_FOREACH(aip,
10385 			    &WK_INDIRDEP(wk)->ir_deplisthd, ai_next) {
10386 				newblk = (struct newblk *)aip;
10387 				if (newblk->nb_jnewblk != NULL) {
10388 					stat_jwait_newblk++;
10389 					jwait(&newblk->nb_jnewblk->jn_list);
10390 					goto restart;
10391 				}
10392 				if (newblk->nb_state & DEPCOMPLETE)
10393 					continue;
10394 				nbp = newblk->nb_bmsafemap->sm_buf;
10395 				nbp = getdirtybuf(nbp, &lk, MNT_WAIT);
10396 				if (nbp == NULL)
10397 					goto restart;
10398 				FREE_LOCK(&lk);
10399 				if ((error = bwrite(nbp)) != 0) {
10400 					goto loop_end;
10401 				}
10402 				ACQUIRE_LOCK(&lk);
10403 				goto restart;
10404 			}
10405 			continue;
10406 
10407 		case D_PAGEDEP:
10408 			/*
10409 			 * We are trying to sync a directory that may
10410 			 * have dependencies on both its own metadata
10411 			 * and/or dependencies on the inodes of any
10412 			 * recently allocated files. We walk its diradd
10413 			 * lists pushing out the associated inode.
10414 			 */
10415 			pagedep = WK_PAGEDEP(wk);
10416 			for (i = 0; i < DAHASHSZ; i++) {
10417 				if (LIST_FIRST(&pagedep->pd_diraddhd[i]) == 0)
10418 					continue;
10419 				if ((error =
10420 				    flush_pagedep_deps(vp, wk->wk_mp,
10421 						&pagedep->pd_diraddhd[i]))) {
10422 					FREE_LOCK(&lk);
10423 					goto loop_end;
10424 				}
10425 			}
10426 			continue;
10427 
10428 		default:
10429 			panic("softdep_sync_metadata: Unknown type %s",
10430 			    TYPENAME(wk->wk_type));
10431 			/* NOTREACHED */
10432 		}
10433 	loop_end:
10434 		/* We reach here only in error and unlocked */
10435 		if (error == 0)
10436 			panic("softdep_sync_metadata: zero error");
10437 		BUF_NOREC(bp);
10438 		bawrite(bp);
10439 		return (error);
10440 	}
10441 	FREE_LOCK(&lk);
10442 	BO_LOCK(bo);
10443 	while ((nbp = TAILQ_NEXT(bp, b_bobufs)) != NULL) {
10444 		nbp = getdirtybuf(nbp, BO_MTX(bo), MNT_WAIT);
10445 		if (nbp)
10446 			break;
10447 	}
10448 	BO_UNLOCK(bo);
10449 	BUF_NOREC(bp);
10450 	bawrite(bp);
10451 	if (nbp != NULL) {
10452 		bp = nbp;
10453 		goto loop;
10454 	}
10455 	/*
10456 	 * The brief unlock is to allow any pent up dependency
10457 	 * processing to be done. Then proceed with the second pass.
10458 	 */
10459 	if (waitfor == MNT_NOWAIT) {
10460 		waitfor = MNT_WAIT;
10461 		goto top;
10462 	}
10463 
10464 	/*
10465 	 * If we have managed to get rid of all the dirty buffers,
10466 	 * then we are done. For certain directories and block
10467 	 * devices, we may need to do further work.
10468 	 *
10469 	 * We must wait for any I/O in progress to finish so that
10470 	 * all potential buffers on the dirty list will be visible.
10471 	 */
10472 	BO_LOCK(bo);
10473 	drain_output(vp);
10474 	BO_UNLOCK(bo);
10475 	return ffs_update(vp, 1);
10476 	/* return (0); */
10477 }
10478 
10479 /*
10480  * Flush the dependencies associated with an inodedep.
10481  * Called with splbio blocked.
10482  */
10483 static int
10484 flush_inodedep_deps(mp, ino)
10485 	struct mount *mp;
10486 	ino_t ino;
10487 {
10488 	struct inodedep *inodedep;
10489 	struct inoref *inoref;
10490 	int error, waitfor;
10491 
10492 	/*
10493 	 * This work is done in two passes. The first pass grabs most
10494 	 * of the buffers and begins asynchronously writing them. The
10495 	 * only way to wait for these asynchronous writes is to sleep
10496 	 * on the filesystem vnode which may stay busy for a long time
10497 	 * if the filesystem is active. So, instead, we make a second
10498 	 * pass over the dependencies blocking on each write. In the
10499 	 * usual case we will be blocking against a write that we
10500 	 * initiated, so when it is done the dependency will have been
10501 	 * resolved. Thus the second pass is expected to end quickly.
10502 	 * We give a brief window at the top of the loop to allow
10503 	 * any pending I/O to complete.
10504 	 */
10505 	for (error = 0, waitfor = MNT_NOWAIT; ; ) {
10506 		if (error)
10507 			return (error);
10508 		FREE_LOCK(&lk);
10509 		ACQUIRE_LOCK(&lk);
10510 restart:
10511 		if (inodedep_lookup(mp, ino, 0, &inodedep) == 0)
10512 			return (0);
10513 		TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) {
10514 			if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY))
10515 			    == DEPCOMPLETE) {
10516 				stat_jwait_inode++;
10517 				jwait(&inoref->if_list);
10518 				goto restart;
10519 			}
10520 		}
10521 		if (flush_deplist(&inodedep->id_inoupdt, waitfor, &error) ||
10522 		    flush_deplist(&inodedep->id_newinoupdt, waitfor, &error) ||
10523 		    flush_deplist(&inodedep->id_extupdt, waitfor, &error) ||
10524 		    flush_deplist(&inodedep->id_newextupdt, waitfor, &error))
10525 			continue;
10526 		/*
10527 		 * If pass2, we are done, otherwise do pass 2.
10528 		 */
10529 		if (waitfor == MNT_WAIT)
10530 			break;
10531 		waitfor = MNT_WAIT;
10532 	}
10533 	/*
10534 	 * Try freeing inodedep in case all dependencies have been removed.
10535 	 */
10536 	if (inodedep_lookup(mp, ino, 0, &inodedep) != 0)
10537 		(void) free_inodedep(inodedep);
10538 	return (0);
10539 }
10540 
10541 /*
10542  * Flush an inode dependency list.
