xref: /freebsd/sys/vm/vm_fault.c (revision d6b92ffa)
1 /*-
2  * Copyright (c) 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * Copyright (c) 1994 John S. Dyson
5  * All rights reserved.
6  * Copyright (c) 1994 David Greenman
7  * All rights reserved.
8  *
9  *
10  * This code is derived from software contributed to Berkeley by
11  * The Mach Operating System project at Carnegie-Mellon University.
12  *
13  * Redistribution and use in source and binary forms, with or without
14  * modification, are permitted provided that the following conditions
15  * are met:
16  * 1. Redistributions of source code must retain the above copyright
17  *    notice, this list of conditions and the following disclaimer.
18  * 2. Redistributions in binary form must reproduce the above copyright
19  *    notice, this list of conditions and the following disclaimer in the
20  *    documentation and/or other materials provided with the distribution.
21  * 3. All advertising materials mentioning features or use of this software
22  *    must display the following acknowledgement:
23  *	This product includes software developed by the University of
24  *	California, Berkeley and its contributors.
25  * 4. Neither the name of the University nor the names of its contributors
26  *    may be used to endorse or promote products derived from this software
27  *    without specific prior written permission.
28  *
29  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39  * SUCH DAMAGE.
40  *
41  *	from: @(#)vm_fault.c	8.4 (Berkeley) 1/12/94
42  *
43  *
44  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
45  * All rights reserved.
46  *
47  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
48  *
49  * Permission to use, copy, modify and distribute this software and
50  * its documentation is hereby granted, provided that both the copyright
51  * notice and this permission notice appear in all copies of the
52  * software, derivative works or modified versions, and any portions
53  * thereof, and that both notices appear in supporting documentation.
54  *
55  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
56  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
57  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
58  *
59  * Carnegie Mellon requests users of this software to return to
60  *
61  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
62  *  School of Computer Science
63  *  Carnegie Mellon University
64  *  Pittsburgh PA 15213-3890
65  *
66  * any improvements or extensions that they make and grant Carnegie the
67  * rights to redistribute these changes.
68  */
69 
70 /*
71  *	Page fault handling module.
72  */
73 
74 #include <sys/cdefs.h>
75 __FBSDID("$FreeBSD$");
76 
77 #include "opt_ktrace.h"
78 #include "opt_vm.h"
79 
80 #include <sys/param.h>
81 #include <sys/systm.h>
82 #include <sys/kernel.h>
83 #include <sys/lock.h>
84 #include <sys/mman.h>
85 #include <sys/proc.h>
86 #include <sys/racct.h>
87 #include <sys/resourcevar.h>
88 #include <sys/rwlock.h>
89 #include <sys/sysctl.h>
90 #include <sys/vmmeter.h>
91 #include <sys/vnode.h>
92 #ifdef KTRACE
93 #include <sys/ktrace.h>
94 #endif
95 
96 #include <vm/vm.h>
97 #include <vm/vm_param.h>
98 #include <vm/pmap.h>
99 #include <vm/vm_map.h>
100 #include <vm/vm_object.h>
101 #include <vm/vm_page.h>
102 #include <vm/vm_pageout.h>
103 #include <vm/vm_kern.h>
104 #include <vm/vm_pager.h>
105 #include <vm/vm_extern.h>
106 #include <vm/vm_reserv.h>
107 
108 #define PFBAK 4
109 #define PFFOR 4
110 
111 #define	VM_FAULT_READ_DEFAULT	(1 + VM_FAULT_READ_AHEAD_INIT)
112 #define	VM_FAULT_READ_MAX	(1 + VM_FAULT_READ_AHEAD_MAX)
113 
114 #define	VM_FAULT_DONTNEED_MIN	1048576
115 
116 struct faultstate {
117 	vm_page_t m;
118 	vm_object_t object;
119 	vm_pindex_t pindex;
120 	vm_page_t first_m;
121 	vm_object_t	first_object;
122 	vm_pindex_t first_pindex;
123 	vm_map_t map;
124 	vm_map_entry_t entry;
125 	int map_generation;
126 	bool lookup_still_valid;
127 	struct vnode *vp;
128 };
129 
130 static void vm_fault_dontneed(const struct faultstate *fs, vm_offset_t vaddr,
131 	    int ahead);
132 static void vm_fault_prefault(const struct faultstate *fs, vm_offset_t addra,
133 	    int backward, int forward);
134 
135 static inline void
136 release_page(struct faultstate *fs)
137 {
138 
139 	vm_page_xunbusy(fs->m);
140 	vm_page_lock(fs->m);
141 	vm_page_deactivate(fs->m);
142 	vm_page_unlock(fs->m);
143 	fs->m = NULL;
144 }
145 
146 static inline void
147 unlock_map(struct faultstate *fs)
148 {
149 
150 	if (fs->lookup_still_valid) {
151 		vm_map_lookup_done(fs->map, fs->entry);
152 		fs->lookup_still_valid = false;
153 	}
154 }
155 
156 static void
157 unlock_vp(struct faultstate *fs)
158 {
159 
160 	if (fs->vp != NULL) {
161 		vput(fs->vp);
162 		fs->vp = NULL;
163 	}
164 }
165 
166 static void
167 unlock_and_deallocate(struct faultstate *fs)
168 {
169 
170 	vm_object_pip_wakeup(fs->object);
171 	VM_OBJECT_WUNLOCK(fs->object);
172 	if (fs->object != fs->first_object) {
173 		VM_OBJECT_WLOCK(fs->first_object);
174 		vm_page_lock(fs->first_m);
175 		vm_page_free(fs->first_m);
176 		vm_page_unlock(fs->first_m);
177 		vm_object_pip_wakeup(fs->first_object);
178 		VM_OBJECT_WUNLOCK(fs->first_object);
179 		fs->first_m = NULL;
180 	}
181 	vm_object_deallocate(fs->first_object);
182 	unlock_map(fs);
183 	unlock_vp(fs);
184 }
185 
186 static void
187 vm_fault_dirty(vm_map_entry_t entry, vm_page_t m, vm_prot_t prot,
188     vm_prot_t fault_type, int fault_flags, bool set_wd)
189 {
190 	bool need_dirty;
191 
192 	if (((prot & VM_PROT_WRITE) == 0 &&
193 	    (fault_flags & VM_FAULT_DIRTY) == 0) ||
194 	    (m->oflags & VPO_UNMANAGED) != 0)
195 		return;
196 
197 	VM_OBJECT_ASSERT_LOCKED(m->object);
198 
199 	need_dirty = ((fault_type & VM_PROT_WRITE) != 0 &&
200 	    (fault_flags & VM_FAULT_WIRE) == 0) ||
201 	    (fault_flags & VM_FAULT_DIRTY) != 0;
202 
203 	if (set_wd)
204 		vm_object_set_writeable_dirty(m->object);
205 	else
206 		/*
207 		 * If two callers of vm_fault_dirty() with set_wd ==
208 		 * FALSE, one for the map entry with MAP_ENTRY_NOSYNC
209 		 * flag set, other with flag clear, race, it is
210 		 * possible for the no-NOSYNC thread to see m->dirty
211 		 * != 0 and not clear VPO_NOSYNC.  Take vm_page lock
212 		 * around manipulation of VPO_NOSYNC and
213 		 * vm_page_dirty() call, to avoid the race and keep
214 		 * m->oflags consistent.
215 		 */
216 		vm_page_lock(m);
217 
218 	/*
219 	 * If this is a NOSYNC mmap we do not want to set VPO_NOSYNC
220 	 * if the page is already dirty to prevent data written with
221 	 * the expectation of being synced from not being synced.
222 	 * Likewise if this entry does not request NOSYNC then make
223 	 * sure the page isn't marked NOSYNC.  Applications sharing
224 	 * data should use the same flags to avoid ping ponging.
225 	 */
226 	if ((entry->eflags & MAP_ENTRY_NOSYNC) != 0) {
227 		if (m->dirty == 0) {
228 			m->oflags |= VPO_NOSYNC;
229 		}
230 	} else {
231 		m->oflags &= ~VPO_NOSYNC;
232 	}
233 
234 	/*
235 	 * If the fault is a write, we know that this page is being
236 	 * written NOW so dirty it explicitly to save on
237 	 * pmap_is_modified() calls later.
238 	 *
239 	 * Also tell the backing pager, if any, that it should remove
240 	 * any swap backing since the page is now dirty.
241 	 */
242 	if (need_dirty)
243 		vm_page_dirty(m);
244 	if (!set_wd)
245 		vm_page_unlock(m);
246 	if (need_dirty)
247 		vm_pager_page_unswapped(m);
248 }
249 
250 static void
251 vm_fault_fill_hold(vm_page_t *m_hold, vm_page_t m)
252 {
253 
254 	if (m_hold != NULL) {
255 		*m_hold = m;
256 		vm_page_lock(m);
257 		vm_page_hold(m);
258 		vm_page_unlock(m);
259 	}
260 }
261 
262 /*
263  * Unlocks fs.first_object and fs.map on success.
