xref: /freebsd/sys/vm/vm_map.c (revision 39beb93c)
1 /*-
2  * Copyright (c) 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 4. Neither the name of the University nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  *	from: @(#)vm_map.c	8.3 (Berkeley) 1/12/94
33  *
34  *
35  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
36  * All rights reserved.
37  *
38  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
39  *
40  * Permission to use, copy, modify and distribute this software and
41  * its documentation is hereby granted, provided that both the copyright
42  * notice and this permission notice appear in all copies of the
43  * software, derivative works or modified versions, and any portions
44  * thereof, and that both notices appear in supporting documentation.
45  *
46  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
47  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
48  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
49  *
50  * Carnegie Mellon requests users of this software to return to
51  *
52  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
53  *  School of Computer Science
54  *  Carnegie Mellon University
55  *  Pittsburgh PA 15213-3890
56  *
57  * any improvements or extensions that they make and grant Carnegie the
58  * rights to redistribute these changes.
59  */
60 
61 /*
62  *	Virtual memory mapping module.
63  */
64 
65 #include <sys/cdefs.h>
66 __FBSDID("$FreeBSD$");
67 
68 #include <sys/param.h>
69 #include <sys/systm.h>
70 #include <sys/ktr.h>
71 #include <sys/lock.h>
72 #include <sys/mutex.h>
73 #include <sys/proc.h>
74 #include <sys/vmmeter.h>
75 #include <sys/mman.h>
76 #include <sys/vnode.h>
77 #include <sys/resourcevar.h>
78 #include <sys/file.h>
79 #include <sys/sysent.h>
80 #include <sys/shm.h>
81 
82 #include <vm/vm.h>
83 #include <vm/vm_param.h>
84 #include <vm/pmap.h>
85 #include <vm/vm_map.h>
86 #include <vm/vm_page.h>
87 #include <vm/vm_object.h>
88 #include <vm/vm_pager.h>
89 #include <vm/vm_kern.h>
90 #include <vm/vm_extern.h>
91 #include <vm/swap_pager.h>
92 #include <vm/uma.h>
93 
94 /*
95  *	Virtual memory maps provide for the mapping, protection,
96  *	and sharing of virtual memory objects.  In addition,
97  *	this module provides for an efficient virtual copy of
98  *	memory from one map to another.
99  *
100  *	Synchronization is required prior to most operations.
101  *
102  *	Maps consist of an ordered doubly-linked list of simple
103  *	entries; a self-adjusting binary search tree of these
104  *	entries is used to speed up lookups.
105  *
106  *	Since portions of maps are specified by start/end addresses,
107  *	which may not align with existing map entries, all
108  *	routines merely "clip" entries to these start/end values.
109  *	[That is, an entry is split into two, bordering at a
110  *	start or end value.]  Note that these clippings may not
111  *	always be necessary (as the two resulting entries are then
112  *	not changed); however, the clipping is done for convenience.
113  *
114  *	As mentioned above, virtual copy operations are performed
115  *	by copying VM object references from one map to
116  *	another, and then marking both regions as copy-on-write.
117  */
118 
119 /*
120  *	vm_map_startup:
121  *
122  *	Initialize the vm_map module.  Must be called before
123  *	any other vm_map routines.
124  *
125  *	Map and entry structures are allocated from the general
126  *	purpose memory pool with some exceptions:
127  *
128  *	- The kernel map and kmem submap are allocated statically.
129  *	- Kernel map entries are allocated out of a static pool.
130  *
131  *	These restrictions are necessary since malloc() uses the
132  *	maps and requires map entries.
133  */
134 
135 static struct mtx map_sleep_mtx;
136 static uma_zone_t mapentzone;
137 static uma_zone_t kmapentzone;
138 static uma_zone_t mapzone;
139 static uma_zone_t vmspace_zone;
140 static struct vm_object kmapentobj;
141 static int vmspace_zinit(void *mem, int size, int flags);
142 static void vmspace_zfini(void *mem, int size);
143 static int vm_map_zinit(void *mem, int ize, int flags);
144 static void vm_map_zfini(void *mem, int size);
145 static void _vm_map_init(vm_map_t map, vm_offset_t min, vm_offset_t max);
146 static void vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry);
147 #ifdef INVARIANTS
148 static void vm_map_zdtor(void *mem, int size, void *arg);
149 static void vmspace_zdtor(void *mem, int size, void *arg);
150 #endif
151 
152 /*
153  * PROC_VMSPACE_{UN,}LOCK() can be a noop as long as vmspaces are type
154  * stable.
155  */
156 #define PROC_VMSPACE_LOCK(p) do { } while (0)
157 #define PROC_VMSPACE_UNLOCK(p) do { } while (0)
158 
159 /*
160  *	VM_MAP_RANGE_CHECK:	[ internal use only ]
161  *
162  *	Asserts that the starting and ending region
163  *	addresses fall within the valid range of the map.
164  */
165 #define	VM_MAP_RANGE_CHECK(map, start, end)		\
166 		{					\
167 		if (start < vm_map_min(map))		\
168 			start = vm_map_min(map);	\
169 		if (end > vm_map_max(map))		\
170 			end = vm_map_max(map);		\
171 		if (start > end)			\
172 			start = end;			\
173 		}
174 
175 void
176 vm_map_startup(void)
177 {
178 	mtx_init(&map_sleep_mtx, "vm map sleep mutex", NULL, MTX_DEF);
179 	mapzone = uma_zcreate("MAP", sizeof(struct vm_map), NULL,
180 #ifdef INVARIANTS
181 	    vm_map_zdtor,
182 #else
183 	    NULL,
184 #endif
185 	    vm_map_zinit, vm_map_zfini, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
186 	uma_prealloc(mapzone, MAX_KMAP);
187 	kmapentzone = uma_zcreate("KMAP ENTRY", sizeof(struct vm_map_entry),
188 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
189 	    UMA_ZONE_MTXCLASS | UMA_ZONE_VM);
190 	uma_prealloc(kmapentzone, MAX_KMAPENT);
191 	mapentzone = uma_zcreate("MAP ENTRY", sizeof(struct vm_map_entry),
192 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
193 }
194 
195 static void
196 vmspace_zfini(void *mem, int size)
197 {
198 	struct vmspace *vm;
199 
200 	vm = (struct vmspace *)mem;
201 	vm_map_zfini(&vm->vm_map, sizeof(vm->vm_map));
202 }
203 
204 static int
205 vmspace_zinit(void *mem, int size, int flags)
206 {
207 	struct vmspace *vm;
208 
209 	vm = (struct vmspace *)mem;
210 
211 	vm->vm_map.pmap = NULL;
212 	(void)vm_map_zinit(&vm->vm_map, sizeof(vm->vm_map), flags);
213 	return (0);
214 }
215 
216 static void
217 vm_map_zfini(void *mem, int size)
218 {
219 	vm_map_t map;
220 
221 	map = (vm_map_t)mem;
222 	mtx_destroy(&map->system_mtx);
223 	sx_destroy(&map->lock);
224 }
225 
226 static int
227 vm_map_zinit(void *mem, int size, int flags)
228 {
229 	vm_map_t map;
230 
231 	map = (vm_map_t)mem;
232 	map->nentries = 0;
233 	map->size = 0;
234 	mtx_init(&map->system_mtx, "system map", NULL, MTX_DEF | MTX_DUPOK);
235 	sx_init(&map->lock, "user map");
236 	return (0);
237 }
238 
239 #ifdef INVARIANTS
240 static void
241 vmspace_zdtor(void *mem, int size, void *arg)
242 {
243 	struct vmspace *vm;
244 
245 	vm = (struct vmspace *)mem;
246 
247 	vm_map_zdtor(&vm->vm_map, sizeof(vm->vm_map), arg);
248 }
249 static void
250 vm_map_zdtor(void *mem, int size, void *arg)
251 {
252 	vm_map_t map;
253 
254 	map = (vm_map_t)mem;
255 	KASSERT(map->nentries == 0,
256 	    ("map %p nentries == %d on free.",
257 	    map, map->nentries));
258 	KASSERT(map->size == 0,
259 	    ("map %p size == %lu on free.",
260 	    map, (unsigned long)map->size));
261 }
262 #endif	/* INVARIANTS */
263 
264 /*
265  * Allocate a vmspace structure, including a vm_map and pmap,
266  * and initialize those structures.  The refcnt is set to 1.
267  */
268 struct vmspace *
269 vmspace_alloc(min, max)
270 	vm_offset_t min, max;
271 {
272 	struct vmspace *vm;
273 
274 	vm = uma_zalloc(vmspace_zone, M_WAITOK);
275 	if (vm->vm_map.pmap == NULL && !pmap_pinit(vmspace_pmap(vm))) {
276 		uma_zfree(vmspace_zone, vm);
277 		return (NULL);
278 	}
279 	CTR1(KTR_VM, "vmspace_alloc: %p", vm);
280 	_vm_map_init(&vm->vm_map, min, max);
281 	vm->vm_map.pmap = vmspace_pmap(vm);		/* XXX */
282 	vm->vm_refcnt = 1;
283 	vm->vm_shm = NULL;
284 	vm->vm_swrss = 0;
285 	vm->vm_tsize = 0;
286 	vm->vm_dsize = 0;
287 	vm->vm_ssize = 0;
288 	vm->vm_taddr = 0;
289 	vm->vm_daddr = 0;
290 	vm->vm_maxsaddr = 0;
291 	return (vm);
292 }
293 
294 void
295 vm_init2(void)
296 {
297 	uma_zone_set_obj(kmapentzone, &kmapentobj, lmin(cnt.v_page_count,
298 	    (VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS) / PAGE_SIZE) / 8 +
299 	     maxproc * 2 + maxfiles);
300 	vmspace_zone = uma_zcreate("VMSPACE", sizeof(struct vmspace), NULL,
301 #ifdef INVARIANTS
302 	    vmspace_zdtor,
303 #else
304 	    NULL,
305 #endif
306 	    vmspace_zinit, vmspace_zfini, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
307 }
308 
309 static inline void
310 vmspace_dofree(struct vmspace *vm)
311 {
312 	CTR1(KTR_VM, "vmspace_free: %p", vm);
313 
314 	/*
315 	 * Make sure any SysV shm is freed, it might not have been in
316 	 * exit1().
317 	 */
318 	shmexit(vm);
319 
320 	/*
321 	 * Lock the map, to wait out all other references to it.
322 	 * Delete all of the mappings and pages they hold, then call
323 	 * the pmap module to reclaim anything left.
324 	 */
325 	(void)vm_map_remove(&vm->vm_map, vm->vm_map.min_offset,
326 	    vm->vm_map.max_offset);
327 
328 	/*
329 	 * XXX Comment out the pmap_release call for now. The
330 	 * vmspace_zone is marked as UMA_ZONE_NOFREE, and bugs cause
331 	 * pmap.resident_count to be != 0 on exit sometimes.
332 	 */
333 /* 	pmap_release(vmspace_pmap(vm)); */
334 	uma_zfree(vmspace_zone, vm);
335 }
336 
337 void
338 vmspace_free(struct vmspace *vm)
339 {
340 	int refcnt;
341 
342 	if (vm->vm_refcnt == 0)
343 		panic("vmspace_free: attempt to free already freed vmspace");
344 
345 	do
346 		refcnt = vm->vm_refcnt;
347 	while (!atomic_cmpset_int(&vm->vm_refcnt, refcnt, refcnt - 1));
348 	if (refcnt == 1)
349 		vmspace_dofree(vm);
350 }
351 
352 void
353 vmspace_exitfree(struct proc *p)
354 {
355 	struct vmspace *vm;
356 
357 	PROC_VMSPACE_LOCK(p);
358 	vm = p->p_vmspace;
359 	p->p_vmspace = NULL;
360 	PROC_VMSPACE_UNLOCK(p);
361 	KASSERT(vm == &vmspace0, ("vmspace_exitfree: wrong vmspace"));
362 	vmspace_free(vm);
363 }
364 
365 void
366 vmspace_exit(struct thread *td)
367 {
368 	int refcnt;
369 	struct vmspace *vm;
370 	struct proc *p;
371 
372 	/*
373 	 * Release user portion of address space.
374 	 * This releases references to vnodes,
375 	 * which could cause I/O if the file has been unlinked.
376 	 * Need to do this early enough that we can still sleep.
377 	 *
378 	 * The last exiting process to reach this point releases as
379 	 * much of the environment as it can. vmspace_dofree() is the
380 	 * slower fallback in case another process had a temporary
381 	 * reference to the vmspace.
382 	 */
383 
384 	p = td->td_proc;
385 	vm = p->p_vmspace;
386 	atomic_add_int(&vmspace0.vm_refcnt, 1);
387 	do {
388 		refcnt = vm->vm_refcnt;
389 		if (refcnt > 1 && p->p_vmspace != &vmspace0) {
390 			/* Switch now since other proc might free vmspace */
391 			PROC_VMSPACE_LOCK(p);
392 			p->p_vmspace = &vmspace0;
393 			PROC_VMSPACE_UNLOCK(p);
394 			pmap_activate(td);
395 		}
396 	} while (!atomic_cmpset_int(&vm->vm_refcnt, refcnt, refcnt - 1));
397 	if (refcnt == 1) {
398 		if (p->p_vmspace != vm) {
399 			/* vmspace not yet freed, switch back */
400 			PROC_VMSPACE_LOCK(p);
401 			p->p_vmspace = vm;
402 			PROC_VMSPACE_UNLOCK(p);
403 			pmap_activate(td);
404 		}
405 		pmap_remove_pages(vmspace_pmap(vm));
406 		/* Switch now since this proc will free vmspace */
407 		PROC_VMSPACE_LOCK(p);
408 		p->p_vmspace = &vmspace0;
409 		PROC_VMSPACE_UNLOCK(p);
410 		pmap_activate(td);
411 		vmspace_dofree(vm);
412 	}
413 }
414 
415 /* Acquire reference to vmspace owned by another process. */
416 
417 struct vmspace *
418 vmspace_acquire_ref(struct proc *p)
419 {
420 	struct vmspace *vm;
421 	int refcnt;
422 
423 	PROC_VMSPACE_LOCK(p);
424 	vm = p->p_vmspace;
425 	if (vm == NULL) {
426 		PROC_VMSPACE_UNLOCK(p);
427 		return (NULL);
428 	}
429 	do {
430 		refcnt = vm->vm_refcnt;
431 		if (refcnt <= 0) { 	/* Avoid 0->1 transition */
432 			PROC_VMSPACE_UNLOCK(p);
433 			return (NULL);
434 		}
435 	} while (!atomic_cmpset_int(&vm->vm_refcnt, refcnt, refcnt + 1));
436 	if (vm != p->p_vmspace) {
437 		PROC_VMSPACE_UNLOCK(p);
438 		vmspace_free(vm);
439 		return (NULL);
440 	}
441 	PROC_VMSPACE_UNLOCK(p);
442 	return (vm);
443 }
444 
445 void
446 _vm_map_lock(vm_map_t map, const char *file, int line)
447 {
448 
449 	if (map->system_map)
450 		_mtx_lock_flags(&map->system_mtx, 0, file, line);
451 	else
452 		(void)_sx_xlock(&map->lock, 0, file, line);
453 	map->timestamp++;
454 }
455 
456 void
457 _vm_map_unlock(vm_map_t map, const char *file, int line)
458 {
459 	vm_map_entry_t free_entry, entry;
460 	vm_object_t object;
461 
462 	free_entry = map->deferred_freelist;
463 	map->deferred_freelist = NULL;
464 
465 	if (map->system_map)
466 		_mtx_unlock_flags(&map->system_mtx, 0, file, line);
467 	else
468 		_sx_xunlock(&map->lock, file, line);
469 
470 	while (free_entry != NULL) {
471 		entry = free_entry;
472 		free_entry = free_entry->next;
473 
474 		if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
475 			object = entry->object.vm_object;
476 			vm_object_deallocate(object);
477 		}
478 
479 		vm_map_entry_dispose(map, entry);
480 	}
481 }
482 
483 void
484 _vm_map_lock_read(vm_map_t map, const char *file, int line)
485 {
486 
487 	if (map->system_map)
488 		_mtx_lock_flags(&map->system_mtx, 0, file, line);
489 	else
490 		(void)_sx_slock(&map->lock, 0, file, line);
491 }
492 
493 void
494 _vm_map_unlock_read(vm_map_t map, const char *file, int line)
495 {
496 
497 	if (map->system_map)
498 		_mtx_unlock_flags(&map->system_mtx, 0, file, line);
499 	else
500 		_sx_sunlock(&map->lock, file, line);
501 }
502 
503 int
504 _vm_map_trylock(vm_map_t map, const char *file, int line)
505 {
506 	int error;
507 
508 	error = map->system_map ?
