xref: /freebsd/sys/vm/vm_glue.c (revision aa0a1e58)
1 /*-
2  * Copyright (c) 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 4. Neither the name of the University nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  *	from: @(#)vm_glue.c	8.6 (Berkeley) 1/5/94
33  *
34  *
35  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
36  * All rights reserved.
37  *
38  * Permission to use, copy, modify and distribute this software and
39  * its documentation is hereby granted, provided that both the copyright
40  * notice and this permission notice appear in all copies of the
41  * software, derivative works or modified versions, and any portions
42  * thereof, and that both notices appear in supporting documentation.
43  *
44  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
45  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
46  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
47  *
48  * Carnegie Mellon requests users of this software to return to
49  *
50  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
51  *  School of Computer Science
52  *  Carnegie Mellon University
53  *  Pittsburgh PA 15213-3890
54  *
55  * any improvements or extensions that they make and grant Carnegie the
56  * rights to redistribute these changes.
57  */
58 
59 #include <sys/cdefs.h>
60 __FBSDID("$FreeBSD$");
61 
62 #include "opt_vm.h"
63 #include "opt_kstack_pages.h"
64 #include "opt_kstack_max_pages.h"
65 
66 #include <sys/param.h>
67 #include <sys/systm.h>
68 #include <sys/limits.h>
69 #include <sys/lock.h>
70 #include <sys/mutex.h>
71 #include <sys/proc.h>
72 #include <sys/resourcevar.h>
73 #include <sys/sched.h>
74 #include <sys/sf_buf.h>
75 #include <sys/shm.h>
76 #include <sys/vmmeter.h>
77 #include <sys/sx.h>
78 #include <sys/sysctl.h>
79 
80 #include <sys/eventhandler.h>
81 #include <sys/kernel.h>
82 #include <sys/ktr.h>
83 #include <sys/unistd.h>
84 
85 #include <vm/vm.h>
86 #include <vm/vm_param.h>
87 #include <vm/pmap.h>
88 #include <vm/vm_map.h>
89 #include <vm/vm_page.h>
90 #include <vm/vm_pageout.h>
91 #include <vm/vm_object.h>
92 #include <vm/vm_kern.h>
93 #include <vm/vm_extern.h>
94 #include <vm/vm_pager.h>
95 #include <vm/swap_pager.h>
96 
97 /*
98  * System initialization
99  *
100  * THIS MUST BE THE LAST INITIALIZATION ITEM!!!
101  *
102  * Note: run scheduling should be divorced from the vm system.
103  */
104 static void scheduler(void *);
105 SYSINIT(scheduler, SI_SUB_RUN_SCHEDULER, SI_ORDER_ANY, scheduler, NULL);
106 
107 #ifndef NO_SWAPPING
108 static int swapout(struct proc *);
109 static void swapclear(struct proc *);
110 static void vm_thread_swapin(struct thread *td);
111 static void vm_thread_swapout(struct thread *td);
112 #endif
113 
114 /*
115  * MPSAFE
116  *
117  * WARNING!  This code calls vm_map_check_protection() which only checks
118  * the associated vm_map_entry range.  It does not determine whether the
119  * contents of the memory is actually readable or writable.  In most cases
120  * just checking the vm_map_entry is sufficient within the kernel's address
121  * space.
122  */
123 int
124 kernacc(addr, len, rw)
125 	void *addr;
126 	int len, rw;
127 {
128 	boolean_t rv;
129 	vm_offset_t saddr, eaddr;
130 	vm_prot_t prot;
131 
132 	KASSERT((rw & ~VM_PROT_ALL) == 0,
133 	    ("illegal ``rw'' argument to kernacc (%x)\n", rw));
134 
135 	if ((vm_offset_t)addr + len > kernel_map->max_offset ||
136 	    (vm_offset_t)addr + len < (vm_offset_t)addr)
137 		return (FALSE);
138 
139 	prot = rw;
140 	saddr = trunc_page((vm_offset_t)addr);
141 	eaddr = round_page((vm_offset_t)addr + len);
142 	vm_map_lock_read(kernel_map);
143 	rv = vm_map_check_protection(kernel_map, saddr, eaddr, prot);
144 	vm_map_unlock_read(kernel_map);
145 	return (rv == TRUE);
146 }
147 
148 /*
149  * MPSAFE
150  *
151  * WARNING!  This code calls vm_map_check_protection() which only checks
152  * the associated vm_map_entry range.  It does not determine whether the
153  * contents of the memory is actually readable or writable.  vmapbuf(),
154  * vm_fault_quick(), or copyin()/copout()/su*()/fu*() functions should be
155  * used in conjuction with this call.