264  */
265 static int
266 vm_fault_soft_fast(struct faultstate *fs, vm_offset_t vaddr, vm_prot_t prot,
267     int fault_type, int fault_flags, boolean_t wired, vm_page_t *m_hold)
268 {
269 	vm_page_t m;
270 	int rv;
271 
272 	MPASS(fs->vp == NULL);
273 	m = vm_page_lookup(fs->first_object, fs->first_pindex);
274 	/* A busy page can be mapped for read|execute access. */
275 	if (m == NULL || ((prot & VM_PROT_WRITE) != 0 &&
276 	    vm_page_busied(m)) || m->valid != VM_PAGE_BITS_ALL)
277 		return (KERN_FAILURE);
278 	rv = pmap_enter(fs->map->pmap, vaddr, m, prot, fault_type |
279 	    PMAP_ENTER_NOSLEEP | (wired ? PMAP_ENTER_WIRED : 0), 0);
280 	if (rv != KERN_SUCCESS)
281 		return (rv);
282 	vm_fault_fill_hold(m_hold, m);
283 	vm_fault_dirty(fs->entry, m, prot, fault_type, fault_flags, false);
284 	VM_OBJECT_RUNLOCK(fs->first_object);
285 	if (!wired)
286 		vm_fault_prefault(fs, vaddr, PFBAK, PFFOR);
287 	vm_map_lookup_done(fs->map, fs->entry);
288 	curthread->td_ru.ru_minflt++;
289 	return (KERN_SUCCESS);
290 }
291 
292 static void
293 vm_fault_restore_map_lock(struct faultstate *fs)
294 {
295 
296 	VM_OBJECT_ASSERT_WLOCKED(fs->first_object);
297 	MPASS(fs->first_object->paging_in_progress > 0);
298 
299 	if (!vm_map_trylock_read(fs->map)) {
300 		VM_OBJECT_WUNLOCK(fs->first_object);
301 		vm_map_lock_read(fs->map);
302 		VM_OBJECT_WLOCK(fs->first_object);
303 	}
304 	fs->lookup_still_valid = true;
305 }
306 
307 static void
308 vm_fault_populate_check_page(vm_page_t m)
309 {
310 
311 	/*
312 	 * Check each page to ensure that the pager is obeying the
313 	 * interface: the page must be installed in the object, fully
314 	 * valid, and exclusively busied.
315 	 */
316 	MPASS(m != NULL);
317 	MPASS(m->valid == VM_PAGE_BITS_ALL);
318 	MPASS(vm_page_xbusied(m));
319 }
320 
321 static void
322 vm_fault_populate_cleanup(vm_object_t object, vm_pindex_t first,
323     vm_pindex_t last)
324 {
325 	vm_page_t m;
326 	vm_pindex_t pidx;
327 
328 	VM_OBJECT_ASSERT_WLOCKED(object);
329 	MPASS(first <= last);
330 	for (pidx = first, m = vm_page_lookup(object, pidx);
331 	    pidx <= last; pidx++, m = vm_page_next(m)) {
332 		vm_fault_populate_check_page(m);
333 		vm_page_lock(m);
334 		vm_page_deactivate(m);
335 		vm_page_unlock(m);
336 		vm_page_xunbusy(m);
337 	}
338 }
339 
340 static int
341 vm_fault_populate(struct faultstate *fs, vm_offset_t vaddr, vm_prot_t prot,
342     int fault_type, int fault_flags, boolean_t wired, vm_page_t *m_hold)
343 {
344 	vm_page_t m;
345 	vm_pindex_t map_first, map_last, pager_first, pager_last, pidx;
346 	int rv;
347 
348 	MPASS(fs->object == fs->first_object);
349 	VM_OBJECT_ASSERT_WLOCKED(fs->first_object);
350 	MPASS(fs->first_object->paging_in_progress > 0);
351 	MPASS(fs->first_object->backing_object == NULL);
352 	MPASS(fs->lookup_still_valid);
353 
354 	pager_first = OFF_TO_IDX(fs->entry->offset);
355 	pager_last = pager_first + atop(fs->entry->end - fs->entry->start) - 1;
356 	unlock_map(fs);
357 	unlock_vp(fs);
358 
359 	/*
360 	 * Call the pager (driver) populate() method.
361 	 *
362 	 * There is no guarantee that the method will be called again
363 	 * if the current fault is for read, and a future fault is
364 	 * for write.  Report the entry's maximum allowed protection
365 	 * to the driver.
366 	 */
367 	rv = vm_pager_populate(fs->first_object, fs->first_pindex,
368 	    fault_type, fs->entry->max_protection, &pager_first, &pager_last);
369 
370 	VM_OBJECT_ASSERT_WLOCKED(fs->first_object);
371 	if (rv == VM_PAGER_BAD) {
372 		/*
373 		 * VM_PAGER_BAD is the backdoor for a pager to request
374 		 * normal fault handling.
375 		 */
376 		vm_fault_restore_map_lock(fs);
377 		if (fs->map->timestamp != fs->map_generation)
378 			return (KERN_RESOURCE_SHORTAGE); /* RetryFault */
379 		return (KERN_NOT_RECEIVER);
380 	}
381 	if (rv != VM_PAGER_OK)
382 		return (KERN_FAILURE); /* AKA SIGSEGV */
383 
384 	/* Ensure that the driver is obeying the interface. */
385 	MPASS(pager_first <= pager_last);
386 	MPASS(fs->first_pindex <= pager_last);
387 	MPASS(fs->first_pindex >= pager_first);
388 	MPASS(pager_last < fs->first_object->size);
389 
390 	vm_fault_restore_map_lock(fs);
391 	if (fs->map->timestamp != fs->map_generation) {
392 		vm_fault_populate_cleanup(fs->first_object, pager_first,
393 		    pager_last);
394 		return (KERN_RESOURCE_SHORTAGE); /* RetryFault */
395 	}
396 
397 	/*
398 	 * The map is unchanged after our last unlock.  Process the fault.
399 	 *
400 	 * The range [pager_first, pager_last] that is given to the
401 	 * pager is only a hint.  The pager may populate any range
402 	 * within the object that includes the requested page index.
403 	 * In case the pager expanded the range, clip it to fit into
404 	 * the map entry.
405 	 */
406 	map_first = OFF_TO_IDX(fs->entry->offset);
407 	if (map_first > pager_first) {
408 		vm_fault_populate_cleanup(fs->first_object, pager_first,
409 		    map_first - 1);
410 		pager_first = map_first;
411 	}
412 	map_last = map_first + atop(fs->entry->end - fs->entry->start) - 1;
413 	if (map_last < pager_last) {
414 		vm_fault_populate_cleanup(fs->first_object, map_last + 1,
415 		    pager_last);
416 		pager_last = map_last;
417 	}
418 	for (pidx = pager_first, m = vm_page_lookup(fs->first_object, pidx);
419 	    pidx <= pager_last; pidx++, m = vm_page_next(m)) {
420 		vm_fault_populate_check_page(m);
421 		vm_fault_dirty(fs->entry, m, prot, fault_type, fault_flags,
422 		    true);
423 		VM_OBJECT_WUNLOCK(fs->first_object);
424 		pmap_enter(fs->map->pmap, fs->entry->start + IDX_TO_OFF(pidx) -
425 		    fs->entry->offset, m, prot, fault_type | (wired ?
426 		    PMAP_ENTER_WIRED : 0), 0);
427 		VM_OBJECT_WLOCK(fs->first_object);
428 		if (pidx == fs->first_pindex)
429 			vm_fault_fill_hold(m_hold, m);
430 		vm_page_lock(m);
431 		if ((fault_flags & VM_FAULT_WIRE) != 0) {
432 			KASSERT(wired, ("VM_FAULT_WIRE && !wired"));
433 			vm_page_wire(m);
434 		} else {
435 			vm_page_activate(m);
436 		}
437 		vm_page_unlock(m);
438 		vm_page_xunbusy(m);
439 	}
440 	curthread->td_ru.ru_majflt++;
441 	return (KERN_SUCCESS);
442 }
443 
444 /*
445  *	vm_fault:
446  *
447  *	Handle a page fault occurring at the given address,
448  *	requiring the given permissions, in the map specified.
449  *	If successful, the page is inserted into the
450  *	associated physical map.
451  *
452  *	NOTE: the given address should be truncated to the
453  *	proper page address.
454  *
455  *	KERN_SUCCESS is returned if the page fault is handled; otherwise,
456  *	a standard error specifying why the fault is fatal is returned.