10543  * Called with splbio blocked.
10544  */
10545 static int
10546 flush_deplist(listhead, waitfor, errorp)
10547 	struct allocdirectlst *listhead;
10548 	int waitfor;
10549 	int *errorp;
10550 {
10551 	struct allocdirect *adp;
10552 	struct newblk *newblk;
10553 	struct buf *bp;
10554 
10555 	mtx_assert(&lk, MA_OWNED);
10556 	TAILQ_FOREACH(adp, listhead, ad_next) {
10557 		newblk = (struct newblk *)adp;
10558 		if (newblk->nb_jnewblk != NULL) {
10559 			stat_jwait_newblk++;
10560 			jwait(&newblk->nb_jnewblk->jn_list);
10561 			return (1);
10562 		}
10563 		if (newblk->nb_state & DEPCOMPLETE)
10564 			continue;
10565 		bp = newblk->nb_bmsafemap->sm_buf;
10566 		bp = getdirtybuf(bp, &lk, waitfor);
10567 		if (bp == NULL) {
10568 			if (waitfor == MNT_NOWAIT)
10569 				continue;
10570 			return (1);
10571 		}
10572 		FREE_LOCK(&lk);
10573 		if (waitfor == MNT_NOWAIT) {
10574 			bawrite(bp);
10575 		} else if ((*errorp = bwrite(bp)) != 0) {
10576 			ACQUIRE_LOCK(&lk);
10577 			return (1);
10578 		}
10579 		ACQUIRE_LOCK(&lk);
10580 		return (1);
10581 	}
10582 	return (0);
10583 }
10584 
10585 /*
10586  * Flush dependencies associated with an allocdirect block.
10587  */
10588 static int
10589 flush_newblk_dep(vp, mp, lbn)
10590 	struct vnode *vp;
10591 	struct mount *mp;
10592 	ufs_lbn_t lbn;
10593 {
10594 	struct newblk *newblk;
10595 	struct bufobj *bo;
10596 	struct inode *ip;
10597 	struct buf *bp;
10598 	ufs2_daddr_t blkno;
10599 	int error;
10600 
10601 	error = 0;
10602 	bo = &vp->v_bufobj;
10603 	ip = VTOI(vp);
10604 	blkno = DIP(ip, i_db[lbn]);
10605 	if (blkno == 0)
10606 		panic("flush_newblk_dep: Missing block");
10607 	ACQUIRE_LOCK(&lk);
10608 	/*
10609 	 * Loop until all dependencies related to this block are satisfied.
10610 	 * We must be careful to restart after each sleep in case a write
10611 	 * completes some part of this process for us.
10612 	 */
10613 	for (;;) {
10614 		if (newblk_lookup(mp, blkno, 0, &newblk) == 0) {
10615 			FREE_LOCK(&lk);
10616 			break;
10617 		}
10618 		if (newblk->nb_list.wk_type != D_ALLOCDIRECT)
10619 			panic("flush_newblk_deps: Bad newblk %p", newblk);
10620 		/*
10621 		 * Flush the journal.
10622 		 */
10623 		if (newblk->nb_jnewblk != NULL) {
10624 			stat_jwait_newblk++;
10625 			jwait(&newblk->nb_jnewblk->jn_list);
10626 			continue;
10627 		}
10628 		/*
10629 		 * Write the bitmap dependency.
10630 		 */
10631 		if ((newblk->nb_state & DEPCOMPLETE) == 0) {
10632 			bp = newblk->nb_bmsafemap->sm_buf;
10633 			bp = getdirtybuf(bp, &lk, MNT_WAIT);
10634 			if (bp == NULL)
10635 				continue;
10636 			FREE_LOCK(&lk);
10637 			error = bwrite(bp);
10638 			if (error)
10639 				break;
10640 			ACQUIRE_LOCK(&lk);
10641 			continue;
10642 		}
10643 		/*
10644 		 * Write the buffer.
10645 		 */
10646 		FREE_LOCK(&lk);
10647 		BO_LOCK(bo);
10648 		bp = gbincore(bo, lbn);
10649 		if (bp != NULL) {
10650 			error = BUF_LOCK(bp, LK_EXCLUSIVE | LK_SLEEPFAIL |
10651 			    LK_INTERLOCK, BO_MTX(bo));
10652 			if (error == ENOLCK) {
10653 				ACQUIRE_LOCK(&lk);
10654 				continue; /* Slept, retry */
10655 			}
10656 			if (error != 0)
10657 				break;	/* Failed */
10658 			if (bp->b_flags & B_DELWRI) {
10659 				bremfree(bp);
10660 				error = bwrite(bp);
10661 				if (error)
10662 					break;
10663 			} else
10664 				BUF_UNLOCK(bp);
10665 		} else
10666 			BO_UNLOCK(bo);
10667 		/*
10668 		 * We have to wait for the direct pointers to
10669 		 * point at the newdirblk before the dependency
10670 		 * will go away.
10671 		 */
10672 		error = ffs_update(vp, MNT_WAIT);
10673 		if (error)
10674 			break;
10675 		ACQUIRE_LOCK(&lk);
10676 	}
10677 	return (error);
10678 }
10679 
10680 /*
10681  * Eliminate a pagedep dependency by flushing out all its diradd dependencies.
10682  * Called with splbio blocked.
10683  */
10684 static int
10685 flush_pagedep_deps(pvp, mp, diraddhdp)
10686 	struct vnode *pvp;
10687 	struct mount *mp;
10688 	struct diraddhd *diraddhdp;
10689 {
10690 	struct inodedep *inodedep;
10691 	struct inoref *inoref;
10692 	struct ufsmount *ump;
10693 	struct diradd *dap;
10694 	struct vnode *vp;
10695 	int error = 0;
10696 	struct buf *bp;
10697 	ino_t inum;
10698 
10699 	ump = VFSTOUFS(mp);
10700 restart:
10701 	while ((dap = LIST_FIRST(diraddhdp)) != NULL) {
10702 		/*
10703 		 * Flush ourselves if this directory entry
10704 		 * has a MKDIR_PARENT dependency.
10705 		 */
10706 		if (dap->da_state & MKDIR_PARENT) {
10707 			FREE_LOCK(&lk);
10708 			if ((error = ffs_update(pvp, MNT_WAIT)) != 0)
10709 				break;
10710 			ACQUIRE_LOCK(&lk);
10711 			/*
10712 			 * If that cleared dependencies, go on to next.
