xref: /freebsd/sys/vm/uma_core.c (revision 33e5a1ea)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2002-2019 Jeffrey Roberson <jeff@FreeBSD.org>
5  * Copyright (c) 2004, 2005 Bosko Milekic <bmilekic@FreeBSD.org>
6  * Copyright (c) 2004-2006 Robert N. M. Watson
7  * All rights reserved.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice unmodified, this list of conditions, and the following
14  *    disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
20  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
21  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
22  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
23  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
24  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
28  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29  */
30 
31 /*
32  * uma_core.c  Implementation of the Universal Memory allocator
33  *
34  * This allocator is intended to replace the multitude of similar object caches
35  * in the standard FreeBSD kernel.  The intent is to be flexible as well as
36  * efficient.  A primary design goal is to return unused memory to the rest of
37  * the system.  This will make the system as a whole more flexible due to the
38  * ability to move memory to subsystems which most need it instead of leaving
39  * pools of reserved memory unused.
40  *
41  * The basic ideas stem from similar slab/zone based allocators whose algorithms
42  * are well known.
43  *
44  */
45 
46 /*
47  * TODO:
48  *	- Improve memory usage for large allocations
49  *	- Investigate cache size adjustments
50  */
51 
52 #include <sys/cdefs.h>
53 __FBSDID("$FreeBSD$");
54 
55 #include "opt_ddb.h"
56 #include "opt_param.h"
57 #include "opt_vm.h"
58 
59 #include <sys/param.h>
60 #include <sys/systm.h>
61 #include <sys/bitset.h>
62 #include <sys/domainset.h>
63 #include <sys/eventhandler.h>
64 #include <sys/kernel.h>
65 #include <sys/types.h>
66 #include <sys/limits.h>
67 #include <sys/queue.h>
68 #include <sys/malloc.h>
69 #include <sys/ktr.h>
70 #include <sys/lock.h>
71 #include <sys/sysctl.h>
72 #include <sys/mutex.h>
73 #include <sys/proc.h>
74 #include <sys/random.h>
75 #include <sys/rwlock.h>
76 #include <sys/sbuf.h>
77 #include <sys/sched.h>
78 #include <sys/sleepqueue.h>
79 #include <sys/smp.h>
80 #include <sys/smr.h>
81 #include <sys/taskqueue.h>
82 #include <sys/vmmeter.h>
83 
84 #include <vm/vm.h>
85 #include <vm/vm_domainset.h>
86 #include <vm/vm_object.h>
87 #include <vm/vm_page.h>
88 #include <vm/vm_pageout.h>
89 #include <vm/vm_param.h>
90 #include <vm/vm_phys.h>
91 #include <vm/vm_pagequeue.h>
92 #include <vm/vm_map.h>
93 #include <vm/vm_kern.h>
94 #include <vm/vm_extern.h>
95 #include <vm/uma.h>
96 #include <vm/uma_int.h>
97 #include <vm/uma_dbg.h>
98 
99 #include <ddb/ddb.h>
100 
101 #ifdef DEBUG_MEMGUARD
102 #include <vm/memguard.h>
103 #endif
104 
105 #include <machine/md_var.h>
106 
107 #ifdef INVARIANTS
108 #define	UMA_ALWAYS_CTORDTOR	1
109 #else
110 #define	UMA_ALWAYS_CTORDTOR	0
111 #endif
112 
113 /*
114  * This is the zone and keg from which all zones are spawned.
115  */
116 static uma_zone_t kegs;
117 static uma_zone_t zones;
118 
119 /*
120  * These are the two zones from which all offpage uma_slab_ts are allocated.
121  *
122  * One zone is for slab headers that can represent a larger number of items,
123  * making the slabs themselves more efficient, and the other zone is for
124  * headers that are smaller and represent fewer items, making the headers more
125  * efficient.
126  */
127 #define	SLABZONE_SIZE(setsize)					\
128     (sizeof(struct uma_hash_slab) + BITSET_SIZE(setsize) * SLAB_BITSETS)
129 #define	SLABZONE0_SETSIZE	(PAGE_SIZE / 16)
130 #define	SLABZONE1_SETSIZE	SLAB_MAX_SETSIZE
131 #define	SLABZONE0_SIZE	SLABZONE_SIZE(SLABZONE0_SETSIZE)
132 #define	SLABZONE1_SIZE	SLABZONE_SIZE(SLABZONE1_SETSIZE)
133 static uma_zone_t slabzones[2];
134 
135 /*
136  * The initial hash tables come out of this zone so they can be allocated
137  * prior to malloc coming up.
138  */
139 static uma_zone_t hashzone;
140 
141 /* The boot-time adjusted value for cache line alignment. */
142 int uma_align_cache = 64 - 1;
143 
144 static MALLOC_DEFINE(M_UMAHASH, "UMAHash", "UMA Hash Buckets");
145 static MALLOC_DEFINE(M_UMA, "UMA", "UMA Misc");
146 
147 /*
148  * Are we allowed to allocate buckets?
149  */
150 static int bucketdisable = 1;
151 
152 /* Linked list of all kegs in the system */
153 static LIST_HEAD(,uma_keg) uma_kegs = LIST_HEAD_INITIALIZER(uma_kegs);
154 
155 /* Linked list of all cache-only zones in the system */
156 static LIST_HEAD(,uma_zone) uma_cachezones =
157     LIST_HEAD_INITIALIZER(uma_cachezones);
158 
159 /* This RW lock protects the keg list */
160 static struct rwlock_padalign __exclusive_cache_line uma_rwlock;
161 
162 /*
163  * First available virual address for boot time allocations.
164  */
165 static vm_offset_t bootstart;
166 static vm_offset_t bootmem;
167 
168 static struct sx uma_reclaim_lock;
169 
170 /*
171  * kmem soft limit, initialized by uma_set_limit().  Ensure that early
172  * allocations don't trigger a wakeup of the reclaim thread.
173  */
174 unsigned long uma_kmem_limit = LONG_MAX;
175 SYSCTL_ULONG(_vm, OID_AUTO, uma_kmem_limit, CTLFLAG_RD, &uma_kmem_limit, 0,
176     "UMA kernel memory soft limit");
177 unsigned long uma_kmem_total;
178 SYSCTL_ULONG(_vm, OID_AUTO, uma_kmem_total, CTLFLAG_RD, &uma_kmem_total, 0,
179     "UMA kernel memory usage");
180 
181 /* Is the VM done starting up? */
182 static enum {
183 	BOOT_COLD,
184 	BOOT_KVA,
185 	BOOT_RUNNING,
186 	BOOT_SHUTDOWN,
187 } booted = BOOT_COLD;
188 
189 /*
190  * This is the handle used to schedule events that need to happen
191  * outside of the allocation fast path.
192  */
193 static struct callout uma_callout;
194 #define	UMA_TIMEOUT	20		/* Seconds for callout interval. */
195 
196 /*
197  * This structure is passed as the zone ctor arg so that I don't have to create
198  * a special allocation function just for zones.
199  */
200 struct uma_zctor_args {
201 	const char *name;
202 	size_t size;
203 	uma_ctor ctor;
204 	uma_dtor dtor;
205 	uma_init uminit;
206 	uma_fini fini;
207 	uma_import import;
208 	uma_release release;
209 	void *arg;
210 	uma_keg_t keg;
211 	int align;
212 	uint32_t flags;
213 };
214 
215 struct uma_kctor_args {
216 	uma_zone_t zone;
217 	size_t size;
218 	uma_init uminit;
219 	uma_fini fini;
220 	int align;
221 	uint32_t flags;
222 };
223 
224 struct uma_bucket_zone {
225 	uma_zone_t	ubz_zone;
226 	char		*ubz_name;
227 	int		ubz_entries;	/* Number of items it can hold. */
228 	int		ubz_maxsize;	/* Maximum allocation size per-item. */
229 };
230 
231 /*
232  * Compute the actual number of bucket entries to pack them in power
233  * of two sizes for more efficient space utilization.
234  */
235 #define	BUCKET_SIZE(n)						\
236     (((sizeof(void *) * (n)) - sizeof(struct uma_bucket)) / sizeof(void *))
237 
238 #define	BUCKET_MAX	BUCKET_SIZE(256)
239 #define	BUCKET_MIN	2
240 
241 struct uma_bucket_zone bucket_zones[] = {
242 	/* Literal bucket sizes. */
243 	{ NULL, "2 Bucket", 2, 4096 },
244 	{ NULL, "4 Bucket", 4, 3072 },
245 	{ NULL, "8 Bucket", 8, 2048 },
246 	{ NULL, "16 Bucket", 16, 1024 },
247 	/* Rounded down power of 2 sizes for efficiency. */
248 	{ NULL, "32 Bucket", BUCKET_SIZE(32), 512 },
249 	{ NULL, "64 Bucket", BUCKET_SIZE(64), 256 },
250 	{ NULL, "128 Bucket", BUCKET_SIZE(128), 128 },
251 	{ NULL, "256 Bucket", BUCKET_SIZE(256), 64 },
252 	{ NULL, NULL, 0}
253 };
254 
255 /*
256  * Flags and enumerations to be passed to internal functions.
257  */
258 enum zfreeskip {
259 	SKIP_NONE =	0,
260 	SKIP_CNT =	0x00000001,
261 	SKIP_DTOR =	0x00010000,
262 	SKIP_FINI =	0x00020000,
263 };
264 
265 /* Prototypes.. */
266 
267 void	uma_startup1(vm_offset_t);
268 void	uma_startup2(void);
269 
270 static void *noobj_alloc(uma_zone_t, vm_size_t, int, uint8_t *, int);
271 static void *page_alloc(uma_zone_t, vm_size_t, int, uint8_t *, int);
272 static void *pcpu_page_alloc(uma_zone_t, vm_size_t, int, uint8_t *, int);
273 static void *startup_alloc(uma_zone_t, vm_size_t, int, uint8_t *, int);
274 static void *contig_alloc(uma_zone_t, vm_size_t, int, uint8_t *, int);
275 static void page_free(void *, vm_size_t, uint8_t);
276 static void pcpu_page_free(void *, vm_size_t, uint8_t);
277 static uma_slab_t keg_alloc_slab(uma_keg_t, uma_zone_t, int, int, int);
278 static void cache_drain(uma_zone_t);
279 static void bucket_drain(uma_zone_t, uma_bucket_t);
280 static void bucket_cache_reclaim(uma_zone_t zone, bool);
281 static int keg_ctor(void *, int, void *, int);
282 static void keg_dtor(void *, int, void *);
283 static int zone_ctor(void *, int, void *, int);
284 static void zone_dtor(void *, int, void *);
285 static inline void item_dtor(uma_zone_t zone, void *item, int size,
286     void *udata, enum zfreeskip skip);
287 static int zero_init(void *, int, int);
288 static void zone_foreach(void (*zfunc)(uma_zone_t, void *), void *);
289 static void zone_foreach_unlocked(void (*zfunc)(uma_zone_t, void *), void *);
290 static void zone_timeout(uma_zone_t zone, void *);
291 static int hash_alloc(struct uma_hash *, u_int);
292 static int hash_expand(struct uma_hash *, struct uma_hash *);
293 static void hash_free(struct uma_hash *hash);
294 static void uma_timeout(void *);
295 static void uma_startup3(void);
296 static void uma_shutdown(void);
297 static void *zone_alloc_item(uma_zone_t, void *, int, int);
298 static void zone_free_item(uma_zone_t, void *, void *, enum zfreeskip);
299 static int zone_alloc_limit(uma_zone_t zone, int count, int flags);
300 static void zone_free_limit(uma_zone_t zone, int count);
301 static void bucket_enable(void);
302 static void bucket_init(void);
303 static uma_bucket_t bucket_alloc(uma_zone_t zone, void *, int);
304 static void bucket_free(uma_zone_t zone, uma_bucket_t, void *);
305 static void bucket_zone_drain(void);
306 static uma_bucket_t zone_alloc_bucket(uma_zone_t, void *, int, int);
307 static void *slab_alloc_item(uma_keg_t keg, uma_slab_t slab);
308 static void slab_free_item(uma_zone_t zone, uma_slab_t slab, void *item);
309 static uma_keg_t uma_kcreate(uma_zone_t zone, size_t size, uma_init uminit,
310     uma_fini fini, int align, uint32_t flags);
311 static int zone_import(void *, void **, int, int, int);
312 static void zone_release(void *, void **, int);
313 static bool cache_alloc(uma_zone_t, uma_cache_t, void *, int);
314 static bool cache_free(uma_zone_t, uma_cache_t, void *, void *, int);
315 
316 static int sysctl_vm_zone_count(SYSCTL_HANDLER_ARGS);
317 static int sysctl_vm_zone_stats(SYSCTL_HANDLER_ARGS);
318 static int sysctl_handle_uma_zone_allocs(SYSCTL_HANDLER_ARGS);
319 static int sysctl_handle_uma_zone_frees(SYSCTL_HANDLER_ARGS);
320 static int sysctl_handle_uma_zone_flags(SYSCTL_HANDLER_ARGS);
321 static int sysctl_handle_uma_slab_efficiency(SYSCTL_HANDLER_ARGS);
322 static int sysctl_handle_uma_zone_items(SYSCTL_HANDLER_ARGS);
323 
324 static uint64_t uma_zone_get_allocs(uma_zone_t zone);
325 
326 static SYSCTL_NODE(_vm, OID_AUTO, debug, CTLFLAG_RD, 0,
327     "Memory allocation debugging");
328 
329 #ifdef INVARIANTS
330 static uint64_t uma_keg_get_allocs(uma_keg_t zone);
331 static inline struct noslabbits *slab_dbg_bits(uma_slab_t slab, uma_keg_t keg);
332 
333 static bool uma_dbg_kskip(uma_keg_t keg, void *mem);
334 static bool uma_dbg_zskip(uma_zone_t zone, void *mem);
335 static void uma_dbg_free(uma_zone_t zone, uma_slab_t slab, void *item);
336 static void uma_dbg_alloc(uma_zone_t zone, uma_slab_t slab, void *item);
337 
338 static u_int dbg_divisor = 1;
339 SYSCTL_UINT(_vm_debug, OID_AUTO, divisor,
340     CTLFLAG_RDTUN | CTLFLAG_NOFETCH, &dbg_divisor, 0,
341     "Debug & thrash every this item in memory allocator");
342 
343 static counter_u64_t uma_dbg_cnt = EARLY_COUNTER;
344 static counter_u64_t uma_skip_cnt = EARLY_COUNTER;
345 SYSCTL_COUNTER_U64(_vm_debug, OID_AUTO, trashed, CTLFLAG_RD,
346     &uma_dbg_cnt, "memory items debugged");
347 SYSCTL_COUNTER_U64(_vm_debug, OID_AUTO, skipped, CTLFLAG_RD,
348     &uma_skip_cnt, "memory items skipped, not debugged");
349 #endif
350 
351 SYSINIT(uma_startup3, SI_SUB_VM_CONF, SI_ORDER_SECOND, uma_startup3, NULL);
352 
353 SYSCTL_NODE(_vm, OID_AUTO, uma, CTLFLAG_RW, 0, "Universal Memory Allocator");
354 
355 SYSCTL_PROC(_vm, OID_AUTO, zone_count, CTLFLAG_RD|CTLFLAG_MPSAFE|CTLTYPE_INT,
356     0, 0, sysctl_vm_zone_count, "I", "Number of UMA zones");
357 
358 SYSCTL_PROC(_vm, OID_AUTO, zone_stats, CTLFLAG_RD|CTLFLAG_MPSAFE|CTLTYPE_STRUCT,
359     0, 0, sysctl_vm_zone_stats, "s,struct uma_type_header", "Zone Stats");
360 
361 static int zone_warnings = 1;
362 SYSCTL_INT(_vm, OID_AUTO, zone_warnings, CTLFLAG_RWTUN, &zone_warnings, 0,
363     "Warn when UMA zones becomes full");
364 
365 static int multipage_slabs = 1;
366 TUNABLE_INT("vm.debug.uma_multipage_slabs", &multipage_slabs);
367 SYSCTL_INT(_vm_debug, OID_AUTO, uma_multipage_slabs,
368     CTLFLAG_RDTUN | CTLFLAG_NOFETCH, &multipage_slabs, 0,
369     "UMA may choose larger slab sizes for better efficiency");
370 
371 /*
372  * Select the slab zone for an offpage slab with the given maximum item count.
373  */
374 static inline uma_zone_t
375 slabzone(int ipers)
376 {
377 
378 	return (slabzones[ipers > SLABZONE0_SETSIZE]);
379 }
380 
381 /*
382  * This routine checks to see whether or not it's safe to enable buckets.
383  */
384 static void
385 bucket_enable(void)
386 {
387 
388 	KASSERT(booted >= BOOT_KVA, ("Bucket enable before init"));
389 	bucketdisable = vm_page_count_min();
390 }
391 
392 /*
393  * Initialize bucket_zones, the array of zones of buckets of various sizes.
394  *
395  * For each zone, calculate the memory required for each bucket, consisting
396  * of the header and an array of pointers.
397  */
398 static void
399 bucket_init(void)
400 {
401 	struct uma_bucket_zone *ubz;
402 	int size;
403 
404 	for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++) {
405 		size = roundup(sizeof(struct uma_bucket), sizeof(void *));
406 		size += sizeof(void *) * ubz->ubz_entries;
407 		ubz->ubz_zone = uma_zcreate(ubz->ubz_name, size,
408 		    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
409 		    UMA_ZONE_MTXCLASS | UMA_ZFLAG_BUCKET |
410 		    UMA_ZONE_FIRSTTOUCH);
411 	}
412 }
413 
414 /*
415  * Given a desired number of entries for a bucket, return the zone from which
416  * to allocate the bucket.
417  */
418 static struct uma_bucket_zone *
419 bucket_zone_lookup(int entries)
420 {
421 	struct uma_bucket_zone *ubz;
422 
423 	for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++)
424 		if (ubz->ubz_entries >= entries)
425 			return (ubz);
426 	ubz--;
427 	return (ubz);
428 }
429 
430 static struct uma_bucket_zone *
431 bucket_zone_max(uma_zone_t zone, int nitems)
432 {
433 	struct uma_bucket_zone *ubz;
434 	int bpcpu;
435 
436 	bpcpu = 2;
437 	if ((zone->uz_flags & UMA_ZONE_FIRSTTOUCH) != 0)
438 		/* Count the cross-domain bucket. */
439 		bpcpu++;
440 
441 	for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++)
442 		if (ubz->ubz_entries * bpcpu * mp_ncpus > nitems)
443 			break;
444 	if (ubz == &bucket_zones[0])
445 		ubz = NULL;
446 	else
447 		ubz--;
448 	return (ubz);
449 }
450 
451 static int
452 bucket_select(int size)
453 {
454 	struct uma_bucket_zone *ubz;
455 
456 	ubz = &bucket_zones[0];
457 	if (size > ubz->ubz_maxsize)
458 		return MAX((ubz->ubz_maxsize * ubz->ubz_entries) / size, 1);
459 
460 	for (; ubz->ubz_entries != 0; ubz++)
461 		if (ubz->ubz_maxsize < size)
462 			break;
463 	ubz--;
464 	return (ubz->ubz_entries);
465 }
466 
467 static uma_bucket_t
468 bucket_alloc(uma_zone_t zone, void *udata, int flags)
469 {
470 	struct uma_bucket_zone *ubz;
471 	uma_bucket_t bucket;
472 
473 	/*
474 	 * Don't allocate buckets early in boot.
475 	 */
476 	if (__predict_false(booted < BOOT_KVA))
477 		return (NULL);
478 
479 	/*
480 	 * To limit bucket recursion we store the original zone flags
481 	 * in a cookie passed via zalloc_arg/zfree_arg.  This allows the
482 	 * NOVM flag to persist even through deep recursions.  We also
483 	 * store ZFLAG_BUCKET once we have recursed attempting to allocate
484 	 * a bucket for a bucket zone so we do not allow infinite bucket
485 	 * recursion.  This cookie will even persist to frees of unused
486 	 * buckets via the allocation path or bucket allocations in the
487 	 * free path.
488 	 */
489 	if ((zone->uz_flags & UMA_ZFLAG_BUCKET) == 0)
490 		udata = (void *)(uintptr_t)zone->uz_flags;
491 	else {
492 		if ((uintptr_t)udata & UMA_ZFLAG_BUCKET)
493 			return (NULL);
494 		udata = (void *)((uintptr_t)udata | UMA_ZFLAG_BUCKET);
495 	}
496 	if ((uintptr_t)udata & UMA_ZFLAG_CACHEONLY)
497 		flags |= M_NOVM;
498 	ubz = bucket_zone_lookup(zone->uz_bucket_size);
499 	if (ubz->ubz_zone == zone && (ubz + 1)->ubz_entries != 0)
500 		ubz++;
501 	bucket = uma_zalloc_arg(ubz->ubz_zone, udata, flags);
502 	if (bucket) {
503 #ifdef INVARIANTS
504 		bzero(bucket->ub_bucket, sizeof(void *) * ubz->ubz_entries);
505 #endif
506 		bucket->ub_cnt = 0;
507 		bucket->ub_entries = ubz->ubz_entries;
508 		bucket->ub_seq = SMR_SEQ_INVALID;
509 		CTR3(KTR_UMA, "bucket_alloc: zone %s(%p) allocated bucket %p",
510 		    zone->uz_name, zone, bucket);
511 	}
512 
513 	return (bucket);
514 }
515 
516 static void
517 bucket_free(uma_zone_t zone, uma_bucket_t bucket, void *udata)
518 {
519 	struct uma_bucket_zone *ubz;
520 
521 	KASSERT(bucket->ub_cnt == 0,
522 	    ("bucket_free: Freeing a non free bucket."));
523 	KASSERT(bucket->ub_seq == SMR_SEQ_INVALID,
524 	    ("bucket_free: Freeing an SMR bucket."));
525 	if ((zone->uz_flags & UMA_ZFLAG_BUCKET) == 0)
526 		udata = (void *)(uintptr_t)zone->uz_flags;
527 	ubz = bucket_zone_lookup(bucket->ub_entries);
528 	uma_zfree_arg(ubz->ubz_zone, bucket, udata);
529 }
530 
531 static void
532 bucket_zone_drain(void)
533 {
534 	struct uma_bucket_zone *ubz;
535 
536 	for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++)
537 		uma_zone_reclaim(ubz->ubz_zone, UMA_RECLAIM_DRAIN);
538 }
539 
540 /*
541  * Attempt to satisfy an allocation by retrieving a full bucket from one of the
542  * zone's caches.  If a bucket is found the zone is not locked on return.
543  */
544 static uma_bucket_t
545 zone_fetch_bucket(uma_zone_t zone, uma_zone_domain_t zdom)
546 {
547 	uma_bucket_t bucket;
548 	int i;
549 	bool dtor = false;
550 
551 	ZONE_LOCK_ASSERT(zone);
552 
553 	if ((bucket = STAILQ_FIRST(&zdom->uzd_buckets)) == NULL)
554 		return (NULL);
555 
556 	if ((zone->uz_flags & UMA_ZONE_SMR) != 0 &&
557 	    bucket->ub_seq != SMR_SEQ_INVALID) {
558 		if (!smr_poll(zone->uz_smr, bucket->ub_seq, false))
559 			return (NULL);
560 		bucket->ub_seq = SMR_SEQ_INVALID;
561 		dtor = (zone->uz_dtor != NULL) | UMA_ALWAYS_CTORDTOR;
562 	}
563 	MPASS(zdom->uzd_nitems >= bucket->ub_cnt);
564 	STAILQ_REMOVE_HEAD(&zdom->uzd_buckets, ub_link);
565 	zdom->uzd_nitems -= bucket->ub_cnt;
566 	if (zdom->uzd_imin > zdom->uzd_nitems)
567 		zdom->uzd_imin = zdom->uzd_nitems;
568 	zone->uz_bkt_count -= bucket->ub_cnt;
569 	ZONE_UNLOCK(zone);
570 	if (dtor)
571 		for (i = 0; i < bucket->ub_cnt; i++)
572 			item_dtor(zone, bucket->ub_bucket[i], zone->uz_size,
573 			    NULL, SKIP_NONE);
574 
575 	return (bucket);
576 }
577 
578 /*
579  * Insert a full bucket into the specified cache.  The "ws" parameter indicates
580  * whether the bucket's contents should be counted as part of the zone's working
581  * set.
582  */
583 static void
584 zone_put_bucket(uma_zone_t zone, uma_zone_domain_t zdom, uma_bucket_t bucket,
585     const bool ws)
586 {
587 
588 	ZONE_LOCK_ASSERT(zone);
589 	KASSERT(!ws || zone->uz_bkt_count < zone->uz_bkt_max,
590 	    ("%s: zone %p overflow", __func__, zone));
591 
592 	STAILQ_INSERT_TAIL(&zdom->uzd_buckets, bucket, ub_link);
593 	zdom->uzd_nitems += bucket->ub_cnt;
594 	if (ws && zdom->uzd_imax < zdom->uzd_nitems)
595 		zdom->uzd_imax = zdom->uzd_nitems;
596 	zone->uz_bkt_count += bucket->ub_cnt;
597 }
598 
599 /* Pops an item out of a per-cpu cache bucket. */
600 static inline void *
601 cache_bucket_pop(uma_cache_t cache, uma_cache_bucket_t bucket)
602 {
603 	void *item;
604 
605 	CRITICAL_ASSERT(curthread);
606 
607 	bucket->ucb_cnt--;
608 	item = bucket->ucb_bucket->ub_bucket[bucket->ucb_cnt];
609 #ifdef INVARIANTS
610 	bucket->ucb_bucket->ub_bucket[bucket->ucb_cnt] = NULL;
611 	KASSERT(item != NULL, ("uma_zalloc: Bucket pointer mangled."));
612 #endif
613 	cache->uc_allocs++;
614 
615 	return (item);
616 }
617 
618 /* Pushes an item into a per-cpu cache bucket. */
619 static inline void
620 cache_bucket_push(uma_cache_t cache, uma_cache_bucket_t bucket, void *item)
621 {
622 
623 	CRITICAL_ASSERT(curthread);
624 	KASSERT(bucket->ucb_bucket->ub_bucket[bucket->ucb_cnt] == NULL,
625 	    ("uma_zfree: Freeing to non free bucket index."));
626 
627 	bucket->ucb_bucket->ub_bucket[bucket->ucb_cnt] = item;
628 	bucket->ucb_cnt++;
629 	cache->uc_frees++;
630 }
631 
632 /*
633  * Unload a UMA bucket from a per-cpu cache.
634  */
635 static inline uma_bucket_t
636 cache_bucket_unload(uma_cache_bucket_t bucket)
637 {
638 	uma_bucket_t b;
639 
640 	b = bucket->ucb_bucket;
641 	if (b != NULL) {
642 		MPASS(b->ub_entries == bucket->ucb_entries);
643 		b->ub_cnt = bucket->ucb_cnt;
644 		bucket->ucb_bucket = NULL;
645 		bucket->ucb_entries = bucket->ucb_cnt = 0;
646 	}
647 
648 	return (b);
649 }
650 
651 static inline uma_bucket_t
652 cache_bucket_unload_alloc(uma_cache_t cache)
653 {
654 
655 	return (cache_bucket_unload(&cache->uc_allocbucket));
656 }
657 
658 static inline uma_bucket_t
659 cache_bucket_unload_free(uma_cache_t cache)
660 {
661 
662 	return (cache_bucket_unload(&cache->uc_freebucket));
663 }
664 
665 static inline uma_bucket_t
666 cache_bucket_unload_cross(uma_cache_t cache)
667 {
668 
669 	return (cache_bucket_unload(&cache->uc_crossbucket));
670 }
671 
672 /*
673  * Load a bucket into a per-cpu cache bucket.
