xref: /freebsd/sys/ufs/ffs/ffs_subr.c (revision e3aa18ad)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1982, 1986, 1989, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. Neither the name of the University nor the names of its contributors
16  *    may be used to endorse or promote products derived from this software
17  *    without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  *
31  *	@(#)ffs_subr.c	8.5 (Berkeley) 3/21/95
32  */
33 
34 #include <sys/cdefs.h>
35 __FBSDID("$FreeBSD$");
36 
37 #include <sys/param.h>
38 #include <sys/limits.h>
39 
40 #ifndef _KERNEL
41 #include <stdio.h>
42 #include <string.h>
43 #include <stdlib.h>
44 #include <time.h>
45 #include <sys/errno.h>
46 #include <ufs/ufs/dinode.h>
47 #include <ufs/ffs/fs.h>
48 
49 uint32_t calculate_crc32c(uint32_t, const void *, size_t);
50 uint32_t ffs_calc_sbhash(struct fs *);
51 struct malloc_type;
52 #define UFS_MALLOC(size, type, flags) malloc(size)
53 #define UFS_FREE(ptr, type) free(ptr)
54 #define maxphys MAXPHYS
55 
56 #else /* _KERNEL */
57 #include <sys/systm.h>
58 #include <sys/gsb_crc32.h>
59 #include <sys/lock.h>
60 #include <sys/malloc.h>
61 #include <sys/mount.h>
62 #include <sys/vnode.h>
63 #include <sys/bio.h>
64 #include <sys/buf.h>
65 #include <sys/ucred.h>
66 
67 #include <ufs/ufs/quota.h>
68 #include <ufs/ufs/inode.h>
69 #include <ufs/ufs/extattr.h>
70 #include <ufs/ufs/ufsmount.h>
71 #include <ufs/ufs/ufs_extern.h>
72 #include <ufs/ffs/ffs_extern.h>
73 #include <ufs/ffs/fs.h>
74 
75 #define UFS_MALLOC(size, type, flags) malloc(size, type, flags)
76 #define UFS_FREE(ptr, type) free(ptr, type)
77 
78 #endif /* _KERNEL */
79 
80 /*
81  * Verify an inode check-hash.
82  */
83 int
84 ffs_verify_dinode_ckhash(struct fs *fs, struct ufs2_dinode *dip)
85 {
86 	uint32_t ckhash, save_ckhash;
87 
88 	/*
89 	 * Return success if unallocated or we are not doing inode check-hash.
90 	 */
91 	if (dip->di_mode == 0 || (fs->fs_metackhash & CK_INODE) == 0)
92 		return (0);
93 	/*
94 	 * Exclude di_ckhash from the crc32 calculation, e.g., always use
95 	 * a check-hash value of zero when calculating the check-hash.
96 	 */
97 	save_ckhash = dip->di_ckhash;
98 	dip->di_ckhash = 0;
99 	ckhash = calculate_crc32c(~0L, (void *)dip, sizeof(*dip));
100 	dip->di_ckhash = save_ckhash;
101 	if (save_ckhash == ckhash)
102 		return (0);
103 	return (EINVAL);
104 }
105 
106 /*
107  * Update an inode check-hash.
108  */
109 void
110 ffs_update_dinode_ckhash(struct fs *fs, struct ufs2_dinode *dip)
111 {
112 
113 	if (dip->di_mode == 0 || (fs->fs_metackhash & CK_INODE) == 0)
114 		return;
115 	/*
116 	 * Exclude old di_ckhash from the crc32 calculation, e.g., always use
117 	 * a check-hash value of zero when calculating the new check-hash.
118 	 */
119 	dip->di_ckhash = 0;
120 	dip->di_ckhash = calculate_crc32c(~0L, (void *)dip, sizeof(*dip));
121 }
122 
123 /*
124  * These are the low-level functions that actually read and write
125  * the superblock and its associated data.
126  */
127 static off_t sblock_try[] = SBLOCKSEARCH;
128 static int readsuper(void *, struct fs **, off_t, int, int,
129 	int (*)(void *, off_t, void **, int));
130 static int validate_sblock(struct fs *, int);
131 
132 /*
133  * Read a superblock from the devfd device.
