xref: /freebsd/sys/vm/vm_fault.c (revision de96322b)
1 /*-
2  * SPDX-License-Identifier: (BSD-4-Clause AND MIT-CMU)
3  *
4  * Copyright (c) 1991, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  * Copyright (c) 1994 John S. Dyson
7  * All rights reserved.
8  * Copyright (c) 1994 David Greenman
9  * All rights reserved.
10  *
11  *
12  * This code is derived from software contributed to Berkeley by
13  * The Mach Operating System project at Carnegie-Mellon University.
14  *
15  * Redistribution and use in source and binary forms, with or without
16  * modification, are permitted provided that the following conditions
17  * are met:
18  * 1. Redistributions of source code must retain the above copyright
19  *    notice, this list of conditions and the following disclaimer.
20  * 2. Redistributions in binary form must reproduce the above copyright
21  *    notice, this list of conditions and the following disclaimer in the
22  *    documentation and/or other materials provided with the distribution.
23  * 3. All advertising materials mentioning features or use of this software
24  *    must display the following acknowledgement:
25  *	This product includes software developed by the University of
26  *	California, Berkeley and its contributors.
27  * 4. Neither the name of the University nor the names of its contributors
28  *    may be used to endorse or promote products derived from this software
29  *    without specific prior written permission.
30  *
31  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
32  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
33  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
34  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
35  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
39  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
40  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
41  * SUCH DAMAGE.
42  *
43  *	from: @(#)vm_fault.c	8.4 (Berkeley) 1/12/94
44  *
45  *
46  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
47  * All rights reserved.
48  *
49  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
50  *
51  * Permission to use, copy, modify and distribute this software and
52  * its documentation is hereby granted, provided that both the copyright
53  * notice and this permission notice appear in all copies of the
54  * software, derivative works or modified versions, and any portions
55  * thereof, and that both notices appear in supporting documentation.
56  *
57  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
58  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
59  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
60  *
61  * Carnegie Mellon requests users of this software to return to
62  *
63  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
64  *  School of Computer Science
65  *  Carnegie Mellon University
66  *  Pittsburgh PA 15213-3890
67  *
68  * any improvements or extensions that they make and grant Carnegie the
69  * rights to redistribute these changes.
70  */
71 
72 /*
73  *	Page fault handling module.
74  */
75 
76 #include <sys/cdefs.h>
77 __FBSDID("$FreeBSD$");
78 
79 #include "opt_ktrace.h"
80 #include "opt_vm.h"
81 
82 #include <sys/param.h>
83 #include <sys/systm.h>
84 #include <sys/kernel.h>
85 #include <sys/lock.h>
86 #include <sys/mman.h>
87 #include <sys/mutex.h>
88 #include <sys/proc.h>
89 #include <sys/racct.h>
90 #include <sys/resourcevar.h>
91 #include <sys/rwlock.h>
92 #include <sys/sysctl.h>
93 #include <sys/vmmeter.h>
94 #include <sys/vnode.h>
95 #ifdef KTRACE
96 #include <sys/ktrace.h>
97 #endif
98 
99 #include <vm/vm.h>
100 #include <vm/vm_param.h>
101 #include <vm/pmap.h>
102 #include <vm/vm_map.h>
103 #include <vm/vm_object.h>
104 #include <vm/vm_page.h>
105 #include <vm/vm_pageout.h>
106 #include <vm/vm_kern.h>
107 #include <vm/vm_pager.h>
108 #include <vm/vm_extern.h>
109 #include <vm/vm_reserv.h>
110 
111 #define PFBAK 4
112 #define PFFOR 4
113 
114 #define	VM_FAULT_READ_DEFAULT	(1 + VM_FAULT_READ_AHEAD_INIT)
115 #define	VM_FAULT_READ_MAX	(1 + VM_FAULT_READ_AHEAD_MAX)
116 
117 #define	VM_FAULT_DONTNEED_MIN	1048576
118 
119 struct faultstate {
120 	vm_page_t m;
121 	vm_object_t object;
122 	vm_pindex_t pindex;
123 	vm_page_t first_m;
124 	vm_object_t	first_object;
125 	vm_pindex_t first_pindex;
126 	vm_map_t map;
127 	vm_map_entry_t entry;
128 	int map_generation;
129 	bool lookup_still_valid;
130 	struct vnode *vp;
131 };
132 
133 static void vm_fault_dontneed(const struct faultstate *fs, vm_offset_t vaddr,
134 	    int ahead);
135 static void vm_fault_prefault(const struct faultstate *fs, vm_offset_t addra,
136 	    int backward, int forward, bool obj_locked);
137 
138 static int vm_pfault_oom_attempts = 3;
139 SYSCTL_INT(_vm, OID_AUTO, pfault_oom_attempts, CTLFLAG_RWTUN,
140     &vm_pfault_oom_attempts, 0,
141     "Number of page allocation attempts in page fault handler before it "
142     "triggers OOM handling");
143 
144 static int vm_pfault_oom_wait = 10;
145 SYSCTL_INT(_vm, OID_AUTO, pfault_oom_wait, CTLFLAG_RWTUN,
146     &vm_pfault_oom_wait, 0,
147     "Number of seconds to wait for free pages before retrying "
148     "the page fault handler");
149 
150 static inline void
151 release_page(struct faultstate *fs)
152 {
153 
154 	vm_page_xunbusy(fs->m);
155 	vm_page_lock(fs->m);
156 	vm_page_deactivate(fs->m);
157 	vm_page_unlock(fs->m);
158 	fs->m = NULL;
159 }
160 
161 static inline void
162 unlock_map(struct faultstate *fs)
163 {
164 
165 	if (fs->lookup_still_valid) {
166 		vm_map_lookup_done(fs->map, fs->entry);
167 		fs->lookup_still_valid = false;
168 	}
169 }
170 
171 static void
172 unlock_vp(struct faultstate *fs)
173 {
174 
175 	if (fs->vp != NULL) {
176 		vput(fs->vp);
177 		fs->vp = NULL;
178 	}
179 }
180 
181 static void
182 unlock_and_deallocate(struct faultstate *fs)
183 {
184 
185 	vm_object_pip_wakeup(fs->object);
186 	VM_OBJECT_WUNLOCK(fs->object);
187 	if (fs->object != fs->first_object) {
188 		VM_OBJECT_WLOCK(fs->first_object);
189 		vm_page_free(fs->first_m);
190 		vm_object_pip_wakeup(fs->first_object);
191 		VM_OBJECT_WUNLOCK(fs->first_object);
192 		fs->first_m = NULL;
193 	}
194 	vm_object_deallocate(fs->first_object);
195 	unlock_map(fs);
196 	unlock_vp(fs);
197 }
198 
199 static void
200 vm_fault_dirty(vm_map_entry_t entry, vm_page_t m, vm_prot_t prot,
201     vm_prot_t fault_type, int fault_flags, bool set_wd)
202 {
203 	bool need_dirty;
204 
205 	if (((prot & VM_PROT_WRITE) == 0 &&
206 	    (fault_flags & VM_FAULT_DIRTY) == 0) ||
207 	    (m->oflags & VPO_UNMANAGED) != 0)
208 		return;
209 
210 	VM_OBJECT_ASSERT_LOCKED(m->object);
211 
212 	need_dirty = ((fault_type & VM_PROT_WRITE) != 0 &&
213 	    (fault_flags & VM_FAULT_WIRE) == 0) ||
214 	    (fault_flags & VM_FAULT_DIRTY) != 0;
215 
216 	if (set_wd)
217 		vm_object_set_writeable_dirty(m->object);
218 	else
219 		/*
220 		 * If two callers of vm_fault_dirty() with set_wd ==
221 		 * FALSE, one for the map entry with MAP_ENTRY_NOSYNC
222 		 * flag set, other with flag clear, race, it is
223 		 * possible for the no-NOSYNC thread to see m->dirty
224 		 * != 0 and not clear VPO_NOSYNC.  Take vm_page lock
225 		 * around manipulation of VPO_NOSYNC and
226 		 * vm_page_dirty() call, to avoid the race and keep
227 		 * m->oflags consistent.
228 		 */
229 		vm_page_lock(m);
230 
231 	/*
232 	 * If this is a NOSYNC mmap we do not want to set VPO_NOSYNC
233 	 * if the page is already dirty to prevent data written with
234 	 * the expectation of being synced from not being synced.
235 	 * Likewise if this entry does not request NOSYNC then make
236 	 * sure the page isn't marked NOSYNC.  Applications sharing
237 	 * data should use the same flags to avoid ping ponging.
238 	 */
239 	if ((entry->eflags & MAP_ENTRY_NOSYNC) != 0) {
240 		if (m->dirty == 0) {
241 			m->oflags |= VPO_NOSYNC;
242 		}
243 	} else {
244 		m->oflags &= ~VPO_NOSYNC;
245 	}
246 
247 	/*
248 	 * If the fault is a write, we know that this page is being
249 	 * written NOW so dirty it explicitly to save on
250 	 * pmap_is_modified() calls later.
251 	 *
252 	 * Also, since the page is now dirty, we can possibly tell
253 	 * the pager to release any swap backing the page.  Calling
254 	 * the pager requires a write lock on the object.
255 	 */
256 	if (need_dirty)
257 		vm_page_dirty(m);
258 	if (!set_wd)
259 		vm_page_unlock(m);
260 	else if (need_dirty)
261 		vm_pager_page_unswapped(m);
262 }
263 
264 /*
265  * Unlocks fs.first_object and fs.map on success.
