xref: /freebsd/sys/vm/vm_fault.c (revision 3157ba21)
1 /*-
2  * Copyright (c) 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * Copyright (c) 1994 John S. Dyson
5  * All rights reserved.
6  * Copyright (c) 1994 David Greenman
7  * All rights reserved.
8  *
9  *
10  * This code is derived from software contributed to Berkeley by
11  * The Mach Operating System project at Carnegie-Mellon University.
12  *
13  * Redistribution and use in source and binary forms, with or without
14  * modification, are permitted provided that the following conditions
15  * are met:
16  * 1. Redistributions of source code must retain the above copyright
17  *    notice, this list of conditions and the following disclaimer.
18  * 2. Redistributions in binary form must reproduce the above copyright
19  *    notice, this list of conditions and the following disclaimer in the
20  *    documentation and/or other materials provided with the distribution.
21  * 3. All advertising materials mentioning features or use of this software
22  *    must display the following acknowledgement:
23  *	This product includes software developed by the University of
24  *	California, Berkeley and its contributors.
25  * 4. Neither the name of the University nor the names of its contributors
26  *    may be used to endorse or promote products derived from this software
27  *    without specific prior written permission.
28  *
29  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39  * SUCH DAMAGE.
40  *
41  *	from: @(#)vm_fault.c	8.4 (Berkeley) 1/12/94
42  *
43  *
44  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
45  * All rights reserved.
46  *
47  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
48  *
49  * Permission to use, copy, modify and distribute this software and
50  * its documentation is hereby granted, provided that both the copyright
51  * notice and this permission notice appear in all copies of the
52  * software, derivative works or modified versions, and any portions
53  * thereof, and that both notices appear in supporting documentation.
54  *
55  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
56  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
57  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
58  *
59  * Carnegie Mellon requests users of this software to return to
60  *
61  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
62  *  School of Computer Science
63  *  Carnegie Mellon University
64  *  Pittsburgh PA 15213-3890
65  *
66  * any improvements or extensions that they make and grant Carnegie the
67  * rights to redistribute these changes.
68  */
69 
70 /*
71  *	Page fault handling module.
72  */
73 
74 #include <sys/cdefs.h>
75 __FBSDID("$FreeBSD$");
76 
77 #include "opt_vm.h"
78 
79 #include <sys/param.h>
80 #include <sys/systm.h>
81 #include <sys/kernel.h>
82 #include <sys/lock.h>
83 #include <sys/mutex.h>
84 #include <sys/proc.h>
85 #include <sys/resourcevar.h>
86 #include <sys/sysctl.h>
87 #include <sys/vmmeter.h>
88 #include <sys/vnode.h>
89 
90 #include <vm/vm.h>
91 #include <vm/vm_param.h>
92 #include <vm/pmap.h>
93 #include <vm/vm_map.h>
94 #include <vm/vm_object.h>
95 #include <vm/vm_page.h>
96 #include <vm/vm_pageout.h>
97 #include <vm/vm_kern.h>
98 #include <vm/vm_pager.h>
99 #include <vm/vm_extern.h>
100 
101 #include <sys/mount.h>	/* XXX Temporary for VFS_LOCK_GIANT() */
102 
103 #define PFBAK 4
104 #define PFFOR 4
105 #define PAGEORDER_SIZE (PFBAK+PFFOR)
106 
107 static int prefault_pageorder[] = {
108 	-1 * PAGE_SIZE, 1 * PAGE_SIZE,
109 	-2 * PAGE_SIZE, 2 * PAGE_SIZE,
110 	-3 * PAGE_SIZE, 3 * PAGE_SIZE,
111 	-4 * PAGE_SIZE, 4 * PAGE_SIZE
112 };
113 
114 static int vm_fault_additional_pages(vm_page_t, int, int, vm_page_t *, int *);
115 static void vm_fault_prefault(pmap_t, vm_offset_t, vm_map_entry_t);
116 
117 #define VM_FAULT_READ_AHEAD 8
118 #define VM_FAULT_READ_BEHIND 7
119 #define VM_FAULT_READ (VM_FAULT_READ_AHEAD+VM_FAULT_READ_BEHIND+1)
120 
121 struct faultstate {
122 	vm_page_t m;
123 	vm_object_t object;
124 	vm_pindex_t pindex;
125 	vm_page_t first_m;
126 	vm_object_t	first_object;
127 	vm_pindex_t first_pindex;
128 	vm_map_t map;
129 	vm_map_entry_t entry;
130 	int lookup_still_valid;
131 	struct vnode *vp;
132 	int vfslocked;
133 };
134 
135 static inline void
136 release_page(struct faultstate *fs)
137 {
138 
139 	vm_page_wakeup(fs->m);
140 	vm_page_lock(fs->m);
141 	vm_page_deactivate(fs->m);
142 	vm_page_unlock(fs->m);
143 	fs->m = NULL;
144 }
145 
146 static inline void
147 unlock_map(struct faultstate *fs)
148 {
149 
150 	if (fs->lookup_still_valid) {
151 		vm_map_lookup_done(fs->map, fs->entry);
152 		fs->lookup_still_valid = FALSE;
153 	}
154 }
155 
156 static void
157 unlock_and_deallocate(struct faultstate *fs)
158 {
159 
160 	vm_object_pip_wakeup(fs->object);
161 	VM_OBJECT_UNLOCK(fs->object);
162 	if (fs->object != fs->first_object) {
163 		VM_OBJECT_LOCK(fs->first_object);
164 		vm_page_lock(fs->first_m);
165 		vm_page_free(fs->first_m);
166 		vm_page_unlock(fs->first_m);
167 		vm_object_pip_wakeup(fs->first_object);
168 		VM_OBJECT_UNLOCK(fs->first_object);
169 		fs->first_m = NULL;
170 	}
171 	vm_object_deallocate(fs->first_object);
172 	unlock_map(fs);
173 	if (fs->vp != NULL) {
174 		vput(fs->vp);
175 		fs->vp = NULL;
176 	}
177 	VFS_UNLOCK_GIANT(fs->vfslocked);
178 	fs->vfslocked = 0;
179 }
180 
181 /*
182  * TRYPAGER - used by vm_fault to calculate whether the pager for the
183  *	      current object *might* contain the page.
184  *
185  *	      default objects are zero-fill, there is no real pager.
186  */
187 #define TRYPAGER	(fs.object->type != OBJT_DEFAULT && \
188 			((fault_flags & VM_FAULT_CHANGE_WIRING) == 0 || wired))
189 
190 /*
191  *	vm_fault:
192  *
193  *	Handle a page fault occurring at the given address,
194  *	requiring the given permissions, in the map specified.