134  *
135  * If an alternate superblock is specified, it is read. Otherwise the
136  * set of locations given in the SBLOCKSEARCH list is searched for a
137  * superblock. Memory is allocated for the superblock by the readfunc and
138  * is returned. If filltype is non-NULL, additional memory is allocated
139  * of type filltype and filled in with the superblock summary information.
140  * All memory is freed when any error is returned.
141  *
142  * If a superblock is found, zero is returned. Otherwise one of the
143  * following error values is returned:
144  *     EIO: non-existent or truncated superblock.
145  *     EIO: error reading summary information.
146  *     ENOENT: no usable known superblock found.
147  *     ENOMEM: failed to allocate space for the superblock.
148  *     EINVAL: The previous newfs operation on this volume did not complete.
149  *         The administrator must complete newfs before using this volume.
150  */
151 int
152 ffs_sbget(void *devfd, struct fs **fsp, off_t altsblock,
153     struct malloc_type *filltype,
154     int (*readfunc)(void *devfd, off_t loc, void **bufp, int size))
155 {
156 	struct fs *fs;
157 	struct fs_summary_info *fs_si;
158 	int i, error;
159 	uint64_t size, blks;
160 	uint8_t *space;
161 	int32_t *lp;
162 	char *buf;
163 
164 	fs = NULL;
165 	*fsp = NULL;
166 	if (altsblock >= 0) {
167 		if ((error = readsuper(devfd, &fs, altsblock, 1, 0,
168 		     readfunc)) != 0) {
169 			if (fs != NULL)
170 				UFS_FREE(fs, filltype);
171 			return (error);
172 		}
173 	} else {
174 		for (i = 0; sblock_try[i] != -1; i++) {
175 			if ((error = readsuper(devfd, &fs, sblock_try[i], 0,
176 			     altsblock, readfunc)) == 0)
177 				break;
178 			if (fs != NULL) {
179 				UFS_FREE(fs, filltype);
180 				fs = NULL;
181 			}
182 			if (error == ENOENT)
183 				continue;
184 			return (error);
185 		}
186 		if (sblock_try[i] == -1)
187 			return (ENOENT);
188 	}
189 	/*
190 	 * Read in the superblock summary information.
191 	 */
192 	size = fs->fs_cssize;
193 	blks = howmany(size, fs->fs_fsize);
194 	if (fs->fs_contigsumsize > 0)
195 		size += fs->fs_ncg * sizeof(int32_t);
196 	size += fs->fs_ncg * sizeof(u_int8_t);
197 	if ((fs_si = UFS_MALLOC(sizeof(*fs_si), filltype, M_NOWAIT)) == NULL) {
198 		UFS_FREE(fs, filltype);
199 		return (ENOMEM);
200 	}
201 	bzero(fs_si, sizeof(*fs_si));
202 	fs->fs_si = fs_si;
203 	if ((space = UFS_MALLOC(size, filltype, M_NOWAIT)) == NULL) {
204 		UFS_FREE(fs->fs_si, filltype);
205 		UFS_FREE(fs, filltype);
206 		return (ENOMEM);
207 	}
208 	fs->fs_csp = (struct csum *)space;
209 	for (i = 0; i < blks; i += fs->fs_frag) {
210 		size = fs->fs_bsize;
211 		if (i + fs->fs_frag > blks)
212 			size = (blks - i) * fs->fs_fsize;
213 		buf = NULL;
214 		error = (*readfunc)(devfd,
215 		    dbtob(fsbtodb(fs, fs->fs_csaddr + i)), (void **)&buf, size);
216 		if (error) {
217 			if (buf != NULL)
218 				UFS_FREE(buf, filltype);
219 			UFS_FREE(fs->fs_csp, filltype);
220 			UFS_FREE(fs->fs_si, filltype);
221 			UFS_FREE(fs, filltype);
222 			return (error);
223 		}
224 		memcpy(space, buf, size);
225 		UFS_FREE(buf, filltype);
226 		space += size;
227 	}
228 	if (fs->fs_contigsumsize > 0) {
229 		fs->fs_maxcluster = lp = (int32_t *)space;
230 		for (i = 0; i < fs->fs_ncg; i++)
231 			*lp++ = fs->fs_contigsumsize;
232 		space = (uint8_t *)lp;
233 	}
234 	size = fs->fs_ncg * sizeof(u_int8_t);
235 	fs->fs_contigdirs = (u_int8_t *)space;
236 	bzero(fs->fs_contigdirs, size);
237 	*fsp = fs;
238 	return (0);
239 }
240 
241 /*
242  * Try to read a superblock from the location specified by sblockloc.