156  */
157 int
158 useracc(addr, len, rw)
159 	void *addr;
160 	int len, rw;
161 {
162 	boolean_t rv;
163 	vm_prot_t prot;
164 	vm_map_t map;
165 
166 	KASSERT((rw & ~VM_PROT_ALL) == 0,
167 	    ("illegal ``rw'' argument to useracc (%x)\n", rw));
168 	prot = rw;
169 	map = &curproc->p_vmspace->vm_map;
170 	if ((vm_offset_t)addr + len > vm_map_max(map) ||
171 	    (vm_offset_t)addr + len < (vm_offset_t)addr) {
172 		return (FALSE);
173 	}
174 	vm_map_lock_read(map);
175 	rv = vm_map_check_protection(map, trunc_page((vm_offset_t)addr),
176 	    round_page((vm_offset_t)addr + len), prot);
177 	vm_map_unlock_read(map);
178 	return (rv == TRUE);
179 }
180 
181 int
182 vslock(void *addr, size_t len)
183 {
184 	vm_offset_t end, last, start;
185 	vm_size_t npages;
186 	int error;
187 
188 	last = (vm_offset_t)addr + len;
189 	start = trunc_page((vm_offset_t)addr);
190 	end = round_page(last);
191 	if (last < (vm_offset_t)addr || end < (vm_offset_t)addr)
192 		return (EINVAL);
193 	npages = atop(end - start);
194 	if (npages > vm_page_max_wired)
195 		return (ENOMEM);
196 	PROC_LOCK(curproc);
197 	if (ptoa(npages +
198 	    pmap_wired_count(vm_map_pmap(&curproc->p_vmspace->vm_map))) >
199 	    lim_cur(curproc, RLIMIT_MEMLOCK)) {
200 		PROC_UNLOCK(curproc);
201 		return (ENOMEM);
202 	}
203 	PROC_UNLOCK(curproc);
204 #if 0
205 	/*
206 	 * XXX - not yet
207 	 *
208 	 * The limit for transient usage of wired pages should be
209 	 * larger than for "permanent" wired pages (mlock()).
210 	 *
211 	 * Also, the sysctl code, which is the only present user
212 	 * of vslock(), does a hard loop on EAGAIN.
213 	 */
214 	if (npages + cnt.v_wire_count > vm_page_max_wired)
215 		return (EAGAIN);
216 #endif
217 	error = vm_map_wire(&curproc->p_vmspace->vm_map, start, end,
218 	    VM_MAP_WIRE_SYSTEM | VM_MAP_WIRE_NOHOLES);
219 	/*
220 	 * Return EFAULT on error to match copy{in,out}() behaviour
221 	 * rather than returning ENOMEM like mlock() would.
222 	 */
223 	return (error == KERN_SUCCESS ? 0 : EFAULT);
224 }
225 
226 void
227 vsunlock(void *addr, size_t len)
228 {
229 
230 	/* Rely on the parameter sanity checks performed by vslock(). */
231 	(void)vm_map_unwire(&curproc->p_vmspace->vm_map,
232 	    trunc_page((vm_offset_t)addr), round_page((vm_offset_t)addr + len),
233 	    VM_MAP_WIRE_SYSTEM | VM_MAP_WIRE_NOHOLES);
234 }
235 
236 /*
237  * Pin the page contained within the given object at the given offset.  If the
238  * page is not resident, allocate and load it using the given object's pager.
239  * Return the pinned page if successful; otherwise, return NULL.
240  */
241 static vm_page_t
242 vm_imgact_hold_page(vm_object_t object, vm_ooffset_t offset)
243 {
244 	vm_page_t m, ma[1];
245 	vm_pindex_t pindex;
246 	int rv;
247 
248 	VM_OBJECT_LOCK(object);
249 	pindex = OFF_TO_IDX(offset);
250 	m = vm_page_grab(object, pindex, VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
251 	if (m->valid != VM_PAGE_BITS_ALL) {
252 		ma[0] = m;
253 		rv = vm_pager_get_pages(object, ma, 1, 0);
254 		m = vm_page_lookup(object, pindex);
255 		if (m == NULL)
256 			goto out;
257 		if (rv != VM_PAGER_OK) {
258 			vm_page_lock(m);
259 			vm_page_free(m);
260 			vm_page_unlock(m);
261 			m = NULL;
262 			goto out;
263 		}
264 	}
265 	vm_page_lock(m);
266 	vm_page_hold(m);
267 	vm_page_unlock(m);
268 	vm_page_wakeup(m);
269 out:
270 	VM_OBJECT_UNLOCK(object);
271 	return (m);
272 }
273 
274 /*
275  * Return a CPU private mapping to the page at the given offset within the
276  * given object.  The page is pinned before it is mapped.