195  *	If successful, the page is inserted into the
196  *	associated physical map.
197  *
198  *	NOTE: the given address should be truncated to the
199  *	proper page address.
200  *
201  *	KERN_SUCCESS is returned if the page fault is handled; otherwise,
202  *	a standard error specifying why the fault is fatal is returned.
203  *
204  *
205  *	The map in question must be referenced, and remains so.
206  *	Caller may hold no locks.
207  */
208 int
209 vm_fault(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
210 	 int fault_flags)
211 {
212 	vm_prot_t prot;
213 	int is_first_object_locked, result;
214 	boolean_t growstack, wired;
215 	int map_generation;
216 	vm_object_t next_object;
217 	vm_page_t marray[VM_FAULT_READ];
218 	int hardfault;
219 	int faultcount, ahead, behind, alloc_req;
220 	struct faultstate fs;
221 	struct vnode *vp;
222 	int locked, error;
223 
224 	hardfault = 0;
225 	growstack = TRUE;
226 	PCPU_INC(cnt.v_vm_faults);
227 	fs.vp = NULL;
228 	fs.vfslocked = 0;
229 	faultcount = behind = 0;
230 
231 RetryFault:;
232 
233 	/*
234 	 * Find the backing store object and offset into it to begin the
235 	 * search.
236 	 */
237 	fs.map = map;
238 	result = vm_map_lookup(&fs.map, vaddr, fault_type, &fs.entry,
239 	    &fs.first_object, &fs.first_pindex, &prot, &wired);
240 	if (result != KERN_SUCCESS) {
241 		if (growstack && result == KERN_INVALID_ADDRESS &&
242 		    map != kernel_map) {
243 			result = vm_map_growstack(curproc, vaddr);
244 			if (result != KERN_SUCCESS)
245 				return (KERN_FAILURE);
246 			growstack = FALSE;
247 			goto RetryFault;
248 		}
249 		return (result);
250 	}
251 
252 	map_generation = fs.map->timestamp;
253 
254 	if (fs.entry->eflags & MAP_ENTRY_NOFAULT) {
255 		panic("vm_fault: fault on nofault entry, addr: %lx",
256 		    (u_long)vaddr);
257 	}
258 
259 	/*
260 	 * Make a reference to this object to prevent its disposal while we
261 	 * are messing with it.  Once we have the reference, the map is free
262 	 * to be diddled.  Since objects reference their shadows (and copies),
263 	 * they will stay around as well.
264 	 *
265 	 * Bump the paging-in-progress count to prevent size changes (e.g.
266 	 * truncation operations) during I/O.  This must be done after
267 	 * obtaining the vnode lock in order to avoid possible deadlocks.
268 	 */
269 	VM_OBJECT_LOCK(fs.first_object);
270 	vm_object_reference_locked(fs.first_object);
271 	vm_object_pip_add(fs.first_object, 1);
272 
273 	fs.lookup_still_valid = TRUE;
274 
275 	if (wired)
276 		fault_type = prot | (fault_type & VM_PROT_COPY);
277 
278 	fs.first_m = NULL;
279 
280 	/*
281 	 * Search for the page at object/offset.
282 	 */
283 	fs.object = fs.first_object;
284 	fs.pindex = fs.first_pindex;
285 	while (TRUE) {
286 		/*
287 		 * If the object is dead, we stop here
288 		 */
289 		if (fs.object->flags & OBJ_DEAD) {
290 			unlock_and_deallocate(&fs);
291 			return (KERN_PROTECTION_FAILURE);
292 		}
293 
294 		/*
295 		 * See if page is resident
296 		 */
297 		fs.m = vm_page_lookup(fs.object, fs.pindex);
298 		if (fs.m != NULL) {
299 			/*
300 			 * check for page-based copy on write.
301 			 * We check fs.object == fs.first_object so
302 			 * as to ensure the legacy COW mechanism is
303 			 * used when the page in question is part of
304 			 * a shadow object.  Otherwise, vm_page_cowfault()
305 			 * removes the page from the backing object,
306 			 * which is not what we want.
307 			 */
308 			vm_page_lock(fs.m);
309 			if ((fs.m->cow) &&
310 			    (fault_type & VM_PROT_WRITE) &&
311 			    (fs.object == fs.first_object)) {
312 				vm_page_cowfault(fs.m);
313 				unlock_and_deallocate(&fs);
314 				goto RetryFault;
315 			}
316 
317 			/*
318 			 * Wait/Retry if the page is busy.  We have to do this
319 			 * if the page is busy via either VPO_BUSY or
320 			 * vm_page_t->busy because the vm_pager may be using
321 			 * vm_page_t->busy for pageouts ( and even pageins if
322 			 * it is the vnode pager ), and we could end up trying
323 			 * to pagein and pageout the same page simultaneously.
324 			 *
325 			 * We can theoretically allow the busy case on a read
326 			 * fault if the page is marked valid, but since such
327 			 * pages are typically already pmap'd, putting that
328 			 * special case in might be more effort then it is
329 			 * worth.  We cannot under any circumstances mess
330 			 * around with a vm_page_t->busy page except, perhaps,
331 			 * to pmap it.
332 			 */
333 			if ((fs.m->oflags & VPO_BUSY) || fs.m->busy) {
334 				/*
335 				 * Reference the page before unlocking and
336 				 * sleeping so that the page daemon is less
337 				 * likely to reclaim it.
338 				 */
339 				vm_page_lock_queues();
340 				vm_page_flag_set(fs.m, PG_REFERENCED);
341 				vm_page_unlock_queues();
342 				vm_page_unlock(fs.m);
343 				if (fs.object != fs.first_object) {
344 					if (!VM_OBJECT_TRYLOCK(
345 					    fs.first_object)) {
346 						VM_OBJECT_UNLOCK(fs.object);
347 						VM_OBJECT_LOCK(fs.first_object);
348 						VM_OBJECT_LOCK(fs.object);
349 					}
350 					vm_page_lock(fs.first_m);
351 					vm_page_free(fs.first_m);
352 					vm_page_unlock(fs.first_m);
353 					vm_object_pip_wakeup(fs.first_object);
354 					VM_OBJECT_UNLOCK(fs.first_object);
355 					fs.first_m = NULL;
356 				}
357 				unlock_map(&fs);
358 				if (fs.m == vm_page_lookup(fs.object,
359 				    fs.pindex)) {
360 					vm_page_sleep_if_busy(fs.m, TRUE,
361 					    "vmpfw");
362 				}
363 				vm_object_pip_wakeup(fs.object);
364 				VM_OBJECT_UNLOCK(fs.object);
365 				PCPU_INC(cnt.v_intrans);
366 				vm_object_deallocate(fs.first_object);
367 				goto RetryFault;
368 			}
369 			vm_pageq_remove(fs.m);
370 			vm_page_unlock(fs.m);
371 
372 			/*
373 			 * Mark page busy for other processes, and the
374 			 * pagedaemon.  If it still isn't completely valid
375 			 * (readable), jump to readrest, else break-out ( we
376 			 * found the page ).