243  * Return zero on success or an errno on failure.
244  */
245 static int
246 readsuper(void *devfd, struct fs **fsp, off_t sblockloc, int isaltsblk,
247     int chkhash, int (*readfunc)(void *devfd, off_t loc, void **bufp, int size))
248 {
249 	struct fs *fs;
250 	int error, res;
251 	uint32_t ckhash;
252 
253 	error = (*readfunc)(devfd, sblockloc, (void **)fsp, SBLOCKSIZE);
254 	if (error != 0)
255 		return (error);
256 	fs = *fsp;
257 	if (fs->fs_magic == FS_BAD_MAGIC)
258 		return (EINVAL);
259 	if ((error = validate_sblock(fs, isaltsblk)) != 0)
260 		return (error);
261 	/*
262 	 * If the filesystem has been run on a kernel without
263 	 * metadata check hashes, disable them.
264 	 */
265 	if ((fs->fs_flags & FS_METACKHASH) == 0)
266 		fs->fs_metackhash = 0;
267 	/*
268 	 * Clear any check-hashes that are not maintained
269 	 * by this kernel. Also clear any unsupported flags.
270 	 */
271 	fs->fs_metackhash &= CK_SUPPORTED;
272 	fs->fs_flags &= FS_SUPPORTED;
273 	if (fs->fs_ckhash != (ckhash = ffs_calc_sbhash(fs))) {
274 		if (chkhash == STDSB_NOMSG)
275 			return (EINTEGRITY);
276 		if (chkhash == STDSB_NOHASHFAIL_NOMSG)
277 			return (0);
278 #ifdef _KERNEL
279 		res = uprintf("Superblock check-hash failed: recorded "
280 		    "check-hash 0x%x != computed check-hash 0x%x%s\n",
281 		    fs->fs_ckhash, ckhash,
282 		    chkhash == STDSB_NOHASHFAIL ? " (Ignored)" : "");
283 #else
284 		res = 0;
285 #endif
286 		/*
287 		 * Print check-hash failure if no controlling terminal
288 		 * in kernel or always if in user-mode (libufs).
289 		 */
290 		if (res == 0)
291 			printf("Superblock check-hash failed: recorded "
292 			    "check-hash 0x%x != computed check-hash "
293 			    "0x%x%s\n", fs->fs_ckhash, ckhash,
294 			    chkhash == STDSB_NOHASHFAIL ?
295 			    " (Ignored)" : "");
296 		if (chkhash == STDSB)
297 			return (EINTEGRITY);
298 		/* chkhash == STDSB_NOHASHFAIL */
299 		return (0);
300 	}
301 	/* Have to set for old filesystems that predate this field */
302 	fs->fs_sblockactualloc = sblockloc;
303 	/* Not yet any summary information */
304 	fs->fs_si = NULL;
305 	return (0);
306 }
307 
308 /*
309  * Verify the filesystem values.