10713 			 */
10714 			if (dap != LIST_FIRST(diraddhdp))
10715 				continue;
10716 			if (dap->da_state & MKDIR_PARENT)
10717 				panic("flush_pagedep_deps: MKDIR_PARENT");
10718 		}
10719 		/*
10720 		 * A newly allocated directory must have its "." and
10721 		 * ".." entries written out before its name can be
10722 		 * committed in its parent.
10723 		 */
10724 		inum = dap->da_newinum;
10725 		if (inodedep_lookup(UFSTOVFS(ump), inum, 0, &inodedep) == 0)
10726 			panic("flush_pagedep_deps: lost inode1");
10727 		/*
10728 		 * Wait for any pending journal adds to complete so we don't
10729 		 * cause rollbacks while syncing.
10730 		 */
10731 		TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) {
10732 			if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY))
10733 			    == DEPCOMPLETE) {
10734 				stat_jwait_inode++;
10735 				jwait(&inoref->if_list);
10736 				goto restart;
10737 			}
10738 		}
10739 		if (dap->da_state & MKDIR_BODY) {
10740 			FREE_LOCK(&lk);
10741 			if ((error = ffs_vgetf(mp, inum, LK_EXCLUSIVE, &vp,
10742 			    FFSV_FORCEINSMQ)))
10743 				break;
10744 			error = flush_newblk_dep(vp, mp, 0);
10745 			/*
10746 			 * If we still have the dependency we might need to
10747 			 * update the vnode to sync the new link count to
10748 			 * disk.
10749 			 */
10750 			if (error == 0 && dap == LIST_FIRST(diraddhdp))
10751 				error = ffs_update(vp, MNT_WAIT);
10752 			vput(vp);
10753 			if (error != 0)
10754 				break;
10755 			ACQUIRE_LOCK(&lk);
10756 			/*
10757 			 * If that cleared dependencies, go on to next.
10758 			 */
10759 			if (dap != LIST_FIRST(diraddhdp))
10760 				continue;
10761 			if (dap->da_state & MKDIR_BODY) {
10762 				inodedep_lookup(UFSTOVFS(ump), inum, 0,
10763 				    &inodedep);
10764 				panic("flush_pagedep_deps: MKDIR_BODY "
10765 				    "inodedep %p dap %p vp %p",
10766 				    inodedep, dap, vp);
10767 			}
10768 		}
10769 		/*
10770 		 * Flush the inode on which the directory entry depends.
10771 		 * Having accounted for MKDIR_PARENT and MKDIR_BODY above,
10772 		 * the only remaining dependency is that the updated inode
10773 		 * count must get pushed to disk. The inode has already
10774 		 * been pushed into its inode buffer (via VOP_UPDATE) at
10775 		 * the time of the reference count change. So we need only
10776 		 * locate that buffer, ensure that there will be no rollback
10777 		 * caused by a bitmap dependency, then write the inode buffer.
10778 		 */
10779 retry:
10780 		if (inodedep_lookup(UFSTOVFS(ump), inum, 0, &inodedep) == 0)
10781 			panic("flush_pagedep_deps: lost inode");
10782 		/*
10783 		 * If the inode still has bitmap dependencies,
10784 		 * push them to disk.
10785 		 */
10786 		if ((inodedep->id_state & (DEPCOMPLETE | GOINGAWAY)) == 0) {
10787 			bp = inodedep->id_bmsafemap->sm_buf;
10788 			bp = getdirtybuf(bp, &lk, MNT_WAIT);
10789 			if (bp == NULL)
10790 				goto retry;
10791 			FREE_LOCK(&lk);
10792 			if ((error = bwrite(bp)) != 0)
10793 				break;
10794 			ACQUIRE_LOCK(&lk);
10795 			if (dap != LIST_FIRST(diraddhdp))
10796 				continue;
10797 		}
10798 		/*
10799 		 * If the inode is still sitting in a buffer waiting
10800 		 * to be written or waiting for the link count to be
10801 		 * adjusted update it here to flush it to disk.
10802 		 */
10803 		if (dap == LIST_FIRST(diraddhdp)) {
10804 			FREE_LOCK(&lk);
10805 			if ((error = ffs_vgetf(mp, inum, LK_EXCLUSIVE, &vp,
10806 			    FFSV_FORCEINSMQ)))
10807 				break;
10808 			error = ffs_update(vp, MNT_WAIT);
10809 			vput(vp);
10810 			if (error)
10811 				break;
10812 			ACQUIRE_LOCK(&lk);
10813 		}
10814 		/*
10815 		 * If we have failed to get rid of all the dependencies
10816 		 * then something is seriously wrong.
10817 		 */
10818 		if (dap == LIST_FIRST(diraddhdp)) {
10819 			inodedep_lookup(UFSTOVFS(ump), inum, 0, &inodedep);
10820 			panic("flush_pagedep_deps: failed to flush "
10821 			    "inodedep %p ino %d dap %p", inodedep, inum, dap);
10822 		}
10823 	}
10824 	if (error)
10825 		ACQUIRE_LOCK(&lk);
10826 	return (error);
10827 }
10828 
10829 /*
10830  * A large burst of file addition or deletion activity can drive the
10831  * memory load excessively high. First attempt to slow things down
10832  * using the techniques below. If that fails, this routine requests
10833  * the offending operations to fall back to running synchronously
10834  * until the memory load returns to a reasonable level.
10835  */
10836 int
10837 softdep_slowdown(vp)
10838 	struct vnode *vp;
10839 {
10840 	struct ufsmount *ump;
10841 	int jlow;
10842 	int max_softdeps_hard;
10843 
10844 	ACQUIRE_LOCK(&lk);
10845 	jlow = 0;
10846 	/*
10847 	 * Check for journal space if needed.