277  */
278 struct sf_buf *
279 vm_imgact_map_page(vm_object_t object, vm_ooffset_t offset)
280 {
281 	vm_page_t m;
282 
283 	m = vm_imgact_hold_page(object, offset);
284 	if (m == NULL)
285 		return (NULL);
286 	sched_pin();
287 	return (sf_buf_alloc(m, SFB_CPUPRIVATE));
288 }
289 
290 /*
291  * Destroy the given CPU private mapping and unpin the page that it mapped.
292  */
293 void
294 vm_imgact_unmap_page(struct sf_buf *sf)
295 {
296 	vm_page_t m;
297 
298 	m = sf_buf_page(sf);
299 	sf_buf_free(sf);
300 	sched_unpin();
301 	vm_page_lock(m);
302 	vm_page_unhold(m);
303 	vm_page_unlock(m);
304 }
305 
306 void
307 vm_sync_icache(vm_map_t map, vm_offset_t va, vm_offset_t sz)
308 {
309 
310 	pmap_sync_icache(map->pmap, va, sz);
311 }
312 
313 struct kstack_cache_entry {
314 	vm_object_t ksobj;
315 	struct kstack_cache_entry *next_ks_entry;
316 };
317 
318 static struct kstack_cache_entry *kstack_cache;
319 static int kstack_cache_size = 128;
320 static int kstacks;
321 static struct mtx kstack_cache_mtx;
322 SYSCTL_INT(_vm, OID_AUTO, kstack_cache_size, CTLFLAG_RW, &kstack_cache_size, 0,
323     "");
324 SYSCTL_INT(_vm, OID_AUTO, kstacks, CTLFLAG_RD, &kstacks, 0,
325     "");
326 
327 #ifndef KSTACK_MAX_PAGES
328 #define KSTACK_MAX_PAGES 32
329 #endif
330 
331 /*
332  * Create the kernel stack (including pcb for i386) for a new thread.
333  * This routine directly affects the fork perf for a process and
334  * create performance for a thread.
335  */
336 int
337 vm_thread_new(struct thread *td, int pages)
338 {
339 	vm_object_t ksobj;
340 	vm_offset_t ks;
341 	vm_page_t m, ma[KSTACK_MAX_PAGES];
342 	struct kstack_cache_entry *ks_ce;
343 	int i;
344 
345 	/* Bounds check */
346 	if (pages <= 1)
347 		pages = KSTACK_PAGES;
348 	else if (pages > KSTACK_MAX_PAGES)
349 		pages = KSTACK_MAX_PAGES;
350 
351 	if (pages == KSTACK_PAGES) {
352 		mtx_lock(&kstack_cache_mtx);
353 		if (kstack_cache != NULL) {
354 			ks_ce = kstack_cache;
355 			kstack_cache = ks_ce->next_ks_entry;
356 			mtx_unlock(&kstack_cache_mtx);
357 
358 			td->td_kstack_obj = ks_ce->ksobj;
359 			td->td_kstack = (vm_offset_t)ks_ce;
360 			td->td_kstack_pages = KSTACK_PAGES;
361 			return (1);
362 		}
363 		mtx_unlock(&kstack_cache_mtx);
364 	}
365 
366 	/*
367 	 * Allocate an object for the kstack.
368 	 */
369 	ksobj = vm_object_allocate(OBJT_DEFAULT, pages);
370 
371 	/*
372 	 * Get a kernel virtual address for this thread's kstack.
373 	 */
374 #if defined(__mips__)
375 	/*
376 	 * We need to align the kstack's mapped address to fit within
377 	 * a single TLB entry.
378 	 */
379 	ks = kmem_alloc_nofault_space(kernel_map,
380 	    (pages + KSTACK_GUARD_PAGES) * PAGE_SIZE, VMFS_TLB_ALIGNED_SPACE);
381 #else
382 	ks = kmem_alloc_nofault(kernel_map,
383 	   (pages + KSTACK_GUARD_PAGES) * PAGE_SIZE);
384 #endif
385 	if (ks == 0) {
386 		printf("vm_thread_new: kstack allocation failed\n");
387 		vm_object_deallocate(ksobj);
388 		return (0);
389 	}
390 
391 	atomic_add_int(&kstacks, 1);
392 	if (KSTACK_GUARD_PAGES != 0) {
393 		pmap_qremove(ks, KSTACK_GUARD_PAGES);
394 		ks += KSTACK_GUARD_PAGES * PAGE_SIZE;
395 	}
396 	td->td_kstack_obj = ksobj;
397 	td->td_kstack = ks;
398 	/*
399 	 * Knowing the number of pages allocated is useful when you
400 	 * want to deallocate them.
401 	 */
402 	td->td_kstack_pages = pages;
403 	/*
404 	 * For the length of the stack, link in a real page of ram for each
405 	 * page of stack.
406 	 */
407 	VM_OBJECT_LOCK(ksobj);
408 	for (i = 0; i < pages; i++) {
409 		/*
410 		 * Get a kernel stack page.
