xref: /freebsd/sys/vm/swap_pager.c (revision c1d255d3)
1 /*-
2  * SPDX-License-Identifier: BSD-4-Clause
3  *
4  * Copyright (c) 1998 Matthew Dillon,
5  * Copyright (c) 1994 John S. Dyson
6  * Copyright (c) 1990 University of Utah.
7  * Copyright (c) 1982, 1986, 1989, 1993
8  *	The Regents of the University of California.  All rights reserved.
9  *
10  * This code is derived from software contributed to Berkeley by
11  * the Systems Programming Group of the University of Utah Computer
12  * Science Department.
13  *
14  * Redistribution and use in source and binary forms, with or without
15  * modification, are permitted provided that the following conditions
16  * are met:
17  * 1. Redistributions of source code must retain the above copyright
18  *    notice, this list of conditions and the following disclaimer.
19  * 2. Redistributions in binary form must reproduce the above copyright
20  *    notice, this list of conditions and the following disclaimer in the
21  *    documentation and/or other materials provided with the distribution.
22  * 3. All advertising materials mentioning features or use of this software
23  *    must display the following acknowledgement:
24  *	This product includes software developed by the University of
25  *	California, Berkeley and its contributors.
26  * 4. Neither the name of the University nor the names of its contributors
27  *    may be used to endorse or promote products derived from this software
28  *    without specific prior written permission.
29  *
30  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
31  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
32  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
33  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
34  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
35  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
36  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
37  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
38  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
39  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
40  * SUCH DAMAGE.
41  *
42  *				New Swap System
43  *				Matthew Dillon
44  *
45  * Radix Bitmap 'blists'.
46  *
47  *	- The new swapper uses the new radix bitmap code.  This should scale
48  *	  to arbitrarily small or arbitrarily large swap spaces and an almost
49  *	  arbitrary degree of fragmentation.
50  *
51  * Features:
52  *
53  *	- on the fly reallocation of swap during putpages.  The new system
54  *	  does not try to keep previously allocated swap blocks for dirty
55  *	  pages.
56  *
57  *	- on the fly deallocation of swap
58  *
59  *	- No more garbage collection required.  Unnecessarily allocated swap
60  *	  blocks only exist for dirty vm_page_t's now and these are already
61  *	  cycled (in a high-load system) by the pager.  We also do on-the-fly
62  *	  removal of invalidated swap blocks when a page is destroyed
63  *	  or renamed.
64  *
65  * from: Utah $Hdr: swap_pager.c 1.4 91/04/30$
66  *
67  *	@(#)swap_pager.c	8.9 (Berkeley) 3/21/94
68  *	@(#)vm_swap.c	8.5 (Berkeley) 2/17/94
69  */
70 
71 #include <sys/cdefs.h>
72 __FBSDID("$FreeBSD$");
73 
74 #include "opt_vm.h"
75 
76 #include <sys/param.h>
77 #include <sys/bio.h>
78 #include <sys/blist.h>
79 #include <sys/buf.h>
80 #include <sys/conf.h>
81 #include <sys/disk.h>
82 #include <sys/disklabel.h>
83 #include <sys/eventhandler.h>
84 #include <sys/fcntl.h>
85 #include <sys/lock.h>
86 #include <sys/kernel.h>
87 #include <sys/mount.h>
88 #include <sys/namei.h>
89 #include <sys/malloc.h>
90 #include <sys/pctrie.h>
91 #include <sys/priv.h>
92 #include <sys/proc.h>
93 #include <sys/racct.h>
94 #include <sys/resource.h>
95 #include <sys/resourcevar.h>
96 #include <sys/rwlock.h>
97 #include <sys/sbuf.h>
98 #include <sys/sysctl.h>
99 #include <sys/sysproto.h>
100 #include <sys/systm.h>
101 #include <sys/sx.h>
102 #include <sys/user.h>
103 #include <sys/vmmeter.h>
104 #include <sys/vnode.h>
105 
106 #include <security/mac/mac_framework.h>
107 
108 #include <vm/vm.h>
109 #include <vm/pmap.h>
110 #include <vm/vm_map.h>
111 #include <vm/vm_kern.h>
112 #include <vm/vm_object.h>
113 #include <vm/vm_page.h>
114 #include <vm/vm_pager.h>
115 #include <vm/vm_pageout.h>
116 #include <vm/vm_param.h>
117 #include <vm/swap_pager.h>
118 #include <vm/vm_extern.h>
119 #include <vm/uma.h>
120 
121 #include <geom/geom.h>
122 
123 /*
124  * MAX_PAGEOUT_CLUSTER must be a power of 2 between 1 and 64.
125  * The 64-page limit is due to the radix code (kern/subr_blist.c).
126  */
127 #ifndef MAX_PAGEOUT_CLUSTER
128 #define	MAX_PAGEOUT_CLUSTER	32
129 #endif
130 
131 #if !defined(SWB_NPAGES)
132 #define SWB_NPAGES	MAX_PAGEOUT_CLUSTER
133 #endif
134 
135 #define	SWAP_META_PAGES		PCTRIE_COUNT
136 
137 /*
138  * A swblk structure maps each page index within a
139  * SWAP_META_PAGES-aligned and sized range to the address of an
140  * on-disk swap block (or SWAPBLK_NONE). The collection of these
141  * mappings for an entire vm object is implemented as a pc-trie.
142  */
143 struct swblk {
144 	vm_pindex_t	p;
145 	daddr_t		d[SWAP_META_PAGES];
146 };
147 
148 static MALLOC_DEFINE(M_VMPGDATA, "vm_pgdata", "swap pager private data");
149 static struct mtx sw_dev_mtx;
150 static TAILQ_HEAD(, swdevt) swtailq = TAILQ_HEAD_INITIALIZER(swtailq);
151 static struct swdevt *swdevhd;	/* Allocate from here next */
152 static int nswapdev;		/* Number of swap devices */
153 int swap_pager_avail;
154 static struct sx swdev_syscall_lock;	/* serialize swap(on|off) */
155 
156 static __exclusive_cache_line u_long swap_reserved;
157 static u_long swap_total;
158 static int sysctl_page_shift(SYSCTL_HANDLER_ARGS);
159 
160 static SYSCTL_NODE(_vm_stats, OID_AUTO, swap, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
161     "VM swap stats");
162 
163 SYSCTL_PROC(_vm, OID_AUTO, swap_reserved, CTLTYPE_U64 | CTLFLAG_RD | CTLFLAG_MPSAFE,
164     &swap_reserved, 0, sysctl_page_shift, "A",
165     "Amount of swap storage needed to back all allocated anonymous memory.");
166 SYSCTL_PROC(_vm, OID_AUTO, swap_total, CTLTYPE_U64 | CTLFLAG_RD | CTLFLAG_MPSAFE,
167     &swap_total, 0, sysctl_page_shift, "A",
168     "Total amount of available swap storage.");
169 
170 static int overcommit = 0;
171 SYSCTL_INT(_vm, VM_OVERCOMMIT, overcommit, CTLFLAG_RW, &overcommit, 0,
172     "Configure virtual memory overcommit behavior. See tuning(7) "
173     "for details.");
174 static unsigned long swzone;
175 SYSCTL_ULONG(_vm, OID_AUTO, swzone, CTLFLAG_RD, &swzone, 0,
176     "Actual size of swap metadata zone");
177 static unsigned long swap_maxpages;
178 SYSCTL_ULONG(_vm, OID_AUTO, swap_maxpages, CTLFLAG_RD, &swap_maxpages, 0,
179     "Maximum amount of swap supported");
180 
181 static COUNTER_U64_DEFINE_EARLY(swap_free_deferred);
182 SYSCTL_COUNTER_U64(_vm_stats_swap, OID_AUTO, free_deferred,
183     CTLFLAG_RD, &swap_free_deferred,
184     "Number of pages that deferred freeing swap space");
185 
186 static COUNTER_U64_DEFINE_EARLY(swap_free_completed);
187 SYSCTL_COUNTER_U64(_vm_stats_swap, OID_AUTO, free_completed,
188     CTLFLAG_RD, &swap_free_completed,
189     "Number of deferred frees completed");
190 
191 /* bits from overcommit */
192 #define	SWAP_RESERVE_FORCE_ON		(1 << 0)
193 #define	SWAP_RESERVE_RLIMIT_ON		(1 << 1)
194 #define	SWAP_RESERVE_ALLOW_NONWIRED	(1 << 2)
195 
196 static int
197 sysctl_page_shift(SYSCTL_HANDLER_ARGS)
198 {
199 	uint64_t newval;
200 	u_long value = *(u_long *)arg1;
201 
202 	newval = ((uint64_t)value) << PAGE_SHIFT;
203 	return (sysctl_handle_64(oidp, &newval, 0, req));
204 }
205 
206 static bool
207 swap_reserve_by_cred_rlimit(u_long pincr, struct ucred *cred, int oc)
208 {
209 	struct uidinfo *uip;
210 	u_long prev;
211 
212 	uip = cred->cr_ruidinfo;
213 
214 	prev = atomic_fetchadd_long(&uip->ui_vmsize, pincr);
215 	if ((oc & SWAP_RESERVE_RLIMIT_ON) != 0 &&
216 	    prev + pincr > lim_cur(curthread, RLIMIT_SWAP) &&
217 	    priv_check(curthread, PRIV_VM_SWAP_NORLIMIT) != 0) {
218 		prev = atomic_fetchadd_long(&uip->ui_vmsize, -pincr);
219 		KASSERT(prev >= pincr, ("negative vmsize for uid = %d\n", uip->ui_uid));
220 		return (false);
221 	}
222 	return (true);
223 }
224 
225 static void
226 swap_release_by_cred_rlimit(u_long pdecr, struct ucred *cred)
227 {
228 	struct uidinfo *uip;
229 #ifdef INVARIANTS
230 	u_long prev;
231 #endif
232 
233 	uip = cred->cr_ruidinfo;
234 
235 #ifdef INVARIANTS
236 	prev = atomic_fetchadd_long(&uip->ui_vmsize, -pdecr);
237 	KASSERT(prev >= pdecr, ("negative vmsize for uid = %d\n", uip->ui_uid));
238 #else
239 	atomic_subtract_long(&uip->ui_vmsize, pdecr);
240 #endif
241 }
242 
243 static void
244 swap_reserve_force_rlimit(u_long pincr, struct ucred *cred)
245 {
246 	struct uidinfo *uip;
247 
248 	uip = cred->cr_ruidinfo;
249 	atomic_add_long(&uip->ui_vmsize, pincr);
250 }
251 
252 bool
253 swap_reserve(vm_ooffset_t incr)
254 {
255 
256 	return (swap_reserve_by_cred(incr, curthread->td_ucred));
257 }
258 
259 bool
260 swap_reserve_by_cred(vm_ooffset_t incr, struct ucred *cred)
261 {
262 	u_long r, s, prev, pincr;
263 #ifdef RACCT
264 	int error;
265 #endif
266 	int oc;
267 	static int curfail;
268 	static struct timeval lastfail;
269 
270 	KASSERT((incr & PAGE_MASK) == 0, ("%s: incr: %ju & PAGE_MASK", __func__,
271 	    (uintmax_t)incr));
272 
273 #ifdef RACCT
274 	if (RACCT_ENABLED()) {
275 		PROC_LOCK(curproc);
276 		error = racct_add(curproc, RACCT_SWAP, incr);
277 		PROC_UNLOCK(curproc);
278 		if (error != 0)
279 			return (false);
280 	}
281 #endif
282 
283 	pincr = atop(incr);
284 	prev = atomic_fetchadd_long(&swap_reserved, pincr);
285 	r = prev + pincr;
286 	s = swap_total;
287 	oc = atomic_load_int(&overcommit);
288 	if (r > s && (oc & SWAP_RESERVE_ALLOW_NONWIRED) != 0) {
289 		s += vm_cnt.v_page_count - vm_cnt.v_free_reserved -
290 		    vm_wire_count();
291 	}
292 	if ((oc & SWAP_RESERVE_FORCE_ON) != 0 && r > s &&
293 	    priv_check(curthread, PRIV_VM_SWAP_NOQUOTA) != 0) {
294 		prev = atomic_fetchadd_long(&swap_reserved, -pincr);
295 		KASSERT(prev >= pincr, ("swap_reserved < incr on overcommit fail"));
296 		goto out_error;
297 	}
298 
299 	if (!swap_reserve_by_cred_rlimit(pincr, cred, oc)) {
300 		prev = atomic_fetchadd_long(&swap_reserved, -pincr);
301 		KASSERT(prev >= pincr, ("swap_reserved < incr on overcommit fail"));
302 		goto out_error;
303 	}
304 
305 	return (true);
306 
307 out_error:
308 	if (ppsratecheck(&lastfail, &curfail, 1)) {
309 		printf("uid %d, pid %d: swap reservation for %jd bytes failed\n",
310 		    cred->cr_ruidinfo->ui_uid, curproc->p_pid, incr);
311 	}
312 #ifdef RACCT
313 	if (RACCT_ENABLED()) {
314 		PROC_LOCK(curproc);
315 		racct_sub(curproc, RACCT_SWAP, incr);
316 		PROC_UNLOCK(curproc);
317 	}
318 #endif
319 
320 	return (false);
321 }
322 
323 void
324 swap_reserve_force(vm_ooffset_t incr)
325 {
326 	u_long pincr;
327 
328 	KASSERT((incr & PAGE_MASK) == 0, ("%s: incr: %ju & PAGE_MASK", __func__,
329 	    (uintmax_t)incr));
330 
331 #ifdef RACCT
332 	if (RACCT_ENABLED()) {
333 		PROC_LOCK(curproc);
334 		racct_add_force(curproc, RACCT_SWAP, incr);
335 		PROC_UNLOCK(curproc);
336 	}
337 #endif
338 	pincr = atop(incr);
339 	atomic_add_long(&swap_reserved, pincr);
340 	swap_reserve_force_rlimit(pincr, curthread->td_ucred);
341 }
342 
343 void
344 swap_release(vm_ooffset_t decr)
345 {
346 	struct ucred *cred;
347 
348 	PROC_LOCK(curproc);
349 	cred = curproc->p_ucred;
350 	swap_release_by_cred(decr, cred);
351 	PROC_UNLOCK(curproc);
352 }
353 
354 void
355 swap_release_by_cred(vm_ooffset_t decr, struct ucred *cred)
356 {
357 	u_long pdecr;
358 #ifdef INVARIANTS
359 	u_long prev;
360 #endif
361 
362 	KASSERT((decr & PAGE_MASK) == 0, ("%s: decr: %ju & PAGE_MASK", __func__,
363 	    (uintmax_t)decr));
364 
365 	pdecr = atop(decr);
366 #ifdef INVARIANTS
367 	prev = atomic_fetchadd_long(&swap_reserved, -pdecr);
368 	KASSERT(prev >= pdecr, ("swap_reserved < decr"));
369 #else
370 	atomic_subtract_long(&swap_reserved, pdecr);
371 #endif
372 
373 	swap_release_by_cred_rlimit(pdecr, cred);
374 #ifdef RACCT
375 	if (racct_enable)
376 		racct_sub_cred(cred, RACCT_SWAP, decr);
377 #endif
378 }
379 
380 static int swap_pager_full = 2;	/* swap space exhaustion (task killing) */
381 static int swap_pager_almost_full = 1; /* swap space exhaustion (w/hysteresis)*/
382 static struct mtx swbuf_mtx;	/* to sync nsw_wcount_async */
383 static int nsw_wcount_async;	/* limit async write buffers */
384 static int nsw_wcount_async_max;/* assigned maximum			*/
385 static int nsw_cluster_max;	/* maximum VOP I/O allowed		*/
386 
387 static int sysctl_swap_async_max(SYSCTL_HANDLER_ARGS);
388 SYSCTL_PROC(_vm, OID_AUTO, swap_async_max, CTLTYPE_INT | CTLFLAG_RW |
389     CTLFLAG_MPSAFE, NULL, 0, sysctl_swap_async_max, "I",
390     "Maximum running async swap ops");
391 static int sysctl_swap_fragmentation(SYSCTL_HANDLER_ARGS);
392 SYSCTL_PROC(_vm, OID_AUTO, swap_fragmentation, CTLTYPE_STRING | CTLFLAG_RD |
393     CTLFLAG_MPSAFE, NULL, 0, sysctl_swap_fragmentation, "A",
394     "Swap Fragmentation Info");
395 
396 static struct sx sw_alloc_sx;
397 
398 /*
399  * "named" and "unnamed" anon region objects.  Try to reduce the overhead
400  * of searching a named list by hashing it just a little.