674  */
675 static inline void
676 cache_bucket_load(uma_cache_bucket_t bucket, uma_bucket_t b)
677 {
678 
679 	CRITICAL_ASSERT(curthread);
680 	MPASS(bucket->ucb_bucket == NULL);
681 
682 	bucket->ucb_bucket = b;
683 	bucket->ucb_cnt = b->ub_cnt;
684 	bucket->ucb_entries = b->ub_entries;
685 }
686 
687 static inline void
688 cache_bucket_load_alloc(uma_cache_t cache, uma_bucket_t b)
689 {
690 
691 	cache_bucket_load(&cache->uc_allocbucket, b);
692 }
693 
694 static inline void
695 cache_bucket_load_free(uma_cache_t cache, uma_bucket_t b)
696 {
697 
698 	cache_bucket_load(&cache->uc_freebucket, b);
699 }
700 
701 #ifdef NUMA
702 static inline void
703 cache_bucket_load_cross(uma_cache_t cache, uma_bucket_t b)
704 {
705 
706 	cache_bucket_load(&cache->uc_crossbucket, b);
707 }
708 #endif
709 
710 /*
711  * Copy and preserve ucb_spare.
712  */
713 static inline void
714 cache_bucket_copy(uma_cache_bucket_t b1, uma_cache_bucket_t b2)
715 {
716 
717 	b1->ucb_bucket = b2->ucb_bucket;
718 	b1->ucb_entries = b2->ucb_entries;
719 	b1->ucb_cnt = b2->ucb_cnt;
720 }
721 
722 /*
723  * Swap two cache buckets.
724  */
725 static inline void
726 cache_bucket_swap(uma_cache_bucket_t b1, uma_cache_bucket_t b2)
727 {
728 	struct uma_cache_bucket b3;
729 
730 	CRITICAL_ASSERT(curthread);
731 
732 	cache_bucket_copy(&b3, b1);
733 	cache_bucket_copy(b1, b2);
734 	cache_bucket_copy(b2, &b3);
735 }
736 
737 static void
738 zone_log_warning(uma_zone_t zone)
739 {
740 	static const struct timeval warninterval = { 300, 0 };
741 
742 	if (!zone_warnings || zone->uz_warning == NULL)
743 		return;
744 
745 	if (ratecheck(&zone->uz_ratecheck, &warninterval))
746 		printf("[zone: %s] %s\n", zone->uz_name, zone->uz_warning);
747 }
748 
749 static inline void
750 zone_maxaction(uma_zone_t zone)
751 {
752 
753 	if (zone->uz_maxaction.ta_func != NULL)
754 		taskqueue_enqueue(taskqueue_thread, &zone->uz_maxaction);
755 }
756 
757 /*
758  * Routine called by timeout which is used to fire off some time interval
759  * based calculations.  (stats, hash size, etc.)
760  *
761  * Arguments:
762  *	arg   Unused
763  *
764  * Returns:
765  *	Nothing
766  */
767 static void
768 uma_timeout(void *unused)
769 {
770 	bucket_enable();
771 	zone_foreach(zone_timeout, NULL);
772 
773 	/* Reschedule this event */
774 	callout_reset(&uma_callout, UMA_TIMEOUT * hz, uma_timeout, NULL);
775 }
776 
777 /*
778  * Update the working set size estimate for the zone's bucket cache.
779  * The constants chosen here are somewhat arbitrary.  With an update period of
780  * 20s (UMA_TIMEOUT), this estimate is dominated by zone activity over the
781  * last 100s.
782  */
783 static void
784 zone_domain_update_wss(uma_zone_domain_t zdom)
785 {
786 	long wss;
787 
788 	MPASS(zdom->uzd_imax >= zdom->uzd_imin);
789 	wss = zdom->uzd_imax - zdom->uzd_imin;
790 	zdom->uzd_imax = zdom->uzd_imin = zdom->uzd_nitems;
791 	zdom->uzd_wss = (4 * wss + zdom->uzd_wss) / 5;
792 }
793 
794 /*
795  * Routine to perform timeout driven calculations.  This expands the
796  * hashes and does per cpu statistics aggregation.
797  *
798  *  Returns nothing.
799  */
800 static void
801 zone_timeout(uma_zone_t zone, void *unused)
802 {
803 	uma_keg_t keg;
804 	u_int slabs, pages;
805 
806 	if ((zone->uz_flags & UMA_ZFLAG_HASH) == 0)
807 		goto update_wss;
808 
809 	keg = zone->uz_keg;
810 
811 	/*
812 	 * Hash zones are non-numa by definition so the first domain
813 	 * is the only one present.
814 	 */
815 	KEG_LOCK(keg, 0);
816 	pages = keg->uk_domain[0].ud_pages;
817 
818 	/*
819 	 * Expand the keg hash table.
820 	 *
821 	 * This is done if the number of slabs is larger than the hash size.
822 	 * What I'm trying to do here is completely reduce collisions.  This
823 	 * may be a little aggressive.  Should I allow for two collisions max?
824 	 */
825 	if ((slabs = pages / keg->uk_ppera) > keg->uk_hash.uh_hashsize) {
826 		struct uma_hash newhash;
827 		struct uma_hash oldhash;
828 		int ret;
829 
830 		/*
831 		 * This is so involved because allocating and freeing
832 		 * while the keg lock is held will lead to deadlock.
833 		 * I have to do everything in stages and check for
834 		 * races.
835 		 */
836 		KEG_UNLOCK(keg, 0);
837 		ret = hash_alloc(&newhash, 1 << fls(slabs));
838 		KEG_LOCK(keg, 0);
839 		if (ret) {
840 			if (hash_expand(&keg->uk_hash, &newhash)) {
841 				oldhash = keg->uk_hash;
842 				keg->uk_hash = newhash;
843 			} else
844 				oldhash = newhash;
845 
846 			KEG_UNLOCK(keg, 0);
847 			hash_free(&oldhash);
848 			goto update_wss;
849 		}
850 	}
851 	KEG_UNLOCK(keg, 0);
852 
853 update_wss:
854 	ZONE_LOCK(zone);
855 	for (int i = 0; i < vm_ndomains; i++)
856 		zone_domain_update_wss(&zone->uz_domain[i]);
857 	ZONE_UNLOCK(zone);
858 }
859 
860 /*
861  * Allocate and zero fill the next sized hash table from the appropriate
862  * backing store.
863  *
864  * Arguments:
865  *	hash  A new hash structure with the old hash size in uh_hashsize
866  *
867  * Returns:
868  *	1 on success and 0 on failure.
869  */
870 static int
871 hash_alloc(struct uma_hash *hash, u_int size)
872 {
873 	size_t alloc;
874 
875 	KASSERT(powerof2(size), ("hash size must be power of 2"));
876 	if (size > UMA_HASH_SIZE_INIT)  {
877 		hash->uh_hashsize = size;
878 		alloc = sizeof(hash->uh_slab_hash[0]) * hash->uh_hashsize;
879 		hash->uh_slab_hash = malloc(alloc, M_UMAHASH, M_NOWAIT);
880 	} else {
881 		alloc = sizeof(hash->uh_slab_hash[0]) * UMA_HASH_SIZE_INIT;
882 		hash->uh_slab_hash = zone_alloc_item(hashzone, NULL,
883 		    UMA_ANYDOMAIN, M_WAITOK);
884 		hash->uh_hashsize = UMA_HASH_SIZE_INIT;
885 	}
886 	if (hash->uh_slab_hash) {
887 		bzero(hash->uh_slab_hash, alloc);
888 		hash->uh_hashmask = hash->uh_hashsize - 1;
889 		return (1);
890 	}
891 
892 	return (0);
893 }
894 
895 /*
896  * Expands the hash table for HASH zones.  This is done from zone_timeout
897  * to reduce collisions.  This must not be done in the regular allocation
898  * path, otherwise, we can recurse on the vm while allocating pages.
899  *
900  * Arguments:
901  *	oldhash  The hash you want to expand
902  *	newhash  The hash structure for the new table
903  *
904  * Returns:
905  *	Nothing
906  *
907  * Discussion:
908  */
909 static int
910 hash_expand(struct uma_hash *oldhash, struct uma_hash *newhash)
911 {
912 	uma_hash_slab_t slab;
913 	u_int hval;
914 	u_int idx;
915 
916 	if (!newhash->uh_slab_hash)
917 		return (0);
918 
919 	if (oldhash->uh_hashsize >= newhash->uh_hashsize)
920 		return (0);
921 
922 	/*
923 	 * I need to investigate hash algorithms for resizing without a
924 	 * full rehash.
925 	 */
926 
927 	for (idx = 0; idx < oldhash->uh_hashsize; idx++)
928 		while (!LIST_EMPTY(&oldhash->uh_slab_hash[idx])) {
929 			slab = LIST_FIRST(&oldhash->uh_slab_hash[idx]);
930 			LIST_REMOVE(slab, uhs_hlink);
931 			hval = UMA_HASH(newhash, slab->uhs_data);
932 			LIST_INSERT_HEAD(&newhash->uh_slab_hash[hval],
933 			    slab, uhs_hlink);
934 		}
935 
936 	return (1);
937 }
938 
939 /*
940  * Free the hash bucket to the appropriate backing store.
941  *
942  * Arguments:
943  *	slab_hash  The hash bucket we're freeing
944  *	hashsize   The number of entries in that hash bucket
945  *
946  * Returns:
947  *	Nothing
948  */
949 static void
950 hash_free(struct uma_hash *hash)
951 {
952 	if (hash->uh_slab_hash == NULL)
953 		return;
954 	if (hash->uh_hashsize == UMA_HASH_SIZE_INIT)
955 		zone_free_item(hashzone, hash->uh_slab_hash, NULL, SKIP_NONE);
956 	else
957 		free(hash->uh_slab_hash, M_UMAHASH);
958 }
959 
960 /*
961  * Frees all outstanding items in a bucket
962  *
963  * Arguments:
964  *	zone   The zone to free to, must be unlocked.
965  *	bucket The free/alloc bucket with items.
966  *
967  * Returns:
968  *	Nothing
969  */
970 
971 static void
972 bucket_drain(uma_zone_t zone, uma_bucket_t bucket)
973 {
974 	int i;
975 
976 	if (bucket == NULL || bucket->ub_cnt == 0)
977 		return;
978 
979 	if ((zone->uz_flags & UMA_ZONE_SMR) != 0 &&
980 	    bucket->ub_seq != SMR_SEQ_INVALID) {
981 		smr_wait(zone->uz_smr, bucket->ub_seq);
982 		for (i = 0; i < bucket->ub_cnt; i++)
983 			item_dtor(zone, bucket->ub_bucket[i],
984 			    zone->uz_size, NULL, SKIP_NONE);
985 		bucket->ub_seq = SMR_SEQ_INVALID;
986 	}
987 	if (zone->uz_fini)
988 		for (i = 0; i < bucket->ub_cnt; i++)
989 			zone->uz_fini(bucket->ub_bucket[i], zone->uz_size);
990 	zone->uz_release(zone->uz_arg, bucket->ub_bucket, bucket->ub_cnt);
991 	if (zone->uz_max_items > 0)
992 		zone_free_limit(zone, bucket->ub_cnt);
993 #ifdef INVARIANTS
994 	bzero(bucket->ub_bucket, sizeof(void *) * bucket->ub_cnt);
995 #endif
996 	bucket->ub_cnt = 0;
997 }
998 
999 /*
1000  * Drains the per cpu caches for a zone.
1001  *
1002  * NOTE: This may only be called while the zone is being torn down, and not
1003  * during normal operation.  This is necessary in order that we do not have
1004  * to migrate CPUs to drain the per-CPU caches.
1005  *
1006  * Arguments:
1007  *	zone     The zone to drain, must be unlocked.
1008  *
1009  * Returns:
1010  *	Nothing
1011  */
1012 static void
1013 cache_drain(uma_zone_t zone)
1014 {
1015 	uma_cache_t cache;
1016 	uma_bucket_t bucket;
1017 	int cpu;
1018 
1019 	/*
1020 	 * XXX: It is safe to not lock the per-CPU caches, because we're
1021 	 * tearing down the zone anyway.  I.e., there will be no further use
1022 	 * of the caches at this point.
1023 	 *
1024 	 * XXX: It would good to be able to assert that the zone is being
1025 	 * torn down to prevent improper use of cache_drain().
1026 	 */
1027 	CPU_FOREACH(cpu) {
1028 		cache = &zone->uz_cpu[cpu];
1029 		bucket = cache_bucket_unload_alloc(cache);
1030 		if (bucket != NULL) {
1031 			bucket_drain(zone, bucket);
1032 			bucket_free(zone, bucket, NULL);
1033 		}
1034 		bucket = cache_bucket_unload_free(cache);
1035 		if (bucket != NULL) {
1036 			bucket_drain(zone, bucket);
1037 			bucket_free(zone, bucket, NULL);
1038 		}
1039 		bucket = cache_bucket_unload_cross(cache);
1040 		if (bucket != NULL) {
1041 			bucket_drain(zone, bucket);
1042 			bucket_free(zone, bucket, NULL);
1043 		}
1044 	}
1045 	bucket_cache_reclaim(zone, true);
1046 }
1047 
1048 static void
1049 cache_shrink(uma_zone_t zone, void *unused)
1050 {
1051 
1052 	if (zone->uz_flags & UMA_ZFLAG_INTERNAL)
1053 		return;
1054 
1055 	ZONE_LOCK(zone);
1056 	zone->uz_bucket_size =
1057 	    (zone->uz_bucket_size_min + zone->uz_bucket_size) / 2;
1058 	ZONE_UNLOCK(zone);
1059 }
1060 
1061 static void
1062 cache_drain_safe_cpu(uma_zone_t zone, void *unused)
1063 {
1064 	uma_cache_t cache;
1065 	uma_bucket_t b1, b2, b3;
1066 	int domain;
1067 
1068 	if (zone->uz_flags & UMA_ZFLAG_INTERNAL)
1069 		return;
1070 
1071 	b1 = b2 = b3 = NULL;
1072 	ZONE_LOCK(zone);
1073 	critical_enter();
1074 	if (zone->uz_flags & UMA_ZONE_FIRSTTOUCH)
1075 		domain = PCPU_GET(domain);
1076 	else
1077 		domain = 0;
1078 	cache = &zone->uz_cpu[curcpu];
1079 	b1 = cache_bucket_unload_alloc(cache);
1080 	if (b1 != NULL && b1->ub_cnt != 0) {
1081 		zone_put_bucket(zone, &zone->uz_domain[domain], b1, false);
1082 		b1 = NULL;
1083 	}
1084 
1085 	/*
1086 	 * Don't flush SMR zone buckets.  This leaves the zone without a
1087 	 * bucket and forces every free to synchronize().
1088 	 */
1089 	if ((zone->uz_flags & UMA_ZONE_SMR) != 0)
1090 		goto out;
1091 	b2 = cache_bucket_unload_free(cache);
1092 	if (b2 != NULL && b2->ub_cnt != 0) {
1093 		zone_put_bucket(zone, &zone->uz_domain[domain], b2, false);
1094 		b2 = NULL;
1095 	}
1096 	b3 = cache_bucket_unload_cross(cache);
1097 
1098 out:
1099 	critical_exit();
1100 	ZONE_UNLOCK(zone);
1101 	if (b1)
1102 		bucket_free(zone, b1, NULL);
1103 	if (b2)
1104 		bucket_free(zone, b2, NULL);
1105 	if (b3) {
1106 		bucket_drain(zone, b3);
1107 		bucket_free(zone, b3, NULL);
1108 	}
1109 }
1110 
1111 /*
1112  * Safely drain per-CPU caches of a zone(s) to alloc bucket.
1113  * This is an expensive call because it needs to bind to all CPUs
1114  * one by one and enter a critical section on each of them in order
1115  * to safely access their cache buckets.
1116  * Zone lock must not be held on call this function.
1117  */
1118 static void
1119 pcpu_cache_drain_safe(uma_zone_t zone)
1120 {
1121 	int cpu;
1122 
1123 	/*
1124 	 * Polite bucket sizes shrinking was not enough, shrink aggressively.
1125 	 */
1126 	if (zone)
1127 		cache_shrink(zone, NULL);
1128 	else
1129 		zone_foreach(cache_shrink, NULL);
1130 
1131 	CPU_FOREACH(cpu) {
1132 		thread_lock(curthread);
1133 		sched_bind(curthread, cpu);
1134 		thread_unlock(curthread);
1135 
1136 		if (zone)
1137 			cache_drain_safe_cpu(zone, NULL);
1138 		else
1139 			zone_foreach(cache_drain_safe_cpu, NULL);
1140 	}
1141 	thread_lock(curthread);
1142 	sched_unbind(curthread);
1143 	thread_unlock(curthread);
1144 }
1145 
1146 /*
1147  * Reclaim cached buckets from a zone.  All buckets are reclaimed if the caller
1148  * requested a drain, otherwise the per-domain caches are trimmed to either
1149  * estimated working set size.
1150  */
1151 static void
1152 bucket_cache_reclaim(uma_zone_t zone, bool drain)
1153 {
1154 	uma_zone_domain_t zdom;
1155 	uma_bucket_t bucket;
1156 	long target, tofree;
1157 	int i;
1158 
1159 	for (i = 0; i < vm_ndomains; i++) {
1160 		/*
1161 		 * The cross bucket is partially filled and not part of
1162 		 * the item count.  Reclaim it individually here.
1163 		 */
1164 		zdom = &zone->uz_domain[i];
1165 		ZONE_CROSS_LOCK(zone);
1166 		bucket = zdom->uzd_cross;
1167 		zdom->uzd_cross = NULL;
1168 		ZONE_CROSS_UNLOCK(zone);
1169 		if (bucket != NULL) {
1170 			bucket_drain(zone, bucket);
1171 			bucket_free(zone, bucket, NULL);
1172 		}
1173 
1174 		/*
1175 		 * Shrink the zone bucket size to ensure that the per-CPU caches
1176 		 * don't grow too large.
1177 		 */
1178 		ZONE_LOCK(zone);
1179 		if (i == 0 && zone->uz_bucket_size > zone->uz_bucket_size_min)
1180 			zone->uz_bucket_size--;
1181 
1182 		/*
1183 		 * If we were asked to drain the zone, we are done only once
1184 		 * this bucket cache is empty.  Otherwise, we reclaim items in
1185 		 * excess of the zone's estimated working set size.  If the
1186 		 * difference nitems - imin is larger than the WSS estimate,
1187 		 * then the estimate will grow at the end of this interval and
1188 		 * we ignore the historical average.
1189 		 */
1190 		target = drain ? 0 : lmax(zdom->uzd_wss, zdom->uzd_nitems -
1191 		    zdom->uzd_imin);
1192 		while (zdom->uzd_nitems > target) {
1193 			bucket = STAILQ_FIRST(&zdom->uzd_buckets);
1194 			if (bucket == NULL)
1195 				break;
1196 			tofree = bucket->ub_cnt;
1197 			STAILQ_REMOVE_HEAD(&zdom->uzd_buckets, ub_link);
1198 			zdom->uzd_nitems -= tofree;
1199 
1200 			/*
1201 			 * Shift the bounds of the current WSS interval to avoid
1202 			 * perturbing the estimate.
1203 			 */
1204 			zdom->uzd_imax -= lmin(zdom->uzd_imax, tofree);
1205 			zdom->uzd_imin -= lmin(zdom->uzd_imin, tofree);
1206 
1207 			ZONE_UNLOCK(zone);
1208 			bucket_drain(zone, bucket);
1209 			bucket_free(zone, bucket, NULL);
1210 			ZONE_LOCK(zone);
1211 		}
1212 		ZONE_UNLOCK(zone);
1213 	}
1214 }
1215 
1216 static void
1217 keg_free_slab(uma_keg_t keg, uma_slab_t slab, int start)
1218 {
1219 	uint8_t *mem;
1220 	int i;
1221 	uint8_t flags;
1222 
1223 	CTR4(KTR_UMA, "keg_free_slab keg %s(%p) slab %p, returning %d bytes",
1224 	    keg->uk_name, keg, slab, PAGE_SIZE * keg->uk_ppera);
1225 
1226 	mem = slab_data(slab, keg);
1227 	flags = slab->us_flags;
1228 	i = start;
1229 	if (keg->uk_fini != NULL) {
1230 		for (i--; i > -1; i--)
1231 #ifdef INVARIANTS
1232 		/*
1233 		 * trash_fini implies that dtor was trash_dtor. trash_fini
1234 		 * would check that memory hasn't been modified since free,
1235 		 * which executed trash_dtor.
1236 		 * That's why we need to run uma_dbg_kskip() check here,
1237 		 * albeit we don't make skip check for other init/fini
1238 		 * invocations.
1239 		 */
1240 		if (!uma_dbg_kskip(keg, slab_item(slab, keg, i)) ||
1241 		    keg->uk_fini != trash_fini)
1242 #endif
1243 			keg->uk_fini(slab_item(slab, keg, i), keg->uk_size);
1244 	}
1245 	if (keg->uk_flags & UMA_ZFLAG_OFFPAGE)
1246 		zone_free_item(slabzone(keg->uk_ipers), slab_tohashslab(slab),
1247 		    NULL, SKIP_NONE);
1248 	keg->uk_freef(mem, PAGE_SIZE * keg->uk_ppera, flags);
1249 	uma_total_dec(PAGE_SIZE * keg->uk_ppera);
1250 }
1251 
1252 /*
1253  * Frees pages from a keg back to the system.  This is done on demand from
1254  * the pageout daemon.
1255  *
1256  * Returns nothing.
1257  */
1258 static void
1259 keg_drain(uma_keg_t keg)
1260 {
1261 	struct slabhead freeslabs = { 0 };
1262 	uma_domain_t dom;
1263 	uma_slab_t slab, tmp;
1264 	int i, n;
1265 
1266 	/*
1267 	 * We don't want to take pages from statically allocated kegs at this
1268 	 * time
1269 	 */
1270 	if (keg->uk_flags & UMA_ZONE_NOFREE || keg->uk_freef == NULL)
1271 		return;
1272 
1273 	for (i = 0; i < vm_ndomains; i++) {
1274 		CTR4(KTR_UMA, "keg_drain %s(%p) domain %d free items: %u",
1275 		    keg->uk_name, keg, i, dom->ud_free);
1276 		n = 0;
1277 		dom = &keg->uk_domain[i];
1278 		KEG_LOCK(keg, i);
1279 		LIST_FOREACH_SAFE(slab, &dom->ud_free_slab, us_link, tmp) {
1280 			if (keg->uk_flags & UMA_ZFLAG_HASH)
1281 				UMA_HASH_REMOVE(&keg->uk_hash, slab);
1282 			n++;
1283 			LIST_REMOVE(slab, us_link);
1284 			LIST_INSERT_HEAD(&freeslabs, slab, us_link);
1285 		}
1286 		dom->ud_pages -= n * keg->uk_ppera;
1287 		dom->ud_free -= n * keg->uk_ipers;
1288 		KEG_UNLOCK(keg, i);
1289 	}
1290 
1291 	while ((slab = LIST_FIRST(&freeslabs)) != NULL) {
1292 		LIST_REMOVE(slab, us_link);
1293 		keg_free_slab(keg, slab, keg->uk_ipers);
1294 	}
1295 }
1296 
1297 static void
1298 zone_reclaim(uma_zone_t zone, int waitok, bool drain)
1299 {
1300 
1301 	/*
1302 	 * Set draining to interlock with zone_dtor() so we can release our
1303 	 * locks as we go.  Only dtor() should do a WAITOK call since it
1304 	 * is the only call that knows the structure will still be available
1305 	 * when it wakes up.
1306 	 */
1307 	ZONE_LOCK(zone);
1308 	while (zone->uz_flags & UMA_ZFLAG_RECLAIMING) {
1309 		if (waitok == M_NOWAIT)
1310 			goto out;
1311 		msleep(zone, &zone->uz_lock, PVM, "zonedrain", 1);
1312 	}
1313 	zone->uz_flags |= UMA_ZFLAG_RECLAIMING;
1314 	ZONE_UNLOCK(zone);
1315 	bucket_cache_reclaim(zone, drain);
1316 
1317 	/*
1318 	 * The DRAINING flag protects us from being freed while
1319 	 * we're running.  Normally the uma_rwlock would protect us but we
1320 	 * must be able to release and acquire the right lock for each keg.
1321 	 */
1322 	if ((zone->uz_flags & UMA_ZFLAG_CACHE) == 0)
1323 		keg_drain(zone->uz_keg);
1324 	ZONE_LOCK(zone);
1325 	zone->uz_flags &= ~UMA_ZFLAG_RECLAIMING;
1326 	wakeup(zone);
1327 out:
1328 	ZONE_UNLOCK(zone);
1329 }
1330 
1331 static void
1332 zone_drain(uma_zone_t zone, void *unused)
1333 {
1334 
1335 	zone_reclaim(zone, M_NOWAIT, true);
1336 }
1337 
1338 static void
1339 zone_trim(uma_zone_t zone, void *unused)
1340 {
1341 
1342 	zone_reclaim(zone, M_NOWAIT, false);
1343 }
1344 
1345 /*
1346  * Allocate a new slab for a keg and inserts it into the partial slab list.
1347  * The keg should be unlocked on entry.  If the allocation succeeds it will
1348  * be locked on return.
1349  *
1350  * Arguments:
1351  *	flags   Wait flags for the item initialization routine
1352  *	aflags  Wait flags for the slab allocation
1353  *
1354  * Returns:
1355  *	The slab that was allocated or NULL if there is no memory and the
1356  *	caller specified M_NOWAIT.
1357  */
1358 static uma_slab_t
1359 keg_alloc_slab(uma_keg_t keg, uma_zone_t zone, int domain, int flags,
1360     int aflags)
1361 {
1362 	uma_domain_t dom;
1363 	uma_alloc allocf;
1364 	uma_slab_t slab;
1365 	unsigned long size;
1366 	uint8_t *mem;
1367 	uint8_t sflags;
1368 	int i;
1369 
1370 	KASSERT(domain >= 0 && domain < vm_ndomains,
1371 	    ("keg_alloc_slab: domain %d out of range", domain));
1372 
1373 	allocf = keg->uk_allocf;
1374 	slab = NULL;
1375 	mem = NULL;
1376 	if (keg->uk_flags & UMA_ZFLAG_OFFPAGE) {
1377 		uma_hash_slab_t hslab;
1378 		hslab = zone_alloc_item(slabzone(keg->uk_ipers), NULL,
1379 		    domain, aflags);
1380 		if (hslab == NULL)
1381 			goto fail;
1382 		slab = &hslab->uhs_slab;
1383 	}
1384 
1385 	/*
1386 	 * This reproduces the old vm_zone behavior of zero filling pages the
1387 	 * first time they are added to a zone.
1388 	 *
1389 	 * Malloced items are zeroed in uma_zalloc.