10848 	 */
10849 	if (DOINGSUJ(vp)) {
10850 		ump = VFSTOUFS(vp->v_mount);
10851 		if (journal_space(ump, 0) == 0)
10852 			jlow = 1;
10853 	}
10854 	max_softdeps_hard = max_softdeps * 11 / 10;
10855 	if (num_dirrem < max_softdeps_hard / 2 &&
10856 	    num_inodedep < max_softdeps_hard &&
10857 	    VFSTOUFS(vp->v_mount)->um_numindirdeps < maxindirdeps &&
10858 	    num_freeblkdep < max_softdeps_hard && jlow == 0) {
10859 		FREE_LOCK(&lk);
10860   		return (0);
10861 	}
10862 	if (VFSTOUFS(vp->v_mount)->um_numindirdeps >= maxindirdeps || jlow)
10863 		softdep_speedup();
10864 	stat_sync_limit_hit += 1;
10865 	FREE_LOCK(&lk);
10866 	return (1);
10867 }
10868 
10869 /*
10870  * Called by the allocation routines when they are about to fail
10871  * in the hope that we can free up some disk space.
10872  *
10873  * First check to see if the work list has anything on it. If it has,
10874  * clean up entries until we successfully free some space. Because this
10875  * process holds inodes locked, we cannot handle any remove requests
10876  * that might block on a locked inode as that could lead to deadlock.
10877  * If the worklist yields no free space, encourage the syncer daemon
10878  * to help us. In no event will we try for longer than tickdelay seconds.
10879  */
10880 int
10881 softdep_request_cleanup(fs, vp)
10882 	struct fs *fs;
10883 	struct vnode *vp;
10884 {
10885 	struct ufsmount *ump;
10886 	long starttime;
10887 	ufs2_daddr_t needed;
10888 	int error;
10889 
10890 	ump = VTOI(vp)->i_ump;
10891 	mtx_assert(UFS_MTX(ump), MA_OWNED);
10892 	needed = fs->fs_cstotal.cs_nbfree + fs->fs_contigsumsize;
10893 	starttime = time_second + tickdelay;
10894 	/*
10895 	 * If we are being called because of a process doing a
10896 	 * copy-on-write, then it is not safe to update the vnode
10897 	 * as we may recurse into the copy-on-write routine.
10898 	 */
10899 	if (!(curthread->td_pflags & TDP_COWINPROGRESS)) {
10900 		UFS_UNLOCK(ump);
10901 		error = ffs_update(vp, 1);
10902 		UFS_LOCK(ump);
10903 		if (error != 0)
10904 			return (0);
10905 	}
10906 	while (fs->fs_pendingblocks > 0 && fs->fs_cstotal.cs_nbfree <= needed) {
10907 		if (time_second > starttime)
10908 			return (0);
10909 		UFS_UNLOCK(ump);
10910 		ACQUIRE_LOCK(&lk);
10911 		process_removes(vp);
10912 		if (ump->softdep_on_worklist > 0 &&
10913 		    process_worklist_item(UFSTOVFS(ump), LK_NOWAIT) != -1) {
10914 			stat_worklist_push += 1;
10915 			FREE_LOCK(&lk);
10916 			UFS_LOCK(ump);
10917 			continue;
10918 		}
10919 		request_cleanup(UFSTOVFS(ump), FLUSH_REMOVE_WAIT);
10920 		FREE_LOCK(&lk);
10921 		UFS_LOCK(ump);
10922 	}
10923 	return (1);
10924 }
10925 
10926 /*
10927  * If memory utilization has gotten too high, deliberately slow things
10928  * down and speed up the I/O processing.
10929  */
10930 extern struct thread *syncertd;
10931 static int
10932 request_cleanup(mp, resource)
10933 	struct mount *mp;
10934 	int resource;
10935 {
10936 	struct thread *td = curthread;
10937 	struct ufsmount *ump;
10938 
10939 	mtx_assert(&lk, MA_OWNED);
10940 	/*
10941 	 * We never hold up the filesystem syncer or buf daemon.
10942 	 */
10943 	if (td->td_pflags & (TDP_SOFTDEP|TDP_NORUNNINGBUF))
10944 		return (0);
10945 	ump = VFSTOUFS(mp);
10946 	/*
10947 	 * First check to see if the work list has gotten backlogged.
10948 	 * If it has, co-opt this process to help clean up two entries.
10949 	 * Because this process may hold inodes locked, we cannot
10950 	 * handle any remove requests that might block on a locked
10951 	 * inode as that could lead to deadlock.  We set TDP_SOFTDEP
10952 	 * to avoid recursively processing the worklist.
10953 	 */
10954 	if (ump->softdep_on_worklist > max_softdeps / 10) {
10955 		td->td_pflags |= TDP_SOFTDEP;
10956 		process_worklist_item(mp, LK_NOWAIT);
10957 		process_worklist_item(mp, LK_NOWAIT);
10958 		td->td_pflags &= ~TDP_SOFTDEP;
10959 		stat_worklist_push += 2;
10960 		return(1);
10961 	}
10962 	/*
10963 	 * Next, we attempt to speed up the syncer process. If that
10964 	 * is successful, then we allow the process to continue.
10965 	 */
10966 	if (softdep_speedup() && resource != FLUSH_REMOVE_WAIT)
10967 		return(0);
10968 	/*
10969 	 * If we are resource constrained on inode dependencies, try
10970 	 * flushing some dirty inodes. Otherwise, we are constrained
10971 	 * by file deletions, so try accelerating flushes of directories
10972 	 * with removal dependencies. We would like to do the cleanup
10973 	 * here, but we probably hold an inode locked at this point and
10974 	 * that might deadlock against one that we try to clean. So,
10975 	 * the best that we can do is request the syncer daemon to do
10976 	 * the cleanup for us.
10977 	 */
10978 	switch (resource) {
10979 
10980 	case FLUSH_INODES:
10981 		stat_ino_limit_push += 1;
10982 		req_clear_inodedeps += 1;
10983 		stat_countp = &stat_ino_limit_hit;
10984 		break;
10985 
10986 	case FLUSH_REMOVE:
10987 	case FLUSH_REMOVE_WAIT:
10988 		stat_blk_limit_push += 1;
10989 		req_clear_remove += 1;
10990 		stat_countp = &stat_blk_limit_hit;
10991 		break;
10992 
10993 	default:
10994 		panic("request_cleanup: unknown type");
10995 	}
10996 	/*
10997 	 * Hopefully the syncer daemon will catch up and awaken us.
10998 	 * We wait at most tickdelay before proceeding in any case.
