xref: /freebsd/sys/vm/swap_pager.c (revision b0b1dbdd)
1 /*-
2  * Copyright (c) 1998 Matthew Dillon,
3  * Copyright (c) 1994 John S. Dyson
4  * Copyright (c) 1990 University of Utah.
5  * Copyright (c) 1982, 1986, 1989, 1993
6  *	The Regents of the University of California.  All rights reserved.
7  *
8  * This code is derived from software contributed to Berkeley by
9  * the Systems Programming Group of the University of Utah Computer
10  * Science Department.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. All advertising materials mentioning features or use of this software
21  *    must display the following acknowledgement:
22  *	This product includes software developed by the University of
23  *	California, Berkeley and its contributors.
24  * 4. Neither the name of the University nor the names of its contributors
25  *    may be used to endorse or promote products derived from this software
26  *    without specific prior written permission.
27  *
28  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38  * SUCH DAMAGE.
39  *
40  *				New Swap System
41  *				Matthew Dillon
42  *
43  * Radix Bitmap 'blists'.
44  *
45  *	- The new swapper uses the new radix bitmap code.  This should scale
46  *	  to arbitrarily small or arbitrarily large swap spaces and an almost
47  *	  arbitrary degree of fragmentation.
48  *
49  * Features:
50  *
51  *	- on the fly reallocation of swap during putpages.  The new system
52  *	  does not try to keep previously allocated swap blocks for dirty
53  *	  pages.
54  *
55  *	- on the fly deallocation of swap
56  *
57  *	- No more garbage collection required.  Unnecessarily allocated swap
58  *	  blocks only exist for dirty vm_page_t's now and these are already
59  *	  cycled (in a high-load system) by the pager.  We also do on-the-fly
60  *	  removal of invalidated swap blocks when a page is destroyed
61  *	  or renamed.
62  *
63  * from: Utah $Hdr: swap_pager.c 1.4 91/04/30$
64  *
65  *	@(#)swap_pager.c	8.9 (Berkeley) 3/21/94
66  *	@(#)vm_swap.c	8.5 (Berkeley) 2/17/94
67  */
68 
69 #include <sys/cdefs.h>
70 __FBSDID("$FreeBSD$");
71 
72 #include "opt_swap.h"
73 #include "opt_vm.h"
74 
75 #include <sys/param.h>
76 #include <sys/systm.h>
77 #include <sys/conf.h>
78 #include <sys/kernel.h>
79 #include <sys/priv.h>
80 #include <sys/proc.h>
81 #include <sys/bio.h>
82 #include <sys/buf.h>
83 #include <sys/disk.h>
84 #include <sys/fcntl.h>
85 #include <sys/mount.h>
86 #include <sys/namei.h>
87 #include <sys/vnode.h>
88 #include <sys/malloc.h>
89 #include <sys/racct.h>
90 #include <sys/resource.h>
91 #include <sys/resourcevar.h>
92 #include <sys/rwlock.h>
93 #include <sys/sysctl.h>
94 #include <sys/sysproto.h>
95 #include <sys/blist.h>
96 #include <sys/lock.h>
97 #include <sys/sx.h>
98 #include <sys/vmmeter.h>
99 
100 #include <security/mac/mac_framework.h>
101 
102 #include <vm/vm.h>
103 #include <vm/pmap.h>
104 #include <vm/vm_map.h>
105 #include <vm/vm_kern.h>
106 #include <vm/vm_object.h>
107 #include <vm/vm_page.h>
108 #include <vm/vm_pager.h>
109 #include <vm/vm_pageout.h>
110 #include <vm/vm_param.h>
111 #include <vm/swap_pager.h>
112 #include <vm/vm_extern.h>
113 #include <vm/uma.h>
114 
115 #include <geom/geom.h>
116 
117 /*
118  * SWB_NPAGES must be a power of 2.  It may be set to 1, 2, 4, 8, 16
119  * or 32 pages per allocation.
120  * The 32-page limit is due to the radix code (kern/subr_blist.c).
121  */
122 #ifndef MAX_PAGEOUT_CLUSTER
123 #define MAX_PAGEOUT_CLUSTER 16
124 #endif
125 
126 #if !defined(SWB_NPAGES)
127 #define SWB_NPAGES	MAX_PAGEOUT_CLUSTER
128 #endif
129 
130 /*
131  * The swblock structure maps an object and a small, fixed-size range
132  * of page indices to disk addresses within a swap area.
133  * The collection of these mappings is implemented as a hash table.
134  * Unused disk addresses within a swap area are allocated and managed
135  * using a blist.
136  */
137 #define SWCORRECT(n) (sizeof(void *) * (n) / sizeof(daddr_t))
138 #define SWAP_META_PAGES		(SWB_NPAGES * 2)
139 #define SWAP_META_MASK		(SWAP_META_PAGES - 1)
140 
141 struct swblock {
142 	struct swblock	*swb_hnext;
143 	vm_object_t	swb_object;
144 	vm_pindex_t	swb_index;
145 	int		swb_count;
146 	daddr_t		swb_pages[SWAP_META_PAGES];
147 };
148 
149 static MALLOC_DEFINE(M_VMPGDATA, "vm_pgdata", "swap pager private data");
150 static struct mtx sw_dev_mtx;
151 static TAILQ_HEAD(, swdevt) swtailq = TAILQ_HEAD_INITIALIZER(swtailq);
152 static struct swdevt *swdevhd;	/* Allocate from here next */
153 static int nswapdev;		/* Number of swap devices */
154 int swap_pager_avail;
155 static struct sx swdev_syscall_lock;	/* serialize swap(on|off) */
156 
157 static vm_ooffset_t swap_total;
158 SYSCTL_QUAD(_vm, OID_AUTO, swap_total, CTLFLAG_RD, &swap_total, 0,
159     "Total amount of available swap storage.");
160 static vm_ooffset_t swap_reserved;
161 SYSCTL_QUAD(_vm, OID_AUTO, swap_reserved, CTLFLAG_RD, &swap_reserved, 0,
162     "Amount of swap storage needed to back all allocated anonymous memory.");
163 static int overcommit = 0;
164 SYSCTL_INT(_vm, OID_AUTO, overcommit, CTLFLAG_RW, &overcommit, 0,
165     "Configure virtual memory overcommit behavior. See tuning(7) "
166     "for details.");
167 static unsigned long swzone;
168 SYSCTL_ULONG(_vm, OID_AUTO, swzone, CTLFLAG_RD, &swzone, 0,
169     "Actual size of swap metadata zone");
170 static unsigned long swap_maxpages;
171 SYSCTL_ULONG(_vm, OID_AUTO, swap_maxpages, CTLFLAG_RD, &swap_maxpages, 0,
172     "Maximum amount of swap supported");
173 
174 /* bits from overcommit */
175 #define	SWAP_RESERVE_FORCE_ON		(1 << 0)
176 #define	SWAP_RESERVE_RLIMIT_ON		(1 << 1)
177 #define	SWAP_RESERVE_ALLOW_NONWIRED	(1 << 2)
178 
179 int
180 swap_reserve(vm_ooffset_t incr)
181 {
182 
183 	return (swap_reserve_by_cred(incr, curthread->td_ucred));
184 }
185 
186 int
187 swap_reserve_by_cred(vm_ooffset_t incr, struct ucred *cred)
188 {
189 	vm_ooffset_t r, s;
190 	int res, error;
191 	static int curfail;
192 	static struct timeval lastfail;
193 	struct uidinfo *uip;
194 
195 	uip = cred->cr_ruidinfo;
196 
197 	if (incr & PAGE_MASK)
198 		panic("swap_reserve: & PAGE_MASK");
199 
200 #ifdef RACCT
201 	if (racct_enable) {
202 		PROC_LOCK(curproc);
203 		error = racct_add(curproc, RACCT_SWAP, incr);
204 		PROC_UNLOCK(curproc);
205 		if (error != 0)
206 			return (0);
207 	}
208 #endif
209 
210 	res = 0;
211 	mtx_lock(&sw_dev_mtx);
212 	r = swap_reserved + incr;
213 	if (overcommit & SWAP_RESERVE_ALLOW_NONWIRED) {
214 		s = vm_cnt.v_page_count - vm_cnt.v_free_reserved - vm_cnt.v_wire_count;
215 		s *= PAGE_SIZE;
216 	} else
217 		s = 0;
218 	s += swap_total;
219 	if ((overcommit & SWAP_RESERVE_FORCE_ON) == 0 || r <= s ||
220 	    (error = priv_check(curthread, PRIV_VM_SWAP_NOQUOTA)) == 0) {
221 		res = 1;
222 		swap_reserved = r;
223 	}
224 	mtx_unlock(&sw_dev_mtx);
225 
226 	if (res) {
227 		UIDINFO_VMSIZE_LOCK(uip);
228 		if ((overcommit & SWAP_RESERVE_RLIMIT_ON) != 0 &&
229 		    uip->ui_vmsize + incr > lim_cur(curthread, RLIMIT_SWAP) &&
230 		    priv_check(curthread, PRIV_VM_SWAP_NORLIMIT))
231 			res = 0;
232 		else
233 			uip->ui_vmsize += incr;
234 		UIDINFO_VMSIZE_UNLOCK(uip);
235 		if (!res) {
236 			mtx_lock(&sw_dev_mtx);
237 			swap_reserved -= incr;
238 			mtx_unlock(&sw_dev_mtx);
239 		}
240 	}
241 	if (!res && ppsratecheck(&lastfail, &curfail, 1)) {
242 		printf("uid %d, pid %d: swap reservation for %jd bytes failed\n",
243 		    uip->ui_uid, curproc->p_pid, incr);
244 	}
245 
246 #ifdef RACCT
247 	if (!res) {
248 		PROC_LOCK(curproc);
249 		racct_sub(curproc, RACCT_SWAP, incr);
250 		PROC_UNLOCK(curproc);
251 	}
252 #endif
253 
254 	return (res);
255 }
256 
257 void
258 swap_reserve_force(vm_ooffset_t incr)
259 {
260 	struct uidinfo *uip;
261 
262 	mtx_lock(&sw_dev_mtx);
263 	swap_reserved += incr;
264 	mtx_unlock(&sw_dev_mtx);
265 
266 #ifdef RACCT
267 	PROC_LOCK(curproc);
268 	racct_add_force(curproc, RACCT_SWAP, incr);
269 	PROC_UNLOCK(curproc);
270 #endif
271 
272 	uip = curthread->td_ucred->cr_ruidinfo;
273 	PROC_LOCK(curproc);
274 	UIDINFO_VMSIZE_LOCK(uip);
275 	uip->ui_vmsize += incr;
276 	UIDINFO_VMSIZE_UNLOCK(uip);
277 	PROC_UNLOCK(curproc);
278 }
279 
280 void
281 swap_release(vm_ooffset_t decr)
282 {
283 	struct ucred *cred;
284 
285 	PROC_LOCK(curproc);
286 	cred = curthread->td_ucred;
287 	swap_release_by_cred(decr, cred);
288 	PROC_UNLOCK(curproc);
289 }
290 
291 void
292 swap_release_by_cred(vm_ooffset_t decr, struct ucred *cred)
293 {
294  	struct uidinfo *uip;
295 
296 	uip = cred->cr_ruidinfo;
297 
298 	if (decr & PAGE_MASK)
299 		panic("swap_release: & PAGE_MASK");
300 
301 	mtx_lock(&sw_dev_mtx);
302 	if (swap_reserved < decr)
303 		panic("swap_reserved < decr");
304 	swap_reserved -= decr;
305 	mtx_unlock(&sw_dev_mtx);
306 
307 	UIDINFO_VMSIZE_LOCK(uip);
308 	if (uip->ui_vmsize < decr)
309 		printf("negative vmsize for uid = %d\n", uip->ui_uid);
310 	uip->ui_vmsize -= decr;
311 	UIDINFO_VMSIZE_UNLOCK(uip);
312 
313 	racct_sub_cred(cred, RACCT_SWAP, decr);
314 }
315 
316 #define SWM_FREE	0x02	/* free, period			*/
317 #define SWM_POP		0x04	/* pop out			*/
318 
319 int swap_pager_full = 2;	/* swap space exhaustion (task killing) */
320 static int swap_pager_almost_full = 1; /* swap space exhaustion (w/hysteresis)*/
321 static int nsw_rcount;		/* free read buffers			*/
322 static int nsw_wcount_sync;	/* limit write buffers / synchronous	*/
323 static int nsw_wcount_async;	/* limit write buffers / asynchronous	*/
324 static int nsw_wcount_async_max;/* assigned maximum			*/
325 static int nsw_cluster_max;	/* maximum VOP I/O allowed		*/
326 
327 static int sysctl_swap_async_max(SYSCTL_HANDLER_ARGS);
328 SYSCTL_PROC(_vm, OID_AUTO, swap_async_max, CTLTYPE_INT | CTLFLAG_RW |
329     CTLFLAG_MPSAFE, NULL, 0, sysctl_swap_async_max, "I",
330     "Maximum running async swap ops");
331 
332 static struct swblock **swhash;
333 static int swhash_mask;
334 static struct mtx swhash_mtx;
335 
336 static struct sx sw_alloc_sx;
337 
338 /*
339  * "named" and "unnamed" anon region objects.  Try to reduce the overhead
340  * of searching a named list by hashing it just a little.
341  */
342 
343 #define NOBJLISTS		8
344 
345 #define NOBJLIST(handle)	\
346 	(&swap_pager_object_list[((int)(intptr_t)handle >> 4) & (NOBJLISTS-1)])
347 
348 static struct pagerlst	swap_pager_object_list[NOBJLISTS];
349 static uma_zone_t	swap_zone;
350 
351 /*
352  * pagerops for OBJT_SWAP - "swap pager".  Some ops are also global procedure
353  * calls hooked from other parts of the VM system and do not appear here.