266  */
267 static int
268 vm_fault_soft_fast(struct faultstate *fs, vm_offset_t vaddr, vm_prot_t prot,
269     int fault_type, int fault_flags, boolean_t wired, vm_page_t *m_hold)
270 {
271 	vm_page_t m, m_map;
272 #if (defined(__aarch64__) || defined(__amd64__) || (defined(__arm__) && \
273     __ARM_ARCH >= 6) || defined(__i386__) || defined(__riscv)) && \
274     VM_NRESERVLEVEL > 0
275 	vm_page_t m_super;
276 	int flags;
277 #endif
278 	int psind, rv;
279 
280 	MPASS(fs->vp == NULL);
281 	m = vm_page_lookup(fs->first_object, fs->first_pindex);
282 	/* A busy page can be mapped for read|execute access. */
283 	if (m == NULL || ((prot & VM_PROT_WRITE) != 0 &&
284 	    vm_page_busied(m)) || m->valid != VM_PAGE_BITS_ALL)
285 		return (KERN_FAILURE);
286 	m_map = m;
287 	psind = 0;
288 #if (defined(__aarch64__) || defined(__amd64__) || (defined(__arm__) && \
289     __ARM_ARCH >= 6) || defined(__i386__) || defined(__riscv)) && \
290     VM_NRESERVLEVEL > 0
291 	if ((m->flags & PG_FICTITIOUS) == 0 &&
292 	    (m_super = vm_reserv_to_superpage(m)) != NULL &&
293 	    rounddown2(vaddr, pagesizes[m_super->psind]) >= fs->entry->start &&
294 	    roundup2(vaddr + 1, pagesizes[m_super->psind]) <= fs->entry->end &&
295 	    (vaddr & (pagesizes[m_super->psind] - 1)) == (VM_PAGE_TO_PHYS(m) &
296 	    (pagesizes[m_super->psind] - 1)) && !wired &&
297 	    pmap_ps_enabled(fs->map->pmap)) {
298 		flags = PS_ALL_VALID;
299 		if ((prot & VM_PROT_WRITE) != 0) {
300 			/*
301 			 * Create a superpage mapping allowing write access
302 			 * only if none of the constituent pages are busy and
303 			 * all of them are already dirty (except possibly for
304 			 * the page that was faulted on).
305 			 */
306 			flags |= PS_NONE_BUSY;
307 			if ((fs->first_object->flags & OBJ_UNMANAGED) == 0)
308 				flags |= PS_ALL_DIRTY;
309 		}
310 		if (vm_page_ps_test(m_super, flags, m)) {
311 			m_map = m_super;
312 			psind = m_super->psind;
313 			vaddr = rounddown2(vaddr, pagesizes[psind]);
314 			/* Preset the modified bit for dirty superpages. */
315 			if ((flags & PS_ALL_DIRTY) != 0)
316 				fault_type |= VM_PROT_WRITE;
317 		}
318 	}
319 #endif
320 	rv = pmap_enter(fs->map->pmap, vaddr, m_map, prot, fault_type |
321 	    PMAP_ENTER_NOSLEEP | (wired ? PMAP_ENTER_WIRED : 0), psind);
322 	if (rv != KERN_SUCCESS)
323 		return (rv);
324 	if (m_hold != NULL) {
325 		*m_hold = m;
326 		vm_page_wire(m);
327 	}
328 	vm_fault_dirty(fs->entry, m, prot, fault_type, fault_flags, false);
329 	if (psind == 0 && !wired)
330 		vm_fault_prefault(fs, vaddr, PFBAK, PFFOR, true);
331 	VM_OBJECT_RUNLOCK(fs->first_object);
332 	vm_map_lookup_done(fs->map, fs->entry);
333 	curthread->td_ru.ru_minflt++;
334 	return (KERN_SUCCESS);
335 }
336 
337 static void
338 vm_fault_restore_map_lock(struct faultstate *fs)
339 {
340 
341 	VM_OBJECT_ASSERT_WLOCKED(fs->first_object);
342 	MPASS(fs->first_object->paging_in_progress > 0);
343 
344 	if (!vm_map_trylock_read(fs->map)) {
345 		VM_OBJECT_WUNLOCK(fs->first_object);
346 		vm_map_lock_read(fs->map);
347 		VM_OBJECT_WLOCK(fs->first_object);
348 	}
349 	fs->lookup_still_valid = true;
350 }
351 
352 static void
353 vm_fault_populate_check_page(vm_page_t m)
354 {
355 
356 	/*
357 	 * Check each page to ensure that the pager is obeying the
358 	 * interface: the page must be installed in the object, fully
359 	 * valid, and exclusively busied.
360 	 */
361 	MPASS(m != NULL);
362 	MPASS(m->valid == VM_PAGE_BITS_ALL);
363 	MPASS(vm_page_xbusied(m));
364 }
365 
366 static void
367 vm_fault_populate_cleanup(vm_object_t object, vm_pindex_t first,
368     vm_pindex_t last)
369 {
370 	vm_page_t m;
371 	vm_pindex_t pidx;
372 
373 	VM_OBJECT_ASSERT_WLOCKED(object);
374 	MPASS(first <= last);
375 	for (pidx = first, m = vm_page_lookup(object, pidx);
376 	    pidx <= last; pidx++, m = vm_page_next(m)) {
377 		vm_fault_populate_check_page(m);
378 		vm_page_lock(m);
379 		vm_page_deactivate(m);
380 		vm_page_unlock(m);
381 		vm_page_xunbusy(m);
382 	}
383 }
384 
385 static int
386 vm_fault_populate(struct faultstate *fs, vm_prot_t prot, int fault_type,
387     int fault_flags, boolean_t wired, vm_page_t *m_hold)
388 {
389 	struct mtx *m_mtx;
390 	vm_offset_t vaddr;
391 	vm_page_t m;
392 	vm_pindex_t map_first, map_last, pager_first, pager_last, pidx;
393 	int i, npages, psind, rv;
394 
395 	MPASS(fs->object == fs->first_object);
396 	VM_OBJECT_ASSERT_WLOCKED(fs->first_object);
397 	MPASS(fs->first_object->paging_in_progress > 0);
398 	MPASS(fs->first_object->backing_object == NULL);
399 	MPASS(fs->lookup_still_valid);
400 
401 	pager_first = OFF_TO_IDX(fs->entry->offset);
402 	pager_last = pager_first + atop(fs->entry->end - fs->entry->start) - 1;
403 	unlock_map(fs);
404 	unlock_vp(fs);
405 
406 	/*
407 	 * Call the pager (driver) populate() method.
408 	 *
409 	 * There is no guarantee that the method will be called again
410 	 * if the current fault is for read, and a future fault is
411 	 * for write.  Report the entry's maximum allowed protection
412 	 * to the driver.
413 	 */
414 	rv = vm_pager_populate(fs->first_object, fs->first_pindex,
415 	    fault_type, fs->entry->max_protection, &pager_first, &pager_last);
416 
417 	VM_OBJECT_ASSERT_WLOCKED(fs->first_object);
418 	if (rv == VM_PAGER_BAD) {
419 		/*
420 		 * VM_PAGER_BAD is the backdoor for a pager to request
421 		 * normal fault handling.
422 		 */
423 		vm_fault_restore_map_lock(fs);
424 		if (fs->map->timestamp != fs->map_generation)
425 			return (KERN_RESOURCE_SHORTAGE); /* RetryFault */
426 		return (KERN_NOT_RECEIVER);
427 	}
428 	if (rv != VM_PAGER_OK)
429 		return (KERN_FAILURE); /* AKA SIGSEGV */
430 
431 	/* Ensure that the driver is obeying the interface. */
432 	MPASS(pager_first <= pager_last);
433 	MPASS(fs->first_pindex <= pager_last);
434 	MPASS(fs->first_pindex >= pager_first);
435 	MPASS(pager_last < fs->first_object->size);
436 
437 	vm_fault_restore_map_lock(fs);
438 	if (fs->map->timestamp != fs->map_generation) {
439 		vm_fault_populate_cleanup(fs->first_object, pager_first,
440 		    pager_last);
441 		return (KERN_RESOURCE_SHORTAGE); /* RetryFault */
442 	}
443 
444 	/*
445 	 * The map is unchanged after our last unlock.  Process the fault.
446 	 *
447 	 * The range [pager_first, pager_last] that is given to the
448 	 * pager is only a hint.  The pager may populate any range
449 	 * within the object that includes the requested page index.
450 	 * In case the pager expanded the range, clip it to fit into
451 	 * the map entry.