377 			 */
378 			vm_page_busy(fs.m);
379 			if (fs.m->valid != VM_PAGE_BITS_ALL &&
380 				fs.m->object != kernel_object && fs.m->object != kmem_object) {
381 				goto readrest;
382 			}
383 
384 			break;
385 		}
386 
387 		/*
388 		 * Page is not resident, If this is the search termination
389 		 * or the pager might contain the page, allocate a new page.
390 		 */
391 		if (TRYPAGER || fs.object == fs.first_object) {
392 			if (fs.pindex >= fs.object->size) {
393 				unlock_and_deallocate(&fs);
394 				return (KERN_PROTECTION_FAILURE);
395 			}
396 
397 			/*
398 			 * Allocate a new page for this object/offset pair.
399 			 *
400 			 * Unlocked read of the p_flag is harmless. At
401 			 * worst, the P_KILLED might be not observed
402 			 * there, and allocation can fail, causing
403 			 * restart and new reading of the p_flag.
404 			 */
405 			fs.m = NULL;
406 			if (!vm_page_count_severe() || P_KILLED(curproc)) {
407 #if VM_NRESERVLEVEL > 0
408 				if ((fs.object->flags & OBJ_COLORED) == 0) {
409 					fs.object->flags |= OBJ_COLORED;
410 					fs.object->pg_color = atop(vaddr) -
411 					    fs.pindex;
412 				}
413 #endif
414 				alloc_req = P_KILLED(curproc) ?
415 				    VM_ALLOC_SYSTEM : VM_ALLOC_NORMAL;
416 				if (fs.object->type != OBJT_VNODE &&
417 				    fs.object->backing_object == NULL)
418 					alloc_req |= VM_ALLOC_ZERO;
419 				fs.m = vm_page_alloc(fs.object, fs.pindex,
420 				    alloc_req);
421 			}
422 			if (fs.m == NULL) {
423 				unlock_and_deallocate(&fs);
424 				VM_WAITPFAULT;
425 				goto RetryFault;
426 			} else if (fs.m->valid == VM_PAGE_BITS_ALL)
427 				break;
428 		}
429 
430 readrest:
431 		/*
432 		 * We have found a valid page or we have allocated a new page.
433 		 * The page thus may not be valid or may not be entirely
434 		 * valid.
435 		 *
436 		 * Attempt to fault-in the page if there is a chance that the
437 		 * pager has it, and potentially fault in additional pages
438 		 * at the same time.
439 		 */
440 		if (TRYPAGER) {
441 			int rv;
442 			int reqpage = 0;
443 			u_char behavior = vm_map_entry_behavior(fs.entry);
444 
445 			if (behavior == MAP_ENTRY_BEHAV_RANDOM ||
446 			    P_KILLED(curproc)) {
447 				ahead = 0;
448 				behind = 0;
449 			} else {
450 				behind = (vaddr - fs.entry->start) >> PAGE_SHIFT;
451 				if (behind > VM_FAULT_READ_BEHIND)
452 					behind = VM_FAULT_READ_BEHIND;
453 
454 				ahead = ((fs.entry->end - vaddr) >> PAGE_SHIFT) - 1;
455 				if (ahead > VM_FAULT_READ_AHEAD)
456 					ahead = VM_FAULT_READ_AHEAD;
457 			}
458 			is_first_object_locked = FALSE;
459 			if ((behavior == MAP_ENTRY_BEHAV_SEQUENTIAL ||
460 			     (behavior != MAP_ENTRY_BEHAV_RANDOM &&
461 			      fs.pindex >= fs.entry->lastr &&
462 			      fs.pindex < fs.entry->lastr + VM_FAULT_READ)) &&
463 			    (fs.first_object == fs.object ||
464 			     (is_first_object_locked = VM_OBJECT_TRYLOCK(fs.first_object))) &&
465 			    fs.first_object->type != OBJT_DEVICE &&
466 			    fs.first_object->type != OBJT_PHYS &&
467 			    fs.first_object->type != OBJT_SG) {
468 				vm_pindex_t firstpindex, tmppindex;
469 
470 				if (fs.first_pindex < 2 * VM_FAULT_READ)
471 					firstpindex = 0;
472 				else
473 					firstpindex = fs.first_pindex - 2 * VM_FAULT_READ;
474 
475 				/*
476 				 * note: partially valid pages cannot be
477 				 * included in the lookahead - NFS piecemeal
478 				 * writes will barf on it badly.
479 				 */
480 				for (tmppindex = fs.first_pindex - 1;
481 					tmppindex >= firstpindex;
482 					--tmppindex) {
483 					vm_page_t mt;
484 
485 					mt = vm_page_lookup(fs.first_object, tmppindex);
486 					if (mt == NULL || (mt->valid != VM_PAGE_BITS_ALL))
487 						break;
488 					if (mt->busy ||
489 					    (mt->oflags & VPO_BUSY))
490 						continue;
491 					vm_page_lock(mt);
492 					if (mt->hold_count ||
493 					    mt->wire_count) {
494 						vm_page_unlock(mt);
495 						continue;
496 					}
497 					pmap_remove_all(mt);
498 					if (mt->dirty != 0)
499 						vm_page_deactivate(mt);
500 					else
501 						vm_page_cache(mt);
502 					vm_page_unlock(mt);
503 				}
504 				ahead += behind;
505 				behind = 0;
506 			}
507 			if (is_first_object_locked)
508 				VM_OBJECT_UNLOCK(fs.first_object);
509 
510 			/*
511 			 * Call the pager to retrieve the data, if any, after
512 			 * releasing the lock on the map.  We hold a ref on
513 			 * fs.object and the pages are VPO_BUSY'd.