457  *
458  *	The map in question must be referenced, and remains so.
459  *	Caller may hold no locks.
460  */
461 int
462 vm_fault(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
463     int fault_flags)
464 {
465 	struct thread *td;
466 	int result;
467 
468 	td = curthread;
469 	if ((td->td_pflags & TDP_NOFAULTING) != 0)
470 		return (KERN_PROTECTION_FAILURE);
471 #ifdef KTRACE
472 	if (map != kernel_map && KTRPOINT(td, KTR_FAULT))
473 		ktrfault(vaddr, fault_type);
474 #endif
475 	result = vm_fault_hold(map, trunc_page(vaddr), fault_type, fault_flags,
476 	    NULL);
477 #ifdef KTRACE
478 	if (map != kernel_map && KTRPOINT(td, KTR_FAULTEND))
479 		ktrfaultend(result);
480 #endif
481 	return (result);
482 }
483 
484 int
485 vm_fault_hold(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
486     int fault_flags, vm_page_t *m_hold)
487 {
488 	struct faultstate fs;
489 	struct vnode *vp;
490 	vm_object_t next_object, retry_object;
491 	vm_offset_t e_end, e_start;
492 	vm_pindex_t retry_pindex;
493 	vm_prot_t prot, retry_prot;
494 	int ahead, alloc_req, behind, cluster_offset, error, era, faultcount;
495 	int locked, nera, result, rv;
496 	u_char behavior;
497 	boolean_t wired;	/* Passed by reference. */
498 	bool dead, hardfault, is_first_object_locked;
499 
500 	VM_CNT_INC(v_vm_faults);
501 	fs.vp = NULL;
502 	faultcount = 0;
503 	nera = -1;
504 	hardfault = false;
505 
506 RetryFault:;
507 
508 	/*
509 	 * Find the backing store object and offset into it to begin the
510 	 * search.
511 	 */
512 	fs.map = map;
513 	result = vm_map_lookup(&fs.map, vaddr, fault_type |
514 	    VM_PROT_FAULT_LOOKUP, &fs.entry, &fs.first_object,
515 	    &fs.first_pindex, &prot, &wired);
516 	if (result != KERN_SUCCESS) {
517 		unlock_vp(&fs);
518 		return (result);
519 	}
520 
521 	fs.map_generation = fs.map->timestamp;
522 
523 	if (fs.entry->eflags & MAP_ENTRY_NOFAULT) {
524 		panic("%s: fault on nofault entry, addr: %#lx",
525 		    __func__, (u_long)vaddr);
526 	}
527 
528 	if (fs.entry->eflags & MAP_ENTRY_IN_TRANSITION &&
529 	    fs.entry->wiring_thread != curthread) {
530 		vm_map_unlock_read(fs.map);
531 		vm_map_lock(fs.map);
532 		if (vm_map_lookup_entry(fs.map, vaddr, &fs.entry) &&
533 		    (fs.entry->eflags & MAP_ENTRY_IN_TRANSITION)) {
534 			unlock_vp(&fs);
535 			fs.entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
536 			vm_map_unlock_and_wait(fs.map, 0);
537 		} else
538 			vm_map_unlock(fs.map);
539 		goto RetryFault;
540 	}
541 
542 	MPASS((fs.entry->eflags & MAP_ENTRY_GUARD) == 0);
543 
544 	if (wired)
545 		fault_type = prot | (fault_type & VM_PROT_COPY);
546 	else
547 		KASSERT((fault_flags & VM_FAULT_WIRE) == 0,
548 		    ("!wired && VM_FAULT_WIRE"));
549 
550 	/*
551 	 * Try to avoid lock contention on the top-level object through
552 	 * special-case handling of some types of page faults, specifically,
553 	 * those that are both (1) mapping an existing page from the top-
554 	 * level object and (2) not having to mark that object as containing
555 	 * dirty pages.  Under these conditions, a read lock on the top-level
556 	 * object suffices, allowing multiple page faults of a similar type to
557 	 * run in parallel on the same top-level object.
558 	 */
559 	if (fs.vp == NULL /* avoid locked vnode leak */ &&
560 	    (fault_flags & (VM_FAULT_WIRE | VM_FAULT_DIRTY)) == 0 &&
561 	    /* avoid calling vm_object_set_writeable_dirty() */
562 	    ((prot & VM_PROT_WRITE) == 0 ||
563 	    (fs.first_object->type != OBJT_VNODE &&
564 	    (fs.first_object->flags & OBJ_TMPFS_NODE) == 0) ||
565 	    (fs.first_object->flags & OBJ_MIGHTBEDIRTY) != 0)) {
566 		VM_OBJECT_RLOCK(fs.first_object);
567 		if ((prot & VM_PROT_WRITE) == 0 ||
568 		    (fs.first_object->type != OBJT_VNODE &&
569 		    (fs.first_object->flags & OBJ_TMPFS_NODE) == 0) ||
570 		    (fs.first_object->flags & OBJ_MIGHTBEDIRTY) != 0) {
571 			rv = vm_fault_soft_fast(&fs, vaddr, prot, fault_type,
572 			    fault_flags, wired, m_hold);
573 			if (rv == KERN_SUCCESS)
574 				return (rv);
575 		}
576 		if (!VM_OBJECT_TRYUPGRADE(fs.first_object)) {
577 			VM_OBJECT_RUNLOCK(fs.first_object);
578 			VM_OBJECT_WLOCK(fs.first_object);
579 		}
580 	} else {
581 		VM_OBJECT_WLOCK(fs.first_object);
582 	}
583 
584 	/*
585 	 * Make a reference to this object to prevent its disposal while we
586 	 * are messing with it.  Once we have the reference, the map is free
587 	 * to be diddled.  Since objects reference their shadows (and copies),
588 	 * they will stay around as well.
589 	 *
590 	 * Bump the paging-in-progress count to prevent size changes (e.g.
591 	 * truncation operations) during I/O.
592 	 */
593 	vm_object_reference_locked(fs.first_object);
594 	vm_object_pip_add(fs.first_object, 1);
595 
596 	fs.lookup_still_valid = true;
597 
598 	fs.first_m = NULL;
599 
600 	/*
601 	 * Search for the page at object/offset.
602 	 */
603 	fs.object = fs.first_object;
604 	fs.pindex = fs.first_pindex;
605 	while (TRUE) {
606 		/*
607 		 * If the object is marked for imminent termination,
608 		 * we retry here, since the collapse pass has raced
609 		 * with us.  Otherwise, if we see terminally dead
610 		 * object, return fail.
611 		 */
612 		if ((fs.object->flags & OBJ_DEAD) != 0) {
613 			dead = fs.object->type == OBJT_DEAD;
614 			unlock_and_deallocate(&fs);
615 			if (dead)
616 				return (KERN_PROTECTION_FAILURE);
617 			pause("vmf_de", 1);
618 			goto RetryFault;
619 		}
620 
621 		/*
622 		 * See if page is resident
623 		 */
624 		fs.m = vm_page_lookup(fs.object, fs.pindex);
625 		if (fs.m != NULL) {
626 			/*
627 			 * Wait/Retry if the page is busy.  We have to do this
628 			 * if the page is either exclusive or shared busy
629 			 * because the vm_pager may be using read busy for
630 			 * pageouts (and even pageins if it is the vnode
631 			 * pager), and we could end up trying to pagein and
632 			 * pageout the same page simultaneously.
633 			 *
634 			 * We can theoretically allow the busy case on a read
635 			 * fault if the page is marked valid, but since such
636 			 * pages are typically already pmap'd, putting that
637 			 * special case in might be more effort then it is
638 			 * worth.  We cannot under any circumstances mess
639 			 * around with a shared busied page except, perhaps,
640 			 * to pmap it.
641 			 */
642 			if (vm_page_busied(fs.m)) {
643 				/*
644 				 * Reference the page before unlocking and
645 				 * sleeping so that the page daemon is less
646 				 * likely to reclaim it.
