xref: /freebsd/sys/vm/vm_map.c (revision 28634820)
1 /*-
2  * Copyright (c) 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 4. Neither the name of the University nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  *	from: @(#)vm_map.c	8.3 (Berkeley) 1/12/94
33  *
34  *
35  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
36  * All rights reserved.
37  *
38  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
39  *
40  * Permission to use, copy, modify and distribute this software and
41  * its documentation is hereby granted, provided that both the copyright
42  * notice and this permission notice appear in all copies of the
43  * software, derivative works or modified versions, and any portions
44  * thereof, and that both notices appear in supporting documentation.
45  *
46  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
47  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
48  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
49  *
50  * Carnegie Mellon requests users of this software to return to
51  *
52  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
53  *  School of Computer Science
54  *  Carnegie Mellon University
55  *  Pittsburgh PA 15213-3890
56  *
57  * any improvements or extensions that they make and grant Carnegie the
58  * rights to redistribute these changes.
59  */
60 
61 /*
62  *	Virtual memory mapping module.
63  */
64 
65 #include <sys/cdefs.h>
66 __FBSDID("$FreeBSD$");
67 
68 #include <sys/param.h>
69 #include <sys/systm.h>
70 #include <sys/kernel.h>
71 #include <sys/ktr.h>
72 #include <sys/lock.h>
73 #include <sys/mutex.h>
74 #include <sys/proc.h>
75 #include <sys/vmmeter.h>
76 #include <sys/mman.h>
77 #include <sys/vnode.h>
78 #include <sys/racct.h>
79 #include <sys/resourcevar.h>
80 #include <sys/file.h>
81 #include <sys/sysctl.h>
82 #include <sys/sysent.h>
83 #include <sys/shm.h>
84 
85 #include <vm/vm.h>
86 #include <vm/vm_param.h>
87 #include <vm/pmap.h>
88 #include <vm/vm_map.h>
89 #include <vm/vm_page.h>
90 #include <vm/vm_object.h>
91 #include <vm/vm_pager.h>
92 #include <vm/vm_kern.h>
93 #include <vm/vm_extern.h>
94 #include <vm/vnode_pager.h>
95 #include <vm/swap_pager.h>
96 #include <vm/uma.h>
97 
98 /*
99  *	Virtual memory maps provide for the mapping, protection,
100  *	and sharing of virtual memory objects.  In addition,
101  *	this module provides for an efficient virtual copy of
102  *	memory from one map to another.
103  *
104  *	Synchronization is required prior to most operations.
105  *
106  *	Maps consist of an ordered doubly-linked list of simple
107  *	entries; a self-adjusting binary search tree of these
108  *	entries is used to speed up lookups.
109  *
110  *	Since portions of maps are specified by start/end addresses,
111  *	which may not align with existing map entries, all
112  *	routines merely "clip" entries to these start/end values.
113  *	[That is, an entry is split into two, bordering at a
114  *	start or end value.]  Note that these clippings may not
115  *	always be necessary (as the two resulting entries are then
116  *	not changed); however, the clipping is done for convenience.
117  *
118  *	As mentioned above, virtual copy operations are performed
119  *	by copying VM object references from one map to
120  *	another, and then marking both regions as copy-on-write.
121  */
122 
123 static struct mtx map_sleep_mtx;
124 static uma_zone_t mapentzone;
125 static uma_zone_t kmapentzone;
126 static uma_zone_t mapzone;
127 static uma_zone_t vmspace_zone;
128 static struct vm_object kmapentobj;
129 static int vmspace_zinit(void *mem, int size, int flags);
130 static void vmspace_zfini(void *mem, int size);
131 static int vm_map_zinit(void *mem, int ize, int flags);
132 static void vm_map_zfini(void *mem, int size);
133 static void _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min,
134     vm_offset_t max);
135 static void vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map);
136 static void vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry);
137 #ifdef INVARIANTS
138 static void vm_map_zdtor(void *mem, int size, void *arg);
139 static void vmspace_zdtor(void *mem, int size, void *arg);
140 #endif
141 
142 #define	ENTRY_CHARGED(e) ((e)->cred != NULL || \
143     ((e)->object.vm_object != NULL && (e)->object.vm_object->cred != NULL && \
144      !((e)->eflags & MAP_ENTRY_NEEDS_COPY)))
145 
146 /*
147  * PROC_VMSPACE_{UN,}LOCK() can be a noop as long as vmspaces are type
148  * stable.
149  */
150 #define PROC_VMSPACE_LOCK(p) do { } while (0)
151 #define PROC_VMSPACE_UNLOCK(p) do { } while (0)
152 
153 /*
154  *	VM_MAP_RANGE_CHECK:	[ internal use only ]
155  *
156  *	Asserts that the starting and ending region
157  *	addresses fall within the valid range of the map.
158  */
159 #define	VM_MAP_RANGE_CHECK(map, start, end)		\
160 		{					\
161 		if (start < vm_map_min(map))		\
162 			start = vm_map_min(map);	\
163 		if (end > vm_map_max(map))		\
164 			end = vm_map_max(map);		\
165 		if (start > end)			\
166 			start = end;			\
167 		}
168 
169 /*
170  *	vm_map_startup:
171  *
172  *	Initialize the vm_map module.  Must be called before
173  *	any other vm_map routines.
174  *
175  *	Map and entry structures are allocated from the general
176  *	purpose memory pool with some exceptions:
177  *
178  *	- The kernel map and kmem submap are allocated statically.
179  *	- Kernel map entries are allocated out of a static pool.
180  *
181  *	These restrictions are necessary since malloc() uses the
182  *	maps and requires map entries.
183  */
184 
185 void
186 vm_map_startup(void)
187 {
188 	mtx_init(&map_sleep_mtx, "vm map sleep mutex", NULL, MTX_DEF);
189 	mapzone = uma_zcreate("MAP", sizeof(struct vm_map), NULL,
190 #ifdef INVARIANTS
191 	    vm_map_zdtor,
192 #else
193 	    NULL,
194 #endif
195 	    vm_map_zinit, vm_map_zfini, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
196 	uma_prealloc(mapzone, MAX_KMAP);
197 	kmapentzone = uma_zcreate("KMAP ENTRY", sizeof(struct vm_map_entry),
198 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
199 	    UMA_ZONE_MTXCLASS | UMA_ZONE_VM);
200 	uma_prealloc(kmapentzone, MAX_KMAPENT);
201 	mapentzone = uma_zcreate("MAP ENTRY", sizeof(struct vm_map_entry),
202 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
203 }
204 
205 static void
206 vmspace_zfini(void *mem, int size)
207 {
208 	struct vmspace *vm;
209 
210 	vm = (struct vmspace *)mem;
211 	vm_map_zfini(&vm->vm_map, sizeof(vm->vm_map));
212 }
213 
214 static int
215 vmspace_zinit(void *mem, int size, int flags)
216 {
217 	struct vmspace *vm;
218 
219 	vm = (struct vmspace *)mem;
220 
221 	vm->vm_map.pmap = NULL;
222 	(void)vm_map_zinit(&vm->vm_map, sizeof(vm->vm_map), flags);
223 	return (0);
224 }
225 
226 static void
227 vm_map_zfini(void *mem, int size)
228 {
229 	vm_map_t map;
230 
231 	map = (vm_map_t)mem;
232 	mtx_destroy(&map->system_mtx);
233 	sx_destroy(&map->lock);
234 }
235 
236 static int
237 vm_map_zinit(void *mem, int size, int flags)
238 {
239 	vm_map_t map;
240 
241 	map = (vm_map_t)mem;
242 	map->nentries = 0;
243 	map->size = 0;
244 	mtx_init(&map->system_mtx, "vm map (system)", NULL, MTX_DEF | MTX_DUPOK);
245 	sx_init(&map->lock, "vm map (user)");
246 	return (0);
247 }
248 
249 #ifdef INVARIANTS
250 static void
251 vmspace_zdtor(void *mem, int size, void *arg)
252 {
253 	struct vmspace *vm;
254 
255 	vm = (struct vmspace *)mem;
256 
257 	vm_map_zdtor(&vm->vm_map, sizeof(vm->vm_map), arg);
258 }
259 static void
260 vm_map_zdtor(void *mem, int size, void *arg)
261 {
262 	vm_map_t map;
263 
264 	map = (vm_map_t)mem;
265 	KASSERT(map->nentries == 0,
266 	    ("map %p nentries == %d on free.",
267 	    map, map->nentries));
268 	KASSERT(map->size == 0,
269 	    ("map %p size == %lu on free.",
270 	    map, (unsigned long)map->size));
271 }
272 #endif	/* INVARIANTS */
273 
274 /*
275  * Allocate a vmspace structure, including a vm_map and pmap,
276  * and initialize those structures.  The refcnt is set to 1.
277  */
278 struct vmspace *
279 vmspace_alloc(min, max)
280 	vm_offset_t min, max;
281 {
282 	struct vmspace *vm;
283 
284 	vm = uma_zalloc(vmspace_zone, M_WAITOK);
285 	if (vm->vm_map.pmap == NULL && !pmap_pinit(vmspace_pmap(vm))) {
286 		uma_zfree(vmspace_zone, vm);
287 		return (NULL);
288 	}
289 	CTR1(KTR_VM, "vmspace_alloc: %p", vm);
290 	_vm_map_init(&vm->vm_map, vmspace_pmap(vm), min, max);
291 	vm->vm_refcnt = 1;
292 	vm->vm_shm = NULL;
293 	vm->vm_swrss = 0;
294 	vm->vm_tsize = 0;
295 	vm->vm_dsize = 0;
296 	vm->vm_ssize = 0;
297 	vm->vm_taddr = 0;
298 	vm->vm_daddr = 0;
299 	vm->vm_maxsaddr = 0;
300 	return (vm);
301 }
302 
303 void
304 vm_init2(void)
305 {
306 	uma_zone_set_obj(kmapentzone, &kmapentobj, lmin(cnt.v_page_count,
307 	    (VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS) / PAGE_SIZE) / 8 +
308 	     maxproc * 2 + maxfiles);
309 	vmspace_zone = uma_zcreate("VMSPACE", sizeof(struct vmspace), NULL,
310 #ifdef INVARIANTS
311 	    vmspace_zdtor,
312 #else
313 	    NULL,
314 #endif
315 	    vmspace_zinit, vmspace_zfini, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
316 }
317 
318 static void
319 vmspace_container_reset(struct proc *p)
320 {
321 
322 #ifdef RACCT
323 	PROC_LOCK(p);
324 	racct_set(p, RACCT_DATA, 0);
325 	racct_set(p, RACCT_STACK, 0);
326 	racct_set(p, RACCT_RSS, 0);
327 	racct_set(p, RACCT_MEMLOCK, 0);
328 	racct_set(p, RACCT_VMEM, 0);
329 	PROC_UNLOCK(p);
330 #endif
331 }
332 
333 static inline void
334 vmspace_dofree(struct vmspace *vm)
335 {
336 
337 	CTR1(KTR_VM, "vmspace_free: %p", vm);
338 
339 	/*
340 	 * Make sure any SysV shm is freed, it might not have been in
341 	 * exit1().
342 	 */
343 	shmexit(vm);
344 
345 	/*
346 	 * Lock the map, to wait out all other references to it.
347 	 * Delete all of the mappings and pages they hold, then call
348 	 * the pmap module to reclaim anything left.
349 	 */
350 	(void)vm_map_remove(&vm->vm_map, vm->vm_map.min_offset,
351 	    vm->vm_map.max_offset);
352 
353 	pmap_release(vmspace_pmap(vm));
354 	vm->vm_map.pmap = NULL;
355 	uma_zfree(vmspace_zone, vm);
356 }
357 
358 void
359 vmspace_free(struct vmspace *vm)
360 {
361 
362 	if (vm->vm_refcnt == 0)
363 		panic("vmspace_free: attempt to free already freed vmspace");
364 
365 	if (atomic_fetchadd_int(&vm->vm_refcnt, -1) == 1)
366 		vmspace_dofree(vm);
367 }
368 
369 void
370 vmspace_exitfree(struct proc *p)
371 {
372 	struct vmspace *vm;
373 
374 	PROC_VMSPACE_LOCK(p);
375 	vm = p->p_vmspace;
376 	p->p_vmspace = NULL;
377 	PROC_VMSPACE_UNLOCK(p);
378 	KASSERT(vm == &vmspace0, ("vmspace_exitfree: wrong vmspace"));
379 	vmspace_free(vm);
380 }
381 
382 void
383 vmspace_exit(struct thread *td)
384 {
385 	int refcnt;
386 	struct vmspace *vm;
387 	struct proc *p;
388 
389 	/*
390 	 * Release user portion of address space.
391 	 * This releases references to vnodes,
392 	 * which could cause I/O if the file has been unlinked.
393 	 * Need to do this early enough that we can still sleep.
394 	 *
395 	 * The last exiting process to reach this point releases as
396 	 * much of the environment as it can. vmspace_dofree() is the
397 	 * slower fallback in case another process had a temporary
398 	 * reference to the vmspace.
399 	 */
400 
401 	p = td->td_proc;
402 	vm = p->p_vmspace;
403 	atomic_add_int(&vmspace0.vm_refcnt, 1);
404 	do {
405 		refcnt = vm->vm_refcnt;
406 		if (refcnt > 1 && p->p_vmspace != &vmspace0) {
407 			/* Switch now since other proc might free vmspace */
408 			PROC_VMSPACE_LOCK(p);
409 			p->p_vmspace = &vmspace0;
410 			PROC_VMSPACE_UNLOCK(p);
411 			pmap_activate(td);
412 		}
413 	} while (!atomic_cmpset_int(&vm->vm_refcnt, refcnt, refcnt - 1));
414 	if (refcnt == 1) {
415 		if (p->p_vmspace != vm) {
416 			/* vmspace not yet freed, switch back */
417 			PROC_VMSPACE_LOCK(p);
418 			p->p_vmspace = vm;
419 			PROC_VMSPACE_UNLOCK(p);
420 			pmap_activate(td);
421 		}
422 		pmap_remove_pages(vmspace_pmap(vm));
423 		/* Switch now since this proc will free vmspace */
424 		PROC_VMSPACE_LOCK(p);
425 		p->p_vmspace = &vmspace0;
426 		PROC_VMSPACE_UNLOCK(p);
427 		pmap_activate(td);
428 		vmspace_dofree(vm);
429 	}
430 	vmspace_container_reset(p);
431 }
432 
433 /* Acquire reference to vmspace owned by another process. */
434 
435 struct vmspace *
436 vmspace_acquire_ref(struct proc *p)
437 {
438 	struct vmspace *vm;
439 	int refcnt;
440 
441 	PROC_VMSPACE_LOCK(p);
442 	vm = p->p_vmspace;
443 	if (vm == NULL) {
444 		PROC_VMSPACE_UNLOCK(p);
445 		return (NULL);
446 	}
447 	do {
448 		refcnt = vm->vm_refcnt;
449 		if (refcnt <= 0) { 	/* Avoid 0->1 transition */
450 			PROC_VMSPACE_UNLOCK(p);
451 			return (NULL);
452 		}
453 	} while (!atomic_cmpset_int(&vm->vm_refcnt, refcnt, refcnt + 1));
454 	if (vm != p->p_vmspace) {
455 		PROC_VMSPACE_UNLOCK(p);
456 		vmspace_free(vm);
457 		return (NULL);
458 	}
459 	PROC_VMSPACE_UNLOCK(p);
460 	return (vm);
461 }
462 
463 void
464 _vm_map_lock(vm_map_t map, const char *file, int line)
465 {
466 
467 	if (map->system_map)
468 		mtx_lock_flags_(&map->system_mtx, 0, file, line);
469 	else
470 		sx_xlock_(&map->lock, file, line);
471 	map->timestamp++;
472 }
473 
474 static void
475 vm_map_process_deferred(void)
476 {
477 	struct thread *td;
478 	vm_map_entry_t entry, next;
479 	vm_object_t object;
480 
481 	td = curthread;
482 	entry = td->td_map_def_user;
483 	td->td_map_def_user = NULL;
484 	while (entry != NULL) {
485 		next = entry->next;
486 		if ((entry->eflags & MAP_ENTRY_VN_WRITECNT) != 0) {
487 			/*
488 			 * Decrement the object's writemappings and
489 			 * possibly the vnode's v_writecount.
490 			 */
491 			KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0,
492 			    ("Submap with writecount"));
493 			object = entry->object.vm_object;
494 			KASSERT(object != NULL, ("No object for writecount"));
495 			vnode_pager_release_writecount(object, entry->start,
496 			    entry->end);
497 		}
498 		vm_map_entry_deallocate(entry, FALSE);
499 		entry = next;
500 	}
501 }
502 
503 void
504 _vm_map_unlock(vm_map_t map, const char *file, int line)
505 {
506 
507 	if (map->system_map)
508 		mtx_unlock_flags_(&map->system_mtx, 0, file, line);
509 	else {
510 		sx_xunlock_(&map->lock, file, line);
511 		vm_map_process_deferred();
512 	}
513 }
514 
515 void
516 _vm_map_lock_read(vm_map_t map, const char *file, int line)
517 {
518 
519 	if (map->system_map)
520 		mtx_lock_flags_(&map->system_mtx, 0, file, line);
521 	else
522 		sx_slock_(&map->lock, file, line);
523 }
524 
525 void
526 _vm_map_unlock_read(vm_map_t map, const char *file, int line)
527 {
528 
529 	if (map->system_map)
530 		mtx_unlock_flags_(&map->system_mtx, 0, file, line);
531 	else {
532 		sx_sunlock_(&map->lock, file, line);
533 		vm_map_process_deferred();
534 	}
535 }
536 
537 int
538 _vm_map_trylock(vm_map_t map, const char *file, int line)
539 {
540 	int error;
541 
542 	error = map->system_map ?
543 	    !mtx_trylock_flags_(&map->system_mtx, 0, file, line) :
544 	    !sx_try_xlock_(&map->lock, file, line);
545 	if (error == 0)
546 		map->timestamp++;
547 	return (error == 0);
548 }
549 
550 int
551 _vm_map_trylock_read(vm_map_t map, const char *file, int line)
552 {
553 	int error;
554 
555 	error = map->system_map ?
556 	    !mtx_trylock_flags_(&map->system_mtx, 0, file, line) :
557 	    !sx_try_slock_(&map->lock, file, line);
558 	return (error == 0);
559 }
560 
561 /*
562  *	_vm_map_lock_upgrade:	[ internal use only ]
563  *
564  *	Tries to upgrade a read (shared) lock on the specified map to a write
565  *	(exclusive) lock.  Returns the value "0" if the upgrade succeeds and a
566  *	non-zero value if the upgrade fails.  If the upgrade fails, the map is
567  *	returned without a read or write lock held.
568  *
569  *	Requires that the map be read locked.