354  * (see vm/swap_pager.h).
355  */
356 static vm_object_t
357 		swap_pager_alloc(void *handle, vm_ooffset_t size,
358 		    vm_prot_t prot, vm_ooffset_t offset, struct ucred *);
359 static void	swap_pager_dealloc(vm_object_t object);
360 static int	swap_pager_getpages(vm_object_t, vm_page_t *, int, int *,
361     int *);
362 static int	swap_pager_getpages_async(vm_object_t, vm_page_t *, int, int *,
363     int *, pgo_getpages_iodone_t, void *);
364 static void	swap_pager_putpages(vm_object_t, vm_page_t *, int, boolean_t, int *);
365 static boolean_t
366 		swap_pager_haspage(vm_object_t object, vm_pindex_t pindex, int *before, int *after);
367 static void	swap_pager_init(void);
368 static void	swap_pager_unswapped(vm_page_t);
369 static void	swap_pager_swapoff(struct swdevt *sp);
370 
371 struct pagerops swappagerops = {
372 	.pgo_init =	swap_pager_init,	/* early system initialization of pager	*/
373 	.pgo_alloc =	swap_pager_alloc,	/* allocate an OBJT_SWAP object		*/
374 	.pgo_dealloc =	swap_pager_dealloc,	/* deallocate an OBJT_SWAP object	*/
375 	.pgo_getpages =	swap_pager_getpages,	/* pagein				*/
376 	.pgo_getpages_async = swap_pager_getpages_async, /* pagein (async)		*/
377 	.pgo_putpages =	swap_pager_putpages,	/* pageout				*/
378 	.pgo_haspage =	swap_pager_haspage,	/* get backing store status for page	*/
379 	.pgo_pageunswapped = swap_pager_unswapped,	/* remove swap related to page		*/
380 };
381 
382 /*
383  * dmmax is in page-sized chunks with the new swap system.  It was
384  * dev-bsized chunks in the old.  dmmax is always a power of 2.
385  *
386  * swap_*() routines are externally accessible.  swp_*() routines are
387  * internal.
388  */
389 static int dmmax;
390 static int nswap_lowat = 128;	/* in pages, swap_pager_almost_full warn */
391 static int nswap_hiwat = 512;	/* in pages, swap_pager_almost_full warn */
392 
393 SYSCTL_INT(_vm, OID_AUTO, dmmax, CTLFLAG_RD, &dmmax, 0,
394     "Maximum size of a swap block");
395 
396 static void	swp_sizecheck(void);
397 static void	swp_pager_async_iodone(struct buf *bp);
398 static int	swapongeom(struct vnode *);
399 static int	swaponvp(struct thread *, struct vnode *, u_long);
400 static int	swapoff_one(struct swdevt *sp, struct ucred *cred);
401 
402 /*
403  * Swap bitmap functions
404  */
405 static void	swp_pager_freeswapspace(daddr_t blk, int npages);
406 static daddr_t	swp_pager_getswapspace(int npages);
407 
408 /*
409  * Metadata functions
410  */
411 static struct swblock **swp_pager_hash(vm_object_t object, vm_pindex_t index);
412 static void swp_pager_meta_build(vm_object_t, vm_pindex_t, daddr_t);
413 static void swp_pager_meta_free(vm_object_t, vm_pindex_t, vm_pindex_t);
414 static void swp_pager_meta_free_all(vm_object_t);
415 static daddr_t swp_pager_meta_ctl(vm_object_t, vm_pindex_t, int);
416 
417 /*
418  * SWP_SIZECHECK() -	update swap_pager_full indication
419  *
420  *	update the swap_pager_almost_full indication and warn when we are
421  *	about to run out of swap space, using lowat/hiwat hysteresis.
422  *
423  *	Clear swap_pager_full ( task killing ) indication when lowat is met.
424  *
425  *	No restrictions on call
426  *	This routine may not block.
427  */
428 static void
429 swp_sizecheck(void)
430 {
431 
432 	if (swap_pager_avail < nswap_lowat) {
433 		if (swap_pager_almost_full == 0) {
434 			printf("swap_pager: out of swap space\n");
435 			swap_pager_almost_full = 1;
436 		}
437 	} else {
438 		swap_pager_full = 0;
439 		if (swap_pager_avail > nswap_hiwat)
440 			swap_pager_almost_full = 0;
441 	}
442 }
443 
444 /*
445  * SWP_PAGER_HASH() -	hash swap meta data
446  *
447  *	This is an helper function which hashes the swapblk given
448  *	the object and page index.  It returns a pointer to a pointer
449  *	to the object, or a pointer to a NULL pointer if it could not
450  *	find a swapblk.
451  */
452 static struct swblock **
453 swp_pager_hash(vm_object_t object, vm_pindex_t index)
454 {
455 	struct swblock **pswap;
456 	struct swblock *swap;
457 
458 	index &= ~(vm_pindex_t)SWAP_META_MASK;
459 	pswap = &swhash[(index ^ (int)(intptr_t)object) & swhash_mask];
460 	while ((swap = *pswap) != NULL) {
461 		if (swap->swb_object == object &&
462 		    swap->swb_index == index
463 		) {
464 			break;
465 		}
466 		pswap = &swap->swb_hnext;
467 	}
468 	return (pswap);
469 }
470 
471 /*
472  * SWAP_PAGER_INIT() -	initialize the swap pager!
473  *
474  *	Expected to be started from system init.  NOTE:  This code is run
475  *	before much else so be careful what you depend on.  Most of the VM
476  *	system has yet to be initialized at this point.
477  */
478 static void
479 swap_pager_init(void)
480 {
481 	/*
482 	 * Initialize object lists
483 	 */
484 	int i;
485 
486 	for (i = 0; i < NOBJLISTS; ++i)
487 		TAILQ_INIT(&swap_pager_object_list[i]);
488 	mtx_init(&sw_dev_mtx, "swapdev", NULL, MTX_DEF);
489 	sx_init(&sw_alloc_sx, "swspsx");
490 	sx_init(&swdev_syscall_lock, "swsysc");
491 
492 	/*
493 	 * Device Stripe, in PAGE_SIZE'd blocks
494 	 */
495 	dmmax = SWB_NPAGES * 2;
496 }
497 
498 /*
499  * SWAP_PAGER_SWAP_INIT() - swap pager initialization from pageout process
500  *
501  *	Expected to be started from pageout process once, prior to entering
502  *	its main loop.
503  */
504 void
505 swap_pager_swap_init(void)
506 {
507 	unsigned long n, n2;
508 
509 	/*
510 	 * Number of in-transit swap bp operations.  Don't
511 	 * exhaust the pbufs completely.  Make sure we
512 	 * initialize workable values (0 will work for hysteresis
513 	 * but it isn't very efficient).
514 	 *
515 	 * The nsw_cluster_max is constrained by the bp->b_pages[]
516 	 * array (MAXPHYS/PAGE_SIZE) and our locally defined
517 	 * MAX_PAGEOUT_CLUSTER.   Also be aware that swap ops are
518 	 * constrained by the swap device interleave stripe size.
519 	 *
520 	 * Currently we hardwire nsw_wcount_async to 4.  This limit is
521 	 * designed to prevent other I/O from having high latencies due to
522 	 * our pageout I/O.  The value 4 works well for one or two active swap
523 	 * devices but is probably a little low if you have more.  Even so,
524 	 * a higher value would probably generate only a limited improvement
525 	 * with three or four active swap devices since the system does not
526 	 * typically have to pageout at extreme bandwidths.   We will want
527 	 * at least 2 per swap devices, and 4 is a pretty good value if you
528 	 * have one NFS swap device due to the command/ack latency over NFS.
529 	 * So it all works out pretty well.
530 	 */
531 	nsw_cluster_max = min((MAXPHYS/PAGE_SIZE), MAX_PAGEOUT_CLUSTER);
532 
533 	mtx_lock(&pbuf_mtx);
534 	nsw_rcount = (nswbuf + 1) / 2;
535 	nsw_wcount_sync = (nswbuf + 3) / 4;
536 	nsw_wcount_async = 4;
537 	nsw_wcount_async_max = nsw_wcount_async;
538 	mtx_unlock(&pbuf_mtx);
539 
540 	/*
541 	 * Initialize our zone.  Right now I'm just guessing on the number
542 	 * we need based on the number of pages in the system.  Each swblock
543 	 * can hold 32 pages, so this is probably overkill.  This reservation
544 	 * is typically limited to around 32MB by default.
545 	 */
546 	n = vm_cnt.v_page_count / 2;
547 	if (maxswzone && n > maxswzone / sizeof(struct swblock))
548 		n = maxswzone / sizeof(struct swblock);
549 	n2 = n;
550 	swap_zone = uma_zcreate("SWAPMETA", sizeof(struct swblock), NULL, NULL,
551 	    NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE | UMA_ZONE_VM);
552 	if (swap_zone == NULL)
553 		panic("failed to create swap_zone.");
554 	do {
555 		if (uma_zone_reserve_kva(swap_zone, n))
556 			break;
557 		/*
558 		 * if the allocation failed, try a zone two thirds the
559 		 * size of the previous attempt.
560 		 */
561 		n -= ((n + 2) / 3);
562 	} while (n > 0);
563 	if (n2 != n)
564 		printf("Swap zone entries reduced from %lu to %lu.\n", n2, n);
565 	swap_maxpages = n * SWAP_META_PAGES;
566 	swzone = n * sizeof(struct swblock);
567 	n2 = n;
568 
569 	/*
570 	 * Initialize our meta-data hash table.  The swapper does not need to
571 	 * be quite as efficient as the VM system, so we do not use an
572 	 * oversized hash table.
573 	 *
574 	 * 	n: 		size of hash table, must be power of 2
575 	 *	swhash_mask:	hash table index mask
576 	 */
577 	for (n = 1; n < n2 / 8; n *= 2)
578 		;
579 	swhash = malloc(sizeof(struct swblock *) * n, M_VMPGDATA, M_WAITOK | M_ZERO);
580 	swhash_mask = n - 1;
581 	mtx_init(&swhash_mtx, "swap_pager swhash", NULL, MTX_DEF);
582 }
583 
584 static vm_object_t
585 swap_pager_alloc_init(void *handle, struct ucred *cred, vm_ooffset_t size,
586     vm_ooffset_t offset)
587 {
588 	vm_object_t object;
589 
590 	if (cred != NULL) {
591 		if (!swap_reserve_by_cred(size, cred))
592 			return (NULL);
593 		crhold(cred);
594 	}
595 	object = vm_object_allocate(OBJT_SWAP, OFF_TO_IDX(offset +
596 	    PAGE_MASK + size));
597 	object->handle = handle;
598 	if (cred != NULL) {
599 		object->cred = cred;
600 		object->charge = size;
601 	}
602 	object->un_pager.swp.swp_bcount = 0;
603 	return (object);
604 }
605 
606 /*
607  * SWAP_PAGER_ALLOC() -	allocate a new OBJT_SWAP VM object and instantiate
608  *			its metadata structures.
609  *
610  *	This routine is called from the mmap and fork code to create a new
611  *	OBJT_SWAP object.
612  *
613  *	This routine must ensure that no live duplicate is created for
614  *	the named object request, which is protected against by
615  *	holding the sw_alloc_sx lock in case handle != NULL.
616  */
617 static vm_object_t
618 swap_pager_alloc(void *handle, vm_ooffset_t size, vm_prot_t prot,
619     vm_ooffset_t offset, struct ucred *cred)
620 {
621 	vm_object_t object;
622 
623 	if (handle != NULL) {
624 		/*
625 		 * Reference existing named region or allocate new one.  There
626 		 * should not be a race here against swp_pager_meta_build()
627 		 * as called from vm_page_remove() in regards to the lookup
628 		 * of the handle.
629 		 */
630 		sx_xlock(&sw_alloc_sx);
631 		object = vm_pager_object_lookup(NOBJLIST(handle), handle);
632 		if (object == NULL) {
633 			object = swap_pager_alloc_init(handle, cred, size,
634 			    offset);
635 			if (object != NULL) {
636 				TAILQ_INSERT_TAIL(NOBJLIST(object->handle),
637 				    object, pager_object_list);
638 			}
639 		}
640 		sx_xunlock(&sw_alloc_sx);
641 	} else {
642 		object = swap_pager_alloc_init(handle, cred, size, offset);
643 	}
644 	return (object);
645 }
646 
647 /*
648  * SWAP_PAGER_DEALLOC() -	remove swap metadata from object
649  *
650  *	The swap backing for the object is destroyed.  The code is
651  *	designed such that we can reinstantiate it later, but this
652  *	routine is typically called only when the entire object is
653  *	about to be destroyed.
654  *
655  *	The object must be locked.
656  */
657 static void
658 swap_pager_dealloc(vm_object_t object)
659 {
660 
661 	VM_OBJECT_ASSERT_WLOCKED(object);
662 	KASSERT((object->flags & OBJ_DEAD) != 0, ("dealloc of reachable obj"));
663 
664 	/*
665 	 * Remove from list right away so lookups will fail if we block for
666 	 * pageout completion.
667 	 */
668 	if (object->handle != NULL) {
669 		VM_OBJECT_WUNLOCK(object);
670 		sx_xlock(&sw_alloc_sx);
671 		TAILQ_REMOVE(NOBJLIST(object->handle), object,
672 		    pager_object_list);
673 		sx_xunlock(&sw_alloc_sx);
674 		VM_OBJECT_WLOCK(object);
675 	}
676 
677 	vm_object_pip_wait(object, "swpdea");
678 
679 	/*
680 	 * Free all remaining metadata.  We only bother to free it from
681 	 * the swap meta data.  We do not attempt to free swapblk's still
682 	 * associated with vm_page_t's for this object.  We do not care
683 	 * if paging is still in progress on some objects.