411 		 */
412 		m = vm_page_grab(ksobj, i, VM_ALLOC_NOBUSY |
413 		    VM_ALLOC_NORMAL | VM_ALLOC_RETRY | VM_ALLOC_WIRED);
414 		ma[i] = m;
415 		m->valid = VM_PAGE_BITS_ALL;
416 	}
417 	VM_OBJECT_UNLOCK(ksobj);
418 	pmap_qenter(ks, ma, pages);
419 	return (1);
420 }
421 
422 static void
423 vm_thread_stack_dispose(vm_object_t ksobj, vm_offset_t ks, int pages)
424 {
425 	vm_page_t m;
426 	int i;
427 
428 	atomic_add_int(&kstacks, -1);
429 	pmap_qremove(ks, pages);
430 	VM_OBJECT_LOCK(ksobj);
431 	for (i = 0; i < pages; i++) {
432 		m = vm_page_lookup(ksobj, i);
433 		if (m == NULL)
434 			panic("vm_thread_dispose: kstack already missing?");
435 		vm_page_lock(m);
436 		vm_page_unwire(m, 0);
437 		vm_page_free(m);
438 		vm_page_unlock(m);
439 	}
440 	VM_OBJECT_UNLOCK(ksobj);
441 	vm_object_deallocate(ksobj);
442 	kmem_free(kernel_map, ks - (KSTACK_GUARD_PAGES * PAGE_SIZE),
443 	    (pages + KSTACK_GUARD_PAGES) * PAGE_SIZE);
444 }
445 
446 /*
447  * Dispose of a thread's kernel stack.
448  */
449 void
450 vm_thread_dispose(struct thread *td)
451 {
452 	vm_object_t ksobj;
453 	vm_offset_t ks;
454 	struct kstack_cache_entry *ks_ce;
455 	int pages;
456 
457 	pages = td->td_kstack_pages;
458 	ksobj = td->td_kstack_obj;
459 	ks = td->td_kstack;
460 	td->td_kstack = 0;
461 	td->td_kstack_pages = 0;
462 	if (pages == KSTACK_PAGES && kstacks <= kstack_cache_size) {
463 		ks_ce = (struct kstack_cache_entry *)ks;
464 		ks_ce->ksobj = ksobj;
465 		mtx_lock(&kstack_cache_mtx);
466 		ks_ce->next_ks_entry = kstack_cache;
467 		kstack_cache = ks_ce;
468 		mtx_unlock(&kstack_cache_mtx);
469 		return;
470 	}
471 	vm_thread_stack_dispose(ksobj, ks, pages);
472 }
473 
474 static void
475 vm_thread_stack_lowmem(void *nulll)
476 {
477 	struct kstack_cache_entry *ks_ce, *ks_ce1;
478 
479 	mtx_lock(&kstack_cache_mtx);
480 	ks_ce = kstack_cache;
481 	kstack_cache = NULL;
482 	mtx_unlock(&kstack_cache_mtx);
483 
484 	while (ks_ce != NULL) {
485 		ks_ce1 = ks_ce;
486 		ks_ce = ks_ce->next_ks_entry;
487 
488 		vm_thread_stack_dispose(ks_ce1->ksobj, (vm_offset_t)ks_ce1,
489 		    KSTACK_PAGES);
490 	}
491 }
492 
493 static void
494 kstack_cache_init(void *nulll)
495 {
496 
497 	EVENTHANDLER_REGISTER(vm_lowmem, vm_thread_stack_lowmem, NULL,
498 	    EVENTHANDLER_PRI_ANY);
499 }
500 
501 MTX_SYSINIT(kstack_cache, &kstack_cache_mtx, "kstkch", MTX_DEF);
502 SYSINIT(vm_kstacks, SI_SUB_KTHREAD_INIT, SI_ORDER_ANY, kstack_cache_init, NULL);
503 
504 #ifndef NO_SWAPPING
505 /*
506  * Allow a thread's kernel stack to be paged out.
507  */
508 static void
509 vm_thread_swapout(struct thread *td)
510 {
511 	vm_object_t ksobj;
512 	vm_page_t m;
513 	int i, pages;
514 
515 	cpu_thread_swapout(td);
516 	pages = td->td_kstack_pages;
517 	ksobj = td->td_kstack_obj;
518 	pmap_qremove(td->td_kstack, pages);
519 	VM_OBJECT_LOCK(ksobj);
520 	for (i = 0; i < pages; i++) {
521 		m = vm_page_lookup(ksobj, i);
522 		if (m == NULL)
523 			panic("vm_thread_swapout: kstack already missing?");
524 		vm_page_dirty(m);
525 		vm_page_lock(m);
526 		vm_page_unwire(m, 0);
527 		vm_page_unlock(m);
528 	}
529 	VM_OBJECT_UNLOCK(ksobj);
530 }
531 
532 /*
533  * Bring the kernel stack for a specified thread back in.