570  */
571 int
572 _vm_map_lock_upgrade(vm_map_t map, const char *file, int line)
573 {
574 	unsigned int last_timestamp;
575 
576 	if (map->system_map) {
577 		mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
578 	} else {
579 		if (!sx_try_upgrade_(&map->lock, file, line)) {
580 			last_timestamp = map->timestamp;
581 			sx_sunlock_(&map->lock, file, line);
582 			vm_map_process_deferred();
583 			/*
584 			 * If the map's timestamp does not change while the
585 			 * map is unlocked, then the upgrade succeeds.
586 			 */
587 			sx_xlock_(&map->lock, file, line);
588 			if (last_timestamp != map->timestamp) {
589 				sx_xunlock_(&map->lock, file, line);
590 				return (1);
591 			}
592 		}
593 	}
594 	map->timestamp++;
595 	return (0);
596 }
597 
598 void
599 _vm_map_lock_downgrade(vm_map_t map, const char *file, int line)
600 {
601 
602 	if (map->system_map) {
603 		mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
604 	} else
605 		sx_downgrade_(&map->lock, file, line);
606 }
607 
608 /*
609  *	vm_map_locked:
610  *
611  *	Returns a non-zero value if the caller holds a write (exclusive) lock
612  *	on the specified map and the value "0" otherwise.
613  */
614 int
615 vm_map_locked(vm_map_t map)
616 {
617 
618 	if (map->system_map)
619 		return (mtx_owned(&map->system_mtx));
620 	else
621 		return (sx_xlocked(&map->lock));
622 }
623 
624 #ifdef INVARIANTS
625 static void
626 _vm_map_assert_locked(vm_map_t map, const char *file, int line)
627 {
628 
629 	if (map->system_map)
630 		mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
631 	else
632 		sx_assert_(&map->lock, SA_XLOCKED, file, line);
633 }
634 
635 #define	VM_MAP_ASSERT_LOCKED(map) \
636     _vm_map_assert_locked(map, LOCK_FILE, LOCK_LINE)
637 #else
638 #define	VM_MAP_ASSERT_LOCKED(map)
639 #endif
640 
641 /*
642  *	_vm_map_unlock_and_wait:
643  *
644  *	Atomically releases the lock on the specified map and puts the calling
645  *	thread to sleep.  The calling thread will remain asleep until either
646  *	vm_map_wakeup() is performed on the map or the specified timeout is
647  *	exceeded.
648  *
649  *	WARNING!  This function does not perform deferred deallocations of
650  *	objects and map	entries.  Therefore, the calling thread is expected to
651  *	reacquire the map lock after reawakening and later perform an ordinary
652  *	unlock operation, such as vm_map_unlock(), before completing its
653  *	operation on the map.
654  */
655 int
656 _vm_map_unlock_and_wait(vm_map_t map, int timo, const char *file, int line)
657 {
658 
659 	mtx_lock(&map_sleep_mtx);
660 	if (map->system_map)
661 		mtx_unlock_flags_(&map->system_mtx, 0, file, line);
662 	else
663 		sx_xunlock_(&map->lock, file, line);
664 	return (msleep(&map->root, &map_sleep_mtx, PDROP | PVM, "vmmaps",
665 	    timo));
666 }
667 
668 /*
669  *	vm_map_wakeup:
670  *
671  *	Awaken any threads that have slept on the map using
672  *	vm_map_unlock_and_wait().
673  */
674 void
675 vm_map_wakeup(vm_map_t map)
676 {
677 
678 	/*
679 	 * Acquire and release map_sleep_mtx to prevent a wakeup()
680 	 * from being performed (and lost) between the map unlock
681 	 * and the msleep() in _vm_map_unlock_and_wait().
682 	 */
683 	mtx_lock(&map_sleep_mtx);
684 	mtx_unlock(&map_sleep_mtx);
685 	wakeup(&map->root);
686 }
687 
688 void
689 vm_map_busy(vm_map_t map)
690 {
691 
692 	VM_MAP_ASSERT_LOCKED(map);
693 	map->busy++;
694 }
695 
696 void
697 vm_map_unbusy(vm_map_t map)
698 {
699 
700 	VM_MAP_ASSERT_LOCKED(map);
701 	KASSERT(map->busy, ("vm_map_unbusy: not busy"));
702 	if (--map->busy == 0 && (map->flags & MAP_BUSY_WAKEUP)) {
703 		vm_map_modflags(map, 0, MAP_BUSY_WAKEUP);
704 		wakeup(&map->busy);
705 	}
706 }
707 
708 void
709 vm_map_wait_busy(vm_map_t map)
710 {
711 
712 	VM_MAP_ASSERT_LOCKED(map);
713 	while (map->busy) {
714 		vm_map_modflags(map, MAP_BUSY_WAKEUP, 0);
715 		if (map->system_map)
716 			msleep(&map->busy, &map->system_mtx, 0, "mbusy", 0);
717 		else
718 			sx_sleep(&map->busy, &map->lock, 0, "mbusy", 0);
719 	}
720 	map->timestamp++;
721 }
722 
723 long
724 vmspace_resident_count(struct vmspace *vmspace)
725 {
726 	return pmap_resident_count(vmspace_pmap(vmspace));
727 }
728 
729 long
730 vmspace_wired_count(struct vmspace *vmspace)
731 {
732 	return pmap_wired_count(vmspace_pmap(vmspace));
733 }
734 
735 /*
736  *	vm_map_create:
737  *
738  *	Creates and returns a new empty VM map with
739  *	the given physical map structure, and having
740  *	the given lower and upper address bounds.
741  */
742 vm_map_t
743 vm_map_create(pmap_t pmap, vm_offset_t min, vm_offset_t max)
744 {
745 	vm_map_t result;
746 
747 	result = uma_zalloc(mapzone, M_WAITOK);
748 	CTR1(KTR_VM, "vm_map_create: %p", result);
749 	_vm_map_init(result, pmap, min, max);
750 	return (result);
751 }
752 
753 /*
754  * Initialize an existing vm_map structure
755  * such as that in the vmspace structure.
756  */
757 static void
758 _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max)
759 {
760 
761 	map->header.next = map->header.prev = &map->header;
762 	map->needs_wakeup = FALSE;
763 	map->system_map = 0;
764 	map->pmap = pmap;
765 	map->min_offset = min;
766 	map->max_offset = max;
767 	map->flags = 0;
768 	map->root = NULL;
769 	map->timestamp = 0;
770 	map->busy = 0;
771 }
772 
773 void
774 vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max)
775 {
776 
777 	_vm_map_init(map, pmap, min, max);
778 	mtx_init(&map->system_mtx, "system map", NULL, MTX_DEF | MTX_DUPOK);
779 	sx_init(&map->lock, "user map");
780 }
781 
782 /*
783  *	vm_map_entry_dispose:	[ internal use only ]
784  *
785  *	Inverse of vm_map_entry_create.
786  */
787 static void
788 vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry)
789 {
790 	uma_zfree(map->system_map ? kmapentzone : mapentzone, entry);
791 }
792 
793 /*
794  *	vm_map_entry_create:	[ internal use only ]
795  *
796  *	Allocates a VM map entry for insertion.
797  *	No entry fields are filled in.
798  */
799 static vm_map_entry_t
800 vm_map_entry_create(vm_map_t map)
801 {
802 	vm_map_entry_t new_entry;
803 
804 	if (map->system_map)
805 		new_entry = uma_zalloc(kmapentzone, M_NOWAIT);
806 	else
807 		new_entry = uma_zalloc(mapentzone, M_WAITOK);
808 	if (new_entry == NULL)
809 		panic("vm_map_entry_create: kernel resources exhausted");
810 	return (new_entry);
811 }
812 
813 /*
814  *	vm_map_entry_set_behavior:
815  *
816  *	Set the expected access behavior, either normal, random, or
817  *	sequential.
818  */
819 static inline void
820 vm_map_entry_set_behavior(vm_map_entry_t entry, u_char behavior)
821 {
822 	entry->eflags = (entry->eflags & ~MAP_ENTRY_BEHAV_MASK) |
823 	    (behavior & MAP_ENTRY_BEHAV_MASK);
824 }
825 
826 /*
827  *	vm_map_entry_set_max_free:
828  *
829  *	Set the max_free field in a vm_map_entry.
830  */
831 static inline void
832 vm_map_entry_set_max_free(vm_map_entry_t entry)
833 {
834 
835 	entry->max_free = entry->adj_free;
836 	if (entry->left != NULL && entry->left->max_free > entry->max_free)
837 		entry->max_free = entry->left->max_free;
838 	if (entry->right != NULL && entry->right->max_free > entry->max_free)
839 		entry->max_free = entry->right->max_free;
840 }
841 
842 /*
843  *	vm_map_entry_splay:
844  *
845  *	The Sleator and Tarjan top-down splay algorithm with the
846  *	following variation.  Max_free must be computed bottom-up, so
847  *	on the downward pass, maintain the left and right spines in
848  *	reverse order.  Then, make a second pass up each side to fix
849  *	the pointers and compute max_free.  The time bound is O(log n)
850  *	amortized.
851  *
852  *	The new root is the vm_map_entry containing "addr", or else an
853  *	adjacent entry (lower or higher) if addr is not in the tree.
854  *
855  *	The map must be locked, and leaves it so.
856  *
857  *	Returns: the new root.
858  */
859 static vm_map_entry_t
860 vm_map_entry_splay(vm_offset_t addr, vm_map_entry_t root)
861 {
862 	vm_map_entry_t llist, rlist;
863 	vm_map_entry_t ltree, rtree;
864 	vm_map_entry_t y;
865 
866 	/* Special case of empty tree. */
867 	if (root == NULL)
868 		return (root);
869 
870 	/*
871 	 * Pass One: Splay down the tree until we find addr or a NULL
872 	 * pointer where addr would go.  llist and rlist are the two
873 	 * sides in reverse order (bottom-up), with llist linked by
874 	 * the right pointer and rlist linked by the left pointer in
875 	 * the vm_map_entry.  Wait until Pass Two to set max_free on
876 	 * the two spines.
877 	 */
878 	llist = NULL;
879 	rlist = NULL;
880 	for (;;) {
881 		/* root is never NULL in here. */
882 		if (addr < root->start) {
883 			y = root->left;
884 			if (y == NULL)
885 				break;
886 			if (addr < y->start && y->left != NULL) {
887 				/* Rotate right and put y on rlist. */
888 				root->left = y->right;
889 				y->right = root;
890 				vm_map_entry_set_max_free(root);
891 				root = y->left;
892 				y->left = rlist;
893 				rlist = y;
894 			} else {
895 				/* Put root on rlist. */
896 				root->left = rlist;
897 				rlist = root;
898 				root = y;
899 			}
900 		} else if (addr >= root->end) {
901 			y = root->right;
902 			if (y == NULL)
903 				break;
904 			if (addr >= y->end && y->right != NULL) {
905 				/* Rotate left and put y on llist. */
906 				root->right = y->left;
907 				y->left = root;
908 				vm_map_entry_set_max_free(root);
909 				root = y->right;
910 				y->right = llist;
911 				llist = y;
912 			} else {
913 				/* Put root on llist. */
914 				root->right = llist;
915 				llist = root;
916 				root = y;
917 			}
918 		} else
919 			break;
920 	}
921 
922 	/*
923 	 * Pass Two: Walk back up the two spines, flip the pointers
924 	 * and set max_free.  The subtrees of the root go at the
925 	 * bottom of llist and rlist.
926 	 */
927 	ltree = root->left;
928 	while (llist != NULL) {
929 		y = llist->right;
930 		llist->right = ltree;
931 		vm_map_entry_set_max_free(llist);
932 		ltree = llist;
933 		llist = y;
934 	}
935 	rtree = root->right;
936 	while (rlist != NULL) {
937 		y = rlist->left;
938 		rlist->left = rtree;
939 		vm_map_entry_set_max_free(rlist);
940 		rtree = rlist;
941 		rlist = y;
942 	}
943 
944 	/*
945 	 * Final assembly: add ltree and rtree as subtrees of root.
946 	 */
947 	root->left = ltree;
948 	root->right = rtree;
949 	vm_map_entry_set_max_free(root);
950 
951 	return (root);
952 }
953 
954 /*
955  *	vm_map_entry_{un,}link:
956  *
957  *	Insert/remove entries from maps.
958  */
959 static void
960 vm_map_entry_link(vm_map_t map,
961 		  vm_map_entry_t after_where,
962 		  vm_map_entry_t entry)
963 {
964 
965 	CTR4(KTR_VM,
966 	    "vm_map_entry_link: map %p, nentries %d, entry %p, after %p", map,
967 	    map->nentries, entry, after_where);
968 	VM_MAP_ASSERT_LOCKED(map);
969 	map->nentries++;
970 	entry->prev = after_where;
971 	entry->next = after_where->next;
972 	entry->next->prev = entry;
973 	after_where->next = entry;
974 
975 	if (after_where != &map->header) {
976 		if (after_where != map->root)
977 			vm_map_entry_splay(after_where->start, map->root);
978 		entry->right = after_where->right;
979 		entry->left = after_where;
980 		after_where->right = NULL;
981 		after_where->adj_free = entry->start - after_where->end;
982 		vm_map_entry_set_max_free(after_where);
983 	} else {
984 		entry->right = map->root;
985 		entry->left = NULL;
986 	}
987 	entry->adj_free = (entry->next == &map->header ? map->max_offset :
988 	    entry->next->start) - entry->end;
989 	vm_map_entry_set_max_free(entry);
990 	map->root = entry;
991 }
992 
993 static void
994 vm_map_entry_unlink(vm_map_t map,
995 		    vm_map_entry_t entry)
996 {
997 	vm_map_entry_t next, prev, root;
998 
999 	VM_MAP_ASSERT_LOCKED(map);
1000 	if (entry != map->root)
1001 		vm_map_entry_splay(entry->start, map->root);
1002 	if (entry->left == NULL)
1003 		root = entry->right;
1004 	else {
1005 		root = vm_map_entry_splay(entry->start, entry->left);
1006 		root->right = entry->right;
1007 		root->adj_free = (entry->next == &map->header ? map->max_offset :
1008 		    entry->next->start) - root->end;
1009 		vm_map_entry_set_max_free(root);
1010 	}
1011 	map->root = root;
1012 
1013 	prev = entry->prev;
1014 	next = entry->next;
1015 	next->prev = prev;
1016 	prev->next = next;
1017 	map->nentries--;
1018 	CTR3(KTR_VM, "vm_map_entry_unlink: map %p, nentries %d, entry %p", map,
1019 	    map->nentries, entry);
1020 }
1021 
1022 /*
1023  *	vm_map_entry_resize_free:
1024  *
1025  *	Recompute the amount of free space following a vm_map_entry
1026  *	and propagate that value up the tree.  Call this function after
1027  *	resizing a map entry in-place, that is, without a call to
1028  *	vm_map_entry_link() or _unlink().
1029  *
1030  *	The map must be locked, and leaves it so.
1031  */
1032 static void
1033 vm_map_entry_resize_free(vm_map_t map, vm_map_entry_t entry)
1034 {
1035 
1036 	/*
1037 	 * Using splay trees without parent pointers, propagating
1038 	 * max_free up the tree is done by moving the entry to the
1039 	 * root and making the change there.
1040 	 */
1041 	if (entry != map->root)
1042 		map->root = vm_map_entry_splay(entry->start, map->root);
1043 
1044 	entry->adj_free = (entry->next == &map->header ? map->max_offset :
1045 	    entry->next->start) - entry->end;
1046 	vm_map_entry_set_max_free(entry);
1047 }
1048 
1049 /*
1050  *	vm_map_lookup_entry:	[ internal use only ]
1051  *
1052  *	Finds the map entry containing (or
1053  *	immediately preceding) the specified address
1054  *	in the given map; the entry is returned
1055  *	in the "entry" parameter.  The boolean
1056  *	result indicates whether the address is
1057  *	actually contained in the map.
1058  */
1059 boolean_t
1060 vm_map_lookup_entry(
1061 	vm_map_t map,
1062 	vm_offset_t address,
1063 	vm_map_entry_t *entry)	/* OUT */
1064 {
1065 	vm_map_entry_t cur;
1066 	boolean_t locked;
1067 
1068 	/*
1069 	 * If the map is empty, then the map entry immediately preceding
1070 	 * "address" is the map's header.
1071 	 */
1072 	cur = map->root;
1073 	if (cur == NULL)
1074 		*entry = &map->header;
1075 	else if (address >= cur->start && cur->end > address) {
1076 		*entry = cur;
1077 		return (TRUE);
1078 	} else if ((locked = vm_map_locked(map)) ||
1079 	    sx_try_upgrade(&map->lock)) {
1080 		/*
1081 		 * Splay requires a write lock on the map.  However, it only
1082 		 * restructures the binary search tree; it does not otherwise
1083 		 * change the map.  Thus, the map's timestamp need not change
1084 		 * on a temporary upgrade.
1085 		 */
1086 		map->root = cur = vm_map_entry_splay(address, cur);
1087 		if (!locked)
1088 			sx_downgrade(&map->lock);
1089 
1090 		/*
1091 		 * If "address" is contained within a map entry, the new root
1092 		 * is that map entry.  Otherwise, the new root is a map entry
1093 		 * immediately before or after "address".
1094 		 */
1095 		if (address >= cur->start) {
1096 			*entry = cur;
1097 			if (cur->end > address)
1098 				return (TRUE);
1099 		} else
1100 			*entry = cur->prev;
1101 	} else
1102 		/*
1103 		 * Since the map is only locked for read access, perform a
1104 		 * standard binary search tree lookup for "address".
1105 		 */
1106 		for (;;) {
1107 			if (address < cur->start) {
1108 				if (cur->left == NULL) {
1109 					*entry = cur->prev;
1110 					break;
1111 				}
1112 				cur = cur->left;
1113 			} else if (cur->end > address) {
1114 				*entry = cur;
1115 				return (TRUE);
1116 			} else {
1117 				if (cur->right == NULL) {
1118 					*entry = cur;
1119 					break;
1120 				}
1121 				cur = cur->right;
1122 			}
1123 		}
1124 	return (FALSE);
1125 }
1126 
1127 /*
1128  *	vm_map_insert:
1129  *
1130  *	Inserts the given whole VM object into the target
1131  *	map at the specified address range.  The object's
1132  *	size should match that of the address range.
1133  *
1134  *	Requires that the map be locked, and leaves it so.
1135  *
1136  *	If object is non-NULL, ref count must be bumped by caller
1137  *	prior to making call to account for the new entry.
1138  */
1139 int
1140 vm_map_insert(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1141 	      vm_offset_t start, vm_offset_t end, vm_prot_t prot, vm_prot_t max,
1142 	      int cow)
1143 {
1144 	vm_map_entry_t new_entry;
1145 	vm_map_entry_t prev_entry;
1146 	vm_map_entry_t temp_entry;
1147 	vm_eflags_t protoeflags;
1148 	struct ucred *cred;
1149 	vm_inherit_t inheritance;
1150 	boolean_t charge_prev_obj;
1151 
1152 	VM_MAP_ASSERT_LOCKED(map);
1153 
1154 	/*
1155 	 * Check that the start and end points are not bogus.