647 				 */
648 				vm_page_aflag_set(fs.m, PGA_REFERENCED);
649 				if (fs.object != fs.first_object) {
650 					if (!VM_OBJECT_TRYWLOCK(
651 					    fs.first_object)) {
652 						VM_OBJECT_WUNLOCK(fs.object);
653 						VM_OBJECT_WLOCK(fs.first_object);
654 						VM_OBJECT_WLOCK(fs.object);
655 					}
656 					vm_page_lock(fs.first_m);
657 					vm_page_free(fs.first_m);
658 					vm_page_unlock(fs.first_m);
659 					vm_object_pip_wakeup(fs.first_object);
660 					VM_OBJECT_WUNLOCK(fs.first_object);
661 					fs.first_m = NULL;
662 				}
663 				unlock_map(&fs);
664 				if (fs.m == vm_page_lookup(fs.object,
665 				    fs.pindex)) {
666 					vm_page_sleep_if_busy(fs.m, "vmpfw");
667 				}
668 				vm_object_pip_wakeup(fs.object);
669 				VM_OBJECT_WUNLOCK(fs.object);
670 				VM_CNT_INC(v_intrans);
671 				vm_object_deallocate(fs.first_object);
672 				goto RetryFault;
673 			}
674 			vm_page_lock(fs.m);
675 			vm_page_remque(fs.m);
676 			vm_page_unlock(fs.m);
677 
678 			/*
679 			 * Mark page busy for other processes, and the
680 			 * pagedaemon.  If it still isn't completely valid
681 			 * (readable), jump to readrest, else break-out ( we
682 			 * found the page ).
683 			 */
684 			vm_page_xbusy(fs.m);
685 			if (fs.m->valid != VM_PAGE_BITS_ALL)
686 				goto readrest;
687 			break;
688 		}
689 		KASSERT(fs.m == NULL, ("fs.m should be NULL, not %p", fs.m));
690 
691 		/*
692 		 * Page is not resident.  If the pager might contain the page
693 		 * or this is the beginning of the search, allocate a new
694 		 * page.  (Default objects are zero-fill, so there is no real
695 		 * pager for them.)
696 		 */
697 		if (fs.object->type != OBJT_DEFAULT ||
698 		    fs.object == fs.first_object) {
699 			if (fs.pindex >= fs.object->size) {
700 				unlock_and_deallocate(&fs);
701 				return (KERN_PROTECTION_FAILURE);
702 			}
703 
704 			if (fs.object == fs.first_object &&
705 			    (fs.first_object->flags & OBJ_POPULATE) != 0 &&
706 			    fs.first_object->shadow_count == 0) {
707 				rv = vm_fault_populate(&fs, vaddr, prot,
708 				    fault_type, fault_flags, wired, m_hold);
709 				switch (rv) {
710 				case KERN_SUCCESS:
711 				case KERN_FAILURE:
712 					unlock_and_deallocate(&fs);
713 					return (rv);
714 				case KERN_RESOURCE_SHORTAGE:
715 					unlock_and_deallocate(&fs);
716 					goto RetryFault;
717 				case KERN_NOT_RECEIVER:
718 					/*
719 					 * Pager's populate() method
720 					 * returned VM_PAGER_BAD.
721 					 */
722 					break;
723 				default:
724 					panic("inconsistent return codes");
725 				}
726 			}
727 
728 			/*
729 			 * Allocate a new page for this object/offset pair.
730 			 *
731 			 * Unlocked read of the p_flag is harmless. At
732 			 * worst, the P_KILLED might be not observed
733 			 * there, and allocation can fail, causing
734 			 * restart and new reading of the p_flag.
735 			 */
736 			if (!vm_page_count_severe() || P_KILLED(curproc)) {
737 #if VM_NRESERVLEVEL > 0
738 				vm_object_color(fs.object, atop(vaddr) -
739 				    fs.pindex);
740 #endif
741 				alloc_req = P_KILLED(curproc) ?
742 				    VM_ALLOC_SYSTEM : VM_ALLOC_NORMAL;
743 				if (fs.object->type != OBJT_VNODE &&
744 				    fs.object->backing_object == NULL)
745 					alloc_req |= VM_ALLOC_ZERO;
746 				fs.m = vm_page_alloc(fs.object, fs.pindex,
747 				    alloc_req);
748 			}
749 			if (fs.m == NULL) {
750 				unlock_and_deallocate(&fs);
751 				VM_WAITPFAULT;
752 				goto RetryFault;
753 			}
754 		}
755 
756 readrest:
757 		/*
758 		 * At this point, we have either allocated a new page or found
759 		 * an existing page that is only partially valid.
760 		 *
761 		 * We hold a reference on the current object and the page is
762 		 * exclusive busied.
763 		 */
764 
765 		/*
766 		 * If the pager for the current object might have the page,
767 		 * then determine the number of additional pages to read and
768 		 * potentially reprioritize previously read pages for earlier
769 		 * reclamation.  These operations should only be performed
770 		 * once per page fault.  Even if the current pager doesn't
771 		 * have the page, the number of additional pages to read will
772 		 * apply to subsequent objects in the shadow chain.
773 		 */
774 		if (fs.object->type != OBJT_DEFAULT && nera == -1 &&
775 		    !P_KILLED(curproc)) {
776 			KASSERT(fs.lookup_still_valid, ("map unlocked"));
777 			era = fs.entry->read_ahead;
778 			behavior = vm_map_entry_behavior(fs.entry);
779 			if (behavior == MAP_ENTRY_BEHAV_RANDOM) {
780 				nera = 0;
781 			} else if (behavior == MAP_ENTRY_BEHAV_SEQUENTIAL) {
782 				nera = VM_FAULT_READ_AHEAD_MAX;
783 				if (vaddr == fs.entry->next_read)
784 					vm_fault_dontneed(&fs, vaddr, nera);
785 			} else if (vaddr == fs.entry->next_read) {
786 				/*
787 				 * This is a sequential fault.  Arithmetically
788 				 * increase the requested number of pages in
789 				 * the read-ahead window.  The requested
790 				 * number of pages is "# of sequential faults
791 				 * x (read ahead min + 1) + read ahead min"
792 				 */
793 				nera = VM_FAULT_READ_AHEAD_MIN;
794 				if (era > 0) {
795 					nera += era + 1;
796 					if (nera > VM_FAULT_READ_AHEAD_MAX)
797 						nera = VM_FAULT_READ_AHEAD_MAX;
798 				}
799 				if (era == VM_FAULT_READ_AHEAD_MAX)
800 					vm_fault_dontneed(&fs, vaddr, nera);
801 			} else {
802 				/*
803 				 * This is a non-sequential fault.
804 				 */
805 				nera = 0;
806 			}
807 			if (era != nera) {
808 				/*
809 				 * A read lock on the map suffices to update
810 				 * the read ahead count safely.
811 				 */
812 				fs.entry->read_ahead = nera;
813 			}
814 
815 			/*
816 			 * Prepare for unlocking the map.  Save the map
817 			 * entry's start and end addresses, which are used to
818 			 * optimize the size of the pager operation below.
819 			 * Even if the map entry's addresses change after
820 			 * unlocking the map, using the saved addresses is
821 			 * safe.
822 			 */
823 			e_start = fs.entry->start;
824 			e_end = fs.entry->end;
825 		}
826 
827 		/*
828 		 * Call the pager to retrieve the page if there is a chance
829 		 * that the pager has it, and potentially retrieve additional
830 		 * pages at the same time.
831 		 */
832 		if (fs.object->type != OBJT_DEFAULT) {
833 			/*
834 			 * Release the map lock before locking the vnode or
835 			 * sleeping in the pager.  (If the current object has
836 			 * a shadow, then an earlier iteration of this loop
837 			 * may have already unlocked the map.)
838 			 */
839 			unlock_map(&fs);
840 
841 			if (fs.object->type == OBJT_VNODE &&
842 			    (vp = fs.object->handle) != fs.vp) {
843 				/*
844 				 * Perform an unlock in case the desired vnode
845 				 * changed while the map was unlocked during a
846 				 * retry.
847 				 */
848 				unlock_vp(&fs);
849 
850 				locked = VOP_ISLOCKED(vp);
851 				if (locked != LK_EXCLUSIVE)
852 					locked = LK_SHARED;
853 
854 				/*
855 				 * We must not sleep acquiring the vnode lock
856 				 * while we have the page exclusive busied or
857 				 * the object's paging-in-progress count
858 				 * incremented.  Otherwise, we could deadlock.
859 				 */
860 				error = vget(vp, locked | LK_CANRECURSE |
861 				    LK_NOWAIT, curthread);
862 				if (error != 0) {
863 					vhold(vp);
864 					release_page(&fs);
865 					unlock_and_deallocate(&fs);
866 					error = vget(vp, locked | LK_RETRY |
867 					    LK_CANRECURSE, curthread);
868 					vdrop(vp);
869 					fs.vp = vp;
870 					KASSERT(error == 0,
871 					    ("vm_fault: vget failed"));
872 					goto RetryFault;
873 				}
874 				fs.vp = vp;
875 			}
876 			KASSERT(fs.vp == NULL || !fs.map->system_map,
877 			    ("vm_fault: vnode-backed object mapped by system map"));
878 
879 			/*
880 			 * Page in the requested page and hint the pager,
881 			 * that it may bring up surrounding pages.
