xref: /freebsd/sys/vm/swap_pager.c (revision c7046f76)
1 /*-
2  * SPDX-License-Identifier: BSD-4-Clause
3  *
4  * Copyright (c) 1998 Matthew Dillon,
5  * Copyright (c) 1994 John S. Dyson
6  * Copyright (c) 1990 University of Utah.
7  * Copyright (c) 1982, 1986, 1989, 1993
8  *	The Regents of the University of California.  All rights reserved.
9  *
10  * This code is derived from software contributed to Berkeley by
11  * the Systems Programming Group of the University of Utah Computer
12  * Science Department.
13  *
14  * Redistribution and use in source and binary forms, with or without
15  * modification, are permitted provided that the following conditions
16  * are met:
17  * 1. Redistributions of source code must retain the above copyright
18  *    notice, this list of conditions and the following disclaimer.
19  * 2. Redistributions in binary form must reproduce the above copyright
20  *    notice, this list of conditions and the following disclaimer in the
21  *    documentation and/or other materials provided with the distribution.
22  * 3. All advertising materials mentioning features or use of this software
23  *    must display the following acknowledgement:
24  *	This product includes software developed by the University of
25  *	California, Berkeley and its contributors.
26  * 4. Neither the name of the University nor the names of its contributors
27  *    may be used to endorse or promote products derived from this software
28  *    without specific prior written permission.
29  *
30  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
31  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
32  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
33  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
34  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
35  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
36  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
37  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
38  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
39  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
40  * SUCH DAMAGE.
41  *
42  *				New Swap System
43  *				Matthew Dillon
44  *
45  * Radix Bitmap 'blists'.
46  *
47  *	- The new swapper uses the new radix bitmap code.  This should scale
48  *	  to arbitrarily small or arbitrarily large swap spaces and an almost
49  *	  arbitrary degree of fragmentation.
50  *
51  * Features:
52  *
53  *	- on the fly reallocation of swap during putpages.  The new system
54  *	  does not try to keep previously allocated swap blocks for dirty
55  *	  pages.
56  *
57  *	- on the fly deallocation of swap
58  *
59  *	- No more garbage collection required.  Unnecessarily allocated swap
60  *	  blocks only exist for dirty vm_page_t's now and these are already
61  *	  cycled (in a high-load system) by the pager.  We also do on-the-fly
62  *	  removal of invalidated swap blocks when a page is destroyed
63  *	  or renamed.
64  *
65  * from: Utah $Hdr: swap_pager.c 1.4 91/04/30$
66  *
67  *	@(#)swap_pager.c	8.9 (Berkeley) 3/21/94
68  *	@(#)vm_swap.c	8.5 (Berkeley) 2/17/94
69  */
70 
71 #include <sys/cdefs.h>
72 __FBSDID("$FreeBSD$");
73 
74 #include "opt_vm.h"
75 
76 #include <sys/param.h>
77 #include <sys/bio.h>
78 #include <sys/blist.h>
79 #include <sys/buf.h>
80 #include <sys/conf.h>
81 #include <sys/disk.h>
82 #include <sys/disklabel.h>
83 #include <sys/eventhandler.h>
84 #include <sys/fcntl.h>
85 #include <sys/limits.h>
86 #include <sys/lock.h>
87 #include <sys/kernel.h>
88 #include <sys/mount.h>
89 #include <sys/namei.h>
90 #include <sys/malloc.h>
91 #include <sys/pctrie.h>
92 #include <sys/priv.h>
93 #include <sys/proc.h>
94 #include <sys/racct.h>
95 #include <sys/resource.h>
96 #include <sys/resourcevar.h>
97 #include <sys/rwlock.h>
98 #include <sys/sbuf.h>
99 #include <sys/sysctl.h>
100 #include <sys/sysproto.h>
101 #include <sys/systm.h>
102 #include <sys/sx.h>
103 #include <sys/unistd.h>
104 #include <sys/user.h>
105 #include <sys/vmmeter.h>
106 #include <sys/vnode.h>
107 
108 #include <security/mac/mac_framework.h>
109 
110 #include <vm/vm.h>
111 #include <vm/pmap.h>
112 #include <vm/vm_map.h>
113 #include <vm/vm_kern.h>
114 #include <vm/vm_object.h>
115 #include <vm/vm_page.h>
116 #include <vm/vm_pager.h>
117 #include <vm/vm_pageout.h>
118 #include <vm/vm_param.h>
119 #include <vm/swap_pager.h>
120 #include <vm/vm_extern.h>
121 #include <vm/uma.h>
122 
123 #include <geom/geom.h>
124 
125 /*
126  * MAX_PAGEOUT_CLUSTER must be a power of 2 between 1 and 64.
127  * The 64-page limit is due to the radix code (kern/subr_blist.c).
128  */
129 #ifndef MAX_PAGEOUT_CLUSTER
130 #define	MAX_PAGEOUT_CLUSTER	32
131 #endif
132 
133 #if !defined(SWB_NPAGES)
134 #define SWB_NPAGES	MAX_PAGEOUT_CLUSTER
135 #endif
136 
137 #define	SWAP_META_PAGES		PCTRIE_COUNT
138 
139 /*
140  * A swblk structure maps each page index within a
141  * SWAP_META_PAGES-aligned and sized range to the address of an
142  * on-disk swap block (or SWAPBLK_NONE). The collection of these
143  * mappings for an entire vm object is implemented as a pc-trie.
144  */
145 struct swblk {
146 	vm_pindex_t	p;
147 	daddr_t		d[SWAP_META_PAGES];
148 };
149 
150 static MALLOC_DEFINE(M_VMPGDATA, "vm_pgdata", "swap pager private data");
151 static struct mtx sw_dev_mtx;
152 static TAILQ_HEAD(, swdevt) swtailq = TAILQ_HEAD_INITIALIZER(swtailq);
153 static struct swdevt *swdevhd;	/* Allocate from here next */
154 static int nswapdev;		/* Number of swap devices */
155 int swap_pager_avail;
156 static struct sx swdev_syscall_lock;	/* serialize swap(on|off) */
157 
158 static __exclusive_cache_line u_long swap_reserved;
159 static u_long swap_total;
160 static int sysctl_page_shift(SYSCTL_HANDLER_ARGS);
161 
162 static SYSCTL_NODE(_vm_stats, OID_AUTO, swap, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
163     "VM swap stats");
164 
165 SYSCTL_PROC(_vm, OID_AUTO, swap_reserved, CTLTYPE_U64 | CTLFLAG_RD | CTLFLAG_MPSAFE,
166     &swap_reserved, 0, sysctl_page_shift, "QU",
167     "Amount of swap storage needed to back all allocated anonymous memory.");
168 SYSCTL_PROC(_vm, OID_AUTO, swap_total, CTLTYPE_U64 | CTLFLAG_RD | CTLFLAG_MPSAFE,
169     &swap_total, 0, sysctl_page_shift, "QU",
170     "Total amount of available swap storage.");
171 
172 int vm_overcommit __read_mostly = 0;
173 SYSCTL_INT(_vm, VM_OVERCOMMIT, overcommit, CTLFLAG_RW, &vm_overcommit, 0,
174     "Configure virtual memory overcommit behavior. See tuning(7) "
175     "for details.");
176 static unsigned long swzone;
177 SYSCTL_ULONG(_vm, OID_AUTO, swzone, CTLFLAG_RD, &swzone, 0,
178     "Actual size of swap metadata zone");
179 static unsigned long swap_maxpages;
180 SYSCTL_ULONG(_vm, OID_AUTO, swap_maxpages, CTLFLAG_RD, &swap_maxpages, 0,
181     "Maximum amount of swap supported");
182 
183 static COUNTER_U64_DEFINE_EARLY(swap_free_deferred);
184 SYSCTL_COUNTER_U64(_vm_stats_swap, OID_AUTO, free_deferred,
185     CTLFLAG_RD, &swap_free_deferred,
186     "Number of pages that deferred freeing swap space");
187 
188 static COUNTER_U64_DEFINE_EARLY(swap_free_completed);
189 SYSCTL_COUNTER_U64(_vm_stats_swap, OID_AUTO, free_completed,
190     CTLFLAG_RD, &swap_free_completed,
191     "Number of deferred frees completed");
192 
193 static int
194 sysctl_page_shift(SYSCTL_HANDLER_ARGS)
195 {
196 	uint64_t newval;
197 	u_long value = *(u_long *)arg1;
198 
199 	newval = ((uint64_t)value) << PAGE_SHIFT;
200 	return (sysctl_handle_64(oidp, &newval, 0, req));
201 }
202 
203 static bool
204 swap_reserve_by_cred_rlimit(u_long pincr, struct ucred *cred, int oc)
205 {
206 	struct uidinfo *uip;
207 	u_long prev;
208 
209 	uip = cred->cr_ruidinfo;
210 
211 	prev = atomic_fetchadd_long(&uip->ui_vmsize, pincr);
212 	if ((oc & SWAP_RESERVE_RLIMIT_ON) != 0 &&
213 	    prev + pincr > lim_cur(curthread, RLIMIT_SWAP) &&
214 	    priv_check(curthread, PRIV_VM_SWAP_NORLIMIT) != 0) {
215 		prev = atomic_fetchadd_long(&uip->ui_vmsize, -pincr);
216 		KASSERT(prev >= pincr,
217 		    ("negative vmsize for uid %d\n", uip->ui_uid));
218 		return (false);
219 	}
220 	return (true);
221 }
222 
223 static void
224 swap_release_by_cred_rlimit(u_long pdecr, struct ucred *cred)
225 {
226 	struct uidinfo *uip;
227 #ifdef INVARIANTS
228 	u_long prev;
229 #endif
230 
231 	uip = cred->cr_ruidinfo;
232 
233 #ifdef INVARIANTS
234 	prev = atomic_fetchadd_long(&uip->ui_vmsize, -pdecr);
235 	KASSERT(prev >= pdecr,
236 	    ("negative vmsize for uid %d\n", uip->ui_uid));
237 #else
238 	atomic_subtract_long(&uip->ui_vmsize, pdecr);
239 #endif
240 }
241 
242 static void
243 swap_reserve_force_rlimit(u_long pincr, struct ucred *cred)
244 {
245 	struct uidinfo *uip;
246 
247 	uip = cred->cr_ruidinfo;
248 	atomic_add_long(&uip->ui_vmsize, pincr);
249 }
250 
251 bool
252 swap_reserve(vm_ooffset_t incr)
253 {
254 
255 	return (swap_reserve_by_cred(incr, curthread->td_ucred));
256 }
257 
258 bool
259 swap_reserve_by_cred(vm_ooffset_t incr, struct ucred *cred)
260 {
261 	u_long r, s, prev, pincr;
262 #ifdef RACCT
263 	int error;
264 #endif
265 	int oc;
266 	static int curfail;
267 	static struct timeval lastfail;
268 
269 	KASSERT((incr & PAGE_MASK) == 0, ("%s: incr: %ju & PAGE_MASK",
270 	    __func__, (uintmax_t)incr));
271 
272 #ifdef RACCT
273 	if (RACCT_ENABLED()) {
274 		PROC_LOCK(curproc);
275 		error = racct_add(curproc, RACCT_SWAP, incr);
276 		PROC_UNLOCK(curproc);
277 		if (error != 0)
278 			return (false);
279 	}
280 #endif
281 
282 	pincr = atop(incr);
283 	prev = atomic_fetchadd_long(&swap_reserved, pincr);
284 	r = prev + pincr;
285 	s = swap_total;
286 	oc = atomic_load_int(&vm_overcommit);
287 	if (r > s && (oc & SWAP_RESERVE_ALLOW_NONWIRED) != 0) {
288 		s += vm_cnt.v_page_count - vm_cnt.v_free_reserved -
289 		    vm_wire_count();
290 	}
291 	if ((oc & SWAP_RESERVE_FORCE_ON) != 0 && r > s &&
292 	    priv_check(curthread, PRIV_VM_SWAP_NOQUOTA) != 0) {
293 		prev = atomic_fetchadd_long(&swap_reserved, -pincr);
294 		KASSERT(prev >= pincr,
295 		    ("swap_reserved < incr on overcommit fail"));
296 		goto out_error;
297 	}
298 
299 	if (!swap_reserve_by_cred_rlimit(pincr, cred, oc)) {
300 		prev = atomic_fetchadd_long(&swap_reserved, -pincr);
301 		KASSERT(prev >= pincr,
302 		    ("swap_reserved < incr on overcommit fail"));
303 		goto out_error;
304 	}
305 
306 	return (true);
307 
308 out_error:
309 	if (ppsratecheck(&lastfail, &curfail, 1)) {
310 		printf("uid %d, pid %d: swap reservation "
311 		    "for %jd bytes failed\n",
312 		    cred->cr_ruidinfo->ui_uid, curproc->p_pid, incr);
313 	}
314 #ifdef RACCT
315 	if (RACCT_ENABLED()) {
316 		PROC_LOCK(curproc);
317 		racct_sub(curproc, RACCT_SWAP, incr);
318 		PROC_UNLOCK(curproc);
319 	}
320 #endif
321 
322 	return (false);
323 }
324 
325 void
326 swap_reserve_force(vm_ooffset_t incr)
327 {
328 	u_long pincr;
329 
330 	KASSERT((incr & PAGE_MASK) == 0, ("%s: incr: %ju & PAGE_MASK",
331 	    __func__, (uintmax_t)incr));
332 
333 #ifdef RACCT
334 	if (RACCT_ENABLED()) {
335 		PROC_LOCK(curproc);
336 		racct_add_force(curproc, RACCT_SWAP, incr);
337 		PROC_UNLOCK(curproc);
338 	}
339 #endif
340 	pincr = atop(incr);
341 	atomic_add_long(&swap_reserved, pincr);
342 	swap_reserve_force_rlimit(pincr, curthread->td_ucred);
343 }
344 
345 void
346 swap_release(vm_ooffset_t decr)
347 {
348 	struct ucred *cred;
349 
350 	PROC_LOCK(curproc);
351 	cred = curproc->p_ucred;
352 	swap_release_by_cred(decr, cred);
353 	PROC_UNLOCK(curproc);
354 }
355 
356 void
357 swap_release_by_cred(vm_ooffset_t decr, struct ucred *cred)
358 {
359 	u_long pdecr;
360 #ifdef INVARIANTS
361 	u_long prev;
362 #endif
363 
364 	KASSERT((decr & PAGE_MASK) == 0, ("%s: decr: %ju & PAGE_MASK",
365 	    __func__, (uintmax_t)decr));
366 
367 	pdecr = atop(decr);
368 #ifdef INVARIANTS
369 	prev = atomic_fetchadd_long(&swap_reserved, -pdecr);
370 	KASSERT(prev >= pdecr, ("swap_reserved < decr"));
371 #else
372 	atomic_subtract_long(&swap_reserved, pdecr);
373 #endif
374 
375 	swap_release_by_cred_rlimit(pdecr, cred);
376 #ifdef RACCT
377 	if (racct_enable)
378 		racct_sub_cred(cred, RACCT_SWAP, decr);
379 #endif
380 }
381 
382 static int swap_pager_full = 2;	/* swap space exhaustion (task killing) */
383 static int swap_pager_almost_full = 1; /* swap space exhaustion (w/hysteresis)*/
384 static struct mtx swbuf_mtx;	/* to sync nsw_wcount_async */
385 static int nsw_wcount_async;	/* limit async write buffers */
386 static int nsw_wcount_async_max;/* assigned maximum			*/
387 int nsw_cluster_max; 		/* maximum VOP I/O allowed		*/
388 
389 static int sysctl_swap_async_max(SYSCTL_HANDLER_ARGS);
390 SYSCTL_PROC(_vm, OID_AUTO, swap_async_max, CTLTYPE_INT | CTLFLAG_RW |
391     CTLFLAG_MPSAFE, NULL, 0, sysctl_swap_async_max, "I",
392     "Maximum running async swap ops");
393 static int sysctl_swap_fragmentation(SYSCTL_HANDLER_ARGS);
394 SYSCTL_PROC(_vm, OID_AUTO, swap_fragmentation, CTLTYPE_STRING | CTLFLAG_RD |
395     CTLFLAG_MPSAFE, NULL, 0, sysctl_swap_fragmentation, "A",
396     "Swap Fragmentation Info");
397 
398 static struct sx sw_alloc_sx;
399 
400 /*
401  * "named" and "unnamed" anon region objects.  Try to reduce the overhead
402  * of searching a named list by hashing it just a little.