534  */
535 static void
536 vm_thread_swapin(struct thread *td)
537 {
538 	vm_object_t ksobj;
539 	vm_page_t ma[KSTACK_MAX_PAGES];
540 	int i, j, k, pages, rv;
541 
542 	pages = td->td_kstack_pages;
543 	ksobj = td->td_kstack_obj;
544 	VM_OBJECT_LOCK(ksobj);
545 	for (i = 0; i < pages; i++)
546 		ma[i] = vm_page_grab(ksobj, i, VM_ALLOC_NORMAL | VM_ALLOC_RETRY |
547 		    VM_ALLOC_WIRED);
548 	for (i = 0; i < pages; i++) {
549 		if (ma[i]->valid != VM_PAGE_BITS_ALL) {
550 			KASSERT(ma[i]->oflags & VPO_BUSY,
551 			    ("lost busy 1"));
552 			vm_object_pip_add(ksobj, 1);
553 			for (j = i + 1; j < pages; j++) {
554 				KASSERT(ma[j]->valid == VM_PAGE_BITS_ALL ||
555 				    (ma[j]->oflags & VPO_BUSY),
556 				    ("lost busy 2"));
557 				if (ma[j]->valid == VM_PAGE_BITS_ALL)
558 					break;
559 			}
560 			rv = vm_pager_get_pages(ksobj, ma + i, j - i, 0);
561 			if (rv != VM_PAGER_OK)
562 	panic("vm_thread_swapin: cannot get kstack for proc: %d",
563 				    td->td_proc->p_pid);
564 			vm_object_pip_wakeup(ksobj);
565 			for (k = i; k < j; k++)
566 				ma[k] = vm_page_lookup(ksobj, k);
567 			vm_page_wakeup(ma[i]);
568 		} else if (ma[i]->oflags & VPO_BUSY)
569 			vm_page_wakeup(ma[i]);
570 	}
571 	VM_OBJECT_UNLOCK(ksobj);
572 	pmap_qenter(td->td_kstack, ma, pages);
573 	cpu_thread_swapin(td);
574 }
575 #endif /* !NO_SWAPPING */
576 
577 /*
578  * Implement fork's actions on an address space.
579  * Here we arrange for the address space to be copied or referenced,
580  * allocate a user struct (pcb and kernel stack), then call the
581  * machine-dependent layer to fill those in and make the new process
582  * ready to run.  The new process is set up so that it returns directly
583  * to user mode to avoid stack copying and relocation problems.
584  */
585 int
586 vm_forkproc(td, p2, td2, vm2, flags)
587 	struct thread *td;
588 	struct proc *p2;
589 	struct thread *td2;
590 	struct vmspace *vm2;
591 	int flags;
592 {
593 	struct proc *p1 = td->td_proc;
594 	int error;
595 
596 	if ((flags & RFPROC) == 0) {
597 		/*
598 		 * Divorce the memory, if it is shared, essentially
599 		 * this changes shared memory amongst threads, into
600 		 * COW locally.
601 		 */
602 		if ((flags & RFMEM) == 0) {
603 			if (p1->p_vmspace->vm_refcnt > 1) {
604 				error = vmspace_unshare(p1);
605 				if (error)
606 					return (error);
607 			}
608 		}
609 		cpu_fork(td, p2, td2, flags);
610 		return (0);
611 	}
612 
613 	if (flags & RFMEM) {
614 		p2->p_vmspace = p1->p_vmspace;
615 		atomic_add_int(&p1->p_vmspace->vm_refcnt, 1);
616 	}
617 
618 	while (vm_page_count_severe()) {
619 		VM_WAIT;
620 	}
621 
622 	if ((flags & RFMEM) == 0) {
623 		p2->p_vmspace = vm2;
624 		if (p1->p_vmspace->vm_shm)
625 			shmfork(p1, p2);
626 	}
627 
628 	/*
629 	 * cpu_fork will copy and update the pcb, set up the kernel stack,
630 	 * and make the child ready to run.
631 	 */
632 	cpu_fork(td, p2, td2, flags);
633 	return (0);
634 }
635 
636 /*
637  * Called after process has been wait(2)'ed apon and is being reaped.
638  * The idea is to reclaim resources that we could not reclaim while
639  * the process was still executing.