1390 	 */
1391 
1392 	if ((keg->uk_flags & UMA_ZONE_MALLOC) == 0)
1393 		aflags |= M_ZERO;
1394 	else
1395 		aflags &= ~M_ZERO;
1396 
1397 	if (keg->uk_flags & UMA_ZONE_NODUMP)
1398 		aflags |= M_NODUMP;
1399 
1400 	/* zone is passed for legacy reasons. */
1401 	size = keg->uk_ppera * PAGE_SIZE;
1402 	mem = allocf(zone, size, domain, &sflags, aflags);
1403 	if (mem == NULL) {
1404 		if (keg->uk_flags & UMA_ZFLAG_OFFPAGE)
1405 			zone_free_item(slabzone(keg->uk_ipers),
1406 			    slab_tohashslab(slab), NULL, SKIP_NONE);
1407 		goto fail;
1408 	}
1409 	uma_total_inc(size);
1410 
1411 	/* For HASH zones all pages go to the same uma_domain. */
1412 	if ((keg->uk_flags & UMA_ZFLAG_HASH) != 0)
1413 		domain = 0;
1414 
1415 	/* Point the slab into the allocated memory */
1416 	if (!(keg->uk_flags & UMA_ZFLAG_OFFPAGE))
1417 		slab = (uma_slab_t )(mem + keg->uk_pgoff);
1418 	else
1419 		slab_tohashslab(slab)->uhs_data = mem;
1420 
1421 	if (keg->uk_flags & UMA_ZFLAG_VTOSLAB)
1422 		for (i = 0; i < keg->uk_ppera; i++)
1423 			vsetzoneslab((vm_offset_t)mem + (i * PAGE_SIZE),
1424 			    zone, slab);
1425 
1426 	slab->us_freecount = keg->uk_ipers;
1427 	slab->us_flags = sflags;
1428 	slab->us_domain = domain;
1429 
1430 	BIT_FILL(keg->uk_ipers, &slab->us_free);
1431 #ifdef INVARIANTS
1432 	BIT_ZERO(keg->uk_ipers, slab_dbg_bits(slab, keg));
1433 #endif
1434 
1435 	if (keg->uk_init != NULL) {
1436 		for (i = 0; i < keg->uk_ipers; i++)
1437 			if (keg->uk_init(slab_item(slab, keg, i),
1438 			    keg->uk_size, flags) != 0)
1439 				break;
1440 		if (i != keg->uk_ipers) {
1441 			keg_free_slab(keg, slab, i);
1442 			goto fail;
1443 		}
1444 	}
1445 	KEG_LOCK(keg, domain);
1446 
1447 	CTR3(KTR_UMA, "keg_alloc_slab: allocated slab %p for %s(%p)",
1448 	    slab, keg->uk_name, keg);
1449 
1450 	if (keg->uk_flags & UMA_ZFLAG_HASH)
1451 		UMA_HASH_INSERT(&keg->uk_hash, slab, mem);
1452 
1453 	/*
1454 	 * If we got a slab here it's safe to mark it partially used
1455 	 * and return.  We assume that the caller is going to remove
1456 	 * at least one item.
1457 	 */
1458 	dom = &keg->uk_domain[domain];
1459 	LIST_INSERT_HEAD(&dom->ud_part_slab, slab, us_link);
1460 	dom->ud_pages += keg->uk_ppera;
1461 	dom->ud_free += keg->uk_ipers;
1462 
1463 	return (slab);
1464 
1465 fail:
1466 	return (NULL);
1467 }
1468 
1469 /*
1470  * This function is intended to be used early on in place of page_alloc() so
1471  * that we may use the boot time page cache to satisfy allocations before
1472  * the VM is ready.
1473  */
1474 static void *
1475 startup_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *pflag,
1476     int wait)
1477 {
1478 	vm_paddr_t pa;
1479 	vm_page_t m;
1480 	void *mem;
1481 	int pages;
1482 	int i;
1483 
1484 	pages = howmany(bytes, PAGE_SIZE);
1485 	KASSERT(pages > 0, ("%s can't reserve 0 pages", __func__));
1486 
1487 	*pflag = UMA_SLAB_BOOT;
1488 	m = vm_page_alloc_contig_domain(NULL, 0, domain,
1489 	    malloc2vm_flags(wait) | VM_ALLOC_NOOBJ | VM_ALLOC_WIRED, pages,
1490 	    (vm_paddr_t)0, ~(vm_paddr_t)0, 1, 0, VM_MEMATTR_DEFAULT);
1491 	if (m == NULL)
1492 		return (NULL);
1493 
1494 	pa = VM_PAGE_TO_PHYS(m);
1495 	for (i = 0; i < pages; i++, pa += PAGE_SIZE) {
1496 #if defined(__aarch64__) || defined(__amd64__) || defined(__mips__) || \
1497     defined(__riscv) || defined(__powerpc64__)
1498 		if ((wait & M_NODUMP) == 0)
1499 			dump_add_page(pa);
1500 #endif
1501 	}
1502 	/* Allocate KVA and indirectly advance bootmem. */
1503 	mem = (void *)pmap_map(&bootmem, m->phys_addr,
1504 	    m->phys_addr + (pages * PAGE_SIZE), VM_PROT_READ | VM_PROT_WRITE);
1505         if ((wait & M_ZERO) != 0)
1506                 bzero(mem, pages * PAGE_SIZE);
1507 
1508         return (mem);
1509 }
1510 
1511 static void
1512 startup_free(void *mem, vm_size_t bytes)
1513 {
1514 	vm_offset_t va;
1515 	vm_page_t m;
1516 
1517 	va = (vm_offset_t)mem;
1518 	m = PHYS_TO_VM_PAGE(pmap_kextract(va));
1519 	pmap_remove(kernel_pmap, va, va + bytes);
1520 	for (; bytes != 0; bytes -= PAGE_SIZE, m++) {
1521 #if defined(__aarch64__) || defined(__amd64__) || defined(__mips__) || \
1522     defined(__riscv) || defined(__powerpc64__)
1523 		dump_drop_page(VM_PAGE_TO_PHYS(m));
1524 #endif
1525 		vm_page_unwire_noq(m);
1526 		vm_page_free(m);
1527 	}
1528 }
1529 
1530 /*
1531  * Allocates a number of pages from the system
1532  *
1533  * Arguments:
1534  *	bytes  The number of bytes requested
1535  *	wait  Shall we wait?
1536  *
1537  * Returns:
1538  *	A pointer to the alloced memory or possibly
1539  *	NULL if M_NOWAIT is set.
1540  */
1541 static void *
1542 page_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *pflag,
1543     int wait)
1544 {
1545 	void *p;	/* Returned page */
1546 
1547 	*pflag = UMA_SLAB_KERNEL;
1548 	p = (void *)kmem_malloc_domainset(DOMAINSET_FIXED(domain), bytes, wait);
1549 
1550 	return (p);
1551 }
1552 
1553 static void *
1554 pcpu_page_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *pflag,
1555     int wait)
1556 {
1557 	struct pglist alloctail;
1558 	vm_offset_t addr, zkva;
1559 	int cpu, flags;
1560 	vm_page_t p, p_next;
1561 #ifdef NUMA
1562 	struct pcpu *pc;
1563 #endif
1564 
1565 	MPASS(bytes == (mp_maxid + 1) * PAGE_SIZE);
1566 
1567 	TAILQ_INIT(&alloctail);
1568 	flags = VM_ALLOC_SYSTEM | VM_ALLOC_WIRED | VM_ALLOC_NOOBJ |
1569 	    malloc2vm_flags(wait);
1570 	*pflag = UMA_SLAB_KERNEL;
1571 	for (cpu = 0; cpu <= mp_maxid; cpu++) {
1572 		if (CPU_ABSENT(cpu)) {
1573 			p = vm_page_alloc(NULL, 0, flags);
1574 		} else {
1575 #ifndef NUMA
1576 			p = vm_page_alloc(NULL, 0, flags);
1577 #else
1578 			pc = pcpu_find(cpu);
1579 			if (__predict_false(VM_DOMAIN_EMPTY(pc->pc_domain)))
1580 				p = NULL;
1581 			else
1582 				p = vm_page_alloc_domain(NULL, 0,
1583 				    pc->pc_domain, flags);
1584 			if (__predict_false(p == NULL))
1585 				p = vm_page_alloc(NULL, 0, flags);
1586 #endif
1587 		}
1588 		if (__predict_false(p == NULL))
1589 			goto fail;
1590 		TAILQ_INSERT_TAIL(&alloctail, p, listq);
1591 	}
1592 	if ((addr = kva_alloc(bytes)) == 0)
1593 		goto fail;
1594 	zkva = addr;
1595 	TAILQ_FOREACH(p, &alloctail, listq) {
1596 		pmap_qenter(zkva, &p, 1);
1597 		zkva += PAGE_SIZE;
1598 	}
1599 	return ((void*)addr);
1600 fail:
1601 	TAILQ_FOREACH_SAFE(p, &alloctail, listq, p_next) {
1602 		vm_page_unwire_noq(p);
1603 		vm_page_free(p);
1604 	}
1605 	return (NULL);
1606 }
1607 
1608 /*
1609  * Allocates a number of pages from within an object
1610  *
1611  * Arguments:
1612  *	bytes  The number of bytes requested
1613  *	wait   Shall we wait?
1614  *
1615  * Returns:
1616  *	A pointer to the alloced memory or possibly
1617  *	NULL if M_NOWAIT is set.
1618  */
1619 static void *
1620 noobj_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *flags,
1621     int wait)
1622 {
1623 	TAILQ_HEAD(, vm_page) alloctail;
1624 	u_long npages;
1625 	vm_offset_t retkva, zkva;
1626 	vm_page_t p, p_next;
1627 	uma_keg_t keg;
1628 
1629 	TAILQ_INIT(&alloctail);
1630 	keg = zone->uz_keg;
1631 
1632 	npages = howmany(bytes, PAGE_SIZE);
1633 	while (npages > 0) {
1634 		p = vm_page_alloc_domain(NULL, 0, domain, VM_ALLOC_INTERRUPT |
1635 		    VM_ALLOC_WIRED | VM_ALLOC_NOOBJ |
1636 		    ((wait & M_WAITOK) != 0 ? VM_ALLOC_WAITOK :
1637 		    VM_ALLOC_NOWAIT));
1638 		if (p != NULL) {
1639 			/*
1640 			 * Since the page does not belong to an object, its
1641 			 * listq is unused.
1642 			 */
1643 			TAILQ_INSERT_TAIL(&alloctail, p, listq);
1644 			npages--;
1645 			continue;
1646 		}
1647 		/*
1648 		 * Page allocation failed, free intermediate pages and
1649 		 * exit.
1650 		 */
1651 		TAILQ_FOREACH_SAFE(p, &alloctail, listq, p_next) {
1652 			vm_page_unwire_noq(p);
1653 			vm_page_free(p);
1654 		}
1655 		return (NULL);
1656 	}
1657 	*flags = UMA_SLAB_PRIV;
1658 	zkva = keg->uk_kva +
1659 	    atomic_fetchadd_long(&keg->uk_offset, round_page(bytes));
1660 	retkva = zkva;
1661 	TAILQ_FOREACH(p, &alloctail, listq) {
1662 		pmap_qenter(zkva, &p, 1);
1663 		zkva += PAGE_SIZE;
1664 	}
1665 
1666 	return ((void *)retkva);
1667 }
1668 
1669 /*
1670  * Allocate physically contiguous pages.
1671  */
1672 static void *
1673 contig_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *pflag,
1674     int wait)
1675 {
1676 
1677 	*pflag = UMA_SLAB_KERNEL;
1678 	return ((void *)kmem_alloc_contig_domainset(DOMAINSET_FIXED(domain),
1679 	    bytes, wait, 0, ~(vm_paddr_t)0, 1, 0, VM_MEMATTR_DEFAULT));
1680 }
1681 
1682 /*
1683  * Frees a number of pages to the system
1684  *
1685  * Arguments:
1686  *	mem   A pointer to the memory to be freed
1687  *	size  The size of the memory being freed
1688  *	flags The original p->us_flags field
1689  *
1690  * Returns:
1691  *	Nothing
1692  */
1693 static void
1694 page_free(void *mem, vm_size_t size, uint8_t flags)
1695 {
1696 
1697 	if ((flags & UMA_SLAB_BOOT) != 0) {
1698 		startup_free(mem, size);
1699 		return;
1700 	}
1701 
1702 	KASSERT((flags & UMA_SLAB_KERNEL) != 0,
1703 	    ("UMA: page_free used with invalid flags %x", flags));
1704 
1705 	kmem_free((vm_offset_t)mem, size);
1706 }
1707 
1708 /*
1709  * Frees pcpu zone allocations
1710  *
1711  * Arguments:
1712  *	mem   A pointer to the memory to be freed
1713  *	size  The size of the memory being freed
1714  *	flags The original p->us_flags field
1715  *
1716  * Returns:
1717  *	Nothing
1718  */
1719 static void
1720 pcpu_page_free(void *mem, vm_size_t size, uint8_t flags)
1721 {
1722 	vm_offset_t sva, curva;
1723 	vm_paddr_t paddr;
1724 	vm_page_t m;
1725 
1726 	MPASS(size == (mp_maxid+1)*PAGE_SIZE);
1727 
1728 	if ((flags & UMA_SLAB_BOOT) != 0) {
1729 		startup_free(mem, size);
1730 		return;
1731 	}
1732 
1733 	sva = (vm_offset_t)mem;
1734 	for (curva = sva; curva < sva + size; curva += PAGE_SIZE) {
1735 		paddr = pmap_kextract(curva);
1736 		m = PHYS_TO_VM_PAGE(paddr);
1737 		vm_page_unwire_noq(m);
1738 		vm_page_free(m);
1739 	}
1740 	pmap_qremove(sva, size >> PAGE_SHIFT);
1741 	kva_free(sva, size);
1742 }
1743 
1744 
1745 /*
1746  * Zero fill initializer
1747  *
1748  * Arguments/Returns follow uma_init specifications
1749  */
1750 static int
1751 zero_init(void *mem, int size, int flags)
1752 {
1753 	bzero(mem, size);
1754 	return (0);
1755 }
1756 
1757 #ifdef INVARIANTS
1758 struct noslabbits *
1759 slab_dbg_bits(uma_slab_t slab, uma_keg_t keg)
1760 {
1761 
1762 	return ((void *)((char *)&slab->us_free + BITSET_SIZE(keg->uk_ipers)));
1763 }
1764 #endif
1765 
1766 /*
1767  * Actual size of embedded struct slab (!OFFPAGE).
1768  */
1769 size_t
1770 slab_sizeof(int nitems)
1771 {
1772 	size_t s;
1773 
1774 	s = sizeof(struct uma_slab) + BITSET_SIZE(nitems) * SLAB_BITSETS;
1775 	return (roundup(s, UMA_ALIGN_PTR + 1));
1776 }
1777 
1778 /*
1779  * Size of memory for embedded slabs (!OFFPAGE).
1780  */
1781 size_t
1782 slab_space(int nitems)
1783 {
1784 	return (UMA_SLAB_SIZE - slab_sizeof(nitems));
1785 }
1786 
1787 #define	UMA_FIXPT_SHIFT	31
1788 #define	UMA_FRAC_FIXPT(n, d)						\
1789 	((uint32_t)(((uint64_t)(n) << UMA_FIXPT_SHIFT) / (d)))
1790 #define	UMA_FIXPT_PCT(f)						\
1791 	((u_int)(((uint64_t)100 * (f)) >> UMA_FIXPT_SHIFT))
1792 #define	UMA_PCT_FIXPT(pct)	UMA_FRAC_FIXPT((pct), 100)
1793 #define	UMA_MIN_EFF	UMA_PCT_FIXPT(100 - UMA_MAX_WASTE)
1794 
1795 /*
1796  * Compute the number of items that will fit in a slab.  If hdr is true, the
1797  * item count may be limited to provide space in the slab for an inline slab
1798  * header.  Otherwise, all slab space will be provided for item storage.
1799  */
1800 static u_int
1801 slab_ipers_hdr(u_int size, u_int rsize, u_int slabsize, bool hdr)
1802 {
1803 	u_int ipers;
1804 	u_int padpi;
1805 
1806 	/* The padding between items is not needed after the last item. */
1807 	padpi = rsize - size;
1808 
1809 	if (hdr) {
1810 		/*
1811 		 * Start with the maximum item count and remove items until
1812 		 * the slab header first alongside the allocatable memory.
1813 		 */
1814 		for (ipers = MIN(SLAB_MAX_SETSIZE,
1815 		    (slabsize + padpi - slab_sizeof(1)) / rsize);
1816 		    ipers > 0 &&
1817 		    ipers * rsize - padpi + slab_sizeof(ipers) > slabsize;
1818 		    ipers--)
1819 			continue;
1820 	} else {
1821 		ipers = MIN((slabsize + padpi) / rsize, SLAB_MAX_SETSIZE);
1822 	}
1823 
1824 	return (ipers);
1825 }
1826 
1827 /*
1828  * Compute the number of items that will fit in a slab for a startup zone.
1829  */
1830 int
1831 slab_ipers(size_t size, int align)
1832 {
1833 	int rsize;
1834 
1835 	rsize = roundup(size, align + 1); /* Assume no CACHESPREAD */
1836 	return (slab_ipers_hdr(size, rsize, UMA_SLAB_SIZE, true));
1837 }
1838 
1839 struct keg_layout_result {
1840 	u_int format;
1841 	u_int slabsize;
1842 	u_int ipers;
1843 	u_int eff;
1844 };
1845 
1846 static void
1847 keg_layout_one(uma_keg_t keg, u_int rsize, u_int slabsize, u_int fmt,
1848     struct keg_layout_result *kl)
1849 {
1850 	u_int total;
1851 
1852 	kl->format = fmt;
1853 	kl->slabsize = slabsize;
1854 
1855 	/* Handle INTERNAL as inline with an extra page. */
1856 	if ((fmt & UMA_ZFLAG_INTERNAL) != 0) {
1857 		kl->format &= ~UMA_ZFLAG_INTERNAL;
1858 		kl->slabsize += PAGE_SIZE;
1859 	}
1860 
1861 	kl->ipers = slab_ipers_hdr(keg->uk_size, rsize, kl->slabsize,
1862 	    (fmt & UMA_ZFLAG_OFFPAGE) == 0);
1863 
1864 	/* Account for memory used by an offpage slab header. */
1865 	total = kl->slabsize;
1866 	if ((fmt & UMA_ZFLAG_OFFPAGE) != 0)
1867 		total += slabzone(kl->ipers)->uz_keg->uk_rsize;
1868 
1869 	kl->eff = UMA_FRAC_FIXPT(kl->ipers * rsize, total);
1870 }
1871 
1872 /*
1873  * Determine the format of a uma keg.  This determines where the slab header
1874  * will be placed (inline or offpage) and calculates ipers, rsize, and ppera.
1875  *
1876  * Arguments
1877  *	keg  The zone we should initialize
1878  *
1879  * Returns
1880  *	Nothing
1881  */
1882 static void
1883 keg_layout(uma_keg_t keg)
1884 {
1885 	struct keg_layout_result kl = {}, kl_tmp;
1886 	u_int fmts[2];
1887 	u_int alignsize;
1888 	u_int nfmt;
1889 	u_int pages;
1890 	u_int rsize;
1891 	u_int slabsize;
1892 	u_int i, j;
1893 
1894 	KASSERT((keg->uk_flags & UMA_ZONE_PCPU) == 0 ||
1895 	    (keg->uk_size <= UMA_PCPU_ALLOC_SIZE &&
1896 	     (keg->uk_flags & UMA_ZONE_CACHESPREAD) == 0),
1897 	    ("%s: cannot configure for PCPU: keg=%s, size=%u, flags=0x%b",
1898 	     __func__, keg->uk_name, keg->uk_size, keg->uk_flags,
1899 	     PRINT_UMA_ZFLAGS));
1900 	KASSERT((keg->uk_flags &
1901 	    (UMA_ZFLAG_INTERNAL | UMA_ZFLAG_CACHEONLY)) == 0 ||
1902 	    (keg->uk_flags & (UMA_ZONE_NOTOUCH | UMA_ZONE_PCPU)) == 0,
1903 	    ("%s: incompatible flags 0x%b", __func__, keg->uk_flags,
1904 	     PRINT_UMA_ZFLAGS));
1905 
1906 	alignsize = keg->uk_align + 1;
1907 
1908 	/*
1909 	 * Calculate the size of each allocation (rsize) according to
1910 	 * alignment.  If the requested size is smaller than we have
1911 	 * allocation bits for we round it up.
1912 	 */
1913 	rsize = MAX(keg->uk_size, UMA_SMALLEST_UNIT);
1914 	rsize = roundup2(rsize, alignsize);
1915 
1916 	if ((keg->uk_flags & UMA_ZONE_CACHESPREAD) != 0) {
1917 		/*
1918 		 * We want one item to start on every align boundary in a page.
1919 		 * To do this we will span pages.  We will also extend the item
1920 		 * by the size of align if it is an even multiple of align.
1921 		 * Otherwise, it would fall on the same boundary every time.
1922 		 */
1923 		if ((rsize & alignsize) == 0)
1924 			rsize += alignsize;
1925 		slabsize = rsize * (PAGE_SIZE / alignsize);
1926 		slabsize = MIN(slabsize, rsize * SLAB_MAX_SETSIZE);
1927 		slabsize = MIN(slabsize, UMA_CACHESPREAD_MAX_SIZE);
1928 		slabsize = round_page(slabsize);
1929 	} else {
1930 		/*
1931 		 * Start with a slab size of as many pages as it takes to
1932 		 * represent a single item.  We will try to fit as many
1933 		 * additional items into the slab as possible.
1934 		 */
1935 		slabsize = round_page(keg->uk_size);
1936 	}
1937 
1938 	/* Build a list of all of the available formats for this keg. */
1939 	nfmt = 0;
1940 
1941 	/* Evaluate an inline slab layout. */
1942 	if ((keg->uk_flags & (UMA_ZONE_NOTOUCH | UMA_ZONE_PCPU)) == 0)
1943 		fmts[nfmt++] = 0;
1944 
1945 	/* TODO: vm_page-embedded slab. */
1946 
1947 	/*
1948 	 * We can't do OFFPAGE if we're internal or if we've been
1949 	 * asked to not go to the VM for buckets.  If we do this we
1950 	 * may end up going to the VM  for slabs which we do not
1951 	 * want to do if we're UMA_ZFLAG_CACHEONLY as a result
1952 	 * of UMA_ZONE_VM, which clearly forbids it.  In those cases,
1953 	 * evaluate a pseudo-format called INTERNAL which has an inline
1954 	 * slab header and one extra page to guarantee that it fits.
1955 	 *
1956 	 * Otherwise, see if using an OFFPAGE slab will improve our
1957 	 * efficiency.
1958 	 */
1959 	if ((keg->uk_flags & (UMA_ZFLAG_INTERNAL | UMA_ZFLAG_CACHEONLY)) != 0)
1960 		fmts[nfmt++] = UMA_ZFLAG_INTERNAL;
1961 	else
1962 		fmts[nfmt++] = UMA_ZFLAG_OFFPAGE;
1963 
1964 	/*
1965 	 * Choose a slab size and format which satisfy the minimum efficiency.
1966 	 * Prefer the smallest slab size that meets the constraints.
1967 	 *
1968 	 * Start with a minimum slab size, to accommodate CACHESPREAD.  Then,
1969 	 * for small items (up to PAGE_SIZE), the iteration increment is one
1970 	 * page; and for large items, the increment is one item.
1971 	 */
1972 	i = (slabsize + rsize - keg->uk_size) / MAX(PAGE_SIZE, rsize);
1973 	KASSERT(i >= 1, ("keg %s(%p) flags=0x%b slabsize=%u, rsize=%u, i=%u",
1974 	    keg->uk_name, keg, keg->uk_flags, PRINT_UMA_ZFLAGS, slabsize,
1975 	    rsize, i));
1976 	for ( ; ; i++) {
1977 		slabsize = (rsize <= PAGE_SIZE) ? ptoa(i) :
1978 		    round_page(rsize * (i - 1) + keg->uk_size);
1979 
1980 		for (j = 0; j < nfmt; j++) {
1981 			/* Only if we have no viable format yet. */
1982 			if ((fmts[j] & UMA_ZFLAG_INTERNAL) != 0 &&
1983 			    kl.ipers > 0)
1984 				continue;
1985 
1986 			keg_layout_one(keg, rsize, slabsize, fmts[j], &kl_tmp);
1987 			if (kl_tmp.eff <= kl.eff)
1988 				continue;
1989 
1990 			kl = kl_tmp;
1991 
1992 			CTR6(KTR_UMA, "keg %s layout: format %#x "
1993 			    "(ipers %u * rsize %u) / slabsize %#x = %u%% eff",
1994 			    keg->uk_name, kl.format, kl.ipers, rsize,
1995 			    kl.slabsize, UMA_FIXPT_PCT(kl.eff));
1996 
1997 			/* Stop when we reach the minimum efficiency. */
1998 			if (kl.eff >= UMA_MIN_EFF)
1999 				break;
2000 		}
2001 
2002 		if (kl.eff >= UMA_MIN_EFF || !multipage_slabs ||
2003 		    slabsize >= SLAB_MAX_SETSIZE * rsize ||
2004 		    (keg->uk_flags & (UMA_ZONE_PCPU | UMA_ZONE_CONTIG)) != 0)
2005 			break;
2006 	}
2007 
2008 	pages = atop(kl.slabsize);
2009 	if ((keg->uk_flags & UMA_ZONE_PCPU) != 0)
2010 		pages *= mp_maxid + 1;
2011 
2012 	keg->uk_rsize = rsize;
2013 	keg->uk_ipers = kl.ipers;
2014 	keg->uk_ppera = pages;
2015 	keg->uk_flags |= kl.format;
2016 
2017 	/*
2018 	 * How do we find the slab header if it is offpage or if not all item
2019 	 * start addresses are in the same page?  We could solve the latter
2020 	 * case with vaddr alignment, but we don't.
2021 	 */
2022 	if ((keg->uk_flags & UMA_ZFLAG_OFFPAGE) != 0 ||
2023 	    (keg->uk_ipers - 1) * rsize >= PAGE_SIZE) {
2024 		if ((keg->uk_flags & UMA_ZONE_NOTPAGE) != 0)
2025 			keg->uk_flags |= UMA_ZFLAG_HASH;
2026 		else
2027 			keg->uk_flags |= UMA_ZFLAG_VTOSLAB;
2028 	}
2029 
2030 	CTR6(KTR_UMA, "%s: keg=%s, flags=%#x, rsize=%u, ipers=%u, ppera=%u",
2031 	    __func__, keg->uk_name, keg->uk_flags, rsize, keg->uk_ipers,
2032 	    pages);
2033 	KASSERT(keg->uk_ipers > 0 && keg->uk_ipers <= SLAB_MAX_SETSIZE,
2034 	    ("%s: keg=%s, flags=0x%b, rsize=%u, ipers=%u, ppera=%u", __func__,
2035 	     keg->uk_name, keg->uk_flags, PRINT_UMA_ZFLAGS, rsize,
2036 	     keg->uk_ipers, pages));
2037 }
2038 
2039 /*
2040  * Keg header ctor.  This initializes all fields, locks, etc.  And inserts
2041  * the keg onto the global keg list.