882 			 */
883 			if (nera == -1 || behavior == MAP_ENTRY_BEHAV_RANDOM ||
884 			    P_KILLED(curproc)) {
885 				behind = 0;
886 				ahead = 0;
887 			} else {
888 				/* Is this a sequential fault? */
889 				if (nera > 0) {
890 					behind = 0;
891 					ahead = nera;
892 				} else {
893 					/*
894 					 * Request a cluster of pages that is
895 					 * aligned to a VM_FAULT_READ_DEFAULT
896 					 * page offset boundary within the
897 					 * object.  Alignment to a page offset
898 					 * boundary is more likely to coincide
899 					 * with the underlying file system
900 					 * block than alignment to a virtual
901 					 * address boundary.
902 					 */
903 					cluster_offset = fs.pindex %
904 					    VM_FAULT_READ_DEFAULT;
905 					behind = ulmin(cluster_offset,
906 					    atop(vaddr - e_start));
907 					ahead = VM_FAULT_READ_DEFAULT - 1 -
908 					    cluster_offset;
909 				}
910 				ahead = ulmin(ahead, atop(e_end - vaddr) - 1);
911 			}
912 			rv = vm_pager_get_pages(fs.object, &fs.m, 1,
913 			    &behind, &ahead);
914 			if (rv == VM_PAGER_OK) {
915 				faultcount = behind + 1 + ahead;
916 				hardfault = true;
917 				break; /* break to PAGE HAS BEEN FOUND */
918 			}
919 			if (rv == VM_PAGER_ERROR)
920 				printf("vm_fault: pager read error, pid %d (%s)\n",
921 				    curproc->p_pid, curproc->p_comm);
922 
923 			/*
924 			 * If an I/O error occurred or the requested page was
925 			 * outside the range of the pager, clean up and return
926 			 * an error.
927 			 */
928 			if (rv == VM_PAGER_ERROR || rv == VM_PAGER_BAD) {
929 				vm_page_lock(fs.m);
930 				if (fs.m->wire_count == 0)
931 					vm_page_free(fs.m);
932 				else
933 					vm_page_xunbusy_maybelocked(fs.m);
934 				vm_page_unlock(fs.m);
935 				fs.m = NULL;
936 				unlock_and_deallocate(&fs);
937 				return (rv == VM_PAGER_ERROR ? KERN_FAILURE :
938 				    KERN_PROTECTION_FAILURE);
939 			}
940 
941 			/*
942 			 * The requested page does not exist at this object/
943 			 * offset.  Remove the invalid page from the object,
944 			 * waking up anyone waiting for it, and continue on to
945 			 * the next object.  However, if this is the top-level
946 			 * object, we must leave the busy page in place to
947 			 * prevent another process from rushing past us, and
948 			 * inserting the page in that object at the same time
949 			 * that we are.
950 			 */
951 			if (fs.object != fs.first_object) {
952 				vm_page_lock(fs.m);
953 				if (fs.m->wire_count == 0)
954 					vm_page_free(fs.m);
955 				else
956 					vm_page_xunbusy_maybelocked(fs.m);
957 				vm_page_unlock(fs.m);
958 				fs.m = NULL;
959 			}
960 		}
961 
962 		/*
963 		 * We get here if the object has default pager (or unwiring)
964 		 * or the pager doesn't have the page.
965 		 */
966 		if (fs.object == fs.first_object)
967 			fs.first_m = fs.m;
968 
969 		/*
970 		 * Move on to the next object.  Lock the next object before
971 		 * unlocking the current one.
972 		 */
973 		next_object = fs.object->backing_object;
974 		if (next_object == NULL) {
975 			/*
976 			 * If there's no object left, fill the page in the top
977 			 * object with zeros.
978 			 */
979 			if (fs.object != fs.first_object) {
980 				vm_object_pip_wakeup(fs.object);
981 				VM_OBJECT_WUNLOCK(fs.object);
982 
983 				fs.object = fs.first_object;
984 				fs.pindex = fs.first_pindex;
985 				fs.m = fs.first_m;
986 				VM_OBJECT_WLOCK(fs.object);
987 			}
988 			fs.first_m = NULL;
989 
990 			/*
991 			 * Zero the page if necessary and mark it valid.
992 			 */
993 			if ((fs.m->flags & PG_ZERO) == 0) {
994 				pmap_zero_page(fs.m);
995 			} else {
996 				VM_CNT_INC(v_ozfod);
997 			}
998 			VM_CNT_INC(v_zfod);
999 			fs.m->valid = VM_PAGE_BITS_ALL;
1000 			/* Don't try to prefault neighboring pages. */
1001 			faultcount = 1;
1002 			break;	/* break to PAGE HAS BEEN FOUND */
1003 		} else {
1004 			KASSERT(fs.object != next_object,
1005 			    ("object loop %p", next_object));
1006 			VM_OBJECT_WLOCK(next_object);
1007 			vm_object_pip_add(next_object, 1);
1008 			if (fs.object != fs.first_object)
1009 				vm_object_pip_wakeup(fs.object);
1010 			fs.pindex +=
1011 			    OFF_TO_IDX(fs.object->backing_object_offset);
1012 			VM_OBJECT_WUNLOCK(fs.object);
1013 			fs.object = next_object;
1014 		}
1015 	}
1016 
1017 	vm_page_assert_xbusied(fs.m);
1018 
1019 	/*
1020 	 * PAGE HAS BEEN FOUND. [Loop invariant still holds -- the object lock
1021 	 * is held.]
1022 	 */
1023 
1024 	/*
1025 	 * If the page is being written, but isn't already owned by the
1026 	 * top-level object, we have to copy it into a new page owned by the
1027 	 * top-level object.
1028 	 */
1029 	if (fs.object != fs.first_object) {
1030 		/*
1031 		 * We only really need to copy if we want to write it.
1032 		 */
1033 		if ((fault_type & (VM_PROT_COPY | VM_PROT_WRITE)) != 0) {
1034 			/*
1035 			 * This allows pages to be virtually copied from a
1036 			 * backing_object into the first_object, where the
1037 			 * backing object has no other refs to it, and cannot
1038 			 * gain any more refs.  Instead of a bcopy, we just
1039 			 * move the page from the backing object to the
1040 			 * first object.  Note that we must mark the page
1041 			 * dirty in the first object so that it will go out
1042 			 * to swap when needed.
1043 			 */
1044 			is_first_object_locked = false;
1045 			if (
1046 				/*
1047 				 * Only one shadow object
1048 				 */
1049 				(fs.object->shadow_count == 1) &&
1050 				/*
1051 				 * No COW refs, except us
1052 				 */
1053 				(fs.object->ref_count == 1) &&
1054 				/*
1055 				 * No one else can look this object up
1056 				 */
1057 				(fs.object->handle == NULL) &&
1058 				/*
1059 				 * No other ways to look the object up
1060 				 */
1061 				((fs.object->type == OBJT_DEFAULT) ||
1062 				 (fs.object->type == OBJT_SWAP)) &&
1063 			    (is_first_object_locked = VM_OBJECT_TRYWLOCK(fs.first_object)) &&
1064 				/*
1065 				 * We don't chase down the shadow chain
1066 				 */
1067 			    fs.object == fs.first_object->backing_object) {
1068 				vm_page_lock(fs.m);
1069 				vm_page_remove(fs.m);
1070 				vm_page_unlock(fs.m);
1071 				vm_page_lock(fs.first_m);
1072 				vm_page_replace_checked(fs.m, fs.first_object,
1073 				    fs.first_pindex, fs.first_m);
1074 				vm_page_free(fs.first_m);
1075 				vm_page_unlock(fs.first_m);
1076 				vm_page_dirty(fs.m);
1077 #if VM_NRESERVLEVEL > 0
1078 				/*
1079 				 * Rename the reservation.
1080 				 */
1081 				vm_reserv_rename(fs.m, fs.first_object,
1082 				    fs.object, OFF_TO_IDX(
1083 				    fs.first_object->backing_object_offset));
1084 #endif
1085 				/*
1086 				 * Removing the page from the backing object
1087 				 * unbusied it.
1088 				 */
1089 				vm_page_xbusy(fs.m);
1090 				fs.first_m = fs.m;
1091 				fs.m = NULL;
1092 				VM_CNT_INC(v_cow_optim);
1093 			} else {
1094 				/*
1095 				 * Oh, well, lets copy it.
1096 				 */
1097 				pmap_copy_page(fs.m, fs.first_m);
1098 				fs.first_m->valid = VM_PAGE_BITS_ALL;
1099 				if (wired && (fault_flags &
1100 				    VM_FAULT_WIRE) == 0) {
1101 					vm_page_lock(fs.first_m);
1102 					vm_page_wire(fs.first_m);
1103 					vm_page_unlock(fs.first_m);
1104 
1105 					vm_page_lock(fs.m);
1106 					vm_page_unwire(fs.m, PQ_INACTIVE);
1107 					vm_page_unlock(fs.m);
1108 				}
1109 				/*
1110 				 * We no longer need the old page or object.