452 	 */
453 	map_first = OFF_TO_IDX(fs->entry->offset);
454 	if (map_first > pager_first) {
455 		vm_fault_populate_cleanup(fs->first_object, pager_first,
456 		    map_first - 1);
457 		pager_first = map_first;
458 	}
459 	map_last = map_first + atop(fs->entry->end - fs->entry->start) - 1;
460 	if (map_last < pager_last) {
461 		vm_fault_populate_cleanup(fs->first_object, map_last + 1,
462 		    pager_last);
463 		pager_last = map_last;
464 	}
465 	for (pidx = pager_first, m = vm_page_lookup(fs->first_object, pidx);
466 	    pidx <= pager_last;
467 	    pidx += npages, m = vm_page_next(&m[npages - 1])) {
468 		vaddr = fs->entry->start + IDX_TO_OFF(pidx) - fs->entry->offset;
469 #if defined(__aarch64__) || defined(__amd64__) || (defined(__arm__) && \
470     __ARM_ARCH >= 6) || defined(__i386__) || defined(__riscv)
471 		psind = m->psind;
472 		if (psind > 0 && ((vaddr & (pagesizes[psind] - 1)) != 0 ||
473 		    pidx + OFF_TO_IDX(pagesizes[psind]) - 1 > pager_last ||
474 		    !pmap_ps_enabled(fs->map->pmap) || wired))
475 			psind = 0;
476 #else
477 		psind = 0;
478 #endif
479 		npages = atop(pagesizes[psind]);
480 		for (i = 0; i < npages; i++) {
481 			vm_fault_populate_check_page(&m[i]);
482 			vm_fault_dirty(fs->entry, &m[i], prot, fault_type,
483 			    fault_flags, true);
484 		}
485 		VM_OBJECT_WUNLOCK(fs->first_object);
486 		rv = pmap_enter(fs->map->pmap, vaddr, m, prot, fault_type |
487 		    (wired ? PMAP_ENTER_WIRED : 0), psind);
488 #if defined(__amd64__)
489 		if (psind > 0 && rv == KERN_FAILURE) {
490 			for (i = 0; i < npages; i++) {
491 				rv = pmap_enter(fs->map->pmap, vaddr + ptoa(i),
492 				    &m[i], prot, fault_type |
493 				    (wired ? PMAP_ENTER_WIRED : 0), 0);
494 				MPASS(rv == KERN_SUCCESS);
495 			}
496 		}
497 #else
498 		MPASS(rv == KERN_SUCCESS);
499 #endif
500 		VM_OBJECT_WLOCK(fs->first_object);
501 		m_mtx = NULL;
502 		for (i = 0; i < npages; i++) {
503 			if ((fault_flags & VM_FAULT_WIRE) != 0) {
504 				vm_page_wire(&m[i]);
505 			} else {
506 				vm_page_change_lock(&m[i], &m_mtx);
507 				vm_page_activate(&m[i]);
508 			}
509 			if (m_hold != NULL && m[i].pindex == fs->first_pindex) {
510 				*m_hold = &m[i];
511 				vm_page_wire(&m[i]);
512 			}
513 			vm_page_xunbusy(&m[i]);
514 		}
515 		if (m_mtx != NULL)
516 			mtx_unlock(m_mtx);
517 	}
518 	curthread->td_ru.ru_majflt++;
519 	return (KERN_SUCCESS);
520 }
521 
522 /*
523  *	vm_fault:
524  *
525  *	Handle a page fault occurring at the given address,
526  *	requiring the given permissions, in the map specified.
527  *	If successful, the page is inserted into the
528  *	associated physical map.
529  *
530  *	NOTE: the given address should be truncated to the
531  *	proper page address.
532  *
533  *	KERN_SUCCESS is returned if the page fault is handled; otherwise,
534  *	a standard error specifying why the fault is fatal is returned.
535  *
536  *	The map in question must be referenced, and remains so.
537  *	Caller may hold no locks.
538  */
539 int
540 vm_fault(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
541     int fault_flags)
542 {
543 	struct thread *td;
544 	int result;
545 
546 	td = curthread;
547 	if ((td->td_pflags & TDP_NOFAULTING) != 0)
548 		return (KERN_PROTECTION_FAILURE);
549 #ifdef KTRACE
550 	if (map != kernel_map && KTRPOINT(td, KTR_FAULT))
551 		ktrfault(vaddr, fault_type);
552 #endif
553 	result = vm_fault_hold(map, trunc_page(vaddr), fault_type, fault_flags,
554 	    NULL);
555 #ifdef KTRACE
556 	if (map != kernel_map && KTRPOINT(td, KTR_FAULTEND))
557 		ktrfaultend(result);
558 #endif
559 	return (result);
560 }
561 
562 int
563 vm_fault_hold(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
564     int fault_flags, vm_page_t *m_hold)
565 {
566 	struct faultstate fs;
567 	struct vnode *vp;
568 	struct domainset *dset;
569 	vm_object_t next_object, retry_object;
570 	vm_offset_t e_end, e_start;
571 	vm_pindex_t retry_pindex;
572 	vm_prot_t prot, retry_prot;
573 	int ahead, alloc_req, behind, cluster_offset, error, era, faultcount;
574 	int locked, nera, oom, result, rv;
575 	u_char behavior;
576 	boolean_t wired;	/* Passed by reference. */
577 	bool dead, hardfault, is_first_object_locked;
578 
579 	VM_CNT_INC(v_vm_faults);
580 	fs.vp = NULL;
581 	faultcount = 0;
582 	nera = -1;
583 	hardfault = false;
584 
585 RetryFault:
586 	oom = 0;
587 RetryFault_oom:
588 
589 	/*
590 	 * Find the backing store object and offset into it to begin the
591 	 * search.
592 	 */
593 	fs.map = map;
594 	result = vm_map_lookup(&fs.map, vaddr, fault_type |
595 	    VM_PROT_FAULT_LOOKUP, &fs.entry, &fs.first_object,
596 	    &fs.first_pindex, &prot, &wired);
597 	if (result != KERN_SUCCESS) {
598 		unlock_vp(&fs);
599 		return (result);
600 	}
601 
602 	fs.map_generation = fs.map->timestamp;
603 
604 	if (fs.entry->eflags & MAP_ENTRY_NOFAULT) {
605 		panic("%s: fault on nofault entry, addr: %#lx",
606 		    __func__, (u_long)vaddr);
607 	}
608 
609 	if (fs.entry->eflags & MAP_ENTRY_IN_TRANSITION &&
610 	    fs.entry->wiring_thread != curthread) {
611 		vm_map_unlock_read(fs.map);
612 		vm_map_lock(fs.map);
613 		if (vm_map_lookup_entry(fs.map, vaddr, &fs.entry) &&
614 		    (fs.entry->eflags & MAP_ENTRY_IN_TRANSITION)) {
615 			unlock_vp(&fs);
616 			fs.entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
617 			vm_map_unlock_and_wait(fs.map, 0);
618 		} else
619 			vm_map_unlock(fs.map);
620 		goto RetryFault;
621 	}
622 
623 	MPASS((fs.entry->eflags & MAP_ENTRY_GUARD) == 0);
624 
625 	if (wired)
626 		fault_type = prot | (fault_type & VM_PROT_COPY);
627 	else
628 		KASSERT((fault_flags & VM_FAULT_WIRE) == 0,
629 		    ("!wired && VM_FAULT_WIRE"));
630 
631 	/*
632 	 * Try to avoid lock contention on the top-level object through
633 	 * special-case handling of some types of page faults, specifically,
634 	 * those that are both (1) mapping an existing page from the top-
635 	 * level object and (2) not having to mark that object as containing
636 	 * dirty pages.  Under these conditions, a read lock on the top-level
637 	 * object suffices, allowing multiple page faults of a similar type to
638 	 * run in parallel on the same top-level object.
639 	 */
640 	if (fs.vp == NULL /* avoid locked vnode leak */ &&
641 	    (fault_flags & (VM_FAULT_WIRE | VM_FAULT_DIRTY)) == 0 &&
642 	    /* avoid calling vm_object_set_writeable_dirty() */
643 	    ((prot & VM_PROT_WRITE) == 0 ||
644 	    (fs.first_object->type != OBJT_VNODE &&
645 	    (fs.first_object->flags & OBJ_TMPFS_NODE) == 0) ||
646 	    (fs.first_object->flags & OBJ_MIGHTBEDIRTY) != 0)) {
647 		VM_OBJECT_RLOCK(fs.first_object);
648 		if ((prot & VM_PROT_WRITE) == 0 ||
649 		    (fs.first_object->type != OBJT_VNODE &&
650 		    (fs.first_object->flags & OBJ_TMPFS_NODE) == 0) ||
651 		    (fs.first_object->flags & OBJ_MIGHTBEDIRTY) != 0) {
652 			rv = vm_fault_soft_fast(&fs, vaddr, prot, fault_type,
653 			    fault_flags, wired, m_hold);
654 			if (rv == KERN_SUCCESS)
655 				return (rv);
656 		}
657 		if (!VM_OBJECT_TRYUPGRADE(fs.first_object)) {
658 			VM_OBJECT_RUNLOCK(fs.first_object);
659 			VM_OBJECT_WLOCK(fs.first_object);
660 		}
661 	} else {
662 		VM_OBJECT_WLOCK(fs.first_object);
663 	}
664 
665 	/*
666 	 * Make a reference to this object to prevent its disposal while we
667 	 * are messing with it.  Once we have the reference, the map is free
668 	 * to be diddled.  Since objects reference their shadows (and copies),
669 	 * they will stay around as well.
670 	 *
671 	 * Bump the paging-in-progress count to prevent size changes (e.g.
672 	 * truncation operations) during I/O.
673 	 */
674 	vm_object_reference_locked(fs.first_object);
675 	vm_object_pip_add(fs.first_object, 1);
676 
677 	fs.lookup_still_valid = true;
678 
679 	fs.first_m = NULL;
680 
681 	/*
682 	 * Search for the page at object/offset.
683 	 */
684 	fs.object = fs.first_object;
685 	fs.pindex = fs.first_pindex;
686 	while (TRUE) {
687 		/*
688 		 * If the object is marked for imminent termination,
689 		 * we retry here, since the collapse pass has raced
690 		 * with us.  Otherwise, if we see terminally dead
691 		 * object, return fail.