1156 	 */
1157 	if ((start < map->min_offset) || (end > map->max_offset) ||
1158 	    (start >= end))
1159 		return (KERN_INVALID_ADDRESS);
1160 
1161 	/*
1162 	 * Find the entry prior to the proposed starting address; if it's part
1163 	 * of an existing entry, this range is bogus.
1164 	 */
1165 	if (vm_map_lookup_entry(map, start, &temp_entry))
1166 		return (KERN_NO_SPACE);
1167 
1168 	prev_entry = temp_entry;
1169 
1170 	/*
1171 	 * Assert that the next entry doesn't overlap the end point.
1172 	 */
1173 	if ((prev_entry->next != &map->header) &&
1174 	    (prev_entry->next->start < end))
1175 		return (KERN_NO_SPACE);
1176 
1177 	protoeflags = 0;
1178 	charge_prev_obj = FALSE;
1179 
1180 	if (cow & MAP_COPY_ON_WRITE)
1181 		protoeflags |= MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY;
1182 
1183 	if (cow & MAP_NOFAULT) {
1184 		protoeflags |= MAP_ENTRY_NOFAULT;
1185 
1186 		KASSERT(object == NULL,
1187 			("vm_map_insert: paradoxical MAP_NOFAULT request"));
1188 	}
1189 	if (cow & MAP_DISABLE_SYNCER)
1190 		protoeflags |= MAP_ENTRY_NOSYNC;
1191 	if (cow & MAP_DISABLE_COREDUMP)
1192 		protoeflags |= MAP_ENTRY_NOCOREDUMP;
1193 	if (cow & MAP_VN_WRITECOUNT)
1194 		protoeflags |= MAP_ENTRY_VN_WRITECNT;
1195 	if (cow & MAP_INHERIT_SHARE)
1196 		inheritance = VM_INHERIT_SHARE;
1197 	else
1198 		inheritance = VM_INHERIT_DEFAULT;
1199 
1200 	cred = NULL;
1201 	KASSERT((object != kmem_object && object != kernel_object) ||
1202 	    ((object == kmem_object || object == kernel_object) &&
1203 		!(protoeflags & MAP_ENTRY_NEEDS_COPY)),
1204 	    ("kmem or kernel object and cow"));
1205 	if (cow & (MAP_ACC_NO_CHARGE | MAP_NOFAULT))
1206 		goto charged;
1207 	if ((cow & MAP_ACC_CHARGED) || ((prot & VM_PROT_WRITE) &&
1208 	    ((protoeflags & MAP_ENTRY_NEEDS_COPY) || object == NULL))) {
1209 		if (!(cow & MAP_ACC_CHARGED) && !swap_reserve(end - start))
1210 			return (KERN_RESOURCE_SHORTAGE);
1211 		KASSERT(object == NULL || (protoeflags & MAP_ENTRY_NEEDS_COPY) ||
1212 		    object->cred == NULL,
1213 		    ("OVERCOMMIT: vm_map_insert o %p", object));
1214 		cred = curthread->td_ucred;
1215 		crhold(cred);
1216 		if (object == NULL && !(protoeflags & MAP_ENTRY_NEEDS_COPY))
1217 			charge_prev_obj = TRUE;
1218 	}
1219 
1220 charged:
1221 	/* Expand the kernel pmap, if necessary. */
1222 	if (map == kernel_map && end > kernel_vm_end)
1223 		pmap_growkernel(end);
1224 	if (object != NULL) {
1225 		/*
1226 		 * OBJ_ONEMAPPING must be cleared unless this mapping
1227 		 * is trivially proven to be the only mapping for any
1228 		 * of the object's pages.  (Object granularity
1229 		 * reference counting is insufficient to recognize
1230 		 * aliases with precision.)
1231 		 */
1232 		VM_OBJECT_LOCK(object);
1233 		if (object->ref_count > 1 || object->shadow_count != 0)
1234 			vm_object_clear_flag(object, OBJ_ONEMAPPING);
1235 		VM_OBJECT_UNLOCK(object);
1236 	}
1237 	else if ((prev_entry != &map->header) &&
1238 		 (prev_entry->eflags == protoeflags) &&
1239 		 (prev_entry->end == start) &&
1240 		 (prev_entry->wired_count == 0) &&
1241 		 (prev_entry->cred == cred ||
1242 		  (prev_entry->object.vm_object != NULL &&
1243 		   (prev_entry->object.vm_object->cred == cred))) &&
1244 		   vm_object_coalesce(prev_entry->object.vm_object,
1245 		       prev_entry->offset,
1246 		       (vm_size_t)(prev_entry->end - prev_entry->start),
1247 		       (vm_size_t)(end - prev_entry->end), charge_prev_obj)) {
1248 		/*
1249 		 * We were able to extend the object.  Determine if we
1250 		 * can extend the previous map entry to include the
1251 		 * new range as well.
1252 		 */
1253 		if ((prev_entry->inheritance == inheritance) &&
1254 		    (prev_entry->protection == prot) &&
1255 		    (prev_entry->max_protection == max)) {
1256 			map->size += (end - prev_entry->end);
1257 			prev_entry->end = end;
1258 			vm_map_entry_resize_free(map, prev_entry);
1259 			vm_map_simplify_entry(map, prev_entry);
1260 			if (cred != NULL)
1261 				crfree(cred);
1262 			return (KERN_SUCCESS);
1263 		}
1264 
1265 		/*
1266 		 * If we can extend the object but cannot extend the
1267 		 * map entry, we have to create a new map entry.  We
1268 		 * must bump the ref count on the extended object to
1269 		 * account for it.  object may be NULL.
1270 		 */
1271 		object = prev_entry->object.vm_object;
1272 		offset = prev_entry->offset +
1273 			(prev_entry->end - prev_entry->start);
1274 		vm_object_reference(object);
1275 		if (cred != NULL && object != NULL && object->cred != NULL &&
1276 		    !(prev_entry->eflags & MAP_ENTRY_NEEDS_COPY)) {
1277 			/* Object already accounts for this uid. */
1278 			crfree(cred);
1279 			cred = NULL;
1280 		}
1281 	}
1282 
1283 	/*
1284 	 * NOTE: if conditionals fail, object can be NULL here.  This occurs
1285 	 * in things like the buffer map where we manage kva but do not manage
1286 	 * backing objects.
1287 	 */
1288 
1289 	/*
1290 	 * Create a new entry
1291 	 */
1292 	new_entry = vm_map_entry_create(map);
1293 	new_entry->start = start;
1294 	new_entry->end = end;
1295 	new_entry->cred = NULL;
1296 
1297 	new_entry->eflags = protoeflags;
1298 	new_entry->object.vm_object = object;
1299 	new_entry->offset = offset;
1300 	new_entry->avail_ssize = 0;
1301 
1302 	new_entry->inheritance = inheritance;
1303 	new_entry->protection = prot;
1304 	new_entry->max_protection = max;
1305 	new_entry->wired_count = 0;
1306 	new_entry->read_ahead = VM_FAULT_READ_AHEAD_INIT;
1307 	new_entry->next_read = OFF_TO_IDX(offset);
1308 
1309 	KASSERT(cred == NULL || !ENTRY_CHARGED(new_entry),
1310 	    ("OVERCOMMIT: vm_map_insert leaks vm_map %p", new_entry));
1311 	new_entry->cred = cred;
1312 
1313 	/*
1314 	 * Insert the new entry into the list
1315 	 */
1316 	vm_map_entry_link(map, prev_entry, new_entry);
1317 	map->size += new_entry->end - new_entry->start;
1318 
1319 	/*
1320 	 * It may be possible to merge the new entry with the next and/or
1321 	 * previous entries.  However, due to MAP_STACK_* being a hack, a
1322 	 * panic can result from merging such entries.
1323 	 */
1324 	if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0)
1325 		vm_map_simplify_entry(map, new_entry);
1326 
1327 	if (cow & (MAP_PREFAULT|MAP_PREFAULT_PARTIAL)) {
1328 		vm_map_pmap_enter(map, start, prot,
1329 				    object, OFF_TO_IDX(offset), end - start,
1330 				    cow & MAP_PREFAULT_PARTIAL);
1331 	}
1332 
1333 	return (KERN_SUCCESS);
1334 }
1335 
1336 /*
1337  *	vm_map_findspace:
1338  *
1339  *	Find the first fit (lowest VM address) for "length" free bytes
1340  *	beginning at address >= start in the given map.
1341  *
1342  *	In a vm_map_entry, "adj_free" is the amount of free space
1343  *	adjacent (higher address) to this entry, and "max_free" is the
1344  *	maximum amount of contiguous free space in its subtree.  This
1345  *	allows finding a free region in one path down the tree, so
1346  *	O(log n) amortized with splay trees.
1347  *
1348  *	The map must be locked, and leaves it so.
1349  *
1350  *	Returns: 0 on success, and starting address in *addr,
1351  *		 1 if insufficient space.
1352  */
1353 int
1354 vm_map_findspace(vm_map_t map, vm_offset_t start, vm_size_t length,
1355     vm_offset_t *addr)	/* OUT */
1356 {
1357 	vm_map_entry_t entry;
1358 	vm_offset_t st;
1359 
1360 	/*
1361 	 * Request must fit within min/max VM address and must avoid
1362 	 * address wrap.
1363 	 */
1364 	if (start < map->min_offset)
1365 		start = map->min_offset;
1366 	if (start + length > map->max_offset || start + length < start)
1367 		return (1);
1368 
1369 	/* Empty tree means wide open address space. */
1370 	if (map->root == NULL) {
1371 		*addr = start;
1372 		return (0);
1373 	}
1374 
1375 	/*
1376 	 * After splay, if start comes before root node, then there
1377 	 * must be a gap from start to the root.
1378 	 */
1379 	map->root = vm_map_entry_splay(start, map->root);
1380 	if (start + length <= map->root->start) {
1381 		*addr = start;
1382 		return (0);
1383 	}
1384 
1385 	/*
1386 	 * Root is the last node that might begin its gap before
1387 	 * start, and this is the last comparison where address
1388 	 * wrap might be a problem.
1389 	 */
1390 	st = (start > map->root->end) ? start : map->root->end;
1391 	if (length <= map->root->end + map->root->adj_free - st) {
1392 		*addr = st;
1393 		return (0);
1394 	}
1395 
1396 	/* With max_free, can immediately tell if no solution. */
1397 	entry = map->root->right;
1398 	if (entry == NULL || length > entry->max_free)
1399 		return (1);
1400 
1401 	/*
1402 	 * Search the right subtree in the order: left subtree, root,
1403 	 * right subtree (first fit).  The previous splay implies that
1404 	 * all regions in the right subtree have addresses > start.
1405 	 */
1406 	while (entry != NULL) {
1407 		if (entry->left != NULL && entry->left->max_free >= length)
1408 			entry = entry->left;
1409 		else if (entry->adj_free >= length) {
1410 			*addr = entry->end;
1411 			return (0);
1412 		} else
1413 			entry = entry->right;
1414 	}
1415 
1416 	/* Can't get here, so panic if we do. */
1417 	panic("vm_map_findspace: max_free corrupt");
1418 }
1419 
1420 int
1421 vm_map_fixed(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1422     vm_offset_t start, vm_size_t length, vm_prot_t prot,
1423     vm_prot_t max, int cow)
1424 {
1425 	vm_offset_t end;
1426 	int result;
1427 
1428 	end = start + length;
1429 	vm_map_lock(map);
1430 	VM_MAP_RANGE_CHECK(map, start, end);
1431 	(void) vm_map_delete(map, start, end);
1432 	result = vm_map_insert(map, object, offset, start, end, prot,
1433 	    max, cow);
1434 	vm_map_unlock(map);
1435 	return (result);
1436 }
1437 
1438 /*
1439  *	vm_map_find finds an unallocated region in the target address
1440  *	map with the given length.  The search is defined to be
1441  *	first-fit from the specified address; the region found is
1442  *	returned in the same parameter.
1443  *
1444  *	If object is non-NULL, ref count must be bumped by caller
1445  *	prior to making call to account for the new entry.
1446  */
1447 int
1448 vm_map_find(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1449 	    vm_offset_t *addr,	/* IN/OUT */
1450 	    vm_size_t length, int find_space, vm_prot_t prot,
1451 	    vm_prot_t max, int cow)
1452 {
1453 	vm_offset_t start;
1454 	int result;
1455 
1456 	start = *addr;
1457 	vm_map_lock(map);
1458 	do {
1459 		if (find_space != VMFS_NO_SPACE) {
1460 			if (vm_map_findspace(map, start, length, addr)) {
1461 				vm_map_unlock(map);
1462 				return (KERN_NO_SPACE);
1463 			}
1464 			switch (find_space) {
1465 			case VMFS_ALIGNED_SPACE:
1466 				pmap_align_superpage(object, offset, addr,
1467 				    length);
1468 				break;
1469 #ifdef VMFS_TLB_ALIGNED_SPACE
1470 			case VMFS_TLB_ALIGNED_SPACE:
1471 				pmap_align_tlb(addr);
1472 				break;
1473 #endif
1474 			default:
1475 				break;
1476 			}
1477 
1478 			start = *addr;
1479 		}
1480 		result = vm_map_insert(map, object, offset, start, start +
1481 		    length, prot, max, cow);
1482 	} while (result == KERN_NO_SPACE && (find_space == VMFS_ALIGNED_SPACE
1483 #ifdef VMFS_TLB_ALIGNED_SPACE
1484 	    || find_space == VMFS_TLB_ALIGNED_SPACE
1485 #endif
1486 	    ));
1487 	vm_map_unlock(map);
1488 	return (result);
1489 }
1490 
1491 /*
1492  *	vm_map_simplify_entry:
1493  *
1494  *	Simplify the given map entry by merging with either neighbor.  This
1495  *	routine also has the ability to merge with both neighbors.
1496  *
1497  *	The map must be locked.
1498  *
1499  *	This routine guarentees that the passed entry remains valid (though
1500  *	possibly extended).  When merging, this routine may delete one or
1501  *	both neighbors.
1502  */
1503 void
1504 vm_map_simplify_entry(vm_map_t map, vm_map_entry_t entry)
1505 {
1506 	vm_map_entry_t next, prev;
1507 	vm_size_t prevsize, esize;
1508 
1509 	if (entry->eflags & (MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_IS_SUB_MAP))
1510 		return;
1511 
1512 	prev = entry->prev;
1513 	if (prev != &map->header) {
1514 		prevsize = prev->end - prev->start;
1515 		if ( (prev->end == entry->start) &&
1516 		     (prev->object.vm_object == entry->object.vm_object) &&
1517 		     (!prev->object.vm_object ||
1518 			(prev->offset + prevsize == entry->offset)) &&
1519 		     (prev->eflags == entry->eflags) &&
1520 		     (prev->protection == entry->protection) &&
1521 		     (prev->max_protection == entry->max_protection) &&
1522 		     (prev->inheritance == entry->inheritance) &&
1523 		     (prev->wired_count == entry->wired_count) &&
1524 		     (prev->cred == entry->cred)) {
1525 			vm_map_entry_unlink(map, prev);
1526 			entry->start = prev->start;
1527 			entry->offset = prev->offset;
1528 			if (entry->prev != &map->header)
1529 				vm_map_entry_resize_free(map, entry->prev);
1530 
1531 			/*
1532 			 * If the backing object is a vnode object,
1533 			 * vm_object_deallocate() calls vrele().
1534 			 * However, vrele() does not lock the vnode
1535 			 * because the vnode has additional
1536 			 * references.  Thus, the map lock can be kept
1537 			 * without causing a lock-order reversal with
1538 			 * the vnode lock.
1539 			 *
1540 			 * Since we count the number of virtual page
1541 			 * mappings in object->un_pager.vnp.writemappings,
1542 			 * the writemappings value should not be adjusted
1543 			 * when the entry is disposed of.
1544 			 */
1545 			if (prev->object.vm_object)
1546 				vm_object_deallocate(prev->object.vm_object);
1547 			if (prev->cred != NULL)
1548 				crfree(prev->cred);
1549 			vm_map_entry_dispose(map, prev);
1550 		}
1551 	}
1552 
1553 	next = entry->next;
1554 	if (next != &map->header) {
1555 		esize = entry->end - entry->start;
1556 		if ((entry->end == next->start) &&
1557 		    (next->object.vm_object == entry->object.vm_object) &&
1558 		     (!entry->object.vm_object ||
1559 			(entry->offset + esize == next->offset)) &&
1560 		    (next->eflags == entry->eflags) &&
1561 		    (next->protection == entry->protection) &&
1562 		    (next->max_protection == entry->max_protection) &&
1563 		    (next->inheritance == entry->inheritance) &&
1564 		    (next->wired_count == entry->wired_count) &&
1565 		    (next->cred == entry->cred)) {
1566 			vm_map_entry_unlink(map, next);
1567 			entry->end = next->end;
1568 			vm_map_entry_resize_free(map, entry);
1569 
1570 			/*
1571 			 * See comment above.
1572 			 */
1573 			if (next->object.vm_object)
1574 				vm_object_deallocate(next->object.vm_object);
1575 			if (next->cred != NULL)
1576 				crfree(next->cred);
1577 			vm_map_entry_dispose(map, next);
1578 		}
1579 	}
1580 }
1581 /*
1582  *	vm_map_clip_start:	[ internal use only ]
1583  *
1584  *	Asserts that the given entry begins at or after
1585  *	the specified address; if necessary,
1586  *	it splits the entry into two.
1587  */
1588 #define vm_map_clip_start(map, entry, startaddr) \
1589 { \
1590 	if (startaddr > entry->start) \
1591 		_vm_map_clip_start(map, entry, startaddr); \
1592 }
1593 
1594 /*
1595  *	This routine is called only when it is known that
1596  *	the entry must be split.
1597  */
1598 static void
1599 _vm_map_clip_start(vm_map_t map, vm_map_entry_t entry, vm_offset_t start)
1600 {
1601 	vm_map_entry_t new_entry;
1602 
1603 	VM_MAP_ASSERT_LOCKED(map);
1604 
1605 	/*
1606 	 * Split off the front portion -- note that we must insert the new
1607 	 * entry BEFORE this one, so that this entry has the specified
1608 	 * starting address.
1609 	 */
1610 	vm_map_simplify_entry(map, entry);
1611 
1612 	/*
1613 	 * If there is no object backing this entry, we might as well create
1614 	 * one now.  If we defer it, an object can get created after the map
1615 	 * is clipped, and individual objects will be created for the split-up
1616 	 * map.  This is a bit of a hack, but is also about the best place to
1617 	 * put this improvement.