10999 	 */
11000 	proc_waiting += 1;
11001 	if (callout_pending(&softdep_callout) == FALSE)
11002 		callout_reset(&softdep_callout, tickdelay > 2 ? tickdelay : 2,
11003 		    pause_timer, 0);
11004 
11005 	msleep((caddr_t)&proc_waiting, &lk, PPAUSE, "softupdate", 0);
11006 	proc_waiting -= 1;
11007 	return (1);
11008 }
11009 
11010 /*
11011  * Awaken processes pausing in request_cleanup and clear proc_waiting
11012  * to indicate that there is no longer a timer running.
11013  */
11014 static void
11015 pause_timer(arg)
11016 	void *arg;
11017 {
11018 
11019 	/*
11020 	 * The callout_ API has acquired mtx and will hold it around this
11021 	 * function call.
11022 	 */
11023 	*stat_countp += 1;
11024 	wakeup_one(&proc_waiting);
11025 	if (proc_waiting > 0)
11026 		callout_reset(&softdep_callout, tickdelay > 2 ? tickdelay : 2,
11027 		    pause_timer, 0);
11028 }
11029 
11030 /*
11031  * Flush out a directory with at least one removal dependency in an effort to
11032  * reduce the number of dirrem, freefile, and freeblks dependency structures.
11033  */
11034 static void
11035 clear_remove(td)
11036 	struct thread *td;
11037 {
11038 	struct pagedep_hashhead *pagedephd;
11039 	struct pagedep *pagedep;
11040 	static int next = 0;
11041 	struct mount *mp;
11042 	struct vnode *vp;
11043 	struct bufobj *bo;
11044 	int error, cnt;
11045 	ino_t ino;
11046 
11047 	mtx_assert(&lk, MA_OWNED);
11048 
11049 	for (cnt = 0; cnt < pagedep_hash; cnt++) {
11050 		pagedephd = &pagedep_hashtbl[next++];
11051 		if (next >= pagedep_hash)
11052 			next = 0;
11053 		LIST_FOREACH(pagedep, pagedephd, pd_hash) {
11054 			if (LIST_EMPTY(&pagedep->pd_dirremhd))
11055 				continue;
11056 			mp = pagedep->pd_list.wk_mp;
11057 			ino = pagedep->pd_ino;
11058 			if (vn_start_write(NULL, &mp, V_NOWAIT) != 0)
11059 				continue;
11060 			FREE_LOCK(&lk);
11061 
11062 			/*
11063 			 * Let unmount clear deps
11064 			 */
11065 			error = vfs_busy(mp, MBF_NOWAIT);
11066 			if (error != 0)
11067 				goto finish_write;
11068 			error = ffs_vgetf(mp, ino, LK_EXCLUSIVE, &vp,
11069 			     FFSV_FORCEINSMQ);
11070 			vfs_unbusy(mp);
11071 			if (error != 0) {
11072 				softdep_error("clear_remove: vget", error);
11073 				goto finish_write;
11074 			}
11075 			if ((error = ffs_syncvnode(vp, MNT_NOWAIT)))
11076 				softdep_error("clear_remove: fsync", error);
11077 			bo = &vp->v_bufobj;
11078 			BO_LOCK(bo);
11079 			drain_output(vp);
11080 			BO_UNLOCK(bo);
11081 			vput(vp);
11082 		finish_write:
11083 			vn_finished_write(mp);
11084 			ACQUIRE_LOCK(&lk);
11085 			return;
11086 		}
11087 	}
11088 }
11089 
11090 /*
11091  * Clear out a block of dirty inodes in an effort to reduce
11092  * the number of inodedep dependency structures.
11093  */
11094 static void
11095 clear_inodedeps(td)
11096 	struct thread *td;
11097 {
11098 	struct inodedep_hashhead *inodedephd;
11099 	struct inodedep *inodedep;
11100 	static int next = 0;
11101 	struct mount *mp;
11102 	struct vnode *vp;
11103 	struct fs *fs;
11104 	int error, cnt;
11105 	ino_t firstino, lastino, ino;
11106 
11107 	mtx_assert(&lk, MA_OWNED);
11108 	/*
11109 	 * Pick a random inode dependency to be cleared.
11110 	 * We will then gather up all the inodes in its block
11111 	 * that have dependencies and flush them out.
11112 	 */
11113 	for (cnt = 0; cnt < inodedep_hash; cnt++) {
11114 		inodedephd = &inodedep_hashtbl[next++];
11115 		if (next >= inodedep_hash)
11116 			next = 0;
11117 		if ((inodedep = LIST_FIRST(inodedephd)) != NULL)
11118 			break;
11119 	}
11120 	if (inodedep == NULL)
11121 		return;
11122 	fs = inodedep->id_fs;
11123 	mp = inodedep->id_list.wk_mp;
11124 	/*
11125 	 * Find the last inode in the block with dependencies.
11126 	 */
11127 	firstino = inodedep->id_ino & ~(INOPB(fs) - 1);
11128 	for (lastino = firstino + INOPB(fs) - 1; lastino > firstino; lastino--)
11129 		if (inodedep_lookup(mp, lastino, 0, &inodedep) != 0)
11130 			break;
11131 	/*
11132 	 * Asynchronously push all but the last inode with dependencies.
11133 	 * Synchronously push the last inode with dependencies to ensure
11134 	 * that the inode block gets written to free up the inodedeps.
11135 	 */
11136 	for (ino = firstino; ino <= lastino; ino++) {
11137 		if (inodedep_lookup(mp, ino, 0, &inodedep) == 0)
11138 			continue;
11139 		if (vn_start_write(NULL, &mp, V_NOWAIT) != 0)
11140 			continue;
11141 		FREE_LOCK(&lk);
11142 		error = vfs_busy(mp, MBF_NOWAIT); /* Let unmount clear deps */
11143 		if (error != 0) {
11144 			vn_finished_write(mp);
11145 			ACQUIRE_LOCK(&lk);
11146 			return;
11147 		}
11148 		if ((error = ffs_vgetf(mp, ino, LK_EXCLUSIVE, &vp,
11149 		    FFSV_FORCEINSMQ)) != 0) {
11150 			softdep_error("clear_inodedeps: vget", error);
11151 			vfs_unbusy(mp);
11152 			vn_finished_write(mp);
11153 			ACQUIRE_LOCK(&lk);
11154 			return;
11155 		}
11156 		vfs_unbusy(mp);
11157 		if (ino == lastino) {
11158 			if ((error = ffs_syncvnode(vp, MNT_WAIT)))
11159 				softdep_error("clear_inodedeps: fsync1", error);
11160 		} else {
11161 			if ((error = ffs_syncvnode(vp, MNT_NOWAIT)))
11162 				softdep_error("clear_inodedeps: fsync2", error);
11163 			BO_LOCK(&vp->v_bufobj);
11164 			drain_output(vp);
11165 			BO_UNLOCK(&vp->v_bufobj);
11166 		}
11167 		vput(vp);
11168 		vn_finished_write(mp);
11169 		ACQUIRE_LOCK(&lk);
11170 	}
11171 }
11172 
11173 /*
11174  * Function to determine if the buffer has outstanding dependencies
11175  * that will cause a roll-back if the buffer is written. If wantcount
11176  * is set, return number of dependencies, otherwise just yes or no.