2042  *
2043  * Arguments/Returns follow uma_ctor specifications
2044  *	udata  Actually uma_kctor_args
2045  */
2046 static int
2047 keg_ctor(void *mem, int size, void *udata, int flags)
2048 {
2049 	struct uma_kctor_args *arg = udata;
2050 	uma_keg_t keg = mem;
2051 	uma_zone_t zone;
2052 	int i;
2053 
2054 	bzero(keg, size);
2055 	keg->uk_size = arg->size;
2056 	keg->uk_init = arg->uminit;
2057 	keg->uk_fini = arg->fini;
2058 	keg->uk_align = arg->align;
2059 	keg->uk_reserve = 0;
2060 	keg->uk_flags = arg->flags;
2061 
2062 	/*
2063 	 * We use a global round-robin policy by default.  Zones with
2064 	 * UMA_ZONE_FIRSTTOUCH set will use first-touch instead, in which
2065 	 * case the iterator is never run.
2066 	 */
2067 	keg->uk_dr.dr_policy = DOMAINSET_RR();
2068 	keg->uk_dr.dr_iter = 0;
2069 
2070 	/*
2071 	 * The master zone is passed to us at keg-creation time.
2072 	 */
2073 	zone = arg->zone;
2074 	keg->uk_name = zone->uz_name;
2075 
2076 	if (arg->flags & UMA_ZONE_VM)
2077 		keg->uk_flags |= UMA_ZFLAG_CACHEONLY;
2078 
2079 	if (arg->flags & UMA_ZONE_ZINIT)
2080 		keg->uk_init = zero_init;
2081 
2082 	if (arg->flags & UMA_ZONE_MALLOC)
2083 		keg->uk_flags |= UMA_ZFLAG_VTOSLAB;
2084 
2085 #ifndef SMP
2086 	keg->uk_flags &= ~UMA_ZONE_PCPU;
2087 #endif
2088 
2089 	keg_layout(keg);
2090 
2091 	/*
2092 	 * Use a first-touch NUMA policy for all kegs that pmap_extract()
2093 	 * will work on with the exception of critical VM structures
2094 	 * necessary for paging.
2095 	 *
2096 	 * Zones may override the default by specifying either.
2097 	 */
2098 #ifdef NUMA
2099 	if ((keg->uk_flags &
2100 	    (UMA_ZFLAG_HASH | UMA_ZONE_VM | UMA_ZONE_ROUNDROBIN)) == 0)
2101 		keg->uk_flags |= UMA_ZONE_FIRSTTOUCH;
2102 	else if ((keg->uk_flags & UMA_ZONE_FIRSTTOUCH) == 0)
2103 		keg->uk_flags |= UMA_ZONE_ROUNDROBIN;
2104 #endif
2105 
2106 	/*
2107 	 * If we haven't booted yet we need allocations to go through the
2108 	 * startup cache until the vm is ready.
2109 	 */
2110 #ifdef UMA_MD_SMALL_ALLOC
2111 	if (keg->uk_ppera == 1)
2112 		keg->uk_allocf = uma_small_alloc;
2113 	else
2114 #endif
2115 	if (booted < BOOT_KVA)
2116 		keg->uk_allocf = startup_alloc;
2117 	else if (keg->uk_flags & UMA_ZONE_PCPU)
2118 		keg->uk_allocf = pcpu_page_alloc;
2119 	else if ((keg->uk_flags & UMA_ZONE_CONTIG) != 0 && keg->uk_ppera > 1)
2120 		keg->uk_allocf = contig_alloc;
2121 	else
2122 		keg->uk_allocf = page_alloc;
2123 #ifdef UMA_MD_SMALL_ALLOC
2124 	if (keg->uk_ppera == 1)
2125 		keg->uk_freef = uma_small_free;
2126 	else
2127 #endif
2128 	if (keg->uk_flags & UMA_ZONE_PCPU)
2129 		keg->uk_freef = pcpu_page_free;
2130 	else
2131 		keg->uk_freef = page_free;
2132 
2133 	/*
2134 	 * Initialize keg's locks.
2135 	 */
2136 	for (i = 0; i < vm_ndomains; i++)
2137 		KEG_LOCK_INIT(keg, i, (arg->flags & UMA_ZONE_MTXCLASS));
2138 
2139 	/*
2140 	 * If we're putting the slab header in the actual page we need to
2141 	 * figure out where in each page it goes.  See slab_sizeof
2142 	 * definition.
2143 	 */
2144 	if (!(keg->uk_flags & UMA_ZFLAG_OFFPAGE)) {
2145 		size_t shsize;
2146 
2147 		shsize = slab_sizeof(keg->uk_ipers);
2148 		keg->uk_pgoff = (PAGE_SIZE * keg->uk_ppera) - shsize;
2149 		/*
2150 		 * The only way the following is possible is if with our
2151 		 * UMA_ALIGN_PTR adjustments we are now bigger than
2152 		 * UMA_SLAB_SIZE.  I haven't checked whether this is
2153 		 * mathematically possible for all cases, so we make
2154 		 * sure here anyway.
2155 		 */
2156 		KASSERT(keg->uk_pgoff + shsize <= PAGE_SIZE * keg->uk_ppera,
2157 		    ("zone %s ipers %d rsize %d size %d slab won't fit",
2158 		    zone->uz_name, keg->uk_ipers, keg->uk_rsize, keg->uk_size));
2159 	}
2160 
2161 	if (keg->uk_flags & UMA_ZFLAG_HASH)
2162 		hash_alloc(&keg->uk_hash, 0);
2163 
2164 	CTR3(KTR_UMA, "keg_ctor %p zone %s(%p)", keg, zone->uz_name, zone);
2165 
2166 	LIST_INSERT_HEAD(&keg->uk_zones, zone, uz_link);
2167 
2168 	rw_wlock(&uma_rwlock);
2169 	LIST_INSERT_HEAD(&uma_kegs, keg, uk_link);
2170 	rw_wunlock(&uma_rwlock);
2171 	return (0);
2172 }
2173 
2174 static void
2175 zone_kva_available(uma_zone_t zone, void *unused)
2176 {
2177 	uma_keg_t keg;
2178 
2179 	if ((zone->uz_flags & UMA_ZFLAG_CACHE) != 0)
2180 		return;
2181 	KEG_GET(zone, keg);
2182 
2183 	if (keg->uk_allocf == startup_alloc) {
2184 		/* Switch to the real allocator. */
2185 		if (keg->uk_flags & UMA_ZONE_PCPU)
2186 			keg->uk_allocf = pcpu_page_alloc;
2187 		else if ((keg->uk_flags & UMA_ZONE_CONTIG) != 0 &&
2188 		    keg->uk_ppera > 1)
2189 			keg->uk_allocf = contig_alloc;
2190 		else
2191 			keg->uk_allocf = page_alloc;
2192 	}
2193 }
2194 
2195 static void
2196 zone_alloc_counters(uma_zone_t zone, void *unused)
2197 {
2198 
2199 	zone->uz_allocs = counter_u64_alloc(M_WAITOK);
2200 	zone->uz_frees = counter_u64_alloc(M_WAITOK);
2201 	zone->uz_fails = counter_u64_alloc(M_WAITOK);
2202 }
2203 
2204 static void
2205 zone_alloc_sysctl(uma_zone_t zone, void *unused)
2206 {
2207 	uma_zone_domain_t zdom;
2208 	uma_domain_t dom;
2209 	uma_keg_t keg;
2210 	struct sysctl_oid *oid, *domainoid;
2211 	int domains, i, cnt;
2212 	static const char *nokeg = "cache zone";
2213 	char *c;
2214 
2215 	/*
2216 	 * Make a sysctl safe copy of the zone name by removing
2217 	 * any special characters and handling dups by appending
2218 	 * an index.
2219 	 */
2220 	if (zone->uz_namecnt != 0) {
2221 		/* Count the number of decimal digits and '_' separator. */
2222 		for (i = 1, cnt = zone->uz_namecnt; cnt != 0; i++)
2223 			cnt /= 10;
2224 		zone->uz_ctlname = malloc(strlen(zone->uz_name) + i + 1,
2225 		    M_UMA, M_WAITOK);
2226 		sprintf(zone->uz_ctlname, "%s_%d", zone->uz_name,
2227 		    zone->uz_namecnt);
2228 	} else
2229 		zone->uz_ctlname = strdup(zone->uz_name, M_UMA);
2230 	for (c = zone->uz_ctlname; *c != '\0'; c++)
2231 		if (strchr("./\\ -", *c) != NULL)
2232 			*c = '_';
2233 
2234 	/*
2235 	 * Basic parameters at the root.
2236 	 */
2237 	zone->uz_oid = SYSCTL_ADD_NODE(NULL, SYSCTL_STATIC_CHILDREN(_vm_uma),
2238 	    OID_AUTO, zone->uz_ctlname, CTLFLAG_RD, NULL, "");
2239 	oid = zone->uz_oid;
2240 	SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2241 	    "size", CTLFLAG_RD, &zone->uz_size, 0, "Allocation size");
2242 	SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2243 	    "flags", CTLFLAG_RD | CTLTYPE_STRING | CTLFLAG_MPSAFE,
2244 	    zone, 0, sysctl_handle_uma_zone_flags, "A",
2245 	    "Allocator configuration flags");
2246 	SYSCTL_ADD_U16(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2247 	    "bucket_size", CTLFLAG_RD, &zone->uz_bucket_size, 0,
2248 	    "Desired per-cpu cache size");
2249 	SYSCTL_ADD_U16(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2250 	    "bucket_size_max", CTLFLAG_RD, &zone->uz_bucket_size_max, 0,
2251 	    "Maximum allowed per-cpu cache size");
2252 
2253 	/*
2254 	 * keg if present.
2255 	 */
2256 	if ((zone->uz_flags & UMA_ZFLAG_HASH) == 0)
2257 		domains = vm_ndomains;
2258 	else
2259 		domains = 1;
2260 	oid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(zone->uz_oid), OID_AUTO,
2261 	    "keg", CTLFLAG_RD, NULL, "");
2262 	keg = zone->uz_keg;
2263 	if ((zone->uz_flags & UMA_ZFLAG_CACHE) == 0) {
2264 		SYSCTL_ADD_CONST_STRING(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2265 		    "name", CTLFLAG_RD, keg->uk_name, "Keg name");
2266 		SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2267 		    "rsize", CTLFLAG_RD, &keg->uk_rsize, 0,
2268 		    "Real object size with alignment");
2269 		SYSCTL_ADD_U16(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2270 		    "ppera", CTLFLAG_RD, &keg->uk_ppera, 0,
2271 		    "pages per-slab allocation");
2272 		SYSCTL_ADD_U16(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2273 		    "ipers", CTLFLAG_RD, &keg->uk_ipers, 0,
2274 		    "items available per-slab");
2275 		SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2276 		    "align", CTLFLAG_RD, &keg->uk_align, 0,
2277 		    "item alignment mask");
2278 		SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2279 		    "efficiency", CTLFLAG_RD | CTLTYPE_INT | CTLFLAG_MPSAFE,
2280 		    keg, 0, sysctl_handle_uma_slab_efficiency, "I",
2281 		    "Slab utilization (100 - internal fragmentation %)");
2282 		domainoid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(oid),
2283 		    OID_AUTO, "domain", CTLFLAG_RD, NULL, "");
2284 		for (i = 0; i < domains; i++) {
2285 			dom = &keg->uk_domain[i];
2286 			oid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(domainoid),
2287 			    OID_AUTO, VM_DOMAIN(i)->vmd_name, CTLFLAG_RD,
2288 			    NULL, "");
2289 			SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2290 			    "pages", CTLFLAG_RD, &dom->ud_pages, 0,
2291 			    "Total pages currently allocated from VM");
2292 			SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2293 			    "free", CTLFLAG_RD, &dom->ud_free, 0,
2294 			    "items free in the slab layer");
2295 		}
2296 	} else
2297 		SYSCTL_ADD_CONST_STRING(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2298 		    "name", CTLFLAG_RD, nokeg, "Keg name");
2299 
2300 	/*
2301 	 * Information about zone limits.
2302 	 */
2303 	oid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(zone->uz_oid), OID_AUTO,
2304 	    "limit", CTLFLAG_RD, NULL, "");
2305 	SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2306 	    "items", CTLFLAG_RD | CTLTYPE_U64 | CTLFLAG_MPSAFE,
2307 	    zone, 0, sysctl_handle_uma_zone_items, "QU",
2308 	    "current number of allocated items if limit is set");
2309 	SYSCTL_ADD_U64(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2310 	    "max_items", CTLFLAG_RD, &zone->uz_max_items, 0,
2311 	    "Maximum number of cached items");
2312 	SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2313 	    "sleepers", CTLFLAG_RD, &zone->uz_sleepers, 0,
2314 	    "Number of threads sleeping at limit");
2315 	SYSCTL_ADD_U64(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2316 	    "sleeps", CTLFLAG_RD, &zone->uz_sleeps, 0,
2317 	    "Total zone limit sleeps");
2318 	SYSCTL_ADD_U64(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2319 	    "bucket_max", CTLFLAG_RD, &zone->uz_bkt_max, 0,
2320 	    "Maximum number of items in the bucket cache");
2321 	SYSCTL_ADD_U64(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2322 	    "bucket_cnt", CTLFLAG_RD, &zone->uz_bkt_count, 0,
2323 	    "Number of items in the bucket cache");
2324 
2325 	/*
2326 	 * Per-domain zone information.
2327 	 */
2328 	domainoid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(zone->uz_oid),
2329 	    OID_AUTO, "domain", CTLFLAG_RD, NULL, "");
2330 	if ((zone->uz_flags & UMA_ZONE_FIRSTTOUCH) == 0)
2331 		domains = 1;
2332 	for (i = 0; i < domains; i++) {
2333 		zdom = &zone->uz_domain[i];
2334 		oid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(domainoid),
2335 		    OID_AUTO, VM_DOMAIN(i)->vmd_name, CTLFLAG_RD, NULL, "");
2336 		SYSCTL_ADD_LONG(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2337 		    "nitems", CTLFLAG_RD, &zdom->uzd_nitems,
2338 		    "number of items in this domain");
2339 		SYSCTL_ADD_LONG(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2340 		    "imax", CTLFLAG_RD, &zdom->uzd_imax,
2341 		    "maximum item count in this period");
2342 		SYSCTL_ADD_LONG(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2343 		    "imin", CTLFLAG_RD, &zdom->uzd_imin,
2344 		    "minimum item count in this period");
2345 		SYSCTL_ADD_LONG(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2346 		    "wss", CTLFLAG_RD, &zdom->uzd_wss,
2347 		    "Working set size");
2348 	}
2349 
2350 	/*
2351 	 * General statistics.
2352 	 */
2353 	oid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(zone->uz_oid), OID_AUTO,
2354 	    "stats", CTLFLAG_RD, NULL, "");
2355 	SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2356 	    "current", CTLFLAG_RD | CTLTYPE_INT | CTLFLAG_MPSAFE,
2357 	    zone, 1, sysctl_handle_uma_zone_cur, "I",
2358 	    "Current number of allocated items");
2359 	SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2360 	    "allocs", CTLFLAG_RD | CTLTYPE_U64 | CTLFLAG_MPSAFE,
2361 	    zone, 0, sysctl_handle_uma_zone_allocs, "QU",
2362 	    "Total allocation calls");
2363 	SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2364 	    "frees", CTLFLAG_RD | CTLTYPE_U64 | CTLFLAG_MPSAFE,
2365 	    zone, 0, sysctl_handle_uma_zone_frees, "QU",
2366 	    "Total free calls");
2367 	SYSCTL_ADD_COUNTER_U64(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2368 	    "fails", CTLFLAG_RD, &zone->uz_fails,
2369 	    "Number of allocation failures");
2370 	SYSCTL_ADD_U64(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2371 	    "xdomain", CTLFLAG_RD, &zone->uz_xdomain, 0,
2372 	    "Free calls from the wrong domain");
2373 }
2374 
2375 struct uma_zone_count {
2376 	const char	*name;
2377 	int		count;
2378 };
2379 
2380 static void
2381 zone_count(uma_zone_t zone, void *arg)
2382 {
2383 	struct uma_zone_count *cnt;
2384 
2385 	cnt = arg;
2386 	/*
2387 	 * Some zones are rapidly created with identical names and
2388 	 * destroyed out of order.  This can lead to gaps in the count.
2389 	 * Use one greater than the maximum observed for this name.
2390 	 */
2391 	if (strcmp(zone->uz_name, cnt->name) == 0)
2392 		cnt->count = MAX(cnt->count,
2393 		    zone->uz_namecnt + 1);
2394 }
2395 
2396 static void
2397 zone_update_caches(uma_zone_t zone)
2398 {
2399 	int i;
2400 
2401 	for (i = 0; i <= mp_maxid; i++) {
2402 		cache_set_uz_size(&zone->uz_cpu[i], zone->uz_size);
2403 		cache_set_uz_flags(&zone->uz_cpu[i], zone->uz_flags);
2404 	}
2405 }
2406 
2407 /*
2408  * Zone header ctor.  This initializes all fields, locks, etc.
2409  *
2410  * Arguments/Returns follow uma_ctor specifications
2411  *	udata  Actually uma_zctor_args
2412  */
2413 static int
2414 zone_ctor(void *mem, int size, void *udata, int flags)
2415 {
2416 	struct uma_zone_count cnt;
2417 	struct uma_zctor_args *arg = udata;
2418 	uma_zone_t zone = mem;
2419 	uma_zone_t z;
2420 	uma_keg_t keg;
2421 	int i;
2422 
2423 	bzero(zone, size);
2424 	zone->uz_name = arg->name;
2425 	zone->uz_ctor = arg->ctor;
2426 	zone->uz_dtor = arg->dtor;
2427 	zone->uz_init = NULL;
2428 	zone->uz_fini = NULL;
2429 	zone->uz_sleeps = 0;
2430 	zone->uz_xdomain = 0;
2431 	zone->uz_bucket_size = 0;
2432 	zone->uz_bucket_size_min = 0;
2433 	zone->uz_bucket_size_max = BUCKET_MAX;
2434 	zone->uz_flags = (arg->flags & UMA_ZONE_SMR);
2435 	zone->uz_warning = NULL;
2436 	/* The domain structures follow the cpu structures. */
2437 	zone->uz_domain =
2438 	    (struct uma_zone_domain *)&zone->uz_cpu[mp_maxid + 1];
2439 	zone->uz_bkt_max = ULONG_MAX;
2440 	timevalclear(&zone->uz_ratecheck);
2441 
2442 	/* Count the number of duplicate names. */
2443 	cnt.name = arg->name;
2444 	cnt.count = 0;
2445 	zone_foreach(zone_count, &cnt);
2446 	zone->uz_namecnt = cnt.count;
2447 	ZONE_LOCK_INIT(zone, (arg->flags & UMA_ZONE_MTXCLASS));
2448 	ZONE_CROSS_LOCK_INIT(zone);
2449 
2450 	for (i = 0; i < vm_ndomains; i++)
2451 		STAILQ_INIT(&zone->uz_domain[i].uzd_buckets);
2452 
2453 #ifdef INVARIANTS
2454 	if (arg->uminit == trash_init && arg->fini == trash_fini)
2455 		zone->uz_flags |= UMA_ZFLAG_TRASH | UMA_ZFLAG_CTORDTOR;
2456 #endif
2457 
2458 	/*
2459 	 * This is a pure cache zone, no kegs.
2460 	 */
2461 	if (arg->import) {
2462 		KASSERT((arg->flags & UMA_ZFLAG_CACHE) != 0,
2463 		    ("zone_ctor: Import specified for non-cache zone."));
2464 		if (arg->flags & UMA_ZONE_VM)
2465 			arg->flags |= UMA_ZFLAG_CACHEONLY;
2466 		zone->uz_flags = arg->flags;
2467 		zone->uz_size = arg->size;
2468 		zone->uz_import = arg->import;
2469 		zone->uz_release = arg->release;
2470 		zone->uz_arg = arg->arg;
2471 		rw_wlock(&uma_rwlock);
2472 		LIST_INSERT_HEAD(&uma_cachezones, zone, uz_link);
2473 		rw_wunlock(&uma_rwlock);
2474 		goto out;
2475 	}
2476 
2477 	/*
2478 	 * Use the regular zone/keg/slab allocator.
2479 	 */
2480 	zone->uz_import = zone_import;
2481 	zone->uz_release = zone_release;
2482 	zone->uz_arg = zone;
2483 	keg = arg->keg;
2484 
2485 	if (arg->flags & UMA_ZONE_SECONDARY) {
2486 		KASSERT((zone->uz_flags & UMA_ZONE_SECONDARY) == 0,
2487 		    ("Secondary zone requested UMA_ZFLAG_INTERNAL"));
2488 		KASSERT(arg->keg != NULL, ("Secondary zone on zero'd keg"));
2489 		zone->uz_init = arg->uminit;
2490 		zone->uz_fini = arg->fini;
2491 		zone->uz_flags |= UMA_ZONE_SECONDARY;
2492 		rw_wlock(&uma_rwlock);
2493 		ZONE_LOCK(zone);
2494 		LIST_FOREACH(z, &keg->uk_zones, uz_link) {
2495 			if (LIST_NEXT(z, uz_link) == NULL) {
2496 				LIST_INSERT_AFTER(z, zone, uz_link);
2497 				break;
2498 			}
2499 		}
2500 		ZONE_UNLOCK(zone);
2501 		rw_wunlock(&uma_rwlock);
2502 	} else if (keg == NULL) {
2503 		if ((keg = uma_kcreate(zone, arg->size, arg->uminit, arg->fini,
2504 		    arg->align, arg->flags)) == NULL)
2505 			return (ENOMEM);
2506 	} else {
2507 		struct uma_kctor_args karg;
2508 		int error;
2509 
2510 		/* We should only be here from uma_startup() */
2511 		karg.size = arg->size;
2512 		karg.uminit = arg->uminit;
2513 		karg.fini = arg->fini;
2514 		karg.align = arg->align;
2515 		karg.flags = (arg->flags & ~UMA_ZONE_SMR);
2516 		karg.zone = zone;
2517 		error = keg_ctor(arg->keg, sizeof(struct uma_keg), &karg,
2518 		    flags);
2519 		if (error)
2520 			return (error);
2521 	}
2522 
2523 	/* Inherit properties from the keg. */
2524 	zone->uz_keg = keg;
2525 	zone->uz_size = keg->uk_size;
2526 	zone->uz_flags |= (keg->uk_flags &
2527 	    (UMA_ZONE_INHERIT | UMA_ZFLAG_INHERIT));
2528 
2529 out:
2530 	if (__predict_true(booted >= BOOT_RUNNING)) {
2531 		zone_alloc_counters(zone, NULL);
2532 		zone_alloc_sysctl(zone, NULL);
2533 	} else {
2534 		zone->uz_allocs = EARLY_COUNTER;
2535 		zone->uz_frees = EARLY_COUNTER;
2536 		zone->uz_fails = EARLY_COUNTER;
2537 	}
2538 
2539 	/* Caller requests a private SMR context. */
2540 	if ((zone->uz_flags & UMA_ZONE_SMR) != 0)
2541 		zone->uz_smr = smr_create(zone->uz_name);
2542 
2543 	KASSERT((arg->flags & (UMA_ZONE_MAXBUCKET | UMA_ZONE_NOBUCKET)) !=
2544 	    (UMA_ZONE_MAXBUCKET | UMA_ZONE_NOBUCKET),
2545 	    ("Invalid zone flag combination"));
2546 	if (arg->flags & UMA_ZFLAG_INTERNAL)
2547 		zone->uz_bucket_size_max = zone->uz_bucket_size = 0;
2548 	if ((arg->flags & UMA_ZONE_MAXBUCKET) != 0)
2549 		zone->uz_bucket_size = BUCKET_MAX;
2550 	else if ((arg->flags & UMA_ZONE_MINBUCKET) != 0)
2551 		zone->uz_bucket_size_max = zone->uz_bucket_size = BUCKET_MIN;
2552 	else if ((arg->flags & UMA_ZONE_NOBUCKET) != 0)
2553 		zone->uz_bucket_size = 0;
2554 	else
2555 		zone->uz_bucket_size = bucket_select(zone->uz_size);
2556 	zone->uz_bucket_size_min = zone->uz_bucket_size;
2557 	if (zone->uz_dtor != NULL || zone->uz_ctor != NULL)
2558 		zone->uz_flags |= UMA_ZFLAG_CTORDTOR;
2559 	zone_update_caches(zone);
2560 
2561 	return (0);
2562 }
2563 
2564 /*
2565  * Keg header dtor.  This frees all data, destroys locks, frees the hash
2566  * table and removes the keg from the global list.
2567  *
2568  * Arguments/Returns follow uma_dtor specifications
2569  *	udata  unused
2570  */
2571 static void
2572 keg_dtor(void *arg, int size, void *udata)
2573 {
2574 	uma_keg_t keg;
2575 	uint32_t free, pages;
2576 	int i;
2577 
2578 	keg = (uma_keg_t)arg;
2579 	free = pages = 0;
2580 	for (i = 0; i < vm_ndomains; i++) {
2581 		free += keg->uk_domain[i].ud_free;
2582 		pages += keg->uk_domain[i].ud_pages;
2583 		KEG_LOCK_FINI(keg, i);
2584 	}
2585 	if (pages != 0)
2586 		printf("Freed UMA keg (%s) was not empty (%u items). "
2587 		    " Lost %u pages of memory.\n",
2588 		    keg->uk_name ? keg->uk_name : "",
2589 		    pages / keg->uk_ppera * keg->uk_ipers - free, pages);
2590 
2591 	hash_free(&keg->uk_hash);
2592 }
2593 
2594 /*
2595  * Zone header dtor.
2596  *
2597  * Arguments/Returns follow uma_dtor specifications
2598  *	udata  unused
2599  */
2600 static void
2601 zone_dtor(void *arg, int size, void *udata)
2602 {
2603 	uma_zone_t zone;
2604 	uma_keg_t keg;
2605 
2606 	zone = (uma_zone_t)arg;
2607 
2608 	sysctl_remove_oid(zone->uz_oid, 1, 1);
2609 
2610 	if (!(zone->uz_flags & UMA_ZFLAG_INTERNAL))
2611 		cache_drain(zone);
2612 
2613 	rw_wlock(&uma_rwlock);
2614 	LIST_REMOVE(zone, uz_link);
2615 	rw_wunlock(&uma_rwlock);
2616 	/*
2617 	 * XXX there are some races here where
2618 	 * the zone can be drained but zone lock
2619 	 * released and then refilled before we
2620 	 * remove it... we dont care for now
2621 	 */
2622 	zone_reclaim(zone, M_WAITOK, true);
2623 	/*
2624 	 * We only destroy kegs from non secondary/non cache zones.