692 		 */
693 		if ((fs.object->flags & OBJ_DEAD) != 0) {
694 			dead = fs.object->type == OBJT_DEAD;
695 			unlock_and_deallocate(&fs);
696 			if (dead)
697 				return (KERN_PROTECTION_FAILURE);
698 			pause("vmf_de", 1);
699 			goto RetryFault;
700 		}
701 
702 		/*
703 		 * See if page is resident
704 		 */
705 		fs.m = vm_page_lookup(fs.object, fs.pindex);
706 		if (fs.m != NULL) {
707 			/*
708 			 * Wait/Retry if the page is busy.  We have to do this
709 			 * if the page is either exclusive or shared busy
710 			 * because the vm_pager may be using read busy for
711 			 * pageouts (and even pageins if it is the vnode
712 			 * pager), and we could end up trying to pagein and
713 			 * pageout the same page simultaneously.
714 			 *
715 			 * We can theoretically allow the busy case on a read
716 			 * fault if the page is marked valid, but since such
717 			 * pages are typically already pmap'd, putting that
718 			 * special case in might be more effort then it is
719 			 * worth.  We cannot under any circumstances mess
720 			 * around with a shared busied page except, perhaps,
721 			 * to pmap it.
722 			 */
723 			if (vm_page_busied(fs.m)) {
724 				/*
725 				 * Reference the page before unlocking and
726 				 * sleeping so that the page daemon is less
727 				 * likely to reclaim it.
728 				 */
729 				vm_page_aflag_set(fs.m, PGA_REFERENCED);
730 				if (fs.object != fs.first_object) {
731 					if (!VM_OBJECT_TRYWLOCK(
732 					    fs.first_object)) {
733 						VM_OBJECT_WUNLOCK(fs.object);
734 						VM_OBJECT_WLOCK(fs.first_object);
735 						VM_OBJECT_WLOCK(fs.object);
736 					}
737 					vm_page_free(fs.first_m);
738 					vm_object_pip_wakeup(fs.first_object);
739 					VM_OBJECT_WUNLOCK(fs.first_object);
740 					fs.first_m = NULL;
741 				}
742 				unlock_map(&fs);
743 				if (fs.m == vm_page_lookup(fs.object,
744 				    fs.pindex)) {
745 					vm_page_sleep_if_busy(fs.m, "vmpfw");
746 				}
747 				vm_object_pip_wakeup(fs.object);
748 				VM_OBJECT_WUNLOCK(fs.object);
749 				VM_CNT_INC(v_intrans);
750 				vm_object_deallocate(fs.first_object);
751 				goto RetryFault;
752 			}
753 
754 			/*
755 			 * Mark page busy for other processes, and the
756 			 * pagedaemon.  If it still isn't completely valid
757 			 * (readable), jump to readrest, else break-out ( we
758 			 * found the page ).
759 			 */
760 			vm_page_xbusy(fs.m);
761 			if (fs.m->valid != VM_PAGE_BITS_ALL)
762 				goto readrest;
763 			break; /* break to PAGE HAS BEEN FOUND */
764 		}
765 		KASSERT(fs.m == NULL, ("fs.m should be NULL, not %p", fs.m));
766 
767 		/*
768 		 * Page is not resident.  If the pager might contain the page
769 		 * or this is the beginning of the search, allocate a new
770 		 * page.  (Default objects are zero-fill, so there is no real
771 		 * pager for them.)
772 		 */
773 		if (fs.object->type != OBJT_DEFAULT ||
774 		    fs.object == fs.first_object) {
775 			if (fs.pindex >= fs.object->size) {
776 				unlock_and_deallocate(&fs);
777 				return (KERN_PROTECTION_FAILURE);
778 			}
779 
780 			if (fs.object == fs.first_object &&
781 			    (fs.first_object->flags & OBJ_POPULATE) != 0 &&
782 			    fs.first_object->shadow_count == 0) {
783 				rv = vm_fault_populate(&fs, prot, fault_type,
784 				    fault_flags, wired, m_hold);
785 				switch (rv) {
786 				case KERN_SUCCESS:
787 				case KERN_FAILURE:
788 					unlock_and_deallocate(&fs);
789 					return (rv);
790 				case KERN_RESOURCE_SHORTAGE:
791 					unlock_and_deallocate(&fs);
792 					goto RetryFault;
793 				case KERN_NOT_RECEIVER:
794 					/*
795 					 * Pager's populate() method
796 					 * returned VM_PAGER_BAD.
797 					 */
798 					break;
799 				default:
800 					panic("inconsistent return codes");
801 				}
802 			}
803 
804 			/*
805 			 * Allocate a new page for this object/offset pair.
806 			 *
807 			 * Unlocked read of the p_flag is harmless. At
808 			 * worst, the P_KILLED might be not observed
809 			 * there, and allocation can fail, causing
810 			 * restart and new reading of the p_flag.
811 			 */
812 			dset = fs.object->domain.dr_policy;
813 			if (dset == NULL)
814 				dset = curthread->td_domain.dr_policy;
815 			if (!vm_page_count_severe_set(&dset->ds_mask) ||
816 			    P_KILLED(curproc)) {
817 #if VM_NRESERVLEVEL > 0
818 				vm_object_color(fs.object, atop(vaddr) -
819 				    fs.pindex);
820 #endif
821 				alloc_req = P_KILLED(curproc) ?
822 				    VM_ALLOC_SYSTEM : VM_ALLOC_NORMAL;
823 				if (fs.object->type != OBJT_VNODE &&
824 				    fs.object->backing_object == NULL)
825 					alloc_req |= VM_ALLOC_ZERO;
826 				fs.m = vm_page_alloc(fs.object, fs.pindex,
827 				    alloc_req);
828 			}
829 			if (fs.m == NULL) {
830 				unlock_and_deallocate(&fs);
831 				if (vm_pfault_oom_attempts < 0 ||
832 				    oom < vm_pfault_oom_attempts) {
833 					oom++;
834 					vm_waitpfault(dset,
835 					    vm_pfault_oom_wait * hz);
836 					goto RetryFault_oom;
837 				}
838 				if (bootverbose)
839 					printf(
840 	"proc %d (%s) failed to alloc page on fault, starting OOM\n",
841 					    curproc->p_pid, curproc->p_comm);
842 				vm_pageout_oom(VM_OOM_MEM_PF);
843 				goto RetryFault;
844 			}
845 		}
846 
847 readrest:
848 		/*
849 		 * At this point, we have either allocated a new page or found
850 		 * an existing page that is only partially valid.
851 		 *
852 		 * We hold a reference on the current object and the page is
853 		 * exclusive busied.
854 		 */
855 
856 		/*
857 		 * If the pager for the current object might have the page,
858 		 * then determine the number of additional pages to read and
859 		 * potentially reprioritize previously read pages for earlier
860 		 * reclamation.  These operations should only be performed
861 		 * once per page fault.  Even if the current pager doesn't
862 		 * have the page, the number of additional pages to read will
863 		 * apply to subsequent objects in the shadow chain.
864 		 */
865 		if (fs.object->type != OBJT_DEFAULT && nera == -1 &&
866 		    !P_KILLED(curproc)) {
867 			KASSERT(fs.lookup_still_valid, ("map unlocked"));
868 			era = fs.entry->read_ahead;
869 			behavior = vm_map_entry_behavior(fs.entry);
870 			if (behavior == MAP_ENTRY_BEHAV_RANDOM) {
871 				nera = 0;
872 			} else if (behavior == MAP_ENTRY_BEHAV_SEQUENTIAL) {
873 				nera = VM_FAULT_READ_AHEAD_MAX;
874 				if (vaddr == fs.entry->next_read)
875 					vm_fault_dontneed(&fs, vaddr, nera);
876 			} else if (vaddr == fs.entry->next_read) {
877 				/*
878 				 * This is a sequential fault.  Arithmetically
879 				 * increase the requested number of pages in
880 				 * the read-ahead window.  The requested
881 				 * number of pages is "# of sequential faults
882 				 * x (read ahead min + 1) + read ahead min"
883 				 */
884 				nera = VM_FAULT_READ_AHEAD_MIN;
885 				if (era > 0) {
886 					nera += era + 1;
887 					if (nera > VM_FAULT_READ_AHEAD_MAX)
888 						nera = VM_FAULT_READ_AHEAD_MAX;
889 				}
890 				if (era == VM_FAULT_READ_AHEAD_MAX)
891 					vm_fault_dontneed(&fs, vaddr, nera);
892 			} else {
893 				/*
894 				 * This is a non-sequential fault.
895 				 */
896 				nera = 0;
897 			}
898 			if (era != nera) {
899 				/*
900 				 * A read lock on the map suffices to update
901 				 * the read ahead count safely.
902 				 */
903 				fs.entry->read_ahead = nera;
904 			}
905 
906 			/*
907 			 * Prepare for unlocking the map.  Save the map
908 			 * entry's start and end addresses, which are used to
909 			 * optimize the size of the pager operation below.
910 			 * Even if the map entry's addresses change after
911 			 * unlocking the map, using the saved addresses is
912 			 * safe.
913 			 */
914 			e_start = fs.entry->start;
915 			e_end = fs.entry->end;
916 		}
917 
918 		/*
919 		 * Call the pager to retrieve the page if there is a chance
920 		 * that the pager has it, and potentially retrieve additional
921 		 * pages at the same time.
922 		 */
923 		if (fs.object->type != OBJT_DEFAULT) {
924 			/*
925 			 * Release the map lock before locking the vnode or
926 			 * sleeping in the pager.  (If the current object has
927 			 * a shadow, then an earlier iteration of this loop
928 			 * may have already unlocked the map.)
929 			 */
930 			unlock_map(&fs);
931 
932 			if (fs.object->type == OBJT_VNODE &&
933 			    (vp = fs.object->handle) != fs.vp) {
934 				/*
935 				 * Perform an unlock in case the desired vnode
936 				 * changed while the map was unlocked during a
937 				 * retry.