1618 	 */
1619 	if (entry->object.vm_object == NULL && !map->system_map) {
1620 		vm_object_t object;
1621 		object = vm_object_allocate(OBJT_DEFAULT,
1622 				atop(entry->end - entry->start));
1623 		entry->object.vm_object = object;
1624 		entry->offset = 0;
1625 		if (entry->cred != NULL) {
1626 			object->cred = entry->cred;
1627 			object->charge = entry->end - entry->start;
1628 			entry->cred = NULL;
1629 		}
1630 	} else if (entry->object.vm_object != NULL &&
1631 		   ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) &&
1632 		   entry->cred != NULL) {
1633 		VM_OBJECT_LOCK(entry->object.vm_object);
1634 		KASSERT(entry->object.vm_object->cred == NULL,
1635 		    ("OVERCOMMIT: vm_entry_clip_start: both cred e %p", entry));
1636 		entry->object.vm_object->cred = entry->cred;
1637 		entry->object.vm_object->charge = entry->end - entry->start;
1638 		VM_OBJECT_UNLOCK(entry->object.vm_object);
1639 		entry->cred = NULL;
1640 	}
1641 
1642 	new_entry = vm_map_entry_create(map);
1643 	*new_entry = *entry;
1644 
1645 	new_entry->end = start;
1646 	entry->offset += (start - entry->start);
1647 	entry->start = start;
1648 	if (new_entry->cred != NULL)
1649 		crhold(entry->cred);
1650 
1651 	vm_map_entry_link(map, entry->prev, new_entry);
1652 
1653 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
1654 		vm_object_reference(new_entry->object.vm_object);
1655 		/*
1656 		 * The object->un_pager.vnp.writemappings for the
1657 		 * object of MAP_ENTRY_VN_WRITECNT type entry shall be
1658 		 * kept as is here.  The virtual pages are
1659 		 * re-distributed among the clipped entries, so the sum is
1660 		 * left the same.
1661 		 */
1662 	}
1663 }
1664 
1665 /*
1666  *	vm_map_clip_end:	[ internal use only ]
1667  *
1668  *	Asserts that the given entry ends at or before
1669  *	the specified address; if necessary,
1670  *	it splits the entry into two.
1671  */
1672 #define vm_map_clip_end(map, entry, endaddr) \
1673 { \
1674 	if ((endaddr) < (entry->end)) \
1675 		_vm_map_clip_end((map), (entry), (endaddr)); \
1676 }
1677 
1678 /*
1679  *	This routine is called only when it is known that
1680  *	the entry must be split.
1681  */
1682 static void
1683 _vm_map_clip_end(vm_map_t map, vm_map_entry_t entry, vm_offset_t end)
1684 {
1685 	vm_map_entry_t new_entry;
1686 
1687 	VM_MAP_ASSERT_LOCKED(map);
1688 
1689 	/*
1690 	 * If there is no object backing this entry, we might as well create
1691 	 * one now.  If we defer it, an object can get created after the map
1692 	 * is clipped, and individual objects will be created for the split-up
1693 	 * map.  This is a bit of a hack, but is also about the best place to
1694 	 * put this improvement.
1695 	 */
1696 	if (entry->object.vm_object == NULL && !map->system_map) {
1697 		vm_object_t object;
1698 		object = vm_object_allocate(OBJT_DEFAULT,
1699 				atop(entry->end - entry->start));
1700 		entry->object.vm_object = object;
1701 		entry->offset = 0;
1702 		if (entry->cred != NULL) {
1703 			object->cred = entry->cred;
1704 			object->charge = entry->end - entry->start;
1705 			entry->cred = NULL;
1706 		}
1707 	} else if (entry->object.vm_object != NULL &&
1708 		   ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) &&
1709 		   entry->cred != NULL) {
1710 		VM_OBJECT_LOCK(entry->object.vm_object);
1711 		KASSERT(entry->object.vm_object->cred == NULL,
1712 		    ("OVERCOMMIT: vm_entry_clip_end: both cred e %p", entry));
1713 		entry->object.vm_object->cred = entry->cred;
1714 		entry->object.vm_object->charge = entry->end - entry->start;
1715 		VM_OBJECT_UNLOCK(entry->object.vm_object);
1716 		entry->cred = NULL;
1717 	}
1718 
1719 	/*
1720 	 * Create a new entry and insert it AFTER the specified entry
1721 	 */
1722 	new_entry = vm_map_entry_create(map);
1723 	*new_entry = *entry;
1724 
1725 	new_entry->start = entry->end = end;
1726 	new_entry->offset += (end - entry->start);
1727 	if (new_entry->cred != NULL)
1728 		crhold(entry->cred);
1729 
1730 	vm_map_entry_link(map, entry, new_entry);
1731 
1732 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
1733 		vm_object_reference(new_entry->object.vm_object);
1734 	}
1735 }
1736 
1737 /*
1738  *	vm_map_submap:		[ kernel use only ]
1739  *
1740  *	Mark the given range as handled by a subordinate map.
1741  *
1742  *	This range must have been created with vm_map_find,
1743  *	and no other operations may have been performed on this
1744  *	range prior to calling vm_map_submap.
1745  *
1746  *	Only a limited number of operations can be performed
1747  *	within this rage after calling vm_map_submap:
1748  *		vm_fault
1749  *	[Don't try vm_map_copy!]
1750  *
1751  *	To remove a submapping, one must first remove the
1752  *	range from the superior map, and then destroy the
1753  *	submap (if desired).  [Better yet, don't try it.]
1754  */
1755 int
1756 vm_map_submap(
1757 	vm_map_t map,
1758 	vm_offset_t start,
1759 	vm_offset_t end,
1760 	vm_map_t submap)
1761 {
1762 	vm_map_entry_t entry;
1763 	int result = KERN_INVALID_ARGUMENT;
1764 
1765 	vm_map_lock(map);
1766 
1767 	VM_MAP_RANGE_CHECK(map, start, end);
1768 
1769 	if (vm_map_lookup_entry(map, start, &entry)) {
1770 		vm_map_clip_start(map, entry, start);
1771 	} else
1772 		entry = entry->next;
1773 
1774 	vm_map_clip_end(map, entry, end);
1775 
1776 	if ((entry->start == start) && (entry->end == end) &&
1777 	    ((entry->eflags & MAP_ENTRY_COW) == 0) &&
1778 	    (entry->object.vm_object == NULL)) {
1779 		entry->object.sub_map = submap;
1780 		entry->eflags |= MAP_ENTRY_IS_SUB_MAP;
1781 		result = KERN_SUCCESS;
1782 	}
1783 	vm_map_unlock(map);
1784 
1785 	return (result);
1786 }
1787 
1788 /*
1789  * The maximum number of pages to map
1790  */
1791 #define	MAX_INIT_PT	96
1792 
1793 /*
1794  *	vm_map_pmap_enter:
1795  *
1796  *	Preload read-only mappings for the specified object's resident pages
1797  *	into the target map.  If "flags" is MAP_PREFAULT_PARTIAL, then only
1798  *	the resident pages within the address range [addr, addr + ulmin(size,
1799  *	ptoa(MAX_INIT_PT))) are mapped.  Otherwise, all resident pages within
1800  *	the specified address range are mapped.  This eliminates many soft
1801  *	faults on process startup and immediately after an mmap(2).  Because
1802  *	these are speculative mappings, cached pages are not reactivated and
1803  *	mapped.
1804  */
1805 void
1806 vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot,
1807     vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags)
1808 {
1809 	vm_offset_t start;
1810 	vm_page_t p, p_start;
1811 	vm_pindex_t psize, tmpidx;
1812 
1813 	if ((prot & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0 || object == NULL)
1814 		return;
1815 	VM_OBJECT_LOCK(object);
1816 	if (object->type == OBJT_DEVICE || object->type == OBJT_SG) {
1817 		pmap_object_init_pt(map->pmap, addr, object, pindex, size);
1818 		goto unlock_return;
1819 	}
1820 
1821 	psize = atop(size);
1822 	if (psize > MAX_INIT_PT && (flags & MAP_PREFAULT_PARTIAL) != 0)
1823 		psize = MAX_INIT_PT;
1824 	if (psize + pindex > object->size) {
1825 		if (object->size < pindex)
1826 			goto unlock_return;
1827 		psize = object->size - pindex;
1828 	}
1829 
1830 	start = 0;
1831 	p_start = NULL;
1832 
1833 	p = vm_page_find_least(object, pindex);
1834 	/*
1835 	 * Assert: the variable p is either (1) the page with the
1836 	 * least pindex greater than or equal to the parameter pindex
1837 	 * or (2) NULL.
1838 	 */
1839 	for (;
1840 	     p != NULL && (tmpidx = p->pindex - pindex) < psize;
1841 	     p = TAILQ_NEXT(p, listq)) {
1842 		/*
1843 		 * don't allow an madvise to blow away our really
1844 		 * free pages allocating pv entries.
1845 		 */
1846 		if ((flags & MAP_PREFAULT_MADVISE) &&
1847 		    cnt.v_free_count < cnt.v_free_reserved) {
1848 			psize = tmpidx;
1849 			break;
1850 		}
1851 		if (p->valid == VM_PAGE_BITS_ALL) {
1852 			if (p_start == NULL) {
1853 				start = addr + ptoa(tmpidx);
1854 				p_start = p;
1855 			}
1856 		} else if (p_start != NULL) {
1857 			pmap_enter_object(map->pmap, start, addr +
1858 			    ptoa(tmpidx), p_start, prot);
1859 			p_start = NULL;
1860 		}
1861 	}
1862 	if (p_start != NULL)
1863 		pmap_enter_object(map->pmap, start, addr + ptoa(psize),
1864 		    p_start, prot);
1865 unlock_return:
1866 	VM_OBJECT_UNLOCK(object);
1867 }
1868 
1869 /*
1870  *	vm_map_protect:
1871  *
1872  *	Sets the protection of the specified address
1873  *	region in the target map.  If "set_max" is
1874  *	specified, the maximum protection is to be set;
1875  *	otherwise, only the current protection is affected.
1876  */
1877 int
1878 vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end,
1879 	       vm_prot_t new_prot, boolean_t set_max)
1880 {
1881 	vm_map_entry_t current, entry;
1882 	vm_object_t obj;
1883 	struct ucred *cred;
1884 	vm_prot_t old_prot;
1885 
1886 	vm_map_lock(map);
1887 
1888 	VM_MAP_RANGE_CHECK(map, start, end);
1889 
1890 	if (vm_map_lookup_entry(map, start, &entry)) {
1891 		vm_map_clip_start(map, entry, start);
1892 	} else {
1893 		entry = entry->next;
1894 	}
1895 
1896 	/*
1897 	 * Make a first pass to check for protection violations.
1898 	 */
1899 	current = entry;
1900 	while ((current != &map->header) && (current->start < end)) {
1901 		if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
1902 			vm_map_unlock(map);
1903 			return (KERN_INVALID_ARGUMENT);
1904 		}
1905 		if ((new_prot & current->max_protection) != new_prot) {
1906 			vm_map_unlock(map);
1907 			return (KERN_PROTECTION_FAILURE);
1908 		}
1909 		current = current->next;
1910 	}
1911 
1912 
1913 	/*
1914 	 * Do an accounting pass for private read-only mappings that
1915 	 * now will do cow due to allowed write (e.g. debugger sets
1916 	 * breakpoint on text segment)
1917 	 */
1918 	for (current = entry; (current != &map->header) &&
1919 	     (current->start < end); current = current->next) {
1920 
1921 		vm_map_clip_end(map, current, end);
1922 
1923 		if (set_max ||
1924 		    ((new_prot & ~(current->protection)) & VM_PROT_WRITE) == 0 ||
1925 		    ENTRY_CHARGED(current)) {
1926 			continue;
1927 		}
1928 
1929 		cred = curthread->td_ucred;
1930 		obj = current->object.vm_object;
1931 
1932 		if (obj == NULL || (current->eflags & MAP_ENTRY_NEEDS_COPY)) {
1933 			if (!swap_reserve(current->end - current->start)) {
1934 				vm_map_unlock(map);
1935 				return (KERN_RESOURCE_SHORTAGE);
1936 			}
1937 			crhold(cred);
1938 			current->cred = cred;
1939 			continue;
1940 		}
1941 
1942 		VM_OBJECT_LOCK(obj);
1943 		if (obj->type != OBJT_DEFAULT && obj->type != OBJT_SWAP) {
1944 			VM_OBJECT_UNLOCK(obj);
1945 			continue;
1946 		}
1947 
1948 		/*
1949 		 * Charge for the whole object allocation now, since
1950 		 * we cannot distinguish between non-charged and
1951 		 * charged clipped mapping of the same object later.
1952 		 */
1953 		KASSERT(obj->charge == 0,
1954 		    ("vm_map_protect: object %p overcharged\n", obj));
1955 		if (!swap_reserve(ptoa(obj->size))) {
1956 			VM_OBJECT_UNLOCK(obj);
1957 			vm_map_unlock(map);
1958 			return (KERN_RESOURCE_SHORTAGE);
1959 		}
1960 
1961 		crhold(cred);
1962 		obj->cred = cred;
1963 		obj->charge = ptoa(obj->size);
1964 		VM_OBJECT_UNLOCK(obj);
1965 	}
1966 
1967 	/*
1968 	 * Go back and fix up protections. [Note that clipping is not
1969 	 * necessary the second time.]
1970 	 */
1971 	current = entry;
1972 	while ((current != &map->header) && (current->start < end)) {
1973 		old_prot = current->protection;
1974 
1975 		if (set_max)
1976 			current->protection =
1977 			    (current->max_protection = new_prot) &
1978 			    old_prot;
1979 		else
1980 			current->protection = new_prot;
1981 
1982 		if ((current->eflags & (MAP_ENTRY_COW | MAP_ENTRY_USER_WIRED))
1983 		     == (MAP_ENTRY_COW | MAP_ENTRY_USER_WIRED) &&
1984 		    (current->protection & VM_PROT_WRITE) != 0 &&
1985 		    (old_prot & VM_PROT_WRITE) == 0) {
1986 			vm_fault_copy_entry(map, map, current, current, NULL);
1987 		}
1988 
1989 		/*
1990 		 * When restricting access, update the physical map.  Worry
1991 		 * about copy-on-write here.
1992 		 */
1993 		if ((old_prot & ~current->protection) != 0) {
1994 #define MASK(entry)	(((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \
1995 							VM_PROT_ALL)
1996 			pmap_protect(map->pmap, current->start,
1997 			    current->end,
1998 			    current->protection & MASK(current));
1999 #undef	MASK
2000 		}
2001 		vm_map_simplify_entry(map, current);
2002 		current = current->next;
2003 	}
2004 	vm_map_unlock(map);
2005 	return (KERN_SUCCESS);
2006 }
2007 
2008 /*
2009  *	vm_map_madvise:
2010  *
2011  *	This routine traverses a processes map handling the madvise
2012  *	system call.  Advisories are classified as either those effecting
2013  *	the vm_map_entry structure, or those effecting the underlying
2014  *	objects.
2015  */
2016 int
2017 vm_map_madvise(
2018 	vm_map_t map,
2019 	vm_offset_t start,
2020 	vm_offset_t end,
2021 	int behav)
2022 {
2023 	vm_map_entry_t current, entry;
2024 	int modify_map = 0;
2025 
2026 	/*
2027 	 * Some madvise calls directly modify the vm_map_entry, in which case
2028 	 * we need to use an exclusive lock on the map and we need to perform
2029 	 * various clipping operations.  Otherwise we only need a read-lock
2030 	 * on the map.
2031 	 */
2032 	switch(behav) {
2033 	case MADV_NORMAL:
2034 	case MADV_SEQUENTIAL:
2035 	case MADV_RANDOM:
2036 	case MADV_NOSYNC:
2037 	case MADV_AUTOSYNC:
2038 	case MADV_NOCORE:
2039 	case MADV_CORE:
2040 		modify_map = 1;
2041 		vm_map_lock(map);
2042 		break;
2043 	case MADV_WILLNEED:
2044 	case MADV_DONTNEED:
2045 	case MADV_FREE:
2046 		vm_map_lock_read(map);
2047 		break;
2048 	default:
2049 		return (KERN_INVALID_ARGUMENT);
2050 	}
2051 
2052 	/*
2053 	 * Locate starting entry and clip if necessary.
2054 	 */
2055 	VM_MAP_RANGE_CHECK(map, start, end);
2056 
2057 	if (vm_map_lookup_entry(map, start, &entry)) {
2058 		if (modify_map)
2059 			vm_map_clip_start(map, entry, start);
2060 	} else {
2061 		entry = entry->next;
2062 	}
2063 
2064 	if (modify_map) {
2065 		/*
2066 		 * madvise behaviors that are implemented in the vm_map_entry.
2067 		 *
2068 		 * We clip the vm_map_entry so that behavioral changes are
2069 		 * limited to the specified address range.
2070 		 */
2071 		for (current = entry;
2072 		     (current != &map->header) && (current->start < end);
2073 		     current = current->next
2074 		) {
2075 			if (current->eflags & MAP_ENTRY_IS_SUB_MAP)
2076 				continue;
2077 
2078 			vm_map_clip_end(map, current, end);
2079 
2080 			switch (behav) {
2081 			case MADV_NORMAL:
2082 				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_NORMAL);
2083 				break;
2084 			case MADV_SEQUENTIAL:
2085 				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_SEQUENTIAL);
2086 				break;
2087 			case MADV_RANDOM:
2088 				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_RANDOM);
2089 				break;
2090 			case MADV_NOSYNC:
2091 				current->eflags |= MAP_ENTRY_NOSYNC;
2092 				break;
2093 			case MADV_AUTOSYNC:
2094 				current->eflags &= ~MAP_ENTRY_NOSYNC;
2095 				break;
2096 			case MADV_NOCORE:
2097 				current->eflags |= MAP_ENTRY_NOCOREDUMP;
2098 				break;
2099 			case MADV_CORE:
2100 				current->eflags &= ~MAP_ENTRY_NOCOREDUMP;
2101 				break;
2102 			default:
2103 				break;
2104 			}
2105 			vm_map_simplify_entry(map, current);
2106 		}
2107 		vm_map_unlock(map);
2108 	} else {
2109 		vm_pindex_t pstart, pend;
2110 
2111 		/*
2112 		 * madvise behaviors that are implemented in the underlying
2113 		 * vm_object.
2114 		 *
2115 		 * Since we don't clip the vm_map_entry, we have to clip
2116 		 * the vm_object pindex and count.