401  */
402 
403 #define NOBJLISTS		8
404 
405 #define NOBJLIST(handle)	\
406 	(&swap_pager_object_list[((int)(intptr_t)handle >> 4) & (NOBJLISTS-1)])
407 
408 static struct pagerlst	swap_pager_object_list[NOBJLISTS];
409 static uma_zone_t swwbuf_zone;
410 static uma_zone_t swrbuf_zone;
411 static uma_zone_t swblk_zone;
412 static uma_zone_t swpctrie_zone;
413 
414 /*
415  * pagerops for OBJT_SWAP - "swap pager".  Some ops are also global procedure
416  * calls hooked from other parts of the VM system and do not appear here.
417  * (see vm/swap_pager.h).
418  */
419 static vm_object_t
420 		swap_pager_alloc(void *handle, vm_ooffset_t size,
421 		    vm_prot_t prot, vm_ooffset_t offset, struct ucred *);
422 static void	swap_pager_dealloc(vm_object_t object);
423 static int	swap_pager_getpages(vm_object_t, vm_page_t *, int, int *,
424     int *);
425 static int	swap_pager_getpages_async(vm_object_t, vm_page_t *, int, int *,
426     int *, pgo_getpages_iodone_t, void *);
427 static void	swap_pager_putpages(vm_object_t, vm_page_t *, int, boolean_t, int *);
428 static boolean_t
429 		swap_pager_haspage(vm_object_t object, vm_pindex_t pindex, int *before, int *after);
430 static void	swap_pager_init(void);
431 static void	swap_pager_unswapped(vm_page_t);
432 static void	swap_pager_swapoff(struct swdevt *sp);
433 static void	swap_pager_update_writecount(vm_object_t object,
434     vm_offset_t start, vm_offset_t end);
435 static void	swap_pager_release_writecount(vm_object_t object,
436     vm_offset_t start, vm_offset_t end);
437 static void	swap_pager_freespace(vm_object_t object, vm_pindex_t start,
438     vm_size_t size);
439 
440 const struct pagerops swappagerops = {
441 	.pgo_kvme_type = KVME_TYPE_SWAP,
442 	.pgo_init =	swap_pager_init,	/* early system initialization of pager	*/
443 	.pgo_alloc =	swap_pager_alloc,	/* allocate an OBJT_SWAP object */
444 	.pgo_dealloc =	swap_pager_dealloc,	/* deallocate an OBJT_SWAP object */
445 	.pgo_getpages =	swap_pager_getpages,	/* pagein */
446 	.pgo_getpages_async = swap_pager_getpages_async, /* pagein (async) */
447 	.pgo_putpages =	swap_pager_putpages,	/* pageout */
448 	.pgo_haspage =	swap_pager_haspage,	/* get backing store status for page */
449 	.pgo_pageunswapped = swap_pager_unswapped, /* remove swap related to page */
450 	.pgo_update_writecount = swap_pager_update_writecount,
451 	.pgo_release_writecount = swap_pager_release_writecount,
452 	.pgo_freespace = swap_pager_freespace,
453 };
454 
455 /*
456  * swap_*() routines are externally accessible.  swp_*() routines are
457  * internal.
458  */
459 static int nswap_lowat = 128;	/* in pages, swap_pager_almost_full warn */
460 static int nswap_hiwat = 512;	/* in pages, swap_pager_almost_full warn */
461 
462 SYSCTL_INT(_vm, OID_AUTO, dmmax, CTLFLAG_RD, &nsw_cluster_max, 0,
463     "Maximum size of a swap block in pages");
464 
465 static void	swp_sizecheck(void);
466 static void	swp_pager_async_iodone(struct buf *bp);
467 static bool	swp_pager_swblk_empty(struct swblk *sb, int start, int limit);
468 static void	swp_pager_free_empty_swblk(vm_object_t, struct swblk *sb);
469 static int	swapongeom(struct vnode *);
470 static int	swaponvp(struct thread *, struct vnode *, u_long);
471 static int	swapoff_one(struct swdevt *sp, struct ucred *cred);
472 
473 /*
474  * Swap bitmap functions
475  */
476 static void	swp_pager_freeswapspace(daddr_t blk, daddr_t npages);
477 static daddr_t	swp_pager_getswapspace(int *npages);
478 
479 /*
480  * Metadata functions
481  */
482 static daddr_t swp_pager_meta_build(vm_object_t, vm_pindex_t, daddr_t);
483 static void swp_pager_meta_free(vm_object_t, vm_pindex_t, vm_pindex_t);
484 static void swp_pager_meta_transfer(vm_object_t src, vm_object_t dst,
485     vm_pindex_t pindex, vm_pindex_t count);
486 static void swp_pager_meta_free_all(vm_object_t);
487 static daddr_t swp_pager_meta_lookup(vm_object_t, vm_pindex_t);
488 
489 static void
490 swp_pager_init_freerange(daddr_t *start, daddr_t *num)
491 {
492 
493 	*start = SWAPBLK_NONE;
494 	*num = 0;
495 }
496 
497 static void
498 swp_pager_update_freerange(daddr_t *start, daddr_t *num, daddr_t addr)
499 {
500 
501 	if (*start + *num == addr) {
502 		(*num)++;
503 	} else {
504 		swp_pager_freeswapspace(*start, *num);
505 		*start = addr;
506 		*num = 1;
507 	}
508 }
509 
510 static void *
511 swblk_trie_alloc(struct pctrie *ptree)
512 {
513 
514 	return (uma_zalloc(swpctrie_zone, M_NOWAIT | (curproc == pageproc ?
515 	    M_USE_RESERVE : 0)));
516 }
517 
518 static void
519 swblk_trie_free(struct pctrie *ptree, void *node)
520 {
521 
522 	uma_zfree(swpctrie_zone, node);
523 }
524 
525 PCTRIE_DEFINE(SWAP, swblk, p, swblk_trie_alloc, swblk_trie_free);
526 
527 /*
528  * SWP_SIZECHECK() -	update swap_pager_full indication
529  *
530  *	update the swap_pager_almost_full indication and warn when we are
531  *	about to run out of swap space, using lowat/hiwat hysteresis.
532  *
533  *	Clear swap_pager_full ( task killing ) indication when lowat is met.
534  *
535  *	No restrictions on call
536  *	This routine may not block.
537  */
538 static void
539 swp_sizecheck(void)
540 {
541 
542 	if (swap_pager_avail < nswap_lowat) {
543 		if (swap_pager_almost_full == 0) {
544 			printf("swap_pager: out of swap space\n");
545 			swap_pager_almost_full = 1;
546 		}
547 	} else {
548 		swap_pager_full = 0;
549 		if (swap_pager_avail > nswap_hiwat)
550 			swap_pager_almost_full = 0;
551 	}
552 }
553 
554 /*
555  * SWAP_PAGER_INIT() -	initialize the swap pager!
556  *
557  *	Expected to be started from system init.  NOTE:  This code is run
558  *	before much else so be careful what you depend on.  Most of the VM
559  *	system has yet to be initialized at this point.
560  */
561 static void
562 swap_pager_init(void)
563 {
564 	/*
565 	 * Initialize object lists
566 	 */
567 	int i;
568 
569 	for (i = 0; i < NOBJLISTS; ++i)
570 		TAILQ_INIT(&swap_pager_object_list[i]);
571 	mtx_init(&sw_dev_mtx, "swapdev", NULL, MTX_DEF);
572 	sx_init(&sw_alloc_sx, "swspsx");
573 	sx_init(&swdev_syscall_lock, "swsysc");
574 }
575 
576 /*
577  * SWAP_PAGER_SWAP_INIT() - swap pager initialization from pageout process
578  *
579  *	Expected to be started from pageout process once, prior to entering
580  *	its main loop.
581  */
582 void
583 swap_pager_swap_init(void)
584 {
585 	unsigned long n, n2;
586 
587 	/*
588 	 * Number of in-transit swap bp operations.  Don't
589 	 * exhaust the pbufs completely.  Make sure we
590 	 * initialize workable values (0 will work for hysteresis
591 	 * but it isn't very efficient).
592 	 *
593 	 * The nsw_cluster_max is constrained by the bp->b_pages[]
594 	 * array, which has maxphys / PAGE_SIZE entries, and our locally
595 	 * defined MAX_PAGEOUT_CLUSTER.   Also be aware that swap ops are
596 	 * constrained by the swap device interleave stripe size.
597 	 *
598 	 * Currently we hardwire nsw_wcount_async to 4.  This limit is
599 	 * designed to prevent other I/O from having high latencies due to
600 	 * our pageout I/O.  The value 4 works well for one or two active swap
601 	 * devices but is probably a little low if you have more.  Even so,
602 	 * a higher value would probably generate only a limited improvement
603 	 * with three or four active swap devices since the system does not
604 	 * typically have to pageout at extreme bandwidths.   We will want
605 	 * at least 2 per swap devices, and 4 is a pretty good value if you
606 	 * have one NFS swap device due to the command/ack latency over NFS.
607 	 * So it all works out pretty well.
608 	 */
609 	nsw_cluster_max = min(maxphys / PAGE_SIZE, MAX_PAGEOUT_CLUSTER);
610 
611 	nsw_wcount_async = 4;
612 	nsw_wcount_async_max = nsw_wcount_async;
613 	mtx_init(&swbuf_mtx, "async swbuf mutex", NULL, MTX_DEF);
614 
615 	swwbuf_zone = pbuf_zsecond_create("swwbuf", nswbuf / 4);
616 	swrbuf_zone = pbuf_zsecond_create("swrbuf", nswbuf / 2);
617 
618 	/*
619 	 * Initialize our zone, taking the user's requested size or
620 	 * estimating the number we need based on the number of pages
621 	 * in the system.
622 	 */
623 	n = maxswzone != 0 ? maxswzone / sizeof(struct swblk) :
624 	    vm_cnt.v_page_count / 2;
625 	swpctrie_zone = uma_zcreate("swpctrie", pctrie_node_size(), NULL, NULL,
626 	    pctrie_zone_init, NULL, UMA_ALIGN_PTR, 0);
627 	if (swpctrie_zone == NULL)
628 		panic("failed to create swap pctrie zone.");
629 	swblk_zone = uma_zcreate("swblk", sizeof(struct swblk), NULL, NULL,
630 	    NULL, NULL, _Alignof(struct swblk) - 1, 0);
631 	if (swblk_zone == NULL)
632 		panic("failed to create swap blk zone.");
633 	n2 = n;
634 	do {
635 		if (uma_zone_reserve_kva(swblk_zone, n))
636 			break;
637 		/*
638 		 * if the allocation failed, try a zone two thirds the
639 		 * size of the previous attempt.
640 		 */
641 		n -= ((n + 2) / 3);
642 	} while (n > 0);
643 
644 	/*
645 	 * Often uma_zone_reserve_kva() cannot reserve exactly the
646 	 * requested size.  Account for the difference when
647 	 * calculating swap_maxpages.
648 	 */
649 	n = uma_zone_get_max(swblk_zone);
650 
651 	if (n < n2)
652 		printf("Swap blk zone entries changed from %lu to %lu.\n",
653 		    n2, n);
654 	/* absolute maximum we can handle assuming 100% efficiency */
655 	swap_maxpages = n * SWAP_META_PAGES;
656 	swzone = n * sizeof(struct swblk);
657 	if (!uma_zone_reserve_kva(swpctrie_zone, n))
658 		printf("Cannot reserve swap pctrie zone, "
659 		    "reduce kern.maxswzone.\n");
660 }
661 
662 bool
663 swap_pager_init_object(vm_object_t object, void *handle, struct ucred *cred,
664     vm_ooffset_t size, vm_ooffset_t offset)
665 {
666 	if (cred != NULL) {
667 		if (!swap_reserve_by_cred(size, cred))
668 			return (false);
669 		crhold(cred);
670 	}
671 
672 	object->un_pager.swp.writemappings = 0;
673 	object->handle = handle;
674 	if (cred != NULL) {
675 		object->cred = cred;
676 		object->charge = size;
677 	}
678 	return (true);
679 }
680 
681 static vm_object_t
682 swap_pager_alloc_init(objtype_t otype, void *handle, struct ucred *cred,
683     vm_ooffset_t size, vm_ooffset_t offset)
684 {
685 	vm_object_t object;
686 
687 	/*
688 	 * The un_pager.swp.swp_blks trie is initialized by
689 	 * vm_object_allocate() to ensure the correct order of
690 	 * visibility to other threads.
691 	 */
692 	object = vm_object_allocate(otype, OFF_TO_IDX(offset +
693 	    PAGE_MASK + size));
694 
695 	if (!swap_pager_init_object(object, handle, cred, size, offset)) {
696 		vm_object_deallocate(object);
697 		return (NULL);
698 	}
699 	return (object);
700 }
701 
702 /*
703  * SWAP_PAGER_ALLOC() -	allocate a new OBJT_SWAP VM object and instantiate
704  *			its metadata structures.
705  *
706  *	This routine is called from the mmap and fork code to create a new
707  *	OBJT_SWAP object.
708  *
709  *	This routine must ensure that no live duplicate is created for
710  *	the named object request, which is protected against by
711  *	holding the sw_alloc_sx lock in case handle != NULL.
712  */
713 static vm_object_t
714 swap_pager_alloc(void *handle, vm_ooffset_t size, vm_prot_t prot,
715     vm_ooffset_t offset, struct ucred *cred)
716 {
717 	vm_object_t object;
718 
719 	if (handle != NULL) {
720 		/*
721 		 * Reference existing named region or allocate new one.  There
722 		 * should not be a race here against swp_pager_meta_build()
723 		 * as called from vm_page_remove() in regards to the lookup
724 		 * of the handle.
725 		 */
726 		sx_xlock(&sw_alloc_sx);
727 		object = vm_pager_object_lookup(NOBJLIST(handle), handle);
728 		if (object == NULL) {
729 			object = swap_pager_alloc_init(OBJT_SWAP, handle, cred,
730 			    size, offset);
731 			if (object != NULL) {
732 				TAILQ_INSERT_TAIL(NOBJLIST(object->handle),
733 				    object, pager_object_list);
734 			}
735 		}
736 		sx_xunlock(&sw_alloc_sx);
737 	} else {
738 		object = swap_pager_alloc_init(OBJT_SWAP, handle, cred,
739 		    size, offset);
740 	}
741 	return (object);
742 }
743 
744 /*
745  * SWAP_PAGER_DEALLOC() -	remove swap metadata from object
746  *
747  *	The swap backing for the object is destroyed.  The code is
748  *	designed such that we can reinstantiate it later, but this
749  *	routine is typically called only when the entire object is
750  *	about to be destroyed.
751  *
752  *	The object must be locked.
753  */
754 static void
755 swap_pager_dealloc(vm_object_t object)
756 {
757 
758 	VM_OBJECT_ASSERT_WLOCKED(object);
759 	KASSERT((object->flags & OBJ_DEAD) != 0, ("dealloc of reachable obj"));
760 
761 	/*
762 	 * Remove from list right away so lookups will fail if we block for
763 	 * pageout completion.