2625 	 */
2626 	if ((zone->uz_flags & (UMA_ZONE_SECONDARY | UMA_ZFLAG_CACHE)) == 0) {
2627 		keg = zone->uz_keg;
2628 		rw_wlock(&uma_rwlock);
2629 		LIST_REMOVE(keg, uk_link);
2630 		rw_wunlock(&uma_rwlock);
2631 		zone_free_item(kegs, keg, NULL, SKIP_NONE);
2632 	}
2633 	counter_u64_free(zone->uz_allocs);
2634 	counter_u64_free(zone->uz_frees);
2635 	counter_u64_free(zone->uz_fails);
2636 	free(zone->uz_ctlname, M_UMA);
2637 	ZONE_LOCK_FINI(zone);
2638 	ZONE_CROSS_LOCK_FINI(zone);
2639 }
2640 
2641 static void
2642 zone_foreach_unlocked(void (*zfunc)(uma_zone_t, void *arg), void *arg)
2643 {
2644 	uma_keg_t keg;
2645 	uma_zone_t zone;
2646 
2647 	LIST_FOREACH(keg, &uma_kegs, uk_link) {
2648 		LIST_FOREACH(zone, &keg->uk_zones, uz_link)
2649 			zfunc(zone, arg);
2650 	}
2651 	LIST_FOREACH(zone, &uma_cachezones, uz_link)
2652 		zfunc(zone, arg);
2653 }
2654 
2655 /*
2656  * Traverses every zone in the system and calls a callback
2657  *
2658  * Arguments:
2659  *	zfunc  A pointer to a function which accepts a zone
2660  *		as an argument.
2661  *
2662  * Returns:
2663  *	Nothing
2664  */
2665 static void
2666 zone_foreach(void (*zfunc)(uma_zone_t, void *arg), void *arg)
2667 {
2668 
2669 	rw_rlock(&uma_rwlock);
2670 	zone_foreach_unlocked(zfunc, arg);
2671 	rw_runlock(&uma_rwlock);
2672 }
2673 
2674 /*
2675  * Initialize the kernel memory allocator.  This is done after pages can be
2676  * allocated but before general KVA is available.
2677  */
2678 void
2679 uma_startup1(vm_offset_t virtual_avail)
2680 {
2681 	struct uma_zctor_args args;
2682 	size_t ksize, zsize, size;
2683 	uma_keg_t masterkeg;
2684 	uintptr_t m;
2685 	uint8_t pflag;
2686 
2687 	bootstart = bootmem = virtual_avail;
2688 
2689 	rw_init(&uma_rwlock, "UMA lock");
2690 	sx_init(&uma_reclaim_lock, "umareclaim");
2691 
2692 	ksize = sizeof(struct uma_keg) +
2693 	    (sizeof(struct uma_domain) * vm_ndomains);
2694 	ksize = roundup(ksize, UMA_SUPER_ALIGN);
2695 	zsize = sizeof(struct uma_zone) +
2696 	    (sizeof(struct uma_cache) * (mp_maxid + 1)) +
2697 	    (sizeof(struct uma_zone_domain) * vm_ndomains);
2698 	zsize = roundup(zsize, UMA_SUPER_ALIGN);
2699 
2700 	/* Allocate the zone of zones, zone of kegs, and zone of zones keg. */
2701 	size = (zsize * 2) + ksize;
2702 	m = (uintptr_t)startup_alloc(NULL, size, 0, &pflag, M_NOWAIT | M_ZERO);
2703 	zones = (uma_zone_t)m;
2704 	m += zsize;
2705 	kegs = (uma_zone_t)m;
2706 	m += zsize;
2707 	masterkeg = (uma_keg_t)m;
2708 
2709 	/* "manually" create the initial zone */
2710 	memset(&args, 0, sizeof(args));
2711 	args.name = "UMA Kegs";
2712 	args.size = ksize;
2713 	args.ctor = keg_ctor;
2714 	args.dtor = keg_dtor;
2715 	args.uminit = zero_init;
2716 	args.fini = NULL;
2717 	args.keg = masterkeg;
2718 	args.align = UMA_SUPER_ALIGN - 1;
2719 	args.flags = UMA_ZFLAG_INTERNAL;
2720 	zone_ctor(kegs, zsize, &args, M_WAITOK);
2721 
2722 	args.name = "UMA Zones";
2723 	args.size = zsize;
2724 	args.ctor = zone_ctor;
2725 	args.dtor = zone_dtor;
2726 	args.uminit = zero_init;
2727 	args.fini = NULL;
2728 	args.keg = NULL;
2729 	args.align = UMA_SUPER_ALIGN - 1;
2730 	args.flags = UMA_ZFLAG_INTERNAL;
2731 	zone_ctor(zones, zsize, &args, M_WAITOK);
2732 
2733 	/* Now make zones for slab headers */
2734 	slabzones[0] = uma_zcreate("UMA Slabs 0", SLABZONE0_SIZE,
2735 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZFLAG_INTERNAL);
2736 	slabzones[1] = uma_zcreate("UMA Slabs 1", SLABZONE1_SIZE,
2737 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZFLAG_INTERNAL);
2738 
2739 	hashzone = uma_zcreate("UMA Hash",
2740 	    sizeof(struct slabhead *) * UMA_HASH_SIZE_INIT,
2741 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZFLAG_INTERNAL);
2742 
2743 	bucket_init();
2744 	smr_init();
2745 }
2746 
2747 #ifndef UMA_MD_SMALL_ALLOC
2748 extern void vm_radix_reserve_kva(void);
2749 #endif
2750 
2751 /*
2752  * Advertise the availability of normal kva allocations and switch to
2753  * the default back-end allocator.  Marks the KVA we consumed on startup
2754  * as used in the map.
2755  */
2756 void
2757 uma_startup2(void)
2758 {
2759 
2760 	if (bootstart != bootmem) {
2761 		vm_map_lock(kernel_map);
2762 		(void)vm_map_insert(kernel_map, NULL, 0, bootstart, bootmem,
2763 		    VM_PROT_RW, VM_PROT_RW, MAP_NOFAULT);
2764 		vm_map_unlock(kernel_map);
2765 	}
2766 
2767 #ifndef UMA_MD_SMALL_ALLOC
2768 	/* Set up radix zone to use noobj_alloc. */
2769 	vm_radix_reserve_kva();
2770 #endif
2771 
2772 	booted = BOOT_KVA;
2773 	zone_foreach_unlocked(zone_kva_available, NULL);
2774 	bucket_enable();
2775 }
2776 
2777 /*
2778  * Finish our initialization steps.
2779  */
2780 static void
2781 uma_startup3(void)
2782 {
2783 
2784 #ifdef INVARIANTS
2785 	TUNABLE_INT_FETCH("vm.debug.divisor", &dbg_divisor);
2786 	uma_dbg_cnt = counter_u64_alloc(M_WAITOK);
2787 	uma_skip_cnt = counter_u64_alloc(M_WAITOK);
2788 #endif
2789 	zone_foreach_unlocked(zone_alloc_counters, NULL);
2790 	zone_foreach_unlocked(zone_alloc_sysctl, NULL);
2791 	callout_init(&uma_callout, 1);
2792 	callout_reset(&uma_callout, UMA_TIMEOUT * hz, uma_timeout, NULL);
2793 	booted = BOOT_RUNNING;
2794 
2795 	EVENTHANDLER_REGISTER(shutdown_post_sync, uma_shutdown, NULL,
2796 	    EVENTHANDLER_PRI_FIRST);
2797 }
2798 
2799 static void
2800 uma_shutdown(void)
2801 {
2802 
2803 	booted = BOOT_SHUTDOWN;
2804 }
2805 
2806 static uma_keg_t
2807 uma_kcreate(uma_zone_t zone, size_t size, uma_init uminit, uma_fini fini,
2808 		int align, uint32_t flags)
2809 {
2810 	struct uma_kctor_args args;
2811 
2812 	args.size = size;
2813 	args.uminit = uminit;
2814 	args.fini = fini;
2815 	args.align = (align == UMA_ALIGN_CACHE) ? uma_align_cache : align;
2816 	args.flags = flags;
2817 	args.zone = zone;
2818 	return (zone_alloc_item(kegs, &args, UMA_ANYDOMAIN, M_WAITOK));
2819 }
2820 
2821 /* Public functions */
2822 /* See uma.h */
2823 void
2824 uma_set_align(int align)
2825 {
2826 
2827 	if (align != UMA_ALIGN_CACHE)
2828 		uma_align_cache = align;
2829 }
2830 
2831 /* See uma.h */
2832 uma_zone_t
2833 uma_zcreate(const char *name, size_t size, uma_ctor ctor, uma_dtor dtor,
2834 		uma_init uminit, uma_fini fini, int align, uint32_t flags)
2835 
2836 {
2837 	struct uma_zctor_args args;
2838 	uma_zone_t res;
2839 
2840 	KASSERT(powerof2(align + 1), ("invalid zone alignment %d for \"%s\"",
2841 	    align, name));
2842 
2843 	/* This stuff is essential for the zone ctor */
2844 	memset(&args, 0, sizeof(args));
2845 	args.name = name;
2846 	args.size = size;
2847 	args.ctor = ctor;
2848 	args.dtor = dtor;
2849 	args.uminit = uminit;
2850 	args.fini = fini;
2851 #ifdef  INVARIANTS
2852 	/*
2853 	 * Inject procedures which check for memory use after free if we are
2854 	 * allowed to scramble the memory while it is not allocated.  This
2855 	 * requires that: UMA is actually able to access the memory, no init
2856 	 * or fini procedures, no dependency on the initial value of the
2857 	 * memory, and no (legitimate) use of the memory after free.  Note,
2858 	 * the ctor and dtor do not need to be empty.
2859 	 */
2860 	if ((!(flags & (UMA_ZONE_ZINIT | UMA_ZONE_NOTOUCH |
2861 	    UMA_ZONE_NOFREE))) && uminit == NULL && fini == NULL) {
2862 		args.uminit = trash_init;
2863 		args.fini = trash_fini;
2864 	}
2865 #endif
2866 	args.align = align;
2867 	args.flags = flags;
2868 	args.keg = NULL;
2869 
2870 	sx_slock(&uma_reclaim_lock);
2871 	res = zone_alloc_item(zones, &args, UMA_ANYDOMAIN, M_WAITOK);
2872 	sx_sunlock(&uma_reclaim_lock);
2873 
2874 	return (res);
2875 }
2876 
2877 /* See uma.h */
2878 uma_zone_t
2879 uma_zsecond_create(char *name, uma_ctor ctor, uma_dtor dtor,
2880 		    uma_init zinit, uma_fini zfini, uma_zone_t master)
2881 {
2882 	struct uma_zctor_args args;
2883 	uma_keg_t keg;
2884 	uma_zone_t res;
2885 
2886 	keg = master->uz_keg;
2887 	memset(&args, 0, sizeof(args));
2888 	args.name = name;
2889 	args.size = keg->uk_size;
2890 	args.ctor = ctor;
2891 	args.dtor = dtor;
2892 	args.uminit = zinit;
2893 	args.fini = zfini;
2894 	args.align = keg->uk_align;
2895 	args.flags = keg->uk_flags | UMA_ZONE_SECONDARY;
2896 	args.keg = keg;
2897 
2898 	sx_slock(&uma_reclaim_lock);
2899 	res = zone_alloc_item(zones, &args, UMA_ANYDOMAIN, M_WAITOK);
2900 	sx_sunlock(&uma_reclaim_lock);
2901 
2902 	return (res);
2903 }
2904 
2905 /* See uma.h */
2906 uma_zone_t
2907 uma_zcache_create(char *name, int size, uma_ctor ctor, uma_dtor dtor,
2908 		    uma_init zinit, uma_fini zfini, uma_import zimport,
2909 		    uma_release zrelease, void *arg, int flags)
2910 {
2911 	struct uma_zctor_args args;
2912 
2913 	memset(&args, 0, sizeof(args));
2914 	args.name = name;
2915 	args.size = size;
2916 	args.ctor = ctor;
2917 	args.dtor = dtor;
2918 	args.uminit = zinit;
2919 	args.fini = zfini;
2920 	args.import = zimport;
2921 	args.release = zrelease;
2922 	args.arg = arg;
2923 	args.align = 0;
2924 	args.flags = flags | UMA_ZFLAG_CACHE;
2925 
2926 	return (zone_alloc_item(zones, &args, UMA_ANYDOMAIN, M_WAITOK));
2927 }
2928 
2929 /* See uma.h */
2930 void
2931 uma_zdestroy(uma_zone_t zone)
2932 {
2933 
2934 	/*
2935 	 * Large slabs are expensive to reclaim, so don't bother doing
2936 	 * unnecessary work if we're shutting down.
2937 	 */
2938 	if (booted == BOOT_SHUTDOWN &&
2939 	    zone->uz_fini == NULL && zone->uz_release == zone_release)
2940 		return;
2941 	sx_slock(&uma_reclaim_lock);
2942 	zone_free_item(zones, zone, NULL, SKIP_NONE);
2943 	sx_sunlock(&uma_reclaim_lock);
2944 }
2945 
2946 void
2947 uma_zwait(uma_zone_t zone)
2948 {
2949 	void *item;
2950 
2951 	item = uma_zalloc_arg(zone, NULL, M_WAITOK);
2952 	uma_zfree(zone, item);
2953 }
2954 
2955 void *
2956 uma_zalloc_pcpu_arg(uma_zone_t zone, void *udata, int flags)
2957 {
2958 	void *item;
2959 #ifdef SMP
2960 	int i;
2961 
2962 	MPASS(zone->uz_flags & UMA_ZONE_PCPU);
2963 #endif
2964 	item = uma_zalloc_arg(zone, udata, flags & ~M_ZERO);
2965 	if (item != NULL && (flags & M_ZERO)) {
2966 #ifdef SMP
2967 		for (i = 0; i <= mp_maxid; i++)
2968 			bzero(zpcpu_get_cpu(item, i), zone->uz_size);
2969 #else
2970 		bzero(item, zone->uz_size);
2971 #endif
2972 	}
2973 	return (item);
2974 }
2975 
2976 /*
2977  * A stub while both regular and pcpu cases are identical.
2978  */
2979 void
2980 uma_zfree_pcpu_arg(uma_zone_t zone, void *item, void *udata)
2981 {
2982 
2983 #ifdef SMP
2984 	MPASS(zone->uz_flags & UMA_ZONE_PCPU);
2985 #endif
2986 	uma_zfree_arg(zone, item, udata);
2987 }
2988 
2989 static inline void *
2990 item_ctor(uma_zone_t zone, int uz_flags, int size, void *udata, int flags,
2991     void *item)
2992 {
2993 #ifdef INVARIANTS
2994 	bool skipdbg;
2995 
2996 	skipdbg = uma_dbg_zskip(zone, item);
2997 	if (!skipdbg && (zone->uz_flags & UMA_ZFLAG_TRASH) != 0 &&
2998 	    zone->uz_ctor != trash_ctor)
2999 		trash_ctor(item, size, udata, flags);
3000 #endif
3001 	/* Check flags before loading ctor pointer. */
3002 	if (__predict_false((uz_flags & UMA_ZFLAG_CTORDTOR) != 0) &&
3003 	    __predict_false(zone->uz_ctor != NULL) &&
3004 	    zone->uz_ctor(item, size, udata, flags) != 0) {
3005 		counter_u64_add(zone->uz_fails, 1);
3006 		zone_free_item(zone, item, udata, SKIP_DTOR | SKIP_CNT);
3007 		return (NULL);
3008 	}
3009 #ifdef INVARIANTS
3010 	if (!skipdbg)
3011 		uma_dbg_alloc(zone, NULL, item);
3012 #endif
3013 	if (flags & M_ZERO)
3014 		bzero(item, size);
3015 
3016 	return (item);
3017 }
3018 
3019 static inline void
3020 item_dtor(uma_zone_t zone, void *item, int size, void *udata,
3021     enum zfreeskip skip)
3022 {
3023 #ifdef INVARIANTS
3024 	bool skipdbg;
3025 
3026 	skipdbg = uma_dbg_zskip(zone, item);
3027 	if (skip == SKIP_NONE && !skipdbg) {
3028 		if ((zone->uz_flags & UMA_ZONE_MALLOC) != 0)
3029 			uma_dbg_free(zone, udata, item);
3030 		else
3031 			uma_dbg_free(zone, NULL, item);
3032 	}
3033 #endif
3034 	if (__predict_true(skip < SKIP_DTOR)) {
3035 		if (zone->uz_dtor != NULL)
3036 			zone->uz_dtor(item, size, udata);
3037 #ifdef INVARIANTS
3038 		if (!skipdbg && (zone->uz_flags & UMA_ZFLAG_TRASH) != 0 &&
3039 		    zone->uz_dtor != trash_dtor)
3040 			trash_dtor(item, size, udata);
3041 #endif
3042 	}
3043 }
3044 
3045 #if defined(INVARIANTS) || defined(DEBUG_MEMGUARD) || defined(WITNESS)
3046 #define	UMA_ZALLOC_DEBUG
3047 static int
3048 uma_zalloc_debug(uma_zone_t zone, void **itemp, void *udata, int flags)
3049 {
3050 	int error;
3051 
3052 	error = 0;
3053 #ifdef WITNESS
3054 	if (flags & M_WAITOK) {
3055 		WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
3056 		    "uma_zalloc_debug: zone \"%s\"", zone->uz_name);
3057 	}
3058 #endif
3059 
3060 #ifdef INVARIANTS
3061 	KASSERT((flags & M_EXEC) == 0,
3062 	    ("uma_zalloc_debug: called with M_EXEC"));
3063 	KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(),
3064 	    ("uma_zalloc_debug: called within spinlock or critical section"));
3065 	KASSERT((zone->uz_flags & UMA_ZONE_PCPU) == 0 || (flags & M_ZERO) == 0,
3066 	    ("uma_zalloc_debug: allocating from a pcpu zone with M_ZERO"));
3067 #endif
3068 
3069 #ifdef DEBUG_MEMGUARD
3070 	if ((zone->uz_flags & UMA_ZONE_SMR) == 0 && memguard_cmp_zone(zone)) {
3071 		void *item;
3072 		item = memguard_alloc(zone->uz_size, flags);
3073 		if (item != NULL) {
3074 			error = EJUSTRETURN;
3075 			if (zone->uz_init != NULL &&
3076 			    zone->uz_init(item, zone->uz_size, flags) != 0) {
3077 				*itemp = NULL;
3078 				return (error);
3079 			}
3080 			if (zone->uz_ctor != NULL &&
3081 			    zone->uz_ctor(item, zone->uz_size, udata,
3082 			    flags) != 0) {
3083 				counter_u64_add(zone->uz_fails, 1);
3084 			    	zone->uz_fini(item, zone->uz_size);
3085 				*itemp = NULL;
3086 				return (error);
3087 			}
3088 			*itemp = item;
3089 			return (error);
3090 		}
3091 		/* This is unfortunate but should not be fatal. */
3092 	}
3093 #endif
3094 	return (error);
3095 }
3096 
3097 static int
3098 uma_zfree_debug(uma_zone_t zone, void *item, void *udata)
3099 {
3100 	KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(),
3101 	    ("uma_zfree_debug: called with spinlock or critical section held"));
3102 
3103 #ifdef DEBUG_MEMGUARD
3104 	if ((zone->uz_flags & UMA_ZONE_SMR) == 0 && is_memguard_addr(item)) {
3105 		if (zone->uz_dtor != NULL)
3106 			zone->uz_dtor(item, zone->uz_size, udata);
3107 		if (zone->uz_fini != NULL)
3108 			zone->uz_fini(item, zone->uz_size);
3109 		memguard_free(item);
3110 		return (EJUSTRETURN);
3111 	}
3112 #endif
3113 	return (0);
3114 }
3115 #endif
3116 
3117 static __noinline void *
3118 uma_zalloc_single(uma_zone_t zone, void *udata, int flags)
3119 {
3120 	int domain;
3121 
3122 	/*
3123 	 * We can not get a bucket so try to return a single item.
3124 	 */
3125 	if (zone->uz_flags & UMA_ZONE_FIRSTTOUCH)
3126 		domain = PCPU_GET(domain);
3127 	else
3128 		domain = UMA_ANYDOMAIN;
3129 	return (zone_alloc_item(zone, udata, domain, flags));
3130 }
3131 
3132 /* See uma.h */
3133 void *
3134 uma_zalloc_smr(uma_zone_t zone, int flags)
3135 {
3136 	uma_cache_bucket_t bucket;
3137 	uma_cache_t cache;
3138 	void *item;
3139 	int size, uz_flags;
3140 
3141 #ifdef UMA_ZALLOC_DEBUG
3142 	KASSERT((zone->uz_flags & UMA_ZONE_SMR) != 0,
3143 	    ("uma_zalloc_arg: called with non-SMR zone.\n"));
3144 	if (uma_zalloc_debug(zone, &item, NULL, flags) == EJUSTRETURN)
3145 		return (item);
3146 #endif
3147 
3148 	critical_enter();
3149 	do {
3150 		cache = &zone->uz_cpu[curcpu];
3151 		bucket = &cache->uc_allocbucket;
3152 		size = cache_uz_size(cache);
3153 		uz_flags = cache_uz_flags(cache);
3154 		if (__predict_true(bucket->ucb_cnt != 0)) {
3155 			item = cache_bucket_pop(cache, bucket);
3156 			critical_exit();
3157 			return (item_ctor(zone, uz_flags, size, NULL, flags,
3158 			    item));
3159 		}
3160 	} while (cache_alloc(zone, cache, NULL, flags));
3161 	critical_exit();
3162 
3163 	return (uma_zalloc_single(zone, NULL, flags));
3164 }
3165 
3166 /* See uma.h */
3167 void *
3168 uma_zalloc_arg(uma_zone_t zone, void *udata, int flags)
3169 {
3170 	uma_cache_bucket_t bucket;
3171 	uma_cache_t cache;
3172 	void *item;
3173 	int size, uz_flags;
3174 
3175 	/* Enable entropy collection for RANDOM_ENABLE_UMA kernel option */
3176 	random_harvest_fast_uma(&zone, sizeof(zone), RANDOM_UMA);
3177 
3178 	/* This is the fast path allocation */
3179 	CTR3(KTR_UMA, "uma_zalloc_arg zone %s(%p) flags %d", zone->uz_name,
3180 	    zone, flags);
3181 
3182 #ifdef UMA_ZALLOC_DEBUG
3183 	KASSERT((zone->uz_flags & UMA_ZONE_SMR) == 0,
3184 	    ("uma_zalloc_arg: called with SMR zone.\n"));
3185 	if (uma_zalloc_debug(zone, &item, udata, flags) == EJUSTRETURN)
3186 		return (item);
3187 #endif
3188 
3189 	/*
3190 	 * If possible, allocate from the per-CPU cache.  There are two
3191 	 * requirements for safe access to the per-CPU cache: (1) the thread
3192 	 * accessing the cache must not be preempted or yield during access,
3193 	 * and (2) the thread must not migrate CPUs without switching which
3194 	 * cache it accesses.  We rely on a critical section to prevent
3195 	 * preemption and migration.  We release the critical section in
3196 	 * order to acquire the zone mutex if we are unable to allocate from
3197 	 * the current cache; when we re-acquire the critical section, we
3198 	 * must detect and handle migration if it has occurred.
3199 	 */
3200 	critical_enter();
3201 	do {
3202 		cache = &zone->uz_cpu[curcpu];
3203 		bucket = &cache->uc_allocbucket;
3204 		size = cache_uz_size(cache);
3205 		uz_flags = cache_uz_flags(cache);
3206 		if (__predict_true(bucket->ucb_cnt != 0)) {
3207 			item = cache_bucket_pop(cache, bucket);
3208 			critical_exit();
3209 			return (item_ctor(zone, uz_flags, size, udata, flags,
3210 			    item));
3211 		}
3212 	} while (cache_alloc(zone, cache, udata, flags));
3213 	critical_exit();
3214 
3215 	return (uma_zalloc_single(zone, udata, flags));
3216 }
3217 
3218 /*
3219  * Replenish an alloc bucket and possibly restore an old one.  Called in
3220  * a critical section.  Returns in a critical section.
3221  *
3222  * A false return value indicates an allocation failure.
3223  * A true return value indicates success and the caller should retry.
3224  */
3225 static __noinline bool
3226 cache_alloc(uma_zone_t zone, uma_cache_t cache, void *udata, int flags)
3227 {
3228 	uma_zone_domain_t zdom;
3229 	uma_bucket_t bucket;
3230 	int domain;
3231 	bool lockfail;
3232 
3233 	CRITICAL_ASSERT(curthread);
3234 
3235 	/*
3236 	 * If we have run out of items in our alloc bucket see
3237 	 * if we can switch with the free bucket.
3238 	 *
3239 	 * SMR Zones can't re-use the free bucket until the sequence has
3240 	 * expired.
3241 	 */
3242 	if ((zone->uz_flags & UMA_ZONE_SMR) == 0 &&
3243 	    cache->uc_freebucket.ucb_cnt != 0) {
3244 		cache_bucket_swap(&cache->uc_freebucket,
3245 		    &cache->uc_allocbucket);
3246 		return (true);
3247 	}
3248 
3249 	/*
3250 	 * Discard any empty allocation bucket while we hold no locks.
3251 	 */
3252 	bucket = cache_bucket_unload_alloc(cache);
3253 	critical_exit();
3254 	if (bucket != NULL)
3255 		bucket_free(zone, bucket, udata);
3256 
3257 	/* Short-circuit for zones without buckets and low memory. */
3258 	if (zone->uz_bucket_size == 0 || bucketdisable) {
3259 		critical_enter();
3260 		return (false);
3261 	}
3262 
3263 	/*
3264 	 * Attempt to retrieve the item from the per-CPU cache has failed, so
3265 	 * we must go back to the zone.  This requires the zone lock, so we
3266 	 * must drop the critical section, then re-acquire it when we go back
3267 	 * to the cache.  Since the critical section is released, we may be
3268 	 * preempted or migrate.  As such, make sure not to maintain any
3269 	 * thread-local state specific to the cache from prior to releasing
3270 	 * the critical section.
3271 	 */
3272 	lockfail = 0;
3273 	if (ZONE_TRYLOCK(zone) == 0) {
3274 		/* Record contention to size the buckets. */
3275 		ZONE_LOCK(zone);
3276 		lockfail = 1;
3277 	}
3278 
3279 	/* See if we lost the race to fill the cache. */
3280 	critical_enter();
3281 	cache = &zone->uz_cpu[curcpu];
3282 	if (cache->uc_allocbucket.ucb_bucket != NULL) {
3283 		ZONE_UNLOCK(zone);
3284 		return (true);
3285 	}
3286 
3287 	/*
3288 	 * Check the zone's cache of buckets.
3289 	 */
3290 	if (zone->uz_flags & UMA_ZONE_FIRSTTOUCH) {
3291 		domain = PCPU_GET(domain);
3292 		zdom = &zone->uz_domain[domain];
3293 	} else {
3294 		domain = UMA_ANYDOMAIN;
3295 		zdom = &zone->uz_domain[0];
3296 	}
3297 
3298 	if ((bucket = zone_fetch_bucket(zone, zdom)) != NULL) {
3299 		KASSERT(bucket->ub_cnt != 0,
3300 		    ("uma_zalloc_arg: Returning an empty bucket."));
3301 		cache_bucket_load_alloc(cache, bucket);
3302 		return (true);
3303 	}
3304 	/* We are no longer associated with this CPU. */
3305 	critical_exit();
3306 
3307 	/*
3308 	 * We bump the uz count when the cache size is insufficient to
3309 	 * handle the working set.