403  */
404 
405 #define NOBJLISTS		8
406 
407 #define NOBJLIST(handle)	\
408 	(&swap_pager_object_list[((int)(intptr_t)handle >> 4) & (NOBJLISTS-1)])
409 
410 static struct pagerlst	swap_pager_object_list[NOBJLISTS];
411 static uma_zone_t swwbuf_zone;
412 static uma_zone_t swrbuf_zone;
413 static uma_zone_t swblk_zone;
414 static uma_zone_t swpctrie_zone;
415 
416 /*
417  * pagerops for OBJT_SWAP - "swap pager".  Some ops are also global procedure
418  * calls hooked from other parts of the VM system and do not appear here.
419  * (see vm/swap_pager.h).
420  */
421 static vm_object_t
422 		swap_pager_alloc(void *handle, vm_ooffset_t size,
423 		    vm_prot_t prot, vm_ooffset_t offset, struct ucred *);
424 static void	swap_pager_dealloc(vm_object_t object);
425 static int	swap_pager_getpages(vm_object_t, vm_page_t *, int, int *,
426     int *);
427 static int	swap_pager_getpages_async(vm_object_t, vm_page_t *, int, int *,
428     int *, pgo_getpages_iodone_t, void *);
429 static void	swap_pager_putpages(vm_object_t, vm_page_t *, int, boolean_t, int *);
430 static boolean_t
431 		swap_pager_haspage(vm_object_t object, vm_pindex_t pindex, int *before, int *after);
432 static void	swap_pager_init(void);
433 static void	swap_pager_unswapped(vm_page_t);
434 static void	swap_pager_swapoff(struct swdevt *sp);
435 static void	swap_pager_update_writecount(vm_object_t object,
436     vm_offset_t start, vm_offset_t end);
437 static void	swap_pager_release_writecount(vm_object_t object,
438     vm_offset_t start, vm_offset_t end);
439 static void	swap_pager_freespace(vm_object_t object, vm_pindex_t start,
440     vm_size_t size);
441 
442 const struct pagerops swappagerops = {
443 	.pgo_kvme_type = KVME_TYPE_SWAP,
444 	.pgo_init =	swap_pager_init,	/* early system initialization of pager	*/
445 	.pgo_alloc =	swap_pager_alloc,	/* allocate an OBJT_SWAP object */
446 	.pgo_dealloc =	swap_pager_dealloc,	/* deallocate an OBJT_SWAP object */
447 	.pgo_getpages =	swap_pager_getpages,	/* pagein */
448 	.pgo_getpages_async = swap_pager_getpages_async, /* pagein (async) */
449 	.pgo_putpages =	swap_pager_putpages,	/* pageout */
450 	.pgo_haspage =	swap_pager_haspage,	/* get backing store status for page */
451 	.pgo_pageunswapped = swap_pager_unswapped, /* remove swap related to page */
452 	.pgo_update_writecount = swap_pager_update_writecount,
453 	.pgo_release_writecount = swap_pager_release_writecount,
454 	.pgo_freespace = swap_pager_freespace,
455 };
456 
457 /*
458  * swap_*() routines are externally accessible.  swp_*() routines are
459  * internal.
460  */
461 static int nswap_lowat = 128;	/* in pages, swap_pager_almost_full warn */
462 static int nswap_hiwat = 512;	/* in pages, swap_pager_almost_full warn */
463 
464 SYSCTL_INT(_vm, OID_AUTO, dmmax, CTLFLAG_RD, &nsw_cluster_max, 0,
465     "Maximum size of a swap block in pages");
466 
467 static void	swp_sizecheck(void);
468 static void	swp_pager_async_iodone(struct buf *bp);
469 static bool	swp_pager_swblk_empty(struct swblk *sb, int start, int limit);
470 static void	swp_pager_free_empty_swblk(vm_object_t, struct swblk *sb);
471 static int	swapongeom(struct vnode *);
472 static int	swaponvp(struct thread *, struct vnode *, u_long);
473 static int	swapoff_one(struct swdevt *sp, struct ucred *cred,
474 		    u_int flags);
475 
476 /*
477  * Swap bitmap functions
478  */
479 static void	swp_pager_freeswapspace(daddr_t blk, daddr_t npages);
480 static daddr_t	swp_pager_getswapspace(int *npages);
481 
482 /*
483  * Metadata functions
484  */
485 static daddr_t swp_pager_meta_build(vm_object_t, vm_pindex_t, daddr_t);
486 static void swp_pager_meta_free(vm_object_t, vm_pindex_t, vm_pindex_t);
487 static void swp_pager_meta_transfer(vm_object_t src, vm_object_t dst,
488     vm_pindex_t pindex, vm_pindex_t count);
489 static void swp_pager_meta_free_all(vm_object_t);
490 static daddr_t swp_pager_meta_lookup(vm_object_t, vm_pindex_t);
491 
492 static void
493 swp_pager_init_freerange(daddr_t *start, daddr_t *num)
494 {
495 
496 	*start = SWAPBLK_NONE;
497 	*num = 0;
498 }
499 
500 static void
501 swp_pager_update_freerange(daddr_t *start, daddr_t *num, daddr_t addr)
502 {
503 
504 	if (*start + *num == addr) {
505 		(*num)++;
506 	} else {
507 		swp_pager_freeswapspace(*start, *num);
508 		*start = addr;
509 		*num = 1;
510 	}
511 }
512 
513 static void *
514 swblk_trie_alloc(struct pctrie *ptree)
515 {
516 
517 	return (uma_zalloc(swpctrie_zone, M_NOWAIT | (curproc == pageproc ?
518 	    M_USE_RESERVE : 0)));
519 }
520 
521 static void
522 swblk_trie_free(struct pctrie *ptree, void *node)
523 {
524 
525 	uma_zfree(swpctrie_zone, node);
526 }
527 
528 PCTRIE_DEFINE(SWAP, swblk, p, swblk_trie_alloc, swblk_trie_free);
529 
530 /*
531  * SWP_SIZECHECK() -	update swap_pager_full indication
532  *
533  *	update the swap_pager_almost_full indication and warn when we are
534  *	about to run out of swap space, using lowat/hiwat hysteresis.
535  *
536  *	Clear swap_pager_full ( task killing ) indication when lowat is met.
537  *
538  *	No restrictions on call
539  *	This routine may not block.
540  */
541 static void
542 swp_sizecheck(void)
543 {
544 
545 	if (swap_pager_avail < nswap_lowat) {
546 		if (swap_pager_almost_full == 0) {
547 			printf("swap_pager: out of swap space\n");
548 			swap_pager_almost_full = 1;
549 		}
550 	} else {
551 		swap_pager_full = 0;
552 		if (swap_pager_avail > nswap_hiwat)
553 			swap_pager_almost_full = 0;
554 	}
555 }
556 
557 /*
558  * SWAP_PAGER_INIT() -	initialize the swap pager!
559  *
560  *	Expected to be started from system init.  NOTE:  This code is run
561  *	before much else so be careful what you depend on.  Most of the VM
562  *	system has yet to be initialized at this point.
563  */
564 static void
565 swap_pager_init(void)
566 {
567 	/*
568 	 * Initialize object lists
569 	 */
570 	int i;
571 
572 	for (i = 0; i < NOBJLISTS; ++i)
573 		TAILQ_INIT(&swap_pager_object_list[i]);
574 	mtx_init(&sw_dev_mtx, "swapdev", NULL, MTX_DEF);
575 	sx_init(&sw_alloc_sx, "swspsx");
576 	sx_init(&swdev_syscall_lock, "swsysc");
577 
578 	/*
579 	 * The nsw_cluster_max is constrained by the bp->b_pages[]
580 	 * array, which has maxphys / PAGE_SIZE entries, and our locally
581 	 * defined MAX_PAGEOUT_CLUSTER.   Also be aware that swap ops are
582 	 * constrained by the swap device interleave stripe size.
583 	 *
584 	 * Initialized early so that GEOM_ELI can see it.
585 	 */
586 	nsw_cluster_max = min(maxphys / PAGE_SIZE, MAX_PAGEOUT_CLUSTER);
587 }
588 
589 /*
590  * SWAP_PAGER_SWAP_INIT() - swap pager initialization from pageout process
591  *
592  *	Expected to be started from pageout process once, prior to entering
593  *	its main loop.
594  */
595 void
596 swap_pager_swap_init(void)
597 {
598 	unsigned long n, n2;
599 
600 	/*
601 	 * Number of in-transit swap bp operations.  Don't
602 	 * exhaust the pbufs completely.  Make sure we
603 	 * initialize workable values (0 will work for hysteresis
604 	 * but it isn't very efficient).
605 	 *
606 	 * Currently we hardwire nsw_wcount_async to 4.  This limit is
607 	 * designed to prevent other I/O from having high latencies due to
608 	 * our pageout I/O.  The value 4 works well for one or two active swap
609 	 * devices but is probably a little low if you have more.  Even so,
610 	 * a higher value would probably generate only a limited improvement
611 	 * with three or four active swap devices since the system does not
612 	 * typically have to pageout at extreme bandwidths.   We will want
613 	 * at least 2 per swap devices, and 4 is a pretty good value if you
614 	 * have one NFS swap device due to the command/ack latency over NFS.
615 	 * So it all works out pretty well.
616 	 *
617 	 * nsw_cluster_max is initialized in swap_pager_init().
618 	 */
619 
620 	nsw_wcount_async = 4;
621 	nsw_wcount_async_max = nsw_wcount_async;
622 	mtx_init(&swbuf_mtx, "async swbuf mutex", NULL, MTX_DEF);
623 
624 	swwbuf_zone = pbuf_zsecond_create("swwbuf", nswbuf / 4);
625 	swrbuf_zone = pbuf_zsecond_create("swrbuf", nswbuf / 2);
626 
627 	/*
628 	 * Initialize our zone, taking the user's requested size or
629 	 * estimating the number we need based on the number of pages
630 	 * in the system.
631 	 */
632 	n = maxswzone != 0 ? maxswzone / sizeof(struct swblk) :
633 	    vm_cnt.v_page_count / 2;
634 	swpctrie_zone = uma_zcreate("swpctrie", pctrie_node_size(), NULL, NULL,
635 	    pctrie_zone_init, NULL, UMA_ALIGN_PTR, 0);
636 	swblk_zone = uma_zcreate("swblk", sizeof(struct swblk), NULL, NULL,
637 	    NULL, NULL, _Alignof(struct swblk) - 1, 0);
638 	n2 = n;
639 	do {
640 		if (uma_zone_reserve_kva(swblk_zone, n))
641 			break;
642 		/*
643 		 * if the allocation failed, try a zone two thirds the
644 		 * size of the previous attempt.
645 		 */
646 		n -= ((n + 2) / 3);
647 	} while (n > 0);
648 
649 	/*
650 	 * Often uma_zone_reserve_kva() cannot reserve exactly the
651 	 * requested size.  Account for the difference when
652 	 * calculating swap_maxpages.
653 	 */
654 	n = uma_zone_get_max(swblk_zone);
655 
656 	if (n < n2)
657 		printf("Swap blk zone entries changed from %lu to %lu.\n",
658 		    n2, n);
659 	/* absolute maximum we can handle assuming 100% efficiency */
660 	swap_maxpages = n * SWAP_META_PAGES;
661 	swzone = n * sizeof(struct swblk);
662 	if (!uma_zone_reserve_kva(swpctrie_zone, n))
663 		printf("Cannot reserve swap pctrie zone, "
664 		    "reduce kern.maxswzone.\n");
665 }
666 
667 bool
668 swap_pager_init_object(vm_object_t object, void *handle, struct ucred *cred,
669     vm_ooffset_t size, vm_ooffset_t offset)
670 {
671 	if (cred != NULL) {
672 		if (!swap_reserve_by_cred(size, cred))
673 			return (false);
674 		crhold(cred);
675 	}
676 
677 	object->un_pager.swp.writemappings = 0;
678 	object->handle = handle;
679 	if (cred != NULL) {
680 		object->cred = cred;
681 		object->charge = size;
682 	}
683 	return (true);
684 }
685 
686 static vm_object_t
687 swap_pager_alloc_init(objtype_t otype, void *handle, struct ucred *cred,
688     vm_ooffset_t size, vm_ooffset_t offset)
689 {
690 	vm_object_t object;
691 
692 	/*
693 	 * The un_pager.swp.swp_blks trie is initialized by
694 	 * vm_object_allocate() to ensure the correct order of
695 	 * visibility to other threads.
696 	 */
697 	object = vm_object_allocate(otype, OFF_TO_IDX(offset +
698 	    PAGE_MASK + size));
699 
700 	if (!swap_pager_init_object(object, handle, cred, size, offset)) {
701 		vm_object_deallocate(object);
702 		return (NULL);
703 	}
704 	return (object);
705 }
706 
707 /*
708  * SWAP_PAGER_ALLOC() -	allocate a new OBJT_SWAP VM object and instantiate
709  *			its metadata structures.
710  *
711  *	This routine is called from the mmap and fork code to create a new
712  *	OBJT_SWAP object.
713  *
714  *	This routine must ensure that no live duplicate is created for
715  *	the named object request, which is protected against by
716  *	holding the sw_alloc_sx lock in case handle != NULL.
717  */
718 static vm_object_t
719 swap_pager_alloc(void *handle, vm_ooffset_t size, vm_prot_t prot,
720     vm_ooffset_t offset, struct ucred *cred)
721 {
722 	vm_object_t object;
723 
724 	if (handle != NULL) {
725 		/*
726 		 * Reference existing named region or allocate new one.  There
727 		 * should not be a race here against swp_pager_meta_build()
728 		 * as called from vm_page_remove() in regards to the lookup
729 		 * of the handle.
730 		 */
731 		sx_xlock(&sw_alloc_sx);
732 		object = vm_pager_object_lookup(NOBJLIST(handle), handle);
733 		if (object == NULL) {
734 			object = swap_pager_alloc_init(OBJT_SWAP, handle, cred,
735 			    size, offset);
736 			if (object != NULL) {
737 				TAILQ_INSERT_TAIL(NOBJLIST(object->handle),
738 				    object, pager_object_list);
739 			}
740 		}
741 		sx_xunlock(&sw_alloc_sx);
742 	} else {
743 		object = swap_pager_alloc_init(OBJT_SWAP, handle, cred,
744 		    size, offset);
745 	}
746 	return (object);
747 }
748 
749 /*
750  * SWAP_PAGER_DEALLOC() -	remove swap metadata from object
751  *
752  *	The swap backing for the object is destroyed.  The code is
753  *	designed such that we can reinstantiate it later, but this
754  *	routine is typically called only when the entire object is
755  *	about to be destroyed.
756  *
757  *	The object must be locked.
758  */
759 static void
760 swap_pager_dealloc(vm_object_t object)
761 {
762 
763 	VM_OBJECT_ASSERT_WLOCKED(object);
764 	KASSERT((object->flags & OBJ_DEAD) != 0, ("dealloc of reachable obj"));
765 
766 	/*
767 	 * Remove from list right away so lookups will fail if we block for
768 	 * pageout completion.