509 	    !_mtx_trylock(&map->system_mtx, 0, file, line) :
510 	    !_sx_try_xlock(&map->lock, file, line);
511 	if (error == 0)
512 		map->timestamp++;
513 	return (error == 0);
514 }
515 
516 int
517 _vm_map_trylock_read(vm_map_t map, const char *file, int line)
518 {
519 	int error;
520 
521 	error = map->system_map ?
522 	    !_mtx_trylock(&map->system_mtx, 0, file, line) :
523 	    !_sx_try_slock(&map->lock, file, line);
524 	return (error == 0);
525 }
526 
527 /*
528  *	_vm_map_lock_upgrade:	[ internal use only ]
529  *
530  *	Tries to upgrade a read (shared) lock on the specified map to a write
531  *	(exclusive) lock.  Returns the value "0" if the upgrade succeeds and a
532  *	non-zero value if the upgrade fails.  If the upgrade fails, the map is
533  *	returned without a read or write lock held.
534  *
535  *	Requires that the map be read locked.
536  */
537 int
538 _vm_map_lock_upgrade(vm_map_t map, const char *file, int line)
539 {
540 	unsigned int last_timestamp;
541 
542 	if (map->system_map) {
543 #ifdef INVARIANTS
544 		_mtx_assert(&map->system_mtx, MA_OWNED, file, line);
545 #endif
546 	} else {
547 		if (!_sx_try_upgrade(&map->lock, file, line)) {
548 			last_timestamp = map->timestamp;
549 			_sx_sunlock(&map->lock, file, line);
550 			/*
551 			 * If the map's timestamp does not change while the
552 			 * map is unlocked, then the upgrade succeeds.
553 			 */
554 			(void)_sx_xlock(&map->lock, 0, file, line);
555 			if (last_timestamp != map->timestamp) {
556 				_sx_xunlock(&map->lock, file, line);
557 				return (1);
558 			}
559 		}
560 	}
561 	map->timestamp++;
562 	return (0);
563 }
564 
565 void
566 _vm_map_lock_downgrade(vm_map_t map, const char *file, int line)
567 {
568 
569 	if (map->system_map) {
570 #ifdef INVARIANTS
571 		_mtx_assert(&map->system_mtx, MA_OWNED, file, line);
572 #endif
573 	} else
574 		_sx_downgrade(&map->lock, file, line);
575 }
576 
577 /*
578  *	vm_map_locked:
579  *
580  *	Returns a non-zero value if the caller holds a write (exclusive) lock
581  *	on the specified map and the value "0" otherwise.
582  */
583 int
584 vm_map_locked(vm_map_t map)
585 {
586 
587 	if (map->system_map)
588 		return (mtx_owned(&map->system_mtx));
589 	else
590 		return (sx_xlocked(&map->lock));
591 }
592 
593 #ifdef INVARIANTS
594 static void
595 _vm_map_assert_locked(vm_map_t map, const char *file, int line)
596 {
597 
598 	if (map->system_map)
599 		_mtx_assert(&map->system_mtx, MA_OWNED, file, line);
600 	else
601 		_sx_assert(&map->lock, SA_XLOCKED, file, line);
602 }
603 
604 #if 0
605 static void
606 _vm_map_assert_locked_read(vm_map_t map, const char *file, int line)
607 {
608 
609 	if (map->system_map)
610 		_mtx_assert(&map->system_mtx, MA_OWNED, file, line);
611 	else
612 		_sx_assert(&map->lock, SA_SLOCKED, file, line);
613 }
614 #endif
615 
616 #define	VM_MAP_ASSERT_LOCKED(map) \
617     _vm_map_assert_locked(map, LOCK_FILE, LOCK_LINE)
618 #define	VM_MAP_ASSERT_LOCKED_READ(map) \
619     _vm_map_assert_locked_read(map, LOCK_FILE, LOCK_LINE)
620 #else
621 #define	VM_MAP_ASSERT_LOCKED(map)
622 #define	VM_MAP_ASSERT_LOCKED_READ(map)
623 #endif
624 
625 /*
626  *	vm_map_unlock_and_wait:
627  */
628 int
629 vm_map_unlock_and_wait(vm_map_t map, int timo)
630 {
631 
632 	mtx_lock(&map_sleep_mtx);
633 	vm_map_unlock(map);
634 	return (msleep(&map->root, &map_sleep_mtx, PDROP | PVM, "vmmaps", timo));
635 }
636 
637 /*
638  *	vm_map_wakeup:
639  */
640 void
641 vm_map_wakeup(vm_map_t map)
642 {
643 
644 	/*
645 	 * Acquire and release map_sleep_mtx to prevent a wakeup()
646 	 * from being performed (and lost) between the vm_map_unlock()
647 	 * and the msleep() in vm_map_unlock_and_wait().
648 	 */
649 	mtx_lock(&map_sleep_mtx);
650 	mtx_unlock(&map_sleep_mtx);
651 	wakeup(&map->root);
652 }
653 
654 long
655 vmspace_resident_count(struct vmspace *vmspace)
656 {
657 	return pmap_resident_count(vmspace_pmap(vmspace));
658 }
659 
660 long
661 vmspace_wired_count(struct vmspace *vmspace)
662 {
663 	return pmap_wired_count(vmspace_pmap(vmspace));
664 }
665 
666 /*
667  *	vm_map_create:
668  *
669  *	Creates and returns a new empty VM map with
670  *	the given physical map structure, and having
671  *	the given lower and upper address bounds.
672  */
673 vm_map_t
674 vm_map_create(pmap_t pmap, vm_offset_t min, vm_offset_t max)
675 {
676 	vm_map_t result;
677 
678 	result = uma_zalloc(mapzone, M_WAITOK);
679 	CTR1(KTR_VM, "vm_map_create: %p", result);
680 	_vm_map_init(result, min, max);
681 	result->pmap = pmap;
682 	return (result);
683 }
684 
685 /*
686  * Initialize an existing vm_map structure
687  * such as that in the vmspace structure.
688  * The pmap is set elsewhere.
689  */
690 static void
691 _vm_map_init(vm_map_t map, vm_offset_t min, vm_offset_t max)
692 {
693 
694 	map->header.next = map->header.prev = &map->header;
695 	map->needs_wakeup = FALSE;
696 	map->system_map = 0;
697 	map->min_offset = min;
698 	map->max_offset = max;
699 	map->flags = 0;
700 	map->root = NULL;
701 	map->timestamp = 0;
702 	map->deferred_freelist = NULL;
703 }
704 
705 void
706 vm_map_init(vm_map_t map, vm_offset_t min, vm_offset_t max)
707 {
708 	_vm_map_init(map, min, max);
709 	mtx_init(&map->system_mtx, "system map", NULL, MTX_DEF | MTX_DUPOK);
710 	sx_init(&map->lock, "user map");
711 }
712 
713 /*
714  *	vm_map_entry_dispose:	[ internal use only ]
715  *
716  *	Inverse of vm_map_entry_create.
717  */
718 static void
719 vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry)
720 {
721 	uma_zfree(map->system_map ? kmapentzone : mapentzone, entry);
722 }
723 
724 /*
725  *	vm_map_entry_create:	[ internal use only ]
726  *
727  *	Allocates a VM map entry for insertion.
728  *	No entry fields are filled in.
729  */
730 static vm_map_entry_t
731 vm_map_entry_create(vm_map_t map)
732 {
733 	vm_map_entry_t new_entry;
734 
735 	if (map->system_map)
736 		new_entry = uma_zalloc(kmapentzone, M_NOWAIT);
737 	else
738 		new_entry = uma_zalloc(mapentzone, M_WAITOK);
739 	if (new_entry == NULL)
740 		panic("vm_map_entry_create: kernel resources exhausted");
741 	return (new_entry);
742 }
743 
744 /*
745  *	vm_map_entry_set_behavior:
746  *
747  *	Set the expected access behavior, either normal, random, or
748  *	sequential.
749  */
750 static inline void
751 vm_map_entry_set_behavior(vm_map_entry_t entry, u_char behavior)
752 {
753 	entry->eflags = (entry->eflags & ~MAP_ENTRY_BEHAV_MASK) |
754 	    (behavior & MAP_ENTRY_BEHAV_MASK);
755 }
756 
757 /*
758  *	vm_map_entry_set_max_free:
759  *
760  *	Set the max_free field in a vm_map_entry.
761  */
762 static inline void
763 vm_map_entry_set_max_free(vm_map_entry_t entry)
764 {
765 
766 	entry->max_free = entry->adj_free;
767 	if (entry->left != NULL && entry->left->max_free > entry->max_free)
768 		entry->max_free = entry->left->max_free;
769 	if (entry->right != NULL && entry->right->max_free > entry->max_free)
770 		entry->max_free = entry->right->max_free;
771 }
772 
773 /*
774  *	vm_map_entry_splay:
775  *
776  *	The Sleator and Tarjan top-down splay algorithm with the
777  *	following variation.  Max_free must be computed bottom-up, so
778  *	on the downward pass, maintain the left and right spines in
779  *	reverse order.  Then, make a second pass up each side to fix
780  *	the pointers and compute max_free.  The time bound is O(log n)
781  *	amortized.
782  *
783  *	The new root is the vm_map_entry containing "addr", or else an
784  *	adjacent entry (lower or higher) if addr is not in the tree.
785  *
786  *	The map must be locked, and leaves it so.
787  *
788  *	Returns: the new root.
789  */
790 static vm_map_entry_t
791 vm_map_entry_splay(vm_offset_t addr, vm_map_entry_t root)
792 {
793 	vm_map_entry_t llist, rlist;
794 	vm_map_entry_t ltree, rtree;
795 	vm_map_entry_t y;
796 
797 	/* Special case of empty tree. */
798 	if (root == NULL)
799 		return (root);
800 
801 	/*
802 	 * Pass One: Splay down the tree until we find addr or a NULL
803 	 * pointer where addr would go.  llist and rlist are the two
804 	 * sides in reverse order (bottom-up), with llist linked by
805 	 * the right pointer and rlist linked by the left pointer in
806 	 * the vm_map_entry.  Wait until Pass Two to set max_free on
807 	 * the two spines.
808 	 */
809 	llist = NULL;
810 	rlist = NULL;
811 	for (;;) {
812 		/* root is never NULL in here. */
813 		if (addr < root->start) {
814 			y = root->left;
815 			if (y == NULL)
816 				break;
817 			if (addr < y->start && y->left != NULL) {
818 				/* Rotate right and put y on rlist. */
819 				root->left = y->right;
820 				y->right = root;
821 				vm_map_entry_set_max_free(root);
822 				root = y->left;
823 				y->left = rlist;
824 				rlist = y;
825 			} else {
826 				/* Put root on rlist. */
827 				root->left = rlist;
828 				rlist = root;
829 				root = y;
830 			}
831 		} else if (addr >= root->end) {
832 			y = root->right;
833 			if (y == NULL)
834 				break;
835 			if (addr >= y->end && y->right != NULL) {
836 				/* Rotate left and put y on llist. */
837 				root->right = y->left;
838 				y->left = root;
839 				vm_map_entry_set_max_free(root);
840 				root = y->right;
841 				y->right = llist;
842 				llist = y;
843 			} else {
844 				/* Put root on llist. */
845 				root->right = llist;
846 				llist = root;
847 				root = y;
848 			}
849 		} else
850 			break;
851 	}
852 
853 	/*
854 	 * Pass Two: Walk back up the two spines, flip the pointers
855 	 * and set max_free.  The subtrees of the root go at the
856 	 * bottom of llist and rlist.
857 	 */
858 	ltree = root->left;
859 	while (llist != NULL) {
860 		y = llist->right;
861 		llist->right = ltree;
862 		vm_map_entry_set_max_free(llist);
863 		ltree = llist;
864 		llist = y;
865 	}
866 	rtree = root->right;
867 	while (rlist != NULL) {
868 		y = rlist->left;
869 		rlist->left = rtree;
870 		vm_map_entry_set_max_free(rlist);
871 		rtree = rlist;
872 		rlist = y;
873 	}
874 
875 	/*
876 	 * Final assembly: add ltree and rtree as subtrees of root.
877 	 */
878 	root->left = ltree;
879 	root->right = rtree;
880 	vm_map_entry_set_max_free(root);
881 
882 	return (root);
883 }
884 
885 /*
886  *	vm_map_entry_{un,}link:
887  *
888  *	Insert/remove entries from maps.
889  */
890 static void
891 vm_map_entry_link(vm_map_t map,
892 		  vm_map_entry_t after_where,
893 		  vm_map_entry_t entry)
894 {
895 
896 	CTR4(KTR_VM,
897 	    "vm_map_entry_link: map %p, nentries %d, entry %p, after %p", map,
898 	    map->nentries, entry, after_where);
899 	VM_MAP_ASSERT_LOCKED(map);
900 	map->nentries++;
901 	entry->prev = after_where;
902 	entry->next = after_where->next;
903 	entry->next->prev = entry;
904 	after_where->next = entry;
905 
906 	if (after_where != &map->header) {
907 		if (after_where != map->root)
908 			vm_map_entry_splay(after_where->start, map->root);
909 		entry->right = after_where->right;
910 		entry->left = after_where;
911 		after_where->right = NULL;
912 		after_where->adj_free = entry->start - after_where->end;
913 		vm_map_entry_set_max_free(after_where);
914 	} else {
915 		entry->right = map->root;
916 		entry->left = NULL;
917 	}
918 	entry->adj_free = (entry->next == &map->header ? map->max_offset :
919 	    entry->next->start) - entry->end;
920 	vm_map_entry_set_max_free(entry);
921 	map->root = entry;
922 }
923 
924 static void
925 vm_map_entry_unlink(vm_map_t map,
926 		    vm_map_entry_t entry)
927 {
928 	vm_map_entry_t next, prev, root;
929 
930 	VM_MAP_ASSERT_LOCKED(map);
931 	if (entry != map->root)
932 		vm_map_entry_splay(entry->start, map->root);
933 	if (entry->left == NULL)
934 		root = entry->right;
935 	else {
936 		root = vm_map_entry_splay(entry->start, entry->left);
937 		root->right = entry->right;
938 		root->adj_free = (entry->next == &map->header ? map->max_offset :
939 		    entry->next->start) - root->end;
940 		vm_map_entry_set_max_free(root);
941 	}
942 	map->root = root;
943 
944 	prev = entry->prev;
945 	next = entry->next;
946 	next->prev = prev;
947 	prev->next = next;
948 	map->nentries--;
949 	CTR3(KTR_VM, "vm_map_entry_unlink: map %p, nentries %d, entry %p", map,
950 	    map->nentries, entry);
951 }
952 
953 /*
954  *	vm_map_entry_resize_free:
955  *
956  *	Recompute the amount of free space following a vm_map_entry
957  *	and propagate that value up the tree.  Call this function after
958  *	resizing a map entry in-place, that is, without a call to
959  *	vm_map_entry_link() or _unlink().