514 			 */
515 			unlock_map(&fs);
516 
517 vnode_lock:
518 			if (fs.object->type == OBJT_VNODE) {
519 				vp = fs.object->handle;
520 				if (vp == fs.vp)
521 					goto vnode_locked;
522 				else if (fs.vp != NULL) {
523 					vput(fs.vp);
524 					fs.vp = NULL;
525 				}
526 				locked = VOP_ISLOCKED(vp);
527 
528 				if (VFS_NEEDSGIANT(vp->v_mount) && !fs.vfslocked) {
529 					fs.vfslocked = 1;
530 					if (!mtx_trylock(&Giant)) {
531 						VM_OBJECT_UNLOCK(fs.object);
532 						mtx_lock(&Giant);
533 						VM_OBJECT_LOCK(fs.object);
534 						goto vnode_lock;
535 					}
536 				}
537 				if (locked != LK_EXCLUSIVE)
538 					locked = LK_SHARED;
539 				/* Do not sleep for vnode lock while fs.m is busy */
540 				error = vget(vp, locked | LK_CANRECURSE |
541 				    LK_NOWAIT, curthread);
542 				if (error != 0) {
543 					int vfslocked;
544 
545 					vfslocked = fs.vfslocked;
546 					fs.vfslocked = 0; /* Keep Giant */
547 					vhold(vp);
548 					release_page(&fs);
549 					unlock_and_deallocate(&fs);
550 					error = vget(vp, locked | LK_RETRY |
551 					    LK_CANRECURSE, curthread);
552 					vdrop(vp);
553 					fs.vp = vp;
554 					fs.vfslocked = vfslocked;
555 					KASSERT(error == 0,
556 					    ("vm_fault: vget failed"));
557 					goto RetryFault;
558 				}
559 				fs.vp = vp;
560 			}
561 vnode_locked:
562 			KASSERT(fs.vp == NULL || !fs.map->system_map,
563 			    ("vm_fault: vnode-backed object mapped by system map"));
564 
565 			/*
566 			 * now we find out if any other pages should be paged
567 			 * in at this time this routine checks to see if the
568 			 * pages surrounding this fault reside in the same
569 			 * object as the page for this fault.  If they do,
570 			 * then they are faulted in also into the object.  The
571 			 * array "marray" returned contains an array of
572 			 * vm_page_t structs where one of them is the
573 			 * vm_page_t passed to the routine.  The reqpage
574 			 * return value is the index into the marray for the
575 			 * vm_page_t passed to the routine.
576 			 *
577 			 * fs.m plus the additional pages are VPO_BUSY'd.
578 			 */
579 			faultcount = vm_fault_additional_pages(
580 			    fs.m, behind, ahead, marray, &reqpage);
581 
582 			rv = faultcount ?
583 			    vm_pager_get_pages(fs.object, marray, faultcount,
584 				reqpage) : VM_PAGER_FAIL;
585 
586 			if (rv == VM_PAGER_OK) {
587 				/*
588 				 * Found the page. Leave it busy while we play
589 				 * with it.
590 				 */
591 
592 				/*
593 				 * Relookup in case pager changed page. Pager
594 				 * is responsible for disposition of old page
595 				 * if moved.
596 				 */
597 				fs.m = vm_page_lookup(fs.object, fs.pindex);
598 				if (!fs.m) {
599 					unlock_and_deallocate(&fs);
600 					goto RetryFault;
601 				}
602 
603 				hardfault++;
604 				break; /* break to PAGE HAS BEEN FOUND */
605 			}
606 			/*
607 			 * Remove the bogus page (which does not exist at this
608 			 * object/offset); before doing so, we must get back
609 			 * our object lock to preserve our invariant.
610 			 *
611 			 * Also wake up any other process that may want to bring
612 			 * in this page.
613 			 *
614 			 * If this is the top-level object, we must leave the
615 			 * busy page to prevent another process from rushing
616 			 * past us, and inserting the page in that object at
617 			 * the same time that we are.
618 			 */
619 			if (rv == VM_PAGER_ERROR)
620 				printf("vm_fault: pager read error, pid %d (%s)\n",
621 				    curproc->p_pid, curproc->p_comm);
622 			/*
623 			 * Data outside the range of the pager or an I/O error
624 			 */
625 			/*
626 			 * XXX - the check for kernel_map is a kludge to work
627 			 * around having the machine panic on a kernel space
628 			 * fault w/ I/O error.
629 			 */
630 			if (((fs.map != kernel_map) && (rv == VM_PAGER_ERROR)) ||
631 				(rv == VM_PAGER_BAD)) {
632 				vm_page_lock(fs.m);
633 				vm_page_free(fs.m);
634 				vm_page_unlock(fs.m);
635 				fs.m = NULL;
636 				unlock_and_deallocate(&fs);
637 				return ((rv == VM_PAGER_ERROR) ? KERN_FAILURE : KERN_PROTECTION_FAILURE);
638 			}
639 			if (fs.object != fs.first_object) {
640 				vm_page_lock(fs.m);
641 				vm_page_free(fs.m);
642 				vm_page_unlock(fs.m);
643 				fs.m = NULL;
644 				/*
645 				 * XXX - we cannot just fall out at this
646 				 * point, m has been freed and is invalid!
647 				 */
648 			}
649 		}
650 
651 		/*
652 		 * We get here if the object has default pager (or unwiring)
653 		 * or the pager doesn't have the page.
654 		 */
655 		if (fs.object == fs.first_object)
656 			fs.first_m = fs.m;
657 
658 		/*
659 		 * Move on to the next object.  Lock the next object before
660 		 * unlocking the current one.
661 		 */
662 		fs.pindex += OFF_TO_IDX(fs.object->backing_object_offset);
663 		next_object = fs.object->backing_object;
664 		if (next_object == NULL) {
665 			/*
666 			 * If there's no object left, fill the page in the top
667 			 * object with zeros.
668 			 */
669 			if (fs.object != fs.first_object) {
670 				vm_object_pip_wakeup(fs.object);
671 				VM_OBJECT_UNLOCK(fs.object);
672 
673 				fs.object = fs.first_object;
674 				fs.pindex = fs.first_pindex;
675 				fs.m = fs.first_m;
676 				VM_OBJECT_LOCK(fs.object);
677 			}
678 			fs.first_m = NULL;
679 
680 			/*
681 			 * Zero the page if necessary and mark it valid.
682 			 */
683 			if ((fs.m->flags & PG_ZERO) == 0) {
684 				pmap_zero_page(fs.m);
685 			} else {
686 				PCPU_INC(cnt.v_ozfod);
687 			}
688 			PCPU_INC(cnt.v_zfod);
689 			fs.m->valid = VM_PAGE_BITS_ALL;
690 			break;	/* break to PAGE HAS BEEN FOUND */
691 		} else {
692 			KASSERT(fs.object != next_object,
693 			    ("object loop %p", next_object));
694 			VM_OBJECT_LOCK(next_object);
695 			vm_object_pip_add(next_object, 1);
696 			if (fs.object != fs.first_object)
697 				vm_object_pip_wakeup(fs.object);
698 			VM_OBJECT_UNLOCK(fs.object);
699 			fs.object = next_object;
700 		}
701 	}
702 
703 	KASSERT((fs.m->oflags & VPO_BUSY) != 0,
704 	    ("vm_fault: not busy after main loop"));
705 
706 	/*
707 	 * PAGE HAS BEEN FOUND. [Loop invariant still holds -- the object lock
708 	 * is held.]