769 	 */
770 	if ((object->flags & OBJ_ANON) == 0 && object->handle != NULL) {
771 		VM_OBJECT_WUNLOCK(object);
772 		sx_xlock(&sw_alloc_sx);
773 		TAILQ_REMOVE(NOBJLIST(object->handle), object,
774 		    pager_object_list);
775 		sx_xunlock(&sw_alloc_sx);
776 		VM_OBJECT_WLOCK(object);
777 	}
778 
779 	vm_object_pip_wait(object, "swpdea");
780 
781 	/*
782 	 * Free all remaining metadata.  We only bother to free it from
783 	 * the swap meta data.  We do not attempt to free swapblk's still
784 	 * associated with vm_page_t's for this object.  We do not care
785 	 * if paging is still in progress on some objects.
786 	 */
787 	swp_pager_meta_free_all(object);
788 	object->handle = NULL;
789 	object->type = OBJT_DEAD;
790 
791 	/*
792 	 * Release the allocation charge.
793 	 */
794 	if (object->cred != NULL) {
795 		swap_release_by_cred(object->charge, object->cred);
796 		object->charge = 0;
797 		crfree(object->cred);
798 		object->cred = NULL;
799 	}
800 
801 	/*
802 	 * Hide the object from swap_pager_swapoff().
803 	 */
804 	vm_object_clear_flag(object, OBJ_SWAP);
805 }
806 
807 /************************************************************************
808  *			SWAP PAGER BITMAP ROUTINES			*
809  ************************************************************************/
810 
811 /*
812  * SWP_PAGER_GETSWAPSPACE() -	allocate raw swap space
813  *
814  *	Allocate swap for up to the requested number of pages.  The
815  *	starting swap block number (a page index) is returned or
816  *	SWAPBLK_NONE if the allocation failed.
817  *
818  *	Also has the side effect of advising that somebody made a mistake
819  *	when they configured swap and didn't configure enough.
820  *
821  *	This routine may not sleep.
822  *
823  *	We allocate in round-robin fashion from the configured devices.
824  */
825 static daddr_t
826 swp_pager_getswapspace(int *io_npages)
827 {
828 	daddr_t blk;
829 	struct swdevt *sp;
830 	int mpages, npages;
831 
832 	KASSERT(*io_npages >= 1,
833 	    ("%s: npages not positive", __func__));
834 	blk = SWAPBLK_NONE;
835 	mpages = *io_npages;
836 	npages = imin(BLIST_MAX_ALLOC, mpages);
837 	mtx_lock(&sw_dev_mtx);
838 	sp = swdevhd;
839 	while (!TAILQ_EMPTY(&swtailq)) {
840 		if (sp == NULL)
841 			sp = TAILQ_FIRST(&swtailq);
842 		if ((sp->sw_flags & SW_CLOSING) == 0)
843 			blk = blist_alloc(sp->sw_blist, &npages, mpages);
844 		if (blk != SWAPBLK_NONE)
845 			break;
846 		sp = TAILQ_NEXT(sp, sw_list);
847 		if (swdevhd == sp) {
848 			if (npages == 1)
849 				break;
850 			mpages = npages - 1;
851 			npages >>= 1;
852 		}
853 	}
854 	if (blk != SWAPBLK_NONE) {
855 		*io_npages = npages;
856 		blk += sp->sw_first;
857 		sp->sw_used += npages;
858 		swap_pager_avail -= npages;
859 		swp_sizecheck();
860 		swdevhd = TAILQ_NEXT(sp, sw_list);
861 	} else {
862 		if (swap_pager_full != 2) {
863 			printf("swp_pager_getswapspace(%d): failed\n",
864 			    *io_npages);
865 			swap_pager_full = 2;
866 			swap_pager_almost_full = 1;
867 		}
868 		swdevhd = NULL;
869 	}
870 	mtx_unlock(&sw_dev_mtx);
871 	return (blk);
872 }
873 
874 static bool
875 swp_pager_isondev(daddr_t blk, struct swdevt *sp)
876 {
877 
878 	return (blk >= sp->sw_first && blk < sp->sw_end);
879 }
880 
881 static void
882 swp_pager_strategy(struct buf *bp)
883 {
884 	struct swdevt *sp;
885 
886 	mtx_lock(&sw_dev_mtx);
887 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
888 		if (swp_pager_isondev(bp->b_blkno, sp)) {
889 			mtx_unlock(&sw_dev_mtx);
890 			if ((sp->sw_flags & SW_UNMAPPED) != 0 &&
891 			    unmapped_buf_allowed) {
892 				bp->b_data = unmapped_buf;
893 				bp->b_offset = 0;
894 			} else {
895 				pmap_qenter((vm_offset_t)bp->b_data,
896 				    &bp->b_pages[0], bp->b_bcount / PAGE_SIZE);
897 			}
898 			sp->sw_strategy(bp, sp);
899 			return;
900 		}
901 	}
902 	panic("Swapdev not found");
903 }
904 
905 /*
906  * SWP_PAGER_FREESWAPSPACE() -	free raw swap space
907  *
908  *	This routine returns the specified swap blocks back to the bitmap.
909  *
910  *	This routine may not sleep.
911  */
912 static void
913 swp_pager_freeswapspace(daddr_t blk, daddr_t npages)
914 {
915 	struct swdevt *sp;
916 
917 	if (npages == 0)
918 		return;
919 	mtx_lock(&sw_dev_mtx);
920 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
921 		if (swp_pager_isondev(blk, sp)) {
922 			sp->sw_used -= npages;
923 			/*
924 			 * If we are attempting to stop swapping on
925 			 * this device, we don't want to mark any
926 			 * blocks free lest they be reused.
927 			 */
928 			if ((sp->sw_flags & SW_CLOSING) == 0) {
929 				blist_free(sp->sw_blist, blk - sp->sw_first,
930 				    npages);
931 				swap_pager_avail += npages;
932 				swp_sizecheck();
933 			}
934 			mtx_unlock(&sw_dev_mtx);
935 			return;
936 		}
937 	}
938 	panic("Swapdev not found");
939 }
940 
941 /*
942  * SYSCTL_SWAP_FRAGMENTATION() -	produce raw swap space stats
943  */
944 static int
945 sysctl_swap_fragmentation(SYSCTL_HANDLER_ARGS)
946 {
947 	struct sbuf sbuf;
948 	struct swdevt *sp;
949 	const char *devname;
950 	int error;
951 
952 	error = sysctl_wire_old_buffer(req, 0);
953 	if (error != 0)
954 		return (error);
955 	sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
956 	mtx_lock(&sw_dev_mtx);
957 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
958 		if (vn_isdisk(sp->sw_vp))
959 			devname = devtoname(sp->sw_vp->v_rdev);
960 		else
961 			devname = "[file]";
962 		sbuf_printf(&sbuf, "\nFree space on device %s:\n", devname);
963 		blist_stats(sp->sw_blist, &sbuf);
964 	}
965 	mtx_unlock(&sw_dev_mtx);
966 	error = sbuf_finish(&sbuf);
967 	sbuf_delete(&sbuf);
968 	return (error);
969 }
970 
971 /*
972  * SWAP_PAGER_FREESPACE() -	frees swap blocks associated with a page
973  *				range within an object.
974  *
975  *	This routine removes swapblk assignments from swap metadata.
976  *
977  *	The external callers of this routine typically have already destroyed
978  *	or renamed vm_page_t's associated with this range in the object so
979  *	we should be ok.
980  *
981  *	The object must be locked.
982  */
983 static void
984 swap_pager_freespace(vm_object_t object, vm_pindex_t start, vm_size_t size)
985 {
986 
987 	swp_pager_meta_free(object, start, size);
988 }
989 
990 /*
991  * SWAP_PAGER_RESERVE() - reserve swap blocks in object
992  *
993  *	Assigns swap blocks to the specified range within the object.  The
994  *	swap blocks are not zeroed.  Any previous swap assignment is destroyed.
995  *
996  *	Returns 0 on success, -1 on failure.
997  */
998 int
999 swap_pager_reserve(vm_object_t object, vm_pindex_t start, vm_pindex_t size)
1000 {
1001 	daddr_t addr, blk, n_free, s_free;
1002 	vm_pindex_t i, j;
1003 	int n;
1004 
1005 	swp_pager_init_freerange(&s_free, &n_free);
1006 	VM_OBJECT_WLOCK(object);
1007 	for (i = 0; i < size; i += n) {
1008 		n = MIN(size - i, INT_MAX);
1009 		blk = swp_pager_getswapspace(&n);
1010 		if (blk == SWAPBLK_NONE) {
1011 			swp_pager_meta_free(object, start, i);
1012 			VM_OBJECT_WUNLOCK(object);
1013 			return (-1);
1014 		}
1015 		for (j = 0; j < n; ++j) {
1016 			addr = swp_pager_meta_build(object,
1017 			    start + i + j, blk + j);
1018 			if (addr != SWAPBLK_NONE)
1019 				swp_pager_update_freerange(&s_free, &n_free,
1020 				    addr);
1021 		}
1022 	}
1023 	swp_pager_freeswapspace(s_free, n_free);
1024 	VM_OBJECT_WUNLOCK(object);
1025 	return (0);
1026 }
1027 
1028 static bool
1029 swp_pager_xfer_source(vm_object_t srcobject, vm_object_t dstobject,
1030     vm_pindex_t pindex, daddr_t addr)
1031 {
1032 	daddr_t dstaddr __diagused;
1033 
1034 	KASSERT((srcobject->flags & OBJ_SWAP) != 0,
1035 	    ("%s: srcobject not swappable", __func__));
1036 	KASSERT((dstobject->flags & OBJ_SWAP) != 0,
1037 	    ("%s: dstobject not swappable", __func__));
1038 
1039 	if (swp_pager_meta_lookup(dstobject, pindex) != SWAPBLK_NONE) {
1040 		/* Caller should destroy the source block. */
1041 		return (false);
1042 	}
1043 
1044 	/*
1045 	 * Destination has no swapblk and is not resident, transfer source.
1046 	 * swp_pager_meta_build() can sleep.
1047 	 */
1048 	VM_OBJECT_WUNLOCK(srcobject);
1049 	dstaddr = swp_pager_meta_build(dstobject, pindex, addr);
1050 	KASSERT(dstaddr == SWAPBLK_NONE,
1051 	    ("Unexpected destination swapblk"));
1052 	VM_OBJECT_WLOCK(srcobject);
1053 
1054 	return (true);
1055 }
1056 
1057 /*
1058  * SWAP_PAGER_COPY() -  copy blocks from source pager to destination pager
1059  *			and destroy the source.
1060  *
1061  *	Copy any valid swapblks from the source to the destination.  In
1062  *	cases where both the source and destination have a valid swapblk,
1063  *	we keep the destination's.
1064  *
1065  *	This routine is allowed to sleep.  It may sleep allocating metadata
1066  *	indirectly through swp_pager_meta_build().
1067  *
1068  *	The source object contains no vm_page_t's (which is just as well)
1069  *
1070  *	The source and destination objects must be locked.
1071  *	Both object locks may temporarily be released.
1072  */
1073 void
1074 swap_pager_copy(vm_object_t srcobject, vm_object_t dstobject,
1075     vm_pindex_t offset, int destroysource)
1076 {
1077 	VM_OBJECT_ASSERT_WLOCKED(srcobject);
1078 	VM_OBJECT_ASSERT_WLOCKED(dstobject);
1079 
1080 	/*
1081 	 * If destroysource is set, we remove the source object from the
1082 	 * swap_pager internal queue now.
1083 	 */
1084 	if (destroysource && (srcobject->flags & OBJ_ANON) == 0 &&
1085 	    srcobject->handle != NULL) {
1086 		VM_OBJECT_WUNLOCK(srcobject);
1087 		VM_OBJECT_WUNLOCK(dstobject);
1088 		sx_xlock(&sw_alloc_sx);
1089 		TAILQ_REMOVE(NOBJLIST(srcobject->handle), srcobject,
1090 		    pager_object_list);
1091 		sx_xunlock(&sw_alloc_sx);
1092 		VM_OBJECT_WLOCK(dstobject);
1093 		VM_OBJECT_WLOCK(srcobject);
1094 	}
1095 
1096 	/*
1097 	 * Transfer source to destination.
1098 	 */
1099 	swp_pager_meta_transfer(srcobject, dstobject, offset, dstobject->size);
1100 
1101 	/*
1102 	 * Free left over swap blocks in source.
1103 	 */
1104 	if (destroysource)
1105 		swp_pager_meta_free_all(srcobject);
1106 }
1107 
1108 /*
1109  * SWAP_PAGER_HASPAGE() -	determine if we have good backing store for
1110  *				the requested page.
1111  *
1112  *	We determine whether good backing store exists for the requested
1113  *	page and return TRUE if it does, FALSE if it doesn't.
1114  *
1115  *	If TRUE, we also try to determine how much valid, contiguous backing
1116  *	store exists before and after the requested page.
1117  */
1118 static boolean_t
1119 swap_pager_haspage(vm_object_t object, vm_pindex_t pindex, int *before,
1120     int *after)
1121 {
1122 	daddr_t blk, blk0;
1123 	int i;
1124 
1125 	VM_OBJECT_ASSERT_LOCKED(object);
1126 	KASSERT((object->flags & OBJ_SWAP) != 0,
1127 	    ("%s: object not swappable", __func__));
1128 
1129 	/*
1130 	 * do we have good backing store at the requested index ?
1131 	 */
1132 	blk0 = swp_pager_meta_lookup(object, pindex);
1133 	if (blk0 == SWAPBLK_NONE) {
1134 		if (before)
1135 			*before = 0;
1136 		if (after)
1137 			*after = 0;
1138 		return (FALSE);
1139 	}
1140 
1141 	/*
1142 	 * find backwards-looking contiguous good backing store
1143 	 */
1144 	if (before != NULL) {
1145 		for (i = 1; i < SWB_NPAGES; i++) {
1146 			if (i > pindex)
1147 				break;
1148 			blk = swp_pager_meta_lookup(object, pindex - i);
1149 			if (blk != blk0 - i)
1150 				break;
1151 		}
1152 		*before = i - 1;
1153 	}
1154 
1155 	/*
1156 	 * find forward-looking contiguous good backing store
1157 	 */
1158 	if (after != NULL) {
1159 		for (i = 1; i < SWB_NPAGES; i++) {
1160 			blk = swp_pager_meta_lookup(object, pindex + i);
1161 			if (blk != blk0 + i)
1162 				break;
1163 		}
1164 		*after = i - 1;
1165 	}
1166 	return (TRUE);
1167 }
1168 
1169 /*
1170  * SWAP_PAGER_PAGE_UNSWAPPED() - remove swap backing store related to page
1171  *
1172  *	This removes any associated swap backing store, whether valid or
1173  *	not, from the page.
1174  *
1175  *	This routine is typically called when a page is made dirty, at
1176  *	which point any associated swap can be freed.  MADV_FREE also
1177  *	calls us in a special-case situation
1178  *
1179  *	NOTE!!!  If the page is clean and the swap was valid, the caller
1180  *	should make the page dirty before calling this routine.  This routine
1181  *	does NOT change the m->dirty status of the page.  Also: MADV_FREE
1182  *	depends on it.
1183  *
1184  *	This routine may not sleep.
1185  *
1186  *	The object containing the page may be locked.
1187  */
1188 static void
1189 swap_pager_unswapped(vm_page_t m)
1190 {
1191 	struct swblk *sb;
1192 	vm_object_t obj;
1193 
1194 	/*
1195 	 * Handle enqueing deferred frees first.  If we do not have the
1196 	 * object lock we wait for the page daemon to clear the space.