640  */
641 void
642 vm_waitproc(p)
643 	struct proc *p;
644 {
645 
646 	vmspace_exitfree(p);		/* and clean-out the vmspace */
647 }
648 
649 void
650 faultin(p)
651 	struct proc *p;
652 {
653 #ifdef NO_SWAPPING
654 
655 	PROC_LOCK_ASSERT(p, MA_OWNED);
656 	if ((p->p_flag & P_INMEM) == 0)
657 		panic("faultin: proc swapped out with NO_SWAPPING!");
658 #else /* !NO_SWAPPING */
659 	struct thread *td;
660 
661 	PROC_LOCK_ASSERT(p, MA_OWNED);
662 	/*
663 	 * If another process is swapping in this process,
664 	 * just wait until it finishes.
665 	 */
666 	if (p->p_flag & P_SWAPPINGIN) {
667 		while (p->p_flag & P_SWAPPINGIN)
668 			msleep(&p->p_flag, &p->p_mtx, PVM, "faultin", 0);
669 		return;
670 	}
671 	if ((p->p_flag & P_INMEM) == 0) {
672 		/*
673 		 * Don't let another thread swap process p out while we are
674 		 * busy swapping it in.
675 		 */
676 		++p->p_lock;
677 		p->p_flag |= P_SWAPPINGIN;
678 		PROC_UNLOCK(p);
679 
680 		/*
681 		 * We hold no lock here because the list of threads
682 		 * can not change while all threads in the process are
683 		 * swapped out.
684 		 */
685 		FOREACH_THREAD_IN_PROC(p, td)
686 			vm_thread_swapin(td);
687 		PROC_LOCK(p);
688 		swapclear(p);
689 		p->p_swtick = ticks;
690 
691 		wakeup(&p->p_flag);
692 
693 		/* Allow other threads to swap p out now. */
694 		--p->p_lock;
695 	}
696 #endif /* NO_SWAPPING */
697 }
698 
699 /*
700  * This swapin algorithm attempts to swap-in processes only if there
701  * is enough space for them.  Of course, if a process waits for a long
702  * time, it will be swapped in anyway.
703  *
704  * Giant is held on entry.
705  */
706 /* ARGSUSED*/
707 static void
708 scheduler(dummy)
709 	void *dummy;
710 {
711 	struct proc *p;
712 	struct thread *td;
713 	struct proc *pp;
714 	int slptime;
715 	int swtime;
716 	int ppri;
717 	int pri;
718 
719 	mtx_assert(&Giant, MA_OWNED | MA_NOTRECURSED);
720 	mtx_unlock(&Giant);
721 
722 loop:
723 	if (vm_page_count_min()) {
724 		VM_WAIT;
725 		goto loop;
726 	}
727 
728 	pp = NULL;
729 	ppri = INT_MIN;
730 	sx_slock(&allproc_lock);
731 	FOREACH_PROC_IN_SYSTEM(p) {
732 		PROC_LOCK(p);
733 		if (p->p_flag & (P_SWAPPINGOUT | P_SWAPPINGIN | P_INMEM)) {
734 			PROC_UNLOCK(p);
735 			continue;
736 		}
737 		swtime = (ticks - p->p_swtick) / hz;
738 		FOREACH_THREAD_IN_PROC(p, td) {
739 			/*
740 			 * An otherwise runnable thread of a process
741 			 * swapped out has only the TDI_SWAPPED bit set.
742 			 *
743 			 */
744 			thread_lock(td);
745 			if (td->td_inhibitors == TDI_SWAPPED) {
746 				slptime = (ticks - td->td_slptick) / hz;
747 				pri = swtime + slptime;
748 				if ((td->td_flags & TDF_SWAPINREQ) == 0)
749 					pri -= p->p_nice * 8;
750 				/*
751 				 * if this thread is higher priority
752 				 * and there is enough space, then select
753 				 * this process instead of the previous
754 				 * selection.
755 				 */
756 				if (pri > ppri) {
757 					pp = p;
758 					ppri = pri;
759 				}
760 			}
761 			thread_unlock(td);
762 		}
763 		PROC_UNLOCK(p);
764 	}
765 	sx_sunlock(&allproc_lock);
766 
767 	/*
768 	 * Nothing to do, back to sleep.
769 	 */
770 	if ((p = pp) == NULL) {
771 		tsleep(&proc0, PVM, "sched", MAXSLP * hz / 2);
772 		goto loop;
773 	}
774 	PROC_LOCK(p);
775 
776 	/*
777 	 * Another process may be bringing or may have already
778 	 * brought this process in while we traverse all threads.
779 	 * Or, this process may even be being swapped out again.
780 	 */
781 	if (p->p_flag & (P_INMEM | P_SWAPPINGOUT | P_SWAPPINGIN)) {
782 		PROC_UNLOCK(p);
783 		goto loop;
784 	}
785 
786 	/*
787 	 * We would like to bring someone in. (only if there is space).