938 				 */
939 				unlock_vp(&fs);
940 
941 				locked = VOP_ISLOCKED(vp);
942 				if (locked != LK_EXCLUSIVE)
943 					locked = LK_SHARED;
944 
945 				/*
946 				 * We must not sleep acquiring the vnode lock
947 				 * while we have the page exclusive busied or
948 				 * the object's paging-in-progress count
949 				 * incremented.  Otherwise, we could deadlock.
950 				 */
951 				error = vget(vp, locked | LK_CANRECURSE |
952 				    LK_NOWAIT, curthread);
953 				if (error != 0) {
954 					vhold(vp);
955 					release_page(&fs);
956 					unlock_and_deallocate(&fs);
957 					error = vget(vp, locked | LK_RETRY |
958 					    LK_CANRECURSE, curthread);
959 					vdrop(vp);
960 					fs.vp = vp;
961 					KASSERT(error == 0,
962 					    ("vm_fault: vget failed"));
963 					goto RetryFault;
964 				}
965 				fs.vp = vp;
966 			}
967 			KASSERT(fs.vp == NULL || !fs.map->system_map,
968 			    ("vm_fault: vnode-backed object mapped by system map"));
969 
970 			/*
971 			 * Page in the requested page and hint the pager,
972 			 * that it may bring up surrounding pages.
973 			 */
974 			if (nera == -1 || behavior == MAP_ENTRY_BEHAV_RANDOM ||
975 			    P_KILLED(curproc)) {
976 				behind = 0;
977 				ahead = 0;
978 			} else {
979 				/* Is this a sequential fault? */
980 				if (nera > 0) {
981 					behind = 0;
982 					ahead = nera;
983 				} else {
984 					/*
985 					 * Request a cluster of pages that is
986 					 * aligned to a VM_FAULT_READ_DEFAULT
987 					 * page offset boundary within the
988 					 * object.  Alignment to a page offset
989 					 * boundary is more likely to coincide
990 					 * with the underlying file system
991 					 * block than alignment to a virtual
992 					 * address boundary.
993 					 */
994 					cluster_offset = fs.pindex %
995 					    VM_FAULT_READ_DEFAULT;
996 					behind = ulmin(cluster_offset,
997 					    atop(vaddr - e_start));
998 					ahead = VM_FAULT_READ_DEFAULT - 1 -
999 					    cluster_offset;
1000 				}
1001 				ahead = ulmin(ahead, atop(e_end - vaddr) - 1);
1002 			}
1003 			rv = vm_pager_get_pages(fs.object, &fs.m, 1,
1004 			    &behind, &ahead);
1005 			if (rv == VM_PAGER_OK) {
1006 				faultcount = behind + 1 + ahead;
1007 				hardfault = true;
1008 				break; /* break to PAGE HAS BEEN FOUND */
1009 			}
1010 			if (rv == VM_PAGER_ERROR)
1011 				printf("vm_fault: pager read error, pid %d (%s)\n",
1012 				    curproc->p_pid, curproc->p_comm);
1013 
1014 			/*
1015 			 * If an I/O error occurred or the requested page was
1016 			 * outside the range of the pager, clean up and return
1017 			 * an error.
1018 			 */
1019 			if (rv == VM_PAGER_ERROR || rv == VM_PAGER_BAD) {
1020 				if (!vm_page_wired(fs.m))
1021 					vm_page_free(fs.m);
1022 				else
1023 					vm_page_xunbusy(fs.m);
1024 				fs.m = NULL;
1025 				unlock_and_deallocate(&fs);
1026 				return (rv == VM_PAGER_ERROR ? KERN_FAILURE :
1027 				    KERN_PROTECTION_FAILURE);
1028 			}
1029 
1030 			/*
1031 			 * The requested page does not exist at this object/
1032 			 * offset.  Remove the invalid page from the object,
1033 			 * waking up anyone waiting for it, and continue on to
1034 			 * the next object.  However, if this is the top-level
1035 			 * object, we must leave the busy page in place to
1036 			 * prevent another process from rushing past us, and
1037 			 * inserting the page in that object at the same time
1038 			 * that we are.
1039 			 */
1040 			if (fs.object != fs.first_object) {
1041 				if (!vm_page_wired(fs.m))
1042 					vm_page_free(fs.m);
1043 				else
1044 					vm_page_xunbusy(fs.m);
1045 				fs.m = NULL;
1046 			}
1047 		}
1048 
1049 		/*
1050 		 * We get here if the object has default pager (or unwiring)
1051 		 * or the pager doesn't have the page.
1052 		 */
1053 		if (fs.object == fs.first_object)
1054 			fs.first_m = fs.m;
1055 
1056 		/*
1057 		 * Move on to the next object.  Lock the next object before
1058 		 * unlocking the current one.
1059 		 */
1060 		next_object = fs.object->backing_object;
1061 		if (next_object == NULL) {
1062 			/*
1063 			 * If there's no object left, fill the page in the top
1064 			 * object with zeros.
1065 			 */
1066 			if (fs.object != fs.first_object) {
1067 				vm_object_pip_wakeup(fs.object);
1068 				VM_OBJECT_WUNLOCK(fs.object);
1069 
1070 				fs.object = fs.first_object;
1071 				fs.pindex = fs.first_pindex;
1072 				fs.m = fs.first_m;
1073 				VM_OBJECT_WLOCK(fs.object);
1074 			}
1075 			fs.first_m = NULL;
1076 
1077 			/*
1078 			 * Zero the page if necessary and mark it valid.
1079 			 */
1080 			if ((fs.m->flags & PG_ZERO) == 0) {
1081 				pmap_zero_page(fs.m);
1082 			} else {
1083 				VM_CNT_INC(v_ozfod);
1084 			}
1085 			VM_CNT_INC(v_zfod);
1086 			fs.m->valid = VM_PAGE_BITS_ALL;
1087 			/* Don't try to prefault neighboring pages. */
1088 			faultcount = 1;
1089 			break;	/* break to PAGE HAS BEEN FOUND */
1090 		} else {
1091 			KASSERT(fs.object != next_object,
1092 			    ("object loop %p", next_object));
1093 			VM_OBJECT_WLOCK(next_object);
1094 			vm_object_pip_add(next_object, 1);
1095 			if (fs.object != fs.first_object)
1096 				vm_object_pip_wakeup(fs.object);
1097 			fs.pindex +=
1098 			    OFF_TO_IDX(fs.object->backing_object_offset);
1099 			VM_OBJECT_WUNLOCK(fs.object);
1100 			fs.object = next_object;
1101 		}
1102 	}
1103 
1104 	vm_page_assert_xbusied(fs.m);
1105 
1106 	/*
1107 	 * PAGE HAS BEEN FOUND. [Loop invariant still holds -- the object lock
1108 	 * is held.]
1109 	 */
1110 
1111 	/*
1112 	 * If the page is being written, but isn't already owned by the
1113 	 * top-level object, we have to copy it into a new page owned by the
1114 	 * top-level object.
1115 	 */
1116 	if (fs.object != fs.first_object) {
1117 		/*
1118 		 * We only really need to copy if we want to write it.
1119 		 */
1120 		if ((fault_type & (VM_PROT_COPY | VM_PROT_WRITE)) != 0) {
1121 			/*
1122 			 * This allows pages to be virtually copied from a
1123 			 * backing_object into the first_object, where the
1124 			 * backing object has no other refs to it, and cannot
1125 			 * gain any more refs.  Instead of a bcopy, we just
1126 			 * move the page from the backing object to the
1127 			 * first object.  Note that we must mark the page
1128 			 * dirty in the first object so that it will go out
1129 			 * to swap when needed.
1130 			 */
1131 			is_first_object_locked = false;
1132 			if (
1133 				/*
1134 				 * Only one shadow object
1135 				 */
1136 				(fs.object->shadow_count == 1) &&
1137 				/*
1138 				 * No COW refs, except us
1139 				 */
1140 				(fs.object->ref_count == 1) &&
1141 				/*
1142 				 * No one else can look this object up
1143 				 */
1144 				(fs.object->handle == NULL) &&
1145 				/*
1146 				 * No other ways to look the object up
1147 				 */
1148 				((fs.object->type == OBJT_DEFAULT) ||
1149 				 (fs.object->type == OBJT_SWAP)) &&
1150 			    (is_first_object_locked = VM_OBJECT_TRYWLOCK(fs.first_object)) &&
1151 				/*
1152 				 * We don't chase down the shadow chain
1153 				 */
1154 			    fs.object == fs.first_object->backing_object) {
1155 
1156 				(void)vm_page_remove(fs.m);
1157 				vm_page_replace_checked(fs.m, fs.first_object,
1158 				    fs.first_pindex, fs.first_m);
1159 				vm_page_free(fs.first_m);
1160 				vm_page_dirty(fs.m);
1161 #if VM_NRESERVLEVEL > 0
1162 				/*
1163 				 * Rename the reservation.
1164 				 */
1165 				vm_reserv_rename(fs.m, fs.first_object,
1166 				    fs.object, OFF_TO_IDX(
1167 				    fs.first_object->backing_object_offset));
1168 #endif
1169 				/*
1170 				 * Removing the page from the backing object
1171 				 * unbusied it.
1172 				 */
1173 				vm_page_xbusy(fs.m);
1174 				fs.first_m = fs.m;
1175 				fs.m = NULL;
1176 				VM_CNT_INC(v_cow_optim);
1177 			} else {
1178 				/*
1179 				 * Oh, well, lets copy it.