684 	 */
685 	swp_pager_meta_free_all(object);
686 	object->handle = NULL;
687 	object->type = OBJT_DEAD;
688 }
689 
690 /************************************************************************
691  *			SWAP PAGER BITMAP ROUTINES			*
692  ************************************************************************/
693 
694 /*
695  * SWP_PAGER_GETSWAPSPACE() -	allocate raw swap space
696  *
697  *	Allocate swap for the requested number of pages.  The starting
698  *	swap block number (a page index) is returned or SWAPBLK_NONE
699  *	if the allocation failed.
700  *
701  *	Also has the side effect of advising that somebody made a mistake
702  *	when they configured swap and didn't configure enough.
703  *
704  *	This routine may not sleep.
705  *
706  *	We allocate in round-robin fashion from the configured devices.
707  */
708 static daddr_t
709 swp_pager_getswapspace(int npages)
710 {
711 	daddr_t blk;
712 	struct swdevt *sp;
713 	int i;
714 
715 	blk = SWAPBLK_NONE;
716 	mtx_lock(&sw_dev_mtx);
717 	sp = swdevhd;
718 	for (i = 0; i < nswapdev; i++) {
719 		if (sp == NULL)
720 			sp = TAILQ_FIRST(&swtailq);
721 		if (!(sp->sw_flags & SW_CLOSING)) {
722 			blk = blist_alloc(sp->sw_blist, npages);
723 			if (blk != SWAPBLK_NONE) {
724 				blk += sp->sw_first;
725 				sp->sw_used += npages;
726 				swap_pager_avail -= npages;
727 				swp_sizecheck();
728 				swdevhd = TAILQ_NEXT(sp, sw_list);
729 				goto done;
730 			}
731 		}
732 		sp = TAILQ_NEXT(sp, sw_list);
733 	}
734 	if (swap_pager_full != 2) {
735 		printf("swap_pager_getswapspace(%d): failed\n", npages);
736 		swap_pager_full = 2;
737 		swap_pager_almost_full = 1;
738 	}
739 	swdevhd = NULL;
740 done:
741 	mtx_unlock(&sw_dev_mtx);
742 	return (blk);
743 }
744 
745 static int
746 swp_pager_isondev(daddr_t blk, struct swdevt *sp)
747 {
748 
749 	return (blk >= sp->sw_first && blk < sp->sw_end);
750 }
751 
752 static void
753 swp_pager_strategy(struct buf *bp)
754 {
755 	struct swdevt *sp;
756 
757 	mtx_lock(&sw_dev_mtx);
758 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
759 		if (bp->b_blkno >= sp->sw_first && bp->b_blkno < sp->sw_end) {
760 			mtx_unlock(&sw_dev_mtx);
761 			if ((sp->sw_flags & SW_UNMAPPED) != 0 &&
762 			    unmapped_buf_allowed) {
763 				bp->b_data = unmapped_buf;
764 				bp->b_offset = 0;
765 			} else {
766 				pmap_qenter((vm_offset_t)bp->b_data,
767 				    &bp->b_pages[0], bp->b_bcount / PAGE_SIZE);
768 			}
769 			sp->sw_strategy(bp, sp);
770 			return;
771 		}
772 	}
773 	panic("Swapdev not found");
774 }
775 
776 
777 /*
778  * SWP_PAGER_FREESWAPSPACE() -	free raw swap space
779  *
780  *	This routine returns the specified swap blocks back to the bitmap.
781  *
782  *	This routine may not sleep.
783  */
784 static void
785 swp_pager_freeswapspace(daddr_t blk, int npages)
786 {
787 	struct swdevt *sp;
788 
789 	mtx_lock(&sw_dev_mtx);
790 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
791 		if (blk >= sp->sw_first && blk < sp->sw_end) {
792 			sp->sw_used -= npages;
793 			/*
794 			 * If we are attempting to stop swapping on
795 			 * this device, we don't want to mark any
796 			 * blocks free lest they be reused.
797 			 */
798 			if ((sp->sw_flags & SW_CLOSING) == 0) {
799 				blist_free(sp->sw_blist, blk - sp->sw_first,
800 				    npages);
801 				swap_pager_avail += npages;
802 				swp_sizecheck();
803 			}
804 			mtx_unlock(&sw_dev_mtx);
805 			return;
806 		}
807 	}
808 	panic("Swapdev not found");
809 }
810 
811 /*
812  * SWAP_PAGER_FREESPACE() -	frees swap blocks associated with a page
813  *				range within an object.
814  *
815  *	This is a globally accessible routine.
816  *
817  *	This routine removes swapblk assignments from swap metadata.
818  *
819  *	The external callers of this routine typically have already destroyed
820  *	or renamed vm_page_t's associated with this range in the object so
821  *	we should be ok.
822  *
823  *	The object must be locked.
824  */
825 void
826 swap_pager_freespace(vm_object_t object, vm_pindex_t start, vm_size_t size)
827 {
828 
829 	swp_pager_meta_free(object, start, size);
830 }
831 
832 /*
833  * SWAP_PAGER_RESERVE() - reserve swap blocks in object
834  *
835  *	Assigns swap blocks to the specified range within the object.  The
836  *	swap blocks are not zeroed.  Any previous swap assignment is destroyed.
837  *
838  *	Returns 0 on success, -1 on failure.
839  */
840 int
841 swap_pager_reserve(vm_object_t object, vm_pindex_t start, vm_size_t size)
842 {
843 	int n = 0;
844 	daddr_t blk = SWAPBLK_NONE;
845 	vm_pindex_t beg = start;	/* save start index */
846 
847 	VM_OBJECT_WLOCK(object);
848 	while (size) {
849 		if (n == 0) {
850 			n = BLIST_MAX_ALLOC;
851 			while ((blk = swp_pager_getswapspace(n)) == SWAPBLK_NONE) {
852 				n >>= 1;
853 				if (n == 0) {
854 					swp_pager_meta_free(object, beg, start - beg);
855 					VM_OBJECT_WUNLOCK(object);
856 					return (-1);
857 				}
858 			}
859 		}
860 		swp_pager_meta_build(object, start, blk);
861 		--size;
862 		++start;
863 		++blk;
864 		--n;
865 	}
866 	swp_pager_meta_free(object, start, n);
867 	VM_OBJECT_WUNLOCK(object);
868 	return (0);
869 }
870 
871 /*
872  * SWAP_PAGER_COPY() -  copy blocks from source pager to destination pager
873  *			and destroy the source.
874  *
875  *	Copy any valid swapblks from the source to the destination.  In
876  *	cases where both the source and destination have a valid swapblk,
877  *	we keep the destination's.
878  *
879  *	This routine is allowed to sleep.  It may sleep allocating metadata
880  *	indirectly through swp_pager_meta_build() or if paging is still in
881  *	progress on the source.
882  *
883  *	The source object contains no vm_page_t's (which is just as well)
884  *
885  *	The source object is of type OBJT_SWAP.
886  *
887  *	The source and destination objects must be locked.
888  *	Both object locks may temporarily be released.
889  */
890 void
891 swap_pager_copy(vm_object_t srcobject, vm_object_t dstobject,
892     vm_pindex_t offset, int destroysource)
893 {
894 	vm_pindex_t i;
895 
896 	VM_OBJECT_ASSERT_WLOCKED(srcobject);
897 	VM_OBJECT_ASSERT_WLOCKED(dstobject);
898 
899 	/*
900 	 * If destroysource is set, we remove the source object from the
901 	 * swap_pager internal queue now.
902 	 */
903 	if (destroysource && srcobject->handle != NULL) {
904 		vm_object_pip_add(srcobject, 1);
905 		VM_OBJECT_WUNLOCK(srcobject);
906 		vm_object_pip_add(dstobject, 1);
907 		VM_OBJECT_WUNLOCK(dstobject);
908 		sx_xlock(&sw_alloc_sx);
909 		TAILQ_REMOVE(NOBJLIST(srcobject->handle), srcobject,
910 		    pager_object_list);
911 		sx_xunlock(&sw_alloc_sx);
912 		VM_OBJECT_WLOCK(dstobject);
913 		vm_object_pip_wakeup(dstobject);
914 		VM_OBJECT_WLOCK(srcobject);
915 		vm_object_pip_wakeup(srcobject);
916 	}
917 
918 	/*
919 	 * transfer source to destination.
920 	 */
921 	for (i = 0; i < dstobject->size; ++i) {
922 		daddr_t dstaddr;
923 
924 		/*
925 		 * Locate (without changing) the swapblk on the destination,
926 		 * unless it is invalid in which case free it silently, or
927 		 * if the destination is a resident page, in which case the
928 		 * source is thrown away.
929 		 */
930 		dstaddr = swp_pager_meta_ctl(dstobject, i, 0);
931 
932 		if (dstaddr == SWAPBLK_NONE) {
933 			/*
934 			 * Destination has no swapblk and is not resident,
935 			 * copy source.
936 			 */
937 			daddr_t srcaddr;
938 
939 			srcaddr = swp_pager_meta_ctl(
940 			    srcobject,
941 			    i + offset,
942 			    SWM_POP
943 			);
944 
945 			if (srcaddr != SWAPBLK_NONE) {
946 				/*
947 				 * swp_pager_meta_build() can sleep.
948 				 */
949 				vm_object_pip_add(srcobject, 1);
950 				VM_OBJECT_WUNLOCK(srcobject);
951 				vm_object_pip_add(dstobject, 1);
952 				swp_pager_meta_build(dstobject, i, srcaddr);
953 				vm_object_pip_wakeup(dstobject);
954 				VM_OBJECT_WLOCK(srcobject);
955 				vm_object_pip_wakeup(srcobject);
956 			}
957 		} else {
958 			/*
959 			 * Destination has valid swapblk or it is represented
960 			 * by a resident page.  We destroy the sourceblock.
961 			 */
962 
963 			swp_pager_meta_ctl(srcobject, i + offset, SWM_FREE);
964 		}
965 	}
966 
967 	/*
968 	 * Free left over swap blocks in source.
969 	 *
970 	 * We have to revert the type to OBJT_DEFAULT so we do not accidentally
971 	 * double-remove the object from the swap queues.
972 	 */
973 	if (destroysource) {
974 		swp_pager_meta_free_all(srcobject);
975 		/*
976 		 * Reverting the type is not necessary, the caller is going
977 		 * to destroy srcobject directly, but I'm doing it here
978 		 * for consistency since we've removed the object from its
979 		 * queues.
980 		 */
981 		srcobject->type = OBJT_DEFAULT;
982 	}
983 }
984 
985 /*
986  * SWAP_PAGER_HASPAGE() -	determine if we have good backing store for
987  *				the requested page.
988  *
989  *	We determine whether good backing store exists for the requested
990  *	page and return TRUE if it does, FALSE if it doesn't.
991  *
992  *	If TRUE, we also try to determine how much valid, contiguous backing
993  *	store exists before and after the requested page.
994  */
995 static boolean_t
996 swap_pager_haspage(vm_object_t object, vm_pindex_t pindex, int *before,
997     int *after)
998 {
999 	daddr_t blk, blk0;
1000 	int i;
1001 
1002 	VM_OBJECT_ASSERT_LOCKED(object);
1003 
1004 	/*
1005 	 * do we have good backing store at the requested index ?
1006 	 */
1007 	blk0 = swp_pager_meta_ctl(object, pindex, 0);
1008 	if (blk0 == SWAPBLK_NONE) {
1009 		if (before)
1010 			*before = 0;
1011 		if (after)
1012 			*after = 0;
1013 		return (FALSE);
1014 	}
1015 
1016 	/*
1017 	 * find backwards-looking contiguous good backing store
1018 	 */
1019 	if (before != NULL) {
1020 		for (i = 1; i < SWB_NPAGES; i++) {
1021 			if (i > pindex)
1022 				break;
1023 			blk = swp_pager_meta_ctl(object, pindex - i, 0);
1024 			if (blk != blk0 - i)
1025 				break;
1026 		}
1027 		*before = i - 1;
1028 	}
1029 
1030 	/*
1031 	 * find forward-looking contiguous good backing store
1032 	 */
1033 	if (after != NULL) {
1034 		for (i = 1; i < SWB_NPAGES; i++) {
1035 			blk = swp_pager_meta_ctl(object, pindex + i, 0);
1036 			if (blk != blk0 + i)
1037 				break;
1038 		}
1039 		*after = i - 1;
1040 	}
1041 	return (TRUE);
1042 }
1043 
1044 /*
1045  * SWAP_PAGER_PAGE_UNSWAPPED() - remove swap backing store related to page
1046  *
1047  *	This removes any associated swap backing store, whether valid or
1048  *	not, from the page.
1049  *
1050  *	This routine is typically called when a page is made dirty, at
1051  *	which point any associated swap can be freed.  MADV_FREE also
1052  *	calls us in a special-case situation
1053  *
1054  *	NOTE!!!  If the page is clean and the swap was valid, the caller
1055  *	should make the page dirty before calling this routine.  This routine
1056  *	does NOT change the m->dirty status of the page.  Also: MADV_FREE
1057  *	depends on it.
1058  *
1059  *	This routine may not sleep.
1060  *
1061  *	The object containing the page must be locked.