11177  */
11178 static int
11179 softdep_count_dependencies(bp, wantcount)
11180 	struct buf *bp;
11181 	int wantcount;
11182 {
11183 	struct worklist *wk;
11184 	struct bmsafemap *bmsafemap;
11185 	struct inodedep *inodedep;
11186 	struct indirdep *indirdep;
11187 	struct freeblks *freeblks;
11188 	struct allocindir *aip;
11189 	struct pagedep *pagedep;
11190 	struct dirrem *dirrem;
11191 	struct newblk *newblk;
11192 	struct mkdir *mkdir;
11193 	struct diradd *dap;
11194 	int i, retval;
11195 
11196 	retval = 0;
11197 	ACQUIRE_LOCK(&lk);
11198 	LIST_FOREACH(wk, &bp->b_dep, wk_list) {
11199 		switch (wk->wk_type) {
11200 
11201 		case D_INODEDEP:
11202 			inodedep = WK_INODEDEP(wk);
11203 			if ((inodedep->id_state & DEPCOMPLETE) == 0) {
11204 				/* bitmap allocation dependency */
11205 				retval += 1;
11206 				if (!wantcount)
11207 					goto out;
11208 			}
11209 			if (TAILQ_FIRST(&inodedep->id_inoupdt)) {
11210 				/* direct block pointer dependency */
11211 				retval += 1;
11212 				if (!wantcount)
11213 					goto out;
11214 			}
11215 			if (TAILQ_FIRST(&inodedep->id_extupdt)) {
11216 				/* direct block pointer dependency */
11217 				retval += 1;
11218 				if (!wantcount)
11219 					goto out;
11220 			}
11221 			if (TAILQ_FIRST(&inodedep->id_inoreflst)) {
11222 				/* Add reference dependency. */
11223 				retval += 1;
11224 				if (!wantcount)
11225 					goto out;
11226 			}
11227 			continue;
11228 
11229 		case D_INDIRDEP:
11230 			indirdep = WK_INDIRDEP(wk);
11231 
11232 			LIST_FOREACH(aip, &indirdep->ir_deplisthd, ai_next) {
11233 				/* indirect block pointer dependency */
11234 				retval += 1;
11235 				if (!wantcount)
11236 					goto out;
11237 			}
11238 			continue;
11239 
11240 		case D_PAGEDEP:
11241 			pagedep = WK_PAGEDEP(wk);
11242 			LIST_FOREACH(dirrem, &pagedep->pd_dirremhd, dm_next) {
11243 				if (LIST_FIRST(&dirrem->dm_jremrefhd)) {
11244 					/* Journal remove ref dependency. */
11245 					retval += 1;
11246 					if (!wantcount)
11247 						goto out;
11248 				}
11249 			}
11250 			for (i = 0; i < DAHASHSZ; i++) {
11251 
11252 				LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist) {
11253 					/* directory entry dependency */
11254 					retval += 1;
11255 					if (!wantcount)
11256 						goto out;
11257 				}
11258 			}
11259 			continue;
11260 
11261 		case D_BMSAFEMAP:
11262 			bmsafemap = WK_BMSAFEMAP(wk);
11263 			if (LIST_FIRST(&bmsafemap->sm_jaddrefhd)) {
11264 				/* Add reference dependency. */
11265 				retval += 1;
11266 				if (!wantcount)
11267 					goto out;
11268 			}
11269 			if (LIST_FIRST(&bmsafemap->sm_jnewblkhd)) {
11270 				/* Allocate block dependency. */
11271 				retval += 1;
11272 				if (!wantcount)
11273 					goto out;
11274 			}
11275 			continue;
11276 
11277 		case D_FREEBLKS:
11278 			freeblks = WK_FREEBLKS(wk);
11279 			if (LIST_FIRST(&freeblks->fb_jfreeblkhd)) {
11280 				/* Freeblk journal dependency. */
11281 				retval += 1;
11282 				if (!wantcount)
11283 					goto out;
11284 			}
11285 			continue;
11286 
11287 		case D_ALLOCDIRECT:
11288 		case D_ALLOCINDIR:
11289 			newblk = WK_NEWBLK(wk);
11290 			if (newblk->nb_jnewblk) {
11291 				/* Journal allocate dependency. */
11292 				retval += 1;
11293 				if (!wantcount)
11294 					goto out;
11295 			}
11296 			continue;
11297 
11298 		case D_MKDIR:
11299 			mkdir = WK_MKDIR(wk);
11300 			if (mkdir->md_jaddref) {
11301 				/* Journal reference dependency. */
11302 				retval += 1;
11303 				if (!wantcount)
11304 					goto out;
11305 			}
11306 			continue;
11307 
11308 		case D_FREEWORK:
11309 		case D_FREEDEP:
11310 		case D_JSEGDEP:
11311 		case D_JSEG:
11312 		case D_SBDEP:
11313 			/* never a dependency on these blocks */
11314 			continue;
11315 
11316 		default:
11317 			panic("softdep_count_dependencies: Unexpected type %s",
11318 			    TYPENAME(wk->wk_type));
11319 			/* NOTREACHED */
11320 		}
11321 	}
11322 out:
11323 	FREE_LOCK(&lk);
11324 	return retval;
11325 }
11326 
11327 /*
11328  * Acquire exclusive access to a buffer.
11329  * Must be called with a locked mtx parameter.
11330  * Return acquired buffer or NULL on failure.