788 	 * [What checks the space? ]
789 	 */
790 	faultin(p);
791 	PROC_UNLOCK(p);
792 	goto loop;
793 }
794 
795 void
796 kick_proc0(void)
797 {
798 
799 	wakeup(&proc0);
800 }
801 
802 #ifndef NO_SWAPPING
803 
804 /*
805  * Swap_idle_threshold1 is the guaranteed swapped in time for a process
806  */
807 static int swap_idle_threshold1 = 2;
808 SYSCTL_INT(_vm, OID_AUTO, swap_idle_threshold1, CTLFLAG_RW,
809     &swap_idle_threshold1, 0, "Guaranteed swapped in time for a process");
810 
811 /*
812  * Swap_idle_threshold2 is the time that a process can be idle before
813  * it will be swapped out, if idle swapping is enabled.
814  */
815 static int swap_idle_threshold2 = 10;
816 SYSCTL_INT(_vm, OID_AUTO, swap_idle_threshold2, CTLFLAG_RW,
817     &swap_idle_threshold2, 0, "Time before a process will be swapped out");
818 
819 /*
820  * First, if any processes have been sleeping or stopped for at least
821  * "swap_idle_threshold1" seconds, they are swapped out.  If, however,
822  * no such processes exist, then the longest-sleeping or stopped
823  * process is swapped out.  Finally, and only as a last resort, if
824  * there are no sleeping or stopped processes, the longest-resident
825  * process is swapped out.
826  */
827 void
828 swapout_procs(action)
829 int action;
830 {
831 	struct proc *p;
832 	struct thread *td;
833 	int didswap = 0;
834 
835 retry:
836 	sx_slock(&allproc_lock);
837 	FOREACH_PROC_IN_SYSTEM(p) {
838 		struct vmspace *vm;
839 		int minslptime = 100000;
840 		int slptime;
841 
842 		/*
843 		 * Watch out for a process in
844 		 * creation.  It may have no
845 		 * address space or lock yet.
846 		 */
847 		if (p->p_state == PRS_NEW)
848 			continue;
849 		/*
850 		 * An aio daemon switches its
851 		 * address space while running.
852 		 * Perform a quick check whether
853 		 * a process has P_SYSTEM.
854 		 */
855 		if ((p->p_flag & P_SYSTEM) != 0)
856 			continue;
857 		/*
858 		 * Do not swapout a process that
859 		 * is waiting for VM data
860 		 * structures as there is a possible
861 		 * deadlock.  Test this first as
862 		 * this may block.
863 		 *
864 		 * Lock the map until swapout
865 		 * finishes, or a thread of this
866 		 * process may attempt to alter
867 		 * the map.
868 		 */
869 		vm = vmspace_acquire_ref(p);
870 		if (vm == NULL)
871 			continue;
872 		if (!vm_map_trylock(&vm->vm_map))
873 			goto nextproc1;
874 
875 		PROC_LOCK(p);
876 		if (p->p_lock != 0 ||
877 		    (p->p_flag & (P_STOPPED_SINGLE|P_TRACED|P_SYSTEM|P_WEXIT)
878 		    ) != 0) {
879 			goto nextproc;
880 		}
881 		/*
882 		 * only aiod changes vmspace, however it will be
883 		 * skipped because of the if statement above checking
884 		 * for P_SYSTEM
885 		 */
886 		if ((p->p_flag & (P_INMEM|P_SWAPPINGOUT|P_SWAPPINGIN)) != P_INMEM)
887 			goto nextproc;
888 
889 		switch (p->p_state) {
890 		default:
891 			/* Don't swap out processes in any sort
892 			 * of 'special' state. */
893 			break;
894 
895 		case PRS_NORMAL:
896 			/*
897 			 * do not swapout a realtime process
898 			 * Check all the thread groups..
899 			 */
900 			FOREACH_THREAD_IN_PROC(p, td) {
901 				thread_lock(td);
902 				if (PRI_IS_REALTIME(td->td_pri_class)) {
903 					thread_unlock(td);
904 					goto nextproc;
905 				}
906 				slptime = (ticks - td->td_slptick) / hz;
907 				/*
908 				 * Guarantee swap_idle_threshold1
909 				 * time in memory.
910 				 */
911 				if (slptime < swap_idle_threshold1) {
912 					thread_unlock(td);
913 					goto nextproc;
914 				}
915 
916 				/*
917 				 * Do not swapout a process if it is
918 				 * waiting on a critical event of some
919 				 * kind or there is a thread whose
920 				 * pageable memory may be accessed.
921 				 *
922 				 * This could be refined to support
923 				 * swapping out a thread.
924 				 */
925 				if (!thread_safetoswapout(td)) {
926 					thread_unlock(td);
927 					goto nextproc;
928 				}
929 				/*
930 				 * If the system is under memory stress,
931 				 * or if we are swapping
932 				 * idle processes >= swap_idle_threshold2,
933 				 * then swap the process out.