1062  */
1063 static void
1064 swap_pager_unswapped(vm_page_t m)
1065 {
1066 
1067 	swp_pager_meta_ctl(m->object, m->pindex, SWM_FREE);
1068 }
1069 
1070 /*
1071  * swap_pager_getpages() - bring pages in from swap
1072  *
1073  *	Attempt to page in the pages in array "m" of length "count".  The caller
1074  *	may optionally specify that additional pages preceding and succeeding
1075  *	the specified range be paged in.  The number of such pages is returned
1076  *	in the "rbehind" and "rahead" parameters, and they will be in the
1077  *	inactive queue upon return.
1078  *
1079  *	The pages in "m" must be busied and will remain busied upon return.
1080  */
1081 static int
1082 swap_pager_getpages(vm_object_t object, vm_page_t *m, int count, int *rbehind,
1083     int *rahead)
1084 {
1085 	struct buf *bp;
1086 	vm_page_t mpred, msucc, p;
1087 	vm_pindex_t pindex;
1088 	daddr_t blk;
1089 	int i, j, maxahead, maxbehind, reqcount, shift;
1090 
1091 	reqcount = count;
1092 
1093 	VM_OBJECT_WUNLOCK(object);
1094 	bp = getpbuf(&nsw_rcount);
1095 	VM_OBJECT_WLOCK(object);
1096 
1097 	if (!swap_pager_haspage(object, m[0]->pindex, &maxbehind, &maxahead)) {
1098 		relpbuf(bp, &nsw_rcount);
1099 		return (VM_PAGER_FAIL);
1100 	}
1101 
1102 	/*
1103 	 * Clip the readahead and readbehind ranges to exclude resident pages.
1104 	 */
1105 	if (rahead != NULL) {
1106 		KASSERT(reqcount - 1 <= maxahead,
1107 		    ("page count %d extends beyond swap block", reqcount));
1108 		*rahead = imin(*rahead, maxahead - (reqcount - 1));
1109 		pindex = m[reqcount - 1]->pindex;
1110 		msucc = TAILQ_NEXT(m[reqcount - 1], listq);
1111 		if (msucc != NULL && msucc->pindex - pindex - 1 < *rahead)
1112 			*rahead = msucc->pindex - pindex - 1;
1113 	}
1114 	if (rbehind != NULL) {
1115 		*rbehind = imin(*rbehind, maxbehind);
1116 		pindex = m[0]->pindex;
1117 		mpred = TAILQ_PREV(m[0], pglist, listq);
1118 		if (mpred != NULL && pindex - mpred->pindex - 1 < *rbehind)
1119 			*rbehind = pindex - mpred->pindex - 1;
1120 	}
1121 
1122 	/*
1123 	 * Allocate readahead and readbehind pages.
1124 	 */
1125 	shift = rbehind != NULL ? *rbehind : 0;
1126 	if (shift != 0) {
1127 		for (i = 1; i <= shift; i++) {
1128 			p = vm_page_alloc(object, m[0]->pindex - i,
1129 			    VM_ALLOC_NORMAL);
1130 			if (p == NULL) {
1131 				/* Shift allocated pages to the left. */
1132 				for (j = 0; j < i - 1; j++)
1133 					bp->b_pages[j] =
1134 					    bp->b_pages[j + shift - i + 1];
1135 				break;
1136 			}
1137 			bp->b_pages[shift - i] = p;
1138 		}
1139 		shift = i - 1;
1140 		*rbehind = shift;
1141 	}
1142 	for (i = 0; i < reqcount; i++)
1143 		bp->b_pages[i + shift] = m[i];
1144 	if (rahead != NULL) {
1145 		for (i = 0; i < *rahead; i++) {
1146 			p = vm_page_alloc(object,
1147 			    m[reqcount - 1]->pindex + i + 1, VM_ALLOC_NORMAL);
1148 			if (p == NULL)
1149 				break;
1150 			bp->b_pages[shift + reqcount + i] = p;
1151 		}
1152 		*rahead = i;
1153 	}
1154 	if (rbehind != NULL)
1155 		count += *rbehind;
1156 	if (rahead != NULL)
1157 		count += *rahead;
1158 
1159 	vm_object_pip_add(object, count);
1160 
1161 	for (i = 0; i < count; i++)
1162 		bp->b_pages[i]->oflags |= VPO_SWAPINPROG;
1163 
1164 	pindex = bp->b_pages[0]->pindex;
1165 	blk = swp_pager_meta_ctl(object, pindex, 0);
1166 	KASSERT(blk != SWAPBLK_NONE,
1167 	    ("no swap blocking containing %p(%jx)", object, (uintmax_t)pindex));
1168 
1169 	VM_OBJECT_WUNLOCK(object);
1170 
1171 	bp->b_flags |= B_PAGING;
1172 	bp->b_iocmd = BIO_READ;
1173 	bp->b_iodone = swp_pager_async_iodone;
1174 	bp->b_rcred = crhold(thread0.td_ucred);
1175 	bp->b_wcred = crhold(thread0.td_ucred);
1176 	bp->b_blkno = blk;
1177 	bp->b_bcount = PAGE_SIZE * count;
1178 	bp->b_bufsize = PAGE_SIZE * count;
1179 	bp->b_npages = count;
1180 	bp->b_pgbefore = rbehind != NULL ? *rbehind : 0;
1181 	bp->b_pgafter = rahead != NULL ? *rahead : 0;
1182 
1183 	PCPU_INC(cnt.v_swapin);
1184 	PCPU_ADD(cnt.v_swappgsin, count);
1185 
1186 	/*
1187 	 * perform the I/O.  NOTE!!!  bp cannot be considered valid after
1188 	 * this point because we automatically release it on completion.
1189 	 * Instead, we look at the one page we are interested in which we
1190 	 * still hold a lock on even through the I/O completion.
1191 	 *
1192 	 * The other pages in our m[] array are also released on completion,
1193 	 * so we cannot assume they are valid anymore either.
1194 	 *
1195 	 * NOTE: b_blkno is destroyed by the call to swapdev_strategy
1196 	 */
1197 	BUF_KERNPROC(bp);
1198 	swp_pager_strategy(bp);
1199 
1200 	/*
1201 	 * Wait for the pages we want to complete.  VPO_SWAPINPROG is always
1202 	 * cleared on completion.  If an I/O error occurs, SWAPBLK_NONE
1203 	 * is set in the metadata for each page in the request.
1204 	 */
1205 	VM_OBJECT_WLOCK(object);
1206 	while ((m[0]->oflags & VPO_SWAPINPROG) != 0) {
1207 		m[0]->oflags |= VPO_SWAPSLEEP;
1208 		PCPU_INC(cnt.v_intrans);
1209 		if (VM_OBJECT_SLEEP(object, &object->paging_in_progress, PSWP,
1210 		    "swread", hz * 20)) {
1211 			printf(
1212 "swap_pager: indefinite wait buffer: bufobj: %p, blkno: %jd, size: %ld\n",
1213 			    bp->b_bufobj, (intmax_t)bp->b_blkno, bp->b_bcount);
1214 		}
1215 	}
1216 
1217 	/*
1218 	 * If we had an unrecoverable read error pages will not be valid.
1219 	 */
1220 	for (i = 0; i < reqcount; i++)
1221 		if (m[i]->valid != VM_PAGE_BITS_ALL)
1222 			return (VM_PAGER_ERROR);
1223 
1224 	return (VM_PAGER_OK);
1225 
1226 	/*
1227 	 * A final note: in a low swap situation, we cannot deallocate swap
1228 	 * and mark a page dirty here because the caller is likely to mark
1229 	 * the page clean when we return, causing the page to possibly revert
1230 	 * to all-zero's later.
1231 	 */
1232 }
1233 
1234 /*
1235  * 	swap_pager_getpages_async():
1236  *
1237  *	Right now this is emulation of asynchronous operation on top of
1238  *	swap_pager_getpages().
1239  */
1240 static int
1241 swap_pager_getpages_async(vm_object_t object, vm_page_t *m, int count,
1242     int *rbehind, int *rahead, pgo_getpages_iodone_t iodone, void *arg)
1243 {
1244 	int r, error;
1245 
1246 	r = swap_pager_getpages(object, m, count, rbehind, rahead);
1247 	VM_OBJECT_WUNLOCK(object);
1248 	switch (r) {
1249 	case VM_PAGER_OK:
1250 		error = 0;
1251 		break;
1252 	case VM_PAGER_ERROR:
1253 		error = EIO;
1254 		break;
1255 	case VM_PAGER_FAIL:
1256 		error = EINVAL;
1257 		break;
1258 	default:
1259 		panic("unhandled swap_pager_getpages() error %d", r);
1260 	}
1261 	(iodone)(arg, m, count, error);
1262 	VM_OBJECT_WLOCK(object);
1263 
1264 	return (r);
1265 }
1266 
1267 /*
1268  *	swap_pager_putpages:
1269  *
1270  *	Assign swap (if necessary) and initiate I/O on the specified pages.
1271  *
1272  *	We support both OBJT_DEFAULT and OBJT_SWAP objects.  DEFAULT objects
1273  *	are automatically converted to SWAP objects.
1274  *
1275  *	In a low memory situation we may block in VOP_STRATEGY(), but the new
1276  *	vm_page reservation system coupled with properly written VFS devices
1277  *	should ensure that no low-memory deadlock occurs.  This is an area
1278  *	which needs work.
1279  *
1280  *	The parent has N vm_object_pip_add() references prior to
1281  *	calling us and will remove references for rtvals[] that are
1282  *	not set to VM_PAGER_PEND.  We need to remove the rest on I/O
1283  *	completion.
1284  *
1285  *	The parent has soft-busy'd the pages it passes us and will unbusy
1286  *	those whos rtvals[] entry is not set to VM_PAGER_PEND on return.
1287  *	We need to unbusy the rest on I/O completion.
1288  */
1289 static void
1290 swap_pager_putpages(vm_object_t object, vm_page_t *m, int count,
1291     int flags, int *rtvals)
1292 {
1293 	int i, n;
1294 	boolean_t sync;
1295 
1296 	if (count && m[0]->object != object) {
1297 		panic("swap_pager_putpages: object mismatch %p/%p",
1298 		    object,
1299 		    m[0]->object
1300 		);
1301 	}
1302 
1303 	/*
1304 	 * Step 1
1305 	 *
1306 	 * Turn object into OBJT_SWAP
1307 	 * check for bogus sysops
1308 	 * force sync if not pageout process
1309 	 */
1310 	if (object->type != OBJT_SWAP)
1311 		swp_pager_meta_build(object, 0, SWAPBLK_NONE);
1312 	VM_OBJECT_WUNLOCK(object);
1313 
1314 	n = 0;
1315 	if (curproc != pageproc)
1316 		sync = TRUE;
1317 	else
1318 		sync = (flags & VM_PAGER_PUT_SYNC) != 0;
1319 
1320 	/*
1321 	 * Step 2
1322 	 *
1323 	 * Assign swap blocks and issue I/O.  We reallocate swap on the fly.
1324 	 * The page is left dirty until the pageout operation completes
1325 	 * successfully.
1326 	 */
1327 	for (i = 0; i < count; i += n) {
1328 		int j;
1329 		struct buf *bp;
1330 		daddr_t blk;
1331 
1332 		/*
1333 		 * Maximum I/O size is limited by a number of factors.
1334 		 */
1335 		n = min(BLIST_MAX_ALLOC, count - i);
1336 		n = min(n, nsw_cluster_max);
1337 
1338 		/*
1339 		 * Get biggest block of swap we can.  If we fail, fall
1340 		 * back and try to allocate a smaller block.  Don't go
1341 		 * overboard trying to allocate space if it would overly
1342 		 * fragment swap.
1343 		 */
1344 		while (
1345 		    (blk = swp_pager_getswapspace(n)) == SWAPBLK_NONE &&
1346 		    n > 4
1347 		) {
1348 			n >>= 1;
1349 		}
1350 		if (blk == SWAPBLK_NONE) {
1351 			for (j = 0; j < n; ++j)
1352 				rtvals[i+j] = VM_PAGER_FAIL;
1353 			continue;
1354 		}
1355 
1356 		/*
1357 		 * All I/O parameters have been satisfied, build the I/O
1358 		 * request and assign the swap space.
1359 		 */
1360 		if (sync == TRUE) {
1361 			bp = getpbuf(&nsw_wcount_sync);
1362 		} else {
1363 			bp = getpbuf(&nsw_wcount_async);
1364 			bp->b_flags = B_ASYNC;
1365 		}
1366 		bp->b_flags |= B_PAGING;
1367 		bp->b_iocmd = BIO_WRITE;
1368 
1369 		bp->b_rcred = crhold(thread0.td_ucred);
1370 		bp->b_wcred = crhold(thread0.td_ucred);
1371 		bp->b_bcount = PAGE_SIZE * n;
1372 		bp->b_bufsize = PAGE_SIZE * n;
1373 		bp->b_blkno = blk;
1374 
1375 		VM_OBJECT_WLOCK(object);
1376 		for (j = 0; j < n; ++j) {
1377 			vm_page_t mreq = m[i+j];
1378 
1379 			swp_pager_meta_build(
1380 			    mreq->object,
1381 			    mreq->pindex,
1382 			    blk + j
1383 			);
1384 			vm_page_dirty(mreq);
1385 			mreq->oflags |= VPO_SWAPINPROG;
1386 			bp->b_pages[j] = mreq;
1387 		}
1388 		VM_OBJECT_WUNLOCK(object);
1389 		bp->b_npages = n;
1390 		/*
1391 		 * Must set dirty range for NFS to work.