960  *
961  *	The map must be locked, and leaves it so.
962  */
963 static void
964 vm_map_entry_resize_free(vm_map_t map, vm_map_entry_t entry)
965 {
966 
967 	/*
968 	 * Using splay trees without parent pointers, propagating
969 	 * max_free up the tree is done by moving the entry to the
970 	 * root and making the change there.
971 	 */
972 	if (entry != map->root)
973 		map->root = vm_map_entry_splay(entry->start, map->root);
974 
975 	entry->adj_free = (entry->next == &map->header ? map->max_offset :
976 	    entry->next->start) - entry->end;
977 	vm_map_entry_set_max_free(entry);
978 }
979 
980 /*
981  *	vm_map_lookup_entry:	[ internal use only ]
982  *
983  *	Finds the map entry containing (or
984  *	immediately preceding) the specified address
985  *	in the given map; the entry is returned
986  *	in the "entry" parameter.  The boolean
987  *	result indicates whether the address is
988  *	actually contained in the map.
989  */
990 boolean_t
991 vm_map_lookup_entry(
992 	vm_map_t map,
993 	vm_offset_t address,
994 	vm_map_entry_t *entry)	/* OUT */
995 {
996 	vm_map_entry_t cur;
997 	boolean_t locked;
998 
999 	/*
1000 	 * If the map is empty, then the map entry immediately preceding
1001 	 * "address" is the map's header.
1002 	 */
1003 	cur = map->root;
1004 	if (cur == NULL)
1005 		*entry = &map->header;
1006 	else if (address >= cur->start && cur->end > address) {
1007 		*entry = cur;
1008 		return (TRUE);
1009 	} else if ((locked = vm_map_locked(map)) ||
1010 	    sx_try_upgrade(&map->lock)) {
1011 		/*
1012 		 * Splay requires a write lock on the map.  However, it only
1013 		 * restructures the binary search tree; it does not otherwise
1014 		 * change the map.  Thus, the map's timestamp need not change
1015 		 * on a temporary upgrade.
1016 		 */
1017 		map->root = cur = vm_map_entry_splay(address, cur);
1018 		if (!locked)
1019 			sx_downgrade(&map->lock);
1020 
1021 		/*
1022 		 * If "address" is contained within a map entry, the new root
1023 		 * is that map entry.  Otherwise, the new root is a map entry
1024 		 * immediately before or after "address".
1025 		 */
1026 		if (address >= cur->start) {
1027 			*entry = cur;
1028 			if (cur->end > address)
1029 				return (TRUE);
1030 		} else
1031 			*entry = cur->prev;
1032 	} else
1033 		/*
1034 		 * Since the map is only locked for read access, perform a
1035 		 * standard binary search tree lookup for "address".
1036 		 */
1037 		for (;;) {
1038 			if (address < cur->start) {
1039 				if (cur->left == NULL) {
1040 					*entry = cur->prev;
1041 					break;
1042 				}
1043 				cur = cur->left;
1044 			} else if (cur->end > address) {
1045 				*entry = cur;
1046 				return (TRUE);
1047 			} else {
1048 				if (cur->right == NULL) {
1049 					*entry = cur;
1050 					break;
1051 				}
1052 				cur = cur->right;
1053 			}
1054 		}
1055 	return (FALSE);
1056 }
1057 
1058 /*
1059  *	vm_map_insert:
1060  *
1061  *	Inserts the given whole VM object into the target
1062  *	map at the specified address range.  The object's
1063  *	size should match that of the address range.
1064  *
1065  *	Requires that the map be locked, and leaves it so.
1066  *
1067  *	If object is non-NULL, ref count must be bumped by caller
1068  *	prior to making call to account for the new entry.
1069  */
1070 int
1071 vm_map_insert(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1072 	      vm_offset_t start, vm_offset_t end, vm_prot_t prot, vm_prot_t max,
1073 	      int cow)
1074 {
1075 	vm_map_entry_t new_entry;
1076 	vm_map_entry_t prev_entry;
1077 	vm_map_entry_t temp_entry;
1078 	vm_eflags_t protoeflags;
1079 
1080 	VM_MAP_ASSERT_LOCKED(map);
1081 
1082 	/*
1083 	 * Check that the start and end points are not bogus.
1084 	 */
1085 	if ((start < map->min_offset) || (end > map->max_offset) ||
1086 	    (start >= end))
1087 		return (KERN_INVALID_ADDRESS);
1088 
1089 	/*
1090 	 * Find the entry prior to the proposed starting address; if it's part
1091 	 * of an existing entry, this range is bogus.
1092 	 */
1093 	if (vm_map_lookup_entry(map, start, &temp_entry))
1094 		return (KERN_NO_SPACE);
1095 
1096 	prev_entry = temp_entry;
1097 
1098 	/*
1099 	 * Assert that the next entry doesn't overlap the end point.
1100 	 */
1101 	if ((prev_entry->next != &map->header) &&
1102 	    (prev_entry->next->start < end))
1103 		return (KERN_NO_SPACE);
1104 
1105 	protoeflags = 0;
1106 
1107 	if (cow & MAP_COPY_ON_WRITE)
1108 		protoeflags |= MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY;
1109 
1110 	if (cow & MAP_NOFAULT) {
1111 		protoeflags |= MAP_ENTRY_NOFAULT;
1112 
1113 		KASSERT(object == NULL,
1114 			("vm_map_insert: paradoxical MAP_NOFAULT request"));
1115 	}
1116 	if (cow & MAP_DISABLE_SYNCER)
1117 		protoeflags |= MAP_ENTRY_NOSYNC;
1118 	if (cow & MAP_DISABLE_COREDUMP)
1119 		protoeflags |= MAP_ENTRY_NOCOREDUMP;
1120 
1121 	if (object != NULL) {
1122 		/*
1123 		 * OBJ_ONEMAPPING must be cleared unless this mapping
1124 		 * is trivially proven to be the only mapping for any
1125 		 * of the object's pages.  (Object granularity
1126 		 * reference counting is insufficient to recognize
1127 		 * aliases with precision.)
1128 		 */
1129 		VM_OBJECT_LOCK(object);
1130 		if (object->ref_count > 1 || object->shadow_count != 0)
1131 			vm_object_clear_flag(object, OBJ_ONEMAPPING);
1132 		VM_OBJECT_UNLOCK(object);
1133 	}
1134 	else if ((prev_entry != &map->header) &&
1135 		 (prev_entry->eflags == protoeflags) &&
1136 		 (prev_entry->end == start) &&
1137 		 (prev_entry->wired_count == 0) &&
1138 		 ((prev_entry->object.vm_object == NULL) ||
1139 		  vm_object_coalesce(prev_entry->object.vm_object,
1140 				     prev_entry->offset,
1141 				     (vm_size_t)(prev_entry->end - prev_entry->start),
1142 				     (vm_size_t)(end - prev_entry->end)))) {
1143 		/*
1144 		 * We were able to extend the object.  Determine if we
1145 		 * can extend the previous map entry to include the
1146 		 * new range as well.
1147 		 */
1148 		if ((prev_entry->inheritance == VM_INHERIT_DEFAULT) &&
1149 		    (prev_entry->protection == prot) &&
1150 		    (prev_entry->max_protection == max)) {
1151 			map->size += (end - prev_entry->end);
1152 			prev_entry->end = end;
1153 			vm_map_entry_resize_free(map, prev_entry);
1154 			vm_map_simplify_entry(map, prev_entry);
1155 			return (KERN_SUCCESS);
1156 		}
1157 
1158 		/*
1159 		 * If we can extend the object but cannot extend the
1160 		 * map entry, we have to create a new map entry.  We
1161 		 * must bump the ref count on the extended object to
1162 		 * account for it.  object may be NULL.
1163 		 */
1164 		object = prev_entry->object.vm_object;
1165 		offset = prev_entry->offset +
1166 			(prev_entry->end - prev_entry->start);
1167 		vm_object_reference(object);
1168 	}
1169 
1170 	/*
1171 	 * NOTE: if conditionals fail, object can be NULL here.  This occurs
1172 	 * in things like the buffer map where we manage kva but do not manage
1173 	 * backing objects.
1174 	 */
1175 
1176 	/*
1177 	 * Create a new entry
1178 	 */
1179 	new_entry = vm_map_entry_create(map);
1180 	new_entry->start = start;
1181 	new_entry->end = end;
1182 
1183 	new_entry->eflags = protoeflags;
1184 	new_entry->object.vm_object = object;
1185 	new_entry->offset = offset;
1186 	new_entry->avail_ssize = 0;
1187 
1188 	new_entry->inheritance = VM_INHERIT_DEFAULT;
1189 	new_entry->protection = prot;
1190 	new_entry->max_protection = max;
1191 	new_entry->wired_count = 0;
1192 
1193 	/*
1194 	 * Insert the new entry into the list
1195 	 */
1196 	vm_map_entry_link(map, prev_entry, new_entry);
1197 	map->size += new_entry->end - new_entry->start;
1198 
1199 #if 0
1200 	/*
1201 	 * Temporarily removed to avoid MAP_STACK panic, due to
1202 	 * MAP_STACK being a huge hack.  Will be added back in
1203 	 * when MAP_STACK (and the user stack mapping) is fixed.
1204 	 */
1205 	/*
1206 	 * It may be possible to simplify the entry
1207 	 */
1208 	vm_map_simplify_entry(map, new_entry);
1209 #endif
1210 
1211 	if (cow & (MAP_PREFAULT|MAP_PREFAULT_PARTIAL)) {
1212 		vm_map_pmap_enter(map, start, prot,
1213 				    object, OFF_TO_IDX(offset), end - start,
1214 				    cow & MAP_PREFAULT_PARTIAL);
1215 	}
1216 
1217 	return (KERN_SUCCESS);
1218 }
1219 
1220 /*
1221  *	vm_map_findspace:
1222  *
1223  *	Find the first fit (lowest VM address) for "length" free bytes
1224  *	beginning at address >= start in the given map.
1225  *
1226  *	In a vm_map_entry, "adj_free" is the amount of free space
1227  *	adjacent (higher address) to this entry, and "max_free" is the
1228  *	maximum amount of contiguous free space in its subtree.  This
1229  *	allows finding a free region in one path down the tree, so
1230  *	O(log n) amortized with splay trees.
1231  *
1232  *	The map must be locked, and leaves it so.
1233  *
1234  *	Returns: 0 on success, and starting address in *addr,
1235  *		 1 if insufficient space.
1236  */
1237 int
1238 vm_map_findspace(vm_map_t map, vm_offset_t start, vm_size_t length,
1239     vm_offset_t *addr)	/* OUT */
1240 {
1241 	vm_map_entry_t entry;
1242 	vm_offset_t end, st;
1243 
1244 	/*
1245 	 * Request must fit within min/max VM address and must avoid
1246 	 * address wrap.
1247 	 */
1248 	if (start < map->min_offset)
1249 		start = map->min_offset;
1250 	if (start + length > map->max_offset || start + length < start)
1251 		return (1);
1252 
1253 	/* Empty tree means wide open address space. */
1254 	if (map->root == NULL) {
1255 		*addr = start;
1256 		goto found;
1257 	}
1258 
1259 	/*
1260 	 * After splay, if start comes before root node, then there
1261 	 * must be a gap from start to the root.
1262 	 */
1263 	map->root = vm_map_entry_splay(start, map->root);
1264 	if (start + length <= map->root->start) {
1265 		*addr = start;
1266 		goto found;
1267 	}
1268 
1269 	/*
1270 	 * Root is the last node that might begin its gap before
1271 	 * start, and this is the last comparison where address
1272 	 * wrap might be a problem.
1273 	 */
1274 	st = (start > map->root->end) ? start : map->root->end;
1275 	if (length <= map->root->end + map->root->adj_free - st) {
1276 		*addr = st;
1277 		goto found;
1278 	}
1279 
1280 	/* With max_free, can immediately tell if no solution. */
1281 	entry = map->root->right;
1282 	if (entry == NULL || length > entry->max_free)
1283 		return (1);
1284 
1285 	/*
1286 	 * Search the right subtree in the order: left subtree, root,
1287 	 * right subtree (first fit).  The previous splay implies that
1288 	 * all regions in the right subtree have addresses > start.
1289 	 */
1290 	while (entry != NULL) {
1291 		if (entry->left != NULL && entry->left->max_free >= length)
1292 			entry = entry->left;
1293 		else if (entry->adj_free >= length) {
1294 			*addr = entry->end;
1295 			goto found;
1296 		} else
1297 			entry = entry->right;
1298 	}
1299 
1300 	/* Can't get here, so panic if we do. */
1301 	panic("vm_map_findspace: max_free corrupt");
1302 
1303 found:
1304 	/* Expand the kernel pmap, if necessary. */
1305 	if (map == kernel_map) {
1306 		end = round_page(*addr + length);
1307 		if (end > kernel_vm_end)
1308 			pmap_growkernel(end);
1309 	}
1310 	return (0);
1311 }
1312 
1313 int
1314 vm_map_fixed(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1315     vm_offset_t start, vm_size_t length, vm_prot_t prot,
1316     vm_prot_t max, int cow)
1317 {
1318 	vm_offset_t end;
1319 	int result;
1320 
1321 	end = start + length;
1322 	vm_map_lock(map);
1323 	VM_MAP_RANGE_CHECK(map, start, end);
1324 	(void) vm_map_delete(map, start, end);
1325 	result = vm_map_insert(map, object, offset, start, end, prot,
1326 	    max, cow);
1327 	vm_map_unlock(map);
1328 	return (result);
1329 }
1330 
1331 /*
1332  *	vm_map_find finds an unallocated region in the target address
1333  *	map with the given length.  The search is defined to be
1334  *	first-fit from the specified address; the region found is
1335  *	returned in the same parameter.
1336  *
1337  *	If object is non-NULL, ref count must be bumped by caller
1338  *	prior to making call to account for the new entry.
1339  */
1340 int
1341 vm_map_find(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1342 	    vm_offset_t *addr,	/* IN/OUT */
1343 	    vm_size_t length, int find_space, vm_prot_t prot,
1344 	    vm_prot_t max, int cow)
1345 {
1346 	vm_offset_t start;
1347 	int result;
1348 
1349 	start = *addr;
1350 	vm_map_lock(map);
1351 	do {
1352 		if (find_space != VMFS_NO_SPACE) {
1353 			if (vm_map_findspace(map, start, length, addr)) {
1354 				vm_map_unlock(map);
1355 				return (KERN_NO_SPACE);
1356 			}
1357 			if (find_space == VMFS_ALIGNED_SPACE)
1358 				pmap_align_superpage(object, offset, addr,
1359 				    length);
1360 			start = *addr;
1361 		}
1362 		result = vm_map_insert(map, object, offset, start, start +
1363 		    length, prot, max, cow);
1364 	} while (result == KERN_NO_SPACE && find_space == VMFS_ALIGNED_SPACE);
1365 	vm_map_unlock(map);
1366 	return (result);
1367 }
1368 
1369 /*
1370  *	vm_map_simplify_entry:
1371  *
1372  *	Simplify the given map entry by merging with either neighbor.  This
1373  *	routine also has the ability to merge with both neighbors.