764 	 */
765 	if ((object->flags & OBJ_ANON) == 0 && object->handle != NULL) {
766 		VM_OBJECT_WUNLOCK(object);
767 		sx_xlock(&sw_alloc_sx);
768 		TAILQ_REMOVE(NOBJLIST(object->handle), object,
769 		    pager_object_list);
770 		sx_xunlock(&sw_alloc_sx);
771 		VM_OBJECT_WLOCK(object);
772 	}
773 
774 	vm_object_pip_wait(object, "swpdea");
775 
776 	/*
777 	 * Free all remaining metadata.  We only bother to free it from
778 	 * the swap meta data.  We do not attempt to free swapblk's still
779 	 * associated with vm_page_t's for this object.  We do not care
780 	 * if paging is still in progress on some objects.
781 	 */
782 	swp_pager_meta_free_all(object);
783 	object->handle = NULL;
784 	object->type = OBJT_DEAD;
785 	vm_object_clear_flag(object, OBJ_SWAP);
786 }
787 
788 /************************************************************************
789  *			SWAP PAGER BITMAP ROUTINES			*
790  ************************************************************************/
791 
792 /*
793  * SWP_PAGER_GETSWAPSPACE() -	allocate raw swap space
794  *
795  *	Allocate swap for up to the requested number of pages.  The
796  *	starting swap block number (a page index) is returned or
797  *	SWAPBLK_NONE if the allocation failed.
798  *
799  *	Also has the side effect of advising that somebody made a mistake
800  *	when they configured swap and didn't configure enough.
801  *
802  *	This routine may not sleep.
803  *
804  *	We allocate in round-robin fashion from the configured devices.
805  */
806 static daddr_t
807 swp_pager_getswapspace(int *io_npages)
808 {
809 	daddr_t blk;
810 	struct swdevt *sp;
811 	int mpages, npages;
812 
813 	KASSERT(*io_npages >= 1,
814 	    ("%s: npages not positive", __func__));
815 	blk = SWAPBLK_NONE;
816 	mpages = *io_npages;
817 	npages = imin(BLIST_MAX_ALLOC, mpages);
818 	mtx_lock(&sw_dev_mtx);
819 	sp = swdevhd;
820 	while (!TAILQ_EMPTY(&swtailq)) {
821 		if (sp == NULL)
822 			sp = TAILQ_FIRST(&swtailq);
823 		if ((sp->sw_flags & SW_CLOSING) == 0)
824 			blk = blist_alloc(sp->sw_blist, &npages, mpages);
825 		if (blk != SWAPBLK_NONE)
826 			break;
827 		sp = TAILQ_NEXT(sp, sw_list);
828 		if (swdevhd == sp) {
829 			if (npages == 1)
830 				break;
831 			mpages = npages - 1;
832 			npages >>= 1;
833 		}
834 	}
835 	if (blk != SWAPBLK_NONE) {
836 		*io_npages = npages;
837 		blk += sp->sw_first;
838 		sp->sw_used += npages;
839 		swap_pager_avail -= npages;
840 		swp_sizecheck();
841 		swdevhd = TAILQ_NEXT(sp, sw_list);
842 	} else {
843 		if (swap_pager_full != 2) {
844 			printf("swp_pager_getswapspace(%d): failed\n",
845 			    *io_npages);
846 			swap_pager_full = 2;
847 			swap_pager_almost_full = 1;
848 		}
849 		swdevhd = NULL;
850 	}
851 	mtx_unlock(&sw_dev_mtx);
852 	return (blk);
853 }
854 
855 static bool
856 swp_pager_isondev(daddr_t blk, struct swdevt *sp)
857 {
858 
859 	return (blk >= sp->sw_first && blk < sp->sw_end);
860 }
861 
862 static void
863 swp_pager_strategy(struct buf *bp)
864 {
865 	struct swdevt *sp;
866 
867 	mtx_lock(&sw_dev_mtx);
868 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
869 		if (swp_pager_isondev(bp->b_blkno, sp)) {
870 			mtx_unlock(&sw_dev_mtx);
871 			if ((sp->sw_flags & SW_UNMAPPED) != 0 &&
872 			    unmapped_buf_allowed) {
873 				bp->b_data = unmapped_buf;
874 				bp->b_offset = 0;
875 			} else {
876 				pmap_qenter((vm_offset_t)bp->b_data,
877 				    &bp->b_pages[0], bp->b_bcount / PAGE_SIZE);
878 			}
879 			sp->sw_strategy(bp, sp);
880 			return;
881 		}
882 	}
883 	panic("Swapdev not found");
884 }
885 
886 /*
887  * SWP_PAGER_FREESWAPSPACE() -	free raw swap space
888  *
889  *	This routine returns the specified swap blocks back to the bitmap.
890  *
891  *	This routine may not sleep.
892  */
893 static void
894 swp_pager_freeswapspace(daddr_t blk, daddr_t npages)
895 {
896 	struct swdevt *sp;
897 
898 	if (npages == 0)
899 		return;
900 	mtx_lock(&sw_dev_mtx);
901 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
902 		if (swp_pager_isondev(blk, sp)) {
903 			sp->sw_used -= npages;
904 			/*
905 			 * If we are attempting to stop swapping on
906 			 * this device, we don't want to mark any
907 			 * blocks free lest they be reused.
908 			 */
909 			if ((sp->sw_flags & SW_CLOSING) == 0) {
910 				blist_free(sp->sw_blist, blk - sp->sw_first,
911 				    npages);
912 				swap_pager_avail += npages;
913 				swp_sizecheck();
914 			}
915 			mtx_unlock(&sw_dev_mtx);
916 			return;
917 		}
918 	}
919 	panic("Swapdev not found");
920 }
921 
922 /*
923  * SYSCTL_SWAP_FRAGMENTATION() -	produce raw swap space stats
924  */
925 static int
926 sysctl_swap_fragmentation(SYSCTL_HANDLER_ARGS)
927 {
928 	struct sbuf sbuf;
929 	struct swdevt *sp;
930 	const char *devname;
931 	int error;
932 
933 	error = sysctl_wire_old_buffer(req, 0);
934 	if (error != 0)
935 		return (error);
936 	sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
937 	mtx_lock(&sw_dev_mtx);
938 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
939 		if (vn_isdisk(sp->sw_vp))
940 			devname = devtoname(sp->sw_vp->v_rdev);
941 		else
942 			devname = "[file]";
943 		sbuf_printf(&sbuf, "\nFree space on device %s:\n", devname);
944 		blist_stats(sp->sw_blist, &sbuf);
945 	}
946 	mtx_unlock(&sw_dev_mtx);
947 	error = sbuf_finish(&sbuf);
948 	sbuf_delete(&sbuf);
949 	return (error);
950 }
951 
952 /*
953  * SWAP_PAGER_FREESPACE() -	frees swap blocks associated with a page
954  *				range within an object.
955  *
956  *	This routine removes swapblk assignments from swap metadata.
957  *
958  *	The external callers of this routine typically have already destroyed
959  *	or renamed vm_page_t's associated with this range in the object so
960  *	we should be ok.
961  *
962  *	The object must be locked.
963  */
964 static void
965 swap_pager_freespace(vm_object_t object, vm_pindex_t start, vm_size_t size)
966 {
967 
968 	swp_pager_meta_free(object, start, size);
969 }
970 
971 /*
972  * SWAP_PAGER_RESERVE() - reserve swap blocks in object
973  *
974  *	Assigns swap blocks to the specified range within the object.  The
975  *	swap blocks are not zeroed.  Any previous swap assignment is destroyed.
976  *
977  *	Returns 0 on success, -1 on failure.
978  */
979 int
980 swap_pager_reserve(vm_object_t object, vm_pindex_t start, vm_size_t size)
981 {
982 	daddr_t addr, blk, n_free, s_free;
983 	int i, j, n;
984 
985 	swp_pager_init_freerange(&s_free, &n_free);
986 	VM_OBJECT_WLOCK(object);
987 	for (i = 0; i < size; i += n) {
988 		n = size - i;
989 		blk = swp_pager_getswapspace(&n);
990 		if (blk == SWAPBLK_NONE) {
991 			swp_pager_meta_free(object, start, i);
992 			VM_OBJECT_WUNLOCK(object);
993 			return (-1);
994 		}
995 		for (j = 0; j < n; ++j) {
996 			addr = swp_pager_meta_build(object,
997 			    start + i + j, blk + j);
998 			if (addr != SWAPBLK_NONE)
999 				swp_pager_update_freerange(&s_free, &n_free,
1000 				    addr);
1001 		}
1002 	}
1003 	swp_pager_freeswapspace(s_free, n_free);
1004 	VM_OBJECT_WUNLOCK(object);
1005 	return (0);
1006 }
1007 
1008 static bool
1009 swp_pager_xfer_source(vm_object_t srcobject, vm_object_t dstobject,
1010     vm_pindex_t pindex, daddr_t addr)
1011 {
1012 	daddr_t dstaddr;
1013 
1014 	KASSERT((srcobject->flags & OBJ_SWAP) != 0,
1015 	    ("%s: Srcobject not swappable", __func__));
1016 	if ((dstobject->flags & OBJ_SWAP) != 0 &&
1017 	    swp_pager_meta_lookup(dstobject, pindex) != SWAPBLK_NONE) {
1018 		/* Caller should destroy the source block. */
1019 		return (false);
1020 	}
1021 
1022 	/*
1023 	 * Destination has no swapblk and is not resident, transfer source.
1024 	 * swp_pager_meta_build() can sleep.
1025 	 */
1026 	VM_OBJECT_WUNLOCK(srcobject);
1027 	dstaddr = swp_pager_meta_build(dstobject, pindex, addr);
1028 	KASSERT(dstaddr == SWAPBLK_NONE,
1029 	    ("Unexpected destination swapblk"));
1030 	VM_OBJECT_WLOCK(srcobject);
1031 
1032 	return (true);
1033 }
1034 
1035 /*
1036  * SWAP_PAGER_COPY() -  copy blocks from source pager to destination pager
1037  *			and destroy the source.
1038  *
1039  *	Copy any valid swapblks from the source to the destination.  In
1040  *	cases where both the source and destination have a valid swapblk,
1041  *	we keep the destination's.
1042  *
1043  *	This routine is allowed to sleep.  It may sleep allocating metadata
1044  *	indirectly through swp_pager_meta_build().
1045  *
1046  *	The source object contains no vm_page_t's (which is just as well)
1047  *
1048  *	The source object is of type OBJT_SWAP.
1049  *
1050  *	The source and destination objects must be locked.
1051  *	Both object locks may temporarily be released.
1052  */
1053 void
1054 swap_pager_copy(vm_object_t srcobject, vm_object_t dstobject,
1055     vm_pindex_t offset, int destroysource)
1056 {
1057 
1058 	VM_OBJECT_ASSERT_WLOCKED(srcobject);
1059 	VM_OBJECT_ASSERT_WLOCKED(dstobject);
1060 
1061 	/*
1062 	 * If destroysource is set, we remove the source object from the
1063 	 * swap_pager internal queue now.
1064 	 */
1065 	if (destroysource && (srcobject->flags & OBJ_ANON) == 0 &&
1066 	    srcobject->handle != NULL) {
1067 		VM_OBJECT_WUNLOCK(srcobject);
1068 		VM_OBJECT_WUNLOCK(dstobject);
1069 		sx_xlock(&sw_alloc_sx);
1070 		TAILQ_REMOVE(NOBJLIST(srcobject->handle), srcobject,
1071 		    pager_object_list);
1072 		sx_xunlock(&sw_alloc_sx);
1073 		VM_OBJECT_WLOCK(dstobject);
1074 		VM_OBJECT_WLOCK(srcobject);
1075 	}
1076 
1077 	/*
1078 	 * Transfer source to destination.
1079 	 */
1080 	swp_pager_meta_transfer(srcobject, dstobject, offset, dstobject->size);
1081 
1082 	/*
1083 	 * Free left over swap blocks in source.
1084 	 *
1085 	 * We have to revert the type to OBJT_DEFAULT so we do not accidentally
1086 	 * double-remove the object from the swap queues.
1087 	 */
1088 	if (destroysource) {
1089 		swp_pager_meta_free_all(srcobject);
1090 		/*
1091 		 * Reverting the type is not necessary, the caller is going
1092 		 * to destroy srcobject directly, but I'm doing it here
1093 		 * for consistency since we've removed the object from its
1094 		 * queues.
1095 		 */
1096 		srcobject->type = OBJT_DEFAULT;
1097 		vm_object_clear_flag(srcobject, OBJ_SWAP);
1098 	}
1099 }
1100 
1101 /*
1102  * SWAP_PAGER_HASPAGE() -	determine if we have good backing store for
1103  *				the requested page.
1104  *
1105  *	We determine whether good backing store exists for the requested
1106  *	page and return TRUE if it does, FALSE if it doesn't.
1107  *
1108  *	If TRUE, we also try to determine how much valid, contiguous backing
1109  *	store exists before and after the requested page.
1110  */
1111 static boolean_t
1112 swap_pager_haspage(vm_object_t object, vm_pindex_t pindex, int *before,
1113     int *after)
1114 {
1115 	daddr_t blk, blk0;
1116 	int i;
1117 
1118 	VM_OBJECT_ASSERT_LOCKED(object);
1119 	KASSERT((object->flags & OBJ_SWAP) != 0,
1120 	    ("%s: object not swappable", __func__));
1121 
1122 	/*
1123 	 * do we have good backing store at the requested index ?
1124 	 */
1125 	blk0 = swp_pager_meta_lookup(object, pindex);
1126 	if (blk0 == SWAPBLK_NONE) {
1127 		if (before)
1128 			*before = 0;
1129 		if (after)
1130 			*after = 0;
1131 		return (FALSE);
1132 	}
1133 
1134 	/*
1135 	 * find backwards-looking contiguous good backing store
1136 	 */
1137 	if (before != NULL) {
1138 		for (i = 1; i < SWB_NPAGES; i++) {
1139 			if (i > pindex)
1140 				break;
1141 			blk = swp_pager_meta_lookup(object, pindex - i);
1142 			if (blk != blk0 - i)
1143 				break;
1144 		}
1145 		*before = i - 1;
1146 	}
1147 
1148 	/*
1149 	 * find forward-looking contiguous good backing store
1150 	 */
1151 	if (after != NULL) {
1152 		for (i = 1; i < SWB_NPAGES; i++) {
1153 			blk = swp_pager_meta_lookup(object, pindex + i);
1154 			if (blk != blk0 + i)
1155 				break;
1156 		}
1157 		*after = i - 1;
1158 	}
1159 	return (TRUE);
1160 }
1161 
1162 /*
1163  * SWAP_PAGER_PAGE_UNSWAPPED() - remove swap backing store related to page
1164  *
1165  *	This removes any associated swap backing store, whether valid or
1166  *	not, from the page.
1167  *
1168  *	This routine is typically called when a page is made dirty, at
1169  *	which point any associated swap can be freed.  MADV_FREE also
1170  *	calls us in a special-case situation
1171  *
1172  *	NOTE!!!  If the page is clean and the swap was valid, the caller
1173  *	should make the page dirty before calling this routine.  This routine
1174  *	does NOT change the m->dirty status of the page.  Also: MADV_FREE
1175  *	depends on it.
1176  *
1177  *	This routine may not sleep.
1178  *
1179  *	The object containing the page may be locked.
1180  */
1181 static void
1182 swap_pager_unswapped(vm_page_t m)
1183 {
1184 	struct swblk *sb;
1185 	vm_object_t obj;
1186 
1187 	/*
1188 	 * Handle enqueing deferred frees first.  If we do not have the
1189 	 * object lock we wait for the page daemon to clear the space.