1111 				 */
1112 				release_page(&fs);
1113 			}
1114 			/*
1115 			 * fs.object != fs.first_object due to above
1116 			 * conditional
1117 			 */
1118 			vm_object_pip_wakeup(fs.object);
1119 			VM_OBJECT_WUNLOCK(fs.object);
1120 			/*
1121 			 * Only use the new page below...
1122 			 */
1123 			fs.object = fs.first_object;
1124 			fs.pindex = fs.first_pindex;
1125 			fs.m = fs.first_m;
1126 			if (!is_first_object_locked)
1127 				VM_OBJECT_WLOCK(fs.object);
1128 			VM_CNT_INC(v_cow_faults);
1129 			curthread->td_cow++;
1130 		} else {
1131 			prot &= ~VM_PROT_WRITE;
1132 		}
1133 	}
1134 
1135 	/*
1136 	 * We must verify that the maps have not changed since our last
1137 	 * lookup.
1138 	 */
1139 	if (!fs.lookup_still_valid) {
1140 		if (!vm_map_trylock_read(fs.map)) {
1141 			release_page(&fs);
1142 			unlock_and_deallocate(&fs);
1143 			goto RetryFault;
1144 		}
1145 		fs.lookup_still_valid = true;
1146 		if (fs.map->timestamp != fs.map_generation) {
1147 			result = vm_map_lookup_locked(&fs.map, vaddr, fault_type,
1148 			    &fs.entry, &retry_object, &retry_pindex, &retry_prot, &wired);
1149 
1150 			/*
1151 			 * If we don't need the page any longer, put it on the inactive
1152 			 * list (the easiest thing to do here).  If no one needs it,
1153 			 * pageout will grab it eventually.
1154 			 */
1155 			if (result != KERN_SUCCESS) {
1156 				release_page(&fs);
1157 				unlock_and_deallocate(&fs);
1158 
1159 				/*
1160 				 * If retry of map lookup would have blocked then
1161 				 * retry fault from start.
1162 				 */
1163 				if (result == KERN_FAILURE)
1164 					goto RetryFault;
1165 				return (result);
1166 			}
1167 			if ((retry_object != fs.first_object) ||
1168 			    (retry_pindex != fs.first_pindex)) {
1169 				release_page(&fs);
1170 				unlock_and_deallocate(&fs);
1171 				goto RetryFault;
1172 			}
1173 
1174 			/*
1175 			 * Check whether the protection has changed or the object has
1176 			 * been copied while we left the map unlocked. Changing from
1177 			 * read to write permission is OK - we leave the page
1178 			 * write-protected, and catch the write fault. Changing from
1179 			 * write to read permission means that we can't mark the page
1180 			 * write-enabled after all.
1181 			 */
1182 			prot &= retry_prot;
1183 		}
1184 	}
1185 
1186 	/*
1187 	 * If the page was filled by a pager, save the virtual address that
1188 	 * should be faulted on next under a sequential access pattern to the
1189 	 * map entry.  A read lock on the map suffices to update this address
1190 	 * safely.
1191 	 */
1192 	if (hardfault)
1193 		fs.entry->next_read = vaddr + ptoa(ahead) + PAGE_SIZE;
1194 
1195 	vm_fault_dirty(fs.entry, fs.m, prot, fault_type, fault_flags, true);
1196 	vm_page_assert_xbusied(fs.m);
1197 
1198 	/*
1199 	 * Page must be completely valid or it is not fit to
1200 	 * map into user space.  vm_pager_get_pages() ensures this.
1201 	 */
1202 	KASSERT(fs.m->valid == VM_PAGE_BITS_ALL,
1203 	    ("vm_fault: page %p partially invalid", fs.m));
1204 	VM_OBJECT_WUNLOCK(fs.object);
1205 
1206 	/*
1207 	 * Put this page into the physical map.  We had to do the unlock above
1208 	 * because pmap_enter() may sleep.  We don't put the page
1209 	 * back on the active queue until later so that the pageout daemon
1210 	 * won't find it (yet).
1211 	 */
1212 	pmap_enter(fs.map->pmap, vaddr, fs.m, prot,
1213 	    fault_type | (wired ? PMAP_ENTER_WIRED : 0), 0);
1214 	if (faultcount != 1 && (fault_flags & VM_FAULT_WIRE) == 0 &&
1215 	    wired == 0)
1216 		vm_fault_prefault(&fs, vaddr,
1217 		    faultcount > 0 ? behind : PFBAK,
1218 		    faultcount > 0 ? ahead : PFFOR);
1219 	VM_OBJECT_WLOCK(fs.object);
1220 	vm_page_lock(fs.m);
1221 
1222 	/*
1223 	 * If the page is not wired down, then put it where the pageout daemon
1224 	 * can find it.
1225 	 */
1226 	if ((fault_flags & VM_FAULT_WIRE) != 0) {
1227 		KASSERT(wired, ("VM_FAULT_WIRE && !wired"));
1228 		vm_page_wire(fs.m);
1229 	} else
1230 		vm_page_activate(fs.m);
1231 	if (m_hold != NULL) {
1232 		*m_hold = fs.m;
1233 		vm_page_hold(fs.m);
1234 	}
1235 	vm_page_unlock(fs.m);
1236 	vm_page_xunbusy(fs.m);
1237 
1238 	/*
1239 	 * Unlock everything, and return
1240 	 */
1241 	unlock_and_deallocate(&fs);
1242 	if (hardfault) {
1243 		VM_CNT_INC(v_io_faults);
1244 		curthread->td_ru.ru_majflt++;
1245 #ifdef RACCT
1246 		if (racct_enable && fs.object->type == OBJT_VNODE) {
1247 			PROC_LOCK(curproc);
1248 			if ((fault_type & (VM_PROT_COPY | VM_PROT_WRITE)) != 0) {
1249 				racct_add_force(curproc, RACCT_WRITEBPS,
1250 				    PAGE_SIZE + behind * PAGE_SIZE);
1251 				racct_add_force(curproc, RACCT_WRITEIOPS, 1);
1252 			} else {
1253 				racct_add_force(curproc, RACCT_READBPS,
1254 				    PAGE_SIZE + ahead * PAGE_SIZE);
1255 				racct_add_force(curproc, RACCT_READIOPS, 1);
1256 			}
1257 			PROC_UNLOCK(curproc);
1258 		}
1259 #endif
1260 	} else
1261 		curthread->td_ru.ru_minflt++;
1262 
1263 	return (KERN_SUCCESS);
1264 }
1265 
1266 /*
1267  * Speed up the reclamation of pages that precede the faulting pindex within
1268  * the first object of the shadow chain.  Essentially, perform the equivalent
1269  * to madvise(..., MADV_DONTNEED) on a large cluster of pages that precedes
1270  * the faulting pindex by the cluster size when the pages read by vm_fault()
1271  * cross a cluster-size boundary.  The cluster size is the greater of the
1272  * smallest superpage size and VM_FAULT_DONTNEED_MIN.
1273  *
1274  * When "fs->first_object" is a shadow object, the pages in the backing object
1275  * that precede the faulting pindex are deactivated by vm_fault().  So, this
1276  * function must only be concerned with pages in the first object.
1277  */
1278 static void
1279 vm_fault_dontneed(const struct faultstate *fs, vm_offset_t vaddr, int ahead)
1280 {
1281 	vm_map_entry_t entry;
1282 	vm_object_t first_object, object;
1283 	vm_offset_t end, start;
1284 	vm_page_t m, m_next;
1285 	vm_pindex_t pend, pstart;
1286 	vm_size_t size;
1287 
1288 	object = fs->object;
1289 	VM_OBJECT_ASSERT_WLOCKED(object);
1290 	first_object = fs->first_object;
1291 	if (first_object != object) {
1292 		if (!VM_OBJECT_TRYWLOCK(first_object)) {
1293 			VM_OBJECT_WUNLOCK(object);
1294 			VM_OBJECT_WLOCK(first_object);
1295 			VM_OBJECT_WLOCK(object);
1296 		}
1297 	}
1298 	/* Neither fictitious nor unmanaged pages can be reclaimed. */
1299 	if ((first_object->flags & (OBJ_FICTITIOUS | OBJ_UNMANAGED)) == 0) {
1300 		size = VM_FAULT_DONTNEED_MIN;
1301 		if (MAXPAGESIZES > 1 && size < pagesizes[1])
1302 			size = pagesizes[1];
1303 		end = rounddown2(vaddr, size);
1304 		if (vaddr - end >= size - PAGE_SIZE - ptoa(ahead) &&
1305 		    (entry = fs->entry)->start < end) {
1306 			if (end - entry->start < size)
1307 				start = entry->start;
1308 			else
1309 				start = end - size;
1310 			pmap_advise(fs->map->pmap, start, end, MADV_DONTNEED);
1311 			pstart = OFF_TO_IDX(entry->offset) + atop(start -
1312 			    entry->start);
1313 			m_next = vm_page_find_least(first_object, pstart);
1314 			pend = OFF_TO_IDX(entry->offset) + atop(end -
1315 			    entry->start);
1316 			while ((m = m_next) != NULL && m->pindex < pend) {
1317 				m_next = TAILQ_NEXT(m, listq);
1318 				if (m->valid != VM_PAGE_BITS_ALL ||
1319 				    vm_page_busied(m))
1320 					continue;
1321 
1322 				/*
1323 				 * Don't clear PGA_REFERENCED, since it would
1324 				 * likely represent a reference by a different
1325 				 * process.