709 	 */
710 
711 	/*
712 	 * If the page is being written, but isn't already owned by the
713 	 * top-level object, we have to copy it into a new page owned by the
714 	 * top-level object.
715 	 */
716 	if (fs.object != fs.first_object) {
717 		/*
718 		 * We only really need to copy if we want to write it.
719 		 */
720 		if ((fault_type & (VM_PROT_COPY | VM_PROT_WRITE)) != 0) {
721 			/*
722 			 * This allows pages to be virtually copied from a
723 			 * backing_object into the first_object, where the
724 			 * backing object has no other refs to it, and cannot
725 			 * gain any more refs.  Instead of a bcopy, we just
726 			 * move the page from the backing object to the
727 			 * first object.  Note that we must mark the page
728 			 * dirty in the first object so that it will go out
729 			 * to swap when needed.
730 			 */
731 			is_first_object_locked = FALSE;
732 			if (
733 				/*
734 				 * Only one shadow object
735 				 */
736 				(fs.object->shadow_count == 1) &&
737 				/*
738 				 * No COW refs, except us
739 				 */
740 				(fs.object->ref_count == 1) &&
741 				/*
742 				 * No one else can look this object up
743 				 */
744 				(fs.object->handle == NULL) &&
745 				/*
746 				 * No other ways to look the object up
747 				 */
748 				((fs.object->type == OBJT_DEFAULT) ||
749 				 (fs.object->type == OBJT_SWAP)) &&
750 			    (is_first_object_locked = VM_OBJECT_TRYLOCK(fs.first_object)) &&
751 				/*
752 				 * We don't chase down the shadow chain
753 				 */
754 			    fs.object == fs.first_object->backing_object) {
755 				/*
756 				 * get rid of the unnecessary page
757 				 */
758 				vm_page_lock(fs.first_m);
759 				vm_page_free(fs.first_m);
760 				vm_page_unlock(fs.first_m);
761 				/*
762 				 * grab the page and put it into the
763 				 * process'es object.  The page is
764 				 * automatically made dirty.
765 				 */
766 				vm_page_lock(fs.m);
767 				vm_page_rename(fs.m, fs.first_object, fs.first_pindex);
768 				vm_page_unlock(fs.m);
769 				vm_page_busy(fs.m);
770 				fs.first_m = fs.m;
771 				fs.m = NULL;
772 				PCPU_INC(cnt.v_cow_optim);
773 			} else {
774 				/*
775 				 * Oh, well, lets copy it.
776 				 */
777 				pmap_copy_page(fs.m, fs.first_m);
778 				fs.first_m->valid = VM_PAGE_BITS_ALL;
779 				if (wired && (fault_flags &
780 				    VM_FAULT_CHANGE_WIRING) == 0) {
781 					vm_page_lock(fs.first_m);
782 					vm_page_wire(fs.first_m);
783 					vm_page_unlock(fs.first_m);
784 
785 					vm_page_lock(fs.m);
786 					vm_page_unwire(fs.m, FALSE);
787 					vm_page_unlock(fs.m);
788 				}
789 				/*
790 				 * We no longer need the old page or object.
791 				 */
792 				release_page(&fs);
793 			}
794 			/*
795 			 * fs.object != fs.first_object due to above
796 			 * conditional
797 			 */
798 			vm_object_pip_wakeup(fs.object);
799 			VM_OBJECT_UNLOCK(fs.object);
800 			/*
801 			 * Only use the new page below...
802 			 */
803 			fs.object = fs.first_object;
804 			fs.pindex = fs.first_pindex;
805 			fs.m = fs.first_m;
806 			if (!is_first_object_locked)
807 				VM_OBJECT_LOCK(fs.object);
808 			PCPU_INC(cnt.v_cow_faults);
809 		} else {
810 			prot &= ~VM_PROT_WRITE;
811 		}
812 	}
813 
814 	/*
815 	 * We must verify that the maps have not changed since our last
816 	 * lookup.
817 	 */
818 	if (!fs.lookup_still_valid) {
819 		vm_object_t retry_object;
820 		vm_pindex_t retry_pindex;
821 		vm_prot_t retry_prot;
822 
823 		if (!vm_map_trylock_read(fs.map)) {
824 			release_page(&fs);
825 			unlock_and_deallocate(&fs);
826 			goto RetryFault;
827 		}
828 		fs.lookup_still_valid = TRUE;
829 		if (fs.map->timestamp != map_generation) {
830 			result = vm_map_lookup_locked(&fs.map, vaddr, fault_type,
831 			    &fs.entry, &retry_object, &retry_pindex, &retry_prot, &wired);
832 
833 			/*
834 			 * If we don't need the page any longer, put it on the inactive
835 			 * list (the easiest thing to do here).  If no one needs it,
836 			 * pageout will grab it eventually.
837 			 */
838 			if (result != KERN_SUCCESS) {
839 				release_page(&fs);
840 				unlock_and_deallocate(&fs);
841 
842 				/*
843 				 * If retry of map lookup would have blocked then
844 				 * retry fault from start.
845 				 */
846 				if (result == KERN_FAILURE)
847 					goto RetryFault;
848 				return (result);
849 			}
850 			if ((retry_object != fs.first_object) ||
851 			    (retry_pindex != fs.first_pindex)) {
852 				release_page(&fs);
853 				unlock_and_deallocate(&fs);
854 				goto RetryFault;
855 			}
856 
857 			/*
858 			 * Check whether the protection has changed or the object has
859 			 * been copied while we left the map unlocked. Changing from
860 			 * read to write permission is OK - we leave the page
861 			 * write-protected, and catch the write fault. Changing from
862 			 * write to read permission means that we can't mark the page
863 			 * write-enabled after all.
864 			 */
865 			prot &= retry_prot;
866 		}
867 	}
868 	/*
869 	 * If the page was filled by a pager, update the map entry's
870 	 * last read offset.  Since the pager does not return the
871 	 * actual set of pages that it read, this update is based on
872 	 * the requested set.  Typically, the requested and actual
873 	 * sets are the same.
874 	 *
875 	 * XXX The following assignment modifies the map
876 	 * without holding a write lock on it.