3310 	 */
3311 	if (lockfail && zone->uz_bucket_size < zone->uz_bucket_size_max)
3312 		zone->uz_bucket_size++;
3313 	ZONE_UNLOCK(zone);
3314 
3315 	/*
3316 	 * Fill a bucket and attempt to use it as the alloc bucket.
3317 	 */
3318 	bucket = zone_alloc_bucket(zone, udata, domain, flags);
3319 	CTR3(KTR_UMA, "uma_zalloc: zone %s(%p) bucket zone returned %p",
3320 	    zone->uz_name, zone, bucket);
3321 	if (bucket == NULL) {
3322 		critical_enter();
3323 		return (false);
3324 	}
3325 
3326 	/*
3327 	 * See if we lost the race or were migrated.  Cache the
3328 	 * initialized bucket to make this less likely or claim
3329 	 * the memory directly.
3330 	 */
3331 	ZONE_LOCK(zone);
3332 	critical_enter();
3333 	cache = &zone->uz_cpu[curcpu];
3334 	if (cache->uc_allocbucket.ucb_bucket == NULL &&
3335 	    ((zone->uz_flags & UMA_ZONE_FIRSTTOUCH) == 0 ||
3336 	    domain == PCPU_GET(domain))) {
3337 		cache_bucket_load_alloc(cache, bucket);
3338 		zdom->uzd_imax += bucket->ub_cnt;
3339 	} else if (zone->uz_bkt_count >= zone->uz_bkt_max) {
3340 		critical_exit();
3341 		ZONE_UNLOCK(zone);
3342 		bucket_drain(zone, bucket);
3343 		bucket_free(zone, bucket, udata);
3344 		critical_enter();
3345 		return (true);
3346 	} else
3347 		zone_put_bucket(zone, zdom, bucket, false);
3348 	ZONE_UNLOCK(zone);
3349 	return (true);
3350 }
3351 
3352 void *
3353 uma_zalloc_domain(uma_zone_t zone, void *udata, int domain, int flags)
3354 {
3355 
3356 	/* Enable entropy collection for RANDOM_ENABLE_UMA kernel option */
3357 	random_harvest_fast_uma(&zone, sizeof(zone), RANDOM_UMA);
3358 
3359 	/* This is the fast path allocation */
3360 	CTR4(KTR_UMA, "uma_zalloc_domain zone %s(%p) domain %d flags %d",
3361 	    zone->uz_name, zone, domain, flags);
3362 
3363 	if (flags & M_WAITOK) {
3364 		WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
3365 		    "uma_zalloc_domain: zone \"%s\"", zone->uz_name);
3366 	}
3367 	KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(),
3368 	    ("uma_zalloc_domain: called with spinlock or critical section held"));
3369 
3370 	return (zone_alloc_item(zone, udata, domain, flags));
3371 }
3372 
3373 /*
3374  * Find a slab with some space.  Prefer slabs that are partially used over those
3375  * that are totally full.  This helps to reduce fragmentation.
3376  *
3377  * If 'rr' is 1, search all domains starting from 'domain'.  Otherwise check
3378  * only 'domain'.
3379  */
3380 static uma_slab_t
3381 keg_first_slab(uma_keg_t keg, int domain, bool rr)
3382 {
3383 	uma_domain_t dom;
3384 	uma_slab_t slab;
3385 	int start;
3386 
3387 	KASSERT(domain >= 0 && domain < vm_ndomains,
3388 	    ("keg_first_slab: domain %d out of range", domain));
3389 	KEG_LOCK_ASSERT(keg, domain);
3390 
3391 	slab = NULL;
3392 	start = domain;
3393 	do {
3394 		dom = &keg->uk_domain[domain];
3395 		if (!LIST_EMPTY(&dom->ud_part_slab))
3396 			return (LIST_FIRST(&dom->ud_part_slab));
3397 		if (!LIST_EMPTY(&dom->ud_free_slab)) {
3398 			slab = LIST_FIRST(&dom->ud_free_slab);
3399 			LIST_REMOVE(slab, us_link);
3400 			LIST_INSERT_HEAD(&dom->ud_part_slab, slab, us_link);
3401 			return (slab);
3402 		}
3403 		if (rr)
3404 			domain = (domain + 1) % vm_ndomains;
3405 	} while (domain != start);
3406 
3407 	return (NULL);
3408 }
3409 
3410 /*
3411  * Fetch an existing slab from a free or partial list.  Returns with the
3412  * keg domain lock held if a slab was found or unlocked if not.
3413  */
3414 static uma_slab_t
3415 keg_fetch_free_slab(uma_keg_t keg, int domain, bool rr, int flags)
3416 {
3417 	uma_slab_t slab;
3418 	uint32_t reserve;
3419 
3420 	/* HASH has a single free list. */
3421 	if ((keg->uk_flags & UMA_ZFLAG_HASH) != 0)
3422 		domain = 0;
3423 
3424 	KEG_LOCK(keg, domain);
3425 	reserve = (flags & M_USE_RESERVE) != 0 ? 0 : keg->uk_reserve;
3426 	if (keg->uk_domain[domain].ud_free <= reserve ||
3427 	    (slab = keg_first_slab(keg, domain, rr)) == NULL) {
3428 		KEG_UNLOCK(keg, domain);
3429 		return (NULL);
3430 	}
3431 	return (slab);
3432 }
3433 
3434 static uma_slab_t
3435 keg_fetch_slab(uma_keg_t keg, uma_zone_t zone, int rdomain, const int flags)
3436 {
3437 	struct vm_domainset_iter di;
3438 	uma_slab_t slab;
3439 	int aflags, domain;
3440 	bool rr;
3441 
3442 restart:
3443 	/*
3444 	 * Use the keg's policy if upper layers haven't already specified a
3445 	 * domain (as happens with first-touch zones).
3446 	 *
3447 	 * To avoid races we run the iterator with the keg lock held, but that
3448 	 * means that we cannot allow the vm_domainset layer to sleep.  Thus,
3449 	 * clear M_WAITOK and handle low memory conditions locally.
3450 	 */
3451 	rr = rdomain == UMA_ANYDOMAIN;
3452 	if (rr) {
3453 		aflags = (flags & ~M_WAITOK) | M_NOWAIT;
3454 		vm_domainset_iter_policy_ref_init(&di, &keg->uk_dr, &domain,
3455 		    &aflags);
3456 	} else {
3457 		aflags = flags;
3458 		domain = rdomain;
3459 	}
3460 
3461 	for (;;) {
3462 		slab = keg_fetch_free_slab(keg, domain, rr, flags);
3463 		if (slab != NULL)
3464 			return (slab);
3465 
3466 		/*
3467 		 * M_NOVM means don't ask at all!
3468 		 */
3469 		if (flags & M_NOVM)
3470 			break;
3471 
3472 		slab = keg_alloc_slab(keg, zone, domain, flags, aflags);
3473 		if (slab != NULL)
3474 			return (slab);
3475 		if (!rr && (flags & M_WAITOK) == 0)
3476 			break;
3477 		if (rr && vm_domainset_iter_policy(&di, &domain) != 0) {
3478 			if ((flags & M_WAITOK) != 0) {
3479 				vm_wait_doms(&keg->uk_dr.dr_policy->ds_mask);
3480 				goto restart;
3481 			}
3482 			break;
3483 		}
3484 	}
3485 
3486 	/*
3487 	 * We might not have been able to get a slab but another cpu
3488 	 * could have while we were unlocked.  Check again before we
3489 	 * fail.
3490 	 */
3491 	if ((slab = keg_fetch_free_slab(keg, domain, rr, flags)) != NULL)
3492 		return (slab);
3493 
3494 	return (NULL);
3495 }
3496 
3497 static void *
3498 slab_alloc_item(uma_keg_t keg, uma_slab_t slab)
3499 {
3500 	uma_domain_t dom;
3501 	void *item;
3502 	int freei;
3503 
3504 	KEG_LOCK_ASSERT(keg, slab->us_domain);
3505 
3506 	dom = &keg->uk_domain[slab->us_domain];
3507 	freei = BIT_FFS(keg->uk_ipers, &slab->us_free) - 1;
3508 	BIT_CLR(keg->uk_ipers, freei, &slab->us_free);
3509 	item = slab_item(slab, keg, freei);
3510 	slab->us_freecount--;
3511 	dom->ud_free--;
3512 
3513 	/* Move this slab to the full list */
3514 	if (slab->us_freecount == 0) {
3515 		LIST_REMOVE(slab, us_link);
3516 		LIST_INSERT_HEAD(&dom->ud_full_slab, slab, us_link);
3517 	}
3518 
3519 	return (item);
3520 }
3521 
3522 static int
3523 zone_import(void *arg, void **bucket, int max, int domain, int flags)
3524 {
3525 	uma_domain_t dom;
3526 	uma_zone_t zone;
3527 	uma_slab_t slab;
3528 	uma_keg_t keg;
3529 #ifdef NUMA
3530 	int stripe;
3531 #endif
3532 	int i;
3533 
3534 	zone = arg;
3535 	slab = NULL;
3536 	keg = zone->uz_keg;
3537 	/* Try to keep the buckets totally full */
3538 	for (i = 0; i < max; ) {
3539 		if ((slab = keg_fetch_slab(keg, zone, domain, flags)) == NULL)
3540 			break;
3541 #ifdef NUMA
3542 		stripe = howmany(max, vm_ndomains);
3543 #endif
3544 		dom = &keg->uk_domain[slab->us_domain];
3545 		while (slab->us_freecount && i < max) {
3546 			bucket[i++] = slab_alloc_item(keg, slab);
3547 			if (dom->ud_free <= keg->uk_reserve)
3548 				break;
3549 #ifdef NUMA
3550 			/*
3551 			 * If the zone is striped we pick a new slab for every
3552 			 * N allocations.  Eliminating this conditional will
3553 			 * instead pick a new domain for each bucket rather
3554 			 * than stripe within each bucket.  The current option
3555 			 * produces more fragmentation and requires more cpu
3556 			 * time but yields better distribution.
3557 			 */
3558 			if ((zone->uz_flags & UMA_ZONE_ROUNDROBIN) != 0 &&
3559 			    vm_ndomains > 1 && --stripe == 0)
3560 				break;
3561 #endif
3562 		}
3563 		KEG_UNLOCK(keg, slab->us_domain);
3564 		/* Don't block if we allocated any successfully. */
3565 		flags &= ~M_WAITOK;
3566 		flags |= M_NOWAIT;
3567 	}
3568 
3569 	return i;
3570 }
3571 
3572 static int
3573 zone_alloc_limit_hard(uma_zone_t zone, int count, int flags)
3574 {
3575 	uint64_t old, new, total, max;
3576 
3577 	/*
3578 	 * The hard case.  We're going to sleep because there were existing
3579 	 * sleepers or because we ran out of items.  This routine enforces
3580 	 * fairness by keeping fifo order.
3581 	 *
3582 	 * First release our ill gotten gains and make some noise.
3583 	 */
3584 	for (;;) {
3585 		zone_free_limit(zone, count);
3586 		zone_log_warning(zone);
3587 		zone_maxaction(zone);
3588 		if (flags & M_NOWAIT)
3589 			return (0);
3590 
3591 		/*
3592 		 * We need to allocate an item or set ourself as a sleeper
3593 		 * while the sleepq lock is held to avoid wakeup races.  This
3594 		 * is essentially a home rolled semaphore.
3595 		 */
3596 		sleepq_lock(&zone->uz_max_items);
3597 		old = zone->uz_items;
3598 		do {
3599 			MPASS(UZ_ITEMS_SLEEPERS(old) < UZ_ITEMS_SLEEPERS_MAX);
3600 			/* Cache the max since we will evaluate twice. */
3601 			max = zone->uz_max_items;
3602 			if (UZ_ITEMS_SLEEPERS(old) != 0 ||
3603 			    UZ_ITEMS_COUNT(old) >= max)
3604 				new = old + UZ_ITEMS_SLEEPER;
3605 			else
3606 				new = old + MIN(count, max - old);
3607 		} while (atomic_fcmpset_64(&zone->uz_items, &old, new) == 0);
3608 
3609 		/* We may have successfully allocated under the sleepq lock. */
3610 		if (UZ_ITEMS_SLEEPERS(new) == 0) {
3611 			sleepq_release(&zone->uz_max_items);
3612 			return (new - old);
3613 		}
3614 
3615 		/*
3616 		 * This is in a different cacheline from uz_items so that we
3617 		 * don't constantly invalidate the fastpath cacheline when we
3618 		 * adjust item counts.  This could be limited to toggling on
3619 		 * transitions.
3620 		 */
3621 		atomic_add_32(&zone->uz_sleepers, 1);
3622 		atomic_add_64(&zone->uz_sleeps, 1);
3623 
3624 		/*
3625 		 * We have added ourselves as a sleeper.  The sleepq lock
3626 		 * protects us from wakeup races.  Sleep now and then retry.
3627 		 */
3628 		sleepq_add(&zone->uz_max_items, NULL, "zonelimit", 0, 0);
3629 		sleepq_wait(&zone->uz_max_items, PVM);
3630 
3631 		/*
3632 		 * After wakeup, remove ourselves as a sleeper and try
3633 		 * again.  We no longer have the sleepq lock for protection.
3634 		 *
3635 		 * Subract ourselves as a sleeper while attempting to add
3636 		 * our count.
3637 		 */
3638 		atomic_subtract_32(&zone->uz_sleepers, 1);
3639 		old = atomic_fetchadd_64(&zone->uz_items,
3640 		    -(UZ_ITEMS_SLEEPER - count));
3641 		/* We're no longer a sleeper. */
3642 		old -= UZ_ITEMS_SLEEPER;
3643 
3644 		/*
3645 		 * If we're still at the limit, restart.  Notably do not
3646 		 * block on other sleepers.  Cache the max value to protect
3647 		 * against changes via sysctl.
3648 		 */
3649 		total = UZ_ITEMS_COUNT(old);
3650 		max = zone->uz_max_items;
3651 		if (total >= max)
3652 			continue;
3653 		/* Truncate if necessary, otherwise wake other sleepers. */
3654 		if (total + count > max) {
3655 			zone_free_limit(zone, total + count - max);
3656 			count = max - total;
3657 		} else if (total + count < max && UZ_ITEMS_SLEEPERS(old) != 0)
3658 			wakeup_one(&zone->uz_max_items);
3659 
3660 		return (count);
3661 	}
3662 }
3663 
3664 /*
3665  * Allocate 'count' items from our max_items limit.  Returns the number
3666  * available.  If M_NOWAIT is not specified it will sleep until at least
3667  * one item can be allocated.
3668  */
3669 static int
3670 zone_alloc_limit(uma_zone_t zone, int count, int flags)
3671 {
3672 	uint64_t old;
3673 	uint64_t max;
3674 
3675 	max = zone->uz_max_items;
3676 	MPASS(max > 0);
3677 
3678 	/*
3679 	 * We expect normal allocations to succeed with a simple
3680 	 * fetchadd.
3681 	 */
3682 	old = atomic_fetchadd_64(&zone->uz_items, count);
3683 	if (__predict_true(old + count <= max))
3684 		return (count);
3685 
3686 	/*
3687 	 * If we had some items and no sleepers just return the
3688 	 * truncated value.  We have to release the excess space
3689 	 * though because that may wake sleepers who weren't woken
3690 	 * because we were temporarily over the limit.
3691 	 */
3692 	if (old < max) {
3693 		zone_free_limit(zone, (old + count) - max);
3694 		return (max - old);
3695 	}
3696 	return (zone_alloc_limit_hard(zone, count, flags));
3697 }
3698 
3699 /*
3700  * Free a number of items back to the limit.
3701  */
3702 static void
3703 zone_free_limit(uma_zone_t zone, int count)
3704 {
3705 	uint64_t old;
3706 
3707 	MPASS(count > 0);
3708 
3709 	/*
3710 	 * In the common case we either have no sleepers or
3711 	 * are still over the limit and can just return.
3712 	 */
3713 	old = atomic_fetchadd_64(&zone->uz_items, -count);
3714 	if (__predict_true(UZ_ITEMS_SLEEPERS(old) == 0 ||
3715 	   UZ_ITEMS_COUNT(old) - count >= zone->uz_max_items))
3716 		return;
3717 
3718 	/*
3719 	 * Moderate the rate of wakeups.  Sleepers will continue
3720 	 * to generate wakeups if necessary.
3721 	 */
3722 	wakeup_one(&zone->uz_max_items);
3723 }
3724 
3725 static uma_bucket_t
3726 zone_alloc_bucket(uma_zone_t zone, void *udata, int domain, int flags)
3727 {
3728 	uma_bucket_t bucket;
3729 	int maxbucket, cnt;
3730 
3731 	CTR3(KTR_UMA, "zone_alloc_bucket zone %s(%p) domain %d", zone->uz_name,
3732 	    zone, domain);
3733 
3734 	/* Avoid allocs targeting empty domains. */
3735 	if (domain != UMA_ANYDOMAIN && VM_DOMAIN_EMPTY(domain))
3736 		domain = UMA_ANYDOMAIN;
3737 
3738 	if (zone->uz_max_items > 0)
3739 		maxbucket = zone_alloc_limit(zone, zone->uz_bucket_size,
3740 		    M_NOWAIT);
3741 	else
3742 		maxbucket = zone->uz_bucket_size;
3743 	if (maxbucket == 0)
3744 		return (false);
3745 
3746 	/* Don't wait for buckets, preserve caller's NOVM setting. */
3747 	bucket = bucket_alloc(zone, udata, M_NOWAIT | (flags & M_NOVM));
3748 	if (bucket == NULL) {
3749 		cnt = 0;
3750 		goto out;
3751 	}
3752 
3753 	bucket->ub_cnt = zone->uz_import(zone->uz_arg, bucket->ub_bucket,
3754 	    MIN(maxbucket, bucket->ub_entries), domain, flags);
3755 
3756 	/*
3757 	 * Initialize the memory if necessary.
3758 	 */
3759 	if (bucket->ub_cnt != 0 && zone->uz_init != NULL) {
3760 		int i;
3761 
3762 		for (i = 0; i < bucket->ub_cnt; i++)
3763 			if (zone->uz_init(bucket->ub_bucket[i], zone->uz_size,
3764 			    flags) != 0)
3765 				break;
3766 		/*
3767 		 * If we couldn't initialize the whole bucket, put the
3768 		 * rest back onto the freelist.
3769 		 */
3770 		if (i != bucket->ub_cnt) {
3771 			zone->uz_release(zone->uz_arg, &bucket->ub_bucket[i],
3772 			    bucket->ub_cnt - i);
3773 #ifdef INVARIANTS
3774 			bzero(&bucket->ub_bucket[i],
3775 			    sizeof(void *) * (bucket->ub_cnt - i));
3776 #endif
3777 			bucket->ub_cnt = i;
3778 		}
3779 	}
3780 
3781 	cnt = bucket->ub_cnt;
3782 	if (bucket->ub_cnt == 0) {
3783 		bucket_free(zone, bucket, udata);
3784 		counter_u64_add(zone->uz_fails, 1);
3785 		bucket = NULL;
3786 	}
3787 out:
3788 	if (zone->uz_max_items > 0 && cnt < maxbucket)
3789 		zone_free_limit(zone, maxbucket - cnt);
3790 
3791 	return (bucket);
3792 }
3793 
3794 /*
3795  * Allocates a single item from a zone.
3796  *
3797  * Arguments
3798  *	zone   The zone to alloc for.
3799  *	udata  The data to be passed to the constructor.
3800  *	domain The domain to allocate from or UMA_ANYDOMAIN.
3801  *	flags  M_WAITOK, M_NOWAIT, M_ZERO.
3802  *
3803  * Returns
3804  *	NULL if there is no memory and M_NOWAIT is set
3805  *	An item if successful
3806  */
3807 
3808 static void *
3809 zone_alloc_item(uma_zone_t zone, void *udata, int domain, int flags)
3810 {
3811 	void *item;
3812 
3813 	if (zone->uz_max_items > 0 && zone_alloc_limit(zone, 1, flags) == 0)
3814 		return (NULL);
3815 
3816 	/* Avoid allocs targeting empty domains. */
3817 	if (domain != UMA_ANYDOMAIN && VM_DOMAIN_EMPTY(domain))
3818 		domain = UMA_ANYDOMAIN;
3819 
3820 	if (zone->uz_import(zone->uz_arg, &item, 1, domain, flags) != 1)
3821 		goto fail_cnt;
3822 
3823 	/*
3824 	 * We have to call both the zone's init (not the keg's init)
3825 	 * and the zone's ctor.  This is because the item is going from
3826 	 * a keg slab directly to the user, and the user is expecting it
3827 	 * to be both zone-init'd as well as zone-ctor'd.
3828 	 */
3829 	if (zone->uz_init != NULL) {
3830 		if (zone->uz_init(item, zone->uz_size, flags) != 0) {
3831 			zone_free_item(zone, item, udata, SKIP_FINI | SKIP_CNT);
3832 			goto fail_cnt;
3833 		}
3834 	}
3835 	item = item_ctor(zone, zone->uz_flags, zone->uz_size, udata, flags,
3836 	    item);
3837 	if (item == NULL)
3838 		goto fail;
3839 
3840 	counter_u64_add(zone->uz_allocs, 1);
3841 	CTR3(KTR_UMA, "zone_alloc_item item %p from %s(%p)", item,
3842 	    zone->uz_name, zone);
3843 
3844 	return (item);
3845 
3846 fail_cnt:
3847 	counter_u64_add(zone->uz_fails, 1);
3848 fail:
3849 	if (zone->uz_max_items > 0)
3850 		zone_free_limit(zone, 1);
3851 	CTR2(KTR_UMA, "zone_alloc_item failed from %s(%p)",
3852 	    zone->uz_name, zone);
3853 
3854 	return (NULL);
3855 }
3856 
3857 /* See uma.h */
3858 void
3859 uma_zfree_smr(uma_zone_t zone, void *item)
3860 {
3861 	uma_cache_t cache;
3862 	uma_cache_bucket_t bucket;
3863 	int domain, itemdomain, uz_flags;
3864 
3865 #ifdef UMA_ZALLOC_DEBUG
3866 	KASSERT((zone->uz_flags & UMA_ZONE_SMR) != 0,
3867 	    ("uma_zfree_smr: called with non-SMR zone.\n"));
3868 	KASSERT(item != NULL, ("uma_zfree_smr: Called with NULL pointer."));
3869 	if (uma_zfree_debug(zone, item, NULL) == EJUSTRETURN)
3870 		return;
3871 #endif
3872 	cache = &zone->uz_cpu[curcpu];
3873 	uz_flags = cache_uz_flags(cache);
3874 	domain = itemdomain = 0;
3875 #ifdef NUMA
3876 	if ((uz_flags & UMA_ZONE_FIRSTTOUCH) != 0)
3877 		itemdomain = _vm_phys_domain(pmap_kextract((vm_offset_t)item));
3878 #endif
3879 	critical_enter();
3880 	do {
3881 		cache = &zone->uz_cpu[curcpu];
3882 		/* SMR Zones must free to the free bucket. */
3883 		bucket = &cache->uc_freebucket;
3884 #ifdef NUMA
3885 		domain = PCPU_GET(domain);
3886 		if ((uz_flags & UMA_ZONE_FIRSTTOUCH) != 0 &&
3887 		    domain != itemdomain) {
3888 			bucket = &cache->uc_crossbucket;
3889 		}
3890 #endif
3891 		if (__predict_true(bucket->ucb_cnt < bucket->ucb_entries)) {
3892 			cache_bucket_push(cache, bucket, item);
3893 			critical_exit();
3894 			return;
3895 		}
3896 	} while (cache_free(zone, cache, NULL, item, itemdomain));
3897 	critical_exit();
3898 
3899 	/*
3900 	 * If nothing else caught this, we'll just do an internal free.
3901 	 */
3902 	zone_free_item(zone, item, NULL, SKIP_NONE);
3903 }
3904 
3905 /* See uma.h */
3906 void
3907 uma_zfree_arg(uma_zone_t zone, void *item, void *udata)
3908 {
3909 	uma_cache_t cache;
3910 	uma_cache_bucket_t bucket;
3911 	int domain, itemdomain, uz_flags;
3912 
3913 	/* Enable entropy collection for RANDOM_ENABLE_UMA kernel option */
3914 	random_harvest_fast_uma(&zone, sizeof(zone), RANDOM_UMA);
3915 
3916 	CTR2(KTR_UMA, "uma_zfree_arg zone %s(%p)", zone->uz_name, zone);
3917 
3918 #ifdef UMA_ZALLOC_DEBUG
3919 	KASSERT((zone->uz_flags & UMA_ZONE_SMR) == 0,
3920 	    ("uma_zfree_arg: called with SMR zone.\n"));
3921 	if (uma_zfree_debug(zone, item, udata) == EJUSTRETURN)
3922 		return;
3923 #endif
3924         /* uma_zfree(..., NULL) does nothing, to match free(9). */
3925         if (item == NULL)
3926                 return;
3927 
3928 	/*
3929 	 * We are accessing the per-cpu cache without a critical section to
3930 	 * fetch size and flags.  This is acceptable, if we are preempted we
3931 	 * will simply read another cpu's line.
3932 	 */
3933 	cache = &zone->uz_cpu[curcpu];
3934 	uz_flags = cache_uz_flags(cache);
3935 	if (UMA_ALWAYS_CTORDTOR ||
3936 	    __predict_false((uz_flags & UMA_ZFLAG_CTORDTOR) != 0))
3937 		item_dtor(zone, item, cache_uz_size(cache), udata, SKIP_NONE);
3938 
3939 	/*
3940 	 * The race here is acceptable.  If we miss it we'll just have to wait
3941 	 * a little longer for the limits to be reset.
3942 	 */
3943 	if (__predict_false(uz_flags & UMA_ZFLAG_LIMIT)) {
3944 		if (zone->uz_sleepers > 0)
3945 			goto zfree_item;
3946 	}
3947 
3948 	/*
3949 	 * If possible, free to the per-CPU cache.  There are two
3950 	 * requirements for safe access to the per-CPU cache: (1) the thread
3951 	 * accessing the cache must not be preempted or yield during access,
3952 	 * and (2) the thread must not migrate CPUs without switching which
3953 	 * cache it accesses.  We rely on a critical section to prevent
3954 	 * preemption and migration.  We release the critical section in
3955 	 * order to acquire the zone mutex if we are unable to free to the
3956 	 * current cache; when we re-acquire the critical section, we must
3957 	 * detect and handle migration if it has occurred.
3958 	 */
3959 	domain = itemdomain = 0;
3960 #ifdef NUMA
3961 	if ((uz_flags & UMA_ZONE_FIRSTTOUCH) != 0)
3962 		itemdomain = _vm_phys_domain(pmap_kextract((vm_offset_t)item));
3963 #endif
3964 	critical_enter();
3965 	do {
3966 		cache = &zone->uz_cpu[curcpu];
3967 		/*
3968 		 * Try to free into the allocbucket first to give LIFO
3969 		 * ordering for cache-hot datastructures.  Spill over
3970 		 * into the freebucket if necessary.  Alloc will swap
3971 		 * them if one runs dry.