1374  *
1375  *	The map must be locked.
1376  *
1377  *	This routine guarentees that the passed entry remains valid (though
1378  *	possibly extended).  When merging, this routine may delete one or
1379  *	both neighbors.
1380  */
1381 void
1382 vm_map_simplify_entry(vm_map_t map, vm_map_entry_t entry)
1383 {
1384 	vm_map_entry_t next, prev;
1385 	vm_size_t prevsize, esize;
1386 
1387 	if (entry->eflags & (MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_IS_SUB_MAP))
1388 		return;
1389 
1390 	prev = entry->prev;
1391 	if (prev != &map->header) {
1392 		prevsize = prev->end - prev->start;
1393 		if ( (prev->end == entry->start) &&
1394 		     (prev->object.vm_object == entry->object.vm_object) &&
1395 		     (!prev->object.vm_object ||
1396 			(prev->offset + prevsize == entry->offset)) &&
1397 		     (prev->eflags == entry->eflags) &&
1398 		     (prev->protection == entry->protection) &&
1399 		     (prev->max_protection == entry->max_protection) &&
1400 		     (prev->inheritance == entry->inheritance) &&
1401 		     (prev->wired_count == entry->wired_count)) {
1402 			vm_map_entry_unlink(map, prev);
1403 			entry->start = prev->start;
1404 			entry->offset = prev->offset;
1405 			if (entry->prev != &map->header)
1406 				vm_map_entry_resize_free(map, entry->prev);
1407 
1408 			/*
1409 			 * If the backing object is a vnode object,
1410 			 * vm_object_deallocate() calls vrele().
1411 			 * However, vrele() does not lock the vnode
1412 			 * because the vnode has additional
1413 			 * references.  Thus, the map lock can be kept
1414 			 * without causing a lock-order reversal with
1415 			 * the vnode lock.
1416 			 */
1417 			if (prev->object.vm_object)
1418 				vm_object_deallocate(prev->object.vm_object);
1419 			vm_map_entry_dispose(map, prev);
1420 		}
1421 	}
1422 
1423 	next = entry->next;
1424 	if (next != &map->header) {
1425 		esize = entry->end - entry->start;
1426 		if ((entry->end == next->start) &&
1427 		    (next->object.vm_object == entry->object.vm_object) &&
1428 		     (!entry->object.vm_object ||
1429 			(entry->offset + esize == next->offset)) &&
1430 		    (next->eflags == entry->eflags) &&
1431 		    (next->protection == entry->protection) &&
1432 		    (next->max_protection == entry->max_protection) &&
1433 		    (next->inheritance == entry->inheritance) &&
1434 		    (next->wired_count == entry->wired_count)) {
1435 			vm_map_entry_unlink(map, next);
1436 			entry->end = next->end;
1437 			vm_map_entry_resize_free(map, entry);
1438 
1439 			/*
1440 			 * See comment above.
1441 			 */
1442 			if (next->object.vm_object)
1443 				vm_object_deallocate(next->object.vm_object);
1444 			vm_map_entry_dispose(map, next);
1445 		}
1446 	}
1447 }
1448 /*
1449  *	vm_map_clip_start:	[ internal use only ]
1450  *
1451  *	Asserts that the given entry begins at or after
1452  *	the specified address; if necessary,
1453  *	it splits the entry into two.
1454  */
1455 #define vm_map_clip_start(map, entry, startaddr) \
1456 { \
1457 	if (startaddr > entry->start) \
1458 		_vm_map_clip_start(map, entry, startaddr); \
1459 }
1460 
1461 /*
1462  *	This routine is called only when it is known that
1463  *	the entry must be split.
1464  */
1465 static void
1466 _vm_map_clip_start(vm_map_t map, vm_map_entry_t entry, vm_offset_t start)
1467 {
1468 	vm_map_entry_t new_entry;
1469 
1470 	VM_MAP_ASSERT_LOCKED(map);
1471 
1472 	/*
1473 	 * Split off the front portion -- note that we must insert the new
1474 	 * entry BEFORE this one, so that this entry has the specified
1475 	 * starting address.
1476 	 */
1477 	vm_map_simplify_entry(map, entry);
1478 
1479 	/*
1480 	 * If there is no object backing this entry, we might as well create
1481 	 * one now.  If we defer it, an object can get created after the map
1482 	 * is clipped, and individual objects will be created for the split-up
1483 	 * map.  This is a bit of a hack, but is also about the best place to
1484 	 * put this improvement.
1485 	 */
1486 	if (entry->object.vm_object == NULL && !map->system_map) {
1487 		vm_object_t object;
1488 		object = vm_object_allocate(OBJT_DEFAULT,
1489 				atop(entry->end - entry->start));
1490 		entry->object.vm_object = object;
1491 		entry->offset = 0;
1492 	}
1493 
1494 	new_entry = vm_map_entry_create(map);
1495 	*new_entry = *entry;
1496 
1497 	new_entry->end = start;
1498 	entry->offset += (start - entry->start);
1499 	entry->start = start;
1500 
1501 	vm_map_entry_link(map, entry->prev, new_entry);
1502 
1503 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
1504 		vm_object_reference(new_entry->object.vm_object);
1505 	}
1506 }
1507 
1508 /*
1509  *	vm_map_clip_end:	[ internal use only ]
1510  *
1511  *	Asserts that the given entry ends at or before
1512  *	the specified address; if necessary,
1513  *	it splits the entry into two.
1514  */
1515 #define vm_map_clip_end(map, entry, endaddr) \
1516 { \
1517 	if ((endaddr) < (entry->end)) \
1518 		_vm_map_clip_end((map), (entry), (endaddr)); \
1519 }
1520 
1521 /*
1522  *	This routine is called only when it is known that
1523  *	the entry must be split.
1524  */
1525 static void
1526 _vm_map_clip_end(vm_map_t map, vm_map_entry_t entry, vm_offset_t end)
1527 {
1528 	vm_map_entry_t new_entry;
1529 
1530 	VM_MAP_ASSERT_LOCKED(map);
1531 
1532 	/*
1533 	 * If there is no object backing this entry, we might as well create
1534 	 * one now.  If we defer it, an object can get created after the map
1535 	 * is clipped, and individual objects will be created for the split-up
1536 	 * map.  This is a bit of a hack, but is also about the best place to
1537 	 * put this improvement.
1538 	 */
1539 	if (entry->object.vm_object == NULL && !map->system_map) {
1540 		vm_object_t object;
1541 		object = vm_object_allocate(OBJT_DEFAULT,
1542 				atop(entry->end - entry->start));
1543 		entry->object.vm_object = object;
1544 		entry->offset = 0;
1545 	}
1546 
1547 	/*
1548 	 * Create a new entry and insert it AFTER the specified entry
1549 	 */
1550 	new_entry = vm_map_entry_create(map);
1551 	*new_entry = *entry;
1552 
1553 	new_entry->start = entry->end = end;
1554 	new_entry->offset += (end - entry->start);
1555 
1556 	vm_map_entry_link(map, entry, new_entry);
1557 
1558 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
1559 		vm_object_reference(new_entry->object.vm_object);
1560 	}
1561 }
1562 
1563 /*
1564  *	vm_map_submap:		[ kernel use only ]
1565  *
1566  *	Mark the given range as handled by a subordinate map.
1567  *
1568  *	This range must have been created with vm_map_find,
1569  *	and no other operations may have been performed on this
1570  *	range prior to calling vm_map_submap.
1571  *
1572  *	Only a limited number of operations can be performed
1573  *	within this rage after calling vm_map_submap:
1574  *		vm_fault
1575  *	[Don't try vm_map_copy!]
1576  *
1577  *	To remove a submapping, one must first remove the
1578  *	range from the superior map, and then destroy the
1579  *	submap (if desired).  [Better yet, don't try it.]
1580  */
1581 int
1582 vm_map_submap(
1583 	vm_map_t map,
1584 	vm_offset_t start,
1585 	vm_offset_t end,
1586 	vm_map_t submap)
1587 {
1588 	vm_map_entry_t entry;
1589 	int result = KERN_INVALID_ARGUMENT;
1590 
1591 	vm_map_lock(map);
1592 
1593 	VM_MAP_RANGE_CHECK(map, start, end);
1594 
1595 	if (vm_map_lookup_entry(map, start, &entry)) {
1596 		vm_map_clip_start(map, entry, start);
1597 	} else
1598 		entry = entry->next;
1599 
1600 	vm_map_clip_end(map, entry, end);
1601 
1602 	if ((entry->start == start) && (entry->end == end) &&
1603 	    ((entry->eflags & MAP_ENTRY_COW) == 0) &&
1604 	    (entry->object.vm_object == NULL)) {
1605 		entry->object.sub_map = submap;
1606 		entry->eflags |= MAP_ENTRY_IS_SUB_MAP;
1607 		result = KERN_SUCCESS;
1608 	}
1609 	vm_map_unlock(map);
1610 
1611 	return (result);
1612 }
1613 
1614 /*
1615  * The maximum number of pages to map
1616  */
1617 #define	MAX_INIT_PT	96
1618 
1619 /*
1620  *	vm_map_pmap_enter:
1621  *
1622  *	Preload read-only mappings for the given object's resident pages into
1623  *	the given map.  This eliminates the soft faults on process startup and
1624  *	immediately after an mmap(2).  Because these are speculative mappings,
1625  *	cached pages are not reactivated and mapped.
1626  */
1627 void
1628 vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot,
1629     vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags)
1630 {
1631 	vm_offset_t start;
1632 	vm_page_t p, p_start;
1633 	vm_pindex_t psize, tmpidx;
1634 	boolean_t are_queues_locked;
1635 
1636 	if ((prot & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0 || object == NULL)
1637 		return;
1638 	VM_OBJECT_LOCK(object);
1639 	if (object->type == OBJT_DEVICE) {
1640 		pmap_object_init_pt(map->pmap, addr, object, pindex, size);
1641 		goto unlock_return;
1642 	}
1643 
1644 	psize = atop(size);
1645 
1646 	if (object->type != OBJT_VNODE ||
1647 	    ((flags & MAP_PREFAULT_PARTIAL) && (psize > MAX_INIT_PT) &&
1648 	     (object->resident_page_count > MAX_INIT_PT))) {
1649 		goto unlock_return;
1650 	}
1651 
1652 	if (psize + pindex > object->size) {
1653 		if (object->size < pindex)
1654 			goto unlock_return;
1655 		psize = object->size - pindex;
1656 	}
1657 
1658 	are_queues_locked = FALSE;
1659 	start = 0;
1660 	p_start = NULL;
1661 
1662 	if ((p = TAILQ_FIRST(&object->memq)) != NULL) {
1663 		if (p->pindex < pindex) {
1664 			p = vm_page_splay(pindex, object->root);
1665 			if ((object->root = p)->pindex < pindex)
1666 				p = TAILQ_NEXT(p, listq);
1667 		}
1668 	}
1669 	/*
1670 	 * Assert: the variable p is either (1) the page with the
1671 	 * least pindex greater than or equal to the parameter pindex
1672 	 * or (2) NULL.
1673 	 */
1674 	for (;
1675 	     p != NULL && (tmpidx = p->pindex - pindex) < psize;
1676 	     p = TAILQ_NEXT(p, listq)) {
1677 		/*
1678 		 * don't allow an madvise to blow away our really
1679 		 * free pages allocating pv entries.
1680 		 */
1681 		if ((flags & MAP_PREFAULT_MADVISE) &&
1682 		    cnt.v_free_count < cnt.v_free_reserved) {
1683 			psize = tmpidx;
1684 			break;
1685 		}
1686 		if ((p->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL &&
1687 		    (p->busy == 0)) {
1688 			if (p_start == NULL) {
1689 				start = addr + ptoa(tmpidx);
1690 				p_start = p;
1691 			}
1692 		} else if (p_start != NULL) {
1693 			if (!are_queues_locked) {
1694 				are_queues_locked = TRUE;
1695 				vm_page_lock_queues();
1696 			}
1697 			pmap_enter_object(map->pmap, start, addr +
1698 			    ptoa(tmpidx), p_start, prot);
1699 			p_start = NULL;
1700 		}
1701 	}
1702 	if (p_start != NULL) {
1703 		if (!are_queues_locked) {
1704 			are_queues_locked = TRUE;
1705 			vm_page_lock_queues();
1706 		}
1707 		pmap_enter_object(map->pmap, start, addr + ptoa(psize),
1708 		    p_start, prot);
1709 	}
1710 	if (are_queues_locked)
1711 		vm_page_unlock_queues();
1712 unlock_return:
1713 	VM_OBJECT_UNLOCK(object);
1714 }
1715 
1716 /*
1717  *	vm_map_protect:
1718  *
1719  *	Sets the protection of the specified address
1720  *	region in the target map.  If "set_max" is
1721  *	specified, the maximum protection is to be set;
1722  *	otherwise, only the current protection is affected.
1723  */
1724 int
1725 vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end,
1726 	       vm_prot_t new_prot, boolean_t set_max)
1727 {
1728 	vm_map_entry_t current;
1729 	vm_map_entry_t entry;
1730 
1731 	vm_map_lock(map);
1732 
1733 	VM_MAP_RANGE_CHECK(map, start, end);
1734 
1735 	if (vm_map_lookup_entry(map, start, &entry)) {
1736 		vm_map_clip_start(map, entry, start);
1737 	} else {
1738 		entry = entry->next;
1739 	}
1740 
1741 	/*
1742 	 * Make a first pass to check for protection violations.
1743 	 */
1744 	current = entry;
1745 	while ((current != &map->header) && (current->start < end)) {
1746 		if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
1747 			vm_map_unlock(map);
1748 			return (KERN_INVALID_ARGUMENT);
1749 		}
1750 		if ((new_prot & current->max_protection) != new_prot) {
1751 			vm_map_unlock(map);
1752 			return (KERN_PROTECTION_FAILURE);
1753 		}
1754 		current = current->next;
1755 	}
1756 
1757 	/*
1758 	 * Go back and fix up protections. [Note that clipping is not
1759 	 * necessary the second time.]
1760 	 */
1761 	current = entry;
1762 	while ((current != &map->header) && (current->start < end)) {
1763 		vm_prot_t old_prot;
1764 
1765 		vm_map_clip_end(map, current, end);
1766 
1767 		old_prot = current->protection;
1768 		if (set_max)
1769 			current->protection =
1770 			    (current->max_protection = new_prot) &
1771 			    old_prot;
1772 		else
1773 			current->protection = new_prot;
1774 
1775 		/*
1776 		 * Update physical map if necessary. Worry about copy-on-write
1777 		 * here.
1778 		 */
1779 		if (current->protection != old_prot) {
1780 #define MASK(entry)	(((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \
1781 							VM_PROT_ALL)
1782 			pmap_protect(map->pmap, current->start,
1783 			    current->end,
1784 			    current->protection & MASK(current));
1785 #undef	MASK
1786 		}
1787 		vm_map_simplify_entry(map, current);
1788 		current = current->next;
1789 	}
1790 	vm_map_unlock(map);
1791 	return (KERN_SUCCESS);
1792 }
1793 
1794 /*
1795  *	vm_map_madvise:
1796  *
1797  *	This routine traverses a processes map handling the madvise
1798  *	system call.  Advisories are classified as either those effecting
1799  *	the vm_map_entry structure, or those effecting the underlying
1800  *	objects.