1190 	 */
1191 	obj = m->object;
1192 	if (!VM_OBJECT_WOWNED(obj)) {
1193 		VM_PAGE_OBJECT_BUSY_ASSERT(m);
1194 		/*
1195 		 * The caller is responsible for synchronization but we
1196 		 * will harmlessly handle races.  This is typically provided
1197 		 * by only calling unswapped() when a page transitions from
1198 		 * clean to dirty.
1199 		 */
1200 		if ((m->a.flags & (PGA_SWAP_SPACE | PGA_SWAP_FREE)) ==
1201 		    PGA_SWAP_SPACE) {
1202 			vm_page_aflag_set(m, PGA_SWAP_FREE);
1203 			counter_u64_add(swap_free_deferred, 1);
1204 		}
1205 		return;
1206 	}
1207 	if ((m->a.flags & PGA_SWAP_FREE) != 0)
1208 		counter_u64_add(swap_free_completed, 1);
1209 	vm_page_aflag_clear(m, PGA_SWAP_FREE | PGA_SWAP_SPACE);
1210 
1211 	/*
1212 	 * The meta data only exists if the object is OBJT_SWAP
1213 	 * and even then might not be allocated yet.
1214 	 */
1215 	KASSERT((m->object->flags & OBJ_SWAP) != 0,
1216 	    ("Free object not swappable"));
1217 
1218 	sb = SWAP_PCTRIE_LOOKUP(&m->object->un_pager.swp.swp_blks,
1219 	    rounddown(m->pindex, SWAP_META_PAGES));
1220 	if (sb == NULL)
1221 		return;
1222 	if (sb->d[m->pindex % SWAP_META_PAGES] == SWAPBLK_NONE)
1223 		return;
1224 	swp_pager_freeswapspace(sb->d[m->pindex % SWAP_META_PAGES], 1);
1225 	sb->d[m->pindex % SWAP_META_PAGES] = SWAPBLK_NONE;
1226 	swp_pager_free_empty_swblk(m->object, sb);
1227 }
1228 
1229 /*
1230  * swap_pager_getpages() - bring pages in from swap
1231  *
1232  *	Attempt to page in the pages in array "ma" of length "count".  The
1233  *	caller may optionally specify that additional pages preceding and
1234  *	succeeding the specified range be paged in.  The number of such pages
1235  *	is returned in the "rbehind" and "rahead" parameters, and they will
1236  *	be in the inactive queue upon return.
1237  *
1238  *	The pages in "ma" must be busied and will remain busied upon return.
1239  */
1240 static int
1241 swap_pager_getpages_locked(vm_object_t object, vm_page_t *ma, int count,
1242     int *rbehind, int *rahead)
1243 {
1244 	struct buf *bp;
1245 	vm_page_t bm, mpred, msucc, p;
1246 	vm_pindex_t pindex;
1247 	daddr_t blk;
1248 	int i, maxahead, maxbehind, reqcount;
1249 
1250 	VM_OBJECT_ASSERT_WLOCKED(object);
1251 	reqcount = count;
1252 
1253 	KASSERT((object->flags & OBJ_SWAP) != 0,
1254 	    ("%s: object not swappable", __func__));
1255 	if (!swap_pager_haspage(object, ma[0]->pindex, &maxbehind, &maxahead)) {
1256 		VM_OBJECT_WUNLOCK(object);
1257 		return (VM_PAGER_FAIL);
1258 	}
1259 
1260 	KASSERT(reqcount - 1 <= maxahead,
1261 	    ("page count %d extends beyond swap block", reqcount));
1262 
1263 	/*
1264 	 * Do not transfer any pages other than those that are xbusied
1265 	 * when running during a split or collapse operation.  This
1266 	 * prevents clustering from re-creating pages which are being
1267 	 * moved into another object.
1268 	 */
1269 	if ((object->flags & (OBJ_SPLIT | OBJ_DEAD)) != 0) {
1270 		maxahead = reqcount - 1;
1271 		maxbehind = 0;
1272 	}
1273 
1274 	/*
1275 	 * Clip the readahead and readbehind ranges to exclude resident pages.
1276 	 */
1277 	if (rahead != NULL) {
1278 		*rahead = imin(*rahead, maxahead - (reqcount - 1));
1279 		pindex = ma[reqcount - 1]->pindex;
1280 		msucc = TAILQ_NEXT(ma[reqcount - 1], listq);
1281 		if (msucc != NULL && msucc->pindex - pindex - 1 < *rahead)
1282 			*rahead = msucc->pindex - pindex - 1;
1283 	}
1284 	if (rbehind != NULL) {
1285 		*rbehind = imin(*rbehind, maxbehind);
1286 		pindex = ma[0]->pindex;
1287 		mpred = TAILQ_PREV(ma[0], pglist, listq);
1288 		if (mpred != NULL && pindex - mpred->pindex - 1 < *rbehind)
1289 			*rbehind = pindex - mpred->pindex - 1;
1290 	}
1291 
1292 	bm = ma[0];
1293 	for (i = 0; i < count; i++)
1294 		ma[i]->oflags |= VPO_SWAPINPROG;
1295 
1296 	/*
1297 	 * Allocate readahead and readbehind pages.
1298 	 */
1299 	if (rbehind != NULL) {
1300 		for (i = 1; i <= *rbehind; i++) {
1301 			p = vm_page_alloc(object, ma[0]->pindex - i,
1302 			    VM_ALLOC_NORMAL);
1303 			if (p == NULL)
1304 				break;
1305 			p->oflags |= VPO_SWAPINPROG;
1306 			bm = p;
1307 		}
1308 		*rbehind = i - 1;
1309 	}
1310 	if (rahead != NULL) {
1311 		for (i = 0; i < *rahead; i++) {
1312 			p = vm_page_alloc(object,
1313 			    ma[reqcount - 1]->pindex + i + 1, VM_ALLOC_NORMAL);
1314 			if (p == NULL)
1315 				break;
1316 			p->oflags |= VPO_SWAPINPROG;
1317 		}
1318 		*rahead = i;
1319 	}
1320 	if (rbehind != NULL)
1321 		count += *rbehind;
1322 	if (rahead != NULL)
1323 		count += *rahead;
1324 
1325 	vm_object_pip_add(object, count);
1326 
1327 	pindex = bm->pindex;
1328 	blk = swp_pager_meta_lookup(object, pindex);
1329 	KASSERT(blk != SWAPBLK_NONE,
1330 	    ("no swap blocking containing %p(%jx)", object, (uintmax_t)pindex));
1331 
1332 	VM_OBJECT_WUNLOCK(object);
1333 	bp = uma_zalloc(swrbuf_zone, M_WAITOK);
1334 	MPASS((bp->b_flags & B_MAXPHYS) != 0);
1335 	/* Pages cannot leave the object while busy. */
1336 	for (i = 0, p = bm; i < count; i++, p = TAILQ_NEXT(p, listq)) {
1337 		MPASS(p->pindex == bm->pindex + i);
1338 		bp->b_pages[i] = p;
1339 	}
1340 
1341 	bp->b_flags |= B_PAGING;
1342 	bp->b_iocmd = BIO_READ;
1343 	bp->b_iodone = swp_pager_async_iodone;
1344 	bp->b_rcred = crhold(thread0.td_ucred);
1345 	bp->b_wcred = crhold(thread0.td_ucred);
1346 	bp->b_blkno = blk;
1347 	bp->b_bcount = PAGE_SIZE * count;
1348 	bp->b_bufsize = PAGE_SIZE * count;
1349 	bp->b_npages = count;
1350 	bp->b_pgbefore = rbehind != NULL ? *rbehind : 0;
1351 	bp->b_pgafter = rahead != NULL ? *rahead : 0;
1352 
1353 	VM_CNT_INC(v_swapin);
1354 	VM_CNT_ADD(v_swappgsin, count);
1355 
1356 	/*
1357 	 * perform the I/O.  NOTE!!!  bp cannot be considered valid after
1358 	 * this point because we automatically release it on completion.
1359 	 * Instead, we look at the one page we are interested in which we
1360 	 * still hold a lock on even through the I/O completion.
1361 	 *
1362 	 * The other pages in our ma[] array are also released on completion,
1363 	 * so we cannot assume they are valid anymore either.
1364 	 *
1365 	 * NOTE: b_blkno is destroyed by the call to swapdev_strategy
1366 	 */
1367 	BUF_KERNPROC(bp);
1368 	swp_pager_strategy(bp);
1369 
1370 	/*
1371 	 * Wait for the pages we want to complete.  VPO_SWAPINPROG is always
1372 	 * cleared on completion.  If an I/O error occurs, SWAPBLK_NONE
1373 	 * is set in the metadata for each page in the request.
1374 	 */
1375 	VM_OBJECT_WLOCK(object);
1376 	/* This could be implemented more efficiently with aflags */
1377 	while ((ma[0]->oflags & VPO_SWAPINPROG) != 0) {
1378 		ma[0]->oflags |= VPO_SWAPSLEEP;
1379 		VM_CNT_INC(v_intrans);
1380 		if (VM_OBJECT_SLEEP(object, &object->handle, PSWP,
1381 		    "swread", hz * 20)) {
1382 			printf(
1383 "swap_pager: indefinite wait buffer: bufobj: %p, blkno: %jd, size: %ld\n",
1384 			    bp->b_bufobj, (intmax_t)bp->b_blkno, bp->b_bcount);
1385 		}
1386 	}
1387 	VM_OBJECT_WUNLOCK(object);
1388 
1389 	/*
1390 	 * If we had an unrecoverable read error pages will not be valid.
1391 	 */
1392 	for (i = 0; i < reqcount; i++)
1393 		if (ma[i]->valid != VM_PAGE_BITS_ALL)
1394 			return (VM_PAGER_ERROR);
1395 
1396 	return (VM_PAGER_OK);
1397 
1398 	/*
1399 	 * A final note: in a low swap situation, we cannot deallocate swap
1400 	 * and mark a page dirty here because the caller is likely to mark
1401 	 * the page clean when we return, causing the page to possibly revert
1402 	 * to all-zero's later.
1403 	 */
1404 }
1405 
1406 static int
1407 swap_pager_getpages(vm_object_t object, vm_page_t *ma, int count,
1408     int *rbehind, int *rahead)
1409 {
1410 
1411 	VM_OBJECT_WLOCK(object);
1412 	return (swap_pager_getpages_locked(object, ma, count, rbehind, rahead));
1413 }
1414 
1415 /*
1416  * 	swap_pager_getpages_async():
1417  *
1418  *	Right now this is emulation of asynchronous operation on top of
1419  *	swap_pager_getpages().
1420  */
1421 static int
1422 swap_pager_getpages_async(vm_object_t object, vm_page_t *ma, int count,
1423     int *rbehind, int *rahead, pgo_getpages_iodone_t iodone, void *arg)
1424 {
1425 	int r, error;
1426 
1427 	r = swap_pager_getpages(object, ma, count, rbehind, rahead);
1428 	switch (r) {
1429 	case VM_PAGER_OK:
1430 		error = 0;
1431 		break;
1432 	case VM_PAGER_ERROR:
1433 		error = EIO;
1434 		break;
1435 	case VM_PAGER_FAIL:
1436 		error = EINVAL;
1437 		break;
1438 	default:
1439 		panic("unhandled swap_pager_getpages() error %d", r);
1440 	}
1441 	(iodone)(arg, ma, count, error);
1442 
1443 	return (r);
1444 }
1445 
1446 /*
1447  *	swap_pager_putpages:
1448  *
1449  *	Assign swap (if necessary) and initiate I/O on the specified pages.
1450  *
1451  *	We support both OBJT_DEFAULT and OBJT_SWAP objects.  DEFAULT objects
1452  *	are automatically converted to SWAP objects.
1453  *
1454  *	In a low memory situation we may block in VOP_STRATEGY(), but the new
1455  *	vm_page reservation system coupled with properly written VFS devices
1456  *	should ensure that no low-memory deadlock occurs.  This is an area
1457  *	which needs work.
1458  *
1459  *	The parent has N vm_object_pip_add() references prior to
1460  *	calling us and will remove references for rtvals[] that are
1461  *	not set to VM_PAGER_PEND.  We need to remove the rest on I/O
1462  *	completion.
1463  *
1464  *	The parent has soft-busy'd the pages it passes us and will unbusy
1465  *	those whose rtvals[] entry is not set to VM_PAGER_PEND on return.
1466  *	We need to unbusy the rest on I/O completion.
1467  */
1468 static void
1469 swap_pager_putpages(vm_object_t object, vm_page_t *ma, int count,
1470     int flags, int *rtvals)
1471 {
1472 	struct buf *bp;
1473 	daddr_t addr, blk, n_free, s_free;
1474 	vm_page_t mreq;
1475 	int i, j, n;
1476 	bool async;
1477 
1478 	KASSERT(count == 0 || ma[0]->object == object,
1479 	    ("%s: object mismatch %p/%p",
1480 	    __func__, object, ma[0]->object));
1481 
1482 	/*
1483 	 * Step 1
1484 	 *
1485 	 * Turn object into OBJT_SWAP.  Force sync if not a pageout process.
1486 	 */
1487 	if ((object->flags & OBJ_SWAP) == 0) {
1488 		addr = swp_pager_meta_build(object, 0, SWAPBLK_NONE);
1489 		KASSERT(addr == SWAPBLK_NONE,
1490 		    ("unexpected object swap block"));
1491 	}
1492 	VM_OBJECT_WUNLOCK(object);
1493 	async = curproc == pageproc && (flags & VM_PAGER_PUT_SYNC) == 0;
1494 	swp_pager_init_freerange(&s_free, &n_free);
1495 
1496 	/*
1497 	 * Step 2
1498 	 *
1499 	 * Assign swap blocks and issue I/O.  We reallocate swap on the fly.
1500 	 * The page is left dirty until the pageout operation completes
1501 	 * successfully.
1502 	 */
1503 	for (i = 0; i < count; i += n) {
1504 		/* Maximum I/O size is limited by maximum swap block size. */
1505 		n = min(count - i, nsw_cluster_max);
1506 
1507 		if (async) {
1508 			mtx_lock(&swbuf_mtx);
1509 			while (nsw_wcount_async == 0)
1510 				msleep(&nsw_wcount_async, &swbuf_mtx, PVM,
1511 				    "swbufa", 0);
1512 			nsw_wcount_async--;
1513 			mtx_unlock(&swbuf_mtx);
1514 		}
1515 
1516 		/* Get a block of swap of size up to size n. */
1517 		VM_OBJECT_WLOCK(object);
1518 		blk = swp_pager_getswapspace(&n);
1519 		if (blk == SWAPBLK_NONE) {
1520 			VM_OBJECT_WUNLOCK(object);
1521 			mtx_lock(&swbuf_mtx);
1522 			if (++nsw_wcount_async == 1)
1523 				wakeup(&nsw_wcount_async);
1524 			mtx_unlock(&swbuf_mtx);
1525 			for (j = 0; j < n; ++j)
1526 				rtvals[i + j] = VM_PAGER_FAIL;
1527 			continue;
1528 		}
1529 		for (j = 0; j < n; ++j) {
1530 			mreq = ma[i + j];
1531 			vm_page_aflag_clear(mreq, PGA_SWAP_FREE);
1532 			addr = swp_pager_meta_build(mreq->object, mreq->pindex,
1533 			    blk + j);
1534 			if (addr != SWAPBLK_NONE)
1535 				swp_pager_update_freerange(&s_free, &n_free,
1536 				    addr);
1537 			MPASS(mreq->dirty == VM_PAGE_BITS_ALL);
1538 			mreq->oflags |= VPO_SWAPINPROG;
1539 		}
1540 		VM_OBJECT_WUNLOCK(object);
1541 
1542 		bp = uma_zalloc(swwbuf_zone, M_WAITOK);
1543 		MPASS((bp->b_flags & B_MAXPHYS) != 0);
1544 		if (async)
1545 			bp->b_flags |= B_ASYNC;
1546 		bp->b_flags |= B_PAGING;
1547 		bp->b_iocmd = BIO_WRITE;
1548 
1549 		bp->b_rcred = crhold(thread0.td_ucred);
1550 		bp->b_wcred = crhold(thread0.td_ucred);
1551 		bp->b_bcount = PAGE_SIZE * n;
1552 		bp->b_bufsize = PAGE_SIZE * n;
1553 		bp->b_blkno = blk;
1554 		for (j = 0; j < n; j++)
1555 			bp->b_pages[j] = ma[i + j];
1556 		bp->b_npages = n;
1557 
1558 		/*
1559 		 * Must set dirty range for NFS to work.