877 	 */
878 	if (hardfault)
879 		fs.entry->lastr = fs.pindex + faultcount - behind;
880 
881 	if (prot & VM_PROT_WRITE) {
882 		vm_object_set_writeable_dirty(fs.object);
883 
884 		/*
885 		 * If this is a NOSYNC mmap we do not want to set VPO_NOSYNC
886 		 * if the page is already dirty to prevent data written with
887 		 * the expectation of being synced from not being synced.
888 		 * Likewise if this entry does not request NOSYNC then make
889 		 * sure the page isn't marked NOSYNC.  Applications sharing
890 		 * data should use the same flags to avoid ping ponging.
891 		 */
892 		if (fs.entry->eflags & MAP_ENTRY_NOSYNC) {
893 			if (fs.m->dirty == 0)
894 				fs.m->oflags |= VPO_NOSYNC;
895 		} else {
896 			fs.m->oflags &= ~VPO_NOSYNC;
897 		}
898 
899 		/*
900 		 * If the fault is a write, we know that this page is being
901 		 * written NOW so dirty it explicitly to save on
902 		 * pmap_is_modified() calls later.
903 		 *
904 		 * Also tell the backing pager, if any, that it should remove
905 		 * any swap backing since the page is now dirty.
906 		 */
907 		if ((fault_type & VM_PROT_WRITE) != 0 &&
908 		    (fault_flags & VM_FAULT_CHANGE_WIRING) == 0) {
909 			vm_page_dirty(fs.m);
910 			vm_pager_page_unswapped(fs.m);
911 		}
912 	}
913 
914 	/*
915 	 * Page had better still be busy
916 	 */
917 	KASSERT(fs.m->oflags & VPO_BUSY,
918 		("vm_fault: page %p not busy!", fs.m));
919 	/*
920 	 * Page must be completely valid or it is not fit to
921 	 * map into user space.  vm_pager_get_pages() ensures this.
922 	 */
923 	KASSERT(fs.m->valid == VM_PAGE_BITS_ALL,
924 	    ("vm_fault: page %p partially invalid", fs.m));
925 	VM_OBJECT_UNLOCK(fs.object);
926 
927 	/*
928 	 * Put this page into the physical map.  We had to do the unlock above
929 	 * because pmap_enter() may sleep.  We don't put the page
930 	 * back on the active queue until later so that the pageout daemon
931 	 * won't find it (yet).
932 	 */
933 	pmap_enter(fs.map->pmap, vaddr, fault_type, fs.m, prot, wired);
934 	if ((fault_flags & VM_FAULT_CHANGE_WIRING) == 0 && wired == 0)
935 		vm_fault_prefault(fs.map->pmap, vaddr, fs.entry);
936 	VM_OBJECT_LOCK(fs.object);
937 	vm_page_lock(fs.m);
938 
939 	/*
940 	 * If the page is not wired down, then put it where the pageout daemon
941 	 * can find it.
942 	 */
943 	if (fault_flags & VM_FAULT_CHANGE_WIRING) {
944 		if (wired)
945 			vm_page_wire(fs.m);
946 		else
947 			vm_page_unwire(fs.m, 1);
948 	} else
949 		vm_page_activate(fs.m);
950 	vm_page_unlock(fs.m);
951 	vm_page_wakeup(fs.m);
952 
953 	/*
954 	 * Unlock everything, and return
955 	 */
956 	unlock_and_deallocate(&fs);
957 	if (hardfault)
958 		curthread->td_ru.ru_majflt++;
959 	else
960 		curthread->td_ru.ru_minflt++;
961 
962 	return (KERN_SUCCESS);
963 }
964 
965 /*
966  * vm_fault_prefault provides a quick way of clustering
967  * pagefaults into a processes address space.  It is a "cousin"
968  * of vm_map_pmap_enter, except it runs at page fault time instead
969  * of mmap time.
970  */
971 static void
972 vm_fault_prefault(pmap_t pmap, vm_offset_t addra, vm_map_entry_t entry)
973 {
974 	int i;
975 	vm_offset_t addr, starta;
976 	vm_pindex_t pindex;
977 	vm_page_t m;
978 	vm_object_t object;
979 
980 	if (pmap != vmspace_pmap(curthread->td_proc->p_vmspace))
981 		return;
982 
983 	object = entry->object.vm_object;
984 
985 	starta = addra - PFBAK * PAGE_SIZE;
986 	if (starta < entry->start) {
987 		starta = entry->start;
988 	} else if (starta > addra) {
989 		starta = 0;
990 	}
991 
992 	for (i = 0; i < PAGEORDER_SIZE; i++) {
993 		vm_object_t backing_object, lobject;
994 
995 		addr = addra + prefault_pageorder[i];
996 		if (addr > addra + (PFFOR * PAGE_SIZE))
997 			addr = 0;
998 
999 		if (addr < starta || addr >= entry->end)
1000 			continue;
1001 
1002 		if (!pmap_is_prefaultable(pmap, addr))
1003 			continue;
1004 
1005 		pindex = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT;
1006 		lobject = object;
1007 		VM_OBJECT_LOCK(lobject);
1008 		while ((m = vm_page_lookup(lobject, pindex)) == NULL &&
1009 		    lobject->type == OBJT_DEFAULT &&
1010 		    (backing_object = lobject->backing_object) != NULL) {
1011 			KASSERT((lobject->backing_object_offset & PAGE_MASK) ==
1012 			    0, ("vm_fault_prefault: unaligned object offset"));
1013 			pindex += lobject->backing_object_offset >> PAGE_SHIFT;
1014 			VM_OBJECT_LOCK(backing_object);
1015 			VM_OBJECT_UNLOCK(lobject);
1016 			lobject = backing_object;
1017 		}
1018 		/*
1019 		 * give-up when a page is not in memory
1020 		 */
1021 		if (m == NULL) {
1022 			VM_OBJECT_UNLOCK(lobject);
1023 			break;
1024 		}
1025 		if (m->valid == VM_PAGE_BITS_ALL &&
1026 		    (m->flags & PG_FICTITIOUS) == 0)
1027 			pmap_enter_quick(pmap, addr, m, entry->protection);
1028 		VM_OBJECT_UNLOCK(lobject);
1029 	}
1030 }
1031 
1032 /*
1033  *	vm_fault_quick:
1034  *
1035  *	Ensure that the requested virtual address, which may be in userland,
1036  *	is valid.  Fault-in the page if necessary.  Return -1 on failure.
1037  */
1038 int
1039 vm_fault_quick(caddr_t v, int prot)
1040 {
1041 	int r;
1042 
1043 	if (prot & VM_PROT_WRITE)
1044 		r = subyte(v, fubyte(v));
1045 	else
1046 		r = fubyte(v);
1047 	return(r);
1048 }
1049 
1050 /*
1051  *	vm_fault_wire:
1052  *
1053  *	Wire down a range of virtual addresses in a map.