2117 		 */
2118 		for (current = entry;
2119 		     (current != &map->header) && (current->start < end);
2120 		     current = current->next
2121 		) {
2122 			vm_offset_t useStart;
2123 
2124 			if (current->eflags & MAP_ENTRY_IS_SUB_MAP)
2125 				continue;
2126 
2127 			pstart = OFF_TO_IDX(current->offset);
2128 			pend = pstart + atop(current->end - current->start);
2129 			useStart = current->start;
2130 
2131 			if (current->start < start) {
2132 				pstart += atop(start - current->start);
2133 				useStart = start;
2134 			}
2135 			if (current->end > end)
2136 				pend -= atop(current->end - end);
2137 
2138 			if (pstart >= pend)
2139 				continue;
2140 
2141 			vm_object_madvise(current->object.vm_object, pstart,
2142 			    pend, behav);
2143 			if (behav == MADV_WILLNEED) {
2144 				vm_map_pmap_enter(map,
2145 				    useStart,
2146 				    current->protection,
2147 				    current->object.vm_object,
2148 				    pstart,
2149 				    ptoa(pend - pstart),
2150 				    MAP_PREFAULT_MADVISE
2151 				);
2152 			}
2153 		}
2154 		vm_map_unlock_read(map);
2155 	}
2156 	return (0);
2157 }
2158 
2159 
2160 /*
2161  *	vm_map_inherit:
2162  *
2163  *	Sets the inheritance of the specified address
2164  *	range in the target map.  Inheritance
2165  *	affects how the map will be shared with
2166  *	child maps at the time of vmspace_fork.
2167  */
2168 int
2169 vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end,
2170 	       vm_inherit_t new_inheritance)
2171 {
2172 	vm_map_entry_t entry;
2173 	vm_map_entry_t temp_entry;
2174 
2175 	switch (new_inheritance) {
2176 	case VM_INHERIT_NONE:
2177 	case VM_INHERIT_COPY:
2178 	case VM_INHERIT_SHARE:
2179 		break;
2180 	default:
2181 		return (KERN_INVALID_ARGUMENT);
2182 	}
2183 	vm_map_lock(map);
2184 	VM_MAP_RANGE_CHECK(map, start, end);
2185 	if (vm_map_lookup_entry(map, start, &temp_entry)) {
2186 		entry = temp_entry;
2187 		vm_map_clip_start(map, entry, start);
2188 	} else
2189 		entry = temp_entry->next;
2190 	while ((entry != &map->header) && (entry->start < end)) {
2191 		vm_map_clip_end(map, entry, end);
2192 		entry->inheritance = new_inheritance;
2193 		vm_map_simplify_entry(map, entry);
2194 		entry = entry->next;
2195 	}
2196 	vm_map_unlock(map);
2197 	return (KERN_SUCCESS);
2198 }
2199 
2200 /*
2201  *	vm_map_unwire:
2202  *
2203  *	Implements both kernel and user unwiring.
2204  */
2205 int
2206 vm_map_unwire(vm_map_t map, vm_offset_t start, vm_offset_t end,
2207     int flags)
2208 {
2209 	vm_map_entry_t entry, first_entry, tmp_entry;
2210 	vm_offset_t saved_start;
2211 	unsigned int last_timestamp;
2212 	int rv;
2213 	boolean_t need_wakeup, result, user_unwire;
2214 
2215 	user_unwire = (flags & VM_MAP_WIRE_USER) ? TRUE : FALSE;
2216 	vm_map_lock(map);
2217 	VM_MAP_RANGE_CHECK(map, start, end);
2218 	if (!vm_map_lookup_entry(map, start, &first_entry)) {
2219 		if (flags & VM_MAP_WIRE_HOLESOK)
2220 			first_entry = first_entry->next;
2221 		else {
2222 			vm_map_unlock(map);
2223 			return (KERN_INVALID_ADDRESS);
2224 		}
2225 	}
2226 	last_timestamp = map->timestamp;
2227 	entry = first_entry;
2228 	while (entry != &map->header && entry->start < end) {
2229 		if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
2230 			/*
2231 			 * We have not yet clipped the entry.
2232 			 */
2233 			saved_start = (start >= entry->start) ? start :
2234 			    entry->start;
2235 			entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2236 			if (vm_map_unlock_and_wait(map, 0)) {
2237 				/*
2238 				 * Allow interruption of user unwiring?
2239 				 */
2240 			}
2241 			vm_map_lock(map);
2242 			if (last_timestamp+1 != map->timestamp) {
2243 				/*
2244 				 * Look again for the entry because the map was
2245 				 * modified while it was unlocked.
2246 				 * Specifically, the entry may have been
2247 				 * clipped, merged, or deleted.
2248 				 */
2249 				if (!vm_map_lookup_entry(map, saved_start,
2250 				    &tmp_entry)) {
2251 					if (flags & VM_MAP_WIRE_HOLESOK)
2252 						tmp_entry = tmp_entry->next;
2253 					else {
2254 						if (saved_start == start) {
2255 							/*
2256 							 * First_entry has been deleted.
2257 							 */
2258 							vm_map_unlock(map);
2259 							return (KERN_INVALID_ADDRESS);
2260 						}
2261 						end = saved_start;
2262 						rv = KERN_INVALID_ADDRESS;
2263 						goto done;
2264 					}
2265 				}
2266 				if (entry == first_entry)
2267 					first_entry = tmp_entry;
2268 				else
2269 					first_entry = NULL;
2270 				entry = tmp_entry;
2271 			}
2272 			last_timestamp = map->timestamp;
2273 			continue;
2274 		}
2275 		vm_map_clip_start(map, entry, start);
2276 		vm_map_clip_end(map, entry, end);
2277 		/*
2278 		 * Mark the entry in case the map lock is released.  (See
2279 		 * above.)
2280 		 */
2281 		entry->eflags |= MAP_ENTRY_IN_TRANSITION;
2282 		/*
2283 		 * Check the map for holes in the specified region.
2284 		 * If VM_MAP_WIRE_HOLESOK was specified, skip this check.
2285 		 */
2286 		if (((flags & VM_MAP_WIRE_HOLESOK) == 0) &&
2287 		    (entry->end < end && (entry->next == &map->header ||
2288 		    entry->next->start > entry->end))) {
2289 			end = entry->end;
2290 			rv = KERN_INVALID_ADDRESS;
2291 			goto done;
2292 		}
2293 		/*
2294 		 * If system unwiring, require that the entry is system wired.
2295 		 */
2296 		if (!user_unwire &&
2297 		    vm_map_entry_system_wired_count(entry) == 0) {
2298 			end = entry->end;
2299 			rv = KERN_INVALID_ARGUMENT;
2300 			goto done;
2301 		}
2302 		entry = entry->next;
2303 	}
2304 	rv = KERN_SUCCESS;
2305 done:
2306 	need_wakeup = FALSE;
2307 	if (first_entry == NULL) {
2308 		result = vm_map_lookup_entry(map, start, &first_entry);
2309 		if (!result && (flags & VM_MAP_WIRE_HOLESOK))
2310 			first_entry = first_entry->next;
2311 		else
2312 			KASSERT(result, ("vm_map_unwire: lookup failed"));
2313 	}
2314 	entry = first_entry;
2315 	while (entry != &map->header && entry->start < end) {
2316 		if (rv == KERN_SUCCESS && (!user_unwire ||
2317 		    (entry->eflags & MAP_ENTRY_USER_WIRED))) {
2318 			if (user_unwire)
2319 				entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2320 			entry->wired_count--;
2321 			if (entry->wired_count == 0) {
2322 				/*
2323 				 * Retain the map lock.
2324 				 */
2325 				vm_fault_unwire(map, entry->start, entry->end,
2326 				    entry->object.vm_object != NULL &&
2327 				    (entry->object.vm_object->flags &
2328 				    OBJ_FICTITIOUS) != 0);
2329 			}
2330 		}
2331 		KASSERT(entry->eflags & MAP_ENTRY_IN_TRANSITION,
2332 			("vm_map_unwire: in-transition flag missing"));
2333 		entry->eflags &= ~MAP_ENTRY_IN_TRANSITION;
2334 		if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
2335 			entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
2336 			need_wakeup = TRUE;
2337 		}
2338 		vm_map_simplify_entry(map, entry);
2339 		entry = entry->next;
2340 	}
2341 	vm_map_unlock(map);
2342 	if (need_wakeup)
2343 		vm_map_wakeup(map);
2344 	return (rv);
2345 }
2346 
2347 /*
2348  *	vm_map_wire:
2349  *
2350  *	Implements both kernel and user wiring.
2351  */
2352 int
2353 vm_map_wire(vm_map_t map, vm_offset_t start, vm_offset_t end,
2354     int flags)
2355 {
2356 	vm_map_entry_t entry, first_entry, tmp_entry;
2357 	vm_offset_t saved_end, saved_start;
2358 	unsigned int last_timestamp;
2359 	int rv;
2360 	boolean_t fictitious, need_wakeup, result, user_wire;
2361 	vm_prot_t prot;
2362 
2363 	prot = 0;
2364 	if (flags & VM_MAP_WIRE_WRITE)
2365 		prot |= VM_PROT_WRITE;
2366 	user_wire = (flags & VM_MAP_WIRE_USER) ? TRUE : FALSE;
2367 	vm_map_lock(map);
2368 	VM_MAP_RANGE_CHECK(map, start, end);
2369 	if (!vm_map_lookup_entry(map, start, &first_entry)) {
2370 		if (flags & VM_MAP_WIRE_HOLESOK)
2371 			first_entry = first_entry->next;
2372 		else {
2373 			vm_map_unlock(map);
2374 			return (KERN_INVALID_ADDRESS);
2375 		}
2376 	}
2377 	last_timestamp = map->timestamp;
2378 	entry = first_entry;
2379 	while (entry != &map->header && entry->start < end) {
2380 		if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
2381 			/*
2382 			 * We have not yet clipped the entry.
2383 			 */
2384 			saved_start = (start >= entry->start) ? start :
2385 			    entry->start;
2386 			entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2387 			if (vm_map_unlock_and_wait(map, 0)) {
2388 				/*
2389 				 * Allow interruption of user wiring?
2390 				 */
2391 			}
2392 			vm_map_lock(map);
2393 			if (last_timestamp + 1 != map->timestamp) {
2394 				/*
2395 				 * Look again for the entry because the map was
2396 				 * modified while it was unlocked.
2397 				 * Specifically, the entry may have been
2398 				 * clipped, merged, or deleted.
2399 				 */
2400 				if (!vm_map_lookup_entry(map, saved_start,
2401 				    &tmp_entry)) {
2402 					if (flags & VM_MAP_WIRE_HOLESOK)
2403 						tmp_entry = tmp_entry->next;
2404 					else {
2405 						if (saved_start == start) {
2406 							/*
2407 							 * first_entry has been deleted.
2408 							 */
2409 							vm_map_unlock(map);
2410 							return (KERN_INVALID_ADDRESS);
2411 						}
2412 						end = saved_start;
2413 						rv = KERN_INVALID_ADDRESS;
2414 						goto done;
2415 					}
2416 				}
2417 				if (entry == first_entry)
2418 					first_entry = tmp_entry;
2419 				else
2420 					first_entry = NULL;
2421 				entry = tmp_entry;
2422 			}
2423 			last_timestamp = map->timestamp;
2424 			continue;
2425 		}
2426 		vm_map_clip_start(map, entry, start);
2427 		vm_map_clip_end(map, entry, end);
2428 		/*
2429 		 * Mark the entry in case the map lock is released.  (See
2430 		 * above.)
2431 		 */
2432 		entry->eflags |= MAP_ENTRY_IN_TRANSITION;
2433 		if ((entry->protection & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0
2434 		    || (entry->protection & prot) != prot) {
2435 			entry->eflags |= MAP_ENTRY_WIRE_SKIPPED;
2436 			if ((flags & VM_MAP_WIRE_HOLESOK) == 0) {
2437 				end = entry->end;
2438 				rv = KERN_INVALID_ADDRESS;
2439 				goto done;
2440 			}
2441 			goto next_entry;
2442 		}
2443 		if (entry->wired_count == 0) {
2444 			entry->wired_count++;
2445 			saved_start = entry->start;
2446 			saved_end = entry->end;
2447 			fictitious = entry->object.vm_object != NULL &&
2448 			    (entry->object.vm_object->flags &
2449 			    OBJ_FICTITIOUS) != 0;
2450 			/*
2451 			 * Release the map lock, relying on the in-transition
2452 			 * mark.  Mark the map busy for fork.
2453 			 */
2454 			vm_map_busy(map);
2455 			vm_map_unlock(map);
2456 			rv = vm_fault_wire(map, saved_start, saved_end,
2457 			    fictitious);
2458 			vm_map_lock(map);
2459 			vm_map_unbusy(map);
2460 			if (last_timestamp + 1 != map->timestamp) {
2461 				/*
2462 				 * Look again for the entry because the map was
2463 				 * modified while it was unlocked.  The entry
2464 				 * may have been clipped, but NOT merged or
2465 				 * deleted.
2466 				 */
2467 				result = vm_map_lookup_entry(map, saved_start,
2468 				    &tmp_entry);
2469 				KASSERT(result, ("vm_map_wire: lookup failed"));
2470 				if (entry == first_entry)
2471 					first_entry = tmp_entry;
2472 				else
2473 					first_entry = NULL;
2474 				entry = tmp_entry;
2475 				while (entry->end < saved_end) {
2476 					if (rv != KERN_SUCCESS) {
2477 						KASSERT(entry->wired_count == 1,
2478 						    ("vm_map_wire: bad count"));
2479 						entry->wired_count = -1;
2480 					}
2481 					entry = entry->next;
2482 				}
2483 			}
2484 			last_timestamp = map->timestamp;
2485 			if (rv != KERN_SUCCESS) {
2486 				KASSERT(entry->wired_count == 1,
2487 				    ("vm_map_wire: bad count"));
2488 				/*
2489 				 * Assign an out-of-range value to represent
2490 				 * the failure to wire this entry.
2491 				 */
2492 				entry->wired_count = -1;
2493 				end = entry->end;
2494 				goto done;
2495 			}
2496 		} else if (!user_wire ||
2497 			   (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) {
2498 			entry->wired_count++;
2499 		}
2500 		/*
2501 		 * Check the map for holes in the specified region.
2502 		 * If VM_MAP_WIRE_HOLESOK was specified, skip this check.
2503 		 */
2504 	next_entry:
2505 		if (((flags & VM_MAP_WIRE_HOLESOK) == 0) &&
2506 		    (entry->end < end && (entry->next == &map->header ||
2507 		    entry->next->start > entry->end))) {
2508 			end = entry->end;
2509 			rv = KERN_INVALID_ADDRESS;
2510 			goto done;
2511 		}
2512 		entry = entry->next;
2513 	}
2514 	rv = KERN_SUCCESS;
2515 done:
2516 	need_wakeup = FALSE;
2517 	if (first_entry == NULL) {
2518 		result = vm_map_lookup_entry(map, start, &first_entry);
2519 		if (!result && (flags & VM_MAP_WIRE_HOLESOK))
2520 			first_entry = first_entry->next;
2521 		else
2522 			KASSERT(result, ("vm_map_wire: lookup failed"));
2523 	}
2524 	entry = first_entry;
2525 	while (entry != &map->header && entry->start < end) {
2526 		if ((entry->eflags & MAP_ENTRY_WIRE_SKIPPED) != 0)
2527 			goto next_entry_done;
2528 		if (rv == KERN_SUCCESS) {
2529 			if (user_wire)
2530 				entry->eflags |= MAP_ENTRY_USER_WIRED;
2531 		} else if (entry->wired_count == -1) {
2532 			/*
2533 			 * Wiring failed on this entry.  Thus, unwiring is
2534 			 * unnecessary.
2535 			 */
2536 			entry->wired_count = 0;
2537 		} else {
2538 			if (!user_wire ||
2539 			    (entry->eflags & MAP_ENTRY_USER_WIRED) == 0)
2540 				entry->wired_count--;
2541 			if (entry->wired_count == 0) {
2542 				/*
2543 				 * Retain the map lock.
2544 				 */
2545 				vm_fault_unwire(map, entry->start, entry->end,
2546 				    entry->object.vm_object != NULL &&
2547 				    (entry->object.vm_object->flags &
2548 				    OBJ_FICTITIOUS) != 0);
2549 			}
2550 		}
2551 	next_entry_done:
2552 		KASSERT(entry->eflags & MAP_ENTRY_IN_TRANSITION,
2553 			("vm_map_wire: in-transition flag missing"));
2554 		entry->eflags &= ~(MAP_ENTRY_IN_TRANSITION|MAP_ENTRY_WIRE_SKIPPED);
2555 		if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
2556 			entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
2557 			need_wakeup = TRUE;
2558 		}
2559 		vm_map_simplify_entry(map, entry);
2560 		entry = entry->next;
2561 	}
2562 	vm_map_unlock(map);
2563 	if (need_wakeup)
2564 		vm_map_wakeup(map);
2565 	return (rv);
2566 }
2567 
2568 /*
2569  * vm_map_sync
2570  *
2571  * Push any dirty cached pages in the address range to their pager.
2572  * If syncio is TRUE, dirty pages are written synchronously.
2573  * If invalidate is TRUE, any cached pages are freed as well.
2574  *
2575  * If the size of the region from start to end is zero, we are
2576  * supposed to flush all modified pages within the region containing
2577  * start.  Unfortunately, a region can be split or coalesced with
2578  * neighboring regions, making it difficult to determine what the
2579  * original region was.  Therefore, we approximate this requirement by
2580  * flushing the current region containing start.
2581  *
2582  * Returns an error if any part of the specified range is not mapped.
2583  */
2584 int
2585 vm_map_sync(
2586 	vm_map_t map,
2587 	vm_offset_t start,
2588 	vm_offset_t end,
2589 	boolean_t syncio,
2590 	boolean_t invalidate)
2591 {
2592 	vm_map_entry_t current;
2593 	vm_map_entry_t entry;
2594 	vm_size_t size;
2595 	vm_object_t object;
2596 	vm_ooffset_t offset;
2597 	unsigned int last_timestamp;
2598 	boolean_t failed;
2599 
2600 	vm_map_lock_read(map);
2601 	VM_MAP_RANGE_CHECK(map, start, end);
2602 	if (!vm_map_lookup_entry(map, start, &entry)) {
2603 		vm_map_unlock_read(map);
2604 		return (KERN_INVALID_ADDRESS);
2605 	} else if (start == end) {
2606 		start = entry->start;
2607 		end = entry->end;
2608 	}
2609 	/*
2610 	 * Make a first pass to check for user-wired memory and holes.
2611 	 */
2612 	for (current = entry; current != &map->header && current->start < end;
2613 	    current = current->next) {
2614 		if (invalidate && (current->eflags & MAP_ENTRY_USER_WIRED)) {
2615 			vm_map_unlock_read(map);
2616 			return (KERN_INVALID_ARGUMENT);
2617 		}
2618 		if (end > current->end &&
2619 		    (current->next == &map->header ||
2620 			current->end != current->next->start)) {
2621 			vm_map_unlock_read(map);
2622 			return (KERN_INVALID_ADDRESS);
2623 		}
2624 	}
2625 
2626 	if (invalidate)
2627 		pmap_remove(map->pmap, start, end);
2628 	failed = FALSE;
2629 
2630 	/*
2631 	 * Make a second pass, cleaning/uncaching pages from the indicated
2632 	 * objects as we go.