1560 		 */
1561 		bp->b_dirtyoff = 0;
1562 		bp->b_dirtyend = bp->b_bcount;
1563 
1564 		VM_CNT_INC(v_swapout);
1565 		VM_CNT_ADD(v_swappgsout, bp->b_npages);
1566 
1567 		/*
1568 		 * We unconditionally set rtvals[] to VM_PAGER_PEND so that we
1569 		 * can call the async completion routine at the end of a
1570 		 * synchronous I/O operation.  Otherwise, our caller would
1571 		 * perform duplicate unbusy and wakeup operations on the page
1572 		 * and object, respectively.
1573 		 */
1574 		for (j = 0; j < n; j++)
1575 			rtvals[i + j] = VM_PAGER_PEND;
1576 
1577 		/*
1578 		 * asynchronous
1579 		 *
1580 		 * NOTE: b_blkno is destroyed by the call to swapdev_strategy.
1581 		 */
1582 		if (async) {
1583 			bp->b_iodone = swp_pager_async_iodone;
1584 			BUF_KERNPROC(bp);
1585 			swp_pager_strategy(bp);
1586 			continue;
1587 		}
1588 
1589 		/*
1590 		 * synchronous
1591 		 *
1592 		 * NOTE: b_blkno is destroyed by the call to swapdev_strategy.
1593 		 */
1594 		bp->b_iodone = bdone;
1595 		swp_pager_strategy(bp);
1596 
1597 		/*
1598 		 * Wait for the sync I/O to complete.
1599 		 */
1600 		bwait(bp, PVM, "swwrt");
1601 
1602 		/*
1603 		 * Now that we are through with the bp, we can call the
1604 		 * normal async completion, which frees everything up.
1605 		 */
1606 		swp_pager_async_iodone(bp);
1607 	}
1608 	swp_pager_freeswapspace(s_free, n_free);
1609 	VM_OBJECT_WLOCK(object);
1610 }
1611 
1612 /*
1613  *	swp_pager_async_iodone:
1614  *
1615  *	Completion routine for asynchronous reads and writes from/to swap.
1616  *	Also called manually by synchronous code to finish up a bp.
1617  *
1618  *	This routine may not sleep.
1619  */
1620 static void
1621 swp_pager_async_iodone(struct buf *bp)
1622 {
1623 	int i;
1624 	vm_object_t object = NULL;
1625 
1626 	/*
1627 	 * Report error - unless we ran out of memory, in which case
1628 	 * we've already logged it in swapgeom_strategy().
1629 	 */
1630 	if (bp->b_ioflags & BIO_ERROR && bp->b_error != ENOMEM) {
1631 		printf(
1632 		    "swap_pager: I/O error - %s failed; blkno %ld,"
1633 			"size %ld, error %d\n",
1634 		    ((bp->b_iocmd == BIO_READ) ? "pagein" : "pageout"),
1635 		    (long)bp->b_blkno,
1636 		    (long)bp->b_bcount,
1637 		    bp->b_error
1638 		);
1639 	}
1640 
1641 	/*
1642 	 * remove the mapping for kernel virtual
1643 	 */
1644 	if (buf_mapped(bp))
1645 		pmap_qremove((vm_offset_t)bp->b_data, bp->b_npages);
1646 	else
1647 		bp->b_data = bp->b_kvabase;
1648 
1649 	if (bp->b_npages) {
1650 		object = bp->b_pages[0]->object;
1651 		VM_OBJECT_WLOCK(object);
1652 	}
1653 
1654 	/*
1655 	 * cleanup pages.  If an error occurs writing to swap, we are in
1656 	 * very serious trouble.  If it happens to be a disk error, though,
1657 	 * we may be able to recover by reassigning the swap later on.  So
1658 	 * in this case we remove the m->swapblk assignment for the page
1659 	 * but do not free it in the rlist.  The errornous block(s) are thus
1660 	 * never reallocated as swap.  Redirty the page and continue.
1661 	 */
1662 	for (i = 0; i < bp->b_npages; ++i) {
1663 		vm_page_t m = bp->b_pages[i];
1664 
1665 		m->oflags &= ~VPO_SWAPINPROG;
1666 		if (m->oflags & VPO_SWAPSLEEP) {
1667 			m->oflags &= ~VPO_SWAPSLEEP;
1668 			wakeup(&object->handle);
1669 		}
1670 
1671 		/* We always have space after I/O, successful or not. */
1672 		vm_page_aflag_set(m, PGA_SWAP_SPACE);
1673 
1674 		if (bp->b_ioflags & BIO_ERROR) {
1675 			/*
1676 			 * If an error occurs I'd love to throw the swapblk
1677 			 * away without freeing it back to swapspace, so it
1678 			 * can never be used again.  But I can't from an
1679 			 * interrupt.
1680 			 */
1681 			if (bp->b_iocmd == BIO_READ) {
1682 				/*
1683 				 * NOTE: for reads, m->dirty will probably
1684 				 * be overridden by the original caller of
1685 				 * getpages so don't play cute tricks here.
1686 				 */
1687 				vm_page_invalid(m);
1688 			} else {
1689 				/*
1690 				 * If a write error occurs, reactivate page
1691 				 * so it doesn't clog the inactive list,
1692 				 * then finish the I/O.
1693 				 */
1694 				MPASS(m->dirty == VM_PAGE_BITS_ALL);
1695 
1696 				/* PQ_UNSWAPPABLE? */
1697 				vm_page_activate(m);
1698 				vm_page_sunbusy(m);
1699 			}
1700 		} else if (bp->b_iocmd == BIO_READ) {
1701 			/*
1702 			 * NOTE: for reads, m->dirty will probably be
1703 			 * overridden by the original caller of getpages so
1704 			 * we cannot set them in order to free the underlying
1705 			 * swap in a low-swap situation.  I don't think we'd
1706 			 * want to do that anyway, but it was an optimization
1707 			 * that existed in the old swapper for a time before
1708 			 * it got ripped out due to precisely this problem.
1709 			 */
1710 			KASSERT(!pmap_page_is_mapped(m),
1711 			    ("swp_pager_async_iodone: page %p is mapped", m));
1712 			KASSERT(m->dirty == 0,
1713 			    ("swp_pager_async_iodone: page %p is dirty", m));
1714 
1715 			vm_page_valid(m);
1716 			if (i < bp->b_pgbefore ||
1717 			    i >= bp->b_npages - bp->b_pgafter)
1718 				vm_page_readahead_finish(m);
1719 		} else {
1720 			/*
1721 			 * For write success, clear the dirty
1722 			 * status, then finish the I/O ( which decrements the
1723 			 * busy count and possibly wakes waiter's up ).
1724 			 * A page is only written to swap after a period of
1725 			 * inactivity.  Therefore, we do not expect it to be
1726 			 * reused.
1727 			 */
1728 			KASSERT(!pmap_page_is_write_mapped(m),
1729 			    ("swp_pager_async_iodone: page %p is not write"
1730 			    " protected", m));
1731 			vm_page_undirty(m);
1732 			vm_page_deactivate_noreuse(m);
1733 			vm_page_sunbusy(m);
1734 		}
1735 	}
1736 
1737 	/*
1738 	 * adjust pip.  NOTE: the original parent may still have its own
1739 	 * pip refs on the object.
1740 	 */
1741 	if (object != NULL) {
1742 		vm_object_pip_wakeupn(object, bp->b_npages);
1743 		VM_OBJECT_WUNLOCK(object);
1744 	}
1745 
1746 	/*
1747 	 * swapdev_strategy() manually sets b_vp and b_bufobj before calling
1748 	 * bstrategy(). Set them back to NULL now we're done with it, or we'll
1749 	 * trigger a KASSERT in relpbuf().
1750 	 */
1751 	if (bp->b_vp) {
1752 		    bp->b_vp = NULL;
1753 		    bp->b_bufobj = NULL;
1754 	}
1755 	/*
1756 	 * release the physical I/O buffer
1757 	 */
1758 	if (bp->b_flags & B_ASYNC) {
1759 		mtx_lock(&swbuf_mtx);
1760 		if (++nsw_wcount_async == 1)
1761 			wakeup(&nsw_wcount_async);
1762 		mtx_unlock(&swbuf_mtx);
1763 	}
1764 	uma_zfree((bp->b_iocmd == BIO_READ) ? swrbuf_zone : swwbuf_zone, bp);
1765 }
1766 
1767 int
1768 swap_pager_nswapdev(void)
1769 {
1770 
1771 	return (nswapdev);
1772 }
1773 
1774 static void
1775 swp_pager_force_dirty(vm_page_t m)
1776 {
1777 
1778 	vm_page_dirty(m);
1779 	swap_pager_unswapped(m);
1780 	vm_page_launder(m);
1781 }
1782 
1783 u_long
1784 swap_pager_swapped_pages(vm_object_t object)
1785 {
1786 	struct swblk *sb;
1787 	vm_pindex_t pi;
1788 	u_long res;
1789 	int i;
1790 
1791 	VM_OBJECT_ASSERT_LOCKED(object);
1792 	if ((object->flags & OBJ_SWAP) == 0)
1793 		return (0);
1794 
1795 	for (res = 0, pi = 0; (sb = SWAP_PCTRIE_LOOKUP_GE(
1796 	    &object->un_pager.swp.swp_blks, pi)) != NULL;
1797 	    pi = sb->p + SWAP_META_PAGES) {
1798 		for (i = 0; i < SWAP_META_PAGES; i++) {
1799 			if (sb->d[i] != SWAPBLK_NONE)
1800 				res++;
1801 		}
1802 	}
1803 	return (res);
1804 }
1805 
1806 /*
1807  *	swap_pager_swapoff_object:
1808  *
1809  *	Page in all of the pages that have been paged out for an object
1810  *	to a swap device.
1811  */
1812 static void
1813 swap_pager_swapoff_object(struct swdevt *sp, vm_object_t object)
1814 {
1815 	struct swblk *sb;
1816 	vm_page_t m;
1817 	vm_pindex_t pi;
1818 	daddr_t blk;
1819 	int i, nv, rahead, rv;
1820 
1821 	KASSERT((object->flags & OBJ_SWAP) != 0,
1822 	    ("%s: Object not swappable", __func__));
1823 
1824 	for (pi = 0; (sb = SWAP_PCTRIE_LOOKUP_GE(
1825 	    &object->un_pager.swp.swp_blks, pi)) != NULL; ) {
1826 		if ((object->flags & OBJ_DEAD) != 0) {
1827 			/*
1828 			 * Make sure that pending writes finish before
1829 			 * returning.
1830 			 */
1831 			vm_object_pip_wait(object, "swpoff");
1832 			swp_pager_meta_free_all(object);
1833 			break;
1834 		}
1835 		for (i = 0; i < SWAP_META_PAGES; i++) {
1836 			/*
1837 			 * Count the number of contiguous valid blocks.
1838 			 */
1839 			for (nv = 0; nv < SWAP_META_PAGES - i; nv++) {
1840 				blk = sb->d[i + nv];
1841 				if (!swp_pager_isondev(blk, sp) ||
1842 				    blk == SWAPBLK_NONE)
1843 					break;
1844 			}
1845 			if (nv == 0)
1846 				continue;
1847 
1848 			/*
1849 			 * Look for a page corresponding to the first
1850 			 * valid block and ensure that any pending paging
1851 			 * operations on it are complete.  If the page is valid,
1852 			 * mark it dirty and free the swap block.  Try to batch
1853 			 * this operation since it may cause sp to be freed,
1854 			 * meaning that we must restart the scan.  Avoid busying
1855 			 * valid pages since we may block forever on kernel
1856 			 * stack pages.
1857 			 */
1858 			m = vm_page_lookup(object, sb->p + i);
1859 			if (m == NULL) {
1860 				m = vm_page_alloc(object, sb->p + i,
1861 				    VM_ALLOC_NORMAL | VM_ALLOC_WAITFAIL);
1862 				if (m == NULL)
1863 					break;
1864 			} else {
1865 				if ((m->oflags & VPO_SWAPINPROG) != 0) {
1866 					m->oflags |= VPO_SWAPSLEEP;
1867 					VM_OBJECT_SLEEP(object, &object->handle,
1868 					    PSWP, "swpoff", 0);
1869 					break;
1870 				}
1871 				if (vm_page_all_valid(m)) {
1872 					do {
1873 						swp_pager_force_dirty(m);
1874 					} while (--nv > 0 &&
1875 					    (m = vm_page_next(m)) != NULL &&
1876 					    vm_page_all_valid(m) &&
1877 					    (m->oflags & VPO_SWAPINPROG) == 0);
1878 					break;
1879 				}
1880 				if (!vm_page_busy_acquire(m, VM_ALLOC_WAITFAIL))
1881 					break;
1882 			}
1883 
1884 			vm_object_pip_add(object, 1);
1885 			rahead = SWAP_META_PAGES;
1886 			rv = swap_pager_getpages_locked(object, &m, 1, NULL,
1887 			    &rahead);
1888 			if (rv != VM_PAGER_OK)
1889 				panic("%s: read from swap failed: %d",
1890 				    __func__, rv);
1891 			vm_object_pip_wakeupn(object, 1);
1892 			VM_OBJECT_WLOCK(object);
1893 			vm_page_xunbusy(m);
1894 
1895 			/*
1896 			 * The object lock was dropped so we must restart the
1897 			 * scan of this swap block.  Pages paged in during this
1898 			 * iteration will be marked dirty in a future iteration.
1899 			 */
1900 			break;
1901 		}
1902 		if (i == SWAP_META_PAGES)
1903 			pi = sb->p + SWAP_META_PAGES;
1904 	}
1905 }
1906 
1907 /*
1908  *	swap_pager_swapoff:
1909  *
1910  *	Page in all of the pages that have been paged out to the
1911  *	given device.  The corresponding blocks in the bitmap must be
1912  *	marked as allocated and the device must be flagged SW_CLOSING.
1913  *	There may be no processes swapped out to the device.
1914  *
1915  *	This routine may block.
1916  */
1917 static void
1918 swap_pager_swapoff(struct swdevt *sp)
1919 {
1920 	vm_object_t object;
1921 	int retries;
1922 
1923 	sx_assert(&swdev_syscall_lock, SA_XLOCKED);
1924 
1925 	retries = 0;
1926 full_rescan:
1927 	mtx_lock(&vm_object_list_mtx);
1928 	TAILQ_FOREACH(object, &vm_object_list, object_list) {
1929 		if ((object->flags & OBJ_SWAP) == 0)
1930 			continue;
1931 		mtx_unlock(&vm_object_list_mtx);
1932 		/* Depends on type-stability. */
1933 		VM_OBJECT_WLOCK(object);
1934 
1935 		/*
1936 		 * Dead objects are eventually terminated on their own.