11331  */
11332 static struct buf *
11333 getdirtybuf(bp, mtx, waitfor)
11334 	struct buf *bp;
11335 	struct mtx *mtx;
11336 	int waitfor;
11337 {
11338 	int error;
11339 
11340 	mtx_assert(mtx, MA_OWNED);
11341 	if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0) {
11342 		if (waitfor != MNT_WAIT)
11343 			return (NULL);
11344 		error = BUF_LOCK(bp,
11345 		    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, mtx);
11346 		/*
11347 		 * Even if we sucessfully acquire bp here, we have dropped
11348 		 * mtx, which may violates our guarantee.
11349 		 */
11350 		if (error == 0)
11351 			BUF_UNLOCK(bp);
11352 		else if (error != ENOLCK)
11353 			panic("getdirtybuf: inconsistent lock: %d", error);
11354 		mtx_lock(mtx);
11355 		return (NULL);
11356 	}
11357 	if ((bp->b_vflags & BV_BKGRDINPROG) != 0) {
11358 		if (mtx == &lk && waitfor == MNT_WAIT) {
11359 			mtx_unlock(mtx);
11360 			BO_LOCK(bp->b_bufobj);
11361 			BUF_UNLOCK(bp);
11362 			if ((bp->b_vflags & BV_BKGRDINPROG) != 0) {
11363 				bp->b_vflags |= BV_BKGRDWAIT;
11364 				msleep(&bp->b_xflags, BO_MTX(bp->b_bufobj),
11365 				       PRIBIO | PDROP, "getbuf", 0);
11366 			} else
11367 				BO_UNLOCK(bp->b_bufobj);
11368 			mtx_lock(mtx);
11369 			return (NULL);
11370 		}
11371 		BUF_UNLOCK(bp);
11372 		if (waitfor != MNT_WAIT)
11373 			return (NULL);
11374 		/*
11375 		 * The mtx argument must be bp->b_vp's mutex in
11376 		 * this case.
11377 		 */
11378 #ifdef	DEBUG_VFS_LOCKS
11379 		if (bp->b_vp->v_type != VCHR)
11380 			ASSERT_BO_LOCKED(bp->b_bufobj);
11381 #endif
11382 		bp->b_vflags |= BV_BKGRDWAIT;
11383 		msleep(&bp->b_xflags, mtx, PRIBIO, "getbuf", 0);
11384 		return (NULL);
11385 	}
11386 	if ((bp->b_flags & B_DELWRI) == 0) {
11387 		BUF_UNLOCK(bp);
11388 		return (NULL);
11389 	}
11390 	bremfree(bp);
11391 	return (bp);
11392 }
11393 
11394 
11395 /*
11396  * Check if it is safe to suspend the file system now.  On entry,
11397  * the vnode interlock for devvp should be held.  Return 0 with
11398  * the mount interlock held if the file system can be suspended now,
11399  * otherwise return EAGAIN with the mount interlock held.
11400  */
11401 int
11402 softdep_check_suspend(struct mount *mp,
11403 		      struct vnode *devvp,
11404 		      int softdep_deps,
11405 		      int softdep_accdeps,
11406 		      int secondary_writes,
11407 		      int secondary_accwrites)
11408 {
11409 	struct bufobj *bo;
11410 	struct ufsmount *ump;
11411 	int error;
11412 
11413 	ump = VFSTOUFS(mp);
11414 	bo = &devvp->v_bufobj;
11415 	ASSERT_BO_LOCKED(bo);
11416 
11417 	for (;;) {
11418 		if (!TRY_ACQUIRE_LOCK(&lk)) {
11419 			BO_UNLOCK(bo);
11420 			ACQUIRE_LOCK(&lk);
11421 			FREE_LOCK(&lk);
11422 			BO_LOCK(bo);
11423 			continue;
11424 		}
11425 		MNT_ILOCK(mp);
11426 		if (mp->mnt_secondary_writes != 0) {
11427 			FREE_LOCK(&lk);
11428 			BO_UNLOCK(bo);
11429 			msleep(&mp->mnt_secondary_writes,
11430 			       MNT_MTX(mp),
11431 			       (PUSER - 1) | PDROP, "secwr", 0);
11432 			BO_LOCK(bo);
11433 			continue;
11434 		}
11435 		break;
11436 	}
11437 
11438 	/*
11439 	 * Reasons for needing more work before suspend:
11440 	 * - Dirty buffers on devvp.
11441 	 * - Softdep activity occurred after start of vnode sync loop
11442 	 * - Secondary writes occurred after start of vnode sync loop
11443 	 */
11444 	error = 0;
11445 	if (bo->bo_numoutput > 0 ||
11446 	    bo->bo_dirty.bv_cnt > 0 ||
11447 	    softdep_deps != 0 ||
11448 	    ump->softdep_deps != 0 ||
11449 	    softdep_accdeps != ump->softdep_accdeps ||
11450 	    secondary_writes != 0 ||
11451 	    mp->mnt_secondary_writes != 0 ||
11452 	    secondary_accwrites != mp->mnt_secondary_accwrites)
11453 		error = EAGAIN;
11454 	FREE_LOCK(&lk);
11455 	BO_UNLOCK(bo);
11456 	return (error);
11457 }
11458 
11459 
11460 /*
11461  * Get the number of dependency structures for the file system, both
11462  * the current number and the total number allocated.  These will
11463  * later be used to detect that softdep processing has occurred.
11464  */
11465 void
11466 softdep_get_depcounts(struct mount *mp,
11467 		      int *softdep_depsp,
11468 		      int *softdep_accdepsp)
11469 {
11470 	struct ufsmount *ump;
11471 
11472 	ump = VFSTOUFS(mp);
11473 	ACQUIRE_LOCK(&lk);
11474 	*softdep_depsp = ump->softdep_deps;
11475 	*softdep_accdepsp = ump->softdep_accdeps;
11476 	FREE_LOCK(&lk);
11477 }
11478 
11479 /*
11480  * Wait for pending output on a vnode to complete.
11481  * Must be called with vnode lock and interlock locked.
11482  *
11483  * XXX: Should just be a call to bufobj_wwait().