2633 	 */
2634 	for (current = entry; current != &map->header && current->start < end;) {
2635 		offset = current->offset + (start - current->start);
2636 		size = (end <= current->end ? end : current->end) - start;
2637 		if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
2638 			vm_map_t smap;
2639 			vm_map_entry_t tentry;
2640 			vm_size_t tsize;
2641 
2642 			smap = current->object.sub_map;
2643 			vm_map_lock_read(smap);
2644 			(void) vm_map_lookup_entry(smap, offset, &tentry);
2645 			tsize = tentry->end - offset;
2646 			if (tsize < size)
2647 				size = tsize;
2648 			object = tentry->object.vm_object;
2649 			offset = tentry->offset + (offset - tentry->start);
2650 			vm_map_unlock_read(smap);
2651 		} else {
2652 			object = current->object.vm_object;
2653 		}
2654 		vm_object_reference(object);
2655 		last_timestamp = map->timestamp;
2656 		vm_map_unlock_read(map);
2657 		if (!vm_object_sync(object, offset, size, syncio, invalidate))
2658 			failed = TRUE;
2659 		start += size;
2660 		vm_object_deallocate(object);
2661 		vm_map_lock_read(map);
2662 		if (last_timestamp == map->timestamp ||
2663 		    !vm_map_lookup_entry(map, start, &current))
2664 			current = current->next;
2665 	}
2666 
2667 	vm_map_unlock_read(map);
2668 	return (failed ? KERN_FAILURE : KERN_SUCCESS);
2669 }
2670 
2671 /*
2672  *	vm_map_entry_unwire:	[ internal use only ]
2673  *
2674  *	Make the region specified by this entry pageable.
2675  *
2676  *	The map in question should be locked.
2677  *	[This is the reason for this routine's existence.]
2678  */
2679 static void
2680 vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry)
2681 {
2682 	vm_fault_unwire(map, entry->start, entry->end,
2683 	    entry->object.vm_object != NULL &&
2684 	    (entry->object.vm_object->flags & OBJ_FICTITIOUS) != 0);
2685 	entry->wired_count = 0;
2686 }
2687 
2688 static void
2689 vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map)
2690 {
2691 
2692 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0)
2693 		vm_object_deallocate(entry->object.vm_object);
2694 	uma_zfree(system_map ? kmapentzone : mapentzone, entry);
2695 }
2696 
2697 /*
2698  *	vm_map_entry_delete:	[ internal use only ]
2699  *
2700  *	Deallocate the given entry from the target map.
2701  */
2702 static void
2703 vm_map_entry_delete(vm_map_t map, vm_map_entry_t entry)
2704 {
2705 	vm_object_t object;
2706 	vm_pindex_t offidxstart, offidxend, count, size1;
2707 	vm_ooffset_t size;
2708 
2709 	vm_map_entry_unlink(map, entry);
2710 	object = entry->object.vm_object;
2711 	size = entry->end - entry->start;
2712 	map->size -= size;
2713 
2714 	if (entry->cred != NULL) {
2715 		swap_release_by_cred(size, entry->cred);
2716 		crfree(entry->cred);
2717 	}
2718 
2719 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0 &&
2720 	    (object != NULL)) {
2721 		KASSERT(entry->cred == NULL || object->cred == NULL ||
2722 		    (entry->eflags & MAP_ENTRY_NEEDS_COPY),
2723 		    ("OVERCOMMIT vm_map_entry_delete: both cred %p", entry));
2724 		count = OFF_TO_IDX(size);
2725 		offidxstart = OFF_TO_IDX(entry->offset);
2726 		offidxend = offidxstart + count;
2727 		VM_OBJECT_LOCK(object);
2728 		if (object->ref_count != 1 &&
2729 		    ((object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING ||
2730 		    object == kernel_object || object == kmem_object)) {
2731 			vm_object_collapse(object);
2732 
2733 			/*
2734 			 * The option OBJPR_NOTMAPPED can be passed here
2735 			 * because vm_map_delete() already performed
2736 			 * pmap_remove() on the only mapping to this range
2737 			 * of pages.
2738 			 */
2739 			vm_object_page_remove(object, offidxstart, offidxend,
2740 			    OBJPR_NOTMAPPED);
2741 			if (object->type == OBJT_SWAP)
2742 				swap_pager_freespace(object, offidxstart, count);
2743 			if (offidxend >= object->size &&
2744 			    offidxstart < object->size) {
2745 				size1 = object->size;
2746 				object->size = offidxstart;
2747 				if (object->cred != NULL) {
2748 					size1 -= object->size;
2749 					KASSERT(object->charge >= ptoa(size1),
2750 					    ("vm_map_entry_delete: object->charge < 0"));
2751 					swap_release_by_cred(ptoa(size1), object->cred);
2752 					object->charge -= ptoa(size1);
2753 				}
2754 			}
2755 		}
2756 		VM_OBJECT_UNLOCK(object);
2757 	} else
2758 		entry->object.vm_object = NULL;
2759 	if (map->system_map)
2760 		vm_map_entry_deallocate(entry, TRUE);
2761 	else {
2762 		entry->next = curthread->td_map_def_user;
2763 		curthread->td_map_def_user = entry;
2764 	}
2765 }
2766 
2767 /*
2768  *	vm_map_delete:	[ internal use only ]
2769  *
2770  *	Deallocates the given address range from the target
2771  *	map.
2772  */
2773 int
2774 vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end)
2775 {
2776 	vm_map_entry_t entry;
2777 	vm_map_entry_t first_entry;
2778 
2779 	VM_MAP_ASSERT_LOCKED(map);
2780 
2781 	/*
2782 	 * Find the start of the region, and clip it
2783 	 */
2784 	if (!vm_map_lookup_entry(map, start, &first_entry))
2785 		entry = first_entry->next;
2786 	else {
2787 		entry = first_entry;
2788 		vm_map_clip_start(map, entry, start);
2789 	}
2790 
2791 	/*
2792 	 * Step through all entries in this region
2793 	 */
2794 	while ((entry != &map->header) && (entry->start < end)) {
2795 		vm_map_entry_t next;
2796 
2797 		/*
2798 		 * Wait for wiring or unwiring of an entry to complete.
2799 		 * Also wait for any system wirings to disappear on
2800 		 * user maps.
2801 		 */
2802 		if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 ||
2803 		    (vm_map_pmap(map) != kernel_pmap &&
2804 		    vm_map_entry_system_wired_count(entry) != 0)) {
2805 			unsigned int last_timestamp;
2806 			vm_offset_t saved_start;
2807 			vm_map_entry_t tmp_entry;
2808 
2809 			saved_start = entry->start;
2810 			entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2811 			last_timestamp = map->timestamp;
2812 			(void) vm_map_unlock_and_wait(map, 0);
2813 			vm_map_lock(map);
2814 			if (last_timestamp + 1 != map->timestamp) {
2815 				/*
2816 				 * Look again for the entry because the map was
2817 				 * modified while it was unlocked.
2818 				 * Specifically, the entry may have been
2819 				 * clipped, merged, or deleted.
2820 				 */
2821 				if (!vm_map_lookup_entry(map, saved_start,
2822 							 &tmp_entry))
2823 					entry = tmp_entry->next;
2824 				else {
2825 					entry = tmp_entry;
2826 					vm_map_clip_start(map, entry,
2827 							  saved_start);
2828 				}
2829 			}
2830 			continue;
2831 		}
2832 		vm_map_clip_end(map, entry, end);
2833 
2834 		next = entry->next;
2835 
2836 		/*
2837 		 * Unwire before removing addresses from the pmap; otherwise,
2838 		 * unwiring will put the entries back in the pmap.
2839 		 */
2840 		if (entry->wired_count != 0) {
2841 			vm_map_entry_unwire(map, entry);
2842 		}
2843 
2844 		pmap_remove(map->pmap, entry->start, entry->end);
2845 
2846 		/*
2847 		 * Delete the entry only after removing all pmap
2848 		 * entries pointing to its pages.  (Otherwise, its
2849 		 * page frames may be reallocated, and any modify bits
2850 		 * will be set in the wrong object!)
2851 		 */
2852 		vm_map_entry_delete(map, entry);
2853 		entry = next;
2854 	}
2855 	return (KERN_SUCCESS);
2856 }
2857 
2858 /*
2859  *	vm_map_remove:
2860  *
2861  *	Remove the given address range from the target map.
2862  *	This is the exported form of vm_map_delete.
2863  */
2864 int
2865 vm_map_remove(vm_map_t map, vm_offset_t start, vm_offset_t end)
2866 {
2867 	int result;
2868 
2869 	vm_map_lock(map);
2870 	VM_MAP_RANGE_CHECK(map, start, end);
2871 	result = vm_map_delete(map, start, end);
2872 	vm_map_unlock(map);
2873 	return (result);
2874 }
2875 
2876 /*
2877  *	vm_map_check_protection:
2878  *
2879  *	Assert that the target map allows the specified privilege on the
2880  *	entire address region given.  The entire region must be allocated.
2881  *
2882  *	WARNING!  This code does not and should not check whether the
2883  *	contents of the region is accessible.  For example a smaller file
2884  *	might be mapped into a larger address space.
2885  *
2886  *	NOTE!  This code is also called by munmap().
2887  *
2888  *	The map must be locked.  A read lock is sufficient.
2889  */
2890 boolean_t
2891 vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end,
2892 			vm_prot_t protection)
2893 {
2894 	vm_map_entry_t entry;
2895 	vm_map_entry_t tmp_entry;
2896 
2897 	if (!vm_map_lookup_entry(map, start, &tmp_entry))
2898 		return (FALSE);
2899 	entry = tmp_entry;
2900 
2901 	while (start < end) {
2902 		if (entry == &map->header)
2903 			return (FALSE);
2904 		/*
2905 		 * No holes allowed!
2906 		 */
2907 		if (start < entry->start)
2908 			return (FALSE);
2909 		/*
2910 		 * Check protection associated with entry.
2911 		 */
2912 		if ((entry->protection & protection) != protection)
2913 			return (FALSE);
2914 		/* go to next entry */
2915 		start = entry->end;
2916 		entry = entry->next;
2917 	}
2918 	return (TRUE);
2919 }
2920 
2921 /*
2922  *	vm_map_copy_entry:
2923  *
2924  *	Copies the contents of the source entry to the destination
2925  *	entry.  The entries *must* be aligned properly.
2926  */
2927 static void
2928 vm_map_copy_entry(
2929 	vm_map_t src_map,
2930 	vm_map_t dst_map,
2931 	vm_map_entry_t src_entry,
2932 	vm_map_entry_t dst_entry,
2933 	vm_ooffset_t *fork_charge)
2934 {
2935 	vm_object_t src_object;
2936 	vm_map_entry_t fake_entry;
2937 	vm_offset_t size;
2938 	struct ucred *cred;
2939 	int charged;
2940 
2941 	VM_MAP_ASSERT_LOCKED(dst_map);
2942 
2943 	if ((dst_entry->eflags|src_entry->eflags) & MAP_ENTRY_IS_SUB_MAP)
2944 		return;
2945 
2946 	if (src_entry->wired_count == 0) {
2947 
2948 		/*
2949 		 * If the source entry is marked needs_copy, it is already
2950 		 * write-protected.
2951 		 */
2952 		if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) {
2953 			pmap_protect(src_map->pmap,
2954 			    src_entry->start,
2955 			    src_entry->end,
2956 			    src_entry->protection & ~VM_PROT_WRITE);
2957 		}
2958 
2959 		/*
2960 		 * Make a copy of the object.
2961 		 */
2962 		size = src_entry->end - src_entry->start;
2963 		if ((src_object = src_entry->object.vm_object) != NULL) {
2964 			VM_OBJECT_LOCK(src_object);
2965 			charged = ENTRY_CHARGED(src_entry);
2966 			if ((src_object->handle == NULL) &&
2967 				(src_object->type == OBJT_DEFAULT ||
2968 				 src_object->type == OBJT_SWAP)) {
2969 				vm_object_collapse(src_object);
2970 				if ((src_object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING) {
2971 					vm_object_split(src_entry);
2972 					src_object = src_entry->object.vm_object;
2973 				}
2974 			}
2975 			vm_object_reference_locked(src_object);
2976 			vm_object_clear_flag(src_object, OBJ_ONEMAPPING);
2977 			if (src_entry->cred != NULL &&
2978 			    !(src_entry->eflags & MAP_ENTRY_NEEDS_COPY)) {
2979 				KASSERT(src_object->cred == NULL,
2980 				    ("OVERCOMMIT: vm_map_copy_entry: cred %p",
2981 				     src_object));
2982 				src_object->cred = src_entry->cred;
2983 				src_object->charge = size;
2984 			}
2985 			VM_OBJECT_UNLOCK(src_object);
2986 			dst_entry->object.vm_object = src_object;
2987 			if (charged) {
2988 				cred = curthread->td_ucred;
2989 				crhold(cred);
2990 				dst_entry->cred = cred;
2991 				*fork_charge += size;
2992 				if (!(src_entry->eflags &
2993 				      MAP_ENTRY_NEEDS_COPY)) {
2994 					crhold(cred);
2995 					src_entry->cred = cred;
2996 					*fork_charge += size;
2997 				}
2998 			}
2999 			src_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY);
3000 			dst_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY);
3001 			dst_entry->offset = src_entry->offset;
3002 			if (src_entry->eflags & MAP_ENTRY_VN_WRITECNT) {
3003 				/*
3004 				 * MAP_ENTRY_VN_WRITECNT cannot
3005 				 * indicate write reference from
3006 				 * src_entry, since the entry is
3007 				 * marked as needs copy.  Allocate a
3008 				 * fake entry that is used to
3009 				 * decrement object->un_pager.vnp.writecount
3010 				 * at the appropriate time.  Attach
3011 				 * fake_entry to the deferred list.
3012 				 */
3013 				fake_entry = vm_map_entry_create(dst_map);
3014 				fake_entry->eflags = MAP_ENTRY_VN_WRITECNT;
3015 				src_entry->eflags &= ~MAP_ENTRY_VN_WRITECNT;
3016 				vm_object_reference(src_object);
3017 				fake_entry->object.vm_object = src_object;
3018 				fake_entry->start = src_entry->start;
3019 				fake_entry->end = src_entry->end;
3020 				fake_entry->next = curthread->td_map_def_user;
3021 				curthread->td_map_def_user = fake_entry;
3022 			}
3023 		} else {
3024 			dst_entry->object.vm_object = NULL;
3025 			dst_entry->offset = 0;
3026 			if (src_entry->cred != NULL) {
3027 				dst_entry->cred = curthread->td_ucred;
3028 				crhold(dst_entry->cred);
3029 				*fork_charge += size;
3030 			}
3031 		}
3032 
3033 		pmap_copy(dst_map->pmap, src_map->pmap, dst_entry->start,
3034 		    dst_entry->end - dst_entry->start, src_entry->start);
3035 	} else {
3036 		/*
3037 		 * Of course, wired down pages can't be set copy-on-write.
3038 		 * Cause wired pages to be copied into the new map by
3039 		 * simulating faults (the new pages are pageable)
3040 		 */
3041 		vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry,
3042 		    fork_charge);
3043 	}
3044 }
3045 
3046 /*
3047  * vmspace_map_entry_forked:
3048  * Update the newly-forked vmspace each time a map entry is inherited
3049  * or copied.  The values for vm_dsize and vm_tsize are approximate
3050  * (and mostly-obsolete ideas in the face of mmap(2) et al.)
3051  */
3052 static void
3053 vmspace_map_entry_forked(const struct vmspace *vm1, struct vmspace *vm2,
3054     vm_map_entry_t entry)
3055 {
3056 	vm_size_t entrysize;
3057 	vm_offset_t newend;
3058 
3059 	entrysize = entry->end - entry->start;
3060 	vm2->vm_map.size += entrysize;
3061 	if (entry->eflags & (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP)) {
3062 		vm2->vm_ssize += btoc(entrysize);
3063 	} else if (entry->start >= (vm_offset_t)vm1->vm_daddr &&
3064 	    entry->start < (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize)) {
3065 		newend = MIN(entry->end,
3066 		    (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize));
3067 		vm2->vm_dsize += btoc(newend - entry->start);
3068 	} else if (entry->start >= (vm_offset_t)vm1->vm_taddr &&
3069 	    entry->start < (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize)) {
3070 		newend = MIN(entry->end,
3071 		    (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize));
3072 		vm2->vm_tsize += btoc(newend - entry->start);
3073 	}
3074 }
3075 
3076 /*
3077  * vmspace_fork:
3078  * Create a new process vmspace structure and vm_map
3079  * based on those of an existing process.  The new map
3080  * is based on the old map, according to the inheritance
3081  * values on the regions in that map.
3082  *
3083  * XXX It might be worth coalescing the entries added to the new vmspace.
3084  *
3085  * The source map must not be locked.
3086  */
3087 struct vmspace *
3088 vmspace_fork(struct vmspace *vm1, vm_ooffset_t *fork_charge)
3089 {
3090 	struct vmspace *vm2;
3091 	vm_map_t new_map, old_map;
3092 	vm_map_entry_t new_entry, old_entry;
3093 	vm_object_t object;
3094 	int locked;
3095 
3096 	old_map = &vm1->vm_map;
3097 	/* Copy immutable fields of vm1 to vm2. */
3098 	vm2 = vmspace_alloc(old_map->min_offset, old_map->max_offset);
3099 	if (vm2 == NULL)
3100 		return (NULL);
3101 	vm2->vm_taddr = vm1->vm_taddr;
3102 	vm2->vm_daddr = vm1->vm_daddr;
3103 	vm2->vm_maxsaddr = vm1->vm_maxsaddr;
3104 	vm_map_lock(old_map);
3105 	if (old_map->busy)
3106 		vm_map_wait_busy(old_map);
3107 	new_map = &vm2->vm_map;
3108 	locked = vm_map_trylock(new_map); /* trylock to silence WITNESS */
3109 	KASSERT(locked, ("vmspace_fork: lock failed"));
3110 
3111 	old_entry = old_map->header.next;
3112 
3113 	while (old_entry != &old_map->header) {
3114 		if (old_entry->eflags & MAP_ENTRY_IS_SUB_MAP)
3115 			panic("vm_map_fork: encountered a submap");
3116 
3117 		switch (old_entry->inheritance) {
3118 		case VM_INHERIT_NONE:
3119 			break;
3120 
3121 		case VM_INHERIT_SHARE:
3122 			/*
3123 			 * Clone the entry, creating the shared object if necessary.