1197 	 */
1198 	obj = m->object;
1199 	if (!VM_OBJECT_WOWNED(obj)) {
1200 		VM_PAGE_OBJECT_BUSY_ASSERT(m);
1201 		/*
1202 		 * The caller is responsible for synchronization but we
1203 		 * will harmlessly handle races.  This is typically provided
1204 		 * by only calling unswapped() when a page transitions from
1205 		 * clean to dirty.
1206 		 */
1207 		if ((m->a.flags & (PGA_SWAP_SPACE | PGA_SWAP_FREE)) ==
1208 		    PGA_SWAP_SPACE) {
1209 			vm_page_aflag_set(m, PGA_SWAP_FREE);
1210 			counter_u64_add(swap_free_deferred, 1);
1211 		}
1212 		return;
1213 	}
1214 	if ((m->a.flags & PGA_SWAP_FREE) != 0)
1215 		counter_u64_add(swap_free_completed, 1);
1216 	vm_page_aflag_clear(m, PGA_SWAP_FREE | PGA_SWAP_SPACE);
1217 
1218 	/*
1219 	 * The meta data only exists if the object is OBJT_SWAP
1220 	 * and even then might not be allocated yet.
1221 	 */
1222 	KASSERT((m->object->flags & OBJ_SWAP) != 0,
1223 	    ("Free object not swappable"));
1224 
1225 	sb = SWAP_PCTRIE_LOOKUP(&m->object->un_pager.swp.swp_blks,
1226 	    rounddown(m->pindex, SWAP_META_PAGES));
1227 	if (sb == NULL)
1228 		return;
1229 	if (sb->d[m->pindex % SWAP_META_PAGES] == SWAPBLK_NONE)
1230 		return;
1231 	swp_pager_freeswapspace(sb->d[m->pindex % SWAP_META_PAGES], 1);
1232 	sb->d[m->pindex % SWAP_META_PAGES] = SWAPBLK_NONE;
1233 	swp_pager_free_empty_swblk(m->object, sb);
1234 }
1235 
1236 /*
1237  * swap_pager_getpages() - bring pages in from swap
1238  *
1239  *	Attempt to page in the pages in array "ma" of length "count".  The
1240  *	caller may optionally specify that additional pages preceding and
1241  *	succeeding the specified range be paged in.  The number of such pages
1242  *	is returned in the "rbehind" and "rahead" parameters, and they will
1243  *	be in the inactive queue upon return.
1244  *
1245  *	The pages in "ma" must be busied and will remain busied upon return.
1246  */
1247 static int
1248 swap_pager_getpages_locked(vm_object_t object, vm_page_t *ma, int count,
1249     int *rbehind, int *rahead)
1250 {
1251 	struct buf *bp;
1252 	vm_page_t bm, mpred, msucc, p;
1253 	vm_pindex_t pindex;
1254 	daddr_t blk;
1255 	int i, maxahead, maxbehind, reqcount;
1256 
1257 	VM_OBJECT_ASSERT_WLOCKED(object);
1258 	reqcount = count;
1259 
1260 	KASSERT((object->flags & OBJ_SWAP) != 0,
1261 	    ("%s: object not swappable", __func__));
1262 	if (!swap_pager_haspage(object, ma[0]->pindex, &maxbehind, &maxahead)) {
1263 		VM_OBJECT_WUNLOCK(object);
1264 		return (VM_PAGER_FAIL);
1265 	}
1266 
1267 	KASSERT(reqcount - 1 <= maxahead,
1268 	    ("page count %d extends beyond swap block", reqcount));
1269 
1270 	/*
1271 	 * Do not transfer any pages other than those that are xbusied
1272 	 * when running during a split or collapse operation.  This
1273 	 * prevents clustering from re-creating pages which are being
1274 	 * moved into another object.
1275 	 */
1276 	if ((object->flags & (OBJ_SPLIT | OBJ_DEAD)) != 0) {
1277 		maxahead = reqcount - 1;
1278 		maxbehind = 0;
1279 	}
1280 
1281 	/*
1282 	 * Clip the readahead and readbehind ranges to exclude resident pages.
1283 	 */
1284 	if (rahead != NULL) {
1285 		*rahead = imin(*rahead, maxahead - (reqcount - 1));
1286 		pindex = ma[reqcount - 1]->pindex;
1287 		msucc = TAILQ_NEXT(ma[reqcount - 1], listq);
1288 		if (msucc != NULL && msucc->pindex - pindex - 1 < *rahead)
1289 			*rahead = msucc->pindex - pindex - 1;
1290 	}
1291 	if (rbehind != NULL) {
1292 		*rbehind = imin(*rbehind, maxbehind);
1293 		pindex = ma[0]->pindex;
1294 		mpred = TAILQ_PREV(ma[0], pglist, listq);
1295 		if (mpred != NULL && pindex - mpred->pindex - 1 < *rbehind)
1296 			*rbehind = pindex - mpred->pindex - 1;
1297 	}
1298 
1299 	bm = ma[0];
1300 	for (i = 0; i < count; i++)
1301 		ma[i]->oflags |= VPO_SWAPINPROG;
1302 
1303 	/*
1304 	 * Allocate readahead and readbehind pages.
1305 	 */
1306 	if (rbehind != NULL) {
1307 		for (i = 1; i <= *rbehind; i++) {
1308 			p = vm_page_alloc(object, ma[0]->pindex - i,
1309 			    VM_ALLOC_NORMAL);
1310 			if (p == NULL)
1311 				break;
1312 			p->oflags |= VPO_SWAPINPROG;
1313 			bm = p;
1314 		}
1315 		*rbehind = i - 1;
1316 	}
1317 	if (rahead != NULL) {
1318 		for (i = 0; i < *rahead; i++) {
1319 			p = vm_page_alloc(object,
1320 			    ma[reqcount - 1]->pindex + i + 1, VM_ALLOC_NORMAL);
1321 			if (p == NULL)
1322 				break;
1323 			p->oflags |= VPO_SWAPINPROG;
1324 		}
1325 		*rahead = i;
1326 	}
1327 	if (rbehind != NULL)
1328 		count += *rbehind;
1329 	if (rahead != NULL)
1330 		count += *rahead;
1331 
1332 	vm_object_pip_add(object, count);
1333 
1334 	pindex = bm->pindex;
1335 	blk = swp_pager_meta_lookup(object, pindex);
1336 	KASSERT(blk != SWAPBLK_NONE,
1337 	    ("no swap blocking containing %p(%jx)", object, (uintmax_t)pindex));
1338 
1339 	VM_OBJECT_WUNLOCK(object);
1340 	bp = uma_zalloc(swrbuf_zone, M_WAITOK);
1341 	MPASS((bp->b_flags & B_MAXPHYS) != 0);
1342 	/* Pages cannot leave the object while busy. */
1343 	for (i = 0, p = bm; i < count; i++, p = TAILQ_NEXT(p, listq)) {
1344 		MPASS(p->pindex == bm->pindex + i);
1345 		bp->b_pages[i] = p;
1346 	}
1347 
1348 	bp->b_flags |= B_PAGING;
1349 	bp->b_iocmd = BIO_READ;
1350 	bp->b_iodone = swp_pager_async_iodone;
1351 	bp->b_rcred = crhold(thread0.td_ucred);
1352 	bp->b_wcred = crhold(thread0.td_ucred);
1353 	bp->b_blkno = blk;
1354 	bp->b_bcount = PAGE_SIZE * count;
1355 	bp->b_bufsize = PAGE_SIZE * count;
1356 	bp->b_npages = count;
1357 	bp->b_pgbefore = rbehind != NULL ? *rbehind : 0;
1358 	bp->b_pgafter = rahead != NULL ? *rahead : 0;
1359 
1360 	VM_CNT_INC(v_swapin);
1361 	VM_CNT_ADD(v_swappgsin, count);
1362 
1363 	/*
1364 	 * perform the I/O.  NOTE!!!  bp cannot be considered valid after
1365 	 * this point because we automatically release it on completion.
1366 	 * Instead, we look at the one page we are interested in which we
1367 	 * still hold a lock on even through the I/O completion.
1368 	 *
1369 	 * The other pages in our ma[] array are also released on completion,
1370 	 * so we cannot assume they are valid anymore either.
1371 	 *
1372 	 * NOTE: b_blkno is destroyed by the call to swapdev_strategy
1373 	 */
1374 	BUF_KERNPROC(bp);
1375 	swp_pager_strategy(bp);
1376 
1377 	/*
1378 	 * Wait for the pages we want to complete.  VPO_SWAPINPROG is always
1379 	 * cleared on completion.  If an I/O error occurs, SWAPBLK_NONE
1380 	 * is set in the metadata for each page in the request.
1381 	 */
1382 	VM_OBJECT_WLOCK(object);
1383 	/* This could be implemented more efficiently with aflags */
1384 	while ((ma[0]->oflags & VPO_SWAPINPROG) != 0) {
1385 		ma[0]->oflags |= VPO_SWAPSLEEP;
1386 		VM_CNT_INC(v_intrans);
1387 		if (VM_OBJECT_SLEEP(object, &object->handle, PSWP,
1388 		    "swread", hz * 20)) {
1389 			printf(
1390 "swap_pager: indefinite wait buffer: bufobj: %p, blkno: %jd, size: %ld\n",
1391 			    bp->b_bufobj, (intmax_t)bp->b_blkno, bp->b_bcount);
1392 		}
1393 	}
1394 	VM_OBJECT_WUNLOCK(object);
1395 
1396 	/*
1397 	 * If we had an unrecoverable read error pages will not be valid.
1398 	 */
1399 	for (i = 0; i < reqcount; i++)
1400 		if (ma[i]->valid != VM_PAGE_BITS_ALL)
1401 			return (VM_PAGER_ERROR);
1402 
1403 	return (VM_PAGER_OK);
1404 
1405 	/*
1406 	 * A final note: in a low swap situation, we cannot deallocate swap
1407 	 * and mark a page dirty here because the caller is likely to mark
1408 	 * the page clean when we return, causing the page to possibly revert
1409 	 * to all-zero's later.
1410 	 */
1411 }
1412 
1413 static int
1414 swap_pager_getpages(vm_object_t object, vm_page_t *ma, int count,
1415     int *rbehind, int *rahead)
1416 {
1417 
1418 	VM_OBJECT_WLOCK(object);
1419 	return (swap_pager_getpages_locked(object, ma, count, rbehind, rahead));
1420 }
1421 
1422 /*
1423  * 	swap_pager_getpages_async():
1424  *
1425  *	Right now this is emulation of asynchronous operation on top of
1426  *	swap_pager_getpages().
1427  */
1428 static int
1429 swap_pager_getpages_async(vm_object_t object, vm_page_t *ma, int count,
1430     int *rbehind, int *rahead, pgo_getpages_iodone_t iodone, void *arg)
1431 {
1432 	int r, error;
1433 
1434 	r = swap_pager_getpages(object, ma, count, rbehind, rahead);
1435 	switch (r) {
1436 	case VM_PAGER_OK:
1437 		error = 0;
1438 		break;
1439 	case VM_PAGER_ERROR:
1440 		error = EIO;
1441 		break;
1442 	case VM_PAGER_FAIL:
1443 		error = EINVAL;
1444 		break;
1445 	default:
1446 		panic("unhandled swap_pager_getpages() error %d", r);
1447 	}
1448 	(iodone)(arg, ma, count, error);
1449 
1450 	return (r);
1451 }
1452 
1453 /*
1454  *	swap_pager_putpages:
1455  *
1456  *	Assign swap (if necessary) and initiate I/O on the specified pages.
1457  *
1458  *	In a low memory situation we may block in VOP_STRATEGY(), but the new
1459  *	vm_page reservation system coupled with properly written VFS devices
1460  *	should ensure that no low-memory deadlock occurs.  This is an area
1461  *	which needs work.
1462  *
1463  *	The parent has N vm_object_pip_add() references prior to
1464  *	calling us and will remove references for rtvals[] that are
1465  *	not set to VM_PAGER_PEND.  We need to remove the rest on I/O
1466  *	completion.
1467  *
1468  *	The parent has soft-busy'd the pages it passes us and will unbusy
1469  *	those whose rtvals[] entry is not set to VM_PAGER_PEND on return.
1470  *	We need to unbusy the rest on I/O completion.
1471  */
1472 static void
1473 swap_pager_putpages(vm_object_t object, vm_page_t *ma, int count,
1474     int flags, int *rtvals)
1475 {
1476 	struct buf *bp;
1477 	daddr_t addr, blk, n_free, s_free;
1478 	vm_page_t mreq;
1479 	int i, j, n;
1480 	bool async;
1481 
1482 	KASSERT(count == 0 || ma[0]->object == object,
1483 	    ("%s: object mismatch %p/%p",
1484 	    __func__, object, ma[0]->object));
1485 
1486 	VM_OBJECT_WUNLOCK(object);
1487 	async = curproc == pageproc && (flags & VM_PAGER_PUT_SYNC) == 0;
1488 	swp_pager_init_freerange(&s_free, &n_free);
1489 
1490 	/*
1491 	 * Assign swap blocks and issue I/O.  We reallocate swap on the fly.
1492 	 * The page is left dirty until the pageout operation completes
1493 	 * successfully.
1494 	 */
1495 	for (i = 0; i < count; i += n) {
1496 		/* Maximum I/O size is limited by maximum swap block size. */
1497 		n = min(count - i, nsw_cluster_max);
1498 
1499 		if (async) {
1500 			mtx_lock(&swbuf_mtx);
1501 			while (nsw_wcount_async == 0)
1502 				msleep(&nsw_wcount_async, &swbuf_mtx, PVM,
1503 				    "swbufa", 0);
1504 			nsw_wcount_async--;
1505 			mtx_unlock(&swbuf_mtx);
1506 		}
1507 
1508 		/* Get a block of swap of size up to size n. */
1509 		blk = swp_pager_getswapspace(&n);
1510 		if (blk == SWAPBLK_NONE) {
1511 			mtx_lock(&swbuf_mtx);
1512 			if (++nsw_wcount_async == 1)
1513 				wakeup(&nsw_wcount_async);
1514 			mtx_unlock(&swbuf_mtx);
1515 			for (j = 0; j < n; ++j)
1516 				rtvals[i + j] = VM_PAGER_FAIL;
1517 			continue;
1518 		}
1519 		VM_OBJECT_WLOCK(object);
1520 		for (j = 0; j < n; ++j) {
1521 			mreq = ma[i + j];
1522 			vm_page_aflag_clear(mreq, PGA_SWAP_FREE);
1523 			addr = swp_pager_meta_build(mreq->object, mreq->pindex,
1524 			    blk + j);
1525 			if (addr != SWAPBLK_NONE)
1526 				swp_pager_update_freerange(&s_free, &n_free,
1527 				    addr);
1528 			MPASS(mreq->dirty == VM_PAGE_BITS_ALL);
1529 			mreq->oflags |= VPO_SWAPINPROG;
1530 		}
1531 		VM_OBJECT_WUNLOCK(object);
1532 
1533 		bp = uma_zalloc(swwbuf_zone, M_WAITOK);
1534 		MPASS((bp->b_flags & B_MAXPHYS) != 0);
1535 		if (async)
1536 			bp->b_flags |= B_ASYNC;
1537 		bp->b_flags |= B_PAGING;
1538 		bp->b_iocmd = BIO_WRITE;
1539 
1540 		bp->b_rcred = crhold(thread0.td_ucred);
1541 		bp->b_wcred = crhold(thread0.td_ucred);
1542 		bp->b_bcount = PAGE_SIZE * n;
1543 		bp->b_bufsize = PAGE_SIZE * n;
1544 		bp->b_blkno = blk;
1545 		for (j = 0; j < n; j++)
1546 			bp->b_pages[j] = ma[i + j];
1547 		bp->b_npages = n;
1548 
1549 		/*
1550 		 * Must set dirty range for NFS to work.