1054  */
1055 int
1056 vm_fault_wire(vm_map_t map, vm_offset_t start, vm_offset_t end,
1057     boolean_t fictitious)
1058 {
1059 	vm_offset_t va;
1060 	int rv;
1061 
1062 	/*
1063 	 * We simulate a fault to get the page and enter it in the physical
1064 	 * map.  For user wiring, we only ask for read access on currently
1065 	 * read-only sections.
1066 	 */
1067 	for (va = start; va < end; va += PAGE_SIZE) {
1068 		rv = vm_fault(map, va, VM_PROT_NONE, VM_FAULT_CHANGE_WIRING);
1069 		if (rv) {
1070 			if (va != start)
1071 				vm_fault_unwire(map, start, va, fictitious);
1072 			return (rv);
1073 		}
1074 	}
1075 	return (KERN_SUCCESS);
1076 }
1077 
1078 /*
1079  *	vm_fault_unwire:
1080  *
1081  *	Unwire a range of virtual addresses in a map.
1082  */
1083 void
1084 vm_fault_unwire(vm_map_t map, vm_offset_t start, vm_offset_t end,
1085     boolean_t fictitious)
1086 {
1087 	vm_paddr_t pa;
1088 	vm_offset_t va;
1089 	vm_page_t m;
1090 	pmap_t pmap;
1091 
1092 	pmap = vm_map_pmap(map);
1093 
1094 	/*
1095 	 * Since the pages are wired down, we must be able to get their
1096 	 * mappings from the physical map system.
1097 	 */
1098 	for (va = start; va < end; va += PAGE_SIZE) {
1099 		pa = pmap_extract(pmap, va);
1100 		if (pa != 0) {
1101 			pmap_change_wiring(pmap, va, FALSE);
1102 			if (!fictitious) {
1103 				m = PHYS_TO_VM_PAGE(pa);
1104 				vm_page_lock(m);
1105 				vm_page_unwire(m, TRUE);
1106 				vm_page_unlock(m);
1107 			}
1108 		}
1109 	}
1110 }
1111 
1112 /*
1113  *	Routine:
1114  *		vm_fault_copy_entry
1115  *	Function:
1116  *		Create new shadow object backing dst_entry with private copy of
1117  *		all underlying pages. When src_entry is equal to dst_entry,
1118  *		function implements COW for wired-down map entry. Otherwise,
1119  *		it forks wired entry into dst_map.
1120  *
1121  *	In/out conditions:
1122  *		The source and destination maps must be locked for write.
1123  *		The source map entry must be wired down (or be a sharing map
1124  *		entry corresponding to a main map entry that is wired down).
1125  */
1126 void
1127 vm_fault_copy_entry(vm_map_t dst_map, vm_map_t src_map,
1128     vm_map_entry_t dst_entry, vm_map_entry_t src_entry,
1129     vm_ooffset_t *fork_charge)
1130 {
1131 	vm_object_t backing_object, dst_object, object, src_object;
1132 	vm_pindex_t dst_pindex, pindex, src_pindex;
1133 	vm_prot_t access, prot;
1134 	vm_offset_t vaddr;
1135 	vm_page_t dst_m;
1136 	vm_page_t src_m;
1137 	boolean_t src_readonly, upgrade;
1138 
1139 #ifdef	lint
1140 	src_map++;
1141 #endif	/* lint */
1142 
1143 	upgrade = src_entry == dst_entry;
1144 
1145 	src_object = src_entry->object.vm_object;
1146 	src_pindex = OFF_TO_IDX(src_entry->offset);
1147 	src_readonly = (src_entry->protection & VM_PROT_WRITE) == 0;
1148 
1149 	/*
1150 	 * Create the top-level object for the destination entry. (Doesn't
1151 	 * actually shadow anything - we copy the pages directly.)
1152 	 */
1153 	dst_object = vm_object_allocate(OBJT_DEFAULT,
1154 	    OFF_TO_IDX(dst_entry->end - dst_entry->start));
1155 #if VM_NRESERVLEVEL > 0
1156 	dst_object->flags |= OBJ_COLORED;
1157 	dst_object->pg_color = atop(dst_entry->start);
1158 #endif
1159 
1160 	VM_OBJECT_LOCK(dst_object);
1161 	KASSERT(upgrade || dst_entry->object.vm_object == NULL,
1162 	    ("vm_fault_copy_entry: vm_object not NULL"));
1163 	dst_entry->object.vm_object = dst_object;
1164 	dst_entry->offset = 0;
1165 	dst_object->charge = dst_entry->end - dst_entry->start;
1166 	if (fork_charge != NULL) {
1167 		KASSERT(dst_entry->uip == NULL,
1168 		    ("vm_fault_copy_entry: leaked swp charge"));
1169 		dst_object->uip = curthread->td_ucred->cr_ruidinfo;
1170 		uihold(dst_object->uip);
1171 		*fork_charge += dst_object->charge;
1172 	} else {
1173 		dst_object->uip = dst_entry->uip;
1174 		dst_entry->uip = NULL;
1175 	}
1176 	access = prot = dst_entry->protection;
1177 	/*
1178 	 * If not an upgrade, then enter the mappings in the pmap as
1179 	 * read and/or execute accesses.  Otherwise, enter them as
1180 	 * write accesses.
1181 	 *
1182 	 * A writeable large page mapping is only created if all of
1183 	 * the constituent small page mappings are modified. Marking
1184 	 * PTEs as modified on inception allows promotion to happen
1185 	 * without taking potentially large number of soft faults.
1186 	 */
1187 	if (!upgrade)
1188 		access &= ~VM_PROT_WRITE;
1189 
1190 	/*
1191 	 * Loop through all of the pages in the entry's range, copying each
1192 	 * one from the source object (it should be there) to the destination
1193 	 * object.
1194 	 */
1195 	for (vaddr = dst_entry->start, dst_pindex = 0;
1196 	    vaddr < dst_entry->end;
1197 	    vaddr += PAGE_SIZE, dst_pindex++) {
1198 
1199 		/*
1200 		 * Allocate a page in the destination object.
1201 		 */
1202 		do {
1203 			dst_m = vm_page_alloc(dst_object, dst_pindex,
1204 			    VM_ALLOC_NORMAL);
1205 			if (dst_m == NULL) {
1206 				VM_OBJECT_UNLOCK(dst_object);
1207 				VM_WAIT;
1208 				VM_OBJECT_LOCK(dst_object);
1209 			}
1210 		} while (dst_m == NULL);
1211 
1212 		/*
1213 		 * Find the page in the source object, and copy it in.