1180 				 */
1181 				pmap_copy_page(fs.m, fs.first_m);
1182 				fs.first_m->valid = VM_PAGE_BITS_ALL;
1183 				if (wired && (fault_flags &
1184 				    VM_FAULT_WIRE) == 0) {
1185 					vm_page_wire(fs.first_m);
1186 					vm_page_unwire(fs.m, PQ_INACTIVE);
1187 				}
1188 				/*
1189 				 * We no longer need the old page or object.
1190 				 */
1191 				release_page(&fs);
1192 			}
1193 			/*
1194 			 * fs.object != fs.first_object due to above
1195 			 * conditional
1196 			 */
1197 			vm_object_pip_wakeup(fs.object);
1198 			VM_OBJECT_WUNLOCK(fs.object);
1199 
1200 			/*
1201 			 * We only try to prefault read-only mappings to the
1202 			 * neighboring pages when this copy-on-write fault is
1203 			 * a hard fault.  In other cases, trying to prefault
1204 			 * is typically wasted effort.
1205 			 */
1206 			if (faultcount == 0)
1207 				faultcount = 1;
1208 
1209 			/*
1210 			 * Only use the new page below...
1211 			 */
1212 			fs.object = fs.first_object;
1213 			fs.pindex = fs.first_pindex;
1214 			fs.m = fs.first_m;
1215 			if (!is_first_object_locked)
1216 				VM_OBJECT_WLOCK(fs.object);
1217 			VM_CNT_INC(v_cow_faults);
1218 			curthread->td_cow++;
1219 		} else {
1220 			prot &= ~VM_PROT_WRITE;
1221 		}
1222 	}
1223 
1224 	/*
1225 	 * We must verify that the maps have not changed since our last
1226 	 * lookup.
1227 	 */
1228 	if (!fs.lookup_still_valid) {
1229 		if (!vm_map_trylock_read(fs.map)) {
1230 			release_page(&fs);
1231 			unlock_and_deallocate(&fs);
1232 			goto RetryFault;
1233 		}
1234 		fs.lookup_still_valid = true;
1235 		if (fs.map->timestamp != fs.map_generation) {
1236 			result = vm_map_lookup_locked(&fs.map, vaddr, fault_type,
1237 			    &fs.entry, &retry_object, &retry_pindex, &retry_prot, &wired);
1238 
1239 			/*
1240 			 * If we don't need the page any longer, put it on the inactive
1241 			 * list (the easiest thing to do here).  If no one needs it,
1242 			 * pageout will grab it eventually.
1243 			 */
1244 			if (result != KERN_SUCCESS) {
1245 				release_page(&fs);
1246 				unlock_and_deallocate(&fs);
1247 
1248 				/*
1249 				 * If retry of map lookup would have blocked then
1250 				 * retry fault from start.
1251 				 */
1252 				if (result == KERN_FAILURE)
1253 					goto RetryFault;
1254 				return (result);
1255 			}
1256 			if ((retry_object != fs.first_object) ||
1257 			    (retry_pindex != fs.first_pindex)) {
1258 				release_page(&fs);
1259 				unlock_and_deallocate(&fs);
1260 				goto RetryFault;
1261 			}
1262 
1263 			/*
1264 			 * Check whether the protection has changed or the object has
1265 			 * been copied while we left the map unlocked. Changing from
1266 			 * read to write permission is OK - we leave the page
1267 			 * write-protected, and catch the write fault. Changing from
1268 			 * write to read permission means that we can't mark the page
1269 			 * write-enabled after all.
1270 			 */
1271 			prot &= retry_prot;
1272 			fault_type &= retry_prot;
1273 			if (prot == 0) {
1274 				release_page(&fs);
1275 				unlock_and_deallocate(&fs);
1276 				goto RetryFault;
1277 			}
1278 
1279 			/* Reassert because wired may have changed. */
1280 			KASSERT(wired || (fault_flags & VM_FAULT_WIRE) == 0,
1281 			    ("!wired && VM_FAULT_WIRE"));
1282 		}
1283 	}
1284 
1285 	/*
1286 	 * If the page was filled by a pager, save the virtual address that
1287 	 * should be faulted on next under a sequential access pattern to the
1288 	 * map entry.  A read lock on the map suffices to update this address
1289 	 * safely.
1290 	 */
1291 	if (hardfault)
1292 		fs.entry->next_read = vaddr + ptoa(ahead) + PAGE_SIZE;
1293 
1294 	vm_fault_dirty(fs.entry, fs.m, prot, fault_type, fault_flags, true);
1295 	vm_page_assert_xbusied(fs.m);
1296 
1297 	/*
1298 	 * Page must be completely valid or it is not fit to
1299 	 * map into user space.  vm_pager_get_pages() ensures this.
1300 	 */
1301 	KASSERT(fs.m->valid == VM_PAGE_BITS_ALL,
1302 	    ("vm_fault: page %p partially invalid", fs.m));
1303 	VM_OBJECT_WUNLOCK(fs.object);
1304 
1305 	/*
1306 	 * Put this page into the physical map.  We had to do the unlock above
1307 	 * because pmap_enter() may sleep.  We don't put the page
1308 	 * back on the active queue until later so that the pageout daemon
1309 	 * won't find it (yet).
1310 	 */
1311 	pmap_enter(fs.map->pmap, vaddr, fs.m, prot,
1312 	    fault_type | (wired ? PMAP_ENTER_WIRED : 0), 0);
1313 	if (faultcount != 1 && (fault_flags & VM_FAULT_WIRE) == 0 &&
1314 	    wired == 0)
1315 		vm_fault_prefault(&fs, vaddr,
1316 		    faultcount > 0 ? behind : PFBAK,
1317 		    faultcount > 0 ? ahead : PFFOR, false);
1318 	VM_OBJECT_WLOCK(fs.object);
1319 
1320 	/*
1321 	 * If the page is not wired down, then put it where the pageout daemon
1322 	 * can find it.
1323 	 */
1324 	if ((fault_flags & VM_FAULT_WIRE) != 0) {
1325 		vm_page_wire(fs.m);
1326 	} else {
1327 		vm_page_lock(fs.m);
1328 		vm_page_activate(fs.m);
1329 		vm_page_unlock(fs.m);
1330 	}
1331 	if (m_hold != NULL) {
1332 		*m_hold = fs.m;
1333 		vm_page_wire(fs.m);
1334 	}
1335 	vm_page_xunbusy(fs.m);
1336 
1337 	/*
1338 	 * Unlock everything, and return
1339 	 */
1340 	unlock_and_deallocate(&fs);
1341 	if (hardfault) {
1342 		VM_CNT_INC(v_io_faults);
1343 		curthread->td_ru.ru_majflt++;
1344 #ifdef RACCT
1345 		if (racct_enable && fs.object->type == OBJT_VNODE) {
1346 			PROC_LOCK(curproc);
1347 			if ((fault_type & (VM_PROT_COPY | VM_PROT_WRITE)) != 0) {
1348 				racct_add_force(curproc, RACCT_WRITEBPS,
1349 				    PAGE_SIZE + behind * PAGE_SIZE);
1350 				racct_add_force(curproc, RACCT_WRITEIOPS, 1);
1351 			} else {
1352 				racct_add_force(curproc, RACCT_READBPS,
1353 				    PAGE_SIZE + ahead * PAGE_SIZE);
1354 				racct_add_force(curproc, RACCT_READIOPS, 1);
1355 			}
1356 			PROC_UNLOCK(curproc);
1357 		}
1358 #endif
1359 	} else
1360 		curthread->td_ru.ru_minflt++;
1361 
1362 	return (KERN_SUCCESS);
1363 }
1364 
1365 /*
1366  * Speed up the reclamation of pages that precede the faulting pindex within
1367  * the first object of the shadow chain.  Essentially, perform the equivalent
1368  * to madvise(..., MADV_DONTNEED) on a large cluster of pages that precedes
1369  * the faulting pindex by the cluster size when the pages read by vm_fault()
1370  * cross a cluster-size boundary.  The cluster size is the greater of the
1371  * smallest superpage size and VM_FAULT_DONTNEED_MIN.
1372  *
1373  * When "fs->first_object" is a shadow object, the pages in the backing object
1374  * that precede the faulting pindex are deactivated by vm_fault().  So, this
1375  * function must only be concerned with pages in the first object.
1376  */
1377 static void
1378 vm_fault_dontneed(const struct faultstate *fs, vm_offset_t vaddr, int ahead)
1379 {
1380 	vm_map_entry_t entry;
1381 	vm_object_t first_object, object;
1382 	vm_offset_t end, start;
1383 	vm_page_t m, m_next;
1384 	vm_pindex_t pend, pstart;
1385 	vm_size_t size;
1386 
1387 	object = fs->object;
1388 	VM_OBJECT_ASSERT_WLOCKED(object);
1389 	first_object = fs->first_object;
1390 	if (first_object != object) {
1391 		if (!VM_OBJECT_TRYWLOCK(first_object)) {
1392 			VM_OBJECT_WUNLOCK(object);
1393 			VM_OBJECT_WLOCK(first_object);
1394 			VM_OBJECT_WLOCK(object);
1395 		}
1396 	}
1397 	/* Neither fictitious nor unmanaged pages can be reclaimed. */
1398 	if ((first_object->flags & (OBJ_FICTITIOUS | OBJ_UNMANAGED)) == 0) {
1399 		size = VM_FAULT_DONTNEED_MIN;
1400 		if (MAXPAGESIZES > 1 && size < pagesizes[1])
1401 			size = pagesizes[1];
1402 		end = rounddown2(vaddr, size);
1403 		if (vaddr - end >= size - PAGE_SIZE - ptoa(ahead) &&
1404 		    (entry = fs->entry)->start < end) {
1405 			if (end - entry->start < size)
1406 				start = entry->start;
1407 			else
1408 				start = end - size;
1409 			pmap_advise(fs->map->pmap, start, end, MADV_DONTNEED);
1410 			pstart = OFF_TO_IDX(entry->offset) + atop(start -
1411 			    entry->start);
1412 			m_next = vm_page_find_least(first_object, pstart);
1413 			pend = OFF_TO_IDX(entry->offset) + atop(end -
1414 			    entry->start);
1415 			while ((m = m_next) != NULL && m->pindex < pend) {
1416 				m_next = TAILQ_NEXT(m, listq);
1417 				if (m->valid != VM_PAGE_BITS_ALL ||
1418 				    vm_page_busied(m))
1419 					continue;
1420 
1421 				/*
1422 				 * Don't clear PGA_REFERENCED, since it would
1423 				 * likely represent a reference by a different
1424 				 * process.