1392 		 */
1393 		bp->b_dirtyoff = 0;
1394 		bp->b_dirtyend = bp->b_bcount;
1395 
1396 		PCPU_INC(cnt.v_swapout);
1397 		PCPU_ADD(cnt.v_swappgsout, bp->b_npages);
1398 
1399 		/*
1400 		 * We unconditionally set rtvals[] to VM_PAGER_PEND so that we
1401 		 * can call the async completion routine at the end of a
1402 		 * synchronous I/O operation.  Otherwise, our caller would
1403 		 * perform duplicate unbusy and wakeup operations on the page
1404 		 * and object, respectively.
1405 		 */
1406 		for (j = 0; j < n; j++)
1407 			rtvals[i + j] = VM_PAGER_PEND;
1408 
1409 		/*
1410 		 * asynchronous
1411 		 *
1412 		 * NOTE: b_blkno is destroyed by the call to swapdev_strategy
1413 		 */
1414 		if (sync == FALSE) {
1415 			bp->b_iodone = swp_pager_async_iodone;
1416 			BUF_KERNPROC(bp);
1417 			swp_pager_strategy(bp);
1418 			continue;
1419 		}
1420 
1421 		/*
1422 		 * synchronous
1423 		 *
1424 		 * NOTE: b_blkno is destroyed by the call to swapdev_strategy
1425 		 */
1426 		bp->b_iodone = bdone;
1427 		swp_pager_strategy(bp);
1428 
1429 		/*
1430 		 * Wait for the sync I/O to complete.
1431 		 */
1432 		bwait(bp, PVM, "swwrt");
1433 
1434 		/*
1435 		 * Now that we are through with the bp, we can call the
1436 		 * normal async completion, which frees everything up.
1437 		 */
1438 		swp_pager_async_iodone(bp);
1439 	}
1440 	VM_OBJECT_WLOCK(object);
1441 }
1442 
1443 /*
1444  *	swp_pager_async_iodone:
1445  *
1446  *	Completion routine for asynchronous reads and writes from/to swap.
1447  *	Also called manually by synchronous code to finish up a bp.
1448  *
1449  *	This routine may not sleep.
1450  */
1451 static void
1452 swp_pager_async_iodone(struct buf *bp)
1453 {
1454 	int i;
1455 	vm_object_t object = NULL;
1456 
1457 	/*
1458 	 * report error
1459 	 */
1460 	if (bp->b_ioflags & BIO_ERROR) {
1461 		printf(
1462 		    "swap_pager: I/O error - %s failed; blkno %ld,"
1463 			"size %ld, error %d\n",
1464 		    ((bp->b_iocmd == BIO_READ) ? "pagein" : "pageout"),
1465 		    (long)bp->b_blkno,
1466 		    (long)bp->b_bcount,
1467 		    bp->b_error
1468 		);
1469 	}
1470 
1471 	/*
1472 	 * remove the mapping for kernel virtual
1473 	 */
1474 	if (buf_mapped(bp))
1475 		pmap_qremove((vm_offset_t)bp->b_data, bp->b_npages);
1476 	else
1477 		bp->b_data = bp->b_kvabase;
1478 
1479 	if (bp->b_npages) {
1480 		object = bp->b_pages[0]->object;
1481 		VM_OBJECT_WLOCK(object);
1482 	}
1483 
1484 	/*
1485 	 * cleanup pages.  If an error occurs writing to swap, we are in
1486 	 * very serious trouble.  If it happens to be a disk error, though,
1487 	 * we may be able to recover by reassigning the swap later on.  So
1488 	 * in this case we remove the m->swapblk assignment for the page
1489 	 * but do not free it in the rlist.  The errornous block(s) are thus
1490 	 * never reallocated as swap.  Redirty the page and continue.
1491 	 */
1492 	for (i = 0; i < bp->b_npages; ++i) {
1493 		vm_page_t m = bp->b_pages[i];
1494 
1495 		m->oflags &= ~VPO_SWAPINPROG;
1496 		if (m->oflags & VPO_SWAPSLEEP) {
1497 			m->oflags &= ~VPO_SWAPSLEEP;
1498 			wakeup(&object->paging_in_progress);
1499 		}
1500 
1501 		if (bp->b_ioflags & BIO_ERROR) {
1502 			/*
1503 			 * If an error occurs I'd love to throw the swapblk
1504 			 * away without freeing it back to swapspace, so it
1505 			 * can never be used again.  But I can't from an
1506 			 * interrupt.
1507 			 */
1508 			if (bp->b_iocmd == BIO_READ) {
1509 				/*
1510 				 * NOTE: for reads, m->dirty will probably
1511 				 * be overridden by the original caller of
1512 				 * getpages so don't play cute tricks here.
1513 				 */
1514 				m->valid = 0;
1515 			} else {
1516 				/*
1517 				 * If a write error occurs, reactivate page
1518 				 * so it doesn't clog the inactive list,
1519 				 * then finish the I/O.
1520 				 */
1521 				vm_page_dirty(m);
1522 				vm_page_lock(m);
1523 				vm_page_activate(m);
1524 				vm_page_unlock(m);
1525 				vm_page_sunbusy(m);
1526 			}
1527 		} else if (bp->b_iocmd == BIO_READ) {
1528 			/*
1529 			 * NOTE: for reads, m->dirty will probably be
1530 			 * overridden by the original caller of getpages so
1531 			 * we cannot set them in order to free the underlying
1532 			 * swap in a low-swap situation.  I don't think we'd
1533 			 * want to do that anyway, but it was an optimization
1534 			 * that existed in the old swapper for a time before
1535 			 * it got ripped out due to precisely this problem.
1536 			 */
1537 			KASSERT(!pmap_page_is_mapped(m),
1538 			    ("swp_pager_async_iodone: page %p is mapped", m));
1539 			KASSERT(m->dirty == 0,
1540 			    ("swp_pager_async_iodone: page %p is dirty", m));
1541 
1542 			m->valid = VM_PAGE_BITS_ALL;
1543 			if (i < bp->b_pgbefore ||
1544 			    i >= bp->b_npages - bp->b_pgafter)
1545 				vm_page_readahead_finish(m);
1546 		} else {
1547 			/*
1548 			 * For write success, clear the dirty
1549 			 * status, then finish the I/O ( which decrements the
1550 			 * busy count and possibly wakes waiter's up ).
1551 			 * A page is only written to swap after a period of
1552 			 * inactivity.  Therefore, we do not expect it to be
1553 			 * reused.
1554 			 */
1555 			KASSERT(!pmap_page_is_write_mapped(m),
1556 			    ("swp_pager_async_iodone: page %p is not write"
1557 			    " protected", m));
1558 			vm_page_undirty(m);
1559 			vm_page_lock(m);
1560 			vm_page_deactivate_noreuse(m);
1561 			vm_page_unlock(m);
1562 			vm_page_sunbusy(m);
1563 		}
1564 	}
1565 
1566 	/*
1567 	 * adjust pip.  NOTE: the original parent may still have its own
1568 	 * pip refs on the object.
1569 	 */
1570 	if (object != NULL) {
1571 		vm_object_pip_wakeupn(object, bp->b_npages);
1572 		VM_OBJECT_WUNLOCK(object);
1573 	}
1574 
1575 	/*
1576 	 * swapdev_strategy() manually sets b_vp and b_bufobj before calling
1577 	 * bstrategy(). Set them back to NULL now we're done with it, or we'll
1578 	 * trigger a KASSERT in relpbuf().
1579 	 */
1580 	if (bp->b_vp) {
1581 		    bp->b_vp = NULL;
1582 		    bp->b_bufobj = NULL;
1583 	}
1584 	/*
1585 	 * release the physical I/O buffer
1586 	 */
1587 	relpbuf(
1588 	    bp,
1589 	    ((bp->b_iocmd == BIO_READ) ? &nsw_rcount :
1590 		((bp->b_flags & B_ASYNC) ?
1591 		    &nsw_wcount_async :
1592 		    &nsw_wcount_sync
1593 		)
1594 	    )
1595 	);
1596 }
1597 
1598 /*
1599  *	swap_pager_isswapped:
1600  *
1601  *	Return 1 if at least one page in the given object is paged
1602  *	out to the given swap device.
1603  *
1604  *	This routine may not sleep.
1605  */
1606 int
1607 swap_pager_isswapped(vm_object_t object, struct swdevt *sp)
1608 {
1609 	daddr_t index = 0;
1610 	int bcount;
1611 	int i;
1612 
1613 	VM_OBJECT_ASSERT_WLOCKED(object);
1614 	if (object->type != OBJT_SWAP)
1615 		return (0);
1616 
1617 	mtx_lock(&swhash_mtx);
1618 	for (bcount = 0; bcount < object->un_pager.swp.swp_bcount; bcount++) {
1619 		struct swblock *swap;
1620 
1621 		if ((swap = *swp_pager_hash(object, index)) != NULL) {
1622 			for (i = 0; i < SWAP_META_PAGES; ++i) {
1623 				if (swp_pager_isondev(swap->swb_pages[i], sp)) {
1624 					mtx_unlock(&swhash_mtx);
1625 					return (1);
1626 				}
1627 			}
1628 		}
1629 		index += SWAP_META_PAGES;
1630 	}
1631 	mtx_unlock(&swhash_mtx);
1632 	return (0);
1633 }
1634 
1635 int
1636 swap_pager_nswapdev(void)
1637 {
1638 
1639 	return (nswapdev);
1640 }
1641 
1642 /*
1643  * SWP_PAGER_FORCE_PAGEIN() - force a swap block to be paged in
1644  *
1645  *	This routine dissociates the page at the given index within an object
1646  *	from its backing store, paging it in if it does not reside in memory.
1647  *	If the page is paged in, it is marked dirty and placed in the laundry
1648  *	queue.  The page is marked dirty because it no longer has backing
1649  *	store.  It is placed in the laundry queue because it has not been
1650  *	accessed recently.  Otherwise, it would already reside in memory.
1651  *
1652  *	We also attempt to swap in all other pages in the swap block.
1653  *	However, we only guarantee that the one at the specified index is
1654  *	paged in.
1655  *
1656  *	XXX - The code to page the whole block in doesn't work, so we
1657  *	      revert to the one-by-one behavior for now.  Sigh.
1658  */
1659 static inline void
1660 swp_pager_force_pagein(vm_object_t object, vm_pindex_t pindex)
1661 {
1662 	vm_page_t m;
1663 
1664 	vm_object_pip_add(object, 1);
1665 	m = vm_page_grab(object, pindex, VM_ALLOC_NORMAL);
1666 	if (m->valid == VM_PAGE_BITS_ALL) {
1667 		vm_object_pip_wakeup(object);
1668 		vm_page_dirty(m);
1669 		vm_page_lock(m);
1670 		vm_page_activate(m);
1671 		vm_page_unlock(m);
1672 		vm_page_xunbusy(m);
1673 		vm_pager_page_unswapped(m);
1674 		return;
1675 	}
1676 
1677 	if (swap_pager_getpages(object, &m, 1, NULL, NULL) != VM_PAGER_OK)
1678 		panic("swap_pager_force_pagein: read from swap failed");/*XXX*/
1679 	vm_object_pip_wakeup(object);
1680 	vm_page_dirty(m);
1681 	vm_page_lock(m);
1682 	vm_page_launder(m);
1683 	vm_page_unlock(m);
1684 	vm_page_xunbusy(m);
1685 	vm_pager_page_unswapped(m);
1686 }
1687 
1688 /*
1689  *	swap_pager_swapoff:
1690  *
1691  *	Page in all of the pages that have been paged out to the
1692  *	given device.  The corresponding blocks in the bitmap must be
1693  *	marked as allocated and the device must be flagged SW_CLOSING.
1694  *	There may be no processes swapped out to the device.
1695  *
1696  *	This routine may block.
1697  */
1698 static void
1699 swap_pager_swapoff(struct swdevt *sp)
1700 {
1701 	struct swblock *swap;
1702 	vm_object_t locked_obj, object;
1703 	vm_pindex_t pindex;
1704 	int i, j, retries;
1705 
1706 	sx_assert(&swdev_syscall_lock, SA_XLOCKED);
1707 
1708 	retries = 0;
1709 	locked_obj = NULL;
1710 full_rescan:
1711 	mtx_lock(&swhash_mtx);
1712 	for (i = 0; i <= swhash_mask; i++) { /* '<=' is correct here */
1713 restart:
1714 		for (swap = swhash[i]; swap != NULL; swap = swap->swb_hnext) {
1715 			object = swap->swb_object;
1716 			pindex = swap->swb_index;
1717 			for (j = 0; j < SWAP_META_PAGES; ++j) {
1718 				if (!swp_pager_isondev(swap->swb_pages[j], sp))
1719 					continue;
1720 				if (locked_obj != object) {
1721 					if (locked_obj != NULL)
1722 						VM_OBJECT_WUNLOCK(locked_obj);
1723 					locked_obj = object;
1724 					if (!VM_OBJECT_TRYWLOCK(object)) {
1725 						mtx_unlock(&swhash_mtx);
1726 						/* Depends on type-stability. */
1727 						VM_OBJECT_WLOCK(object);
1728 						mtx_lock(&swhash_mtx);
1729 						goto restart;
1730 					}
1731 				}
1732 				MPASS(locked_obj == object);
1733 				mtx_unlock(&swhash_mtx);
1734 				swp_pager_force_pagein(object, pindex + j);
1735 				mtx_lock(&swhash_mtx);
1736 				goto restart;
1737 			}
1738 		}
1739 	}
1740 	mtx_unlock(&swhash_mtx);
1741 	if (locked_obj != NULL) {
1742 		VM_OBJECT_WUNLOCK(locked_obj);
1743 		locked_obj = NULL;
1744 	}
1745 	if (sp->sw_used) {
1746 		/*
1747 		 * Objects may be locked or paging to the device being
1748 		 * removed, so we will miss their pages and need to
1749 		 * make another pass.  We have marked this device as
1750 		 * SW_CLOSING, so the activity should finish soon.