934 				 */
935 				if (((action & VM_SWAP_NORMAL) == 0) &&
936 				    (((action & VM_SWAP_IDLE) == 0) ||
937 				    (slptime < swap_idle_threshold2))) {
938 					thread_unlock(td);
939 					goto nextproc;
940 				}
941 
942 				if (minslptime > slptime)
943 					minslptime = slptime;
944 				thread_unlock(td);
945 			}
946 
947 			/*
948 			 * If the pageout daemon didn't free enough pages,
949 			 * or if this process is idle and the system is
950 			 * configured to swap proactively, swap it out.
951 			 */
952 			if ((action & VM_SWAP_NORMAL) ||
953 				((action & VM_SWAP_IDLE) &&
954 				 (minslptime > swap_idle_threshold2))) {
955 				if (swapout(p) == 0)
956 					didswap++;
957 				PROC_UNLOCK(p);
958 				vm_map_unlock(&vm->vm_map);
959 				vmspace_free(vm);
960 				sx_sunlock(&allproc_lock);
961 				goto retry;
962 			}
963 		}
964 nextproc:
965 		PROC_UNLOCK(p);
966 		vm_map_unlock(&vm->vm_map);
967 nextproc1:
968 		vmspace_free(vm);
969 		continue;
970 	}
971 	sx_sunlock(&allproc_lock);
972 	/*
973 	 * If we swapped something out, and another process needed memory,
974 	 * then wakeup the sched process.
975 	 */
976 	if (didswap)
977 		wakeup(&proc0);
978 }
979 
980 static void
981 swapclear(p)
982 	struct proc *p;
983 {
984 	struct thread *td;
985 
986 	PROC_LOCK_ASSERT(p, MA_OWNED);
987 
988 	FOREACH_THREAD_IN_PROC(p, td) {
989 		thread_lock(td);
990 		td->td_flags |= TDF_INMEM;
991 		td->td_flags &= ~TDF_SWAPINREQ;
992 		TD_CLR_SWAPPED(td);
993 		if (TD_CAN_RUN(td))
994 			if (setrunnable(td)) {
995 #ifdef INVARIANTS
996 				/*
997 				 * XXX: We just cleared TDI_SWAPPED
998 				 * above and set TDF_INMEM, so this
999 				 * should never happen.
1000 				 */
1001 				panic("not waking up swapper");
1002 #endif
1003 			}
1004 		thread_unlock(td);
1005 	}
1006 	p->p_flag &= ~(P_SWAPPINGIN|P_SWAPPINGOUT);
1007 	p->p_flag |= P_INMEM;
1008 }
1009 
1010 static int
1011 swapout(p)
1012 	struct proc *p;
1013 {
1014 	struct thread *td;
1015 
1016 	PROC_LOCK_ASSERT(p, MA_OWNED);
1017 #if defined(SWAP_DEBUG)
1018 	printf("swapping out %d\n", p->p_pid);
1019 #endif
1020 
1021 	/*
1022 	 * The states of this process and its threads may have changed
1023 	 * by now.  Assuming that there is only one pageout daemon thread,
1024 	 * this process should still be in memory.
1025 	 */
1026 	KASSERT((p->p_flag & (P_INMEM|P_SWAPPINGOUT|P_SWAPPINGIN)) == P_INMEM,
1027 		("swapout: lost a swapout race?"));
1028 
1029 	/*
1030 	 * remember the process resident count
1031 	 */
1032 	p->p_vmspace->vm_swrss = vmspace_resident_count(p->p_vmspace);
1033 	/*
1034 	 * Check and mark all threads before we proceed.
1035 	 */
1036 	p->p_flag &= ~P_INMEM;
1037 	p->p_flag |= P_SWAPPINGOUT;
1038 	FOREACH_THREAD_IN_PROC(p, td) {
1039 		thread_lock(td);
1040 		if (!thread_safetoswapout(td)) {
1041 			thread_unlock(td);
1042 			swapclear(p);
1043 			return (EBUSY);
1044 		}
1045 		td->td_flags &= ~TDF_INMEM;
1046 		TD_SET_SWAPPED(td);
1047 		thread_unlock(td);
1048 	}
1049 	td = FIRST_THREAD_IN_PROC(p);
1050 	++td->td_ru.ru_nswap;
1051 	PROC_UNLOCK(p);
1052 
1053 	/*
1054 	 * This list is stable because all threads are now prevented from
1055 	 * running.  The list is only modified in the context of a running
1056 	 * thread in this process.
1057 	 */
1058 	FOREACH_THREAD_IN_PROC(p, td)
1059 		vm_thread_swapout(td);
1060 
1061 	PROC_LOCK(p);
1062 	p->p_flag &= ~P_SWAPPINGOUT;
1063 	p->p_swtick = ticks;
1064 	return (0);
1065 }
1066 #endif /* !NO_SWAPPING */
1067