310  */
311 #define ILOG2(num) (fls(num) - 1)
312 
313 static int
314 validate_sblock(struct fs *fs, int isaltsblk)
315 {
316 	int i, sectorsize;
317 	u_int64_t maxfilesize, minfpg, sizepb;
318 
319 	sectorsize = dbtob(1);
320 	if (fs->fs_magic == FS_UFS2_MAGIC) {
321 		if ((!isaltsblk && (fs->fs_sblockloc != SBLOCK_UFS2 ||
322 		    !(fs->fs_sblockactualloc == 0 ||
323 		    fs->fs_sblockactualloc == SBLOCK_UFS2))) ||
324 		    fs->fs_maxsymlinklen != ((UFS_NDADDR + UFS_NIADDR) *
325 			sizeof(ufs2_daddr_t)) ||
326 		    fs->fs_nindir != fs->fs_bsize / sizeof(ufs2_daddr_t) ||
327 		    fs->fs_inopb != fs->fs_bsize / sizeof(struct ufs2_dinode))
328 			return (ENOENT);
329 	} else if (fs->fs_magic == FS_UFS1_MAGIC) {
330 		if ((!isaltsblk && (fs->fs_sblockloc > SBLOCK_UFS1 ||
331 		    !(fs->fs_sblockactualloc == SBLOCK_UFS1 ||
332 		    fs->fs_sblockactualloc == 0))) ||
333 		    fs->fs_nindir != fs->fs_bsize / sizeof(ufs1_daddr_t) ||
334 		    fs->fs_inopb != fs->fs_bsize / sizeof(struct ufs1_dinode) ||
335 		    fs->fs_maxsymlinklen != ((UFS_NDADDR + UFS_NIADDR) *
336 			sizeof(ufs1_daddr_t)) ||
337 		    fs->fs_old_inodefmt != FS_44INODEFMT ||
338 		    fs->fs_old_cgoffset != 0 ||
339 		    fs->fs_old_cgmask != 0xffffffff ||
340 		    fs->fs_old_size != fs->fs_size ||
341 		    fs->fs_old_rotdelay != 0 ||
342 		    fs->fs_old_rps != 60 ||
343 		    fs->fs_old_nspf != fs->fs_fsize / sectorsize ||
344 		    fs->fs_old_cpg != 1 ||
345 		    fs->fs_old_interleave != 1 ||
346 		    fs->fs_old_trackskew != 0 ||
347 		    fs->fs_old_cpc != 0 ||
348 		    fs->fs_old_postblformat != 1 ||
349 		    fs->fs_old_nrpos != 1 ||
350 		    fs->fs_old_spc != fs->fs_fpg * fs->fs_old_nspf ||
351 		    fs->fs_old_nsect != fs->fs_old_spc ||
352 		    fs->fs_old_npsect != fs->fs_old_spc ||
353 		    fs->fs_old_dsize != fs->fs_dsize ||
354 		    fs->fs_old_ncyl != fs->fs_ncg)
355 			return (ENOENT);
356 	} else {
357 		return (ENOENT);
358 	}
359 	if (fs->fs_bsize < MINBSIZE || fs->fs_bsize > MAXBSIZE ||
360 	    fs->fs_bsize < roundup(sizeof(struct fs), DEV_BSIZE) ||
361 	    fs->fs_sbsize > SBLOCKSIZE || fs->fs_sbsize < fs->fs_fsize ||
362 	    !powerof2(fs->fs_bsize))
363 		return (ENOENT);
364 	if (fs->fs_fsize < sectorsize || fs->fs_fsize > fs->fs_bsize ||
365 	    fs->fs_fsize * MAXFRAG < fs->fs_bsize || !powerof2(fs->fs_fsize))
366 		return (ENOENT);
367 	if (fs->fs_maxbsize < fs->fs_bsize || !powerof2(fs->fs_maxbsize) ||
368 	    fs->fs_maxbsize > FS_MAXCONTIG * fs->fs_bsize)
369 		return (ENOENT);
370 	if (fs->fs_bmask != ~(fs->fs_bsize - 1) ||
371 	    fs->fs_fmask != ~(fs->fs_fsize - 1) ||
372 	    fs->fs_qbmask != ~fs->fs_bmask ||
373 	    fs->fs_qfmask != ~fs->fs_fmask ||
374 	    fs->fs_bshift != ILOG2(fs->fs_bsize) ||
375 	    fs->fs_fshift != ILOG2(fs->fs_fsize) ||
376 	    fs->fs_frag != numfrags(fs, fs->fs_bsize) ||
377 	    fs->fs_fragshift != ILOG2(fs->fs_frag) ||
378 	    fs->fs_frag > MAXFRAG ||
379 	    fs->fs_fsbtodb != ILOG2(fs->fs_fsize / sectorsize))
380 		return (ENOENT);
381 	if (fs->fs_sblkno !=
382 		roundup(howmany(fs->fs_sblockloc + SBLOCKSIZE, fs->fs_fsize),
383 		    fs->fs_frag) ||