1551 		 */
1552 		bp->b_dirtyoff = 0;
1553 		bp->b_dirtyend = bp->b_bcount;
1554 
1555 		VM_CNT_INC(v_swapout);
1556 		VM_CNT_ADD(v_swappgsout, bp->b_npages);
1557 
1558 		/*
1559 		 * We unconditionally set rtvals[] to VM_PAGER_PEND so that we
1560 		 * can call the async completion routine at the end of a
1561 		 * synchronous I/O operation.  Otherwise, our caller would
1562 		 * perform duplicate unbusy and wakeup operations on the page
1563 		 * and object, respectively.
1564 		 */
1565 		for (j = 0; j < n; j++)
1566 			rtvals[i + j] = VM_PAGER_PEND;
1567 
1568 		/*
1569 		 * asynchronous
1570 		 *
1571 		 * NOTE: b_blkno is destroyed by the call to swapdev_strategy.
1572 		 */
1573 		if (async) {
1574 			bp->b_iodone = swp_pager_async_iodone;
1575 			BUF_KERNPROC(bp);
1576 			swp_pager_strategy(bp);
1577 			continue;
1578 		}
1579 
1580 		/*
1581 		 * synchronous
1582 		 *
1583 		 * NOTE: b_blkno is destroyed by the call to swapdev_strategy.
1584 		 */
1585 		bp->b_iodone = bdone;
1586 		swp_pager_strategy(bp);
1587 
1588 		/*
1589 		 * Wait for the sync I/O to complete.
1590 		 */
1591 		bwait(bp, PVM, "swwrt");
1592 
1593 		/*
1594 		 * Now that we are through with the bp, we can call the
1595 		 * normal async completion, which frees everything up.
1596 		 */
1597 		swp_pager_async_iodone(bp);
1598 	}
1599 	swp_pager_freeswapspace(s_free, n_free);
1600 	VM_OBJECT_WLOCK(object);
1601 }
1602 
1603 /*
1604  *	swp_pager_async_iodone:
1605  *
1606  *	Completion routine for asynchronous reads and writes from/to swap.
1607  *	Also called manually by synchronous code to finish up a bp.
1608  *
1609  *	This routine may not sleep.
1610  */
1611 static void
1612 swp_pager_async_iodone(struct buf *bp)
1613 {
1614 	int i;
1615 	vm_object_t object = NULL;
1616 
1617 	/*
1618 	 * Report error - unless we ran out of memory, in which case
1619 	 * we've already logged it in swapgeom_strategy().
1620 	 */
1621 	if (bp->b_ioflags & BIO_ERROR && bp->b_error != ENOMEM) {
1622 		printf(
1623 		    "swap_pager: I/O error - %s failed; blkno %ld,"
1624 			"size %ld, error %d\n",
1625 		    ((bp->b_iocmd == BIO_READ) ? "pagein" : "pageout"),
1626 		    (long)bp->b_blkno,
1627 		    (long)bp->b_bcount,
1628 		    bp->b_error
1629 		);
1630 	}
1631 
1632 	/*
1633 	 * remove the mapping for kernel virtual
1634 	 */
1635 	if (buf_mapped(bp))
1636 		pmap_qremove((vm_offset_t)bp->b_data, bp->b_npages);
1637 	else
1638 		bp->b_data = bp->b_kvabase;
1639 
1640 	if (bp->b_npages) {
1641 		object = bp->b_pages[0]->object;
1642 		VM_OBJECT_WLOCK(object);
1643 	}
1644 
1645 	/*
1646 	 * cleanup pages.  If an error occurs writing to swap, we are in
1647 	 * very serious trouble.  If it happens to be a disk error, though,
1648 	 * we may be able to recover by reassigning the swap later on.  So
1649 	 * in this case we remove the m->swapblk assignment for the page
1650 	 * but do not free it in the rlist.  The errornous block(s) are thus
1651 	 * never reallocated as swap.  Redirty the page and continue.
1652 	 */
1653 	for (i = 0; i < bp->b_npages; ++i) {
1654 		vm_page_t m = bp->b_pages[i];
1655 
1656 		m->oflags &= ~VPO_SWAPINPROG;
1657 		if (m->oflags & VPO_SWAPSLEEP) {
1658 			m->oflags &= ~VPO_SWAPSLEEP;
1659 			wakeup(&object->handle);
1660 		}
1661 
1662 		/* We always have space after I/O, successful or not. */
1663 		vm_page_aflag_set(m, PGA_SWAP_SPACE);
1664 
1665 		if (bp->b_ioflags & BIO_ERROR) {
1666 			/*
1667 			 * If an error occurs I'd love to throw the swapblk
1668 			 * away without freeing it back to swapspace, so it
1669 			 * can never be used again.  But I can't from an
1670 			 * interrupt.
1671 			 */
1672 			if (bp->b_iocmd == BIO_READ) {
1673 				/*
1674 				 * NOTE: for reads, m->dirty will probably
1675 				 * be overridden by the original caller of
1676 				 * getpages so don't play cute tricks here.
1677 				 */
1678 				vm_page_invalid(m);
1679 			} else {
1680 				/*
1681 				 * If a write error occurs, reactivate page
1682 				 * so it doesn't clog the inactive list,
1683 				 * then finish the I/O.
1684 				 */
1685 				MPASS(m->dirty == VM_PAGE_BITS_ALL);
1686 
1687 				/* PQ_UNSWAPPABLE? */
1688 				vm_page_activate(m);
1689 				vm_page_sunbusy(m);
1690 			}
1691 		} else if (bp->b_iocmd == BIO_READ) {
1692 			/*
1693 			 * NOTE: for reads, m->dirty will probably be
1694 			 * overridden by the original caller of getpages so
1695 			 * we cannot set them in order to free the underlying
1696 			 * swap in a low-swap situation.  I don't think we'd
1697 			 * want to do that anyway, but it was an optimization
1698 			 * that existed in the old swapper for a time before
1699 			 * it got ripped out due to precisely this problem.
1700 			 */
1701 			KASSERT(!pmap_page_is_mapped(m),
1702 			    ("swp_pager_async_iodone: page %p is mapped", m));
1703 			KASSERT(m->dirty == 0,
1704 			    ("swp_pager_async_iodone: page %p is dirty", m));
1705 
1706 			vm_page_valid(m);
1707 			if (i < bp->b_pgbefore ||
1708 			    i >= bp->b_npages - bp->b_pgafter)
1709 				vm_page_readahead_finish(m);
1710 		} else {
1711 			/*
1712 			 * For write success, clear the dirty
1713 			 * status, then finish the I/O ( which decrements the
1714 			 * busy count and possibly wakes waiter's up ).
1715 			 * A page is only written to swap after a period of
1716 			 * inactivity.  Therefore, we do not expect it to be
1717 			 * reused.
1718 			 */
1719 			KASSERT(!pmap_page_is_write_mapped(m),
1720 			    ("swp_pager_async_iodone: page %p is not write"
1721 			    " protected", m));
1722 			vm_page_undirty(m);
1723 			vm_page_deactivate_noreuse(m);
1724 			vm_page_sunbusy(m);
1725 		}
1726 	}
1727 
1728 	/*
1729 	 * adjust pip.  NOTE: the original parent may still have its own
1730 	 * pip refs on the object.
1731 	 */
1732 	if (object != NULL) {
1733 		vm_object_pip_wakeupn(object, bp->b_npages);
1734 		VM_OBJECT_WUNLOCK(object);
1735 	}
1736 
1737 	/*
1738 	 * swapdev_strategy() manually sets b_vp and b_bufobj before calling
1739 	 * bstrategy(). Set them back to NULL now we're done with it, or we'll
1740 	 * trigger a KASSERT in relpbuf().
1741 	 */
1742 	if (bp->b_vp) {
1743 		    bp->b_vp = NULL;
1744 		    bp->b_bufobj = NULL;
1745 	}
1746 	/*
1747 	 * release the physical I/O buffer
1748 	 */
1749 	if (bp->b_flags & B_ASYNC) {
1750 		mtx_lock(&swbuf_mtx);
1751 		if (++nsw_wcount_async == 1)
1752 			wakeup(&nsw_wcount_async);
1753 		mtx_unlock(&swbuf_mtx);
1754 	}
1755 	uma_zfree((bp->b_iocmd == BIO_READ) ? swrbuf_zone : swwbuf_zone, bp);
1756 }
1757 
1758 int
1759 swap_pager_nswapdev(void)
1760 {
1761 
1762 	return (nswapdev);
1763 }
1764 
1765 static void
1766 swp_pager_force_dirty(vm_page_t m)
1767 {
1768 
1769 	vm_page_dirty(m);
1770 	swap_pager_unswapped(m);
1771 	vm_page_launder(m);
1772 }
1773 
1774 u_long
1775 swap_pager_swapped_pages(vm_object_t object)
1776 {
1777 	struct swblk *sb;
1778 	vm_pindex_t pi;
1779 	u_long res;
1780 	int i;
1781 
1782 	VM_OBJECT_ASSERT_LOCKED(object);
1783 
1784 	if (pctrie_is_empty(&object->un_pager.swp.swp_blks))
1785 		return (0);
1786 
1787 	for (res = 0, pi = 0; (sb = SWAP_PCTRIE_LOOKUP_GE(
1788 	    &object->un_pager.swp.swp_blks, pi)) != NULL;
1789 	    pi = sb->p + SWAP_META_PAGES) {
1790 		for (i = 0; i < SWAP_META_PAGES; i++) {
1791 			if (sb->d[i] != SWAPBLK_NONE)
1792 				res++;
1793 		}
1794 	}
1795 	return (res);
1796 }
1797 
1798 /*
1799  *	swap_pager_swapoff_object:
1800  *
1801  *	Page in all of the pages that have been paged out for an object
1802  *	to a swap device.
1803  */
1804 static void
1805 swap_pager_swapoff_object(struct swdevt *sp, vm_object_t object)
1806 {
1807 	struct swblk *sb;
1808 	vm_page_t m;
1809 	vm_pindex_t pi;
1810 	daddr_t blk;
1811 	int i, nv, rahead, rv;
1812 
1813 	KASSERT((object->flags & OBJ_SWAP) != 0,
1814 	    ("%s: Object not swappable", __func__));
1815 
1816 	for (pi = 0; (sb = SWAP_PCTRIE_LOOKUP_GE(
1817 	    &object->un_pager.swp.swp_blks, pi)) != NULL; ) {
1818 		if ((object->flags & OBJ_DEAD) != 0) {
1819 			/*
1820 			 * Make sure that pending writes finish before
1821 			 * returning.
1822 			 */
1823 			vm_object_pip_wait(object, "swpoff");
1824 			swp_pager_meta_free_all(object);
1825 			break;
1826 		}
1827 		for (i = 0; i < SWAP_META_PAGES; i++) {
1828 			/*
1829 			 * Count the number of contiguous valid blocks.
1830 			 */
1831 			for (nv = 0; nv < SWAP_META_PAGES - i; nv++) {
1832 				blk = sb->d[i + nv];
1833 				if (!swp_pager_isondev(blk, sp) ||
1834 				    blk == SWAPBLK_NONE)
1835 					break;
1836 			}
1837 			if (nv == 0)
1838 				continue;
1839 
1840 			/*
1841 			 * Look for a page corresponding to the first
1842 			 * valid block and ensure that any pending paging
1843 			 * operations on it are complete.  If the page is valid,
1844 			 * mark it dirty and free the swap block.  Try to batch
1845 			 * this operation since it may cause sp to be freed,
1846 			 * meaning that we must restart the scan.  Avoid busying
1847 			 * valid pages since we may block forever on kernel
1848 			 * stack pages.
1849 			 */
1850 			m = vm_page_lookup(object, sb->p + i);
1851 			if (m == NULL) {
1852 				m = vm_page_alloc(object, sb->p + i,
1853 				    VM_ALLOC_NORMAL | VM_ALLOC_WAITFAIL);
1854 				if (m == NULL)
1855 					break;
1856 			} else {
1857 				if ((m->oflags & VPO_SWAPINPROG) != 0) {
1858 					m->oflags |= VPO_SWAPSLEEP;
1859 					VM_OBJECT_SLEEP(object, &object->handle,
1860 					    PSWP, "swpoff", 0);
1861 					break;
1862 				}
1863 				if (vm_page_all_valid(m)) {
1864 					do {
1865 						swp_pager_force_dirty(m);
1866 					} while (--nv > 0 &&
1867 					    (m = vm_page_next(m)) != NULL &&
1868 					    vm_page_all_valid(m) &&
1869 					    (m->oflags & VPO_SWAPINPROG) == 0);
1870 					break;
1871 				}
1872 				if (!vm_page_busy_acquire(m, VM_ALLOC_WAITFAIL))
1873 					break;
1874 			}
1875 
1876 			vm_object_pip_add(object, 1);
1877 			rahead = SWAP_META_PAGES;
1878 			rv = swap_pager_getpages_locked(object, &m, 1, NULL,
1879 			    &rahead);
1880 			if (rv != VM_PAGER_OK)
1881 				panic("%s: read from swap failed: %d",
1882 				    __func__, rv);
1883 			vm_object_pip_wakeupn(object, 1);
1884 			VM_OBJECT_WLOCK(object);
1885 			vm_page_xunbusy(m);
1886 
1887 			/*
1888 			 * The object lock was dropped so we must restart the
1889 			 * scan of this swap block.  Pages paged in during this
1890 			 * iteration will be marked dirty in a future iteration.
1891 			 */
1892 			break;
1893 		}
1894 		if (i == SWAP_META_PAGES)
1895 			pi = sb->p + SWAP_META_PAGES;
1896 	}
1897 }
1898 
1899 /*
1900  *	swap_pager_swapoff:
1901  *
1902  *	Page in all of the pages that have been paged out to the
1903  *	given device.  The corresponding blocks in the bitmap must be
1904  *	marked as allocated and the device must be flagged SW_CLOSING.
1905  *	There may be no processes swapped out to the device.
1906  *
1907  *	This routine may block.
1908  */
1909 static void
1910 swap_pager_swapoff(struct swdevt *sp)
1911 {
1912 	vm_object_t object;
1913 	int retries;
1914 
1915 	sx_assert(&swdev_syscall_lock, SA_XLOCKED);
1916 
1917 	retries = 0;
1918 full_rescan:
1919 	mtx_lock(&vm_object_list_mtx);
1920 	TAILQ_FOREACH(object, &vm_object_list, object_list) {
1921 		if ((object->flags & OBJ_SWAP) == 0)
1922 			continue;
1923 		mtx_unlock(&vm_object_list_mtx);
1924 		/* Depends on type-stability. */
1925 		VM_OBJECT_WLOCK(object);
1926 
1927 		/*
1928 		 * Dead objects are eventually terminated on their own.
1929 		 */
1930 		if ((object->flags & OBJ_DEAD) != 0)
1931 			goto next_obj;
1932 
1933 		/*
1934 		 * Sync with fences placed after pctrie
1935 		 * initialization.  We must not access pctrie below
1936 		 * unless we checked that our object is swap and not
1937 		 * dead.