1801  */
1802 int
1803 vm_map_madvise(
1804 	vm_map_t map,
1805 	vm_offset_t start,
1806 	vm_offset_t end,
1807 	int behav)
1808 {
1809 	vm_map_entry_t current, entry;
1810 	int modify_map = 0;
1811 
1812 	/*
1813 	 * Some madvise calls directly modify the vm_map_entry, in which case
1814 	 * we need to use an exclusive lock on the map and we need to perform
1815 	 * various clipping operations.  Otherwise we only need a read-lock
1816 	 * on the map.
1817 	 */
1818 	switch(behav) {
1819 	case MADV_NORMAL:
1820 	case MADV_SEQUENTIAL:
1821 	case MADV_RANDOM:
1822 	case MADV_NOSYNC:
1823 	case MADV_AUTOSYNC:
1824 	case MADV_NOCORE:
1825 	case MADV_CORE:
1826 		modify_map = 1;
1827 		vm_map_lock(map);
1828 		break;
1829 	case MADV_WILLNEED:
1830 	case MADV_DONTNEED:
1831 	case MADV_FREE:
1832 		vm_map_lock_read(map);
1833 		break;
1834 	default:
1835 		return (KERN_INVALID_ARGUMENT);
1836 	}
1837 
1838 	/*
1839 	 * Locate starting entry and clip if necessary.
1840 	 */
1841 	VM_MAP_RANGE_CHECK(map, start, end);
1842 
1843 	if (vm_map_lookup_entry(map, start, &entry)) {
1844 		if (modify_map)
1845 			vm_map_clip_start(map, entry, start);
1846 	} else {
1847 		entry = entry->next;
1848 	}
1849 
1850 	if (modify_map) {
1851 		/*
1852 		 * madvise behaviors that are implemented in the vm_map_entry.
1853 		 *
1854 		 * We clip the vm_map_entry so that behavioral changes are
1855 		 * limited to the specified address range.
1856 		 */
1857 		for (current = entry;
1858 		     (current != &map->header) && (current->start < end);
1859 		     current = current->next
1860 		) {
1861 			if (current->eflags & MAP_ENTRY_IS_SUB_MAP)
1862 				continue;
1863 
1864 			vm_map_clip_end(map, current, end);
1865 
1866 			switch (behav) {
1867 			case MADV_NORMAL:
1868 				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_NORMAL);
1869 				break;
1870 			case MADV_SEQUENTIAL:
1871 				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_SEQUENTIAL);
1872 				break;
1873 			case MADV_RANDOM:
1874 				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_RANDOM);
1875 				break;
1876 			case MADV_NOSYNC:
1877 				current->eflags |= MAP_ENTRY_NOSYNC;
1878 				break;
1879 			case MADV_AUTOSYNC:
1880 				current->eflags &= ~MAP_ENTRY_NOSYNC;
1881 				break;
1882 			case MADV_NOCORE:
1883 				current->eflags |= MAP_ENTRY_NOCOREDUMP;
1884 				break;
1885 			case MADV_CORE:
1886 				current->eflags &= ~MAP_ENTRY_NOCOREDUMP;
1887 				break;
1888 			default:
1889 				break;
1890 			}
1891 			vm_map_simplify_entry(map, current);
1892 		}
1893 		vm_map_unlock(map);
1894 	} else {
1895 		vm_pindex_t pindex;
1896 		int count;
1897 
1898 		/*
1899 		 * madvise behaviors that are implemented in the underlying
1900 		 * vm_object.
1901 		 *
1902 		 * Since we don't clip the vm_map_entry, we have to clip
1903 		 * the vm_object pindex and count.
1904 		 */
1905 		for (current = entry;
1906 		     (current != &map->header) && (current->start < end);
1907 		     current = current->next
1908 		) {
1909 			vm_offset_t useStart;
1910 
1911 			if (current->eflags & MAP_ENTRY_IS_SUB_MAP)
1912 				continue;
1913 
1914 			pindex = OFF_TO_IDX(current->offset);
1915 			count = atop(current->end - current->start);
1916 			useStart = current->start;
1917 
1918 			if (current->start < start) {
1919 				pindex += atop(start - current->start);
1920 				count -= atop(start - current->start);
1921 				useStart = start;
1922 			}
1923 			if (current->end > end)
1924 				count -= atop(current->end - end);
1925 
1926 			if (count <= 0)
1927 				continue;
1928 
1929 			vm_object_madvise(current->object.vm_object,
1930 					  pindex, count, behav);
1931 			if (behav == MADV_WILLNEED) {
1932 				vm_map_pmap_enter(map,
1933 				    useStart,
1934 				    current->protection,
1935 				    current->object.vm_object,
1936 				    pindex,
1937 				    (count << PAGE_SHIFT),
1938 				    MAP_PREFAULT_MADVISE
1939 				);
1940 			}
1941 		}
1942 		vm_map_unlock_read(map);
1943 	}
1944 	return (0);
1945 }
1946 
1947 
1948 /*
1949  *	vm_map_inherit:
1950  *
1951  *	Sets the inheritance of the specified address
1952  *	range in the target map.  Inheritance
1953  *	affects how the map will be shared with
1954  *	child maps at the time of vmspace_fork.
1955  */
1956 int
1957 vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end,
1958 	       vm_inherit_t new_inheritance)
1959 {
1960 	vm_map_entry_t entry;
1961 	vm_map_entry_t temp_entry;
1962 
1963 	switch (new_inheritance) {
1964 	case VM_INHERIT_NONE:
1965 	case VM_INHERIT_COPY:
1966 	case VM_INHERIT_SHARE:
1967 		break;
1968 	default:
1969 		return (KERN_INVALID_ARGUMENT);
1970 	}
1971 	vm_map_lock(map);
1972 	VM_MAP_RANGE_CHECK(map, start, end);
1973 	if (vm_map_lookup_entry(map, start, &temp_entry)) {
1974 		entry = temp_entry;
1975 		vm_map_clip_start(map, entry, start);
1976 	} else
1977 		entry = temp_entry->next;
1978 	while ((entry != &map->header) && (entry->start < end)) {
1979 		vm_map_clip_end(map, entry, end);
1980 		entry->inheritance = new_inheritance;
1981 		vm_map_simplify_entry(map, entry);
1982 		entry = entry->next;
1983 	}
1984 	vm_map_unlock(map);
1985 	return (KERN_SUCCESS);
1986 }
1987 
1988 /*
1989  *	vm_map_unwire:
1990  *
1991  *	Implements both kernel and user unwiring.
1992  */
1993 int
1994 vm_map_unwire(vm_map_t map, vm_offset_t start, vm_offset_t end,
1995     int flags)
1996 {
1997 	vm_map_entry_t entry, first_entry, tmp_entry;
1998 	vm_offset_t saved_start;
1999 	unsigned int last_timestamp;
2000 	int rv;
2001 	boolean_t need_wakeup, result, user_unwire;
2002 
2003 	user_unwire = (flags & VM_MAP_WIRE_USER) ? TRUE : FALSE;
2004 	vm_map_lock(map);
2005 	VM_MAP_RANGE_CHECK(map, start, end);
2006 	if (!vm_map_lookup_entry(map, start, &first_entry)) {
2007 		if (flags & VM_MAP_WIRE_HOLESOK)
2008 			first_entry = first_entry->next;
2009 		else {
2010 			vm_map_unlock(map);
2011 			return (KERN_INVALID_ADDRESS);
2012 		}
2013 	}
2014 	last_timestamp = map->timestamp;
2015 	entry = first_entry;
2016 	while (entry != &map->header && entry->start < end) {
2017 		if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
2018 			/*
2019 			 * We have not yet clipped the entry.
2020 			 */
2021 			saved_start = (start >= entry->start) ? start :
2022 			    entry->start;
2023 			entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2024 			if (vm_map_unlock_and_wait(map, 0)) {
2025 				/*
2026 				 * Allow interruption of user unwiring?
2027 				 */
2028 			}
2029 			vm_map_lock(map);
2030 			if (last_timestamp+1 != map->timestamp) {
2031 				/*
2032 				 * Look again for the entry because the map was
2033 				 * modified while it was unlocked.
2034 				 * Specifically, the entry may have been
2035 				 * clipped, merged, or deleted.
2036 				 */
2037 				if (!vm_map_lookup_entry(map, saved_start,
2038 				    &tmp_entry)) {
2039 					if (flags & VM_MAP_WIRE_HOLESOK)
2040 						tmp_entry = tmp_entry->next;
2041 					else {
2042 						if (saved_start == start) {
2043 							/*
2044 							 * First_entry has been deleted.
2045 							 */
2046 							vm_map_unlock(map);
2047 							return (KERN_INVALID_ADDRESS);
2048 						}
2049 						end = saved_start;
2050 						rv = KERN_INVALID_ADDRESS;
2051 						goto done;
2052 					}
2053 				}
2054 				if (entry == first_entry)
2055 					first_entry = tmp_entry;
2056 				else
2057 					first_entry = NULL;
2058 				entry = tmp_entry;
2059 			}
2060 			last_timestamp = map->timestamp;
2061 			continue;
2062 		}
2063 		vm_map_clip_start(map, entry, start);
2064 		vm_map_clip_end(map, entry, end);
2065 		/*
2066 		 * Mark the entry in case the map lock is released.  (See
2067 		 * above.)
2068 		 */
2069 		entry->eflags |= MAP_ENTRY_IN_TRANSITION;
2070 		/*
2071 		 * Check the map for holes in the specified region.
2072 		 * If VM_MAP_WIRE_HOLESOK was specified, skip this check.
2073 		 */
2074 		if (((flags & VM_MAP_WIRE_HOLESOK) == 0) &&
2075 		    (entry->end < end && (entry->next == &map->header ||
2076 		    entry->next->start > entry->end))) {
2077 			end = entry->end;
2078 			rv = KERN_INVALID_ADDRESS;
2079 			goto done;
2080 		}
2081 		/*
2082 		 * If system unwiring, require that the entry is system wired.
2083 		 */
2084 		if (!user_unwire &&
2085 		    vm_map_entry_system_wired_count(entry) == 0) {
2086 			end = entry->end;
2087 			rv = KERN_INVALID_ARGUMENT;
2088 			goto done;
2089 		}
2090 		entry = entry->next;
2091 	}
2092 	rv = KERN_SUCCESS;
2093 done:
2094 	need_wakeup = FALSE;
2095 	if (first_entry == NULL) {
2096 		result = vm_map_lookup_entry(map, start, &first_entry);
2097 		if (!result && (flags & VM_MAP_WIRE_HOLESOK))
2098 			first_entry = first_entry->next;
2099 		else
2100 			KASSERT(result, ("vm_map_unwire: lookup failed"));
2101 	}
2102 	entry = first_entry;
2103 	while (entry != &map->header && entry->start < end) {
2104 		if (rv == KERN_SUCCESS && (!user_unwire ||
2105 		    (entry->eflags & MAP_ENTRY_USER_WIRED))) {
2106 			if (user_unwire)
2107 				entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2108 			entry->wired_count--;
2109 			if (entry->wired_count == 0) {
2110 				/*
2111 				 * Retain the map lock.
2112 				 */
2113 				vm_fault_unwire(map, entry->start, entry->end,
2114 				    entry->object.vm_object != NULL &&
2115 				    entry->object.vm_object->type == OBJT_DEVICE);
2116 			}
2117 		}
2118 		KASSERT(entry->eflags & MAP_ENTRY_IN_TRANSITION,
2119 			("vm_map_unwire: in-transition flag missing"));
2120 		entry->eflags &= ~MAP_ENTRY_IN_TRANSITION;
2121 		if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
2122 			entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
2123 			need_wakeup = TRUE;
2124 		}
2125 		vm_map_simplify_entry(map, entry);
2126 		entry = entry->next;
2127 	}
2128 	vm_map_unlock(map);
2129 	if (need_wakeup)
2130 		vm_map_wakeup(map);
2131 	return (rv);
2132 }
2133 
2134 /*
2135  *	vm_map_wire:
2136  *
2137  *	Implements both kernel and user wiring.
2138  */
2139 int
2140 vm_map_wire(vm_map_t map, vm_offset_t start, vm_offset_t end,
2141     int flags)
2142 {
2143 	vm_map_entry_t entry, first_entry, tmp_entry;
2144 	vm_offset_t saved_end, saved_start;
2145 	unsigned int last_timestamp;
2146 	int rv;
2147 	boolean_t fictitious, need_wakeup, result, user_wire;
2148 
2149 	user_wire = (flags & VM_MAP_WIRE_USER) ? TRUE : FALSE;
2150 	vm_map_lock(map);
2151 	VM_MAP_RANGE_CHECK(map, start, end);
2152 	if (!vm_map_lookup_entry(map, start, &first_entry)) {
2153 		if (flags & VM_MAP_WIRE_HOLESOK)
2154 			first_entry = first_entry->next;
2155 		else {
2156 			vm_map_unlock(map);
2157 			return (KERN_INVALID_ADDRESS);
2158 		}
2159 	}
2160 	last_timestamp = map->timestamp;
2161 	entry = first_entry;
2162 	while (entry != &map->header && entry->start < end) {
2163 		if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
2164 			/*
2165 			 * We have not yet clipped the entry.
2166 			 */
2167 			saved_start = (start >= entry->start) ? start :
2168 			    entry->start;
2169 			entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2170 			if (vm_map_unlock_and_wait(map, 0)) {
2171 				/*
2172 				 * Allow interruption of user wiring?
2173 				 */
2174 			}
2175 			vm_map_lock(map);
2176 			if (last_timestamp + 1 != map->timestamp) {
2177 				/*
2178 				 * Look again for the entry because the map was
2179 				 * modified while it was unlocked.
2180 				 * Specifically, the entry may have been
2181 				 * clipped, merged, or deleted.
2182 				 */
2183 				if (!vm_map_lookup_entry(map, saved_start,
2184 				    &tmp_entry)) {
2185 					if (flags & VM_MAP_WIRE_HOLESOK)
2186 						tmp_entry = tmp_entry->next;
2187 					else {
2188 						if (saved_start == start) {
2189 							/*
2190 							 * first_entry has been deleted.
2191 							 */
2192 							vm_map_unlock(map);
2193 							return (KERN_INVALID_ADDRESS);
2194 						}
2195 						end = saved_start;
2196 						rv = KERN_INVALID_ADDRESS;
2197 						goto done;
2198 					}
2199 				}
2200 				if (entry == first_entry)
2201 					first_entry = tmp_entry;
2202 				else
2203 					first_entry = NULL;
2204 				entry = tmp_entry;
2205 			}
2206 			last_timestamp = map->timestamp;
2207 			continue;
2208 		}
2209 		vm_map_clip_start(map, entry, start);
2210 		vm_map_clip_end(map, entry, end);
2211 		/*
2212 		 * Mark the entry in case the map lock is released.  (See
2213 		 * above.)
2214 		 */
2215 		entry->eflags |= MAP_ENTRY_IN_TRANSITION;
2216 		/*
2217 		 *
2218 		 */
2219 		if (entry->wired_count == 0) {
2220 			entry->wired_count++;
2221 			saved_start = entry->start;
2222 			saved_end = entry->end;
2223 			fictitious = entry->object.vm_object != NULL &&
2224 			    entry->object.vm_object->type == OBJT_DEVICE;
2225 			/*
2226 			 * Release the map lock, relying on the in-transition
2227 			 * mark.