384 	    fs->fs_cblkno != fs->fs_sblkno +
385 		roundup(howmany(SBLOCKSIZE, fs->fs_fsize), fs->fs_frag) ||
386 	    fs->fs_iblkno != fs->fs_cblkno + fs->fs_frag ||
387 	    fs->fs_dblkno != fs->fs_iblkno + fs->fs_ipg / INOPF(fs) ||
388 	    fs->fs_cgsize != fragroundup(fs, CGSIZE(fs)))
389 		return (ENOENT);
390 	if (fs->fs_csaddr != cgdmin(fs, 0) ||
391 	    fs->fs_cssize !=
392 		fragroundup(fs, fs->fs_ncg * sizeof(struct csum)) ||
393 	    fs->fs_dsize != fs->fs_size - fs->fs_sblkno -
394 		fs->fs_ncg * (fs->fs_dblkno - fs->fs_sblkno) -
395 		howmany(fs->fs_cssize, fs->fs_fsize) ||
396 	    fs->fs_metaspace < 0 || fs->fs_metaspace > fs->fs_fpg / 2 ||
397 	    fs->fs_minfree > 99)
398 		return (ENOENT);
399 	maxfilesize = fs->fs_bsize * UFS_NDADDR - 1;
400 	for (sizepb = fs->fs_bsize, i = 0; i < UFS_NIADDR; i++) {
401 		sizepb *= NINDIR(fs);
402 		maxfilesize += sizepb;
403 	}
404 	if (fs->fs_maxfilesize != maxfilesize)
405 		return (ENOENT);
406 	/*
407 	 * These values have a tight interaction with each other that
408 	 * makes it hard to tightly bound them. So we can only check
409 	 * that they are within a broader possible range.
410 	 *
411 	 * Calculate minfpg, the minimum number of fragments that can be
412 	 * in a cylinder group. The value 12289 is calculated in newfs(8)
413 	 * when creating the smallest block size UFS version 1 filesystem
414 	 * (4096 block size) with no fragments (4096 fragment size). That
415 	 * number may be depressed even further for very small filesystems
416 	 * since newfs(8) strives to have at least four cylinder groups.
417 	 */
418 	minfpg = MIN(12289, fs->fs_size / 4);
419 	if (fs->fs_ncg < 1 || fs->fs_ncg > (fs->fs_size / minfpg) + 1 ||
420 	    fs->fs_fpg < minfpg || fs->fs_fpg > fs->fs_size ||
421 	    fs->fs_ipg * fs->fs_ncg > (((int64_t)(1)) << 32) - INOPB(fs) ||
422 	    fs->fs_ipg > fs->fs_fpg || fs->fs_size < 8 * fs->fs_frag)
423 		return (ENOENT);
424 	if (fs->fs_size <= (fs->fs_ncg - 1) * fs->fs_fpg ||
425 	    fs->fs_size > fs->fs_ncg * fs->fs_fpg)
426 		return (ENOENT);
427 	/*
428 	 * With file system clustering it is possible to allocate
429 	 * many contiguous blocks. The kernel variable maxphys defines
430 	 * the maximum transfer size permitted by the controller and/or
431 	 * buffering. The fs_maxcontig parameter controls the maximum
432 	 * number of blocks that the filesystem will read or write
433 	 * in a single transfer. It is calculated when the filesystem
434 	 * is created as maxphys / fs_bsize. The loader uses a maxphys
435 	 * of 128K even when running on a system that supports larger
436 	 * values. If the filesystem was built on a system that supports
437 	 * a larger maxphys (1M is typical) it will have configured
438 	 * fs_maxcontig for that larger system. So we bound the upper
439 	 * allowable limit for fs_maxconfig to be able to at least
440 	 * work with a 1M maxphys on the smallest block size filesystem:
441 	 * 1M / 4096 == 256. There is no harm in allowing the mounting of
442 	 * filesystems that make larger than maxphys I/O requests because
443 	 * those (mostly 32-bit machines) can (very slowly) handle I/O
444 	 * requests that exceed maxphys.