1937 		 */
1938 		if ((object->flags & OBJ_DEAD) != 0)
1939 			goto next_obj;
1940 
1941 		/*
1942 		 * Sync with fences placed after pctrie
1943 		 * initialization.  We must not access pctrie below
1944 		 * unless we checked that our object is swap and not
1945 		 * dead.
1946 		 */
1947 		atomic_thread_fence_acq();
1948 		if ((object->flags & OBJ_SWAP) == 0)
1949 			goto next_obj;
1950 
1951 		swap_pager_swapoff_object(sp, object);
1952 next_obj:
1953 		VM_OBJECT_WUNLOCK(object);
1954 		mtx_lock(&vm_object_list_mtx);
1955 	}
1956 	mtx_unlock(&vm_object_list_mtx);
1957 
1958 	if (sp->sw_used) {
1959 		/*
1960 		 * Objects may be locked or paging to the device being
1961 		 * removed, so we will miss their pages and need to
1962 		 * make another pass.  We have marked this device as
1963 		 * SW_CLOSING, so the activity should finish soon.
1964 		 */
1965 		retries++;
1966 		if (retries > 100) {
1967 			panic("swapoff: failed to locate %d swap blocks",
1968 			    sp->sw_used);
1969 		}
1970 		pause("swpoff", hz / 20);
1971 		goto full_rescan;
1972 	}
1973 	EVENTHANDLER_INVOKE(swapoff, sp);
1974 }
1975 
1976 /************************************************************************
1977  *				SWAP META DATA 				*
1978  ************************************************************************
1979  *
1980  *	These routines manipulate the swap metadata stored in the
1981  *	OBJT_SWAP object.
1982  *
1983  *	Swap metadata is implemented with a global hash and not directly
1984  *	linked into the object.  Instead the object simply contains
1985  *	appropriate tracking counters.
1986  */
1987 
1988 /*
1989  * SWP_PAGER_SWBLK_EMPTY() - is a range of blocks free?
1990  */
1991 static bool
1992 swp_pager_swblk_empty(struct swblk *sb, int start, int limit)
1993 {
1994 	int i;
1995 
1996 	MPASS(0 <= start && start <= limit && limit <= SWAP_META_PAGES);
1997 	for (i = start; i < limit; i++) {
1998 		if (sb->d[i] != SWAPBLK_NONE)
1999 			return (false);
2000 	}
2001 	return (true);
2002 }
2003 
2004 /*
2005  * SWP_PAGER_FREE_EMPTY_SWBLK() - frees if a block is free
2006  *
2007  *  Nothing is done if the block is still in use.
2008  */
2009 static void
2010 swp_pager_free_empty_swblk(vm_object_t object, struct swblk *sb)
2011 {
2012 
2013 	if (swp_pager_swblk_empty(sb, 0, SWAP_META_PAGES)) {
2014 		SWAP_PCTRIE_REMOVE(&object->un_pager.swp.swp_blks, sb->p);
2015 		uma_zfree(swblk_zone, sb);
2016 	}
2017 }
2018 
2019 /*
2020  * SWP_PAGER_META_BUILD() -	add swap block to swap meta data for object
2021  *
2022  *	We first convert the object to a swap object if it is a default
2023  *	object.
2024  *
2025  *	The specified swapblk is added to the object's swap metadata.  If
2026  *	the swapblk is not valid, it is freed instead.  Any previously
2027  *	assigned swapblk is returned.
2028  */
2029 static daddr_t
2030 swp_pager_meta_build(vm_object_t object, vm_pindex_t pindex, daddr_t swapblk)
2031 {
2032 	static volatile int swblk_zone_exhausted, swpctrie_zone_exhausted;
2033 	struct swblk *sb, *sb1;
2034 	vm_pindex_t modpi, rdpi;
2035 	daddr_t prev_swapblk;
2036 	int error, i;
2037 
2038 	VM_OBJECT_ASSERT_WLOCKED(object);
2039 
2040 	/*
2041 	 * Convert default object to swap object if necessary
2042 	 */
2043 	if ((object->flags & OBJ_SWAP) == 0) {
2044 		pctrie_init(&object->un_pager.swp.swp_blks);
2045 
2046 		/*
2047 		 * Ensure that swap_pager_swapoff()'s iteration over
2048 		 * object_list does not see a garbage pctrie.
2049 		 */
2050 		atomic_thread_fence_rel();
2051 
2052 		object->type = OBJT_SWAP;
2053 		vm_object_set_flag(object, OBJ_SWAP);
2054 		object->un_pager.swp.writemappings = 0;
2055 		KASSERT((object->flags & OBJ_ANON) != 0 ||
2056 		    object->handle == NULL,
2057 		    ("default pager %p with handle %p",
2058 		    object, object->handle));
2059 	}
2060 
2061 	rdpi = rounddown(pindex, SWAP_META_PAGES);
2062 	sb = SWAP_PCTRIE_LOOKUP(&object->un_pager.swp.swp_blks, rdpi);
2063 	if (sb == NULL) {
2064 		if (swapblk == SWAPBLK_NONE)
2065 			return (SWAPBLK_NONE);
2066 		for (;;) {
2067 			sb = uma_zalloc(swblk_zone, M_NOWAIT | (curproc ==
2068 			    pageproc ? M_USE_RESERVE : 0));
2069 			if (sb != NULL) {
2070 				sb->p = rdpi;
2071 				for (i = 0; i < SWAP_META_PAGES; i++)
2072 					sb->d[i] = SWAPBLK_NONE;
2073 				if (atomic_cmpset_int(&swblk_zone_exhausted,
2074 				    1, 0))
2075 					printf("swblk zone ok\n");
2076 				break;
2077 			}
2078 			VM_OBJECT_WUNLOCK(object);
2079 			if (uma_zone_exhausted(swblk_zone)) {
2080 				if (atomic_cmpset_int(&swblk_zone_exhausted,
2081 				    0, 1))
2082 					printf("swap blk zone exhausted, "
2083 					    "increase kern.maxswzone\n");
2084 				vm_pageout_oom(VM_OOM_SWAPZ);
2085 				pause("swzonxb", 10);
2086 			} else
2087 				uma_zwait(swblk_zone);
2088 			VM_OBJECT_WLOCK(object);
2089 			sb = SWAP_PCTRIE_LOOKUP(&object->un_pager.swp.swp_blks,
2090 			    rdpi);
2091 			if (sb != NULL)
2092 				/*
2093 				 * Somebody swapped out a nearby page,
2094 				 * allocating swblk at the rdpi index,
2095 				 * while we dropped the object lock.
2096 				 */
2097 				goto allocated;
2098 		}
2099 		for (;;) {
2100 			error = SWAP_PCTRIE_INSERT(
2101 			    &object->un_pager.swp.swp_blks, sb);
2102 			if (error == 0) {
2103 				if (atomic_cmpset_int(&swpctrie_zone_exhausted,
2104 				    1, 0))
2105 					printf("swpctrie zone ok\n");
2106 				break;
2107 			}
2108 			VM_OBJECT_WUNLOCK(object);
2109 			if (uma_zone_exhausted(swpctrie_zone)) {
2110 				if (atomic_cmpset_int(&swpctrie_zone_exhausted,
2111 				    0, 1))
2112 					printf("swap pctrie zone exhausted, "
2113 					    "increase kern.maxswzone\n");
2114 				vm_pageout_oom(VM_OOM_SWAPZ);
2115 				pause("swzonxp", 10);
2116 			} else
2117 				uma_zwait(swpctrie_zone);
2118 			VM_OBJECT_WLOCK(object);
2119 			sb1 = SWAP_PCTRIE_LOOKUP(&object->un_pager.swp.swp_blks,
2120 			    rdpi);
2121 			if (sb1 != NULL) {
2122 				uma_zfree(swblk_zone, sb);
2123 				sb = sb1;
2124 				goto allocated;
2125 			}
2126 		}
2127 	}
2128 allocated:
2129 	MPASS(sb->p == rdpi);
2130 
2131 	modpi = pindex % SWAP_META_PAGES;
2132 	/* Return prior contents of metadata. */
2133 	prev_swapblk = sb->d[modpi];
2134 	/* Enter block into metadata. */
2135 	sb->d[modpi] = swapblk;
2136 
2137 	/*
2138 	 * Free the swblk if we end up with the empty page run.
2139 	 */
2140 	if (swapblk == SWAPBLK_NONE)
2141 		swp_pager_free_empty_swblk(object, sb);
2142 	return (prev_swapblk);
2143 }
2144 
2145 /*
2146  * SWP_PAGER_META_TRANSFER() - free a range of blocks in the srcobject's swap
2147  * metadata, or transfer it into dstobject.
2148  *
2149  *	This routine will free swap metadata structures as they are cleaned
2150  *	out.
2151  */
2152 static void
2153 swp_pager_meta_transfer(vm_object_t srcobject, vm_object_t dstobject,
2154     vm_pindex_t pindex, vm_pindex_t count)
2155 {
2156 	struct swblk *sb;
2157 	daddr_t n_free, s_free;
2158 	vm_pindex_t offset, last;
2159 	int i, limit, start;
2160 
2161 	VM_OBJECT_ASSERT_WLOCKED(srcobject);
2162 	if ((srcobject->flags & OBJ_SWAP) == 0 || count == 0)
2163 		return;
2164 
2165 	swp_pager_init_freerange(&s_free, &n_free);
2166 	offset = pindex;
2167 	last = pindex + count;
2168 	for (;;) {
2169 		sb = SWAP_PCTRIE_LOOKUP_GE(&srcobject->un_pager.swp.swp_blks,
2170 		    rounddown(pindex, SWAP_META_PAGES));
2171 		if (sb == NULL || sb->p >= last)
2172 			break;
2173 		start = pindex > sb->p ? pindex - sb->p : 0;
2174 		limit = last - sb->p < SWAP_META_PAGES ? last - sb->p :
2175 		    SWAP_META_PAGES;
2176 		for (i = start; i < limit; i++) {
2177 			if (sb->d[i] == SWAPBLK_NONE)
2178 				continue;
2179 			if (dstobject == NULL ||
2180 			    !swp_pager_xfer_source(srcobject, dstobject,
2181 			    sb->p + i - offset, sb->d[i])) {
2182 				swp_pager_update_freerange(&s_free, &n_free,
2183 				    sb->d[i]);
2184 			}
2185 			sb->d[i] = SWAPBLK_NONE;
2186 		}
2187 		pindex = sb->p + SWAP_META_PAGES;
2188 		if (swp_pager_swblk_empty(sb, 0, start) &&
2189 		    swp_pager_swblk_empty(sb, limit, SWAP_META_PAGES)) {
2190 			SWAP_PCTRIE_REMOVE(&srcobject->un_pager.swp.swp_blks,
2191 			    sb->p);
2192 			uma_zfree(swblk_zone, sb);
2193 		}
2194 	}
2195 	swp_pager_freeswapspace(s_free, n_free);
2196 }
2197 
2198 /*
2199  * SWP_PAGER_META_FREE() - free a range of blocks in the object's swap metadata
2200  *
2201  *	The requested range of blocks is freed, with any associated swap
2202  *	returned to the swap bitmap.
2203  *
2204  *	This routine will free swap metadata structures as they are cleaned
2205  *	out.  This routine does *NOT* operate on swap metadata associated
2206  *	with resident pages.
2207  */
2208 static void
2209 swp_pager_meta_free(vm_object_t object, vm_pindex_t pindex, vm_pindex_t count)
2210 {
2211 	swp_pager_meta_transfer(object, NULL, pindex, count);
2212 }
2213 
2214 /*
2215  * SWP_PAGER_META_FREE_ALL() - destroy all swap metadata associated with object
2216  *
2217  *	This routine locates and destroys all swap metadata associated with
2218  *	an object.
2219  */
2220 static void
2221 swp_pager_meta_free_all(vm_object_t object)
2222 {
2223 	struct swblk *sb;
2224 	daddr_t n_free, s_free;
2225 	vm_pindex_t pindex;
2226 	int i;
2227 
2228 	VM_OBJECT_ASSERT_WLOCKED(object);
2229 	if ((object->flags & OBJ_SWAP) == 0)
2230 		return;
2231 
2232 	swp_pager_init_freerange(&s_free, &n_free);
2233 	for (pindex = 0; (sb = SWAP_PCTRIE_LOOKUP_GE(
2234 	    &object->un_pager.swp.swp_blks, pindex)) != NULL;) {
2235 		pindex = sb->p + SWAP_META_PAGES;
2236 		for (i = 0; i < SWAP_META_PAGES; i++) {
2237 			if (sb->d[i] == SWAPBLK_NONE)
2238 				continue;
2239 			swp_pager_update_freerange(&s_free, &n_free, sb->d[i]);
2240 		}
2241 		SWAP_PCTRIE_REMOVE(&object->un_pager.swp.swp_blks, sb->p);
2242 		uma_zfree(swblk_zone, sb);
2243 	}
2244 	swp_pager_freeswapspace(s_free, n_free);
2245 }
2246 
2247 /*
2248  * SWP_PAGER_METACTL() -  misc control of swap meta data.
2249  *
2250  *	This routine is capable of looking up, or removing swapblk
2251  *	assignments in the swap meta data.  It returns the swapblk being
2252  *	looked-up, popped, or SWAPBLK_NONE if the block was invalid.
2253  *
2254  *	When acting on a busy resident page and paging is in progress, we
2255  *	have to wait until paging is complete but otherwise can act on the
2256  *	busy page.
2257  */
2258 static daddr_t
2259 swp_pager_meta_lookup(vm_object_t object, vm_pindex_t pindex)
2260 {
2261 	struct swblk *sb;
2262 
2263 	VM_OBJECT_ASSERT_LOCKED(object);
2264 
2265 	/*
2266 	 * The meta data only exists if the object is OBJT_SWAP
2267 	 * and even then might not be allocated yet.
2268 	 */
2269 	KASSERT((object->flags & OBJ_SWAP) != 0,
2270 	    ("Lookup object not swappable"));
2271 
2272 	sb = SWAP_PCTRIE_LOOKUP(&object->un_pager.swp.swp_blks,
2273 	    rounddown(pindex, SWAP_META_PAGES));
2274 	if (sb == NULL)
2275 		return (SWAPBLK_NONE);
2276 	return (sb->d[pindex % SWAP_META_PAGES]);
2277 }
2278 
2279 /*
2280  * Returns the least page index which is greater than or equal to the
2281  * parameter pindex and for which there is a swap block allocated.
2282  * Returns object's size if the object's type is not swap or if there
2283  * are no allocated swap blocks for the object after the requested
2284  * pindex.
2285  */
2286 vm_pindex_t
2287 swap_pager_find_least(vm_object_t object, vm_pindex_t pindex)
2288 {
2289 	struct swblk *sb;
2290 	int i;
2291 
2292 	VM_OBJECT_ASSERT_LOCKED(object);
2293 	if ((object->flags & OBJ_SWAP) == 0)
2294 		return (object->size);
2295 
2296 	sb = SWAP_PCTRIE_LOOKUP_GE(&object->un_pager.swp.swp_blks,
2297 	    rounddown(pindex, SWAP_META_PAGES));
2298 	if (sb == NULL)
2299 		return (object->size);
2300 	if (sb->p < pindex) {
2301 		for (i = pindex % SWAP_META_PAGES; i < SWAP_META_PAGES; i++) {
2302 			if (sb->d[i] != SWAPBLK_NONE)
2303 				return (sb->p + i);
2304 		}
2305 		sb = SWAP_PCTRIE_LOOKUP_GE(&object->un_pager.swp.swp_blks,
2306 		    roundup(pindex, SWAP_META_PAGES));
2307 		if (sb == NULL)
2308 			return (object->size);
2309 	}
2310 	for (i = 0; i < SWAP_META_PAGES; i++) {
2311 		if (sb->d[i] != SWAPBLK_NONE)
2312 			return (sb->p + i);
2313 	}
2314 
2315 	/*
2316 	 * We get here if a swblk is present in the trie but it
2317 	 * doesn't map any blocks.