1425 				 *
1426 				 * Typically, at this point, prefetched pages
1427 				 * are still in the inactive queue.  Only
1428 				 * pages that triggered page faults are in the
1429 				 * active queue.
1430 				 */
1431 				vm_page_lock(m);
1432 				if (!vm_page_inactive(m))
1433 					vm_page_deactivate(m);
1434 				vm_page_unlock(m);
1435 			}
1436 		}
1437 	}
1438 	if (first_object != object)
1439 		VM_OBJECT_WUNLOCK(first_object);
1440 }
1441 
1442 /*
1443  * vm_fault_prefault provides a quick way of clustering
1444  * pagefaults into a processes address space.  It is a "cousin"
1445  * of vm_map_pmap_enter, except it runs at page fault time instead
1446  * of mmap time.
1447  */
1448 static void
1449 vm_fault_prefault(const struct faultstate *fs, vm_offset_t addra,
1450     int backward, int forward, bool obj_locked)
1451 {
1452 	pmap_t pmap;
1453 	vm_map_entry_t entry;
1454 	vm_object_t backing_object, lobject;
1455 	vm_offset_t addr, starta;
1456 	vm_pindex_t pindex;
1457 	vm_page_t m;
1458 	int i;
1459 
1460 	pmap = fs->map->pmap;
1461 	if (pmap != vmspace_pmap(curthread->td_proc->p_vmspace))
1462 		return;
1463 
1464 	entry = fs->entry;
1465 
1466 	if (addra < backward * PAGE_SIZE) {
1467 		starta = entry->start;
1468 	} else {
1469 		starta = addra - backward * PAGE_SIZE;
1470 		if (starta < entry->start)
1471 			starta = entry->start;
1472 	}
1473 
1474 	/*
1475 	 * Generate the sequence of virtual addresses that are candidates for
1476 	 * prefaulting in an outward spiral from the faulting virtual address,
1477 	 * "addra".  Specifically, the sequence is "addra - PAGE_SIZE", "addra
1478 	 * + PAGE_SIZE", "addra - 2 * PAGE_SIZE", "addra + 2 * PAGE_SIZE", ...
1479 	 * If the candidate address doesn't have a backing physical page, then
1480 	 * the loop immediately terminates.
1481 	 */
1482 	for (i = 0; i < 2 * imax(backward, forward); i++) {
1483 		addr = addra + ((i >> 1) + 1) * ((i & 1) == 0 ? -PAGE_SIZE :
1484 		    PAGE_SIZE);
1485 		if (addr > addra + forward * PAGE_SIZE)
1486 			addr = 0;
1487 
1488 		if (addr < starta || addr >= entry->end)
1489 			continue;
1490 
1491 		if (!pmap_is_prefaultable(pmap, addr))
1492 			continue;
1493 
1494 		pindex = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT;
1495 		lobject = entry->object.vm_object;
1496 		if (!obj_locked)
1497 			VM_OBJECT_RLOCK(lobject);
1498 		while ((m = vm_page_lookup(lobject, pindex)) == NULL &&
1499 		    lobject->type == OBJT_DEFAULT &&
1500 		    (backing_object = lobject->backing_object) != NULL) {
1501 			KASSERT((lobject->backing_object_offset & PAGE_MASK) ==
1502 			    0, ("vm_fault_prefault: unaligned object offset"));
1503 			pindex += lobject->backing_object_offset >> PAGE_SHIFT;
1504 			VM_OBJECT_RLOCK(backing_object);
1505 			if (!obj_locked || lobject != entry->object.vm_object)
1506 				VM_OBJECT_RUNLOCK(lobject);
1507 			lobject = backing_object;
1508 		}
1509 		if (m == NULL) {
1510 			if (!obj_locked || lobject != entry->object.vm_object)
1511 				VM_OBJECT_RUNLOCK(lobject);
1512 			break;
1513 		}
1514 		if (m->valid == VM_PAGE_BITS_ALL &&
1515 		    (m->flags & PG_FICTITIOUS) == 0)
1516 			pmap_enter_quick(pmap, addr, m, entry->protection);
1517 		if (!obj_locked || lobject != entry->object.vm_object)
1518 			VM_OBJECT_RUNLOCK(lobject);
1519 	}
1520 }
1521 
1522 /*
1523  * Hold each of the physical pages that are mapped by the specified range of
1524  * virtual addresses, ["addr", "addr" + "len"), if those mappings are valid
1525  * and allow the specified types of access, "prot".  If all of the implied
1526  * pages are successfully held, then the number of held pages is returned
1527  * together with pointers to those pages in the array "ma".  However, if any
1528  * of the pages cannot be held, -1 is returned.
1529  */
1530 int
1531 vm_fault_quick_hold_pages(vm_map_t map, vm_offset_t addr, vm_size_t len,
1532     vm_prot_t prot, vm_page_t *ma, int max_count)
1533 {
1534 	vm_offset_t end, va;
1535 	vm_page_t *mp;
1536 	int count;
1537 	boolean_t pmap_failed;
1538 
1539 	if (len == 0)
1540 		return (0);
1541 	end = round_page(addr + len);
1542 	addr = trunc_page(addr);
1543 
1544 	/*
1545 	 * Check for illegal addresses.
1546 	 */
1547 	if (addr < vm_map_min(map) || addr > end || end > vm_map_max(map))
1548 		return (-1);
1549 
1550 	if (atop(end - addr) > max_count)
1551 		panic("vm_fault_quick_hold_pages: count > max_count");
1552 	count = atop(end - addr);
1553 
1554 	/*
1555 	 * Most likely, the physical pages are resident in the pmap, so it is
1556 	 * faster to try pmap_extract_and_hold() first.
1557 	 */
1558 	pmap_failed = FALSE;
1559 	for (mp = ma, va = addr; va < end; mp++, va += PAGE_SIZE) {
1560 		*mp = pmap_extract_and_hold(map->pmap, va, prot);
1561 		if (*mp == NULL)
1562 			pmap_failed = TRUE;
1563 		else if ((prot & VM_PROT_WRITE) != 0 &&
1564 		    (*mp)->dirty != VM_PAGE_BITS_ALL) {
1565 			/*
1566 			 * Explicitly dirty the physical page.  Otherwise, the
1567 			 * caller's changes may go unnoticed because they are
1568 			 * performed through an unmanaged mapping or by a DMA
1569 			 * operation.
1570 			 *
1571 			 * The object lock is not held here.
1572 			 * See vm_page_clear_dirty_mask().
1573 			 */
1574 			vm_page_dirty(*mp);
1575 		}
1576 	}
1577 	if (pmap_failed) {
1578 		/*
1579 		 * One or more pages could not be held by the pmap.  Either no
1580 		 * page was mapped at the specified virtual address or that
1581 		 * mapping had insufficient permissions.  Attempt to fault in
1582 		 * and hold these pages.
1583 		 *
1584 		 * If vm_fault_disable_pagefaults() was called,
1585 		 * i.e., TDP_NOFAULTING is set, we must not sleep nor
1586 		 * acquire MD VM locks, which means we must not call
1587 		 * vm_fault_hold().  Some (out of tree) callers mark
1588 		 * too wide a code area with vm_fault_disable_pagefaults()
1589 		 * already, use the VM_PROT_QUICK_NOFAULT flag to request
1590 		 * the proper behaviour explicitly.
1591 		 */
1592 		if ((prot & VM_PROT_QUICK_NOFAULT) != 0 &&
1593 		    (curthread->td_pflags & TDP_NOFAULTING) != 0)
1594 			goto error;
1595 		for (mp = ma, va = addr; va < end; mp++, va += PAGE_SIZE)
1596 			if (*mp == NULL && vm_fault_hold(map, va, prot,
1597 			    VM_FAULT_NORMAL, mp) != KERN_SUCCESS)
1598 				goto error;
1599 	}
1600 	return (count);
1601 error:
1602 	for (mp = ma; mp < ma + count; mp++)
1603 		if (*mp != NULL)
1604 			vm_page_unwire(*mp, PQ_INACTIVE);
1605 	return (-1);
1606 }
1607 
1608 /*
1609  *	Routine:
1610  *		vm_fault_copy_entry
1611  *	Function:
1612  *		Create new shadow object backing dst_entry with private copy of
1613  *		all underlying pages. When src_entry is equal to dst_entry,
1614  *		function implements COW for wired-down map entry. Otherwise,
1615  *		it forks wired entry into dst_map.
1616  *
1617  *	In/out conditions:
1618  *		The source and destination maps must be locked for write.