445 	 */
446 	if (fs->fs_maxcontig < 1 ||
447 	    fs->fs_maxcontig > MAX(256, maxphys / fs->fs_bsize))
448 		return (ENOENT);
449 	if (fs->fs_maxcontig < 0 ||
450 	    (fs->fs_maxcontig == 0 && fs->fs_contigsumsize != 0) ||
451 	    (fs->fs_maxcontig > 1 &&
452 	    fs->fs_contigsumsize != MIN(fs->fs_maxcontig, FS_MAXCONTIG)))
453 		return (ENOENT);
454 	return (0);
455 }
456 
457 /*
458  * Write a superblock to the devfd device from the memory pointed to by fs.
459  * Write out the superblock summary information if it is present.
460  *
461  * If the write is successful, zero is returned. Otherwise one of the
462  * following error values is returned:
463  *     EIO: failed to write superblock.
464  *     EIO: failed to write superblock summary information.
465  */
466 int
467 ffs_sbput(void *devfd, struct fs *fs, off_t loc,
468     int (*writefunc)(void *devfd, off_t loc, void *buf, int size))
469 {
470 	int i, error, blks, size;
471 	uint8_t *space;
472 
473 	/*
474 	 * If there is summary information, write it first, so if there
475 	 * is an error, the superblock will not be marked as clean.
476 	 */
477 	if (fs->fs_si != NULL && fs->fs_csp != NULL) {
478 		blks = howmany(fs->fs_cssize, fs->fs_fsize);
479 		space = (uint8_t *)fs->fs_csp;
480 		for (i = 0; i < blks; i += fs->fs_frag) {
481 			size = fs->fs_bsize;
482 			if (i + fs->fs_frag > blks)
483 				size = (blks - i) * fs->fs_fsize;
484 			if ((error = (*writefunc)(devfd,
485 			     dbtob(fsbtodb(fs, fs->fs_csaddr + i)),
486 			     space, size)) != 0)
487 				return (error);
488 			space += size;
489 		}
490 	}
491 	fs->fs_fmod = 0;
492 #ifndef _KERNEL
493 	{
494 		struct fs_summary_info *fs_si;
495 
496 		fs->fs_time = time(NULL);
497 		/* Clear the pointers for the duration of writing. */
498 		fs_si = fs->fs_si;
499 		fs->fs_si = NULL;
500 		fs->fs_ckhash = ffs_calc_sbhash(fs);
501 		error = (*writefunc)(devfd, loc, fs, fs->fs_sbsize);
502 		fs->fs_si = fs_si;
503 	}
504 #else /* _KERNEL */
505 	fs->fs_time = time_second;
506 	fs->fs_ckhash = ffs_calc_sbhash(fs);
507 	error = (*writefunc)(devfd, loc, fs, fs->fs_sbsize);
508 #endif /* _KERNEL */
509 	return (error);
510 }
511 
512 /*
513  * Calculate the check-hash for a superblock.
514  */
515 uint32_t
516 ffs_calc_sbhash(struct fs *fs)
517 {
518 	uint32_t ckhash, save_ckhash;
519 
520 	/*
521 	 * A filesystem that was using a superblock ckhash may be moved
522 	 * to an older kernel that does not support ckhashes. The
523 	 * older kernel will clear the FS_METACKHASH flag indicating
524 	 * that it does not update hashes. When the disk is moved back
525 	 * to a kernel capable of ckhashes it disables them on mount:
526 	 *
527 	 *	if ((fs->fs_flags & FS_METACKHASH) == 0)
528 	 *		fs->fs_metackhash = 0;
529 	 *
530 	 * This leaves (fs->fs_metackhash & CK_SUPERBLOCK) == 0) with an
531 	 * old stale value in the fs->fs_ckhash field. Thus the need to
532 	 * just accept what is there.