1751 		 */
1752 		retries++;
1753 		if (retries > 100) {
1754 			panic("swapoff: failed to locate %d swap blocks",
1755 			    sp->sw_used);
1756 		}
1757 		pause("swpoff", hz / 20);
1758 		goto full_rescan;
1759 	}
1760 	EVENTHANDLER_INVOKE(swapoff, sp);
1761 }
1762 
1763 /************************************************************************
1764  *				SWAP META DATA 				*
1765  ************************************************************************
1766  *
1767  *	These routines manipulate the swap metadata stored in the
1768  *	OBJT_SWAP object.
1769  *
1770  *	Swap metadata is implemented with a global hash and not directly
1771  *	linked into the object.  Instead the object simply contains
1772  *	appropriate tracking counters.
1773  */
1774 
1775 /*
1776  * SWP_PAGER_META_BUILD() -	add swap block to swap meta data for object
1777  *
1778  *	We first convert the object to a swap object if it is a default
1779  *	object.
1780  *
1781  *	The specified swapblk is added to the object's swap metadata.  If
1782  *	the swapblk is not valid, it is freed instead.  Any previously
1783  *	assigned swapblk is freed.
1784  */
1785 static void
1786 swp_pager_meta_build(vm_object_t object, vm_pindex_t pindex, daddr_t swapblk)
1787 {
1788 	static volatile int exhausted;
1789 	struct swblock *swap;
1790 	struct swblock **pswap;
1791 	int idx;
1792 
1793 	VM_OBJECT_ASSERT_WLOCKED(object);
1794 	/*
1795 	 * Convert default object to swap object if necessary
1796 	 */
1797 	if (object->type != OBJT_SWAP) {
1798 		object->type = OBJT_SWAP;
1799 		object->un_pager.swp.swp_bcount = 0;
1800 		KASSERT(object->handle == NULL, ("default pager with handle"));
1801 	}
1802 
1803 	/*
1804 	 * Locate hash entry.  If not found create, but if we aren't adding
1805 	 * anything just return.  If we run out of space in the map we wait
1806 	 * and, since the hash table may have changed, retry.
1807 	 */
1808 retry:
1809 	mtx_lock(&swhash_mtx);
1810 	pswap = swp_pager_hash(object, pindex);
1811 
1812 	if ((swap = *pswap) == NULL) {
1813 		int i;
1814 
1815 		if (swapblk == SWAPBLK_NONE)
1816 			goto done;
1817 
1818 		swap = *pswap = uma_zalloc(swap_zone, M_NOWAIT |
1819 		    (curproc == pageproc ? M_USE_RESERVE : 0));
1820 		if (swap == NULL) {
1821 			mtx_unlock(&swhash_mtx);
1822 			VM_OBJECT_WUNLOCK(object);
1823 			if (uma_zone_exhausted(swap_zone)) {
1824 				if (atomic_cmpset_int(&exhausted, 0, 1))
1825 					printf("swap zone exhausted, "
1826 					    "increase kern.maxswzone\n");
1827 				vm_pageout_oom(VM_OOM_SWAPZ);
1828 				pause("swzonex", 10);
1829 			} else
1830 				VM_WAIT;
1831 			VM_OBJECT_WLOCK(object);
1832 			goto retry;
1833 		}
1834 
1835 		if (atomic_cmpset_int(&exhausted, 1, 0))
1836 			printf("swap zone ok\n");
1837 
1838 		swap->swb_hnext = NULL;
1839 		swap->swb_object = object;
1840 		swap->swb_index = pindex & ~(vm_pindex_t)SWAP_META_MASK;
1841 		swap->swb_count = 0;
1842 
1843 		++object->un_pager.swp.swp_bcount;
1844 
1845 		for (i = 0; i < SWAP_META_PAGES; ++i)
1846 			swap->swb_pages[i] = SWAPBLK_NONE;
1847 	}
1848 
1849 	/*
1850 	 * Delete prior contents of metadata
1851 	 */
1852 	idx = pindex & SWAP_META_MASK;
1853 
1854 	if (swap->swb_pages[idx] != SWAPBLK_NONE) {
1855 		swp_pager_freeswapspace(swap->swb_pages[idx], 1);
1856 		--swap->swb_count;
1857 	}
1858 
1859 	/*
1860 	 * Enter block into metadata
1861 	 */
1862 	swap->swb_pages[idx] = swapblk;
1863 	if (swapblk != SWAPBLK_NONE)
1864 		++swap->swb_count;
1865 done:
1866 	mtx_unlock(&swhash_mtx);
1867 }
1868 
1869 /*
1870  * SWP_PAGER_META_FREE() - free a range of blocks in the object's swap metadata
1871  *
1872  *	The requested range of blocks is freed, with any associated swap
1873  *	returned to the swap bitmap.
1874  *
1875  *	This routine will free swap metadata structures as they are cleaned
1876  *	out.  This routine does *NOT* operate on swap metadata associated
1877  *	with resident pages.
1878  */
1879 static void
1880 swp_pager_meta_free(vm_object_t object, vm_pindex_t index, vm_pindex_t count)
1881 {
1882 	struct swblock **pswap, *swap;
1883 	vm_pindex_t c;
1884 	daddr_t v;
1885 	int n, sidx;
1886 
1887 	VM_OBJECT_ASSERT_LOCKED(object);
1888 	if (object->type != OBJT_SWAP || count == 0)
1889 		return;
1890 
1891 	mtx_lock(&swhash_mtx);
1892 	for (c = 0; c < count;) {
1893 		pswap = swp_pager_hash(object, index);
1894 		sidx = index & SWAP_META_MASK;
1895 		n = SWAP_META_PAGES - sidx;
1896 		index += n;
1897 		if ((swap = *pswap) == NULL) {
1898 			c += n;
1899 			continue;
1900 		}
1901 		for (; c < count && sidx < SWAP_META_PAGES; ++c, ++sidx) {
1902 			if ((v = swap->swb_pages[sidx]) == SWAPBLK_NONE)
1903 				continue;
1904 			swp_pager_freeswapspace(v, 1);
1905 			swap->swb_pages[sidx] = SWAPBLK_NONE;
1906 			if (--swap->swb_count == 0) {
1907 				*pswap = swap->swb_hnext;
1908 				uma_zfree(swap_zone, swap);
1909 				--object->un_pager.swp.swp_bcount;
1910 				c += SWAP_META_PAGES - sidx;
1911 				break;
1912 			}
1913 		}
1914 	}
1915 	mtx_unlock(&swhash_mtx);
1916 }
1917 
1918 /*
1919  * SWP_PAGER_META_FREE_ALL() - destroy all swap metadata associated with object
1920  *
1921  *	This routine locates and destroys all swap metadata associated with
1922  *	an object.
1923  */
1924 static void
1925 swp_pager_meta_free_all(vm_object_t object)
1926 {
1927 	struct swblock **pswap, *swap;
1928 	vm_pindex_t index;
1929 	daddr_t v;
1930 	int i;
1931 
1932 	VM_OBJECT_ASSERT_WLOCKED(object);
1933 	if (object->type != OBJT_SWAP)
1934 		return;
1935 
1936 	index = 0;
1937 	while (object->un_pager.swp.swp_bcount != 0) {
1938 		mtx_lock(&swhash_mtx);
1939 		pswap = swp_pager_hash(object, index);
1940 		if ((swap = *pswap) != NULL) {
1941 			for (i = 0; i < SWAP_META_PAGES; ++i) {
1942 				v = swap->swb_pages[i];
1943 				if (v != SWAPBLK_NONE) {
1944 					--swap->swb_count;
1945 					swp_pager_freeswapspace(v, 1);
1946 				}
1947 			}
1948 			if (swap->swb_count != 0)
1949 				panic(
1950 				    "swap_pager_meta_free_all: swb_count != 0");
1951 			*pswap = swap->swb_hnext;
1952 			uma_zfree(swap_zone, swap);
1953 			--object->un_pager.swp.swp_bcount;
1954 		}
1955 		mtx_unlock(&swhash_mtx);
1956 		index += SWAP_META_PAGES;
1957 	}
1958 }
1959 
1960 /*
1961  * SWP_PAGER_METACTL() -  misc control of swap and vm_page_t meta data.
1962  *
1963  *	This routine is capable of looking up, popping, or freeing
1964  *	swapblk assignments in the swap meta data or in the vm_page_t.
1965  *	The routine typically returns the swapblk being looked-up, or popped,
1966  *	or SWAPBLK_NONE if the block was freed, or SWAPBLK_NONE if the block
1967  *	was invalid.  This routine will automatically free any invalid
1968  *	meta-data swapblks.
1969  *
1970  *	It is not possible to store invalid swapblks in the swap meta data
1971  *	(other then a literal 'SWAPBLK_NONE'), so we don't bother checking.
1972  *
1973  *	When acting on a busy resident page and paging is in progress, we
1974  *	have to wait until paging is complete but otherwise can act on the
1975  *	busy page.
1976  *
1977  *	SWM_FREE	remove and free swap block from metadata
1978  *	SWM_POP		remove from meta data but do not free.. pop it out
1979  */
1980 static daddr_t
1981 swp_pager_meta_ctl(vm_object_t object, vm_pindex_t pindex, int flags)
1982 {
1983 	struct swblock **pswap;
1984 	struct swblock *swap;
1985 	daddr_t r1;
1986 	int idx;
1987 
1988 	VM_OBJECT_ASSERT_LOCKED(object);
1989 	/*
1990 	 * The meta data only exists of the object is OBJT_SWAP
1991 	 * and even then might not be allocated yet.
1992 	 */
1993 	if (object->type != OBJT_SWAP)
1994 		return (SWAPBLK_NONE);
1995 
1996 	r1 = SWAPBLK_NONE;
1997 	mtx_lock(&swhash_mtx);
1998 	pswap = swp_pager_hash(object, pindex);
1999 
2000 	if ((swap = *pswap) != NULL) {
2001 		idx = pindex & SWAP_META_MASK;
2002 		r1 = swap->swb_pages[idx];
2003 
2004 		if (r1 != SWAPBLK_NONE) {
2005 			if (flags & SWM_FREE) {
2006 				swp_pager_freeswapspace(r1, 1);
2007 				r1 = SWAPBLK_NONE;
2008 			}
2009 			if (flags & (SWM_FREE|SWM_POP)) {
2010 				swap->swb_pages[idx] = SWAPBLK_NONE;
2011 				if (--swap->swb_count == 0) {
2012 					*pswap = swap->swb_hnext;
2013 					uma_zfree(swap_zone, swap);
2014 					--object->un_pager.swp.swp_bcount;
2015 				}
2016 			}
2017 		}
2018 	}
2019 	mtx_unlock(&swhash_mtx);
2020 	return (r1);
2021 }
2022 
2023 /*
2024  * Returns the least page index which is greater than or equal to the
2025  * parameter pindex and for which there is a swap block allocated.
2026  * Returns object's size if the object's type is not swap or if there
2027  * are no allocated swap blocks for the object after the requested
2028  * pindex.
2029  */
2030 vm_pindex_t
2031 swap_pager_find_least(vm_object_t object, vm_pindex_t pindex)
2032 {
2033 	struct swblock **pswap, *swap;
2034 	vm_pindex_t i, j, lim;
2035 	int idx;
2036 
2037 	VM_OBJECT_ASSERT_LOCKED(object);
2038 	if (object->type != OBJT_SWAP || object->un_pager.swp.swp_bcount == 0)
2039 		return (object->size);
2040 
2041 	mtx_lock(&swhash_mtx);
2042 	for (j = pindex; j < object->size; j = lim) {
2043 		pswap = swp_pager_hash(object, j);
2044 		lim = rounddown2(j + SWAP_META_PAGES, SWAP_META_PAGES);
2045 		if (lim > object->size)
2046 			lim = object->size;
2047 		if ((swap = *pswap) != NULL) {
2048 			for (idx = j & SWAP_META_MASK, i = j; i < lim;
2049 			    i++, idx++) {
2050 				if (swap->swb_pages[idx] != SWAPBLK_NONE)
2051 					goto found;
2052 			}
2053 		}
2054 	}
2055 	i = object->size;
2056 found:
2057 	mtx_unlock(&swhash_mtx);
2058 	return (i);
2059 }
2060 
2061 /*
2062  * System call swapon(name) enables swapping on device name,
2063  * which must be in the swdevsw.  Return EBUSY
2064  * if already swapping on this device.
2065  */
2066 #ifndef _SYS_SYSPROTO_H_
2067 struct swapon_args {
2068 	char *name;
2069 };
2070 #endif
2071 
2072 /*
2073  * MPSAFE
2074  */
2075 /* ARGSUSED */
2076 int
2077 sys_swapon(struct thread *td, struct swapon_args *uap)
2078 {
2079 	struct vattr attr;
2080 	struct vnode *vp;
2081 	struct nameidata nd;
2082 	int error;
2083 
2084 	error = priv_check(td, PRIV_SWAPON);
2085 	if (error)
2086 		return (error);
2087 
2088 	sx_xlock(&swdev_syscall_lock);
2089 
2090 	/*
2091 	 * Swap metadata may not fit in the KVM if we have physical
2092 	 * memory of >1GB.