1938 		 */
1939 		atomic_thread_fence_acq();
1940 		if ((object->flags & OBJ_SWAP) == 0)
1941 			goto next_obj;
1942 
1943 		swap_pager_swapoff_object(sp, object);
1944 next_obj:
1945 		VM_OBJECT_WUNLOCK(object);
1946 		mtx_lock(&vm_object_list_mtx);
1947 	}
1948 	mtx_unlock(&vm_object_list_mtx);
1949 
1950 	if (sp->sw_used) {
1951 		/*
1952 		 * Objects may be locked or paging to the device being
1953 		 * removed, so we will miss their pages and need to
1954 		 * make another pass.  We have marked this device as
1955 		 * SW_CLOSING, so the activity should finish soon.
1956 		 */
1957 		retries++;
1958 		if (retries > 100) {
1959 			panic("swapoff: failed to locate %d swap blocks",
1960 			    sp->sw_used);
1961 		}
1962 		pause("swpoff", hz / 20);
1963 		goto full_rescan;
1964 	}
1965 	EVENTHANDLER_INVOKE(swapoff, sp);
1966 }
1967 
1968 /************************************************************************
1969  *				SWAP META DATA 				*
1970  ************************************************************************
1971  *
1972  *	These routines manipulate the swap metadata stored in the
1973  *	OBJT_SWAP object.
1974  *
1975  *	Swap metadata is implemented with a global hash and not directly
1976  *	linked into the object.  Instead the object simply contains
1977  *	appropriate tracking counters.
1978  */
1979 
1980 /*
1981  * SWP_PAGER_SWBLK_EMPTY() - is a range of blocks free?
1982  */
1983 static bool
1984 swp_pager_swblk_empty(struct swblk *sb, int start, int limit)
1985 {
1986 	int i;
1987 
1988 	MPASS(0 <= start && start <= limit && limit <= SWAP_META_PAGES);
1989 	for (i = start; i < limit; i++) {
1990 		if (sb->d[i] != SWAPBLK_NONE)
1991 			return (false);
1992 	}
1993 	return (true);
1994 }
1995 
1996 /*
1997  * SWP_PAGER_FREE_EMPTY_SWBLK() - frees if a block is free
1998  *
1999  *  Nothing is done if the block is still in use.
2000  */
2001 static void
2002 swp_pager_free_empty_swblk(vm_object_t object, struct swblk *sb)
2003 {
2004 
2005 	if (swp_pager_swblk_empty(sb, 0, SWAP_META_PAGES)) {
2006 		SWAP_PCTRIE_REMOVE(&object->un_pager.swp.swp_blks, sb->p);
2007 		uma_zfree(swblk_zone, sb);
2008 	}
2009 }
2010 
2011 /*
2012  * SWP_PAGER_META_BUILD() -	add swap block to swap meta data for object
2013  *
2014  *	The specified swapblk is added to the object's swap metadata.  If
2015  *	the swapblk is not valid, it is freed instead.  Any previously
2016  *	assigned swapblk is returned.
2017  */
2018 static daddr_t
2019 swp_pager_meta_build(vm_object_t object, vm_pindex_t pindex, daddr_t swapblk)
2020 {
2021 	static volatile int swblk_zone_exhausted, swpctrie_zone_exhausted;
2022 	struct swblk *sb, *sb1;
2023 	vm_pindex_t modpi, rdpi;
2024 	daddr_t prev_swapblk;
2025 	int error, i;
2026 
2027 	VM_OBJECT_ASSERT_WLOCKED(object);
2028 
2029 	rdpi = rounddown(pindex, SWAP_META_PAGES);
2030 	sb = SWAP_PCTRIE_LOOKUP(&object->un_pager.swp.swp_blks, rdpi);
2031 	if (sb == NULL) {
2032 		if (swapblk == SWAPBLK_NONE)
2033 			return (SWAPBLK_NONE);
2034 		for (;;) {
2035 			sb = uma_zalloc(swblk_zone, M_NOWAIT | (curproc ==
2036 			    pageproc ? M_USE_RESERVE : 0));
2037 			if (sb != NULL) {
2038 				sb->p = rdpi;
2039 				for (i = 0; i < SWAP_META_PAGES; i++)
2040 					sb->d[i] = SWAPBLK_NONE;
2041 				if (atomic_cmpset_int(&swblk_zone_exhausted,
2042 				    1, 0))
2043 					printf("swblk zone ok\n");
2044 				break;
2045 			}
2046 			VM_OBJECT_WUNLOCK(object);
2047 			if (uma_zone_exhausted(swblk_zone)) {
2048 				if (atomic_cmpset_int(&swblk_zone_exhausted,
2049 				    0, 1))
2050 					printf("swap blk zone exhausted, "
2051 					    "increase kern.maxswzone\n");
2052 				vm_pageout_oom(VM_OOM_SWAPZ);
2053 				pause("swzonxb", 10);
2054 			} else
2055 				uma_zwait(swblk_zone);
2056 			VM_OBJECT_WLOCK(object);
2057 			sb = SWAP_PCTRIE_LOOKUP(&object->un_pager.swp.swp_blks,
2058 			    rdpi);
2059 			if (sb != NULL)
2060 				/*
2061 				 * Somebody swapped out a nearby page,
2062 				 * allocating swblk at the rdpi index,
2063 				 * while we dropped the object lock.
2064 				 */
2065 				goto allocated;
2066 		}
2067 		for (;;) {
2068 			error = SWAP_PCTRIE_INSERT(
2069 			    &object->un_pager.swp.swp_blks, sb);
2070 			if (error == 0) {
2071 				if (atomic_cmpset_int(&swpctrie_zone_exhausted,
2072 				    1, 0))
2073 					printf("swpctrie zone ok\n");
2074 				break;
2075 			}
2076 			VM_OBJECT_WUNLOCK(object);
2077 			if (uma_zone_exhausted(swpctrie_zone)) {
2078 				if (atomic_cmpset_int(&swpctrie_zone_exhausted,
2079 				    0, 1))
2080 					printf("swap pctrie zone exhausted, "
2081 					    "increase kern.maxswzone\n");
2082 				vm_pageout_oom(VM_OOM_SWAPZ);
2083 				pause("swzonxp", 10);
2084 			} else
2085 				uma_zwait(swpctrie_zone);
2086 			VM_OBJECT_WLOCK(object);
2087 			sb1 = SWAP_PCTRIE_LOOKUP(&object->un_pager.swp.swp_blks,
2088 			    rdpi);
2089 			if (sb1 != NULL) {
2090 				uma_zfree(swblk_zone, sb);
2091 				sb = sb1;
2092 				goto allocated;
2093 			}
2094 		}
2095 	}
2096 allocated:
2097 	MPASS(sb->p == rdpi);
2098 
2099 	modpi = pindex % SWAP_META_PAGES;
2100 	/* Return prior contents of metadata. */
2101 	prev_swapblk = sb->d[modpi];
2102 	/* Enter block into metadata. */
2103 	sb->d[modpi] = swapblk;
2104 
2105 	/*
2106 	 * Free the swblk if we end up with the empty page run.
2107 	 */
2108 	if (swapblk == SWAPBLK_NONE)
2109 		swp_pager_free_empty_swblk(object, sb);
2110 	return (prev_swapblk);
2111 }
2112 
2113 /*
2114  * SWP_PAGER_META_TRANSFER() - free a range of blocks in the srcobject's swap
2115  * metadata, or transfer it into dstobject.
2116  *
2117  *	This routine will free swap metadata structures as they are cleaned
2118  *	out.
2119  */
2120 static void
2121 swp_pager_meta_transfer(vm_object_t srcobject, vm_object_t dstobject,
2122     vm_pindex_t pindex, vm_pindex_t count)
2123 {
2124 	struct swblk *sb;
2125 	daddr_t n_free, s_free;
2126 	vm_pindex_t offset, last;
2127 	int i, limit, start;
2128 
2129 	VM_OBJECT_ASSERT_WLOCKED(srcobject);
2130 	if (count == 0 || pctrie_is_empty(&srcobject->un_pager.swp.swp_blks))
2131 		return;
2132 
2133 	swp_pager_init_freerange(&s_free, &n_free);
2134 	offset = pindex;
2135 	last = pindex + count;
2136 	for (;;) {
2137 		sb = SWAP_PCTRIE_LOOKUP_GE(&srcobject->un_pager.swp.swp_blks,
2138 		    rounddown(pindex, SWAP_META_PAGES));
2139 		if (sb == NULL || sb->p >= last)
2140 			break;
2141 		start = pindex > sb->p ? pindex - sb->p : 0;
2142 		limit = last - sb->p < SWAP_META_PAGES ? last - sb->p :
2143 		    SWAP_META_PAGES;
2144 		for (i = start; i < limit; i++) {
2145 			if (sb->d[i] == SWAPBLK_NONE)
2146 				continue;
2147 			if (dstobject == NULL ||
2148 			    !swp_pager_xfer_source(srcobject, dstobject,
2149 			    sb->p + i - offset, sb->d[i])) {
2150 				swp_pager_update_freerange(&s_free, &n_free,
2151 				    sb->d[i]);
2152 			}
2153 			sb->d[i] = SWAPBLK_NONE;
2154 		}
2155 		pindex = sb->p + SWAP_META_PAGES;
2156 		if (swp_pager_swblk_empty(sb, 0, start) &&
2157 		    swp_pager_swblk_empty(sb, limit, SWAP_META_PAGES)) {
2158 			SWAP_PCTRIE_REMOVE(&srcobject->un_pager.swp.swp_blks,
2159 			    sb->p);
2160 			uma_zfree(swblk_zone, sb);
2161 		}
2162 	}
2163 	swp_pager_freeswapspace(s_free, n_free);
2164 }
2165 
2166 /*
2167  * SWP_PAGER_META_FREE() - free a range of blocks in the object's swap metadata
2168  *
2169  *	The requested range of blocks is freed, with any associated swap
2170  *	returned to the swap bitmap.
2171  *
2172  *	This routine will free swap metadata structures as they are cleaned
2173  *	out.  This routine does *NOT* operate on swap metadata associated
2174  *	with resident pages.
2175  */
2176 static void
2177 swp_pager_meta_free(vm_object_t object, vm_pindex_t pindex, vm_pindex_t count)
2178 {
2179 	swp_pager_meta_transfer(object, NULL, pindex, count);
2180 }
2181 
2182 /*
2183  * SWP_PAGER_META_FREE_ALL() - destroy all swap metadata associated with object
2184  *
2185  *	This routine locates and destroys all swap metadata associated with
2186  *	an object.
2187  */
2188 static void
2189 swp_pager_meta_free_all(vm_object_t object)
2190 {
2191 	struct swblk *sb;
2192 	daddr_t n_free, s_free;
2193 	vm_pindex_t pindex;
2194 	int i;
2195 
2196 	VM_OBJECT_ASSERT_WLOCKED(object);
2197 
2198 	if (pctrie_is_empty(&object->un_pager.swp.swp_blks))
2199 		return;
2200 
2201 	swp_pager_init_freerange(&s_free, &n_free);
2202 	for (pindex = 0; (sb = SWAP_PCTRIE_LOOKUP_GE(
2203 	    &object->un_pager.swp.swp_blks, pindex)) != NULL;) {
2204 		pindex = sb->p + SWAP_META_PAGES;
2205 		for (i = 0; i < SWAP_META_PAGES; i++) {
2206 			if (sb->d[i] == SWAPBLK_NONE)
2207 				continue;
2208 			swp_pager_update_freerange(&s_free, &n_free, sb->d[i]);
2209 		}
2210 		SWAP_PCTRIE_REMOVE(&object->un_pager.swp.swp_blks, sb->p);
2211 		uma_zfree(swblk_zone, sb);
2212 	}
2213 	swp_pager_freeswapspace(s_free, n_free);
2214 }
2215 
2216 /*
2217  * SWP_PAGER_METACTL() -  misc control of swap meta data.
2218  *
2219  *	This routine is capable of looking up, or removing swapblk
2220  *	assignments in the swap meta data.  It returns the swapblk being
2221  *	looked-up, popped, or SWAPBLK_NONE if the block was invalid.
2222  *
2223  *	When acting on a busy resident page and paging is in progress, we
2224  *	have to wait until paging is complete but otherwise can act on the
2225  *	busy page.
2226  */
2227 static daddr_t
2228 swp_pager_meta_lookup(vm_object_t object, vm_pindex_t pindex)
2229 {
2230 	struct swblk *sb;
2231 
2232 	VM_OBJECT_ASSERT_LOCKED(object);
2233 
2234 	/*
2235 	 * The meta data only exists if the object is OBJT_SWAP
2236 	 * and even then might not be allocated yet.
2237 	 */
2238 	KASSERT((object->flags & OBJ_SWAP) != 0,
2239 	    ("Lookup object not swappable"));
2240 
2241 	sb = SWAP_PCTRIE_LOOKUP(&object->un_pager.swp.swp_blks,
2242 	    rounddown(pindex, SWAP_META_PAGES));
2243 	if (sb == NULL)
2244 		return (SWAPBLK_NONE);
2245 	return (sb->d[pindex % SWAP_META_PAGES]);
2246 }
2247 
2248 /*
2249  * Returns the least page index which is greater than or equal to the
2250  * parameter pindex and for which there is a swap block allocated.
2251  * Returns object's size if the object's type is not swap or if there
2252  * are no allocated swap blocks for the object after the requested
2253  * pindex.
2254  */
2255 vm_pindex_t
2256 swap_pager_find_least(vm_object_t object, vm_pindex_t pindex)
2257 {
2258 	struct swblk *sb;
2259 	int i;
2260 
2261 	VM_OBJECT_ASSERT_LOCKED(object);
2262 
2263 	if (pctrie_is_empty(&object->un_pager.swp.swp_blks))
2264 		return (object->size);
2265 	sb = SWAP_PCTRIE_LOOKUP_GE(&object->un_pager.swp.swp_blks,
2266 	    rounddown(pindex, SWAP_META_PAGES));
2267 	if (sb == NULL)
2268 		return (object->size);
2269 	if (sb->p < pindex) {
2270 		for (i = pindex % SWAP_META_PAGES; i < SWAP_META_PAGES; i++) {
2271 			if (sb->d[i] != SWAPBLK_NONE)
2272 				return (sb->p + i);
2273 		}
2274 		sb = SWAP_PCTRIE_LOOKUP_GE(&object->un_pager.swp.swp_blks,
2275 		    roundup(pindex, SWAP_META_PAGES));
2276 		if (sb == NULL)
2277 			return (object->size);
2278 	}
2279 	for (i = 0; i < SWAP_META_PAGES; i++) {
2280 		if (sb->d[i] != SWAPBLK_NONE)
2281 			return (sb->p + i);
2282 	}
2283 
2284 	/*
2285 	 * We get here if a swblk is present in the trie but it
2286 	 * doesn't map any blocks.
2287 	 */
2288 	MPASS(0);
2289 	return (object->size);
2290 }
2291 
2292 /*
2293  * System call swapon(name) enables swapping on device name,
2294  * which must be in the swdevsw.  Return EBUSY
2295  * if already swapping on this device.
2296  */
2297 #ifndef _SYS_SYSPROTO_H_
2298 struct swapon_args {
2299 	char *name;
2300 };
2301 #endif
2302 
2303 int
2304 sys_swapon(struct thread *td, struct swapon_args *uap)
2305 {
2306 	struct vattr attr;
2307 	struct vnode *vp;
2308 	struct nameidata nd;
2309 	int error;
2310 
2311 	error = priv_check(td, PRIV_SWAPON);
2312 	if (error)
2313 		return (error);
2314 
2315 	sx_xlock(&swdev_syscall_lock);
2316 
2317 	/*
2318 	 * Swap metadata may not fit in the KVM if we have physical
2319 	 * memory of >1GB.