533 	 */
534 	if ((fs->fs_metackhash & CK_SUPERBLOCK) == 0)
535 		return (fs->fs_ckhash);
536 
537 	save_ckhash = fs->fs_ckhash;
538 	fs->fs_ckhash = 0;
539 	/*
540 	 * If newly read from disk, the caller is responsible for
541 	 * verifying that fs->fs_sbsize <= SBLOCKSIZE.
542 	 */
543 	ckhash = calculate_crc32c(~0L, (void *)fs, fs->fs_sbsize);
544 	fs->fs_ckhash = save_ckhash;
545 	return (ckhash);
546 }
547 
548 /*
549  * Update the frsum fields to reflect addition or deletion
550  * of some frags.
551  */
552 void
553 ffs_fragacct(struct fs *fs, int fragmap, int32_t fraglist[], int cnt)
554 {
555 	int inblk;
556 	int field, subfield;
557 	int siz, pos;
558 
559 	inblk = (int)(fragtbl[fs->fs_frag][fragmap]) << 1;
560 	fragmap <<= 1;
561 	for (siz = 1; siz < fs->fs_frag; siz++) {
562 		if ((inblk & (1 << (siz + (fs->fs_frag % NBBY)))) == 0)
563 			continue;
564 		field = around[siz];
565 		subfield = inside[siz];
566 		for (pos = siz; pos <= fs->fs_frag; pos++) {
567 			if ((fragmap & field) == subfield) {
568 				fraglist[siz] += cnt;
569 				pos += siz;
570 				field <<= siz;
571 				subfield <<= siz;
572 			}
573 			field <<= 1;
574 			subfield <<= 1;
575 		}
576 	}
577 }
578 
579 /*
580  * block operations
581  *
582  * check if a block is available
583  */
584 int
585 ffs_isblock(struct fs *fs, unsigned char *cp, ufs1_daddr_t h)
586 {
587 	unsigned char mask;
588 
589 	switch ((int)fs->fs_frag) {
590 	case 8:
591 		return (cp[h] == 0xff);
592 	case 4:
593 		mask = 0x0f << ((h & 0x1) << 2);
594 		return ((cp[h >> 1] & mask) == mask);
595 	case 2:
596 		mask = 0x03 << ((h & 0x3) << 1);
597 		return ((cp[h >> 2] & mask) == mask);
598 	case 1:
599 		mask = 0x01 << (h & 0x7);
600 		return ((cp[h >> 3] & mask) == mask);
601 	default:
602 #ifdef _KERNEL
603 		panic("ffs_isblock");
604 #endif
605 		break;
606 	}
607 	return (0);
608 }
609 
610 /*
611  * check if a block is free
612  */
613 int
614 ffs_isfreeblock(struct fs *fs, u_char *cp, ufs1_daddr_t h)
615 {
616 
617 	switch ((int)fs->fs_frag) {
618 	case 8:
619 		return (cp[h] == 0);
620 	case 4:
621 		return ((cp[h >> 1] & (0x0f << ((h & 0x1) << 2))) == 0);
622 	case 2:
623 		return ((cp[h >> 2] & (0x03 << ((h & 0x3) << 1))) == 0);
624 	case 1:
625 		return ((cp[h >> 3] & (0x01 << (h & 0x7))) == 0);
626 	default:
627 #ifdef _KERNEL
628 		panic("ffs_isfreeblock");
629 #endif
630 		break;
631 	}
632 	return (0);
633 }
634 
635 /*
636  * take a block out of the map
637  */
638 void
639 ffs_clrblock(struct fs *fs, u_char *cp, ufs1_daddr_t h)
640 {
641 
642 	switch ((int)fs->fs_frag) {
643 	case 8:
644 		cp[h] = 0;
645 		return;
646 	case 4:
647 		cp[h >> 1] &= ~(0x0f << ((h & 0x1) << 2));
648 		return;
649 	case 2:
650 		cp[h >> 2] &= ~(0x03 << ((h & 0x3) << 1));
651 		return;
652 	case 1:
653 		cp[h >> 3] &= ~(0x01 << (h & 0x7));
654 		return;
655 	default:
656 #ifdef _KERNEL
657 		panic("ffs_clrblock");
658 #endif
659 		break;
660 	}
661 }
662 
663 /*
664  * put a block into the map
665  */
666 void
667 ffs_setblock(struct fs *fs, unsigned char *cp, ufs1_daddr_t h)
668 {
669 
670 	switch ((int)fs->fs_frag) {
671 	case 8:
672 		cp[h] = 0xff;
673 		return;
674 	case 4:
675 		cp[h >> 1] |= (0x0f << ((h & 0x1) << 2));
676 		return;
677 	case 2:
678 		cp[h >> 2] |= (0x03 << ((h & 0x3) << 1));
679 		return;
680 	case 1:
681 		cp[h >> 3] |= (0x01 << (h & 0x7));
682 		return;
683 	default:
684 #ifdef _KERNEL
685 		panic("ffs_setblock");
686 #endif
687 		break;
688 	}
689 }
690 
691 /*
692  * Update the cluster map because of an allocation or free.