2228 			 */
2229 			vm_map_unlock(map);
2230 			rv = vm_fault_wire(map, saved_start, saved_end,
2231 			    user_wire, fictitious);
2232 			vm_map_lock(map);
2233 			if (last_timestamp + 1 != map->timestamp) {
2234 				/*
2235 				 * Look again for the entry because the map was
2236 				 * modified while it was unlocked.  The entry
2237 				 * may have been clipped, but NOT merged or
2238 				 * deleted.
2239 				 */
2240 				result = vm_map_lookup_entry(map, saved_start,
2241 				    &tmp_entry);
2242 				KASSERT(result, ("vm_map_wire: lookup failed"));
2243 				if (entry == first_entry)
2244 					first_entry = tmp_entry;
2245 				else
2246 					first_entry = NULL;
2247 				entry = tmp_entry;
2248 				while (entry->end < saved_end) {
2249 					if (rv != KERN_SUCCESS) {
2250 						KASSERT(entry->wired_count == 1,
2251 						    ("vm_map_wire: bad count"));
2252 						entry->wired_count = -1;
2253 					}
2254 					entry = entry->next;
2255 				}
2256 			}
2257 			last_timestamp = map->timestamp;
2258 			if (rv != KERN_SUCCESS) {
2259 				KASSERT(entry->wired_count == 1,
2260 				    ("vm_map_wire: bad count"));
2261 				/*
2262 				 * Assign an out-of-range value to represent
2263 				 * the failure to wire this entry.
2264 				 */
2265 				entry->wired_count = -1;
2266 				end = entry->end;
2267 				goto done;
2268 			}
2269 		} else if (!user_wire ||
2270 			   (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) {
2271 			entry->wired_count++;
2272 		}
2273 		/*
2274 		 * Check the map for holes in the specified region.
2275 		 * If VM_MAP_WIRE_HOLESOK was specified, skip this check.
2276 		 */
2277 		if (((flags & VM_MAP_WIRE_HOLESOK) == 0) &&
2278 		    (entry->end < end && (entry->next == &map->header ||
2279 		    entry->next->start > entry->end))) {
2280 			end = entry->end;
2281 			rv = KERN_INVALID_ADDRESS;
2282 			goto done;
2283 		}
2284 		entry = entry->next;
2285 	}
2286 	rv = KERN_SUCCESS;
2287 done:
2288 	need_wakeup = FALSE;
2289 	if (first_entry == NULL) {
2290 		result = vm_map_lookup_entry(map, start, &first_entry);
2291 		if (!result && (flags & VM_MAP_WIRE_HOLESOK))
2292 			first_entry = first_entry->next;
2293 		else
2294 			KASSERT(result, ("vm_map_wire: lookup failed"));
2295 	}
2296 	entry = first_entry;
2297 	while (entry != &map->header && entry->start < end) {
2298 		if (rv == KERN_SUCCESS) {
2299 			if (user_wire)
2300 				entry->eflags |= MAP_ENTRY_USER_WIRED;
2301 		} else if (entry->wired_count == -1) {
2302 			/*
2303 			 * Wiring failed on this entry.  Thus, unwiring is
2304 			 * unnecessary.
2305 			 */
2306 			entry->wired_count = 0;
2307 		} else {
2308 			if (!user_wire ||
2309 			    (entry->eflags & MAP_ENTRY_USER_WIRED) == 0)
2310 				entry->wired_count--;
2311 			if (entry->wired_count == 0) {
2312 				/*
2313 				 * Retain the map lock.
2314 				 */
2315 				vm_fault_unwire(map, entry->start, entry->end,
2316 				    entry->object.vm_object != NULL &&
2317 				    entry->object.vm_object->type == OBJT_DEVICE);
2318 			}
2319 		}
2320 		KASSERT(entry->eflags & MAP_ENTRY_IN_TRANSITION,
2321 			("vm_map_wire: in-transition flag missing"));
2322 		entry->eflags &= ~MAP_ENTRY_IN_TRANSITION;
2323 		if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
2324 			entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
2325 			need_wakeup = TRUE;
2326 		}
2327 		vm_map_simplify_entry(map, entry);
2328 		entry = entry->next;
2329 	}
2330 	vm_map_unlock(map);
2331 	if (need_wakeup)
2332 		vm_map_wakeup(map);
2333 	return (rv);
2334 }
2335 
2336 /*
2337  * vm_map_sync
2338  *
2339  * Push any dirty cached pages in the address range to their pager.
2340  * If syncio is TRUE, dirty pages are written synchronously.
2341  * If invalidate is TRUE, any cached pages are freed as well.
2342  *
2343  * If the size of the region from start to end is zero, we are
2344  * supposed to flush all modified pages within the region containing
2345  * start.  Unfortunately, a region can be split or coalesced with
2346  * neighboring regions, making it difficult to determine what the
2347  * original region was.  Therefore, we approximate this requirement by
2348  * flushing the current region containing start.
2349  *
2350  * Returns an error if any part of the specified range is not mapped.
2351  */
2352 int
2353 vm_map_sync(
2354 	vm_map_t map,
2355 	vm_offset_t start,
2356 	vm_offset_t end,
2357 	boolean_t syncio,
2358 	boolean_t invalidate)
2359 {
2360 	vm_map_entry_t current;
2361 	vm_map_entry_t entry;
2362 	vm_size_t size;
2363 	vm_object_t object;
2364 	vm_ooffset_t offset;
2365 	unsigned int last_timestamp;
2366 
2367 	vm_map_lock_read(map);
2368 	VM_MAP_RANGE_CHECK(map, start, end);
2369 	if (!vm_map_lookup_entry(map, start, &entry)) {
2370 		vm_map_unlock_read(map);
2371 		return (KERN_INVALID_ADDRESS);
2372 	} else if (start == end) {
2373 		start = entry->start;
2374 		end = entry->end;
2375 	}
2376 	/*
2377 	 * Make a first pass to check for user-wired memory and holes.
2378 	 */
2379 	for (current = entry; current != &map->header && current->start < end;
2380 	    current = current->next) {
2381 		if (invalidate && (current->eflags & MAP_ENTRY_USER_WIRED)) {
2382 			vm_map_unlock_read(map);
2383 			return (KERN_INVALID_ARGUMENT);
2384 		}
2385 		if (end > current->end &&
2386 		    (current->next == &map->header ||
2387 			current->end != current->next->start)) {
2388 			vm_map_unlock_read(map);
2389 			return (KERN_INVALID_ADDRESS);
2390 		}
2391 	}
2392 
2393 	if (invalidate)
2394 		pmap_remove(map->pmap, start, end);
2395 
2396 	/*
2397 	 * Make a second pass, cleaning/uncaching pages from the indicated
2398 	 * objects as we go.
2399 	 */
2400 	for (current = entry; current != &map->header && current->start < end;) {
2401 		offset = current->offset + (start - current->start);
2402 		size = (end <= current->end ? end : current->end) - start;
2403 		if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
2404 			vm_map_t smap;
2405 			vm_map_entry_t tentry;
2406 			vm_size_t tsize;
2407 
2408 			smap = current->object.sub_map;
2409 			vm_map_lock_read(smap);
2410 			(void) vm_map_lookup_entry(smap, offset, &tentry);
2411 			tsize = tentry->end - offset;
2412 			if (tsize < size)
2413 				size = tsize;
2414 			object = tentry->object.vm_object;
2415 			offset = tentry->offset + (offset - tentry->start);
2416 			vm_map_unlock_read(smap);
2417 		} else {
2418 			object = current->object.vm_object;
2419 		}
2420 		vm_object_reference(object);
2421 		last_timestamp = map->timestamp;
2422 		vm_map_unlock_read(map);
2423 		vm_object_sync(object, offset, size, syncio, invalidate);
2424 		start += size;
2425 		vm_object_deallocate(object);
2426 		vm_map_lock_read(map);
2427 		if (last_timestamp == map->timestamp ||
2428 		    !vm_map_lookup_entry(map, start, &current))
2429 			current = current->next;
2430 	}
2431 
2432 	vm_map_unlock_read(map);
2433 	return (KERN_SUCCESS);
2434 }
2435 
2436 /*
2437  *	vm_map_entry_unwire:	[ internal use only ]
2438  *
2439  *	Make the region specified by this entry pageable.
2440  *
2441  *	The map in question should be locked.
2442  *	[This is the reason for this routine's existence.]
2443  */
2444 static void
2445 vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry)
2446 {
2447 	vm_fault_unwire(map, entry->start, entry->end,
2448 	    entry->object.vm_object != NULL &&
2449 	    entry->object.vm_object->type == OBJT_DEVICE);
2450 	entry->wired_count = 0;
2451 }
2452 
2453 /*
2454  *	vm_map_entry_delete:	[ internal use only ]
2455  *
2456  *	Deallocate the given entry from the target map.
2457  */
2458 static void
2459 vm_map_entry_delete(vm_map_t map, vm_map_entry_t entry)
2460 {
2461 	vm_object_t object;
2462 	vm_pindex_t offidxstart, offidxend, count;
2463 
2464 	vm_map_entry_unlink(map, entry);
2465 	map->size -= entry->end - entry->start;
2466 
2467 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0 &&
2468 	    (object = entry->object.vm_object) != NULL) {
2469 		count = OFF_TO_IDX(entry->end - entry->start);
2470 		offidxstart = OFF_TO_IDX(entry->offset);
2471 		offidxend = offidxstart + count;
2472 		VM_OBJECT_LOCK(object);
2473 		if (object->ref_count != 1 &&
2474 		    ((object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING ||
2475 		    object == kernel_object || object == kmem_object)) {
2476 			vm_object_collapse(object);
2477 			vm_object_page_remove(object, offidxstart, offidxend, FALSE);
2478 			if (object->type == OBJT_SWAP)
2479 				swap_pager_freespace(object, offidxstart, count);
2480 			if (offidxend >= object->size &&
2481 			    offidxstart < object->size)
2482 				object->size = offidxstart;
2483 		}
2484 		VM_OBJECT_UNLOCK(object);
2485 	} else
2486 		entry->object.vm_object = NULL;
2487 }
2488 
2489 /*
2490  *	vm_map_delete:	[ internal use only ]
2491  *
2492  *	Deallocates the given address range from the target
2493  *	map.
2494  */
2495 int
2496 vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end)
2497 {
2498 	vm_map_entry_t entry;
2499 	vm_map_entry_t first_entry;
2500 
2501 	VM_MAP_ASSERT_LOCKED(map);
2502 
2503 	/*
2504 	 * Find the start of the region, and clip it
2505 	 */
2506 	if (!vm_map_lookup_entry(map, start, &first_entry))
2507 		entry = first_entry->next;
2508 	else {
2509 		entry = first_entry;
2510 		vm_map_clip_start(map, entry, start);
2511 	}
2512 
2513 	/*
2514 	 * Step through all entries in this region
2515 	 */
2516 	while ((entry != &map->header) && (entry->start < end)) {
2517 		vm_map_entry_t next;
2518 
2519 		/*
2520 		 * Wait for wiring or unwiring of an entry to complete.
2521 		 * Also wait for any system wirings to disappear on
2522 		 * user maps.
2523 		 */
2524 		if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 ||
2525 		    (vm_map_pmap(map) != kernel_pmap &&
2526 		    vm_map_entry_system_wired_count(entry) != 0)) {
2527 			unsigned int last_timestamp;
2528 			vm_offset_t saved_start;
2529 			vm_map_entry_t tmp_entry;
2530 
2531 			saved_start = entry->start;
2532 			entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2533 			last_timestamp = map->timestamp;
2534 			(void) vm_map_unlock_and_wait(map, 0);
2535 			vm_map_lock(map);
2536 			if (last_timestamp + 1 != map->timestamp) {
2537 				/*
2538 				 * Look again for the entry because the map was
2539 				 * modified while it was unlocked.
2540 				 * Specifically, the entry may have been
2541 				 * clipped, merged, or deleted.
2542 				 */
2543 				if (!vm_map_lookup_entry(map, saved_start,
2544 							 &tmp_entry))
2545 					entry = tmp_entry->next;
2546 				else {
2547 					entry = tmp_entry;
2548 					vm_map_clip_start(map, entry,
2549 							  saved_start);
2550 				}
2551 			}
2552 			continue;
2553 		}
2554 		vm_map_clip_end(map, entry, end);
2555 
2556 		next = entry->next;
2557 
2558 		/*
2559 		 * Unwire before removing addresses from the pmap; otherwise,
2560 		 * unwiring will put the entries back in the pmap.
2561 		 */
2562 		if (entry->wired_count != 0) {
2563 			vm_map_entry_unwire(map, entry);
2564 		}
2565 
2566 		pmap_remove(map->pmap, entry->start, entry->end);
2567 
2568 		/*
2569 		 * Delete the entry only after removing all pmap
2570 		 * entries pointing to its pages.  (Otherwise, its
2571 		 * page frames may be reallocated, and any modify bits
2572 		 * will be set in the wrong object!)
2573 		 */
2574 		vm_map_entry_delete(map, entry);
2575 		entry->next = map->deferred_freelist;
2576 		map->deferred_freelist = entry;
2577 		entry = next;
2578 	}
2579 	return (KERN_SUCCESS);
2580 }
2581 
2582 /*
2583  *	vm_map_remove:
2584  *
2585  *	Remove the given address range from the target map.
2586  *	This is the exported form of vm_map_delete.
2587  */
2588 int
2589 vm_map_remove(vm_map_t map, vm_offset_t start, vm_offset_t end)
2590 {
2591 	int result;
2592 
2593 	vm_map_lock(map);
2594 	VM_MAP_RANGE_CHECK(map, start, end);
2595 	result = vm_map_delete(map, start, end);
2596 	vm_map_unlock(map);
2597 	return (result);
2598 }
2599 
2600 /*
2601  *	vm_map_check_protection:
2602  *
2603  *	Assert that the target map allows the specified privilege on the
2604  *	entire address region given.  The entire region must be allocated.
2605  *
2606  *	WARNING!  This code does not and should not check whether the
2607  *	contents of the region is accessible.  For example a smaller file
2608  *	might be mapped into a larger address space.
2609  *
2610  *	NOTE!  This code is also called by munmap().
2611  *
2612  *	The map must be locked.  A read lock is sufficient.
2613  */
2614 boolean_t
2615 vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end,
2616 			vm_prot_t protection)
2617 {
2618 	vm_map_entry_t entry;
2619 	vm_map_entry_t tmp_entry;
2620 
2621 	if (!vm_map_lookup_entry(map, start, &tmp_entry))
2622 		return (FALSE);
2623 	entry = tmp_entry;
2624 
2625 	while (start < end) {
2626 		if (entry == &map->header)
2627 			return (FALSE);
2628 		/*
2629 		 * No holes allowed!
2630 		 */
2631 		if (start < entry->start)
2632 			return (FALSE);
2633 		/*
2634 		 * Check protection associated with entry.
2635 		 */
2636 		if ((entry->protection & protection) != protection)
2637 			return (FALSE);
2638 		/* go to next entry */
2639 		start = entry->end;
2640 		entry = entry->next;
2641 	}
2642 	return (TRUE);
2643 }
2644 
2645 /*
2646  *	vm_map_copy_entry:
2647  *
2648  *	Copies the contents of the source entry to the destination
2649  *	entry.  The entries *must* be aligned properly.