2093 	 */
2094 	if (swap_zone == NULL) {
2095 		error = ENOMEM;
2096 		goto done;
2097 	}
2098 
2099 	NDINIT(&nd, LOOKUP, ISOPEN | FOLLOW | AUDITVNODE1, UIO_USERSPACE,
2100 	    uap->name, td);
2101 	error = namei(&nd);
2102 	if (error)
2103 		goto done;
2104 
2105 	NDFREE(&nd, NDF_ONLY_PNBUF);
2106 	vp = nd.ni_vp;
2107 
2108 	if (vn_isdisk(vp, &error)) {
2109 		error = swapongeom(vp);
2110 	} else if (vp->v_type == VREG &&
2111 	    (vp->v_mount->mnt_vfc->vfc_flags & VFCF_NETWORK) != 0 &&
2112 	    (error = VOP_GETATTR(vp, &attr, td->td_ucred)) == 0) {
2113 		/*
2114 		 * Allow direct swapping to NFS regular files in the same
2115 		 * way that nfs_mountroot() sets up diskless swapping.
2116 		 */
2117 		error = swaponvp(td, vp, attr.va_size / DEV_BSIZE);
2118 	}
2119 
2120 	if (error)
2121 		vrele(vp);
2122 done:
2123 	sx_xunlock(&swdev_syscall_lock);
2124 	return (error);
2125 }
2126 
2127 /*
2128  * Check that the total amount of swap currently configured does not
2129  * exceed half the theoretical maximum.  If it does, print a warning
2130  * message and return -1; otherwise, return 0.
2131  */
2132 static int
2133 swapon_check_swzone(unsigned long npages)
2134 {
2135 	unsigned long maxpages;
2136 
2137 	/* absolute maximum we can handle assuming 100% efficiency */
2138 	maxpages = uma_zone_get_max(swap_zone) * SWAP_META_PAGES;
2139 
2140 	/* recommend using no more than half that amount */
2141 	if (npages > maxpages / 2) {
2142 		printf("warning: total configured swap (%lu pages) "
2143 		    "exceeds maximum recommended amount (%lu pages).\n",
2144 		    npages, maxpages / 2);
2145 		printf("warning: increase kern.maxswzone "
2146 		    "or reduce amount of swap.\n");
2147 		return (-1);
2148 	}
2149 	return (0);
2150 }
2151 
2152 static void
2153 swaponsomething(struct vnode *vp, void *id, u_long nblks,
2154     sw_strategy_t *strategy, sw_close_t *close, dev_t dev, int flags)
2155 {
2156 	struct swdevt *sp, *tsp;
2157 	swblk_t dvbase;
2158 	u_long mblocks;
2159 
2160 	/*
2161 	 * nblks is in DEV_BSIZE'd chunks, convert to PAGE_SIZE'd chunks.
2162 	 * First chop nblks off to page-align it, then convert.
2163 	 *
2164 	 * sw->sw_nblks is in page-sized chunks now too.
2165 	 */
2166 	nblks &= ~(ctodb(1) - 1);
2167 	nblks = dbtoc(nblks);
2168 
2169 	/*
2170 	 * If we go beyond this, we get overflows in the radix
2171 	 * tree bitmap code.
2172 	 */
2173 	mblocks = 0x40000000 / BLIST_META_RADIX;
2174 	if (nblks > mblocks) {
2175 		printf(
2176     "WARNING: reducing swap size to maximum of %luMB per unit\n",
2177 		    mblocks / 1024 / 1024 * PAGE_SIZE);
2178 		nblks = mblocks;
2179 	}
2180 
2181 	sp = malloc(sizeof *sp, M_VMPGDATA, M_WAITOK | M_ZERO);
2182 	sp->sw_vp = vp;
2183 	sp->sw_id = id;
2184 	sp->sw_dev = dev;
2185 	sp->sw_flags = 0;
2186 	sp->sw_nblks = nblks;
2187 	sp->sw_used = 0;
2188 	sp->sw_strategy = strategy;
2189 	sp->sw_close = close;
2190 	sp->sw_flags = flags;
2191 
2192 	sp->sw_blist = blist_create(nblks, M_WAITOK);
2193 	/*
2194 	 * Do not free the first two block in order to avoid overwriting
2195 	 * any bsd label at the front of the partition
2196 	 */
2197 	blist_free(sp->sw_blist, 2, nblks - 2);
2198 
2199 	dvbase = 0;
2200 	mtx_lock(&sw_dev_mtx);
2201 	TAILQ_FOREACH(tsp, &swtailq, sw_list) {
2202 		if (tsp->sw_end >= dvbase) {
2203 			/*
2204 			 * We put one uncovered page between the devices
2205 			 * in order to definitively prevent any cross-device
2206 			 * I/O requests
2207 			 */
2208 			dvbase = tsp->sw_end + 1;
2209 		}
2210 	}
2211 	sp->sw_first = dvbase;
2212 	sp->sw_end = dvbase + nblks;
2213 	TAILQ_INSERT_TAIL(&swtailq, sp, sw_list);
2214 	nswapdev++;
2215 	swap_pager_avail += nblks;
2216 	swap_total += (vm_ooffset_t)nblks * PAGE_SIZE;
2217 	swapon_check_swzone(swap_total / PAGE_SIZE);
2218 	swp_sizecheck();
2219 	mtx_unlock(&sw_dev_mtx);
2220 	EVENTHANDLER_INVOKE(swapon, sp);
2221 }
2222 
2223 /*
2224  * SYSCALL: swapoff(devname)
2225  *
2226  * Disable swapping on the given device.
2227  *
2228  * XXX: Badly designed system call: it should use a device index
2229  * rather than filename as specification.  We keep sw_vp around
2230  * only to make this work.
2231  */
2232 #ifndef _SYS_SYSPROTO_H_
2233 struct swapoff_args {
2234 	char *name;
2235 };
2236 #endif
2237 
2238 /*
2239  * MPSAFE
2240  */
2241 /* ARGSUSED */
2242 int
2243 sys_swapoff(struct thread *td, struct swapoff_args *uap)
2244 {
2245 	struct vnode *vp;
2246 	struct nameidata nd;
2247 	struct swdevt *sp;
2248 	int error;
2249 
2250 	error = priv_check(td, PRIV_SWAPOFF);
2251 	if (error)
2252 		return (error);
2253 
2254 	sx_xlock(&swdev_syscall_lock);
2255 
2256 	NDINIT(&nd, LOOKUP, FOLLOW | AUDITVNODE1, UIO_USERSPACE, uap->name,
2257 	    td);
2258 	error = namei(&nd);
2259 	if (error)
2260 		goto done;
2261 	NDFREE(&nd, NDF_ONLY_PNBUF);
2262 	vp = nd.ni_vp;
2263 
2264 	mtx_lock(&sw_dev_mtx);
2265 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
2266 		if (sp->sw_vp == vp)
2267 			break;
2268 	}
2269 	mtx_unlock(&sw_dev_mtx);
2270 	if (sp == NULL) {
2271 		error = EINVAL;
2272 		goto done;
2273 	}
2274 	error = swapoff_one(sp, td->td_ucred);
2275 done:
2276 	sx_xunlock(&swdev_syscall_lock);
2277 	return (error);
2278 }
2279 
2280 static int
2281 swapoff_one(struct swdevt *sp, struct ucred *cred)
2282 {
2283 	u_long nblks, dvbase;
2284 #ifdef MAC
2285 	int error;
2286 #endif
2287 
2288 	sx_assert(&swdev_syscall_lock, SA_XLOCKED);
2289 #ifdef MAC
2290 	(void) vn_lock(sp->sw_vp, LK_EXCLUSIVE | LK_RETRY);
2291 	error = mac_system_check_swapoff(cred, sp->sw_vp);
2292 	(void) VOP_UNLOCK(sp->sw_vp, 0);
2293 	if (error != 0)
2294 		return (error);
2295 #endif
2296 	nblks = sp->sw_nblks;
2297 
2298 	/*
2299 	 * We can turn off this swap device safely only if the
2300 	 * available virtual memory in the system will fit the amount
2301 	 * of data we will have to page back in, plus an epsilon so
2302 	 * the system doesn't become critically low on swap space.
2303 	 */
2304 	if (vm_cnt.v_free_count + swap_pager_avail < nblks + nswap_lowat)
2305 		return (ENOMEM);
2306 
2307 	/*
2308 	 * Prevent further allocations on this device.
2309 	 */
2310 	mtx_lock(&sw_dev_mtx);
2311 	sp->sw_flags |= SW_CLOSING;
2312 	for (dvbase = 0; dvbase < sp->sw_end; dvbase += dmmax) {
2313 		swap_pager_avail -= blist_fill(sp->sw_blist,
2314 		     dvbase, dmmax);
2315 	}
2316 	swap_total -= (vm_ooffset_t)nblks * PAGE_SIZE;
2317 	mtx_unlock(&sw_dev_mtx);
2318 
2319 	/*
2320 	 * Page in the contents of the device and close it.
2321 	 */
2322 	swap_pager_swapoff(sp);
2323 
2324 	sp->sw_close(curthread, sp);
2325 	mtx_lock(&sw_dev_mtx);
2326 	sp->sw_id = NULL;
2327 	TAILQ_REMOVE(&swtailq, sp, sw_list);
2328 	nswapdev--;
2329 	if (nswapdev == 0) {
2330 		swap_pager_full = 2;
2331 		swap_pager_almost_full = 1;
2332 	}
2333 	if (swdevhd == sp)
2334 		swdevhd = NULL;
2335 	mtx_unlock(&sw_dev_mtx);
2336 	blist_destroy(sp->sw_blist);
2337 	free(sp, M_VMPGDATA);
2338 	return (0);
2339 }
2340 
2341 void
2342 swapoff_all(void)
2343 {
2344 	struct swdevt *sp, *spt;
2345 	const char *devname;
2346 	int error;
2347 
2348 	sx_xlock(&swdev_syscall_lock);
2349 
2350 	mtx_lock(&sw_dev_mtx);
2351 	TAILQ_FOREACH_SAFE(sp, &swtailq, sw_list, spt) {
2352 		mtx_unlock(&sw_dev_mtx);
2353 		if (vn_isdisk(sp->sw_vp, NULL))
2354 			devname = devtoname(sp->sw_vp->v_rdev);
2355 		else
2356 			devname = "[file]";
2357 		error = swapoff_one(sp, thread0.td_ucred);
2358 		if (error != 0) {
2359 			printf("Cannot remove swap device %s (error=%d), "
2360 			    "skipping.\n", devname, error);
2361 		} else if (bootverbose) {
2362 			printf("Swap device %s removed.\n", devname);
2363 		}
2364 		mtx_lock(&sw_dev_mtx);
2365 	}
2366 	mtx_unlock(&sw_dev_mtx);
2367 
2368 	sx_xunlock(&swdev_syscall_lock);
2369 }
2370 
2371 void
2372 swap_pager_status(int *total, int *used)
2373 {
2374 	struct swdevt *sp;
2375 
2376 	*total = 0;
2377 	*used = 0;
2378 	mtx_lock(&sw_dev_mtx);
2379 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
2380 		*total += sp->sw_nblks;
2381 		*used += sp->sw_used;
2382 	}
2383 	mtx_unlock(&sw_dev_mtx);
2384 }
2385 
2386 int
2387 swap_dev_info(int name, struct xswdev *xs, char *devname, size_t len)
2388 {
2389 	struct swdevt *sp;
2390 	const char *tmp_devname;
2391 	int error, n;
2392 
2393 	n = 0;
2394 	error = ENOENT;
2395 	mtx_lock(&sw_dev_mtx);
2396 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
2397 		if (n != name) {
2398 			n++;
2399 			continue;
2400 		}
2401 		xs->xsw_version = XSWDEV_VERSION;
2402 		xs->xsw_dev = sp->sw_dev;
2403 		xs->xsw_flags = sp->sw_flags;
2404 		xs->xsw_nblks = sp->sw_nblks;
2405 		xs->xsw_used = sp->sw_used;
2406 		if (devname != NULL) {
2407 			if (vn_isdisk(sp->sw_vp, NULL))
2408 				tmp_devname = devtoname(sp->sw_vp->v_rdev);
2409 			else
2410 				tmp_devname = "[file]";
2411 			strncpy(devname, tmp_devname, len);
2412 		}
2413 		error = 0;
2414 		break;
2415 	}
2416 	mtx_unlock(&sw_dev_mtx);
2417 	return (error);
2418 }
2419 
2420 static int
2421 sysctl_vm_swap_info(SYSCTL_HANDLER_ARGS)
2422 {
2423 	struct xswdev xs;
2424 	int error;
2425 
2426 	if (arg2 != 1)			/* name length */
2427 		return (EINVAL);
2428 	error = swap_dev_info(*(int *)arg1, &xs, NULL, 0);
2429 	if (error != 0)
2430 		return (error);
2431 	error = SYSCTL_OUT(req, &xs, sizeof(xs));
2432 	return (error);
2433 }
2434 
2435 SYSCTL_INT(_vm, OID_AUTO, nswapdev, CTLFLAG_RD, &nswapdev, 0,
2436     "Number of swap devices");
2437 SYSCTL_NODE(_vm, OID_AUTO, swap_info, CTLFLAG_RD | CTLFLAG_MPSAFE,
2438     sysctl_vm_swap_info,
2439     "Swap statistics by device");
2440 
2441 /*
2442  * vmspace_swap_count() - count the approximate swap usage in pages for a
2443  *			  vmspace.
2444  *
2445  *	The map must be locked.
2446  *
2447  *	Swap usage is determined by taking the proportional swap used by
2448  *	VM objects backing the VM map.  To make up for fractional losses,
2449  *	if the VM object has any swap use at all the associated map entries
2450  *	count for at least 1 swap page.