3972 		 */
3973 		bucket = &cache->uc_allocbucket;
3974 #ifdef NUMA
3975 		domain = PCPU_GET(domain);
3976 		if ((uz_flags & UMA_ZONE_FIRSTTOUCH) != 0 &&
3977 		    domain != itemdomain) {
3978 			bucket = &cache->uc_crossbucket;
3979 		} else
3980 #endif
3981 		if (bucket->ucb_cnt >= bucket->ucb_entries)
3982 			bucket = &cache->uc_freebucket;
3983 		if (__predict_true(bucket->ucb_cnt < bucket->ucb_entries)) {
3984 			cache_bucket_push(cache, bucket, item);
3985 			critical_exit();
3986 			return;
3987 		}
3988 	} while (cache_free(zone, cache, udata, item, itemdomain));
3989 	critical_exit();
3990 
3991 	/*
3992 	 * If nothing else caught this, we'll just do an internal free.
3993 	 */
3994 zfree_item:
3995 	zone_free_item(zone, item, udata, SKIP_DTOR);
3996 }
3997 
3998 #ifdef NUMA
3999 /*
4000  * sort crossdomain free buckets to domain correct buckets and cache
4001  * them.
4002  */
4003 static void
4004 zone_free_cross(uma_zone_t zone, uma_bucket_t bucket, void *udata)
4005 {
4006 	struct uma_bucketlist fullbuckets;
4007 	uma_zone_domain_t zdom;
4008 	uma_bucket_t b;
4009 	void *item;
4010 	int domain;
4011 
4012 	CTR3(KTR_UMA,
4013 	    "uma_zfree: zone %s(%p) draining cross bucket %p",
4014 	    zone->uz_name, zone, bucket);
4015 
4016 	STAILQ_INIT(&fullbuckets);
4017 
4018 	/*
4019 	 * To avoid having ndomain * ndomain buckets for sorting we have a
4020 	 * lock on the current crossfree bucket.  A full matrix with
4021 	 * per-domain locking could be used if necessary.
4022 	 */
4023 	ZONE_CROSS_LOCK(zone);
4024 	while (bucket->ub_cnt > 0) {
4025 		item = bucket->ub_bucket[bucket->ub_cnt - 1];
4026 		domain = _vm_phys_domain(pmap_kextract((vm_offset_t)item));
4027 		zdom = &zone->uz_domain[domain];
4028 		if (zdom->uzd_cross == NULL) {
4029 			zdom->uzd_cross = bucket_alloc(zone, udata, M_NOWAIT);
4030 			if (zdom->uzd_cross == NULL)
4031 				break;
4032 		}
4033 		zdom->uzd_cross->ub_bucket[zdom->uzd_cross->ub_cnt++] = item;
4034 		if (zdom->uzd_cross->ub_cnt == zdom->uzd_cross->ub_entries) {
4035 			STAILQ_INSERT_HEAD(&fullbuckets, zdom->uzd_cross,
4036 			    ub_link);
4037 			zdom->uzd_cross = NULL;
4038 		}
4039 		bucket->ub_cnt--;
4040 	}
4041 	ZONE_CROSS_UNLOCK(zone);
4042 	if (!STAILQ_EMPTY(&fullbuckets)) {
4043 		ZONE_LOCK(zone);
4044 		while ((b = STAILQ_FIRST(&fullbuckets)) != NULL) {
4045 			if ((zone->uz_flags & UMA_ZONE_SMR) != 0)
4046 				bucket->ub_seq = smr_current(zone->uz_smr);
4047 			STAILQ_REMOVE_HEAD(&fullbuckets, ub_link);
4048 			if (zone->uz_bkt_count >= zone->uz_bkt_max) {
4049 				ZONE_UNLOCK(zone);
4050 				bucket_drain(zone, b);
4051 				bucket_free(zone, b, udata);
4052 				ZONE_LOCK(zone);
4053 			} else {
4054 				domain = _vm_phys_domain(
4055 				    pmap_kextract(
4056 				    (vm_offset_t)b->ub_bucket[0]));
4057 				zdom = &zone->uz_domain[domain];
4058 				zone_put_bucket(zone, zdom, b, true);
4059 			}
4060 		}
4061 		ZONE_UNLOCK(zone);
4062 	}
4063 	if (bucket->ub_cnt != 0)
4064 		bucket_drain(zone, bucket);
4065 	bucket->ub_seq = SMR_SEQ_INVALID;
4066 	bucket_free(zone, bucket, udata);
4067 }
4068 #endif
4069 
4070 static void
4071 zone_free_bucket(uma_zone_t zone, uma_bucket_t bucket, void *udata,
4072     int domain, int itemdomain)
4073 {
4074 	uma_zone_domain_t zdom;
4075 
4076 #ifdef NUMA
4077 	/*
4078 	 * Buckets coming from the wrong domain will be entirely for the
4079 	 * only other domain on two domain systems.  In this case we can
4080 	 * simply cache them.  Otherwise we need to sort them back to
4081 	 * correct domains.
4082 	 */
4083 	if (domain != itemdomain && vm_ndomains > 2) {
4084 		zone_free_cross(zone, bucket, udata);
4085 		return;
4086 	}
4087 #endif
4088 
4089 	/*
4090 	 * Attempt to save the bucket in the zone's domain bucket cache.
4091 	 *
4092 	 * We bump the uz count when the cache size is insufficient to
4093 	 * handle the working set.
4094 	 */
4095 	if (ZONE_TRYLOCK(zone) == 0) {
4096 		/* Record contention to size the buckets. */
4097 		ZONE_LOCK(zone);
4098 		if (zone->uz_bucket_size < zone->uz_bucket_size_max)
4099 			zone->uz_bucket_size++;
4100 	}
4101 
4102 	CTR3(KTR_UMA,
4103 	    "uma_zfree: zone %s(%p) putting bucket %p on free list",
4104 	    zone->uz_name, zone, bucket);
4105 	/* ub_cnt is pointing to the last free item */
4106 	KASSERT(bucket->ub_cnt == bucket->ub_entries,
4107 	    ("uma_zfree: Attempting to insert partial  bucket onto the full list.\n"));
4108 	if (zone->uz_bkt_count >= zone->uz_bkt_max) {
4109 		ZONE_UNLOCK(zone);
4110 		bucket_drain(zone, bucket);
4111 		bucket_free(zone, bucket, udata);
4112 	} else {
4113 		zdom = &zone->uz_domain[itemdomain];
4114 		zone_put_bucket(zone, zdom, bucket, true);
4115 		ZONE_UNLOCK(zone);
4116 	}
4117 }
4118 
4119 /*
4120  * Populate a free or cross bucket for the current cpu cache.  Free any
4121  * existing full bucket either to the zone cache or back to the slab layer.
4122  *
4123  * Enters and returns in a critical section.  false return indicates that
4124  * we can not satisfy this free in the cache layer.  true indicates that
4125  * the caller should retry.
4126  */
4127 static __noinline bool
4128 cache_free(uma_zone_t zone, uma_cache_t cache, void *udata, void *item,
4129     int itemdomain)
4130 {
4131 	uma_cache_bucket_t cbucket;
4132 	uma_bucket_t newbucket, bucket;
4133 	int domain;
4134 
4135 	CRITICAL_ASSERT(curthread);
4136 
4137 	if (zone->uz_bucket_size == 0)
4138 		return false;
4139 
4140 	cache = &zone->uz_cpu[curcpu];
4141 	newbucket = NULL;
4142 
4143 	/*
4144 	 * FIRSTTOUCH domains need to free to the correct zdom.  When
4145 	 * enabled this is the zdom of the item.   The bucket is the
4146 	 * cross bucket if the current domain and itemdomain do not match.
4147 	 */
4148 	cbucket = &cache->uc_freebucket;
4149 #ifdef NUMA
4150 	if ((zone->uz_flags & UMA_ZONE_FIRSTTOUCH) != 0) {
4151 		domain = PCPU_GET(domain);
4152 		if (domain != itemdomain) {
4153 			cbucket = &cache->uc_crossbucket;
4154 			if (cbucket->ucb_cnt != 0)
4155 				atomic_add_64(&zone->uz_xdomain,
4156 				    cbucket->ucb_cnt);
4157 		}
4158 	} else
4159 #endif
4160 		itemdomain = domain = 0;
4161 	bucket = cache_bucket_unload(cbucket);
4162 
4163 	/* We are no longer associated with this CPU. */
4164 	critical_exit();
4165 
4166 	/*
4167 	 * Don't let SMR zones operate without a free bucket.  Force
4168 	 * a synchronize and re-use this one.  We will only degrade
4169 	 * to a synchronize every bucket_size items rather than every
4170 	 * item if we fail to allocate a bucket.
4171 	 */
4172 	if ((zone->uz_flags & UMA_ZONE_SMR) != 0) {
4173 		if (bucket != NULL)
4174 			bucket->ub_seq = smr_advance(zone->uz_smr);
4175 		newbucket = bucket_alloc(zone, udata, M_NOWAIT);
4176 		if (newbucket == NULL && bucket != NULL) {
4177 			bucket_drain(zone, bucket);
4178 			newbucket = bucket;
4179 			bucket = NULL;
4180 		}
4181 	} else if (!bucketdisable)
4182 		newbucket = bucket_alloc(zone, udata, M_NOWAIT);
4183 
4184 	if (bucket != NULL)
4185 		zone_free_bucket(zone, bucket, udata, domain, itemdomain);
4186 
4187 	critical_enter();
4188 	if ((bucket = newbucket) == NULL)
4189 		return (false);
4190 	cache = &zone->uz_cpu[curcpu];
4191 #ifdef NUMA
4192 	/*
4193 	 * Check to see if we should be populating the cross bucket.  If it
4194 	 * is already populated we will fall through and attempt to populate
4195 	 * the free bucket.
4196 	 */
4197 	if ((zone->uz_flags & UMA_ZONE_FIRSTTOUCH) != 0) {
4198 		domain = PCPU_GET(domain);
4199 		if (domain != itemdomain &&
4200 		    cache->uc_crossbucket.ucb_bucket == NULL) {
4201 			cache_bucket_load_cross(cache, bucket);
4202 			return (true);
4203 		}
4204 	}
4205 #endif
4206 	/*
4207 	 * We may have lost the race to fill the bucket or switched CPUs.
4208 	 */
4209 	if (cache->uc_freebucket.ucb_bucket != NULL) {
4210 		critical_exit();
4211 		bucket_free(zone, bucket, udata);
4212 		critical_enter();
4213 	} else
4214 		cache_bucket_load_free(cache, bucket);
4215 
4216 	return (true);
4217 }
4218 
4219 void
4220 uma_zfree_domain(uma_zone_t zone, void *item, void *udata)
4221 {
4222 
4223 	/* Enable entropy collection for RANDOM_ENABLE_UMA kernel option */
4224 	random_harvest_fast_uma(&zone, sizeof(zone), RANDOM_UMA);
4225 
4226 	CTR2(KTR_UMA, "uma_zfree_domain zone %s(%p)", zone->uz_name, zone);
4227 
4228 	KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(),
4229 	    ("uma_zfree_domain: called with spinlock or critical section held"));
4230 
4231         /* uma_zfree(..., NULL) does nothing, to match free(9). */
4232         if (item == NULL)
4233                 return;
4234 	zone_free_item(zone, item, udata, SKIP_NONE);
4235 }
4236 
4237 static void
4238 slab_free_item(uma_zone_t zone, uma_slab_t slab, void *item)
4239 {
4240 	uma_keg_t keg;
4241 	uma_domain_t dom;
4242 	int freei;
4243 
4244 	keg = zone->uz_keg;
4245 	KEG_LOCK_ASSERT(keg, slab->us_domain);
4246 
4247 	/* Do we need to remove from any lists? */
4248 	dom = &keg->uk_domain[slab->us_domain];
4249 	if (slab->us_freecount+1 == keg->uk_ipers) {
4250 		LIST_REMOVE(slab, us_link);
4251 		LIST_INSERT_HEAD(&dom->ud_free_slab, slab, us_link);
4252 	} else if (slab->us_freecount == 0) {
4253 		LIST_REMOVE(slab, us_link);
4254 		LIST_INSERT_HEAD(&dom->ud_part_slab, slab, us_link);
4255 	}
4256 
4257 	/* Slab management. */
4258 	freei = slab_item_index(slab, keg, item);
4259 	BIT_SET(keg->uk_ipers, freei, &slab->us_free);
4260 	slab->us_freecount++;
4261 
4262 	/* Keg statistics. */
4263 	dom->ud_free++;
4264 }
4265 
4266 static void
4267 zone_release(void *arg, void **bucket, int cnt)
4268 {
4269 	struct mtx *lock;
4270 	uma_zone_t zone;
4271 	uma_slab_t slab;
4272 	uma_keg_t keg;
4273 	uint8_t *mem;
4274 	void *item;
4275 	int i;
4276 
4277 	zone = arg;
4278 	keg = zone->uz_keg;
4279 	lock = NULL;
4280 	if (__predict_false((zone->uz_flags & UMA_ZFLAG_HASH) != 0))
4281 		lock = KEG_LOCK(keg, 0);
4282 	for (i = 0; i < cnt; i++) {
4283 		item = bucket[i];
4284 		if (__predict_true((zone->uz_flags & UMA_ZFLAG_VTOSLAB) != 0)) {
4285 			slab = vtoslab((vm_offset_t)item);
4286 		} else {
4287 			mem = (uint8_t *)((uintptr_t)item & (~UMA_SLAB_MASK));
4288 			if ((zone->uz_flags & UMA_ZFLAG_HASH) != 0)
4289 				slab = hash_sfind(&keg->uk_hash, mem);
4290 			else
4291 				slab = (uma_slab_t)(mem + keg->uk_pgoff);
4292 		}
4293 		if (lock != KEG_LOCKPTR(keg, slab->us_domain)) {
4294 			if (lock != NULL)
4295 				mtx_unlock(lock);
4296 			lock = KEG_LOCK(keg, slab->us_domain);
4297 		}
4298 		slab_free_item(zone, slab, item);
4299 	}
4300 	if (lock != NULL)
4301 		mtx_unlock(lock);
4302 }
4303 
4304 /*
4305  * Frees a single item to any zone.
4306  *
4307  * Arguments:
4308  *	zone   The zone to free to
4309  *	item   The item we're freeing
4310  *	udata  User supplied data for the dtor
4311  *	skip   Skip dtors and finis
4312  */
4313 static void
4314 zone_free_item(uma_zone_t zone, void *item, void *udata, enum zfreeskip skip)
4315 {
4316 
4317 	/*
4318 	 * If a free is sent directly to an SMR zone we have to
4319 	 * synchronize immediately because the item can instantly
4320 	 * be reallocated. This should only happen in degenerate
4321 	 * cases when no memory is available for per-cpu caches.
4322 	 */
4323 	if ((zone->uz_flags & UMA_ZONE_SMR) != 0 && skip == SKIP_NONE)
4324 		smr_synchronize(zone->uz_smr);
4325 
4326 	item_dtor(zone, item, zone->uz_size, udata, skip);
4327 
4328 	if (skip < SKIP_FINI && zone->uz_fini)
4329 		zone->uz_fini(item, zone->uz_size);
4330 
4331 	zone->uz_release(zone->uz_arg, &item, 1);
4332 
4333 	if (skip & SKIP_CNT)
4334 		return;
4335 
4336 	counter_u64_add(zone->uz_frees, 1);
4337 
4338 	if (zone->uz_max_items > 0)
4339 		zone_free_limit(zone, 1);
4340 }
4341 
4342 /* See uma.h */
4343 int
4344 uma_zone_set_max(uma_zone_t zone, int nitems)
4345 {
4346 	struct uma_bucket_zone *ubz;
4347 	int count;
4348 
4349 	/*
4350 	 * XXX This can misbehave if the zone has any allocations with
4351 	 * no limit and a limit is imposed.  There is currently no
4352 	 * way to clear a limit.
4353 	 */
4354 	ZONE_LOCK(zone);
4355 	ubz = bucket_zone_max(zone, nitems);
4356 	count = ubz != NULL ? ubz->ubz_entries : 0;
4357 	zone->uz_bucket_size_max = zone->uz_bucket_size = count;
4358 	if (zone->uz_bucket_size_min > zone->uz_bucket_size_max)
4359 		zone->uz_bucket_size_min = zone->uz_bucket_size_max;
4360 	zone->uz_max_items = nitems;
4361 	zone->uz_flags |= UMA_ZFLAG_LIMIT;
4362 	zone_update_caches(zone);
4363 	/* We may need to wake waiters. */
4364 	wakeup(&zone->uz_max_items);
4365 	ZONE_UNLOCK(zone);
4366 
4367 	return (nitems);
4368 }
4369 
4370 /* See uma.h */
4371 void
4372 uma_zone_set_maxcache(uma_zone_t zone, int nitems)
4373 {
4374 	struct uma_bucket_zone *ubz;
4375 	int bpcpu;
4376 
4377 	ZONE_LOCK(zone);
4378 	ubz = bucket_zone_max(zone, nitems);
4379 	if (ubz != NULL) {
4380 		bpcpu = 2;
4381 		if ((zone->uz_flags & UMA_ZONE_FIRSTTOUCH) != 0)
4382 			/* Count the cross-domain bucket. */
4383 			bpcpu++;
4384 		nitems -= ubz->ubz_entries * bpcpu * mp_ncpus;
4385 		zone->uz_bucket_size_max = ubz->ubz_entries;
4386 	} else {
4387 		zone->uz_bucket_size_max = zone->uz_bucket_size = 0;
4388 	}
4389 	if (zone->uz_bucket_size_min > zone->uz_bucket_size_max)
4390 		zone->uz_bucket_size_min = zone->uz_bucket_size_max;
4391 	zone->uz_bkt_max = nitems;
4392 	ZONE_UNLOCK(zone);
4393 }
4394 
4395 /* See uma.h */
4396 int
4397 uma_zone_get_max(uma_zone_t zone)
4398 {
4399 	int nitems;
4400 
4401 	nitems = atomic_load_64(&zone->uz_max_items);
4402 
4403 	return (nitems);
4404 }
4405 
4406 /* See uma.h */
4407 void
4408 uma_zone_set_warning(uma_zone_t zone, const char *warning)
4409 {
4410 
4411 	ZONE_ASSERT_COLD(zone);
4412 	zone->uz_warning = warning;
4413 }
4414 
4415 /* See uma.h */
4416 void
4417 uma_zone_set_maxaction(uma_zone_t zone, uma_maxaction_t maxaction)
4418 {
4419 
4420 	ZONE_ASSERT_COLD(zone);
4421 	TASK_INIT(&zone->uz_maxaction, 0, (task_fn_t *)maxaction, zone);
4422 }
4423 
4424 /* See uma.h */
4425 int
4426 uma_zone_get_cur(uma_zone_t zone)
4427 {
4428 	int64_t nitems;
4429 	u_int i;
4430 
4431 	nitems = 0;
4432 	if (zone->uz_allocs != EARLY_COUNTER && zone->uz_frees != EARLY_COUNTER)
4433 		nitems = counter_u64_fetch(zone->uz_allocs) -
4434 		    counter_u64_fetch(zone->uz_frees);
4435 	CPU_FOREACH(i)
4436 		nitems += atomic_load_64(&zone->uz_cpu[i].uc_allocs) -
4437 		    atomic_load_64(&zone->uz_cpu[i].uc_frees);
4438 
4439 	return (nitems < 0 ? 0 : nitems);
4440 }
4441 
4442 static uint64_t
4443 uma_zone_get_allocs(uma_zone_t zone)
4444 {
4445 	uint64_t nitems;
4446 	u_int i;
4447 
4448 	nitems = 0;
4449 	if (zone->uz_allocs != EARLY_COUNTER)
4450 		nitems = counter_u64_fetch(zone->uz_allocs);
4451 	CPU_FOREACH(i)
4452 		nitems += atomic_load_64(&zone->uz_cpu[i].uc_allocs);
4453 
4454 	return (nitems);
4455 }
4456 
4457 static uint64_t
4458 uma_zone_get_frees(uma_zone_t zone)
4459 {
4460 	uint64_t nitems;
4461 	u_int i;
4462 
4463 	nitems = 0;
4464 	if (zone->uz_frees != EARLY_COUNTER)
4465 		nitems = counter_u64_fetch(zone->uz_frees);
4466 	CPU_FOREACH(i)
4467 		nitems += atomic_load_64(&zone->uz_cpu[i].uc_frees);
4468 
4469 	return (nitems);
4470 }
4471 
4472 #ifdef INVARIANTS
4473 /* Used only for KEG_ASSERT_COLD(). */
4474 static uint64_t
4475 uma_keg_get_allocs(uma_keg_t keg)
4476 {
4477 	uma_zone_t z;
4478 	uint64_t nitems;
4479 
4480 	nitems = 0;
4481 	LIST_FOREACH(z, &keg->uk_zones, uz_link)
4482 		nitems += uma_zone_get_allocs(z);
4483 
4484 	return (nitems);
4485 }
4486 #endif
4487 
4488 /* See uma.h */
4489 void
4490 uma_zone_set_init(uma_zone_t zone, uma_init uminit)
4491 {
4492 	uma_keg_t keg;
4493 
4494 	KEG_GET(zone, keg);
4495 	KEG_ASSERT_COLD(keg);
4496 	keg->uk_init = uminit;
4497 }
4498 
4499 /* See uma.h */
4500 void
4501 uma_zone_set_fini(uma_zone_t zone, uma_fini fini)
4502 {
4503 	uma_keg_t keg;
4504 
4505 	KEG_GET(zone, keg);
4506 	KEG_ASSERT_COLD(keg);
4507 	keg->uk_fini = fini;
4508 }
4509 
4510 /* See uma.h */
4511 void
4512 uma_zone_set_zinit(uma_zone_t zone, uma_init zinit)
4513 {
4514 
4515 	ZONE_ASSERT_COLD(zone);
4516 	zone->uz_init = zinit;
4517 }
4518 
4519 /* See uma.h */
4520 void
4521 uma_zone_set_zfini(uma_zone_t zone, uma_fini zfini)
4522 {
4523 
4524 	ZONE_ASSERT_COLD(zone);
4525 	zone->uz_fini = zfini;
4526 }
4527 
4528 /* See uma.h */
4529 void
4530 uma_zone_set_freef(uma_zone_t zone, uma_free freef)
4531 {
4532 	uma_keg_t keg;
4533 
4534 	KEG_GET(zone, keg);
4535 	KEG_ASSERT_COLD(keg);
4536 	keg->uk_freef = freef;
4537 }
4538 
4539 /* See uma.h */
4540 void
4541 uma_zone_set_allocf(uma_zone_t zone, uma_alloc allocf)
4542 {
4543 	uma_keg_t keg;
4544 
4545 	KEG_GET(zone, keg);
4546 	KEG_ASSERT_COLD(keg);
4547 	keg->uk_allocf = allocf;
4548 }
4549 
4550 /* See uma.h */
4551 void
4552 uma_zone_set_smr(uma_zone_t zone, smr_t smr)
4553 {
4554 
4555 	ZONE_ASSERT_COLD(zone);
4556 
4557 	zone->uz_flags |= UMA_ZONE_SMR;
4558 	zone->uz_smr = smr;
4559 	zone_update_caches(zone);
4560 }
4561 
4562 smr_t
4563 uma_zone_get_smr(uma_zone_t zone)
4564 {
4565 
4566 	return (zone->uz_smr);
4567 }
4568 
4569 /* See uma.h */
4570 void
4571 uma_zone_reserve(uma_zone_t zone, int items)
4572 {
4573 	uma_keg_t keg;
4574 
4575 	KEG_GET(zone, keg);
4576 	KEG_ASSERT_COLD(keg);
4577 	keg->uk_reserve = items;
4578 }
4579 
4580 /* See uma.h */
4581 int
4582 uma_zone_reserve_kva(uma_zone_t zone, int count)
4583 {
4584 	uma_keg_t keg;
4585 	vm_offset_t kva;
4586 	u_int pages;
4587 
4588 	KEG_GET(zone, keg);
4589 	KEG_ASSERT_COLD(keg);
4590 	ZONE_ASSERT_COLD(zone);
4591 
4592 	pages = howmany(count, keg->uk_ipers) * keg->uk_ppera;
4593 
4594 #ifdef UMA_MD_SMALL_ALLOC
4595 	if (keg->uk_ppera > 1) {
4596 #else
4597 	if (1) {
4598 #endif
4599 		kva = kva_alloc((vm_size_t)pages * PAGE_SIZE);
4600 		if (kva == 0)
4601 			return (0);
4602 	} else
4603 		kva = 0;
4604 
4605 	ZONE_LOCK(zone);
4606 	MPASS(keg->uk_kva == 0);
4607 	keg->uk_kva = kva;
4608 	keg->uk_offset = 0;
4609 	zone->uz_max_items = pages * keg->uk_ipers;
4610 #ifdef UMA_MD_SMALL_ALLOC
4611 	keg->uk_allocf = (keg->uk_ppera > 1) ? noobj_alloc : uma_small_alloc;
4612 #else
4613 	keg->uk_allocf = noobj_alloc;
4614 #endif
4615 	keg->uk_flags |= UMA_ZFLAG_LIMIT | UMA_ZONE_NOFREE;
4616 	zone->uz_flags |= UMA_ZFLAG_LIMIT | UMA_ZONE_NOFREE;
4617 	zone_update_caches(zone);
4618 	ZONE_UNLOCK(zone);
4619 
4620 	return (1);
4621 }
4622 
4623 /* See uma.h */
4624 void
4625 uma_prealloc(uma_zone_t zone, int items)
4626 {
4627 	struct vm_domainset_iter di;
4628 	uma_domain_t dom;
4629 	uma_slab_t slab;
4630 	uma_keg_t keg;
4631 	int aflags, domain, slabs;
4632 
4633 	KEG_GET(zone, keg);
4634 	slabs = howmany(items, keg->uk_ipers);
4635 	while (slabs-- > 0) {
4636 		aflags = M_NOWAIT;
4637 		vm_domainset_iter_policy_ref_init(&di, &keg->uk_dr, &domain,
4638 		    &aflags);
4639 		for (;;) {
4640 			slab = keg_alloc_slab(keg, zone, domain, M_WAITOK,
4641 			    aflags);
4642 			if (slab != NULL) {
4643 				dom = &keg->uk_domain[slab->us_domain];
4644 				LIST_REMOVE(slab, us_link);
4645 				LIST_INSERT_HEAD(&dom->ud_free_slab, slab,
4646 				    us_link);
4647 				KEG_UNLOCK(keg, slab->us_domain);
4648 				break;
4649 			}
4650 			if (vm_domainset_iter_policy(&di, &domain) != 0)
4651 				vm_wait_doms(&keg->uk_dr.dr_policy->ds_mask);
4652 		}
4653 	}
4654 }
4655 
4656 /* See uma.h */
4657 void
4658 uma_reclaim(int req)
4659 {
4660 
4661 	CTR0(KTR_UMA, "UMA: vm asked us to release pages!");
4662 	sx_xlock(&uma_reclaim_lock);
4663 	bucket_enable();
4664 
4665 	switch (req) {
4666 	case UMA_RECLAIM_TRIM:
4667 		zone_foreach(zone_trim, NULL);
4668 		break;
4669 	case UMA_RECLAIM_DRAIN:
4670 	case UMA_RECLAIM_DRAIN_CPU:
4671 		zone_foreach(zone_drain, NULL);
4672 		if (req == UMA_RECLAIM_DRAIN_CPU) {
4673 			pcpu_cache_drain_safe(NULL);
4674 			zone_foreach(zone_drain, NULL);
4675 		}
4676 		break;
4677 	default:
4678 		panic("unhandled reclamation request %d", req);
4679 	}
4680 
4681 	/*
4682 	 * Some slabs may have been freed but this zone will be visited early
4683 	 * we visit again so that we can free pages that are empty once other
4684 	 * zones are drained.  We have to do the same for buckets.