1326 				 *
1327 				 * Typically, at this point, prefetched pages
1328 				 * are still in the inactive queue.  Only
1329 				 * pages that triggered page faults are in the
1330 				 * active queue.
1331 				 */
1332 				vm_page_lock(m);
1333 				vm_page_deactivate(m);
1334 				vm_page_unlock(m);
1335 			}
1336 		}
1337 	}
1338 	if (first_object != object)
1339 		VM_OBJECT_WUNLOCK(first_object);
1340 }
1341 
1342 /*
1343  * vm_fault_prefault provides a quick way of clustering
1344  * pagefaults into a processes address space.  It is a "cousin"
1345  * of vm_map_pmap_enter, except it runs at page fault time instead
1346  * of mmap time.
1347  */
1348 static void
1349 vm_fault_prefault(const struct faultstate *fs, vm_offset_t addra,
1350     int backward, int forward)
1351 {
1352 	pmap_t pmap;
1353 	vm_map_entry_t entry;
1354 	vm_object_t backing_object, lobject;
1355 	vm_offset_t addr, starta;
1356 	vm_pindex_t pindex;
1357 	vm_page_t m;
1358 	int i;
1359 
1360 	pmap = fs->map->pmap;
1361 	if (pmap != vmspace_pmap(curthread->td_proc->p_vmspace))
1362 		return;
1363 
1364 	entry = fs->entry;
1365 
1366 	if (addra < backward * PAGE_SIZE) {
1367 		starta = entry->start;
1368 	} else {
1369 		starta = addra - backward * PAGE_SIZE;
1370 		if (starta < entry->start)
1371 			starta = entry->start;
1372 	}
1373 
1374 	/*
1375 	 * Generate the sequence of virtual addresses that are candidates for
1376 	 * prefaulting in an outward spiral from the faulting virtual address,
1377 	 * "addra".  Specifically, the sequence is "addra - PAGE_SIZE", "addra
1378 	 * + PAGE_SIZE", "addra - 2 * PAGE_SIZE", "addra + 2 * PAGE_SIZE", ...
1379 	 * If the candidate address doesn't have a backing physical page, then
1380 	 * the loop immediately terminates.
1381 	 */
1382 	for (i = 0; i < 2 * imax(backward, forward); i++) {
1383 		addr = addra + ((i >> 1) + 1) * ((i & 1) == 0 ? -PAGE_SIZE :
1384 		    PAGE_SIZE);
1385 		if (addr > addra + forward * PAGE_SIZE)
1386 			addr = 0;
1387 
1388 		if (addr < starta || addr >= entry->end)
1389 			continue;
1390 
1391 		if (!pmap_is_prefaultable(pmap, addr))
1392 			continue;
1393 
1394 		pindex = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT;
1395 		lobject = entry->object.vm_object;
1396 		VM_OBJECT_RLOCK(lobject);
1397 		while ((m = vm_page_lookup(lobject, pindex)) == NULL &&
1398 		    lobject->type == OBJT_DEFAULT &&
1399 		    (backing_object = lobject->backing_object) != NULL) {
1400 			KASSERT((lobject->backing_object_offset & PAGE_MASK) ==
1401 			    0, ("vm_fault_prefault: unaligned object offset"));
1402 			pindex += lobject->backing_object_offset >> PAGE_SHIFT;
1403 			VM_OBJECT_RLOCK(backing_object);
1404 			VM_OBJECT_RUNLOCK(lobject);
1405 			lobject = backing_object;
1406 		}
1407 		if (m == NULL) {
1408 			VM_OBJECT_RUNLOCK(lobject);
1409 			break;
1410 		}
1411 		if (m->valid == VM_PAGE_BITS_ALL &&
1412 		    (m->flags & PG_FICTITIOUS) == 0)
1413 			pmap_enter_quick(pmap, addr, m, entry->protection);
1414 		VM_OBJECT_RUNLOCK(lobject);
1415 	}
1416 }
1417 
1418 /*
1419  * Hold each of the physical pages that are mapped by the specified range of
1420  * virtual addresses, ["addr", "addr" + "len"), if those mappings are valid
1421  * and allow the specified types of access, "prot".  If all of the implied
1422  * pages are successfully held, then the number of held pages is returned
1423  * together with pointers to those pages in the array "ma".  However, if any
1424  * of the pages cannot be held, -1 is returned.
1425  */
1426 int
1427 vm_fault_quick_hold_pages(vm_map_t map, vm_offset_t addr, vm_size_t len,
1428     vm_prot_t prot, vm_page_t *ma, int max_count)
1429 {
1430 	vm_offset_t end, va;
1431 	vm_page_t *mp;
1432 	int count;
1433 	boolean_t pmap_failed;
1434 
1435 	if (len == 0)
1436 		return (0);
1437 	end = round_page(addr + len);
1438 	addr = trunc_page(addr);
1439 
1440 	/*
1441 	 * Check for illegal addresses.
1442 	 */
1443 	if (addr < vm_map_min(map) || addr > end || end > vm_map_max(map))
1444 		return (-1);
1445 
1446 	if (atop(end - addr) > max_count)
1447 		panic("vm_fault_quick_hold_pages: count > max_count");
1448 	count = atop(end - addr);
1449 
1450 	/*
1451 	 * Most likely, the physical pages are resident in the pmap, so it is
1452 	 * faster to try pmap_extract_and_hold() first.
1453 	 */
1454 	pmap_failed = FALSE;
1455 	for (mp = ma, va = addr; va < end; mp++, va += PAGE_SIZE) {
1456 		*mp = pmap_extract_and_hold(map->pmap, va, prot);
1457 		if (*mp == NULL)
1458 			pmap_failed = TRUE;
1459 		else if ((prot & VM_PROT_WRITE) != 0 &&
1460 		    (*mp)->dirty != VM_PAGE_BITS_ALL) {
1461 			/*
1462 			 * Explicitly dirty the physical page.  Otherwise, the
1463 			 * caller's changes may go unnoticed because they are
1464 			 * performed through an unmanaged mapping or by a DMA
1465 			 * operation.
1466 			 *
1467 			 * The object lock is not held here.
1468 			 * See vm_page_clear_dirty_mask().
1469 			 */
1470 			vm_page_dirty(*mp);
1471 		}
1472 	}
1473 	if (pmap_failed) {
1474 		/*
1475 		 * One or more pages could not be held by the pmap.  Either no
1476 		 * page was mapped at the specified virtual address or that
1477 		 * mapping had insufficient permissions.  Attempt to fault in
1478 		 * and hold these pages.
1479 		 */
1480 		for (mp = ma, va = addr; va < end; mp++, va += PAGE_SIZE)
1481 			if (*mp == NULL && vm_fault_hold(map, va, prot,
1482 			    VM_FAULT_NORMAL, mp) != KERN_SUCCESS)
1483 				goto error;
1484 	}
1485 	return (count);
1486 error:
1487 	for (mp = ma; mp < ma + count; mp++)
1488 		if (*mp != NULL) {
1489 			vm_page_lock(*mp);
1490 			vm_page_unhold(*mp);
1491 			vm_page_unlock(*mp);
1492 		}
1493 	return (-1);
1494 }
1495 
1496 /*
1497  *	Routine:
1498  *		vm_fault_copy_entry
1499  *	Function:
1500  *		Create new shadow object backing dst_entry with private copy of
1501  *		all underlying pages. When src_entry is equal to dst_entry,
1502  *		function implements COW for wired-down map entry. Otherwise,
1503  *		it forks wired entry into dst_map.
1504  *
1505  *	In/out conditions:
1506  *		The source and destination maps must be locked for write.
1507  *		The source map entry must be wired down (or be a sharing map
1508  *		entry corresponding to a main map entry that is wired down).