2318 	 */
2319 	MPASS(0);
2320 	return (object->size);
2321 }
2322 
2323 /*
2324  * System call swapon(name) enables swapping on device name,
2325  * which must be in the swdevsw.  Return EBUSY
2326  * if already swapping on this device.
2327  */
2328 #ifndef _SYS_SYSPROTO_H_
2329 struct swapon_args {
2330 	char *name;
2331 };
2332 #endif
2333 
2334 /*
2335  * MPSAFE
2336  */
2337 /* ARGSUSED */
2338 int
2339 sys_swapon(struct thread *td, struct swapon_args *uap)
2340 {
2341 	struct vattr attr;
2342 	struct vnode *vp;
2343 	struct nameidata nd;
2344 	int error;
2345 
2346 	error = priv_check(td, PRIV_SWAPON);
2347 	if (error)
2348 		return (error);
2349 
2350 	sx_xlock(&swdev_syscall_lock);
2351 
2352 	/*
2353 	 * Swap metadata may not fit in the KVM if we have physical
2354 	 * memory of >1GB.
2355 	 */
2356 	if (swblk_zone == NULL) {
2357 		error = ENOMEM;
2358 		goto done;
2359 	}
2360 
2361 	NDINIT(&nd, LOOKUP, ISOPEN | FOLLOW | AUDITVNODE1, UIO_USERSPACE,
2362 	    uap->name, td);
2363 	error = namei(&nd);
2364 	if (error)
2365 		goto done;
2366 
2367 	NDFREE(&nd, NDF_ONLY_PNBUF);
2368 	vp = nd.ni_vp;
2369 
2370 	if (vn_isdisk_error(vp, &error)) {
2371 		error = swapongeom(vp);
2372 	} else if (vp->v_type == VREG &&
2373 	    (vp->v_mount->mnt_vfc->vfc_flags & VFCF_NETWORK) != 0 &&
2374 	    (error = VOP_GETATTR(vp, &attr, td->td_ucred)) == 0) {
2375 		/*
2376 		 * Allow direct swapping to NFS regular files in the same
2377 		 * way that nfs_mountroot() sets up diskless swapping.
2378 		 */
2379 		error = swaponvp(td, vp, attr.va_size / DEV_BSIZE);
2380 	}
2381 
2382 	if (error)
2383 		vrele(vp);
2384 done:
2385 	sx_xunlock(&swdev_syscall_lock);
2386 	return (error);
2387 }
2388 
2389 /*
2390  * Check that the total amount of swap currently configured does not
2391  * exceed half the theoretical maximum.  If it does, print a warning
2392  * message.
2393  */
2394 static void
2395 swapon_check_swzone(void)
2396 {
2397 
2398 	/* recommend using no more than half that amount */
2399 	if (swap_total > swap_maxpages / 2) {
2400 		printf("warning: total configured swap (%lu pages) "
2401 		    "exceeds maximum recommended amount (%lu pages).\n",
2402 		    swap_total, swap_maxpages / 2);
2403 		printf("warning: increase kern.maxswzone "
2404 		    "or reduce amount of swap.\n");
2405 	}
2406 }
2407 
2408 static void
2409 swaponsomething(struct vnode *vp, void *id, u_long nblks,
2410     sw_strategy_t *strategy, sw_close_t *close, dev_t dev, int flags)
2411 {
2412 	struct swdevt *sp, *tsp;
2413 	daddr_t dvbase;
2414 
2415 	/*
2416 	 * nblks is in DEV_BSIZE'd chunks, convert to PAGE_SIZE'd chunks.
2417 	 * First chop nblks off to page-align it, then convert.
2418 	 *
2419 	 * sw->sw_nblks is in page-sized chunks now too.
2420 	 */
2421 	nblks &= ~(ctodb(1) - 1);
2422 	nblks = dbtoc(nblks);
2423 
2424 	sp = malloc(sizeof *sp, M_VMPGDATA, M_WAITOK | M_ZERO);
2425 	sp->sw_blist = blist_create(nblks, M_WAITOK);
2426 	sp->sw_vp = vp;
2427 	sp->sw_id = id;
2428 	sp->sw_dev = dev;
2429 	sp->sw_nblks = nblks;
2430 	sp->sw_used = 0;
2431 	sp->sw_strategy = strategy;
2432 	sp->sw_close = close;
2433 	sp->sw_flags = flags;
2434 
2435 	/*
2436 	 * Do not free the first blocks in order to avoid overwriting
2437 	 * any bsd label at the front of the partition
2438 	 */
2439 	blist_free(sp->sw_blist, howmany(BBSIZE, PAGE_SIZE),
2440 	    nblks - howmany(BBSIZE, PAGE_SIZE));
2441 
2442 	dvbase = 0;
2443 	mtx_lock(&sw_dev_mtx);
2444 	TAILQ_FOREACH(tsp, &swtailq, sw_list) {
2445 		if (tsp->sw_end >= dvbase) {
2446 			/*
2447 			 * We put one uncovered page between the devices
2448 			 * in order to definitively prevent any cross-device
2449 			 * I/O requests
2450 			 */
2451 			dvbase = tsp->sw_end + 1;
2452 		}
2453 	}
2454 	sp->sw_first = dvbase;
2455 	sp->sw_end = dvbase + nblks;
2456 	TAILQ_INSERT_TAIL(&swtailq, sp, sw_list);
2457 	nswapdev++;
2458 	swap_pager_avail += nblks - howmany(BBSIZE, PAGE_SIZE);
2459 	swap_total += nblks;
2460 	swapon_check_swzone();
2461 	swp_sizecheck();
2462 	mtx_unlock(&sw_dev_mtx);
2463 	EVENTHANDLER_INVOKE(swapon, sp);
2464 }
2465 
2466 /*
2467  * SYSCALL: swapoff(devname)
2468  *
2469  * Disable swapping on the given device.
2470  *
2471  * XXX: Badly designed system call: it should use a device index
2472  * rather than filename as specification.  We keep sw_vp around
2473  * only to make this work.
2474  */
2475 #ifndef _SYS_SYSPROTO_H_
2476 struct swapoff_args {
2477 	char *name;
2478 };
2479 #endif
2480 
2481 /*
2482  * MPSAFE
2483  */
2484 /* ARGSUSED */
2485 int
2486 sys_swapoff(struct thread *td, struct swapoff_args *uap)
2487 {
2488 	struct vnode *vp;
2489 	struct nameidata nd;
2490 	struct swdevt *sp;
2491 	int error;
2492 
2493 	error = priv_check(td, PRIV_SWAPOFF);
2494 	if (error)
2495 		return (error);
2496 
2497 	sx_xlock(&swdev_syscall_lock);
2498 
2499 	NDINIT(&nd, LOOKUP, FOLLOW | AUDITVNODE1, UIO_USERSPACE, uap->name,
2500 	    td);
2501 	error = namei(&nd);
2502 	if (error)
2503 		goto done;
2504 	NDFREE(&nd, NDF_ONLY_PNBUF);
2505 	vp = nd.ni_vp;
2506 
2507 	mtx_lock(&sw_dev_mtx);
2508 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
2509 		if (sp->sw_vp == vp)
2510 			break;
2511 	}
2512 	mtx_unlock(&sw_dev_mtx);
2513 	if (sp == NULL) {
2514 		error = EINVAL;
2515 		goto done;
2516 	}
2517 	error = swapoff_one(sp, td->td_ucred);
2518 done:
2519 	sx_xunlock(&swdev_syscall_lock);
2520 	return (error);
2521 }
2522 
2523 static int
2524 swapoff_one(struct swdevt *sp, struct ucred *cred)
2525 {
2526 	u_long nblks;
2527 #ifdef MAC
2528 	int error;
2529 #endif
2530 
2531 	sx_assert(&swdev_syscall_lock, SA_XLOCKED);
2532 #ifdef MAC
2533 	(void) vn_lock(sp->sw_vp, LK_EXCLUSIVE | LK_RETRY);
2534 	error = mac_system_check_swapoff(cred, sp->sw_vp);
2535 	(void) VOP_UNLOCK(sp->sw_vp);
2536 	if (error != 0)
2537 		return (error);
2538 #endif
2539 	nblks = sp->sw_nblks;
2540 
2541 	/*
2542 	 * We can turn off this swap device safely only if the
2543 	 * available virtual memory in the system will fit the amount
2544 	 * of data we will have to page back in, plus an epsilon so
2545 	 * the system doesn't become critically low on swap space.
2546 	 */
2547 	if (vm_free_count() + swap_pager_avail < nblks + nswap_lowat)
2548 		return (ENOMEM);
2549 
2550 	/*
2551 	 * Prevent further allocations on this device.
2552 	 */
2553 	mtx_lock(&sw_dev_mtx);
2554 	sp->sw_flags |= SW_CLOSING;
2555 	swap_pager_avail -= blist_fill(sp->sw_blist, 0, nblks);
2556 	swap_total -= nblks;
2557 	mtx_unlock(&sw_dev_mtx);
2558 
2559 	/*
2560 	 * Page in the contents of the device and close it.
2561 	 */
2562 	swap_pager_swapoff(sp);
2563 
2564 	sp->sw_close(curthread, sp);
2565 	mtx_lock(&sw_dev_mtx);
2566 	sp->sw_id = NULL;
2567 	TAILQ_REMOVE(&swtailq, sp, sw_list);
2568 	nswapdev--;
2569 	if (nswapdev == 0) {
2570 		swap_pager_full = 2;
2571 		swap_pager_almost_full = 1;
2572 	}
2573 	if (swdevhd == sp)
2574 		swdevhd = NULL;
2575 	mtx_unlock(&sw_dev_mtx);
2576 	blist_destroy(sp->sw_blist);
2577 	free(sp, M_VMPGDATA);
2578 	return (0);
2579 }
2580 
2581 void
2582 swapoff_all(void)
2583 {
2584 	struct swdevt *sp, *spt;
2585 	const char *devname;
2586 	int error;
2587 
2588 	sx_xlock(&swdev_syscall_lock);
2589 
2590 	mtx_lock(&sw_dev_mtx);
2591 	TAILQ_FOREACH_SAFE(sp, &swtailq, sw_list, spt) {
2592 		mtx_unlock(&sw_dev_mtx);
2593 		if (vn_isdisk(sp->sw_vp))
2594 			devname = devtoname(sp->sw_vp->v_rdev);
2595 		else
2596 			devname = "[file]";
2597 		error = swapoff_one(sp, thread0.td_ucred);
2598 		if (error != 0) {
2599 			printf("Cannot remove swap device %s (error=%d), "
2600 			    "skipping.\n", devname, error);
2601 		} else if (bootverbose) {
2602 			printf("Swap device %s removed.\n", devname);
2603 		}
2604 		mtx_lock(&sw_dev_mtx);
2605 	}
2606 	mtx_unlock(&sw_dev_mtx);
2607 
2608 	sx_xunlock(&swdev_syscall_lock);
2609 }
2610 
2611 void
2612 swap_pager_status(int *total, int *used)
2613 {
2614 
2615 	*total = swap_total;
2616 	*used = swap_total - swap_pager_avail -
2617 	    nswapdev * howmany(BBSIZE, PAGE_SIZE);
2618 }
2619 
2620 int
2621 swap_dev_info(int name, struct xswdev *xs, char *devname, size_t len)
2622 {
2623 	struct swdevt *sp;
2624 	const char *tmp_devname;
2625 	int error, n;
2626 
2627 	n = 0;
2628 	error = ENOENT;
2629 	mtx_lock(&sw_dev_mtx);
2630 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
2631 		if (n != name) {
2632 			n++;
2633 			continue;
2634 		}
2635 		xs->xsw_version = XSWDEV_VERSION;
2636 		xs->xsw_dev = sp->sw_dev;
2637 		xs->xsw_flags = sp->sw_flags;
2638 		xs->xsw_nblks = sp->sw_nblks;
2639 		xs->xsw_used = sp->sw_used;
2640 		if (devname != NULL) {
2641 			if (vn_isdisk(sp->sw_vp))
2642 				tmp_devname = devtoname(sp->sw_vp->v_rdev);
2643 			else
2644 				tmp_devname = "[file]";
2645 			strncpy(devname, tmp_devname, len);
2646 		}
2647 		error = 0;
2648 		break;
2649 	}
2650 	mtx_unlock(&sw_dev_mtx);
2651 	return (error);
2652 }
2653 
2654 #if defined(COMPAT_FREEBSD11)
2655 #define XSWDEV_VERSION_11	1
2656 struct xswdev11 {
2657 	u_int	xsw_version;
2658 	uint32_t xsw_dev;
2659 	int	xsw_flags;
2660 	int	xsw_nblks;
2661 	int     xsw_used;
2662 };
2663 #endif
2664 
2665 #if defined(__amd64__) && defined(COMPAT_FREEBSD32)
2666 struct xswdev32 {
2667 	u_int	xsw_version;
2668 	u_int	xsw_dev1, xsw_dev2;
2669 	int	xsw_flags;
2670 	int	xsw_nblks;
2671 	int     xsw_used;
2672 };
2673 #endif
2674 
2675 static int
2676 sysctl_vm_swap_info(SYSCTL_HANDLER_ARGS)
2677 {
2678 	struct xswdev xs;
2679 #if defined(__amd64__) && defined(COMPAT_FREEBSD32)
2680 	struct xswdev32 xs32;
2681 #endif
2682 #if defined(COMPAT_FREEBSD11)
2683 	struct xswdev11 xs11;
2684 #endif
2685 	int error;
2686 
2687 	if (arg2 != 1)			/* name length */
2688 		return (EINVAL);
2689 
2690 	memset(&xs, 0, sizeof(xs));
2691 	error = swap_dev_info(*(int *)arg1, &xs, NULL, 0);
2692 	if (error != 0)
2693 		return (error);
2694 #if defined(__amd64__) && defined(COMPAT_FREEBSD32)
2695 	if (req->oldlen == sizeof(xs32)) {
2696 		memset(&xs32, 0, sizeof(xs32));
2697 		xs32.xsw_version = XSWDEV_VERSION;
2698 		xs32.xsw_dev1 = xs.xsw_dev;
2699 		xs32.xsw_dev2 = xs.xsw_dev >> 32;
2700 		xs32.xsw_flags = xs.xsw_flags;
2701 		xs32.xsw_nblks = xs.xsw_nblks;
2702 		xs32.xsw_used = xs.xsw_used;
2703 		error = SYSCTL_OUT(req, &xs32, sizeof(xs32));
2704 		return (error);
2705 	}
2706 #endif
2707 #if defined(COMPAT_FREEBSD11)
2708 	if (req->oldlen == sizeof(xs11)) {
2709 		memset(&xs11, 0, sizeof(xs11));
2710 		xs11.xsw_version = XSWDEV_VERSION_11;
2711 		xs11.xsw_dev = xs.xsw_dev; /* truncation */
2712 		xs11.xsw_flags = xs.xsw_flags;
2713 		xs11.xsw_nblks = xs.xsw_nblks;
2714 		xs11.xsw_used = xs.xsw_used;
2715 		error = SYSCTL_OUT(req, &xs11, sizeof(xs11));
2716 		return (error);
2717 	}
2718 #endif
2719 	error = SYSCTL_OUT(req, &xs, sizeof(xs));
2720 	return (error);
2721 }
2722 
2723 SYSCTL_INT(_vm, OID_AUTO, nswapdev, CTLFLAG_RD, &nswapdev, 0,
2724     "Number of swap devices");
2725 SYSCTL_NODE(_vm, OID_AUTO, swap_info, CTLFLAG_RD | CTLFLAG_MPSAFE,
2726     sysctl_vm_swap_info,
2727     "Swap statistics by device");
2728 
2729 /*
2730  * Count the approximate swap usage in pages for a vmspace.  The
2731  * shadowed or not yet copied on write swap blocks are not accounted.