2650  */
2651 static void
2652 vm_map_copy_entry(
2653 	vm_map_t src_map,
2654 	vm_map_t dst_map,
2655 	vm_map_entry_t src_entry,
2656 	vm_map_entry_t dst_entry)
2657 {
2658 	vm_object_t src_object;
2659 
2660 	VM_MAP_ASSERT_LOCKED(dst_map);
2661 
2662 	if ((dst_entry->eflags|src_entry->eflags) & MAP_ENTRY_IS_SUB_MAP)
2663 		return;
2664 
2665 	if (src_entry->wired_count == 0) {
2666 
2667 		/*
2668 		 * If the source entry is marked needs_copy, it is already
2669 		 * write-protected.
2670 		 */
2671 		if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) {
2672 			pmap_protect(src_map->pmap,
2673 			    src_entry->start,
2674 			    src_entry->end,
2675 			    src_entry->protection & ~VM_PROT_WRITE);
2676 		}
2677 
2678 		/*
2679 		 * Make a copy of the object.
2680 		 */
2681 		if ((src_object = src_entry->object.vm_object) != NULL) {
2682 			VM_OBJECT_LOCK(src_object);
2683 			if ((src_object->handle == NULL) &&
2684 				(src_object->type == OBJT_DEFAULT ||
2685 				 src_object->type == OBJT_SWAP)) {
2686 				vm_object_collapse(src_object);
2687 				if ((src_object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING) {
2688 					vm_object_split(src_entry);
2689 					src_object = src_entry->object.vm_object;
2690 				}
2691 			}
2692 			vm_object_reference_locked(src_object);
2693 			vm_object_clear_flag(src_object, OBJ_ONEMAPPING);
2694 			VM_OBJECT_UNLOCK(src_object);
2695 			dst_entry->object.vm_object = src_object;
2696 			src_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY);
2697 			dst_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY);
2698 			dst_entry->offset = src_entry->offset;
2699 		} else {
2700 			dst_entry->object.vm_object = NULL;
2701 			dst_entry->offset = 0;
2702 		}
2703 
2704 		pmap_copy(dst_map->pmap, src_map->pmap, dst_entry->start,
2705 		    dst_entry->end - dst_entry->start, src_entry->start);
2706 	} else {
2707 		/*
2708 		 * Of course, wired down pages can't be set copy-on-write.
2709 		 * Cause wired pages to be copied into the new map by
2710 		 * simulating faults (the new pages are pageable)
2711 		 */
2712 		vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry);
2713 	}
2714 }
2715 
2716 /*
2717  * vmspace_map_entry_forked:
2718  * Update the newly-forked vmspace each time a map entry is inherited
2719  * or copied.  The values for vm_dsize and vm_tsize are approximate
2720  * (and mostly-obsolete ideas in the face of mmap(2) et al.)
2721  */
2722 static void
2723 vmspace_map_entry_forked(const struct vmspace *vm1, struct vmspace *vm2,
2724     vm_map_entry_t entry)
2725 {
2726 	vm_size_t entrysize;
2727 	vm_offset_t newend;
2728 
2729 	entrysize = entry->end - entry->start;
2730 	vm2->vm_map.size += entrysize;
2731 	if (entry->eflags & (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP)) {
2732 		vm2->vm_ssize += btoc(entrysize);
2733 	} else if (entry->start >= (vm_offset_t)vm1->vm_daddr &&
2734 	    entry->start < (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize)) {
2735 		newend = MIN(entry->end,
2736 		    (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize));
2737 		vm2->vm_dsize += btoc(newend - entry->start);
2738 	} else if (entry->start >= (vm_offset_t)vm1->vm_taddr &&
2739 	    entry->start < (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize)) {
2740 		newend = MIN(entry->end,
2741 		    (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize));
2742 		vm2->vm_tsize += btoc(newend - entry->start);
2743 	}
2744 }
2745 
2746 /*
2747  * vmspace_fork:
2748  * Create a new process vmspace structure and vm_map
2749  * based on those of an existing process.  The new map
2750  * is based on the old map, according to the inheritance
2751  * values on the regions in that map.
2752  *
2753  * XXX It might be worth coalescing the entries added to the new vmspace.
2754  *
2755  * The source map must not be locked.
2756  */
2757 struct vmspace *
2758 vmspace_fork(struct vmspace *vm1)
2759 {
2760 	struct vmspace *vm2;
2761 	vm_map_t old_map = &vm1->vm_map;
2762 	vm_map_t new_map;
2763 	vm_map_entry_t old_entry;
2764 	vm_map_entry_t new_entry;
2765 	vm_object_t object;
2766 	int locked;
2767 
2768 	vm_map_lock(old_map);
2769 
2770 	vm2 = vmspace_alloc(old_map->min_offset, old_map->max_offset);
2771 	if (vm2 == NULL)
2772 		goto unlock_and_return;
2773 	vm2->vm_taddr = vm1->vm_taddr;
2774 	vm2->vm_daddr = vm1->vm_daddr;
2775 	vm2->vm_maxsaddr = vm1->vm_maxsaddr;
2776 	new_map = &vm2->vm_map;	/* XXX */
2777 	locked = vm_map_trylock(new_map); /* trylock to silence WITNESS */
2778 	KASSERT(locked, ("vmspace_fork: lock failed"));
2779 	new_map->timestamp = 1;
2780 
2781 	old_entry = old_map->header.next;
2782 
2783 	while (old_entry != &old_map->header) {
2784 		if (old_entry->eflags & MAP_ENTRY_IS_SUB_MAP)
2785 			panic("vm_map_fork: encountered a submap");
2786 
2787 		switch (old_entry->inheritance) {
2788 		case VM_INHERIT_NONE:
2789 			break;
2790 
2791 		case VM_INHERIT_SHARE:
2792 			/*
2793 			 * Clone the entry, creating the shared object if necessary.
2794 			 */
2795 			object = old_entry->object.vm_object;
2796 			if (object == NULL) {
2797 				object = vm_object_allocate(OBJT_DEFAULT,
2798 					atop(old_entry->end - old_entry->start));
2799 				old_entry->object.vm_object = object;
2800 				old_entry->offset = 0;
2801 			}
2802 
2803 			/*
2804 			 * Add the reference before calling vm_object_shadow
2805 			 * to insure that a shadow object is created.
2806 			 */
2807 			vm_object_reference(object);
2808 			if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) {
2809 				vm_object_shadow(&old_entry->object.vm_object,
2810 					&old_entry->offset,
2811 					atop(old_entry->end - old_entry->start));
2812 				old_entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
2813 				/* Transfer the second reference too. */
2814 				vm_object_reference(
2815 				    old_entry->object.vm_object);
2816 
2817 				/*
2818 				 * As in vm_map_simplify_entry(), the
2819 				 * vnode lock will not be acquired in
2820 				 * this call to vm_object_deallocate().
2821 				 */
2822 				vm_object_deallocate(object);
2823 				object = old_entry->object.vm_object;
2824 			}
2825 			VM_OBJECT_LOCK(object);
2826 			vm_object_clear_flag(object, OBJ_ONEMAPPING);
2827 			VM_OBJECT_UNLOCK(object);
2828 
2829 			/*
2830 			 * Clone the entry, referencing the shared object.
2831 			 */
2832 			new_entry = vm_map_entry_create(new_map);
2833 			*new_entry = *old_entry;
2834 			new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED |
2835 			    MAP_ENTRY_IN_TRANSITION);
2836 			new_entry->wired_count = 0;
2837 
2838 			/*
2839 			 * Insert the entry into the new map -- we know we're
2840 			 * inserting at the end of the new map.
2841 			 */
2842 			vm_map_entry_link(new_map, new_map->header.prev,
2843 			    new_entry);
2844 			vmspace_map_entry_forked(vm1, vm2, new_entry);
2845 
2846 			/*
2847 			 * Update the physical map
2848 			 */
2849 			pmap_copy(new_map->pmap, old_map->pmap,
2850 			    new_entry->start,
2851 			    (old_entry->end - old_entry->start),
2852 			    old_entry->start);
2853 			break;
2854 
2855 		case VM_INHERIT_COPY:
2856 			/*
2857 			 * Clone the entry and link into the map.
2858 			 */
2859 			new_entry = vm_map_entry_create(new_map);
2860 			*new_entry = *old_entry;
2861 			new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED |
2862 			    MAP_ENTRY_IN_TRANSITION);
2863 			new_entry->wired_count = 0;
2864 			new_entry->object.vm_object = NULL;
2865 			vm_map_entry_link(new_map, new_map->header.prev,
2866 			    new_entry);
2867 			vmspace_map_entry_forked(vm1, vm2, new_entry);
2868 			vm_map_copy_entry(old_map, new_map, old_entry,
2869 			    new_entry);
2870 			break;
2871 		}
2872 		old_entry = old_entry->next;
2873 	}
2874 unlock_and_return:
2875 	vm_map_unlock(old_map);
2876 	if (vm2 != NULL)
2877 		vm_map_unlock(new_map);
2878 
2879 	return (vm2);
2880 }
2881 
2882 int
2883 vm_map_stack(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
2884     vm_prot_t prot, vm_prot_t max, int cow)
2885 {
2886 	vm_map_entry_t new_entry, prev_entry;
2887 	vm_offset_t bot, top;
2888 	vm_size_t init_ssize;
2889 	int orient, rv;
2890 	rlim_t vmemlim;
2891 
2892 	/*
2893 	 * The stack orientation is piggybacked with the cow argument.
2894 	 * Extract it into orient and mask the cow argument so that we
2895 	 * don't pass it around further.
2896 	 * NOTE: We explicitly allow bi-directional stacks.
2897 	 */
2898 	orient = cow & (MAP_STACK_GROWS_DOWN|MAP_STACK_GROWS_UP);
2899 	cow &= ~orient;
2900 	KASSERT(orient != 0, ("No stack grow direction"));
2901 
2902 	if (addrbos < vm_map_min(map) ||
2903 	    addrbos > vm_map_max(map) ||
2904 	    addrbos + max_ssize < addrbos)
2905 		return (KERN_NO_SPACE);
2906 
2907 	init_ssize = (max_ssize < sgrowsiz) ? max_ssize : sgrowsiz;
2908 
2909 	PROC_LOCK(curthread->td_proc);
2910 	vmemlim = lim_cur(curthread->td_proc, RLIMIT_VMEM);
2911 	PROC_UNLOCK(curthread->td_proc);
2912 
2913 	vm_map_lock(map);
2914 
2915 	/* If addr is already mapped, no go */
2916 	if (vm_map_lookup_entry(map, addrbos, &prev_entry)) {
2917 		vm_map_unlock(map);
2918 		return (KERN_NO_SPACE);
2919 	}
2920 
2921 	/* If we would blow our VMEM resource limit, no go */
2922 	if (map->size + init_ssize > vmemlim) {
2923 		vm_map_unlock(map);
2924 		return (KERN_NO_SPACE);
2925 	}
2926 
2927 	/*
2928 	 * If we can't accomodate max_ssize in the current mapping, no go.
2929 	 * However, we need to be aware that subsequent user mappings might
2930 	 * map into the space we have reserved for stack, and currently this
2931 	 * space is not protected.
2932 	 *
2933 	 * Hopefully we will at least detect this condition when we try to
2934 	 * grow the stack.
2935 	 */
2936 	if ((prev_entry->next != &map->header) &&
2937 	    (prev_entry->next->start < addrbos + max_ssize)) {
2938 		vm_map_unlock(map);
2939 		return (KERN_NO_SPACE);
2940 	}
2941 
2942 	/*
2943 	 * We initially map a stack of only init_ssize.  We will grow as
2944 	 * needed later.  Depending on the orientation of the stack (i.e.
2945 	 * the grow direction) we either map at the top of the range, the
2946 	 * bottom of the range or in the middle.
2947 	 *
2948 	 * Note: we would normally expect prot and max to be VM_PROT_ALL,
2949 	 * and cow to be 0.  Possibly we should eliminate these as input
2950 	 * parameters, and just pass these values here in the insert call.
2951 	 */
2952 	if (orient == MAP_STACK_GROWS_DOWN)
2953 		bot = addrbos + max_ssize - init_ssize;
2954 	else if (orient == MAP_STACK_GROWS_UP)
2955 		bot = addrbos;
2956 	else
2957 		bot = round_page(addrbos + max_ssize/2 - init_ssize/2);
2958 	top = bot + init_ssize;
2959 	rv = vm_map_insert(map, NULL, 0, bot, top, prot, max, cow);
2960 
2961 	/* Now set the avail_ssize amount. */
2962 	if (rv == KERN_SUCCESS) {
2963 		if (prev_entry != &map->header)
2964 			vm_map_clip_end(map, prev_entry, bot);
2965 		new_entry = prev_entry->next;
2966 		if (new_entry->end != top || new_entry->start != bot)
2967 			panic("Bad entry start/end for new stack entry");
2968 
2969 		new_entry->avail_ssize = max_ssize - init_ssize;
2970 		if (orient & MAP_STACK_GROWS_DOWN)
2971 			new_entry->eflags |= MAP_ENTRY_GROWS_DOWN;
2972 		if (orient & MAP_STACK_GROWS_UP)
2973 			new_entry->eflags |= MAP_ENTRY_GROWS_UP;
2974 	}
2975 
2976 	vm_map_unlock(map);
2977 	return (rv);
2978 }
2979 
2980 /* Attempts to grow a vm stack entry.  Returns KERN_SUCCESS if the
2981  * desired address is already mapped, or if we successfully grow
2982  * the stack.  Also returns KERN_SUCCESS if addr is outside the
2983  * stack range (this is strange, but preserves compatibility with
2984  * the grow function in vm_machdep.c).
2985  */
2986 int
2987 vm_map_growstack(struct proc *p, vm_offset_t addr)
2988 {
2989 	vm_map_entry_t next_entry, prev_entry;
2990 	vm_map_entry_t new_entry, stack_entry;
2991 	struct vmspace *vm = p->p_vmspace;
2992 	vm_map_t map = &vm->vm_map;
2993 	vm_offset_t end;
2994 	size_t grow_amount, max_grow;
2995 	rlim_t stacklim, vmemlim;
2996 	int is_procstack, rv;
2997 
2998 Retry:
2999 	PROC_LOCK(p);
3000 	stacklim = lim_cur(p, RLIMIT_STACK);
3001 	vmemlim = lim_cur(p, RLIMIT_VMEM);
3002 	PROC_UNLOCK(p);
3003 
3004 	vm_map_lock_read(map);
3005 
3006 	/* If addr is already in the entry range, no need to grow.*/
3007 	if (vm_map_lookup_entry(map, addr, &prev_entry)) {
3008 		vm_map_unlock_read(map);
3009 		return (KERN_SUCCESS);
3010 	}
3011 
3012 	next_entry = prev_entry->next;
3013 	if (!(prev_entry->eflags & MAP_ENTRY_GROWS_UP)) {
3014 		/*
3015 		 * This entry does not grow upwards. Since the address lies
3016 		 * beyond this entry, the next entry (if one exists) has to
3017 		 * be a downward growable entry. The entry list header is
3018 		 * never a growable entry, so it suffices to check the flags.
3019 		 */
3020 		if (!(next_entry->eflags & MAP_ENTRY_GROWS_DOWN)) {
3021 			vm_map_unlock_read(map);
3022 			return (KERN_SUCCESS);
3023 		}
3024 		stack_entry = next_entry;
3025 	} else {
3026 		/*
3027 		 * This entry grows upward. If the next entry does not at
3028 		 * least grow downwards, this is the entry we need to grow.