1509  */
1510 void
1511 vm_fault_copy_entry(vm_map_t dst_map, vm_map_t src_map,
1512     vm_map_entry_t dst_entry, vm_map_entry_t src_entry,
1513     vm_ooffset_t *fork_charge)
1514 {
1515 	vm_object_t backing_object, dst_object, object, src_object;
1516 	vm_pindex_t dst_pindex, pindex, src_pindex;
1517 	vm_prot_t access, prot;
1518 	vm_offset_t vaddr;
1519 	vm_page_t dst_m;
1520 	vm_page_t src_m;
1521 	boolean_t upgrade;
1522 
1523 #ifdef	lint
1524 	src_map++;
1525 #endif	/* lint */
1526 
1527 	upgrade = src_entry == dst_entry;
1528 	access = prot = dst_entry->protection;
1529 
1530 	src_object = src_entry->object.vm_object;
1531 	src_pindex = OFF_TO_IDX(src_entry->offset);
1532 
1533 	if (upgrade && (dst_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) {
1534 		dst_object = src_object;
1535 		vm_object_reference(dst_object);
1536 	} else {
1537 		/*
1538 		 * Create the top-level object for the destination entry. (Doesn't
1539 		 * actually shadow anything - we copy the pages directly.)
1540 		 */
1541 		dst_object = vm_object_allocate(OBJT_DEFAULT,
1542 		    atop(dst_entry->end - dst_entry->start));
1543 #if VM_NRESERVLEVEL > 0
1544 		dst_object->flags |= OBJ_COLORED;
1545 		dst_object->pg_color = atop(dst_entry->start);
1546 #endif
1547 	}
1548 
1549 	VM_OBJECT_WLOCK(dst_object);
1550 	KASSERT(upgrade || dst_entry->object.vm_object == NULL,
1551 	    ("vm_fault_copy_entry: vm_object not NULL"));
1552 	if (src_object != dst_object) {
1553 		dst_entry->object.vm_object = dst_object;
1554 		dst_entry->offset = 0;
1555 		dst_object->charge = dst_entry->end - dst_entry->start;
1556 	}
1557 	if (fork_charge != NULL) {
1558 		KASSERT(dst_entry->cred == NULL,
1559 		    ("vm_fault_copy_entry: leaked swp charge"));
1560 		dst_object->cred = curthread->td_ucred;
1561 		crhold(dst_object->cred);
1562 		*fork_charge += dst_object->charge;
1563 	} else if (dst_object->cred == NULL) {
1564 		KASSERT(dst_entry->cred != NULL, ("no cred for entry %p",
1565 		    dst_entry));
1566 		dst_object->cred = dst_entry->cred;
1567 		dst_entry->cred = NULL;
1568 	}
1569 
1570 	/*
1571 	 * If not an upgrade, then enter the mappings in the pmap as
1572 	 * read and/or execute accesses.  Otherwise, enter them as
1573 	 * write accesses.
1574 	 *
1575 	 * A writeable large page mapping is only created if all of
1576 	 * the constituent small page mappings are modified. Marking
1577 	 * PTEs as modified on inception allows promotion to happen
1578 	 * without taking potentially large number of soft faults.
1579 	 */
1580 	if (!upgrade)
1581 		access &= ~VM_PROT_WRITE;
1582 
1583 	/*
1584 	 * Loop through all of the virtual pages within the entry's
1585 	 * range, copying each page from the source object to the
1586 	 * destination object.  Since the source is wired, those pages
1587 	 * must exist.  In contrast, the destination is pageable.
1588 	 * Since the destination object does share any backing storage
1589 	 * with the source object, all of its pages must be dirtied,
1590 	 * regardless of whether they can be written.
1591 	 */
1592 	for (vaddr = dst_entry->start, dst_pindex = 0;
1593 	    vaddr < dst_entry->end;
1594 	    vaddr += PAGE_SIZE, dst_pindex++) {
1595 again:
1596 		/*
1597 		 * Find the page in the source object, and copy it in.
1598 		 * Because the source is wired down, the page will be
1599 		 * in memory.
1600 		 */
1601 		if (src_object != dst_object)
1602 			VM_OBJECT_RLOCK(src_object);
1603 		object = src_object;
1604 		pindex = src_pindex + dst_pindex;
1605 		while ((src_m = vm_page_lookup(object, pindex)) == NULL &&
1606 		    (backing_object = object->backing_object) != NULL) {
1607 			/*
1608 			 * Unless the source mapping is read-only or
1609 			 * it is presently being upgraded from
1610 			 * read-only, the first object in the shadow
1611 			 * chain should provide all of the pages.  In
1612 			 * other words, this loop body should never be
1613 			 * executed when the source mapping is already
1614 			 * read/write.
1615 			 */
1616 			KASSERT((src_entry->protection & VM_PROT_WRITE) == 0 ||
1617 			    upgrade,
1618 			    ("vm_fault_copy_entry: main object missing page"));
1619 
1620 			VM_OBJECT_RLOCK(backing_object);
1621 			pindex += OFF_TO_IDX(object->backing_object_offset);
1622 			if (object != dst_object)
1623 				VM_OBJECT_RUNLOCK(object);
1624 			object = backing_object;
1625 		}
1626 		KASSERT(src_m != NULL, ("vm_fault_copy_entry: page missing"));
1627 
1628 		if (object != dst_object) {
1629 			/*
1630 			 * Allocate a page in the destination object.
1631 			 */
1632 			dst_m = vm_page_alloc(dst_object, (src_object ==
1633 			    dst_object ? src_pindex : 0) + dst_pindex,
1634 			    VM_ALLOC_NORMAL);
1635 			if (dst_m == NULL) {
1636 				VM_OBJECT_WUNLOCK(dst_object);
1637 				VM_OBJECT_RUNLOCK(object);
1638 				VM_WAIT;
1639 				VM_OBJECT_WLOCK(dst_object);
1640 				goto again;
1641 			}
1642 			pmap_copy_page(src_m, dst_m);
1643 			VM_OBJECT_RUNLOCK(object);
1644 			dst_m->valid = VM_PAGE_BITS_ALL;
1645 			dst_m->dirty = VM_PAGE_BITS_ALL;
1646 		} else {
1647 			dst_m = src_m;
1648 			if (vm_page_sleep_if_busy(dst_m, "fltupg"))
1649 				goto again;
1650 			vm_page_xbusy(dst_m);
1651 			KASSERT(dst_m->valid == VM_PAGE_BITS_ALL,
1652 			    ("invalid dst page %p", dst_m));
1653 		}
1654 		VM_OBJECT_WUNLOCK(dst_object);
1655 
1656 		/*
1657 		 * Enter it in the pmap. If a wired, copy-on-write
1658 		 * mapping is being replaced by a write-enabled
1659 		 * mapping, then wire that new mapping.
1660 		 */
1661 		pmap_enter(dst_map->pmap, vaddr, dst_m, prot,
1662 		    access | (upgrade ? PMAP_ENTER_WIRED : 0), 0);
1663 
1664 		/*
1665 		 * Mark it no longer busy, and put it on the active list.
1666 		 */
1667 		VM_OBJECT_WLOCK(dst_object);
1668 
1669 		if (upgrade) {
1670 			if (src_m != dst_m) {
1671 				vm_page_lock(src_m);
1672 				vm_page_unwire(src_m, PQ_INACTIVE);
1673 				vm_page_unlock(src_m);
1674 				vm_page_lock(dst_m);
1675 				vm_page_wire(dst_m);
1676 				vm_page_unlock(dst_m);
1677 			} else {
1678 				KASSERT(dst_m->wire_count > 0,
1679 				    ("dst_m %p is not wired", dst_m));
1680 			}
1681 		} else {
1682 			vm_page_lock(dst_m);
1683 			vm_page_activate(dst_m);
1684 			vm_page_unlock(dst_m);
1685 		}
1686 		vm_page_xunbusy(dst_m);
1687 	}
1688 	VM_OBJECT_WUNLOCK(dst_object);
1689 	if (upgrade) {
1690 		dst_entry->eflags &= ~(MAP_ENTRY_COW | MAP_ENTRY_NEEDS_COPY);
1691 		vm_object_deallocate(src_object);
1692 	}
1693 }
1694 
1695 /*
1696  * Block entry into the machine-independent layer's page fault handler by
1697  * the calling thread.  Subsequent calls to vm_fault() by that thread will
1698  * return KERN_PROTECTION_FAILURE.  Enable machine-dependent handling of
1699  * spurious page faults.
1700  */
1701 int
1702 vm_fault_disable_pagefaults(void)
1703 {
1704 
1705 	return (curthread_pflags_set(TDP_NOFAULTING | TDP_RESETSPUR));
1706 }
1707 
1708 void
1709 vm_fault_enable_pagefaults(int save)
1710 {
1711 
1712 	curthread_pflags_restore(save);
1713 }
1714