3124 			 */
3125 			object = old_entry->object.vm_object;
3126 			if (object == NULL) {
3127 				object = vm_object_allocate(OBJT_DEFAULT,
3128 					atop(old_entry->end - old_entry->start));
3129 				old_entry->object.vm_object = object;
3130 				old_entry->offset = 0;
3131 				if (old_entry->cred != NULL) {
3132 					object->cred = old_entry->cred;
3133 					object->charge = old_entry->end -
3134 					    old_entry->start;
3135 					old_entry->cred = NULL;
3136 				}
3137 			}
3138 
3139 			/*
3140 			 * Add the reference before calling vm_object_shadow
3141 			 * to insure that a shadow object is created.
3142 			 */
3143 			vm_object_reference(object);
3144 			if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) {
3145 				vm_object_shadow(&old_entry->object.vm_object,
3146 				    &old_entry->offset,
3147 				    old_entry->end - old_entry->start);
3148 				old_entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
3149 				/* Transfer the second reference too. */
3150 				vm_object_reference(
3151 				    old_entry->object.vm_object);
3152 
3153 				/*
3154 				 * As in vm_map_simplify_entry(), the
3155 				 * vnode lock will not be acquired in
3156 				 * this call to vm_object_deallocate().
3157 				 */
3158 				vm_object_deallocate(object);
3159 				object = old_entry->object.vm_object;
3160 			}
3161 			VM_OBJECT_LOCK(object);
3162 			vm_object_clear_flag(object, OBJ_ONEMAPPING);
3163 			if (old_entry->cred != NULL) {
3164 				KASSERT(object->cred == NULL, ("vmspace_fork both cred"));
3165 				object->cred = old_entry->cred;
3166 				object->charge = old_entry->end - old_entry->start;
3167 				old_entry->cred = NULL;
3168 			}
3169 			VM_OBJECT_UNLOCK(object);
3170 
3171 			/*
3172 			 * Clone the entry, referencing the shared object.
3173 			 */
3174 			new_entry = vm_map_entry_create(new_map);
3175 			*new_entry = *old_entry;
3176 			new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED |
3177 			    MAP_ENTRY_IN_TRANSITION);
3178 			new_entry->wired_count = 0;
3179 			if (new_entry->eflags & MAP_ENTRY_VN_WRITECNT) {
3180 				object = new_entry->object.vm_object;
3181 				KASSERT(((struct vnode *)object->handle)->
3182 				    v_writecount > 0,
3183 				    ("vmspace_fork: v_writecount"));
3184 				KASSERT(object->un_pager.vnp.writemappings > 0,
3185 				    ("vmspace_fork: vnp.writecount"));
3186 				vnode_pager_update_writecount(object,
3187 				    new_entry->start, new_entry->end);
3188 			}
3189 
3190 			/*
3191 			 * Insert the entry into the new map -- we know we're
3192 			 * inserting at the end of the new map.
3193 			 */
3194 			vm_map_entry_link(new_map, new_map->header.prev,
3195 			    new_entry);
3196 			vmspace_map_entry_forked(vm1, vm2, new_entry);
3197 
3198 			/*
3199 			 * Update the physical map
3200 			 */
3201 			pmap_copy(new_map->pmap, old_map->pmap,
3202 			    new_entry->start,
3203 			    (old_entry->end - old_entry->start),
3204 			    old_entry->start);
3205 			break;
3206 
3207 		case VM_INHERIT_COPY:
3208 			/*
3209 			 * Clone the entry and link into the map.
3210 			 */
3211 			new_entry = vm_map_entry_create(new_map);
3212 			*new_entry = *old_entry;
3213 			/*
3214 			 * Copied entry is COW over the old object.
3215 			 */
3216 			new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED |
3217 			    MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_VN_WRITECNT);
3218 			new_entry->wired_count = 0;
3219 			new_entry->object.vm_object = NULL;
3220 			new_entry->cred = NULL;
3221 			vm_map_entry_link(new_map, new_map->header.prev,
3222 			    new_entry);
3223 			vmspace_map_entry_forked(vm1, vm2, new_entry);
3224 			vm_map_copy_entry(old_map, new_map, old_entry,
3225 			    new_entry, fork_charge);
3226 			break;
3227 		}
3228 		old_entry = old_entry->next;
3229 	}
3230 	/*
3231 	 * Use inlined vm_map_unlock() to postpone handling the deferred
3232 	 * map entries, which cannot be done until both old_map and
3233 	 * new_map locks are released.
3234 	 */
3235 	sx_xunlock(&old_map->lock);
3236 	sx_xunlock(&new_map->lock);
3237 	vm_map_process_deferred();
3238 
3239 	return (vm2);
3240 }
3241 
3242 int
3243 vm_map_stack(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
3244     vm_prot_t prot, vm_prot_t max, int cow)
3245 {
3246 	vm_map_entry_t new_entry, prev_entry;
3247 	vm_offset_t bot, top;
3248 	vm_size_t growsize, init_ssize;
3249 	int orient, rv;
3250 	rlim_t vmemlim;
3251 
3252 	/*
3253 	 * The stack orientation is piggybacked with the cow argument.
3254 	 * Extract it into orient and mask the cow argument so that we
3255 	 * don't pass it around further.
3256 	 * NOTE: We explicitly allow bi-directional stacks.
3257 	 */
3258 	orient = cow & (MAP_STACK_GROWS_DOWN|MAP_STACK_GROWS_UP);
3259 	cow &= ~orient;
3260 	KASSERT(orient != 0, ("No stack grow direction"));
3261 
3262 	if (addrbos < vm_map_min(map) ||
3263 	    addrbos > vm_map_max(map) ||
3264 	    addrbos + max_ssize < addrbos)
3265 		return (KERN_NO_SPACE);
3266 
3267 	growsize = sgrowsiz;
3268 	init_ssize = (max_ssize < growsize) ? max_ssize : growsize;
3269 
3270 	PROC_LOCK(curthread->td_proc);
3271 	vmemlim = lim_cur(curthread->td_proc, RLIMIT_VMEM);
3272 	PROC_UNLOCK(curthread->td_proc);
3273 
3274 	vm_map_lock(map);
3275 
3276 	/* If addr is already mapped, no go */
3277 	if (vm_map_lookup_entry(map, addrbos, &prev_entry)) {
3278 		vm_map_unlock(map);
3279 		return (KERN_NO_SPACE);
3280 	}
3281 
3282 	/* If we would blow our VMEM resource limit, no go */
3283 	if (map->size + init_ssize > vmemlim) {
3284 		vm_map_unlock(map);
3285 		return (KERN_NO_SPACE);
3286 	}
3287 
3288 	/*
3289 	 * If we can't accomodate max_ssize in the current mapping, no go.
3290 	 * However, we need to be aware that subsequent user mappings might
3291 	 * map into the space we have reserved for stack, and currently this
3292 	 * space is not protected.
3293 	 *
3294 	 * Hopefully we will at least detect this condition when we try to
3295 	 * grow the stack.
3296 	 */
3297 	if ((prev_entry->next != &map->header) &&
3298 	    (prev_entry->next->start < addrbos + max_ssize)) {
3299 		vm_map_unlock(map);
3300 		return (KERN_NO_SPACE);
3301 	}
3302 
3303 	/*
3304 	 * We initially map a stack of only init_ssize.  We will grow as
3305 	 * needed later.  Depending on the orientation of the stack (i.e.
3306 	 * the grow direction) we either map at the top of the range, the
3307 	 * bottom of the range or in the middle.
3308 	 *
3309 	 * Note: we would normally expect prot and max to be VM_PROT_ALL,
3310 	 * and cow to be 0.  Possibly we should eliminate these as input
3311 	 * parameters, and just pass these values here in the insert call.
3312 	 */
3313 	if (orient == MAP_STACK_GROWS_DOWN)
3314 		bot = addrbos + max_ssize - init_ssize;
3315 	else if (orient == MAP_STACK_GROWS_UP)
3316 		bot = addrbos;
3317 	else
3318 		bot = round_page(addrbos + max_ssize/2 - init_ssize/2);
3319 	top = bot + init_ssize;
3320 	rv = vm_map_insert(map, NULL, 0, bot, top, prot, max, cow);
3321 
3322 	/* Now set the avail_ssize amount. */
3323 	if (rv == KERN_SUCCESS) {
3324 		if (prev_entry != &map->header)
3325 			vm_map_clip_end(map, prev_entry, bot);
3326 		new_entry = prev_entry->next;
3327 		if (new_entry->end != top || new_entry->start != bot)
3328 			panic("Bad entry start/end for new stack entry");
3329 
3330 		new_entry->avail_ssize = max_ssize - init_ssize;
3331 		if (orient & MAP_STACK_GROWS_DOWN)
3332 			new_entry->eflags |= MAP_ENTRY_GROWS_DOWN;
3333 		if (orient & MAP_STACK_GROWS_UP)
3334 			new_entry->eflags |= MAP_ENTRY_GROWS_UP;
3335 	}
3336 
3337 	vm_map_unlock(map);
3338 	return (rv);
3339 }
3340 
3341 static int stack_guard_page = 0;
3342 TUNABLE_INT("security.bsd.stack_guard_page", &stack_guard_page);
3343 SYSCTL_INT(_security_bsd, OID_AUTO, stack_guard_page, CTLFLAG_RW,
3344     &stack_guard_page, 0,
3345     "Insert stack guard page ahead of the growable segments.");
3346 
3347 /* Attempts to grow a vm stack entry.  Returns KERN_SUCCESS if the
3348  * desired address is already mapped, or if we successfully grow
3349  * the stack.  Also returns KERN_SUCCESS if addr is outside the
3350  * stack range (this is strange, but preserves compatibility with
3351  * the grow function in vm_machdep.c).
3352  */
3353 int
3354 vm_map_growstack(struct proc *p, vm_offset_t addr)
3355 {
3356 	vm_map_entry_t next_entry, prev_entry;
3357 	vm_map_entry_t new_entry, stack_entry;
3358 	struct vmspace *vm = p->p_vmspace;
3359 	vm_map_t map = &vm->vm_map;
3360 	vm_offset_t end;
3361 	vm_size_t growsize;
3362 	size_t grow_amount, max_grow;
3363 	rlim_t stacklim, vmemlim;
3364 	int is_procstack, rv;
3365 	struct ucred *cred;
3366 #ifdef notyet
3367 	uint64_t limit;
3368 #endif
3369 #ifdef RACCT
3370 	int error;
3371 #endif
3372 
3373 Retry:
3374 	PROC_LOCK(p);
3375 	stacklim = lim_cur(p, RLIMIT_STACK);
3376 	vmemlim = lim_cur(p, RLIMIT_VMEM);
3377 	PROC_UNLOCK(p);
3378 
3379 	vm_map_lock_read(map);
3380 
3381 	/* If addr is already in the entry range, no need to grow.*/
3382 	if (vm_map_lookup_entry(map, addr, &prev_entry)) {
3383 		vm_map_unlock_read(map);
3384 		return (KERN_SUCCESS);
3385 	}
3386 
3387 	next_entry = prev_entry->next;
3388 	if (!(prev_entry->eflags & MAP_ENTRY_GROWS_UP)) {
3389 		/*
3390 		 * This entry does not grow upwards. Since the address lies
3391 		 * beyond this entry, the next entry (if one exists) has to
3392 		 * be a downward growable entry. The entry list header is
3393 		 * never a growable entry, so it suffices to check the flags.
3394 		 */
3395 		if (!(next_entry->eflags & MAP_ENTRY_GROWS_DOWN)) {
3396 			vm_map_unlock_read(map);
3397 			return (KERN_SUCCESS);
3398 		}
3399 		stack_entry = next_entry;
3400 	} else {
3401 		/*
3402 		 * This entry grows upward. If the next entry does not at
3403 		 * least grow downwards, this is the entry we need to grow.
3404 		 * otherwise we have two possible choices and we have to
3405 		 * select one.
3406 		 */
3407 		if (next_entry->eflags & MAP_ENTRY_GROWS_DOWN) {
3408 			/*
3409 			 * We have two choices; grow the entry closest to
3410 			 * the address to minimize the amount of growth.
3411 			 */
3412 			if (addr - prev_entry->end <= next_entry->start - addr)
3413 				stack_entry = prev_entry;
3414 			else
3415 				stack_entry = next_entry;
3416 		} else
3417 			stack_entry = prev_entry;
3418 	}
3419 
3420 	if (stack_entry == next_entry) {
3421 		KASSERT(stack_entry->eflags & MAP_ENTRY_GROWS_DOWN, ("foo"));
3422 		KASSERT(addr < stack_entry->start, ("foo"));
3423 		end = (prev_entry != &map->header) ? prev_entry->end :
3424 		    stack_entry->start - stack_entry->avail_ssize;
3425 		grow_amount = roundup(stack_entry->start - addr, PAGE_SIZE);
3426 		max_grow = stack_entry->start - end;
3427 	} else {
3428 		KASSERT(stack_entry->eflags & MAP_ENTRY_GROWS_UP, ("foo"));
3429 		KASSERT(addr >= stack_entry->end, ("foo"));
3430 		end = (next_entry != &map->header) ? next_entry->start :
3431 		    stack_entry->end + stack_entry->avail_ssize;
3432 		grow_amount = roundup(addr + 1 - stack_entry->end, PAGE_SIZE);
3433 		max_grow = end - stack_entry->end;
3434 	}
3435 
3436 	if (grow_amount > stack_entry->avail_ssize) {
3437 		vm_map_unlock_read(map);
3438 		return (KERN_NO_SPACE);
3439 	}
3440 
3441 	/*
3442 	 * If there is no longer enough space between the entries nogo, and
3443 	 * adjust the available space.  Note: this  should only happen if the
3444 	 * user has mapped into the stack area after the stack was created,
3445 	 * and is probably an error.
3446 	 *
3447 	 * This also effectively destroys any guard page the user might have
3448 	 * intended by limiting the stack size.
3449 	 */
3450 	if (grow_amount + (stack_guard_page ? PAGE_SIZE : 0) > max_grow) {
3451 		if (vm_map_lock_upgrade(map))
3452 			goto Retry;
3453 
3454 		stack_entry->avail_ssize = max_grow;
3455 
3456 		vm_map_unlock(map);
3457 		return (KERN_NO_SPACE);
3458 	}
3459 
3460 	is_procstack = (addr >= (vm_offset_t)vm->vm_maxsaddr) ? 1 : 0;
3461 
3462 	/*
3463 	 * If this is the main process stack, see if we're over the stack
3464 	 * limit.
3465 	 */
3466 	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) {
3467 		vm_map_unlock_read(map);
3468 		return (KERN_NO_SPACE);
3469 	}
3470 #ifdef RACCT
3471 	PROC_LOCK(p);
3472 	if (is_procstack &&
3473 	    racct_set(p, RACCT_STACK, ctob(vm->vm_ssize) + grow_amount)) {
3474 		PROC_UNLOCK(p);
3475 		vm_map_unlock_read(map);
3476 		return (KERN_NO_SPACE);
3477 	}
3478 	PROC_UNLOCK(p);
3479 #endif
3480 
3481 	/* Round up the grow amount modulo sgrowsiz */
3482 	growsize = sgrowsiz;
3483 	grow_amount = roundup(grow_amount, growsize);
3484 	if (grow_amount > stack_entry->avail_ssize)
3485 		grow_amount = stack_entry->avail_ssize;
3486 	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) {
3487 		grow_amount = trunc_page((vm_size_t)stacklim) -
3488 		    ctob(vm->vm_ssize);
3489 	}
3490 #ifdef notyet
3491 	PROC_LOCK(p);
3492 	limit = racct_get_available(p, RACCT_STACK);
3493 	PROC_UNLOCK(p);
3494 	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > limit))
3495 		grow_amount = limit - ctob(vm->vm_ssize);
3496 #endif
3497 
3498 	/* If we would blow our VMEM resource limit, no go */
3499 	if (map->size + grow_amount > vmemlim) {
3500 		vm_map_unlock_read(map);
3501 		rv = KERN_NO_SPACE;
3502 		goto out;
3503 	}
3504 #ifdef RACCT
3505 	PROC_LOCK(p);
3506 	if (racct_set(p, RACCT_VMEM, map->size + grow_amount)) {
3507 		PROC_UNLOCK(p);
3508 		vm_map_unlock_read(map);
3509 		rv = KERN_NO_SPACE;
3510 		goto out;
3511 	}
3512 	PROC_UNLOCK(p);
3513 #endif
3514 
3515 	if (vm_map_lock_upgrade(map))
3516 		goto Retry;
3517 
3518 	if (stack_entry == next_entry) {
3519 		/*
3520 		 * Growing downward.
3521 		 */
3522 		/* Get the preliminary new entry start value */
3523 		addr = stack_entry->start - grow_amount;
3524 
3525 		/*
3526 		 * If this puts us into the previous entry, cut back our
3527 		 * growth to the available space. Also, see the note above.
3528 		 */
3529 		if (addr < end) {
3530 			stack_entry->avail_ssize = max_grow;
3531 			addr = end;
3532 			if (stack_guard_page)
3533 				addr += PAGE_SIZE;
3534 		}
3535 
3536 		rv = vm_map_insert(map, NULL, 0, addr, stack_entry->start,
3537 		    next_entry->protection, next_entry->max_protection, 0);
3538 
3539 		/* Adjust the available stack space by the amount we grew. */
3540 		if (rv == KERN_SUCCESS) {
3541 			if (prev_entry != &map->header)
3542 				vm_map_clip_end(map, prev_entry, addr);
3543 			new_entry = prev_entry->next;
3544 			KASSERT(new_entry == stack_entry->prev, ("foo"));
3545 			KASSERT(new_entry->end == stack_entry->start, ("foo"));
3546 			KASSERT(new_entry->start == addr, ("foo"));
3547 			grow_amount = new_entry->end - new_entry->start;
3548 			new_entry->avail_ssize = stack_entry->avail_ssize -
3549 			    grow_amount;
3550 			stack_entry->eflags &= ~MAP_ENTRY_GROWS_DOWN;
3551 			new_entry->eflags |= MAP_ENTRY_GROWS_DOWN;
3552 		}
3553 	} else {
3554 		/*
3555 		 * Growing upward.
3556 		 */
3557 		addr = stack_entry->end + grow_amount;
3558 
3559 		/*
3560 		 * If this puts us into the next entry, cut back our growth
3561 		 * to the available space. Also, see the note above.