2320 	 */
2321 	if (swblk_zone == NULL) {
2322 		error = ENOMEM;
2323 		goto done;
2324 	}
2325 
2326 	NDINIT(&nd, LOOKUP, ISOPEN | FOLLOW | LOCKLEAF | AUDITVNODE1,
2327 	    UIO_USERSPACE, uap->name);
2328 	error = namei(&nd);
2329 	if (error)
2330 		goto done;
2331 
2332 	NDFREE_PNBUF(&nd);
2333 	vp = nd.ni_vp;
2334 
2335 	if (vn_isdisk_error(vp, &error)) {
2336 		error = swapongeom(vp);
2337 	} else if (vp->v_type == VREG &&
2338 	    (vp->v_mount->mnt_vfc->vfc_flags & VFCF_NETWORK) != 0 &&
2339 	    (error = VOP_GETATTR(vp, &attr, td->td_ucred)) == 0) {
2340 		/*
2341 		 * Allow direct swapping to NFS regular files in the same
2342 		 * way that nfs_mountroot() sets up diskless swapping.
2343 		 */
2344 		error = swaponvp(td, vp, attr.va_size / DEV_BSIZE);
2345 	}
2346 
2347 	if (error != 0)
2348 		vput(vp);
2349 	else
2350 		VOP_UNLOCK(vp);
2351 done:
2352 	sx_xunlock(&swdev_syscall_lock);
2353 	return (error);
2354 }
2355 
2356 /*
2357  * Check that the total amount of swap currently configured does not
2358  * exceed half the theoretical maximum.  If it does, print a warning
2359  * message.
2360  */
2361 static void
2362 swapon_check_swzone(void)
2363 {
2364 
2365 	/* recommend using no more than half that amount */
2366 	if (swap_total > swap_maxpages / 2) {
2367 		printf("warning: total configured swap (%lu pages) "
2368 		    "exceeds maximum recommended amount (%lu pages).\n",
2369 		    swap_total, swap_maxpages / 2);
2370 		printf("warning: increase kern.maxswzone "
2371 		    "or reduce amount of swap.\n");
2372 	}
2373 }
2374 
2375 static void
2376 swaponsomething(struct vnode *vp, void *id, u_long nblks,
2377     sw_strategy_t *strategy, sw_close_t *close, dev_t dev, int flags)
2378 {
2379 	struct swdevt *sp, *tsp;
2380 	daddr_t dvbase;
2381 
2382 	/*
2383 	 * nblks is in DEV_BSIZE'd chunks, convert to PAGE_SIZE'd chunks.
2384 	 * First chop nblks off to page-align it, then convert.
2385 	 *
2386 	 * sw->sw_nblks is in page-sized chunks now too.
2387 	 */
2388 	nblks &= ~(ctodb(1) - 1);
2389 	nblks = dbtoc(nblks);
2390 
2391 	sp = malloc(sizeof *sp, M_VMPGDATA, M_WAITOK | M_ZERO);
2392 	sp->sw_blist = blist_create(nblks, M_WAITOK);
2393 	sp->sw_vp = vp;
2394 	sp->sw_id = id;
2395 	sp->sw_dev = dev;
2396 	sp->sw_nblks = nblks;
2397 	sp->sw_used = 0;
2398 	sp->sw_strategy = strategy;
2399 	sp->sw_close = close;
2400 	sp->sw_flags = flags;
2401 
2402 	/*
2403 	 * Do not free the first blocks in order to avoid overwriting
2404 	 * any bsd label at the front of the partition
2405 	 */
2406 	blist_free(sp->sw_blist, howmany(BBSIZE, PAGE_SIZE),
2407 	    nblks - howmany(BBSIZE, PAGE_SIZE));
2408 
2409 	dvbase = 0;
2410 	mtx_lock(&sw_dev_mtx);
2411 	TAILQ_FOREACH(tsp, &swtailq, sw_list) {
2412 		if (tsp->sw_end >= dvbase) {
2413 			/*
2414 			 * We put one uncovered page between the devices
2415 			 * in order to definitively prevent any cross-device
2416 			 * I/O requests
2417 			 */
2418 			dvbase = tsp->sw_end + 1;
2419 		}
2420 	}
2421 	sp->sw_first = dvbase;
2422 	sp->sw_end = dvbase + nblks;
2423 	TAILQ_INSERT_TAIL(&swtailq, sp, sw_list);
2424 	nswapdev++;
2425 	swap_pager_avail += nblks - howmany(BBSIZE, PAGE_SIZE);
2426 	swap_total += nblks;
2427 	swapon_check_swzone();
2428 	swp_sizecheck();
2429 	mtx_unlock(&sw_dev_mtx);
2430 	EVENTHANDLER_INVOKE(swapon, sp);
2431 }
2432 
2433 /*
2434  * SYSCALL: swapoff(devname)
2435  *
2436  * Disable swapping on the given device.
2437  *
2438  * XXX: Badly designed system call: it should use a device index
2439  * rather than filename as specification.  We keep sw_vp around
2440  * only to make this work.
2441  */
2442 static int
2443 kern_swapoff(struct thread *td, const char *name, enum uio_seg name_seg,
2444     u_int flags)
2445 {
2446 	struct vnode *vp;
2447 	struct nameidata nd;
2448 	struct swdevt *sp;
2449 	int error;
2450 
2451 	error = priv_check(td, PRIV_SWAPOFF);
2452 	if (error != 0)
2453 		return (error);
2454 	if ((flags & ~(SWAPOFF_FORCE)) != 0)
2455 		return (EINVAL);
2456 
2457 	sx_xlock(&swdev_syscall_lock);
2458 
2459 	NDINIT(&nd, LOOKUP, FOLLOW | AUDITVNODE1, name_seg, name);
2460 	error = namei(&nd);
2461 	if (error)
2462 		goto done;
2463 	NDFREE_PNBUF(&nd);
2464 	vp = nd.ni_vp;
2465 
2466 	mtx_lock(&sw_dev_mtx);
2467 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
2468 		if (sp->sw_vp == vp)
2469 			break;
2470 	}
2471 	mtx_unlock(&sw_dev_mtx);
2472 	if (sp == NULL) {
2473 		error = EINVAL;
2474 		goto done;
2475 	}
2476 	error = swapoff_one(sp, td->td_ucred, flags);
2477 done:
2478 	sx_xunlock(&swdev_syscall_lock);
2479 	return (error);
2480 }
2481 
2482 
2483 #ifdef COMPAT_FREEBSD13
2484 int
2485 freebsd13_swapoff(struct thread *td, struct freebsd13_swapoff_args *uap)
2486 {
2487 	return (kern_swapoff(td, uap->name, UIO_USERSPACE, 0));
2488 }
2489 #endif
2490 
2491 int
2492 sys_swapoff(struct thread *td, struct swapoff_args *uap)
2493 {
2494 	return (kern_swapoff(td, uap->name, UIO_USERSPACE, uap->flags));
2495 }
2496 
2497 static int
2498 swapoff_one(struct swdevt *sp, struct ucred *cred, u_int flags)
2499 {
2500 	u_long nblks;
2501 #ifdef MAC
2502 	int error;
2503 #endif
2504 
2505 	sx_assert(&swdev_syscall_lock, SA_XLOCKED);
2506 #ifdef MAC
2507 	(void) vn_lock(sp->sw_vp, LK_EXCLUSIVE | LK_RETRY);
2508 	error = mac_system_check_swapoff(cred, sp->sw_vp);
2509 	(void) VOP_UNLOCK(sp->sw_vp);
2510 	if (error != 0)
2511 		return (error);
2512 #endif
2513 	nblks = sp->sw_nblks;
2514 
2515 	/*
2516 	 * We can turn off this swap device safely only if the
2517 	 * available virtual memory in the system will fit the amount
2518 	 * of data we will have to page back in, plus an epsilon so
2519 	 * the system doesn't become critically low on swap space.
2520 	 * The vm_free_count() part does not account e.g. for clean
2521 	 * pages that can be immediately reclaimed without paging, so
2522 	 * this is a very rough estimation.
2523 	 *
2524 	 * On the other hand, not turning swap off on swapoff_all()
2525 	 * means that we can lose swap data when filesystems go away,
2526 	 * which is arguably worse.
2527 	 */
2528 	if ((flags & SWAPOFF_FORCE) == 0 &&
2529 	    vm_free_count() + swap_pager_avail < nblks + nswap_lowat)
2530 		return (ENOMEM);
2531 
2532 	/*
2533 	 * Prevent further allocations on this device.
2534 	 */
2535 	mtx_lock(&sw_dev_mtx);
2536 	sp->sw_flags |= SW_CLOSING;
2537 	swap_pager_avail -= blist_fill(sp->sw_blist, 0, nblks);
2538 	swap_total -= nblks;
2539 	mtx_unlock(&sw_dev_mtx);
2540 
2541 	/*
2542 	 * Page in the contents of the device and close it.
2543 	 */
2544 	swap_pager_swapoff(sp);
2545 
2546 	sp->sw_close(curthread, sp);
2547 	mtx_lock(&sw_dev_mtx);
2548 	sp->sw_id = NULL;
2549 	TAILQ_REMOVE(&swtailq, sp, sw_list);
2550 	nswapdev--;
2551 	if (nswapdev == 0) {
2552 		swap_pager_full = 2;
2553 		swap_pager_almost_full = 1;
2554 	}
2555 	if (swdevhd == sp)
2556 		swdevhd = NULL;
2557 	mtx_unlock(&sw_dev_mtx);
2558 	blist_destroy(sp->sw_blist);
2559 	free(sp, M_VMPGDATA);
2560 	return (0);
2561 }
2562 
2563 void
2564 swapoff_all(void)
2565 {
2566 	struct swdevt *sp, *spt;
2567 	const char *devname;
2568 	int error;
2569 
2570 	sx_xlock(&swdev_syscall_lock);
2571 
2572 	mtx_lock(&sw_dev_mtx);
2573 	TAILQ_FOREACH_SAFE(sp, &swtailq, sw_list, spt) {
2574 		mtx_unlock(&sw_dev_mtx);
2575 		if (vn_isdisk(sp->sw_vp))
2576 			devname = devtoname(sp->sw_vp->v_rdev);
2577 		else
2578 			devname = "[file]";
2579 		error = swapoff_one(sp, thread0.td_ucred, SWAPOFF_FORCE);
2580 		if (error != 0) {
2581 			printf("Cannot remove swap device %s (error=%d), "
2582 			    "skipping.\n", devname, error);
2583 		} else if (bootverbose) {
2584 			printf("Swap device %s removed.\n", devname);
2585 		}
2586 		mtx_lock(&sw_dev_mtx);
2587 	}
2588 	mtx_unlock(&sw_dev_mtx);
2589 
2590 	sx_xunlock(&swdev_syscall_lock);
2591 }
2592 
2593 void
2594 swap_pager_status(int *total, int *used)
2595 {
2596 
2597 	*total = swap_total;
2598 	*used = swap_total - swap_pager_avail -
2599 	    nswapdev * howmany(BBSIZE, PAGE_SIZE);
2600 }
2601 
2602 int
2603 swap_dev_info(int name, struct xswdev *xs, char *devname, size_t len)
2604 {
2605 	struct swdevt *sp;
2606 	const char *tmp_devname;
2607 	int error, n;
2608 
2609 	n = 0;
2610 	error = ENOENT;
2611 	mtx_lock(&sw_dev_mtx);
2612 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
2613 		if (n != name) {
2614 			n++;
2615 			continue;
2616 		}
2617 		xs->xsw_version = XSWDEV_VERSION;
2618 		xs->xsw_dev = sp->sw_dev;
2619 		xs->xsw_flags = sp->sw_flags;
2620 		xs->xsw_nblks = sp->sw_nblks;
2621 		xs->xsw_used = sp->sw_used;
2622 		if (devname != NULL) {
2623 			if (vn_isdisk(sp->sw_vp))
2624 				tmp_devname = devtoname(sp->sw_vp->v_rdev);
2625 			else
2626 				tmp_devname = "[file]";
2627 			strncpy(devname, tmp_devname, len);
2628 		}
2629 		error = 0;
2630 		break;
2631 	}
2632 	mtx_unlock(&sw_dev_mtx);
2633 	return (error);
2634 }
2635 
2636 #if defined(COMPAT_FREEBSD11)
2637 #define XSWDEV_VERSION_11	1
2638 struct xswdev11 {
2639 	u_int	xsw_version;
2640 	uint32_t xsw_dev;
2641 	int	xsw_flags;
2642 	int	xsw_nblks;
2643 	int     xsw_used;
2644 };
2645 #endif
2646 
2647 #if defined(__amd64__) && defined(COMPAT_FREEBSD32)
2648 struct xswdev32 {
2649 	u_int	xsw_version;
2650 	u_int	xsw_dev1, xsw_dev2;
2651 	int	xsw_flags;
2652 	int	xsw_nblks;
2653 	int     xsw_used;
2654 };
2655 #endif
2656 
2657 static int
2658 sysctl_vm_swap_info(SYSCTL_HANDLER_ARGS)
2659 {
2660 	struct xswdev xs;
2661 #if defined(__amd64__) && defined(COMPAT_FREEBSD32)
2662 	struct xswdev32 xs32;
2663 #endif
2664 #if defined(COMPAT_FREEBSD11)
2665 	struct xswdev11 xs11;
2666 #endif
2667 	int error;
2668 
2669 	if (arg2 != 1)			/* name length */
2670 		return (EINVAL);
2671 
2672 	memset(&xs, 0, sizeof(xs));
2673 	error = swap_dev_info(*(int *)arg1, &xs, NULL, 0);
2674 	if (error != 0)
2675 		return (error);
2676 #if defined(__amd64__) && defined(COMPAT_FREEBSD32)
2677 	if (req->oldlen == sizeof(xs32)) {
2678 		memset(&xs32, 0, sizeof(xs32));
2679 		xs32.xsw_version = XSWDEV_VERSION;
2680 		xs32.xsw_dev1 = xs.xsw_dev;
2681 		xs32.xsw_dev2 = xs.xsw_dev >> 32;
2682 		xs32.xsw_flags = xs.xsw_flags;
2683 		xs32.xsw_nblks = xs.xsw_nblks;
2684 		xs32.xsw_used = xs.xsw_used;
2685 		error = SYSCTL_OUT(req, &xs32, sizeof(xs32));
2686 		return (error);
2687 	}
2688 #endif
2689 #if defined(COMPAT_FREEBSD11)
2690 	if (req->oldlen == sizeof(xs11)) {
2691 		memset(&xs11, 0, sizeof(xs11));
2692 		xs11.xsw_version = XSWDEV_VERSION_11;
2693 		xs11.xsw_dev = xs.xsw_dev; /* truncation */
2694 		xs11.xsw_flags = xs.xsw_flags;
2695 		xs11.xsw_nblks = xs.xsw_nblks;
2696 		xs11.xsw_used = xs.xsw_used;
2697 		error = SYSCTL_OUT(req, &xs11, sizeof(xs11));
2698 		return (error);
2699 	}
2700 #endif
2701 	error = SYSCTL_OUT(req, &xs, sizeof(xs));
2702 	return (error);
2703 }
2704 
2705 SYSCTL_INT(_vm, OID_AUTO, nswapdev, CTLFLAG_RD, &nswapdev, 0,
2706     "Number of swap devices");
2707 SYSCTL_NODE(_vm, OID_AUTO, swap_info, CTLFLAG_RD | CTLFLAG_MPSAFE,
2708     sysctl_vm_swap_info,
2709     "Swap statistics by device");
2710 
2711 /*
2712  * Count the approximate swap usage in pages for a vmspace.  The
2713  * shadowed or not yet copied on write swap blocks are not accounted.
2714  * The map must be locked.