11484  */
11485 static void
11486 drain_output(vp)
11487 	struct vnode *vp;
11488 {
11489 	struct bufobj *bo;
11490 
11491 	bo = &vp->v_bufobj;
11492 	ASSERT_VOP_LOCKED(vp, "drain_output");
11493 	ASSERT_BO_LOCKED(bo);
11494 
11495 	while (bo->bo_numoutput) {
11496 		bo->bo_flag |= BO_WWAIT;
11497 		msleep((caddr_t)&bo->bo_numoutput,
11498 		    BO_MTX(bo), PRIBIO + 1, "drainvp", 0);
11499 	}
11500 }
11501 
11502 /*
11503  * Called whenever a buffer that is being invalidated or reallocated
11504  * contains dependencies. This should only happen if an I/O error has
11505  * occurred. The routine is called with the buffer locked.
11506  */
11507 static void
11508 softdep_deallocate_dependencies(bp)
11509 	struct buf *bp;
11510 {
11511 
11512 	if ((bp->b_ioflags & BIO_ERROR) == 0)
11513 		panic("softdep_deallocate_dependencies: dangling deps");
11514 	softdep_error(bp->b_vp->v_mount->mnt_stat.f_mntonname, bp->b_error);
11515 	panic("softdep_deallocate_dependencies: unrecovered I/O error");
11516 }
11517 
11518 /*
11519  * Function to handle asynchronous write errors in the filesystem.
11520  */
11521 static void
11522 softdep_error(func, error)
11523 	char *func;
11524 	int error;
11525 {
11526 
11527 	/* XXX should do something better! */
11528 	printf("%s: got error %d while accessing filesystem\n", func, error);
11529 }
11530 
11531 #ifdef DDB
11532 
11533 static void
11534 inodedep_print(struct inodedep *inodedep, int verbose)
11535 {
11536 	db_printf("%p fs %p st %x ino %jd inoblk %jd delta %d nlink %d"
11537 	    " saveino %p\n",
11538 	    inodedep, inodedep->id_fs, inodedep->id_state,
11539 	    (intmax_t)inodedep->id_ino,
11540 	    (intmax_t)fsbtodb(inodedep->id_fs,
11541 	    ino_to_fsba(inodedep->id_fs, inodedep->id_ino)),
11542 	    inodedep->id_nlinkdelta, inodedep->id_savednlink,
11543 	    inodedep->id_savedino1);
11544 
11545 	if (verbose == 0)
11546 		return;
11547 
11548 	db_printf("\tpendinghd %p, bufwait %p, inowait %p, inoreflst %p, "
11549 	    "mkdiradd %p\n",
11550 	    LIST_FIRST(&inodedep->id_pendinghd),
11551 	    LIST_FIRST(&inodedep->id_bufwait),
11552 	    LIST_FIRST(&inodedep->id_inowait),
11553 	    TAILQ_FIRST(&inodedep->id_inoreflst),
11554 	    inodedep->id_mkdiradd);
11555 	db_printf("\tinoupdt %p, newinoupdt %p, extupdt %p, newextupdt %p\n",
11556 	    TAILQ_FIRST(&inodedep->id_inoupdt),
11557 	    TAILQ_FIRST(&inodedep->id_newinoupdt),
11558 	    TAILQ_FIRST(&inodedep->id_extupdt),
11559 	    TAILQ_FIRST(&inodedep->id_newextupdt));
11560 }
11561 
11562 DB_SHOW_COMMAND(inodedep, db_show_inodedep)
11563 {
11564 
11565 	if (have_addr == 0) {
11566 		db_printf("Address required\n");
11567 		return;
11568 	}
11569 	inodedep_print((struct inodedep*)addr, 1);
11570 }
11571 
11572 DB_SHOW_COMMAND(inodedeps, db_show_inodedeps)
11573 {
11574 	struct inodedep_hashhead *inodedephd;
11575 	struct inodedep *inodedep;
11576 	struct fs *fs;
11577 	int cnt;
11578 
11579 	fs = have_addr ? (struct fs *)addr : NULL;
11580 	for (cnt = 0; cnt < inodedep_hash; cnt++) {
11581 		inodedephd = &inodedep_hashtbl[cnt];
11582 		LIST_FOREACH(inodedep, inodedephd, id_hash) {
11583 			if (fs != NULL && fs != inodedep->id_fs)
11584 				continue;
11585 			inodedep_print(inodedep, 0);
11586 		}
11587 	}
11588 }
11589 
11590 DB_SHOW_COMMAND(worklist, db_show_worklist)
11591 {
11592 	struct worklist *wk;
11593 
11594 	if (have_addr == 0) {
11595 		db_printf("Address required\n");
11596 		return;
11597 	}
11598 	wk = (struct worklist *)addr;
11599 	printf("worklist: %p type %s state 0x%X\n",
11600 	    wk, TYPENAME(wk->wk_type), wk->wk_state);
11601 }
11602 
11603 DB_SHOW_COMMAND(workhead, db_show_workhead)
11604 {
11605 	struct workhead *wkhd;
11606 	struct worklist *wk;
11607 	int i;
11608 
11609 	if (have_addr == 0) {
11610 		db_printf("Address required\n");
11611 		return;
11612 	}
11613 	wkhd = (struct workhead *)addr;
11614 	wk = LIST_FIRST(wkhd);
11615 	for (i = 0; i < 100 && wk != NULL; i++, wk = LIST_NEXT(wk, wk_list))
11616 		db_printf("worklist: %p type %s state 0x%X",
11617 		    wk, TYPENAME(wk->wk_type), wk->wk_state);
11618 	if (i == 100)
11619 		db_printf("workhead overflow");
11620 	printf("\n");
11621 }
11622 
11623 
11624 DB_SHOW_COMMAND(mkdirs, db_show_mkdirs)
11625 {
11626 	struct jaddref *jaddref;
11627 	struct diradd *diradd;
11628 	struct mkdir *mkdir;
11629 
11630 	LIST_FOREACH(mkdir, &mkdirlisthd, md_mkdirs) {
11631 		diradd = mkdir->md_diradd;
11632 		db_printf("mkdir: %p state 0x%X dap %p state 0x%X",
11633 		    mkdir, mkdir->md_state, diradd, diradd->da_state);
11634 		if ((jaddref = mkdir->md_jaddref) != NULL)
11635 			db_printf(" jaddref %p jaddref state 0x%X",
11636 			    jaddref, jaddref->ja_state);
11637 		db_printf("\n");
11638 	}
11639 }
11640 
11641 #endif /* DDB */
11642 
11643 #endif /* SOFTUPDATES */
11644