3562 		 */
3563 		if (addr > end) {
3564 			stack_entry->avail_ssize = end - stack_entry->end;
3565 			addr = end;
3566 			if (stack_guard_page)
3567 				addr -= PAGE_SIZE;
3568 		}
3569 
3570 		grow_amount = addr - stack_entry->end;
3571 		cred = stack_entry->cred;
3572 		if (cred == NULL && stack_entry->object.vm_object != NULL)
3573 			cred = stack_entry->object.vm_object->cred;
3574 		if (cred != NULL && !swap_reserve_by_cred(grow_amount, cred))
3575 			rv = KERN_NO_SPACE;
3576 		/* Grow the underlying object if applicable. */
3577 		else if (stack_entry->object.vm_object == NULL ||
3578 			 vm_object_coalesce(stack_entry->object.vm_object,
3579 			 stack_entry->offset,
3580 			 (vm_size_t)(stack_entry->end - stack_entry->start),
3581 			 (vm_size_t)grow_amount, cred != NULL)) {
3582 			map->size += (addr - stack_entry->end);
3583 			/* Update the current entry. */
3584 			stack_entry->end = addr;
3585 			stack_entry->avail_ssize -= grow_amount;
3586 			vm_map_entry_resize_free(map, stack_entry);
3587 			rv = KERN_SUCCESS;
3588 
3589 			if (next_entry != &map->header)
3590 				vm_map_clip_start(map, next_entry, addr);
3591 		} else
3592 			rv = KERN_FAILURE;
3593 	}
3594 
3595 	if (rv == KERN_SUCCESS && is_procstack)
3596 		vm->vm_ssize += btoc(grow_amount);
3597 
3598 	vm_map_unlock(map);
3599 
3600 	/*
3601 	 * Heed the MAP_WIREFUTURE flag if it was set for this process.
3602 	 */
3603 	if (rv == KERN_SUCCESS && (map->flags & MAP_WIREFUTURE)) {
3604 		vm_map_wire(map,
3605 		    (stack_entry == next_entry) ? addr : addr - grow_amount,
3606 		    (stack_entry == next_entry) ? stack_entry->start : addr,
3607 		    (p->p_flag & P_SYSTEM)
3608 		    ? VM_MAP_WIRE_SYSTEM|VM_MAP_WIRE_NOHOLES
3609 		    : VM_MAP_WIRE_USER|VM_MAP_WIRE_NOHOLES);
3610 	}
3611 
3612 out:
3613 #ifdef RACCT
3614 	if (rv != KERN_SUCCESS) {
3615 		PROC_LOCK(p);
3616 		error = racct_set(p, RACCT_VMEM, map->size);
3617 		KASSERT(error == 0, ("decreasing RACCT_VMEM failed"));
3618 	    	error = racct_set(p, RACCT_STACK, ctob(vm->vm_ssize));
3619 		KASSERT(error == 0, ("decreasing RACCT_STACK failed"));
3620 		PROC_UNLOCK(p);
3621 	}
3622 #endif
3623 
3624 	return (rv);
3625 }
3626 
3627 /*
3628  * Unshare the specified VM space for exec.  If other processes are
3629  * mapped to it, then create a new one.  The new vmspace is null.
3630  */
3631 int
3632 vmspace_exec(struct proc *p, vm_offset_t minuser, vm_offset_t maxuser)
3633 {
3634 	struct vmspace *oldvmspace = p->p_vmspace;
3635 	struct vmspace *newvmspace;
3636 
3637 	newvmspace = vmspace_alloc(minuser, maxuser);
3638 	if (newvmspace == NULL)
3639 		return (ENOMEM);
3640 	newvmspace->vm_swrss = oldvmspace->vm_swrss;
3641 	/*
3642 	 * This code is written like this for prototype purposes.  The
3643 	 * goal is to avoid running down the vmspace here, but let the
3644 	 * other process's that are still using the vmspace to finally
3645 	 * run it down.  Even though there is little or no chance of blocking
3646 	 * here, it is a good idea to keep this form for future mods.
3647 	 */
3648 	PROC_VMSPACE_LOCK(p);
3649 	p->p_vmspace = newvmspace;
3650 	PROC_VMSPACE_UNLOCK(p);
3651 	if (p == curthread->td_proc)
3652 		pmap_activate(curthread);
3653 	vmspace_free(oldvmspace);
3654 	return (0);
3655 }
3656 
3657 /*
3658  * Unshare the specified VM space for forcing COW.  This
3659  * is called by rfork, for the (RFMEM|RFPROC) == 0 case.
3660  */
3661 int
3662 vmspace_unshare(struct proc *p)
3663 {
3664 	struct vmspace *oldvmspace = p->p_vmspace;
3665 	struct vmspace *newvmspace;
3666 	vm_ooffset_t fork_charge;
3667 
3668 	if (oldvmspace->vm_refcnt == 1)
3669 		return (0);
3670 	fork_charge = 0;
3671 	newvmspace = vmspace_fork(oldvmspace, &fork_charge);
3672 	if (newvmspace == NULL)
3673 		return (ENOMEM);
3674 	if (!swap_reserve_by_cred(fork_charge, p->p_ucred)) {
3675 		vmspace_free(newvmspace);
3676 		return (ENOMEM);
3677 	}
3678 	PROC_VMSPACE_LOCK(p);
3679 	p->p_vmspace = newvmspace;
3680 	PROC_VMSPACE_UNLOCK(p);
3681 	if (p == curthread->td_proc)
3682 		pmap_activate(curthread);
3683 	vmspace_free(oldvmspace);
3684 	return (0);
3685 }
3686 
3687 /*
3688  *	vm_map_lookup:
3689  *
3690  *	Finds the VM object, offset, and
3691  *	protection for a given virtual address in the
3692  *	specified map, assuming a page fault of the
3693  *	type specified.
3694  *
3695  *	Leaves the map in question locked for read; return
3696  *	values are guaranteed until a vm_map_lookup_done
3697  *	call is performed.  Note that the map argument
3698  *	is in/out; the returned map must be used in
3699  *	the call to vm_map_lookup_done.
3700  *
3701  *	A handle (out_entry) is returned for use in
3702  *	vm_map_lookup_done, to make that fast.
3703  *
3704  *	If a lookup is requested with "write protection"
3705  *	specified, the map may be changed to perform virtual
3706  *	copying operations, although the data referenced will
3707  *	remain the same.
3708  */
3709 int
3710 vm_map_lookup(vm_map_t *var_map,		/* IN/OUT */
3711 	      vm_offset_t vaddr,
3712 	      vm_prot_t fault_typea,
3713 	      vm_map_entry_t *out_entry,	/* OUT */
3714 	      vm_object_t *object,		/* OUT */
3715 	      vm_pindex_t *pindex,		/* OUT */
3716 	      vm_prot_t *out_prot,		/* OUT */
3717 	      boolean_t *wired)			/* OUT */
3718 {
3719 	vm_map_entry_t entry;
3720 	vm_map_t map = *var_map;
3721 	vm_prot_t prot;
3722 	vm_prot_t fault_type = fault_typea;
3723 	vm_object_t eobject;
3724 	vm_size_t size;
3725 	struct ucred *cred;
3726 
3727 RetryLookup:;
3728 
3729 	vm_map_lock_read(map);
3730 
3731 	/*
3732 	 * Lookup the faulting address.
3733 	 */
3734 	if (!vm_map_lookup_entry(map, vaddr, out_entry)) {
3735 		vm_map_unlock_read(map);
3736 		return (KERN_INVALID_ADDRESS);
3737 	}
3738 
3739 	entry = *out_entry;
3740 
3741 	/*
3742 	 * Handle submaps.
3743 	 */
3744 	if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
3745 		vm_map_t old_map = map;
3746 
3747 		*var_map = map = entry->object.sub_map;
3748 		vm_map_unlock_read(old_map);
3749 		goto RetryLookup;
3750 	}
3751 
3752 	/*
3753 	 * Check whether this task is allowed to have this page.
3754 	 */
3755 	prot = entry->protection;
3756 	fault_type &= (VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE);
3757 	if ((fault_type & prot) != fault_type || prot == VM_PROT_NONE) {
3758 		vm_map_unlock_read(map);
3759 		return (KERN_PROTECTION_FAILURE);
3760 	}
3761 	if ((entry->eflags & MAP_ENTRY_USER_WIRED) &&
3762 	    (entry->eflags & MAP_ENTRY_COW) &&
3763 	    (fault_type & VM_PROT_WRITE)) {
3764 		vm_map_unlock_read(map);
3765 		return (KERN_PROTECTION_FAILURE);
3766 	}
3767 
3768 	/*
3769 	 * If this page is not pageable, we have to get it for all possible
3770 	 * accesses.
3771 	 */
3772 	*wired = (entry->wired_count != 0);
3773 	if (*wired)
3774 		fault_type = entry->protection;
3775 	size = entry->end - entry->start;
3776 	/*
3777 	 * If the entry was copy-on-write, we either ...
3778 	 */
3779 	if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
3780 		/*
3781 		 * If we want to write the page, we may as well handle that
3782 		 * now since we've got the map locked.
3783 		 *
3784 		 * If we don't need to write the page, we just demote the
3785 		 * permissions allowed.
3786 		 */
3787 		if ((fault_type & VM_PROT_WRITE) != 0 ||
3788 		    (fault_typea & VM_PROT_COPY) != 0) {
3789 			/*
3790 			 * Make a new object, and place it in the object
3791 			 * chain.  Note that no new references have appeared
3792 			 * -- one just moved from the map to the new
3793 			 * object.
3794 			 */
3795 			if (vm_map_lock_upgrade(map))
3796 				goto RetryLookup;
3797 
3798 			if (entry->cred == NULL) {
3799 				/*
3800 				 * The debugger owner is charged for
3801 				 * the memory.
3802 				 */
3803 				cred = curthread->td_ucred;
3804 				crhold(cred);
3805 				if (!swap_reserve_by_cred(size, cred)) {
3806 					crfree(cred);
3807 					vm_map_unlock(map);
3808 					return (KERN_RESOURCE_SHORTAGE);
3809 				}
3810 				entry->cred = cred;
3811 			}
3812 			vm_object_shadow(&entry->object.vm_object,
3813 			    &entry->offset, size);
3814 			entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
3815 			eobject = entry->object.vm_object;
3816 			if (eobject->cred != NULL) {
3817 				/*
3818 				 * The object was not shadowed.
3819 				 */
3820 				swap_release_by_cred(size, entry->cred);
3821 				crfree(entry->cred);
3822 				entry->cred = NULL;
3823 			} else if (entry->cred != NULL) {
3824 				VM_OBJECT_LOCK(eobject);
3825 				eobject->cred = entry->cred;
3826 				eobject->charge = size;
3827 				VM_OBJECT_UNLOCK(eobject);
3828 				entry->cred = NULL;
3829 			}
3830 
3831 			vm_map_lock_downgrade(map);
3832 		} else {
3833 			/*
3834 			 * We're attempting to read a copy-on-write page --
3835 			 * don't allow writes.
3836 			 */
3837 			prot &= ~VM_PROT_WRITE;
3838 		}
3839 	}
3840 
3841 	/*
3842 	 * Create an object if necessary.
3843 	 */
3844 	if (entry->object.vm_object == NULL &&
3845 	    !map->system_map) {
3846 		if (vm_map_lock_upgrade(map))
3847 			goto RetryLookup;
3848 		entry->object.vm_object = vm_object_allocate(OBJT_DEFAULT,
3849 		    atop(size));
3850 		entry->offset = 0;
3851 		if (entry->cred != NULL) {
3852 			VM_OBJECT_LOCK(entry->object.vm_object);
3853 			entry->object.vm_object->cred = entry->cred;
3854 			entry->object.vm_object->charge = size;
3855 			VM_OBJECT_UNLOCK(entry->object.vm_object);
3856 			entry->cred = NULL;
3857 		}
3858 		vm_map_lock_downgrade(map);
3859 	}
3860 
3861 	/*
3862 	 * Return the object/offset from this entry.  If the entry was
3863 	 * copy-on-write or empty, it has been fixed up.
3864 	 */
3865 	*pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
3866 	*object = entry->object.vm_object;
3867 
3868 	*out_prot = prot;
3869 	return (KERN_SUCCESS);
3870 }
3871 
3872 /*
3873  *	vm_map_lookup_locked:
3874  *
3875  *	Lookup the faulting address.  A version of vm_map_lookup that returns
3876  *      KERN_FAILURE instead of blocking on map lock or memory allocation.
3877  */
3878 int
3879 vm_map_lookup_locked(vm_map_t *var_map,		/* IN/OUT */
3880 		     vm_offset_t vaddr,
3881 		     vm_prot_t fault_typea,
3882 		     vm_map_entry_t *out_entry,	/* OUT */
3883 		     vm_object_t *object,	/* OUT */
3884 		     vm_pindex_t *pindex,	/* OUT */
3885 		     vm_prot_t *out_prot,	/* OUT */
3886 		     boolean_t *wired)		/* OUT */
3887 {
3888 	vm_map_entry_t entry;
3889 	vm_map_t map = *var_map;
3890 	vm_prot_t prot;
3891 	vm_prot_t fault_type = fault_typea;
3892 
3893 	/*
3894 	 * Lookup the faulting address.
3895 	 */
3896 	if (!vm_map_lookup_entry(map, vaddr, out_entry))
3897 		return (KERN_INVALID_ADDRESS);
3898 
3899 	entry = *out_entry;
3900 
3901 	/*
3902 	 * Fail if the entry refers to a submap.
3903 	 */
3904 	if (entry->eflags & MAP_ENTRY_IS_SUB_MAP)
3905 		return (KERN_FAILURE);
3906 
3907 	/*
3908 	 * Check whether this task is allowed to have this page.
3909 	 */
3910 	prot = entry->protection;
3911 	fault_type &= VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE;
3912 	if ((fault_type & prot) != fault_type)
3913 		return (KERN_PROTECTION_FAILURE);
3914 	if ((entry->eflags & MAP_ENTRY_USER_WIRED) &&
3915 	    (entry->eflags & MAP_ENTRY_COW) &&
3916 	    (fault_type & VM_PROT_WRITE))
3917 		return (KERN_PROTECTION_FAILURE);
3918 
3919 	/*
3920 	 * If this page is not pageable, we have to get it for all possible
3921 	 * accesses.
3922 	 */
3923 	*wired = (entry->wired_count != 0);
3924 	if (*wired)
3925 		fault_type = entry->protection;
3926 
3927 	if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
3928 		/*
3929 		 * Fail if the entry was copy-on-write for a write fault.
3930 		 */
3931 		if (fault_type & VM_PROT_WRITE)
3932 			return (KERN_FAILURE);
3933 		/*
3934 		 * We're attempting to read a copy-on-write page --
3935 		 * don't allow writes.
3936 		 */
3937 		prot &= ~VM_PROT_WRITE;
3938 	}
3939 
3940 	/*
3941 	 * Fail if an object should be created.
3942 	 */
3943 	if (entry->object.vm_object == NULL && !map->system_map)
3944 		return (KERN_FAILURE);
3945 
3946 	/*
3947 	 * Return the object/offset from this entry.  If the entry was
3948 	 * copy-on-write or empty, it has been fixed up.
3949 	 */
3950 	*pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
3951 	*object = entry->object.vm_object;
3952 
3953 	*out_prot = prot;
3954 	return (KERN_SUCCESS);
3955 }
3956 
3957 /*
3958  *	vm_map_lookup_done:
3959  *
3960  *	Releases locks acquired by a vm_map_lookup
3961  *	(according to the handle returned by that lookup).
3962  */
3963 void
3964 vm_map_lookup_done(vm_map_t map, vm_map_entry_t entry)
3965 {
3966 	/*
3967 	 * Unlock the main-level map
3968 	 */
3969 	vm_map_unlock_read(map);
3970 }
3971 
3972 #include "opt_ddb.h"
3973 #ifdef DDB
3974 #include <sys/kernel.h>
3975 
3976 #include <ddb/ddb.h>
3977 
3978 static void
3979 vm_map_print(vm_map_t map)
3980 {
3981 	vm_map_entry_t entry;
3982 
3983 	db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n",
3984 	    (void *)map,
3985 	    (void *)map->pmap, map->nentries, map->timestamp);
3986 
3987 	db_indent += 2;
3988 	for (entry = map->header.next; entry != &map->header;
3989 	    entry = entry->next) {
3990 		db_iprintf("map entry %p: start=%p, end=%p\n",
3991 		    (void *)entry, (void *)entry->start, (void *)entry->end);
3992 		{
3993 			static char *inheritance_name[4] =
3994 			{"share", "copy", "none", "donate_copy"};
3995 
3996 			db_iprintf(" prot=%x/%x/%s",
3997 			    entry->protection,
3998 			    entry->max_protection,
3999 			    inheritance_name[(int)(unsigned char)entry->inheritance]);
4000 			if (entry->wired_count != 0)
4001 				db_printf(", wired");
4002 		}
4003 		if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
4004 			db_printf(", share=%p, offset=0x%jx\n",
4005 			    (void *)entry->object.sub_map,
4006 			    (uintmax_t)entry->offset);
4007 			if ((entry->prev == &map->header) ||
4008 			    (entry->prev->object.sub_map !=
4009 				entry->object.sub_map)) {
4010 				db_indent += 2;
4011 				vm_map_print((vm_map_t)entry->object.sub_map);
4012 				db_indent -= 2;
4013 			}
4014 		} else {
4015 			if (entry->cred != NULL)
4016 				db_printf(", ruid %d", entry->cred->cr_ruid);
4017 			db_printf(", object=%p, offset=0x%jx",
4018 			    (void *)entry->object.vm_object,
4019 			    (uintmax_t)entry->offset);
4020 			if (entry->object.vm_object && entry->object.vm_object->cred)
4021 				db_printf(", obj ruid %d charge %jx",
4022 				    entry->object.vm_object->cred->cr_ruid,
4023 				    (uintmax_t)entry->object.vm_object->charge);
4024 			if (entry->eflags & MAP_ENTRY_COW)
4025 				db_printf(", copy (%s)",
4026 				    (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done");
4027 			db_printf("\n");
4028 
4029 			if ((entry->prev == &map->header) ||
4030 			    (entry->prev->object.vm_object !=
4031 				entry->object.vm_object)) {
4032 				db_indent += 2;
4033 				vm_object_print((db_expr_t)(intptr_t)
4034 						entry->object.vm_object,
4035 						1, 0, (char *)0);
4036 				db_indent -= 2;
4037 			}
4038 		}
4039 	}
4040 	db_indent -= 2;
4041 }
4042 
4043 DB_SHOW_COMMAND(map, map)
4044 {
4045 
4046 	if (!have_addr) {
4047 		db_printf("usage: show map <addr>\n");
4048 		return;
4049 	}
4050 	vm_map_print((vm_map_t)addr);
4051 }
4052 
4053 DB_SHOW_COMMAND(procvm, procvm)
4054 {
4055 	struct proc *p;
4056 
4057 	if (have_addr) {
4058 		p = (struct proc *) addr;
4059 	} else {
4060 		p = curproc;
4061 	}
4062 
4063 	db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n",
4064 	    (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map,
4065 	    (void *)vmspace_pmap(p->p_vmspace));
4066 
4067 	vm_map_print((vm_map_t)&p->p_vmspace->vm_map);
4068 }
4069 
4070 #endif /* DDB */
4071