2715  */
2716 long
2717 vmspace_swap_count(struct vmspace *vmspace)
2718 {
2719 	vm_map_t map;
2720 	vm_map_entry_t cur;
2721 	vm_object_t object;
2722 	struct swblk *sb;
2723 	vm_pindex_t e, pi;
2724 	long count;
2725 	int i;
2726 
2727 	map = &vmspace->vm_map;
2728 	count = 0;
2729 
2730 	VM_MAP_ENTRY_FOREACH(cur, map) {
2731 		if ((cur->eflags & MAP_ENTRY_IS_SUB_MAP) != 0)
2732 			continue;
2733 		object = cur->object.vm_object;
2734 		if (object == NULL || (object->flags & OBJ_SWAP) == 0)
2735 			continue;
2736 		VM_OBJECT_RLOCK(object);
2737 		if ((object->flags & OBJ_SWAP) == 0)
2738 			goto unlock;
2739 		pi = OFF_TO_IDX(cur->offset);
2740 		e = pi + OFF_TO_IDX(cur->end - cur->start);
2741 		for (;; pi = sb->p + SWAP_META_PAGES) {
2742 			sb = SWAP_PCTRIE_LOOKUP_GE(
2743 			    &object->un_pager.swp.swp_blks, pi);
2744 			if (sb == NULL || sb->p >= e)
2745 				break;
2746 			for (i = 0; i < SWAP_META_PAGES; i++) {
2747 				if (sb->p + i < e &&
2748 				    sb->d[i] != SWAPBLK_NONE)
2749 					count++;
2750 			}
2751 		}
2752 unlock:
2753 		VM_OBJECT_RUNLOCK(object);
2754 	}
2755 	return (count);
2756 }
2757 
2758 /*
2759  * GEOM backend
2760  *
2761  * Swapping onto disk devices.
2762  *
2763  */
2764 
2765 static g_orphan_t swapgeom_orphan;
2766 
2767 static struct g_class g_swap_class = {
2768 	.name = "SWAP",
2769 	.version = G_VERSION,
2770 	.orphan = swapgeom_orphan,
2771 };
2772 
2773 DECLARE_GEOM_CLASS(g_swap_class, g_class);
2774 
2775 static void
2776 swapgeom_close_ev(void *arg, int flags)
2777 {
2778 	struct g_consumer *cp;
2779 
2780 	cp = arg;
2781 	g_access(cp, -1, -1, 0);
2782 	g_detach(cp);
2783 	g_destroy_consumer(cp);
2784 }
2785 
2786 /*
2787  * Add a reference to the g_consumer for an inflight transaction.
2788  */
2789 static void
2790 swapgeom_acquire(struct g_consumer *cp)
2791 {
2792 
2793 	mtx_assert(&sw_dev_mtx, MA_OWNED);
2794 	cp->index++;
2795 }
2796 
2797 /*
2798  * Remove a reference from the g_consumer.  Post a close event if all
2799  * references go away, since the function might be called from the
2800  * biodone context.
2801  */
2802 static void
2803 swapgeom_release(struct g_consumer *cp, struct swdevt *sp)
2804 {
2805 
2806 	mtx_assert(&sw_dev_mtx, MA_OWNED);
2807 	cp->index--;
2808 	if (cp->index == 0) {
2809 		if (g_post_event(swapgeom_close_ev, cp, M_NOWAIT, NULL) == 0)
2810 			sp->sw_id = NULL;
2811 	}
2812 }
2813 
2814 static void
2815 swapgeom_done(struct bio *bp2)
2816 {
2817 	struct swdevt *sp;
2818 	struct buf *bp;
2819 	struct g_consumer *cp;
2820 
2821 	bp = bp2->bio_caller2;
2822 	cp = bp2->bio_from;
2823 	bp->b_ioflags = bp2->bio_flags;
2824 	if (bp2->bio_error)
2825 		bp->b_ioflags |= BIO_ERROR;
2826 	bp->b_resid = bp->b_bcount - bp2->bio_completed;
2827 	bp->b_error = bp2->bio_error;
2828 	bp->b_caller1 = NULL;
2829 	bufdone(bp);
2830 	sp = bp2->bio_caller1;
2831 	mtx_lock(&sw_dev_mtx);
2832 	swapgeom_release(cp, sp);
2833 	mtx_unlock(&sw_dev_mtx);
2834 	g_destroy_bio(bp2);
2835 }
2836 
2837 static void
2838 swapgeom_strategy(struct buf *bp, struct swdevt *sp)
2839 {
2840 	struct bio *bio;
2841 	struct g_consumer *cp;
2842 
2843 	mtx_lock(&sw_dev_mtx);
2844 	cp = sp->sw_id;
2845 	if (cp == NULL) {
2846 		mtx_unlock(&sw_dev_mtx);
2847 		bp->b_error = ENXIO;
2848 		bp->b_ioflags |= BIO_ERROR;
2849 		bufdone(bp);
2850 		return;
2851 	}
2852 	swapgeom_acquire(cp);
2853 	mtx_unlock(&sw_dev_mtx);
2854 	if (bp->b_iocmd == BIO_WRITE)
2855 		bio = g_new_bio();
2856 	else
2857 		bio = g_alloc_bio();
2858 	if (bio == NULL) {
2859 		mtx_lock(&sw_dev_mtx);
2860 		swapgeom_release(cp, sp);
2861 		mtx_unlock(&sw_dev_mtx);
2862 		bp->b_error = ENOMEM;
2863 		bp->b_ioflags |= BIO_ERROR;
2864 		printf("swap_pager: cannot allocate bio\n");
2865 		bufdone(bp);
2866 		return;
2867 	}
2868 
2869 	bp->b_caller1 = bio;
2870 	bio->bio_caller1 = sp;
2871 	bio->bio_caller2 = bp;
2872 	bio->bio_cmd = bp->b_iocmd;
2873 	bio->bio_offset = (bp->b_blkno - sp->sw_first) * PAGE_SIZE;
2874 	bio->bio_length = bp->b_bcount;
2875 	bio->bio_done = swapgeom_done;
2876 	bio->bio_flags |= BIO_SWAP;
2877 	if (!buf_mapped(bp)) {
2878 		bio->bio_ma = bp->b_pages;
2879 		bio->bio_data = unmapped_buf;
2880 		bio->bio_ma_offset = (vm_offset_t)bp->b_offset & PAGE_MASK;
2881 		bio->bio_ma_n = bp->b_npages;
2882 		bio->bio_flags |= BIO_UNMAPPED;
2883 	} else {
2884 		bio->bio_data = bp->b_data;
2885 		bio->bio_ma = NULL;
2886 	}
2887 	g_io_request(bio, cp);
2888 	return;
2889 }
2890 
2891 static void
2892 swapgeom_orphan(struct g_consumer *cp)
2893 {
2894 	struct swdevt *sp;
2895 	int destroy;
2896 
2897 	mtx_lock(&sw_dev_mtx);
2898 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
2899 		if (sp->sw_id == cp) {
2900 			sp->sw_flags |= SW_CLOSING;
2901 			break;
2902 		}
2903 	}
2904 	/*
2905 	 * Drop reference we were created with. Do directly since we're in a
2906 	 * special context where we don't have to queue the call to
2907 	 * swapgeom_close_ev().
2908 	 */
2909 	cp->index--;
2910 	destroy = ((sp != NULL) && (cp->index == 0));
2911 	if (destroy)
2912 		sp->sw_id = NULL;
2913 	mtx_unlock(&sw_dev_mtx);
2914 	if (destroy)
2915 		swapgeom_close_ev(cp, 0);
2916 }
2917 
2918 static void
2919 swapgeom_close(struct thread *td, struct swdevt *sw)
2920 {
2921 	struct g_consumer *cp;
2922 
2923 	mtx_lock(&sw_dev_mtx);
2924 	cp = sw->sw_id;
2925 	sw->sw_id = NULL;
2926 	mtx_unlock(&sw_dev_mtx);
2927 
2928 	/*
2929 	 * swapgeom_close() may be called from the biodone context,
2930 	 * where we cannot perform topology changes.  Delegate the
2931 	 * work to the events thread.
2932 	 */
2933 	if (cp != NULL)
2934 		g_waitfor_event(swapgeom_close_ev, cp, M_WAITOK, NULL);
2935 }
2936 
2937 static int
2938 swapongeom_locked(struct cdev *dev, struct vnode *vp)
2939 {
2940 	struct g_provider *pp;
2941 	struct g_consumer *cp;
2942 	static struct g_geom *gp;
2943 	struct swdevt *sp;
2944 	u_long nblks;
2945 	int error;
2946 
2947 	pp = g_dev_getprovider(dev);
2948 	if (pp == NULL)
2949 		return (ENODEV);
2950 	mtx_lock(&sw_dev_mtx);
2951 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
2952 		cp = sp->sw_id;
2953 		if (cp != NULL && cp->provider == pp) {
2954 			mtx_unlock(&sw_dev_mtx);
2955 			return (EBUSY);
2956 		}
2957 	}
2958 	mtx_unlock(&sw_dev_mtx);
2959 	if (gp == NULL)
2960 		gp = g_new_geomf(&g_swap_class, "swap");
2961 	cp = g_new_consumer(gp);
2962 	cp->index = 1;	/* Number of active I/Os, plus one for being active. */
2963 	cp->flags |=  G_CF_DIRECT_SEND | G_CF_DIRECT_RECEIVE;
2964 	g_attach(cp, pp);
2965 	/*
2966 	 * XXX: Every time you think you can improve the margin for
2967 	 * footshooting, somebody depends on the ability to do so:
2968 	 * savecore(8) wants to write to our swapdev so we cannot
2969 	 * set an exclusive count :-(
2970 	 */
2971 	error = g_access(cp, 1, 1, 0);
2972 	if (error != 0) {
2973 		g_detach(cp);
2974 		g_destroy_consumer(cp);
2975 		return (error);
2976 	}
2977 	nblks = pp->mediasize / DEV_BSIZE;
2978 	swaponsomething(vp, cp, nblks, swapgeom_strategy,
2979 	    swapgeom_close, dev2udev(dev),
2980 	    (pp->flags & G_PF_ACCEPT_UNMAPPED) != 0 ? SW_UNMAPPED : 0);
2981 	return (0);
2982 }
2983 
2984 static int
2985 swapongeom(struct vnode *vp)
2986 {
2987 	int error;
2988 
2989 	ASSERT_VOP_ELOCKED(vp, "swapongeom");
2990 	if (vp->v_type != VCHR || VN_IS_DOOMED(vp)) {
2991 		error = ENOENT;
2992 	} else {
2993 		g_topology_lock();
2994 		error = swapongeom_locked(vp->v_rdev, vp);
2995 		g_topology_unlock();
2996 	}
2997 	return (error);
2998 }
2999 
3000 /*
3001  * VNODE backend
3002  *
3003  * This is used mainly for network filesystem (read: probably only tested
3004  * with NFS) swapfiles.
3005  *
3006  */
3007 
3008 static void
3009 swapdev_strategy(struct buf *bp, struct swdevt *sp)
3010 {
3011 	struct vnode *vp2;
3012 
3013 	bp->b_blkno = ctodb(bp->b_blkno - sp->sw_first);
3014 
3015 	vp2 = sp->sw_id;
3016 	vhold(vp2);
3017 	if (bp->b_iocmd == BIO_WRITE) {
3018 		vn_lock(vp2, LK_EXCLUSIVE | LK_RETRY);
3019 		if (bp->b_bufobj)
3020 			bufobj_wdrop(bp->b_bufobj);
3021 		bufobj_wref(&vp2->v_bufobj);
3022 	} else {
3023 		vn_lock(vp2, LK_SHARED | LK_RETRY);
3024 	}
3025 	if (bp->b_bufobj != &vp2->v_bufobj)
3026 		bp->b_bufobj = &vp2->v_bufobj;
3027 	bp->b_vp = vp2;
3028 	bp->b_iooffset = dbtob(bp->b_blkno);
3029 	bstrategy(bp);
3030 	VOP_UNLOCK(vp2);
3031 }
3032 
3033 static void
3034 swapdev_close(struct thread *td, struct swdevt *sp)
3035 {
3036 	struct vnode *vp;
3037 
3038 	vp = sp->sw_vp;
3039 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
3040 	VOP_CLOSE(vp, FREAD | FWRITE, td->td_ucred, td);
3041 	vput(vp);
3042 }
3043 
3044 static int
3045 swaponvp(struct thread *td, struct vnode *vp, u_long nblks)
3046 {
3047 	struct swdevt *sp;
3048 	int error;
3049 
3050 	ASSERT_VOP_ELOCKED(vp, "swaponvp");
3051 	if (nblks == 0)
3052 		return (ENXIO);
3053 	mtx_lock(&sw_dev_mtx);
3054 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
3055 		if (sp->sw_id == vp) {
3056 			mtx_unlock(&sw_dev_mtx);
3057 			return (EBUSY);
3058 		}
3059 	}
3060 	mtx_unlock(&sw_dev_mtx);
3061 
3062 #ifdef MAC
3063 	error = mac_system_check_swapon(td->td_ucred, vp);
3064 	if (error == 0)
3065 #endif
3066 		error = VOP_OPEN(vp, FREAD | FWRITE, td->td_ucred, td, NULL);
3067 	if (error != 0)
3068 		return (error);
3069 
3070 	swaponsomething(vp, vp, nblks, swapdev_strategy, swapdev_close,
3071 	    NODEV, 0);
3072 	return (0);
3073 }
3074 
3075 static int
3076 sysctl_swap_async_max(SYSCTL_HANDLER_ARGS)
3077 {
3078 	int error, new, n;
3079 
3080 	new = nsw_wcount_async_max;
3081 	error = sysctl_handle_int(oidp, &new, 0, req);
3082 	if (error != 0 || req->newptr == NULL)
3083 		return (error);
3084 
3085 	if (new > nswbuf / 2 || new < 1)
3086 		return (EINVAL);
3087 
3088 	mtx_lock(&swbuf_mtx);
3089 	while (nsw_wcount_async_max != new) {
3090 		/*
3091 		 * Adjust difference.  If the current async count is too low,
3092 		 * we will need to sqeeze our update slowly in.  Sleep with a
3093 		 * higher priority than getpbuf() to finish faster.
3094 		 */
3095 		n = new - nsw_wcount_async_max;
3096 		if (nsw_wcount_async + n >= 0) {
3097 			nsw_wcount_async += n;
3098 			nsw_wcount_async_max += n;
3099 			wakeup(&nsw_wcount_async);
3100 		} else {
3101 			nsw_wcount_async_max -= nsw_wcount_async;
3102 			nsw_wcount_async = 0;
3103 			msleep(&nsw_wcount_async, &swbuf_mtx, PSWP,
3104 			    "swpsysctl", 0);
3105 		}
3106 	}
3107 	mtx_unlock(&swbuf_mtx);
3108 
3109 	return (0);
3110 }
3111 
3112 static void
3113 swap_pager_update_writecount(vm_object_t object, vm_offset_t start,
3114     vm_offset_t end)
3115 {
3116 
3117 	VM_OBJECT_WLOCK(object);
3118 	KASSERT((object->flags & OBJ_ANON) == 0,
3119 	    ("Splittable object with writecount"));
3120 	object->un_pager.swp.writemappings += (vm_ooffset_t)end - start;
3121 	VM_OBJECT_WUNLOCK(object);
3122 }
3123 
3124 static void
3125 swap_pager_release_writecount(vm_object_t object, vm_offset_t start,
3126     vm_offset_t end)
3127 {
3128 
3129 	VM_OBJECT_WLOCK(object);
3130 	KASSERT((object->flags & OBJ_ANON) == 0,
3131 	    ("Splittable object with writecount"));
3132 	object->un_pager.swp.writemappings -= (vm_ooffset_t)end - start;
3133 	VM_OBJECT_WUNLOCK(object);
3134 }
3135