1214 		 * (Because the source is wired down, the page will be in
1215 		 * memory.)
1216 		 */
1217 		VM_OBJECT_LOCK(src_object);
1218 		object = src_object;
1219 		pindex = src_pindex + dst_pindex;
1220 		while ((src_m = vm_page_lookup(object, pindex)) == NULL &&
1221 		    src_readonly &&
1222 		    (backing_object = object->backing_object) != NULL) {
1223 			/*
1224 			 * Allow fallback to backing objects if we are reading.
1225 			 */
1226 			VM_OBJECT_LOCK(backing_object);
1227 			pindex += OFF_TO_IDX(object->backing_object_offset);
1228 			VM_OBJECT_UNLOCK(object);
1229 			object = backing_object;
1230 		}
1231 		if (src_m == NULL)
1232 			panic("vm_fault_copy_wired: page missing");
1233 		pmap_copy_page(src_m, dst_m);
1234 		VM_OBJECT_UNLOCK(object);
1235 		dst_m->valid = VM_PAGE_BITS_ALL;
1236 		VM_OBJECT_UNLOCK(dst_object);
1237 
1238 		/*
1239 		 * Enter it in the pmap. If a wired, copy-on-write
1240 		 * mapping is being replaced by a write-enabled
1241 		 * mapping, then wire that new mapping.
1242 		 */
1243 		pmap_enter(dst_map->pmap, vaddr, access, dst_m, prot, upgrade);
1244 
1245 		/*
1246 		 * Mark it no longer busy, and put it on the active list.
1247 		 */
1248 		VM_OBJECT_LOCK(dst_object);
1249 
1250 		if (upgrade) {
1251 			vm_page_lock(src_m);
1252 			vm_page_unwire(src_m, 0);
1253 			vm_page_unlock(src_m);
1254 
1255 			vm_page_lock(dst_m);
1256 			vm_page_wire(dst_m);
1257 			vm_page_unlock(dst_m);
1258 		} else {
1259 			vm_page_lock(dst_m);
1260 			vm_page_activate(dst_m);
1261 			vm_page_unlock(dst_m);
1262 		}
1263 		vm_page_wakeup(dst_m);
1264 	}
1265 	VM_OBJECT_UNLOCK(dst_object);
1266 	if (upgrade) {
1267 		dst_entry->eflags &= ~(MAP_ENTRY_COW | MAP_ENTRY_NEEDS_COPY);
1268 		vm_object_deallocate(src_object);
1269 	}
1270 }
1271 
1272 
1273 /*
1274  * This routine checks around the requested page for other pages that
1275  * might be able to be faulted in.  This routine brackets the viable
1276  * pages for the pages to be paged in.
1277  *
1278  * Inputs:
1279  *	m, rbehind, rahead
1280  *
1281  * Outputs:
1282  *  marray (array of vm_page_t), reqpage (index of requested page)
1283  *
1284  * Return value:
1285  *  number of pages in marray
1286  */
1287 static int
1288 vm_fault_additional_pages(m, rbehind, rahead, marray, reqpage)
1289 	vm_page_t m;
1290 	int rbehind;
1291 	int rahead;
1292 	vm_page_t *marray;
1293 	int *reqpage;
1294 {
1295 	int i,j;
1296 	vm_object_t object;
1297 	vm_pindex_t pindex, startpindex, endpindex, tpindex;
1298 	vm_page_t rtm;
1299 	int cbehind, cahead;
1300 
1301 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1302 
1303 	object = m->object;
1304 	pindex = m->pindex;
1305 	cbehind = cahead = 0;
1306 
1307 	/*
1308 	 * if the requested page is not available, then give up now
1309 	 */
1310 	if (!vm_pager_has_page(object, pindex, &cbehind, &cahead)) {
1311 		return 0;
1312 	}
1313 
1314 	if ((cbehind == 0) && (cahead == 0)) {
1315 		*reqpage = 0;
1316 		marray[0] = m;
1317 		return 1;
1318 	}
1319 
1320 	if (rahead > cahead) {
1321 		rahead = cahead;
1322 	}
1323 
1324 	if (rbehind > cbehind) {
1325 		rbehind = cbehind;
1326 	}
1327 
1328 	/*
1329 	 * scan backward for the read behind pages -- in memory
1330 	 */
1331 	if (pindex > 0) {
1332 		if (rbehind > pindex) {
1333 			rbehind = pindex;
1334 			startpindex = 0;
1335 		} else {
1336 			startpindex = pindex - rbehind;
1337 		}
1338 
1339 		if ((rtm = TAILQ_PREV(m, pglist, listq)) != NULL &&
1340 		    rtm->pindex >= startpindex)
1341 			startpindex = rtm->pindex + 1;
1342 
1343 		/* tpindex is unsigned; beware of numeric underflow. */
1344 		for (i = 0, tpindex = pindex - 1; tpindex >= startpindex &&
1345 		    tpindex < pindex; i++, tpindex--) {
1346 
1347 			rtm = vm_page_alloc(object, tpindex, VM_ALLOC_NORMAL |
1348 			    VM_ALLOC_IFNOTCACHED);
1349 			if (rtm == NULL) {
1350 				/*
1351 				 * Shift the allocated pages to the
1352 				 * beginning of the array.
1353 				 */
1354 				for (j = 0; j < i; j++) {
1355 					marray[j] = marray[j + tpindex + 1 -
1356 					    startpindex];
1357 				}
1358 				break;
1359 			}
1360 
1361 			marray[tpindex - startpindex] = rtm;
1362 		}
1363 	} else {
1364 		startpindex = 0;
1365 		i = 0;
1366 	}
1367 
1368 	marray[i] = m;
1369 	/* page offset of the required page */
1370 	*reqpage = i;
1371 
1372 	tpindex = pindex + 1;
1373 	i++;
1374 
1375 	/*
1376 	 * scan forward for the read ahead pages
1377 	 */
1378 	endpindex = tpindex + rahead;
1379 	if ((rtm = TAILQ_NEXT(m, listq)) != NULL && rtm->pindex < endpindex)
1380 		endpindex = rtm->pindex;
1381 	if (endpindex > object->size)
1382 		endpindex = object->size;
1383 
1384 	for (; tpindex < endpindex; i++, tpindex++) {
1385 
1386 		rtm = vm_page_alloc(object, tpindex, VM_ALLOC_NORMAL |
1387 		    VM_ALLOC_IFNOTCACHED);
1388 		if (rtm == NULL) {
1389 			break;
1390 		}
1391 
1392 		marray[i] = rtm;
1393 	}
1394 
1395 	/* return number of pages */
1396 	return i;
1397 }
1398