1619  *		The source map entry must be wired down (or be a sharing map
1620  *		entry corresponding to a main map entry that is wired down).
1621  */
1622 void
1623 vm_fault_copy_entry(vm_map_t dst_map, vm_map_t src_map,
1624     vm_map_entry_t dst_entry, vm_map_entry_t src_entry,
1625     vm_ooffset_t *fork_charge)
1626 {
1627 	vm_object_t backing_object, dst_object, object, src_object;
1628 	vm_pindex_t dst_pindex, pindex, src_pindex;
1629 	vm_prot_t access, prot;
1630 	vm_offset_t vaddr;
1631 	vm_page_t dst_m;
1632 	vm_page_t src_m;
1633 	boolean_t upgrade;
1634 
1635 #ifdef	lint
1636 	src_map++;
1637 #endif	/* lint */
1638 
1639 	upgrade = src_entry == dst_entry;
1640 	access = prot = dst_entry->protection;
1641 
1642 	src_object = src_entry->object.vm_object;
1643 	src_pindex = OFF_TO_IDX(src_entry->offset);
1644 
1645 	if (upgrade && (dst_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) {
1646 		dst_object = src_object;
1647 		vm_object_reference(dst_object);
1648 	} else {
1649 		/*
1650 		 * Create the top-level object for the destination entry. (Doesn't
1651 		 * actually shadow anything - we copy the pages directly.)
1652 		 */
1653 		dst_object = vm_object_allocate(OBJT_DEFAULT,
1654 		    atop(dst_entry->end - dst_entry->start));
1655 #if VM_NRESERVLEVEL > 0
1656 		dst_object->flags |= OBJ_COLORED;
1657 		dst_object->pg_color = atop(dst_entry->start);
1658 #endif
1659 		dst_object->domain = src_object->domain;
1660 		dst_object->charge = dst_entry->end - dst_entry->start;
1661 	}
1662 
1663 	VM_OBJECT_WLOCK(dst_object);
1664 	KASSERT(upgrade || dst_entry->object.vm_object == NULL,
1665 	    ("vm_fault_copy_entry: vm_object not NULL"));
1666 	if (src_object != dst_object) {
1667 		dst_entry->object.vm_object = dst_object;
1668 		dst_entry->offset = 0;
1669 		dst_entry->eflags &= ~MAP_ENTRY_VN_EXEC;
1670 	}
1671 	if (fork_charge != NULL) {
1672 		KASSERT(dst_entry->cred == NULL,
1673 		    ("vm_fault_copy_entry: leaked swp charge"));
1674 		dst_object->cred = curthread->td_ucred;
1675 		crhold(dst_object->cred);
1676 		*fork_charge += dst_object->charge;
1677 	} else if ((dst_object->type == OBJT_DEFAULT ||
1678 	    dst_object->type == OBJT_SWAP) &&
1679 	    dst_object->cred == NULL) {
1680 		KASSERT(dst_entry->cred != NULL, ("no cred for entry %p",
1681 		    dst_entry));
1682 		dst_object->cred = dst_entry->cred;
1683 		dst_entry->cred = NULL;
1684 	}
1685 
1686 	/*
1687 	 * If not an upgrade, then enter the mappings in the pmap as
1688 	 * read and/or execute accesses.  Otherwise, enter them as
1689 	 * write accesses.
1690 	 *
1691 	 * A writeable large page mapping is only created if all of
1692 	 * the constituent small page mappings are modified. Marking
1693 	 * PTEs as modified on inception allows promotion to happen
1694 	 * without taking potentially large number of soft faults.
1695 	 */
1696 	if (!upgrade)
1697 		access &= ~VM_PROT_WRITE;
1698 
1699 	/*
1700 	 * Loop through all of the virtual pages within the entry's
1701 	 * range, copying each page from the source object to the
1702 	 * destination object.  Since the source is wired, those pages
1703 	 * must exist.  In contrast, the destination is pageable.
1704 	 * Since the destination object doesn't share any backing storage
1705 	 * with the source object, all of its pages must be dirtied,
1706 	 * regardless of whether they can be written.
1707 	 */
1708 	for (vaddr = dst_entry->start, dst_pindex = 0;
1709 	    vaddr < dst_entry->end;
1710 	    vaddr += PAGE_SIZE, dst_pindex++) {
1711 again:
1712 		/*
1713 		 * Find the page in the source object, and copy it in.
1714 		 * Because the source is wired down, the page will be
1715 		 * in memory.
1716 		 */
1717 		if (src_object != dst_object)
1718 			VM_OBJECT_RLOCK(src_object);
1719 		object = src_object;
1720 		pindex = src_pindex + dst_pindex;
1721 		while ((src_m = vm_page_lookup(object, pindex)) == NULL &&
1722 		    (backing_object = object->backing_object) != NULL) {
1723 			/*
1724 			 * Unless the source mapping is read-only or
1725 			 * it is presently being upgraded from
1726 			 * read-only, the first object in the shadow
1727 			 * chain should provide all of the pages.  In
1728 			 * other words, this loop body should never be
1729 			 * executed when the source mapping is already
1730 			 * read/write.
1731 			 */
1732 			KASSERT((src_entry->protection & VM_PROT_WRITE) == 0 ||
1733 			    upgrade,
1734 			    ("vm_fault_copy_entry: main object missing page"));
1735 
1736 			VM_OBJECT_RLOCK(backing_object);
1737 			pindex += OFF_TO_IDX(object->backing_object_offset);
1738 			if (object != dst_object)
1739 				VM_OBJECT_RUNLOCK(object);
1740 			object = backing_object;
1741 		}
1742 		KASSERT(src_m != NULL, ("vm_fault_copy_entry: page missing"));
1743 
1744 		if (object != dst_object) {
1745 			/*
1746 			 * Allocate a page in the destination object.
1747 			 */
1748 			dst_m = vm_page_alloc(dst_object, (src_object ==
1749 			    dst_object ? src_pindex : 0) + dst_pindex,
1750 			    VM_ALLOC_NORMAL);
1751 			if (dst_m == NULL) {
1752 				VM_OBJECT_WUNLOCK(dst_object);
1753 				VM_OBJECT_RUNLOCK(object);
1754 				vm_wait(dst_object);
1755 				VM_OBJECT_WLOCK(dst_object);
1756 				goto again;
1757 			}
1758 			pmap_copy_page(src_m, dst_m);
1759 			VM_OBJECT_RUNLOCK(object);
1760 			dst_m->dirty = dst_m->valid = src_m->valid;
1761 		} else {
1762 			dst_m = src_m;
1763 			if (vm_page_sleep_if_busy(dst_m, "fltupg"))
1764 				goto again;
1765 			if (dst_m->pindex >= dst_object->size)
1766 				/*
1767 				 * We are upgrading.  Index can occur
1768 				 * out of bounds if the object type is
1769 				 * vnode and the file was truncated.
1770 				 */
1771 				break;
1772 			vm_page_xbusy(dst_m);
1773 		}
1774 		VM_OBJECT_WUNLOCK(dst_object);
1775 
1776 		/*
1777 		 * Enter it in the pmap. If a wired, copy-on-write
1778 		 * mapping is being replaced by a write-enabled
1779 		 * mapping, then wire that new mapping.
1780 		 *
1781 		 * The page can be invalid if the user called
1782 		 * msync(MS_INVALIDATE) or truncated the backing vnode
1783 		 * or shared memory object.  In this case, do not
1784 		 * insert it into pmap, but still do the copy so that
1785 		 * all copies of the wired map entry have similar
1786 		 * backing pages.
1787 		 */
1788 		if (dst_m->valid == VM_PAGE_BITS_ALL) {
1789 			pmap_enter(dst_map->pmap, vaddr, dst_m, prot,
1790 			    access | (upgrade ? PMAP_ENTER_WIRED : 0), 0);
1791 		}
1792 
1793 		/*
1794 		 * Mark it no longer busy, and put it on the active list.
1795 		 */
1796 		VM_OBJECT_WLOCK(dst_object);
1797 
1798 		if (upgrade) {
1799 			if (src_m != dst_m) {
1800 				vm_page_unwire(src_m, PQ_INACTIVE);
1801 				vm_page_wire(dst_m);
1802 			} else {
1803 				KASSERT(vm_page_wired(dst_m),
1804 				    ("dst_m %p is not wired", dst_m));
1805 			}
1806 		} else {
1807 			vm_page_lock(dst_m);
1808 			vm_page_activate(dst_m);
1809 			vm_page_unlock(dst_m);
1810 		}
1811 		vm_page_xunbusy(dst_m);
1812 	}
1813 	VM_OBJECT_WUNLOCK(dst_object);
1814 	if (upgrade) {
1815 		dst_entry->eflags &= ~(MAP_ENTRY_COW | MAP_ENTRY_NEEDS_COPY);
1816 		vm_object_deallocate(src_object);
1817 	}
1818 }
1819 
1820 /*
1821  * Block entry into the machine-independent layer's page fault handler by
1822  * the calling thread.  Subsequent calls to vm_fault() by that thread will
1823  * return KERN_PROTECTION_FAILURE.  Enable machine-dependent handling of
1824  * spurious page faults.
1825  */
1826 int
1827 vm_fault_disable_pagefaults(void)
1828 {
1829 
1830 	return (curthread_pflags_set(TDP_NOFAULTING | TDP_RESETSPUR));
1831 }
1832 
1833 void
1834 vm_fault_enable_pagefaults(int save)
1835 {
1836 
1837 	curthread_pflags_restore(save);
1838 }
1839