4685 	 */
4686 	zone_drain(slabzones[0], NULL);
4687 	zone_drain(slabzones[1], NULL);
4688 	bucket_zone_drain();
4689 	sx_xunlock(&uma_reclaim_lock);
4690 }
4691 
4692 static volatile int uma_reclaim_needed;
4693 
4694 void
4695 uma_reclaim_wakeup(void)
4696 {
4697 
4698 	if (atomic_fetchadd_int(&uma_reclaim_needed, 1) == 0)
4699 		wakeup(uma_reclaim);
4700 }
4701 
4702 void
4703 uma_reclaim_worker(void *arg __unused)
4704 {
4705 
4706 	for (;;) {
4707 		sx_xlock(&uma_reclaim_lock);
4708 		while (atomic_load_int(&uma_reclaim_needed) == 0)
4709 			sx_sleep(uma_reclaim, &uma_reclaim_lock, PVM, "umarcl",
4710 			    hz);
4711 		sx_xunlock(&uma_reclaim_lock);
4712 		EVENTHANDLER_INVOKE(vm_lowmem, VM_LOW_KMEM);
4713 		uma_reclaim(UMA_RECLAIM_DRAIN_CPU);
4714 		atomic_store_int(&uma_reclaim_needed, 0);
4715 		/* Don't fire more than once per-second. */
4716 		pause("umarclslp", hz);
4717 	}
4718 }
4719 
4720 /* See uma.h */
4721 void
4722 uma_zone_reclaim(uma_zone_t zone, int req)
4723 {
4724 
4725 	switch (req) {
4726 	case UMA_RECLAIM_TRIM:
4727 		zone_trim(zone, NULL);
4728 		break;
4729 	case UMA_RECLAIM_DRAIN:
4730 		zone_drain(zone, NULL);
4731 		break;
4732 	case UMA_RECLAIM_DRAIN_CPU:
4733 		pcpu_cache_drain_safe(zone);
4734 		zone_drain(zone, NULL);
4735 		break;
4736 	default:
4737 		panic("unhandled reclamation request %d", req);
4738 	}
4739 }
4740 
4741 /* See uma.h */
4742 int
4743 uma_zone_exhausted(uma_zone_t zone)
4744 {
4745 
4746 	return (atomic_load_32(&zone->uz_sleepers) > 0);
4747 }
4748 
4749 unsigned long
4750 uma_limit(void)
4751 {
4752 
4753 	return (uma_kmem_limit);
4754 }
4755 
4756 void
4757 uma_set_limit(unsigned long limit)
4758 {
4759 
4760 	uma_kmem_limit = limit;
4761 }
4762 
4763 unsigned long
4764 uma_size(void)
4765 {
4766 
4767 	return (atomic_load_long(&uma_kmem_total));
4768 }
4769 
4770 long
4771 uma_avail(void)
4772 {
4773 
4774 	return (uma_kmem_limit - uma_size());
4775 }
4776 
4777 #ifdef DDB
4778 /*
4779  * Generate statistics across both the zone and its per-cpu cache's.  Return
4780  * desired statistics if the pointer is non-NULL for that statistic.
4781  *
4782  * Note: does not update the zone statistics, as it can't safely clear the
4783  * per-CPU cache statistic.
4784  *
4785  */
4786 static void
4787 uma_zone_sumstat(uma_zone_t z, long *cachefreep, uint64_t *allocsp,
4788     uint64_t *freesp, uint64_t *sleepsp, uint64_t *xdomainp)
4789 {
4790 	uma_cache_t cache;
4791 	uint64_t allocs, frees, sleeps, xdomain;
4792 	int cachefree, cpu;
4793 
4794 	allocs = frees = sleeps = xdomain = 0;
4795 	cachefree = 0;
4796 	CPU_FOREACH(cpu) {
4797 		cache = &z->uz_cpu[cpu];
4798 		cachefree += cache->uc_allocbucket.ucb_cnt;
4799 		cachefree += cache->uc_freebucket.ucb_cnt;
4800 		xdomain += cache->uc_crossbucket.ucb_cnt;
4801 		cachefree += cache->uc_crossbucket.ucb_cnt;
4802 		allocs += cache->uc_allocs;
4803 		frees += cache->uc_frees;
4804 	}
4805 	allocs += counter_u64_fetch(z->uz_allocs);
4806 	frees += counter_u64_fetch(z->uz_frees);
4807 	sleeps += z->uz_sleeps;
4808 	xdomain += z->uz_xdomain;
4809 	if (cachefreep != NULL)
4810 		*cachefreep = cachefree;
4811 	if (allocsp != NULL)
4812 		*allocsp = allocs;
4813 	if (freesp != NULL)
4814 		*freesp = frees;
4815 	if (sleepsp != NULL)
4816 		*sleepsp = sleeps;
4817 	if (xdomainp != NULL)
4818 		*xdomainp = xdomain;
4819 }
4820 #endif /* DDB */
4821 
4822 static int
4823 sysctl_vm_zone_count(SYSCTL_HANDLER_ARGS)
4824 {
4825 	uma_keg_t kz;
4826 	uma_zone_t z;
4827 	int count;
4828 
4829 	count = 0;
4830 	rw_rlock(&uma_rwlock);
4831 	LIST_FOREACH(kz, &uma_kegs, uk_link) {
4832 		LIST_FOREACH(z, &kz->uk_zones, uz_link)
4833 			count++;
4834 	}
4835 	LIST_FOREACH(z, &uma_cachezones, uz_link)
4836 		count++;
4837 
4838 	rw_runlock(&uma_rwlock);
4839 	return (sysctl_handle_int(oidp, &count, 0, req));
4840 }
4841 
4842 static void
4843 uma_vm_zone_stats(struct uma_type_header *uth, uma_zone_t z, struct sbuf *sbuf,
4844     struct uma_percpu_stat *ups, bool internal)
4845 {
4846 	uma_zone_domain_t zdom;
4847 	uma_cache_t cache;
4848 	int i;
4849 
4850 
4851 	for (i = 0; i < vm_ndomains; i++) {
4852 		zdom = &z->uz_domain[i];
4853 		uth->uth_zone_free += zdom->uzd_nitems;
4854 	}
4855 	uth->uth_allocs = counter_u64_fetch(z->uz_allocs);
4856 	uth->uth_frees = counter_u64_fetch(z->uz_frees);
4857 	uth->uth_fails = counter_u64_fetch(z->uz_fails);
4858 	uth->uth_sleeps = z->uz_sleeps;
4859 	uth->uth_xdomain = z->uz_xdomain;
4860 
4861 	/*
4862 	 * While it is not normally safe to access the cache bucket pointers
4863 	 * while not on the CPU that owns the cache, we only allow the pointers
4864 	 * to be exchanged without the zone lock held, not invalidated, so
4865 	 * accept the possible race associated with bucket exchange during
4866 	 * monitoring.  Use atomic_load_ptr() to ensure that the bucket pointers
4867 	 * are loaded only once.
4868 	 */
4869 	for (i = 0; i < mp_maxid + 1; i++) {
4870 		bzero(&ups[i], sizeof(*ups));
4871 		if (internal || CPU_ABSENT(i))
4872 			continue;
4873 		cache = &z->uz_cpu[i];
4874 		ups[i].ups_cache_free += cache->uc_allocbucket.ucb_cnt;
4875 		ups[i].ups_cache_free += cache->uc_freebucket.ucb_cnt;
4876 		ups[i].ups_cache_free += cache->uc_crossbucket.ucb_cnt;
4877 		ups[i].ups_allocs = cache->uc_allocs;
4878 		ups[i].ups_frees = cache->uc_frees;
4879 	}
4880 }
4881 
4882 static int
4883 sysctl_vm_zone_stats(SYSCTL_HANDLER_ARGS)
4884 {
4885 	struct uma_stream_header ush;
4886 	struct uma_type_header uth;
4887 	struct uma_percpu_stat *ups;
4888 	struct sbuf sbuf;
4889 	uma_keg_t kz;
4890 	uma_zone_t z;
4891 	uint64_t items;
4892 	uint32_t kfree, pages;
4893 	int count, error, i;
4894 
4895 	error = sysctl_wire_old_buffer(req, 0);
4896 	if (error != 0)
4897 		return (error);
4898 	sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
4899 	sbuf_clear_flags(&sbuf, SBUF_INCLUDENUL);
4900 	ups = malloc((mp_maxid + 1) * sizeof(*ups), M_TEMP, M_WAITOK);
4901 
4902 	count = 0;
4903 	rw_rlock(&uma_rwlock);
4904 	LIST_FOREACH(kz, &uma_kegs, uk_link) {
4905 		LIST_FOREACH(z, &kz->uk_zones, uz_link)
4906 			count++;
4907 	}
4908 
4909 	LIST_FOREACH(z, &uma_cachezones, uz_link)
4910 		count++;
4911 
4912 	/*
4913 	 * Insert stream header.
4914 	 */
4915 	bzero(&ush, sizeof(ush));
4916 	ush.ush_version = UMA_STREAM_VERSION;
4917 	ush.ush_maxcpus = (mp_maxid + 1);
4918 	ush.ush_count = count;
4919 	(void)sbuf_bcat(&sbuf, &ush, sizeof(ush));
4920 
4921 	LIST_FOREACH(kz, &uma_kegs, uk_link) {
4922 		kfree = pages = 0;
4923 		for (i = 0; i < vm_ndomains; i++) {
4924 			kfree += kz->uk_domain[i].ud_free;
4925 			pages += kz->uk_domain[i].ud_pages;
4926 		}
4927 		LIST_FOREACH(z, &kz->uk_zones, uz_link) {
4928 			bzero(&uth, sizeof(uth));
4929 			ZONE_LOCK(z);
4930 			strlcpy(uth.uth_name, z->uz_name, UTH_MAX_NAME);
4931 			uth.uth_align = kz->uk_align;
4932 			uth.uth_size = kz->uk_size;
4933 			uth.uth_rsize = kz->uk_rsize;
4934 			if (z->uz_max_items > 0) {
4935 				items = UZ_ITEMS_COUNT(z->uz_items);
4936 				uth.uth_pages = (items / kz->uk_ipers) *
4937 					kz->uk_ppera;
4938 			} else
4939 				uth.uth_pages = pages;
4940 			uth.uth_maxpages = (z->uz_max_items / kz->uk_ipers) *
4941 			    kz->uk_ppera;
4942 			uth.uth_limit = z->uz_max_items;
4943 			uth.uth_keg_free = kfree;
4944 
4945 			/*
4946 			 * A zone is secondary is it is not the first entry
4947 			 * on the keg's zone list.
4948 			 */
4949 			if ((z->uz_flags & UMA_ZONE_SECONDARY) &&
4950 			    (LIST_FIRST(&kz->uk_zones) != z))
4951 				uth.uth_zone_flags = UTH_ZONE_SECONDARY;
4952 			uma_vm_zone_stats(&uth, z, &sbuf, ups,
4953 			    kz->uk_flags & UMA_ZFLAG_INTERNAL);
4954 			ZONE_UNLOCK(z);
4955 			(void)sbuf_bcat(&sbuf, &uth, sizeof(uth));
4956 			for (i = 0; i < mp_maxid + 1; i++)
4957 				(void)sbuf_bcat(&sbuf, &ups[i], sizeof(ups[i]));
4958 		}
4959 	}
4960 	LIST_FOREACH(z, &uma_cachezones, uz_link) {
4961 		bzero(&uth, sizeof(uth));
4962 		ZONE_LOCK(z);
4963 		strlcpy(uth.uth_name, z->uz_name, UTH_MAX_NAME);
4964 		uth.uth_size = z->uz_size;
4965 		uma_vm_zone_stats(&uth, z, &sbuf, ups, false);
4966 		ZONE_UNLOCK(z);
4967 		(void)sbuf_bcat(&sbuf, &uth, sizeof(uth));
4968 		for (i = 0; i < mp_maxid + 1; i++)
4969 			(void)sbuf_bcat(&sbuf, &ups[i], sizeof(ups[i]));
4970 	}
4971 
4972 	rw_runlock(&uma_rwlock);
4973 	error = sbuf_finish(&sbuf);
4974 	sbuf_delete(&sbuf);
4975 	free(ups, M_TEMP);
4976 	return (error);
4977 }
4978 
4979 int
4980 sysctl_handle_uma_zone_max(SYSCTL_HANDLER_ARGS)
4981 {
4982 	uma_zone_t zone = *(uma_zone_t *)arg1;
4983 	int error, max;
4984 
4985 	max = uma_zone_get_max(zone);
4986 	error = sysctl_handle_int(oidp, &max, 0, req);
4987 	if (error || !req->newptr)
4988 		return (error);
4989 
4990 	uma_zone_set_max(zone, max);
4991 
4992 	return (0);
4993 }
4994 
4995 int
4996 sysctl_handle_uma_zone_cur(SYSCTL_HANDLER_ARGS)
4997 {
4998 	uma_zone_t zone;
4999 	int cur;
5000 
5001 	/*
5002 	 * Some callers want to add sysctls for global zones that
5003 	 * may not yet exist so they pass a pointer to a pointer.
5004 	 */
5005 	if (arg2 == 0)
5006 		zone = *(uma_zone_t *)arg1;
5007 	else
5008 		zone = arg1;
5009 	cur = uma_zone_get_cur(zone);
5010 	return (sysctl_handle_int(oidp, &cur, 0, req));
5011 }
5012 
5013 static int
5014 sysctl_handle_uma_zone_allocs(SYSCTL_HANDLER_ARGS)
5015 {
5016 	uma_zone_t zone = arg1;
5017 	uint64_t cur;
5018 
5019 	cur = uma_zone_get_allocs(zone);
5020 	return (sysctl_handle_64(oidp, &cur, 0, req));
5021 }
5022 
5023 static int
5024 sysctl_handle_uma_zone_frees(SYSCTL_HANDLER_ARGS)
5025 {
5026 	uma_zone_t zone = arg1;
5027 	uint64_t cur;
5028 
5029 	cur = uma_zone_get_frees(zone);
5030 	return (sysctl_handle_64(oidp, &cur, 0, req));
5031 }
5032 
5033 static int
5034 sysctl_handle_uma_zone_flags(SYSCTL_HANDLER_ARGS)
5035 {
5036 	struct sbuf sbuf;
5037 	uma_zone_t zone = arg1;
5038 	int error;
5039 
5040 	sbuf_new_for_sysctl(&sbuf, NULL, 0, req);
5041 	if (zone->uz_flags != 0)
5042 		sbuf_printf(&sbuf, "0x%b", zone->uz_flags, PRINT_UMA_ZFLAGS);
5043 	else
5044 		sbuf_printf(&sbuf, "0");
5045 	error = sbuf_finish(&sbuf);
5046 	sbuf_delete(&sbuf);
5047 
5048 	return (error);
5049 }
5050 
5051 static int
5052 sysctl_handle_uma_slab_efficiency(SYSCTL_HANDLER_ARGS)
5053 {
5054 	uma_keg_t keg = arg1;
5055 	int avail, effpct, total;
5056 
5057 	total = keg->uk_ppera * PAGE_SIZE;
5058 	if ((keg->uk_flags & UMA_ZFLAG_OFFPAGE) != 0)
5059 		total += slabzone(keg->uk_ipers)->uz_keg->uk_rsize;
5060 	/*
5061 	 * We consider the client's requested size and alignment here, not the
5062 	 * real size determination uk_rsize, because we also adjust the real
5063 	 * size for internal implementation reasons (max bitset size).
5064 	 */
5065 	avail = keg->uk_ipers * roundup2(keg->uk_size, keg->uk_align + 1);
5066 	if ((keg->uk_flags & UMA_ZONE_PCPU) != 0)
5067 		avail *= mp_maxid + 1;
5068 	effpct = 100 * avail / total;
5069 	return (sysctl_handle_int(oidp, &effpct, 0, req));
5070 }
5071 
5072 static int
5073 sysctl_handle_uma_zone_items(SYSCTL_HANDLER_ARGS)
5074 {
5075 	uma_zone_t zone = arg1;
5076 	uint64_t cur;
5077 
5078 	cur = UZ_ITEMS_COUNT(atomic_load_64(&zone->uz_items));
5079 	return (sysctl_handle_64(oidp, &cur, 0, req));
5080 }
5081 
5082 #ifdef INVARIANTS
5083 static uma_slab_t
5084 uma_dbg_getslab(uma_zone_t zone, void *item)
5085 {
5086 	uma_slab_t slab;
5087 	uma_keg_t keg;
5088 	uint8_t *mem;
5089 
5090 	/*
5091 	 * It is safe to return the slab here even though the
5092 	 * zone is unlocked because the item's allocation state
5093 	 * essentially holds a reference.
5094 	 */
5095 	mem = (uint8_t *)((uintptr_t)item & (~UMA_SLAB_MASK));
5096 	if ((zone->uz_flags & UMA_ZFLAG_CACHE) != 0)
5097 		return (NULL);
5098 	if (zone->uz_flags & UMA_ZFLAG_VTOSLAB)
5099 		return (vtoslab((vm_offset_t)mem));
5100 	keg = zone->uz_keg;
5101 	if ((keg->uk_flags & UMA_ZFLAG_HASH) == 0)
5102 		return ((uma_slab_t)(mem + keg->uk_pgoff));
5103 	KEG_LOCK(keg, 0);
5104 	slab = hash_sfind(&keg->uk_hash, mem);
5105 	KEG_UNLOCK(keg, 0);
5106 
5107 	return (slab);
5108 }
5109 
5110 static bool
5111 uma_dbg_zskip(uma_zone_t zone, void *mem)
5112 {
5113 
5114 	if ((zone->uz_flags & UMA_ZFLAG_CACHE) != 0)
5115 		return (true);
5116 
5117 	return (uma_dbg_kskip(zone->uz_keg, mem));
5118 }
5119 
5120 static bool
5121 uma_dbg_kskip(uma_keg_t keg, void *mem)
5122 {
5123 	uintptr_t idx;
5124 
5125 	if (dbg_divisor == 0)
5126 		return (true);
5127 
5128 	if (dbg_divisor == 1)
5129 		return (false);
5130 
5131 	idx = (uintptr_t)mem >> PAGE_SHIFT;
5132 	if (keg->uk_ipers > 1) {
5133 		idx *= keg->uk_ipers;
5134 		idx += ((uintptr_t)mem & PAGE_MASK) / keg->uk_rsize;
5135 	}
5136 
5137 	if ((idx / dbg_divisor) * dbg_divisor != idx) {
5138 		counter_u64_add(uma_skip_cnt, 1);
5139 		return (true);
5140 	}
5141 	counter_u64_add(uma_dbg_cnt, 1);
5142 
5143 	return (false);
5144 }
5145 
5146 /*
5147  * Set up the slab's freei data such that uma_dbg_free can function.
5148  *
5149  */
5150 static void
5151 uma_dbg_alloc(uma_zone_t zone, uma_slab_t slab, void *item)
5152 {
5153 	uma_keg_t keg;
5154 	int freei;
5155 
5156 	if (slab == NULL) {
5157 		slab = uma_dbg_getslab(zone, item);
5158 		if (slab == NULL)
5159 			panic("uma: item %p did not belong to zone %s\n",
5160 			    item, zone->uz_name);
5161 	}
5162 	keg = zone->uz_keg;
5163 	freei = slab_item_index(slab, keg, item);
5164 
5165 	if (BIT_ISSET(keg->uk_ipers, freei, slab_dbg_bits(slab, keg)))
5166 		panic("Duplicate alloc of %p from zone %p(%s) slab %p(%d)\n",
5167 		    item, zone, zone->uz_name, slab, freei);
5168 	BIT_SET_ATOMIC(keg->uk_ipers, freei, slab_dbg_bits(slab, keg));
5169 }
5170 
5171 /*
5172  * Verifies freed addresses.  Checks for alignment, valid slab membership
5173  * and duplicate frees.
5174  *
5175  */
5176 static void
5177 uma_dbg_free(uma_zone_t zone, uma_slab_t slab, void *item)
5178 {
5179 	uma_keg_t keg;
5180 	int freei;
5181 
5182 	if (slab == NULL) {
5183 		slab = uma_dbg_getslab(zone, item);
5184 		if (slab == NULL)
5185 			panic("uma: Freed item %p did not belong to zone %s\n",
5186 			    item, zone->uz_name);
5187 	}
5188 	keg = zone->uz_keg;
5189 	freei = slab_item_index(slab, keg, item);
5190 
5191 	if (freei >= keg->uk_ipers)
5192 		panic("Invalid free of %p from zone %p(%s) slab %p(%d)\n",
5193 		    item, zone, zone->uz_name, slab, freei);
5194 
5195 	if (slab_item(slab, keg, freei) != item)
5196 		panic("Unaligned free of %p from zone %p(%s) slab %p(%d)\n",
5197 		    item, zone, zone->uz_name, slab, freei);
5198 
5199 	if (!BIT_ISSET(keg->uk_ipers, freei, slab_dbg_bits(slab, keg)))
5200 		panic("Duplicate free of %p from zone %p(%s) slab %p(%d)\n",
5201 		    item, zone, zone->uz_name, slab, freei);
5202 
5203 	BIT_CLR_ATOMIC(keg->uk_ipers, freei, slab_dbg_bits(slab, keg));
5204 }
5205 #endif /* INVARIANTS */
5206 
5207 #ifdef DDB
5208 static int64_t
5209 get_uma_stats(uma_keg_t kz, uma_zone_t z, uint64_t *allocs, uint64_t *used,
5210     uint64_t *sleeps, long *cachefree, uint64_t *xdomain)
5211 {
5212 	uint64_t frees;
5213 	int i;
5214 
5215 	if (kz->uk_flags & UMA_ZFLAG_INTERNAL) {
5216 		*allocs = counter_u64_fetch(z->uz_allocs);
5217 		frees = counter_u64_fetch(z->uz_frees);
5218 		*sleeps = z->uz_sleeps;
5219 		*cachefree = 0;
5220 		*xdomain = 0;
5221 	} else
5222 		uma_zone_sumstat(z, cachefree, allocs, &frees, sleeps,
5223 		    xdomain);
5224 	for (i = 0; i < vm_ndomains; i++) {
5225 		*cachefree += z->uz_domain[i].uzd_nitems;
5226 		if (!((z->uz_flags & UMA_ZONE_SECONDARY) &&
5227 		    (LIST_FIRST(&kz->uk_zones) != z)))
5228 			*cachefree += kz->uk_domain[i].ud_free;
5229 	}
5230 	*used = *allocs - frees;
5231 	return (((int64_t)*used + *cachefree) * kz->uk_size);
5232 }
5233 
5234 DB_SHOW_COMMAND(uma, db_show_uma)
5235 {
5236 	const char *fmt_hdr, *fmt_entry;
5237 	uma_keg_t kz;
5238 	uma_zone_t z;
5239 	uint64_t allocs, used, sleeps, xdomain;
5240 	long cachefree;
5241 	/* variables for sorting */
5242 	uma_keg_t cur_keg;
5243 	uma_zone_t cur_zone, last_zone;
5244 	int64_t cur_size, last_size, size;
5245 	int ties;
5246 
5247 	/* /i option produces machine-parseable CSV output */
5248 	if (modif[0] == 'i') {
5249 		fmt_hdr = "%s,%s,%s,%s,%s,%s,%s,%s,%s\n";
5250 		fmt_entry = "\"%s\",%ju,%jd,%ld,%ju,%ju,%u,%jd,%ju\n";
5251 	} else {
5252 		fmt_hdr = "%18s %6s %7s %7s %11s %7s %7s %10s %8s\n";
5253 		fmt_entry = "%18s %6ju %7jd %7ld %11ju %7ju %7u %10jd %8ju\n";
5254 	}
5255 
5256 	db_printf(fmt_hdr, "Zone", "Size", "Used", "Free", "Requests",
5257 	    "Sleeps", "Bucket", "Total Mem", "XFree");
5258 
5259 	/* Sort the zones with largest size first. */
5260 	last_zone = NULL;
5261 	last_size = INT64_MAX;
5262 	for (;;) {
5263 		cur_zone = NULL;
5264 		cur_size = -1;
5265 		ties = 0;
5266 		LIST_FOREACH(kz, &uma_kegs, uk_link) {
5267 			LIST_FOREACH(z, &kz->uk_zones, uz_link) {
5268 				/*
5269 				 * In the case of size ties, print out zones
5270 				 * in the order they are encountered.  That is,
5271 				 * when we encounter the most recently output
5272 				 * zone, we have already printed all preceding
5273 				 * ties, and we must print all following ties.
5274 				 */
5275 				if (z == last_zone) {
5276 					ties = 1;
5277 					continue;
5278 				}
5279 				size = get_uma_stats(kz, z, &allocs, &used,
5280 				    &sleeps, &cachefree, &xdomain);
5281 				if (size > cur_size && size < last_size + ties)
5282 				{
5283 					cur_size = size;
5284 					cur_zone = z;
5285 					cur_keg = kz;
5286 				}
5287 			}
5288 		}
5289 		if (cur_zone == NULL)
5290 			break;
5291 
5292 		size = get_uma_stats(cur_keg, cur_zone, &allocs, &used,
5293 		    &sleeps, &cachefree, &xdomain);
5294 		db_printf(fmt_entry, cur_zone->uz_name,
5295 		    (uintmax_t)cur_keg->uk_size, (intmax_t)used, cachefree,
5296 		    (uintmax_t)allocs, (uintmax_t)sleeps,
5297 		    (unsigned)cur_zone->uz_bucket_size, (intmax_t)size,
5298 		    xdomain);
5299 
5300 		if (db_pager_quit)
5301 			return;
5302 		last_zone = cur_zone;
5303 		last_size = cur_size;
5304 	}
5305 }
5306 
5307 DB_SHOW_COMMAND(umacache, db_show_umacache)
5308 {
5309 	uma_zone_t z;
5310 	uint64_t allocs, frees;
5311 	long cachefree;
5312 	int i;
5313 
5314 	db_printf("%18s %8s %8s %8s %12s %8s\n", "Zone", "Size", "Used", "Free",
5315 	    "Requests", "Bucket");
5316 	LIST_FOREACH(z, &uma_cachezones, uz_link) {
5317 		uma_zone_sumstat(z, &cachefree, &allocs, &frees, NULL, NULL);
5318 		for (i = 0; i < vm_ndomains; i++)
5319 			cachefree += z->uz_domain[i].uzd_nitems;
5320 		db_printf("%18s %8ju %8jd %8ld %12ju %8u\n",
5321 		    z->uz_name, (uintmax_t)z->uz_size,
5322 		    (intmax_t)(allocs - frees), cachefree,
5323 		    (uintmax_t)allocs, z->uz_bucket_size);
5324 		if (db_pager_quit)
5325 			return;
5326 	}
5327 }
5328 #endif	/* DDB */
5329