2451  */
2452 long
2453 vmspace_swap_count(struct vmspace *vmspace)
2454 {
2455 	vm_map_t map;
2456 	vm_map_entry_t cur;
2457 	vm_object_t object;
2458 	long count, n;
2459 
2460 	map = &vmspace->vm_map;
2461 	count = 0;
2462 
2463 	for (cur = map->header.next; cur != &map->header; cur = cur->next) {
2464 		if ((cur->eflags & MAP_ENTRY_IS_SUB_MAP) == 0 &&
2465 		    (object = cur->object.vm_object) != NULL) {
2466 			VM_OBJECT_WLOCK(object);
2467 			if (object->type == OBJT_SWAP &&
2468 			    object->un_pager.swp.swp_bcount != 0) {
2469 				n = (cur->end - cur->start) / PAGE_SIZE;
2470 				count += object->un_pager.swp.swp_bcount *
2471 				    SWAP_META_PAGES * n / object->size + 1;
2472 			}
2473 			VM_OBJECT_WUNLOCK(object);
2474 		}
2475 	}
2476 	return (count);
2477 }
2478 
2479 /*
2480  * GEOM backend
2481  *
2482  * Swapping onto disk devices.
2483  *
2484  */
2485 
2486 static g_orphan_t swapgeom_orphan;
2487 
2488 static struct g_class g_swap_class = {
2489 	.name = "SWAP",
2490 	.version = G_VERSION,
2491 	.orphan = swapgeom_orphan,
2492 };
2493 
2494 DECLARE_GEOM_CLASS(g_swap_class, g_class);
2495 
2496 
2497 static void
2498 swapgeom_close_ev(void *arg, int flags)
2499 {
2500 	struct g_consumer *cp;
2501 
2502 	cp = arg;
2503 	g_access(cp, -1, -1, 0);
2504 	g_detach(cp);
2505 	g_destroy_consumer(cp);
2506 }
2507 
2508 /*
2509  * Add a reference to the g_consumer for an inflight transaction.
2510  */
2511 static void
2512 swapgeom_acquire(struct g_consumer *cp)
2513 {
2514 
2515 	mtx_assert(&sw_dev_mtx, MA_OWNED);
2516 	cp->index++;
2517 }
2518 
2519 /*
2520  * Remove a reference from the g_consumer.  Post a close event if all
2521  * references go away, since the function might be called from the
2522  * biodone context.
2523  */
2524 static void
2525 swapgeom_release(struct g_consumer *cp, struct swdevt *sp)
2526 {
2527 
2528 	mtx_assert(&sw_dev_mtx, MA_OWNED);
2529 	cp->index--;
2530 	if (cp->index == 0) {
2531 		if (g_post_event(swapgeom_close_ev, cp, M_NOWAIT, NULL) == 0)
2532 			sp->sw_id = NULL;
2533 	}
2534 }
2535 
2536 static void
2537 swapgeom_done(struct bio *bp2)
2538 {
2539 	struct swdevt *sp;
2540 	struct buf *bp;
2541 	struct g_consumer *cp;
2542 
2543 	bp = bp2->bio_caller2;
2544 	cp = bp2->bio_from;
2545 	bp->b_ioflags = bp2->bio_flags;
2546 	if (bp2->bio_error)
2547 		bp->b_ioflags |= BIO_ERROR;
2548 	bp->b_resid = bp->b_bcount - bp2->bio_completed;
2549 	bp->b_error = bp2->bio_error;
2550 	bufdone(bp);
2551 	sp = bp2->bio_caller1;
2552 	mtx_lock(&sw_dev_mtx);
2553 	swapgeom_release(cp, sp);
2554 	mtx_unlock(&sw_dev_mtx);
2555 	g_destroy_bio(bp2);
2556 }
2557 
2558 static void
2559 swapgeom_strategy(struct buf *bp, struct swdevt *sp)
2560 {
2561 	struct bio *bio;
2562 	struct g_consumer *cp;
2563 
2564 	mtx_lock(&sw_dev_mtx);
2565 	cp = sp->sw_id;
2566 	if (cp == NULL) {
2567 		mtx_unlock(&sw_dev_mtx);
2568 		bp->b_error = ENXIO;
2569 		bp->b_ioflags |= BIO_ERROR;
2570 		bufdone(bp);
2571 		return;
2572 	}
2573 	swapgeom_acquire(cp);
2574 	mtx_unlock(&sw_dev_mtx);
2575 	if (bp->b_iocmd == BIO_WRITE)
2576 		bio = g_new_bio();
2577 	else
2578 		bio = g_alloc_bio();
2579 	if (bio == NULL) {
2580 		mtx_lock(&sw_dev_mtx);
2581 		swapgeom_release(cp, sp);
2582 		mtx_unlock(&sw_dev_mtx);
2583 		bp->b_error = ENOMEM;
2584 		bp->b_ioflags |= BIO_ERROR;
2585 		bufdone(bp);
2586 		return;
2587 	}
2588 
2589 	bio->bio_caller1 = sp;
2590 	bio->bio_caller2 = bp;
2591 	bio->bio_cmd = bp->b_iocmd;
2592 	bio->bio_offset = (bp->b_blkno - sp->sw_first) * PAGE_SIZE;
2593 	bio->bio_length = bp->b_bcount;
2594 	bio->bio_done = swapgeom_done;
2595 	if (!buf_mapped(bp)) {
2596 		bio->bio_ma = bp->b_pages;
2597 		bio->bio_data = unmapped_buf;
2598 		bio->bio_ma_offset = (vm_offset_t)bp->b_offset & PAGE_MASK;
2599 		bio->bio_ma_n = bp->b_npages;
2600 		bio->bio_flags |= BIO_UNMAPPED;
2601 	} else {
2602 		bio->bio_data = bp->b_data;
2603 		bio->bio_ma = NULL;
2604 	}
2605 	g_io_request(bio, cp);
2606 	return;
2607 }
2608 
2609 static void
2610 swapgeom_orphan(struct g_consumer *cp)
2611 {
2612 	struct swdevt *sp;
2613 	int destroy;
2614 
2615 	mtx_lock(&sw_dev_mtx);
2616 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
2617 		if (sp->sw_id == cp) {
2618 			sp->sw_flags |= SW_CLOSING;
2619 			break;
2620 		}
2621 	}
2622 	/*
2623 	 * Drop reference we were created with. Do directly since we're in a
2624 	 * special context where we don't have to queue the call to
2625 	 * swapgeom_close_ev().
2626 	 */
2627 	cp->index--;
2628 	destroy = ((sp != NULL) && (cp->index == 0));
2629 	if (destroy)
2630 		sp->sw_id = NULL;
2631 	mtx_unlock(&sw_dev_mtx);
2632 	if (destroy)
2633 		swapgeom_close_ev(cp, 0);
2634 }
2635 
2636 static void
2637 swapgeom_close(struct thread *td, struct swdevt *sw)
2638 {
2639 	struct g_consumer *cp;
2640 
2641 	mtx_lock(&sw_dev_mtx);
2642 	cp = sw->sw_id;
2643 	sw->sw_id = NULL;
2644 	mtx_unlock(&sw_dev_mtx);
2645 
2646 	/*
2647 	 * swapgeom_close() may be called from the biodone context,
2648 	 * where we cannot perform topology changes.  Delegate the
2649 	 * work to the events thread.
2650 	 */
2651 	if (cp != NULL)
2652 		g_waitfor_event(swapgeom_close_ev, cp, M_WAITOK, NULL);
2653 }
2654 
2655 static int
2656 swapongeom_locked(struct cdev *dev, struct vnode *vp)
2657 {
2658 	struct g_provider *pp;
2659 	struct g_consumer *cp;
2660 	static struct g_geom *gp;
2661 	struct swdevt *sp;
2662 	u_long nblks;
2663 	int error;
2664 
2665 	pp = g_dev_getprovider(dev);
2666 	if (pp == NULL)
2667 		return (ENODEV);
2668 	mtx_lock(&sw_dev_mtx);
2669 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
2670 		cp = sp->sw_id;
2671 		if (cp != NULL && cp->provider == pp) {
2672 			mtx_unlock(&sw_dev_mtx);
2673 			return (EBUSY);
2674 		}
2675 	}
2676 	mtx_unlock(&sw_dev_mtx);
2677 	if (gp == NULL)
2678 		gp = g_new_geomf(&g_swap_class, "swap");
2679 	cp = g_new_consumer(gp);
2680 	cp->index = 1;	/* Number of active I/Os, plus one for being active. */
2681 	cp->flags |=  G_CF_DIRECT_SEND | G_CF_DIRECT_RECEIVE;
2682 	g_attach(cp, pp);
2683 	/*
2684 	 * XXX: Every time you think you can improve the margin for
2685 	 * footshooting, somebody depends on the ability to do so:
2686 	 * savecore(8) wants to write to our swapdev so we cannot
2687 	 * set an exclusive count :-(
2688 	 */
2689 	error = g_access(cp, 1, 1, 0);
2690 	if (error != 0) {
2691 		g_detach(cp);
2692 		g_destroy_consumer(cp);
2693 		return (error);
2694 	}
2695 	nblks = pp->mediasize / DEV_BSIZE;
2696 	swaponsomething(vp, cp, nblks, swapgeom_strategy,
2697 	    swapgeom_close, dev2udev(dev),
2698 	    (pp->flags & G_PF_ACCEPT_UNMAPPED) != 0 ? SW_UNMAPPED : 0);
2699 	return (0);
2700 }
2701 
2702 static int
2703 swapongeom(struct vnode *vp)
2704 {
2705 	int error;
2706 
2707 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2708 	if (vp->v_type != VCHR || (vp->v_iflag & VI_DOOMED) != 0) {
2709 		error = ENOENT;
2710 	} else {
2711 		g_topology_lock();
2712 		error = swapongeom_locked(vp->v_rdev, vp);
2713 		g_topology_unlock();
2714 	}
2715 	VOP_UNLOCK(vp, 0);
2716 	return (error);
2717 }
2718 
2719 /*
2720  * VNODE backend
2721  *
2722  * This is used mainly for network filesystem (read: probably only tested
2723  * with NFS) swapfiles.
2724  *
2725  */
2726 
2727 static void
2728 swapdev_strategy(struct buf *bp, struct swdevt *sp)
2729 {
2730 	struct vnode *vp2;
2731 
2732 	bp->b_blkno = ctodb(bp->b_blkno - sp->sw_first);
2733 
2734 	vp2 = sp->sw_id;
2735 	vhold(vp2);
2736 	if (bp->b_iocmd == BIO_WRITE) {
2737 		if (bp->b_bufobj)
2738 			bufobj_wdrop(bp->b_bufobj);
2739 		bufobj_wref(&vp2->v_bufobj);
2740 	}
2741 	if (bp->b_bufobj != &vp2->v_bufobj)
2742 		bp->b_bufobj = &vp2->v_bufobj;
2743 	bp->b_vp = vp2;
2744 	bp->b_iooffset = dbtob(bp->b_blkno);
2745 	bstrategy(bp);
2746 	return;
2747 }
2748 
2749 static void
2750 swapdev_close(struct thread *td, struct swdevt *sp)
2751 {
2752 
2753 	VOP_CLOSE(sp->sw_vp, FREAD | FWRITE, td->td_ucred, td);
2754 	vrele(sp->sw_vp);
2755 }
2756 
2757 
2758 static int
2759 swaponvp(struct thread *td, struct vnode *vp, u_long nblks)
2760 {
2761 	struct swdevt *sp;
2762 	int error;
2763 
2764 	if (nblks == 0)
2765 		return (ENXIO);
2766 	mtx_lock(&sw_dev_mtx);
2767 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
2768 		if (sp->sw_id == vp) {
2769 			mtx_unlock(&sw_dev_mtx);
2770 			return (EBUSY);
2771 		}
2772 	}
2773 	mtx_unlock(&sw_dev_mtx);
2774 
2775 	(void) vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2776 #ifdef MAC
2777 	error = mac_system_check_swapon(td->td_ucred, vp);
2778 	if (error == 0)
2779 #endif
2780 		error = VOP_OPEN(vp, FREAD | FWRITE, td->td_ucred, td, NULL);
2781 	(void) VOP_UNLOCK(vp, 0);
2782 	if (error)
2783 		return (error);
2784 
2785 	swaponsomething(vp, vp, nblks, swapdev_strategy, swapdev_close,
2786 	    NODEV, 0);
2787 	return (0);
2788 }
2789 
2790 static int
2791 sysctl_swap_async_max(SYSCTL_HANDLER_ARGS)
2792 {
2793 	int error, new, n;
2794 
2795 	new = nsw_wcount_async_max;
2796 	error = sysctl_handle_int(oidp, &new, 0, req);
2797 	if (error != 0 || req->newptr == NULL)
2798 		return (error);
2799 
2800 	if (new > nswbuf / 2 || new < 1)
2801 		return (EINVAL);
2802 
2803 	mtx_lock(&pbuf_mtx);
2804 	while (nsw_wcount_async_max != new) {
2805 		/*
2806 		 * Adjust difference.  If the current async count is too low,
2807 		 * we will need to sqeeze our update slowly in.  Sleep with a
2808 		 * higher priority than getpbuf() to finish faster.
2809 		 */
2810 		n = new - nsw_wcount_async_max;
2811 		if (nsw_wcount_async + n >= 0) {
2812 			nsw_wcount_async += n;
2813 			nsw_wcount_async_max += n;
2814 			wakeup(&nsw_wcount_async);
2815 		} else {
2816 			nsw_wcount_async_max -= nsw_wcount_async;
2817 			nsw_wcount_async = 0;
2818 			msleep(&nsw_wcount_async, &pbuf_mtx, PSWP,
2819 			    "swpsysctl", 0);
2820 		}
2821 	}
2822 	mtx_unlock(&pbuf_mtx);
2823 
2824 	return (0);
2825 }
2826