693  *
694  * Cnt == 1 means free; cnt == -1 means allocating.
695  */
696 void
697 ffs_clusteracct(struct fs *fs, struct cg *cgp, ufs1_daddr_t blkno, int cnt)
698 {
699 	int32_t *sump;
700 	int32_t *lp;
701 	u_char *freemapp, *mapp;
702 	int i, start, end, forw, back, map;
703 	u_int bit;
704 
705 	if (fs->fs_contigsumsize <= 0)
706 		return;
707 	freemapp = cg_clustersfree(cgp);
708 	sump = cg_clustersum(cgp);
709 	/*
710 	 * Allocate or clear the actual block.
711 	 */
712 	if (cnt > 0)
713 		setbit(freemapp, blkno);
714 	else
715 		clrbit(freemapp, blkno);
716 	/*
717 	 * Find the size of the cluster going forward.
718 	 */
719 	start = blkno + 1;
720 	end = start + fs->fs_contigsumsize;
721 	if (end >= cgp->cg_nclusterblks)
722 		end = cgp->cg_nclusterblks;
723 	mapp = &freemapp[start / NBBY];
724 	map = *mapp++;
725 	bit = 1U << (start % NBBY);
726 	for (i = start; i < end; i++) {
727 		if ((map & bit) == 0)
728 			break;
729 		if ((i & (NBBY - 1)) != (NBBY - 1)) {
730 			bit <<= 1;
731 		} else {
732 			map = *mapp++;
733 			bit = 1;
734 		}
735 	}
736 	forw = i - start;
737 	/*
738 	 * Find the size of the cluster going backward.
739 	 */
740 	start = blkno - 1;
741 	end = start - fs->fs_contigsumsize;
742 	if (end < 0)
743 		end = -1;
744 	mapp = &freemapp[start / NBBY];
745 	map = *mapp--;
746 	bit = 1U << (start % NBBY);
747 	for (i = start; i > end; i--) {
748 		if ((map & bit) == 0)
749 			break;
750 		if ((i & (NBBY - 1)) != 0) {
751 			bit >>= 1;
752 		} else {
753 			map = *mapp--;
754 			bit = 1U << (NBBY - 1);
755 		}
756 	}
757 	back = start - i;
758 	/*
759 	 * Account for old cluster and the possibly new forward and
760 	 * back clusters.
761 	 */
762 	i = back + forw + 1;
763 	if (i > fs->fs_contigsumsize)
764 		i = fs->fs_contigsumsize;
765 	sump[i] += cnt;
766 	if (back > 0)
767 		sump[back] -= cnt;
768 	if (forw > 0)
769 		sump[forw] -= cnt;
770 	/*
771 	 * Update cluster summary information.
772 	 */
773 	lp = &sump[fs->fs_contigsumsize];
774 	for (i = fs->fs_contigsumsize; i > 0; i--)
775 		if (*lp-- > 0)
776 			break;
777 	fs->fs_maxcluster[cgp->cg_cgx] = i;
778 }
779