2732  * The map must be locked.
2733  */
2734 long
2735 vmspace_swap_count(struct vmspace *vmspace)
2736 {
2737 	vm_map_t map;
2738 	vm_map_entry_t cur;
2739 	vm_object_t object;
2740 	struct swblk *sb;
2741 	vm_pindex_t e, pi;
2742 	long count;
2743 	int i;
2744 
2745 	map = &vmspace->vm_map;
2746 	count = 0;
2747 
2748 	VM_MAP_ENTRY_FOREACH(cur, map) {
2749 		if ((cur->eflags & MAP_ENTRY_IS_SUB_MAP) != 0)
2750 			continue;
2751 		object = cur->object.vm_object;
2752 		if (object == NULL || (object->flags & OBJ_SWAP) == 0)
2753 			continue;
2754 		VM_OBJECT_RLOCK(object);
2755 		if ((object->flags & OBJ_SWAP) == 0)
2756 			goto unlock;
2757 		pi = OFF_TO_IDX(cur->offset);
2758 		e = pi + OFF_TO_IDX(cur->end - cur->start);
2759 		for (;; pi = sb->p + SWAP_META_PAGES) {
2760 			sb = SWAP_PCTRIE_LOOKUP_GE(
2761 			    &object->un_pager.swp.swp_blks, pi);
2762 			if (sb == NULL || sb->p >= e)
2763 				break;
2764 			for (i = 0; i < SWAP_META_PAGES; i++) {
2765 				if (sb->p + i < e &&
2766 				    sb->d[i] != SWAPBLK_NONE)
2767 					count++;
2768 			}
2769 		}
2770 unlock:
2771 		VM_OBJECT_RUNLOCK(object);
2772 	}
2773 	return (count);
2774 }
2775 
2776 /*
2777  * GEOM backend
2778  *
2779  * Swapping onto disk devices.
2780  *
2781  */
2782 
2783 static g_orphan_t swapgeom_orphan;
2784 
2785 static struct g_class g_swap_class = {
2786 	.name = "SWAP",
2787 	.version = G_VERSION,
2788 	.orphan = swapgeom_orphan,
2789 };
2790 
2791 DECLARE_GEOM_CLASS(g_swap_class, g_class);
2792 
2793 static void
2794 swapgeom_close_ev(void *arg, int flags)
2795 {
2796 	struct g_consumer *cp;
2797 
2798 	cp = arg;
2799 	g_access(cp, -1, -1, 0);
2800 	g_detach(cp);
2801 	g_destroy_consumer(cp);
2802 }
2803 
2804 /*
2805  * Add a reference to the g_consumer for an inflight transaction.
2806  */
2807 static void
2808 swapgeom_acquire(struct g_consumer *cp)
2809 {
2810 
2811 	mtx_assert(&sw_dev_mtx, MA_OWNED);
2812 	cp->index++;
2813 }
2814 
2815 /*
2816  * Remove a reference from the g_consumer.  Post a close event if all
2817  * references go away, since the function might be called from the
2818  * biodone context.
2819  */
2820 static void
2821 swapgeom_release(struct g_consumer *cp, struct swdevt *sp)
2822 {
2823 
2824 	mtx_assert(&sw_dev_mtx, MA_OWNED);
2825 	cp->index--;
2826 	if (cp->index == 0) {
2827 		if (g_post_event(swapgeom_close_ev, cp, M_NOWAIT, NULL) == 0)
2828 			sp->sw_id = NULL;
2829 	}
2830 }
2831 
2832 static void
2833 swapgeom_done(struct bio *bp2)
2834 {
2835 	struct swdevt *sp;
2836 	struct buf *bp;
2837 	struct g_consumer *cp;
2838 
2839 	bp = bp2->bio_caller2;
2840 	cp = bp2->bio_from;
2841 	bp->b_ioflags = bp2->bio_flags;
2842 	if (bp2->bio_error)
2843 		bp->b_ioflags |= BIO_ERROR;
2844 	bp->b_resid = bp->b_bcount - bp2->bio_completed;
2845 	bp->b_error = bp2->bio_error;
2846 	bp->b_caller1 = NULL;
2847 	bufdone(bp);
2848 	sp = bp2->bio_caller1;
2849 	mtx_lock(&sw_dev_mtx);
2850 	swapgeom_release(cp, sp);
2851 	mtx_unlock(&sw_dev_mtx);
2852 	g_destroy_bio(bp2);
2853 }
2854 
2855 static void
2856 swapgeom_strategy(struct buf *bp, struct swdevt *sp)
2857 {
2858 	struct bio *bio;
2859 	struct g_consumer *cp;
2860 
2861 	mtx_lock(&sw_dev_mtx);
2862 	cp = sp->sw_id;
2863 	if (cp == NULL) {
2864 		mtx_unlock(&sw_dev_mtx);
2865 		bp->b_error = ENXIO;
2866 		bp->b_ioflags |= BIO_ERROR;
2867 		bufdone(bp);
2868 		return;
2869 	}
2870 	swapgeom_acquire(cp);
2871 	mtx_unlock(&sw_dev_mtx);
2872 	if (bp->b_iocmd == BIO_WRITE)
2873 		bio = g_new_bio();
2874 	else
2875 		bio = g_alloc_bio();
2876 	if (bio == NULL) {
2877 		mtx_lock(&sw_dev_mtx);
2878 		swapgeom_release(cp, sp);
2879 		mtx_unlock(&sw_dev_mtx);
2880 		bp->b_error = ENOMEM;
2881 		bp->b_ioflags |= BIO_ERROR;
2882 		printf("swap_pager: cannot allocate bio\n");
2883 		bufdone(bp);
2884 		return;
2885 	}
2886 
2887 	bp->b_caller1 = bio;
2888 	bio->bio_caller1 = sp;
2889 	bio->bio_caller2 = bp;
2890 	bio->bio_cmd = bp->b_iocmd;
2891 	bio->bio_offset = (bp->b_blkno - sp->sw_first) * PAGE_SIZE;
2892 	bio->bio_length = bp->b_bcount;
2893 	bio->bio_done = swapgeom_done;
2894 	if (!buf_mapped(bp)) {
2895 		bio->bio_ma = bp->b_pages;
2896 		bio->bio_data = unmapped_buf;
2897 		bio->bio_ma_offset = (vm_offset_t)bp->b_offset & PAGE_MASK;
2898 		bio->bio_ma_n = bp->b_npages;
2899 		bio->bio_flags |= BIO_UNMAPPED;
2900 	} else {
2901 		bio->bio_data = bp->b_data;
2902 		bio->bio_ma = NULL;
2903 	}
2904 	g_io_request(bio, cp);
2905 	return;
2906 }
2907 
2908 static void
2909 swapgeom_orphan(struct g_consumer *cp)
2910 {
2911 	struct swdevt *sp;
2912 	int destroy;
2913 
2914 	mtx_lock(&sw_dev_mtx);
2915 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
2916 		if (sp->sw_id == cp) {
2917 			sp->sw_flags |= SW_CLOSING;
2918 			break;
2919 		}
2920 	}
2921 	/*
2922 	 * Drop reference we were created with. Do directly since we're in a
2923 	 * special context where we don't have to queue the call to
2924 	 * swapgeom_close_ev().
2925 	 */
2926 	cp->index--;
2927 	destroy = ((sp != NULL) && (cp->index == 0));
2928 	if (destroy)
2929 		sp->sw_id = NULL;
2930 	mtx_unlock(&sw_dev_mtx);
2931 	if (destroy)
2932 		swapgeom_close_ev(cp, 0);
2933 }
2934 
2935 static void
2936 swapgeom_close(struct thread *td, struct swdevt *sw)
2937 {
2938 	struct g_consumer *cp;
2939 
2940 	mtx_lock(&sw_dev_mtx);
2941 	cp = sw->sw_id;
2942 	sw->sw_id = NULL;
2943 	mtx_unlock(&sw_dev_mtx);
2944 
2945 	/*
2946 	 * swapgeom_close() may be called from the biodone context,
2947 	 * where we cannot perform topology changes.  Delegate the
2948 	 * work to the events thread.
2949 	 */
2950 	if (cp != NULL)
2951 		g_waitfor_event(swapgeom_close_ev, cp, M_WAITOK, NULL);
2952 }
2953 
2954 static int
2955 swapongeom_locked(struct cdev *dev, struct vnode *vp)
2956 {
2957 	struct g_provider *pp;
2958 	struct g_consumer *cp;
2959 	static struct g_geom *gp;
2960 	struct swdevt *sp;
2961 	u_long nblks;
2962 	int error;
2963 
2964 	pp = g_dev_getprovider(dev);
2965 	if (pp == NULL)
2966 		return (ENODEV);
2967 	mtx_lock(&sw_dev_mtx);
2968 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
2969 		cp = sp->sw_id;
2970 		if (cp != NULL && cp->provider == pp) {
2971 			mtx_unlock(&sw_dev_mtx);
2972 			return (EBUSY);
2973 		}
2974 	}
2975 	mtx_unlock(&sw_dev_mtx);
2976 	if (gp == NULL)
2977 		gp = g_new_geomf(&g_swap_class, "swap");
2978 	cp = g_new_consumer(gp);
2979 	cp->index = 1;	/* Number of active I/Os, plus one for being active. */
2980 	cp->flags |=  G_CF_DIRECT_SEND | G_CF_DIRECT_RECEIVE;
2981 	g_attach(cp, pp);
2982 	/*
2983 	 * XXX: Every time you think you can improve the margin for
2984 	 * footshooting, somebody depends on the ability to do so:
2985 	 * savecore(8) wants to write to our swapdev so we cannot
2986 	 * set an exclusive count :-(
2987 	 */
2988 	error = g_access(cp, 1, 1, 0);
2989 	if (error != 0) {
2990 		g_detach(cp);
2991 		g_destroy_consumer(cp);
2992 		return (error);
2993 	}
2994 	nblks = pp->mediasize / DEV_BSIZE;
2995 	swaponsomething(vp, cp, nblks, swapgeom_strategy,
2996 	    swapgeom_close, dev2udev(dev),
2997 	    (pp->flags & G_PF_ACCEPT_UNMAPPED) != 0 ? SW_UNMAPPED : 0);
2998 	return (0);
2999 }
3000 
3001 static int
3002 swapongeom(struct vnode *vp)
3003 {
3004 	int error;
3005 
3006 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
3007 	if (vp->v_type != VCHR || VN_IS_DOOMED(vp)) {
3008 		error = ENOENT;
3009 	} else {
3010 		g_topology_lock();
3011 		error = swapongeom_locked(vp->v_rdev, vp);
3012 		g_topology_unlock();
3013 	}
3014 	VOP_UNLOCK(vp);
3015 	return (error);
3016 }
3017 
3018 /*
3019  * VNODE backend
3020  *
3021  * This is used mainly for network filesystem (read: probably only tested
3022  * with NFS) swapfiles.
3023  *
3024  */
3025 
3026 static void
3027 swapdev_strategy(struct buf *bp, struct swdevt *sp)
3028 {
3029 	struct vnode *vp2;
3030 
3031 	bp->b_blkno = ctodb(bp->b_blkno - sp->sw_first);
3032 
3033 	vp2 = sp->sw_id;
3034 	vhold(vp2);
3035 	if (bp->b_iocmd == BIO_WRITE) {
3036 		if (bp->b_bufobj)
3037 			bufobj_wdrop(bp->b_bufobj);
3038 		bufobj_wref(&vp2->v_bufobj);
3039 	}
3040 	if (bp->b_bufobj != &vp2->v_bufobj)
3041 		bp->b_bufobj = &vp2->v_bufobj;
3042 	bp->b_vp = vp2;
3043 	bp->b_iooffset = dbtob(bp->b_blkno);
3044 	bstrategy(bp);
3045 	return;
3046 }
3047 
3048 static void
3049 swapdev_close(struct thread *td, struct swdevt *sp)
3050 {
3051 
3052 	VOP_CLOSE(sp->sw_vp, FREAD | FWRITE, td->td_ucred, td);
3053 	vrele(sp->sw_vp);
3054 }
3055 
3056 static int
3057 swaponvp(struct thread *td, struct vnode *vp, u_long nblks)
3058 {
3059 	struct swdevt *sp;
3060 	int error;
3061 
3062 	if (nblks == 0)
3063 		return (ENXIO);
3064 	mtx_lock(&sw_dev_mtx);
3065 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
3066 		if (sp->sw_id == vp) {
3067 			mtx_unlock(&sw_dev_mtx);
3068 			return (EBUSY);
3069 		}
3070 	}
3071 	mtx_unlock(&sw_dev_mtx);
3072 
3073 	(void) vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
3074 #ifdef MAC
3075 	error = mac_system_check_swapon(td->td_ucred, vp);
3076 	if (error == 0)
3077 #endif
3078 		error = VOP_OPEN(vp, FREAD | FWRITE, td->td_ucred, td, NULL);
3079 	(void) VOP_UNLOCK(vp);
3080 	if (error)
3081 		return (error);
3082 
3083 	swaponsomething(vp, vp, nblks, swapdev_strategy, swapdev_close,
3084 	    NODEV, 0);
3085 	return (0);
3086 }
3087 
3088 static int
3089 sysctl_swap_async_max(SYSCTL_HANDLER_ARGS)
3090 {
3091 	int error, new, n;
3092 
3093 	new = nsw_wcount_async_max;
3094 	error = sysctl_handle_int(oidp, &new, 0, req);
3095 	if (error != 0 || req->newptr == NULL)
3096 		return (error);
3097 
3098 	if (new > nswbuf / 2 || new < 1)
3099 		return (EINVAL);
3100 
3101 	mtx_lock(&swbuf_mtx);
3102 	while (nsw_wcount_async_max != new) {
3103 		/*
3104 		 * Adjust difference.  If the current async count is too low,
3105 		 * we will need to sqeeze our update slowly in.  Sleep with a
3106 		 * higher priority than getpbuf() to finish faster.
3107 		 */
3108 		n = new - nsw_wcount_async_max;
3109 		if (nsw_wcount_async + n >= 0) {
3110 			nsw_wcount_async += n;
3111 			nsw_wcount_async_max += n;
3112 			wakeup(&nsw_wcount_async);
3113 		} else {
3114 			nsw_wcount_async_max -= nsw_wcount_async;
3115 			nsw_wcount_async = 0;
3116 			msleep(&nsw_wcount_async, &swbuf_mtx, PSWP,
3117 			    "swpsysctl", 0);
3118 		}
3119 	}
3120 	mtx_unlock(&swbuf_mtx);
3121 
3122 	return (0);
3123 }
3124 
3125 static void
3126 swap_pager_update_writecount(vm_object_t object, vm_offset_t start,
3127     vm_offset_t end)
3128 {
3129 
3130 	VM_OBJECT_WLOCK(object);
3131 	KASSERT((object->flags & OBJ_ANON) == 0,
3132 	    ("Splittable object with writecount"));
3133 	object->un_pager.swp.writemappings += (vm_ooffset_t)end - start;
3134 	VM_OBJECT_WUNLOCK(object);
3135 }
3136 
3137 static void
3138 swap_pager_release_writecount(vm_object_t object, vm_offset_t start,
3139     vm_offset_t end)
3140 {
3141 
3142 	VM_OBJECT_WLOCK(object);
3143 	KASSERT((object->flags & OBJ_ANON) == 0,
3144 	    ("Splittable object with writecount"));
3145 	object->un_pager.swp.writemappings -= (vm_ooffset_t)end - start;
3146 	VM_OBJECT_WUNLOCK(object);
3147 }
3148