3029 		 * otherwise we have two possible choices and we have to
3030 		 * select one.
3031 		 */
3032 		if (next_entry->eflags & MAP_ENTRY_GROWS_DOWN) {
3033 			/*
3034 			 * We have two choices; grow the entry closest to
3035 			 * the address to minimize the amount of growth.
3036 			 */
3037 			if (addr - prev_entry->end <= next_entry->start - addr)
3038 				stack_entry = prev_entry;
3039 			else
3040 				stack_entry = next_entry;
3041 		} else
3042 			stack_entry = prev_entry;
3043 	}
3044 
3045 	if (stack_entry == next_entry) {
3046 		KASSERT(stack_entry->eflags & MAP_ENTRY_GROWS_DOWN, ("foo"));
3047 		KASSERT(addr < stack_entry->start, ("foo"));
3048 		end = (prev_entry != &map->header) ? prev_entry->end :
3049 		    stack_entry->start - stack_entry->avail_ssize;
3050 		grow_amount = roundup(stack_entry->start - addr, PAGE_SIZE);
3051 		max_grow = stack_entry->start - end;
3052 	} else {
3053 		KASSERT(stack_entry->eflags & MAP_ENTRY_GROWS_UP, ("foo"));
3054 		KASSERT(addr >= stack_entry->end, ("foo"));
3055 		end = (next_entry != &map->header) ? next_entry->start :
3056 		    stack_entry->end + stack_entry->avail_ssize;
3057 		grow_amount = roundup(addr + 1 - stack_entry->end, PAGE_SIZE);
3058 		max_grow = end - stack_entry->end;
3059 	}
3060 
3061 	if (grow_amount > stack_entry->avail_ssize) {
3062 		vm_map_unlock_read(map);
3063 		return (KERN_NO_SPACE);
3064 	}
3065 
3066 	/*
3067 	 * If there is no longer enough space between the entries nogo, and
3068 	 * adjust the available space.  Note: this  should only happen if the
3069 	 * user has mapped into the stack area after the stack was created,
3070 	 * and is probably an error.
3071 	 *
3072 	 * This also effectively destroys any guard page the user might have
3073 	 * intended by limiting the stack size.
3074 	 */
3075 	if (grow_amount > max_grow) {
3076 		if (vm_map_lock_upgrade(map))
3077 			goto Retry;
3078 
3079 		stack_entry->avail_ssize = max_grow;
3080 
3081 		vm_map_unlock(map);
3082 		return (KERN_NO_SPACE);
3083 	}
3084 
3085 	is_procstack = (addr >= (vm_offset_t)vm->vm_maxsaddr) ? 1 : 0;
3086 
3087 	/*
3088 	 * If this is the main process stack, see if we're over the stack
3089 	 * limit.
3090 	 */
3091 	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) {
3092 		vm_map_unlock_read(map);
3093 		return (KERN_NO_SPACE);
3094 	}
3095 
3096 	/* Round up the grow amount modulo SGROWSIZ */
3097 	grow_amount = roundup (grow_amount, sgrowsiz);
3098 	if (grow_amount > stack_entry->avail_ssize)
3099 		grow_amount = stack_entry->avail_ssize;
3100 	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) {
3101 		grow_amount = stacklim - ctob(vm->vm_ssize);
3102 	}
3103 
3104 	/* If we would blow our VMEM resource limit, no go */
3105 	if (map->size + grow_amount > vmemlim) {
3106 		vm_map_unlock_read(map);
3107 		return (KERN_NO_SPACE);
3108 	}
3109 
3110 	if (vm_map_lock_upgrade(map))
3111 		goto Retry;
3112 
3113 	if (stack_entry == next_entry) {
3114 		/*
3115 		 * Growing downward.
3116 		 */
3117 		/* Get the preliminary new entry start value */
3118 		addr = stack_entry->start - grow_amount;
3119 
3120 		/*
3121 		 * If this puts us into the previous entry, cut back our
3122 		 * growth to the available space. Also, see the note above.
3123 		 */
3124 		if (addr < end) {
3125 			stack_entry->avail_ssize = max_grow;
3126 			addr = end;
3127 		}
3128 
3129 		rv = vm_map_insert(map, NULL, 0, addr, stack_entry->start,
3130 		    p->p_sysent->sv_stackprot, VM_PROT_ALL, 0);
3131 
3132 		/* Adjust the available stack space by the amount we grew. */
3133 		if (rv == KERN_SUCCESS) {
3134 			if (prev_entry != &map->header)
3135 				vm_map_clip_end(map, prev_entry, addr);
3136 			new_entry = prev_entry->next;
3137 			KASSERT(new_entry == stack_entry->prev, ("foo"));
3138 			KASSERT(new_entry->end == stack_entry->start, ("foo"));
3139 			KASSERT(new_entry->start == addr, ("foo"));
3140 			grow_amount = new_entry->end - new_entry->start;
3141 			new_entry->avail_ssize = stack_entry->avail_ssize -
3142 			    grow_amount;
3143 			stack_entry->eflags &= ~MAP_ENTRY_GROWS_DOWN;
3144 			new_entry->eflags |= MAP_ENTRY_GROWS_DOWN;
3145 		}
3146 	} else {
3147 		/*
3148 		 * Growing upward.
3149 		 */
3150 		addr = stack_entry->end + grow_amount;
3151 
3152 		/*
3153 		 * If this puts us into the next entry, cut back our growth
3154 		 * to the available space. Also, see the note above.
3155 		 */
3156 		if (addr > end) {
3157 			stack_entry->avail_ssize = end - stack_entry->end;
3158 			addr = end;
3159 		}
3160 
3161 		grow_amount = addr - stack_entry->end;
3162 
3163 		/* Grow the underlying object if applicable. */
3164 		if (stack_entry->object.vm_object == NULL ||
3165 		    vm_object_coalesce(stack_entry->object.vm_object,
3166 		    stack_entry->offset,
3167 		    (vm_size_t)(stack_entry->end - stack_entry->start),
3168 		    (vm_size_t)grow_amount)) {
3169 			map->size += (addr - stack_entry->end);
3170 			/* Update the current entry. */
3171 			stack_entry->end = addr;
3172 			stack_entry->avail_ssize -= grow_amount;
3173 			vm_map_entry_resize_free(map, stack_entry);
3174 			rv = KERN_SUCCESS;
3175 
3176 			if (next_entry != &map->header)
3177 				vm_map_clip_start(map, next_entry, addr);
3178 		} else
3179 			rv = KERN_FAILURE;
3180 	}
3181 
3182 	if (rv == KERN_SUCCESS && is_procstack)
3183 		vm->vm_ssize += btoc(grow_amount);
3184 
3185 	vm_map_unlock(map);
3186 
3187 	/*
3188 	 * Heed the MAP_WIREFUTURE flag if it was set for this process.
3189 	 */
3190 	if (rv == KERN_SUCCESS && (map->flags & MAP_WIREFUTURE)) {
3191 		vm_map_wire(map,
3192 		    (stack_entry == next_entry) ? addr : addr - grow_amount,
3193 		    (stack_entry == next_entry) ? stack_entry->start : addr,
3194 		    (p->p_flag & P_SYSTEM)
3195 		    ? VM_MAP_WIRE_SYSTEM|VM_MAP_WIRE_NOHOLES
3196 		    : VM_MAP_WIRE_USER|VM_MAP_WIRE_NOHOLES);
3197 	}
3198 
3199 	return (rv);
3200 }
3201 
3202 /*
3203  * Unshare the specified VM space for exec.  If other processes are
3204  * mapped to it, then create a new one.  The new vmspace is null.
3205  */
3206 int
3207 vmspace_exec(struct proc *p, vm_offset_t minuser, vm_offset_t maxuser)
3208 {
3209 	struct vmspace *oldvmspace = p->p_vmspace;
3210 	struct vmspace *newvmspace;
3211 
3212 	newvmspace = vmspace_alloc(minuser, maxuser);
3213 	if (newvmspace == NULL)
3214 		return (ENOMEM);
3215 	newvmspace->vm_swrss = oldvmspace->vm_swrss;
3216 	/*
3217 	 * This code is written like this for prototype purposes.  The
3218 	 * goal is to avoid running down the vmspace here, but let the
3219 	 * other process's that are still using the vmspace to finally
3220 	 * run it down.  Even though there is little or no chance of blocking
3221 	 * here, it is a good idea to keep this form for future mods.
3222 	 */
3223 	PROC_VMSPACE_LOCK(p);
3224 	p->p_vmspace = newvmspace;
3225 	PROC_VMSPACE_UNLOCK(p);
3226 	if (p == curthread->td_proc)
3227 		pmap_activate(curthread);
3228 	vmspace_free(oldvmspace);
3229 	return (0);
3230 }
3231 
3232 /*
3233  * Unshare the specified VM space for forcing COW.  This
3234  * is called by rfork, for the (RFMEM|RFPROC) == 0 case.
3235  */
3236 int
3237 vmspace_unshare(struct proc *p)
3238 {
3239 	struct vmspace *oldvmspace = p->p_vmspace;
3240 	struct vmspace *newvmspace;
3241 
3242 	if (oldvmspace->vm_refcnt == 1)
3243 		return (0);
3244 	newvmspace = vmspace_fork(oldvmspace);
3245 	if (newvmspace == NULL)
3246 		return (ENOMEM);
3247 	PROC_VMSPACE_LOCK(p);
3248 	p->p_vmspace = newvmspace;
3249 	PROC_VMSPACE_UNLOCK(p);
3250 	if (p == curthread->td_proc)
3251 		pmap_activate(curthread);
3252 	vmspace_free(oldvmspace);
3253 	return (0);
3254 }
3255 
3256 /*
3257  *	vm_map_lookup:
3258  *
3259  *	Finds the VM object, offset, and
3260  *	protection for a given virtual address in the
3261  *	specified map, assuming a page fault of the
3262  *	type specified.
3263  *
3264  *	Leaves the map in question locked for read; return
3265  *	values are guaranteed until a vm_map_lookup_done
3266  *	call is performed.  Note that the map argument
3267  *	is in/out; the returned map must be used in
3268  *	the call to vm_map_lookup_done.
3269  *
3270  *	A handle (out_entry) is returned for use in
3271  *	vm_map_lookup_done, to make that fast.
3272  *
3273  *	If a lookup is requested with "write protection"
3274  *	specified, the map may be changed to perform virtual
3275  *	copying operations, although the data referenced will
3276  *	remain the same.
3277  */
3278 int
3279 vm_map_lookup(vm_map_t *var_map,		/* IN/OUT */
3280 	      vm_offset_t vaddr,
3281 	      vm_prot_t fault_typea,
3282 	      vm_map_entry_t *out_entry,	/* OUT */
3283 	      vm_object_t *object,		/* OUT */
3284 	      vm_pindex_t *pindex,		/* OUT */
3285 	      vm_prot_t *out_prot,		/* OUT */
3286 	      boolean_t *wired)			/* OUT */
3287 {
3288 	vm_map_entry_t entry;
3289 	vm_map_t map = *var_map;
3290 	vm_prot_t prot;
3291 	vm_prot_t fault_type = fault_typea;
3292 
3293 RetryLookup:;
3294 
3295 	vm_map_lock_read(map);
3296 
3297 	/*
3298 	 * Lookup the faulting address.
3299 	 */
3300 	if (!vm_map_lookup_entry(map, vaddr, out_entry)) {
3301 		vm_map_unlock_read(map);
3302 		return (KERN_INVALID_ADDRESS);
3303 	}
3304 
3305 	entry = *out_entry;
3306 
3307 	/*
3308 	 * Handle submaps.
3309 	 */
3310 	if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
3311 		vm_map_t old_map = map;
3312 
3313 		*var_map = map = entry->object.sub_map;
3314 		vm_map_unlock_read(old_map);
3315 		goto RetryLookup;
3316 	}
3317 
3318 	/*
3319 	 * Check whether this task is allowed to have this page.
3320 	 * Note the special case for MAP_ENTRY_COW
3321 	 * pages with an override.  This is to implement a forced
3322 	 * COW for debuggers.
3323 	 */
3324 	if (fault_type & VM_PROT_OVERRIDE_WRITE)
3325 		prot = entry->max_protection;
3326 	else
3327 		prot = entry->protection;
3328 	fault_type &= (VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE);
3329 	if ((fault_type & prot) != fault_type) {
3330 		vm_map_unlock_read(map);
3331 		return (KERN_PROTECTION_FAILURE);
3332 	}
3333 	if ((entry->eflags & MAP_ENTRY_USER_WIRED) &&
3334 	    (entry->eflags & MAP_ENTRY_COW) &&
3335 	    (fault_type & VM_PROT_WRITE) &&
3336 	    (fault_typea & VM_PROT_OVERRIDE_WRITE) == 0) {
3337 		vm_map_unlock_read(map);
3338 		return (KERN_PROTECTION_FAILURE);
3339 	}
3340 
3341 	/*
3342 	 * If this page is not pageable, we have to get it for all possible
3343 	 * accesses.
3344 	 */
3345 	*wired = (entry->wired_count != 0);
3346 	if (*wired)
3347 		prot = fault_type = entry->protection;
3348 
3349 	/*
3350 	 * If the entry was copy-on-write, we either ...
3351 	 */
3352 	if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
3353 		/*
3354 		 * If we want to write the page, we may as well handle that
3355 		 * now since we've got the map locked.
3356 		 *
3357 		 * If we don't need to write the page, we just demote the
3358 		 * permissions allowed.
3359 		 */
3360 		if (fault_type & VM_PROT_WRITE) {
3361 			/*
3362 			 * Make a new object, and place it in the object
3363 			 * chain.  Note that no new references have appeared
3364 			 * -- one just moved from the map to the new
3365 			 * object.
3366 			 */
3367 			if (vm_map_lock_upgrade(map))
3368 				goto RetryLookup;
3369 
3370 			vm_object_shadow(
3371 			    &entry->object.vm_object,
3372 			    &entry->offset,
3373 			    atop(entry->end - entry->start));
3374 			entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
3375 
3376 			vm_map_lock_downgrade(map);
3377 		} else {
3378 			/*
3379 			 * We're attempting to read a copy-on-write page --
3380 			 * don't allow writes.
3381 			 */
3382 			prot &= ~VM_PROT_WRITE;
3383 		}
3384 	}
3385 
3386 	/*
3387 	 * Create an object if necessary.
3388 	 */
3389 	if (entry->object.vm_object == NULL &&
3390 	    !map->system_map) {
3391 		if (vm_map_lock_upgrade(map))
3392 			goto RetryLookup;
3393 		entry->object.vm_object = vm_object_allocate(OBJT_DEFAULT,
3394 		    atop(entry->end - entry->start));
3395 		entry->offset = 0;
3396 		vm_map_lock_downgrade(map);
3397 	}
3398 
3399 	/*
3400 	 * Return the object/offset from this entry.  If the entry was
3401 	 * copy-on-write or empty, it has been fixed up.
3402 	 */
3403 	*pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
3404 	*object = entry->object.vm_object;
3405 
3406 	*out_prot = prot;
3407 	return (KERN_SUCCESS);
3408 }
3409 
3410 /*
3411  *	vm_map_lookup_locked:
3412  *
3413  *	Lookup the faulting address.  A version of vm_map_lookup that returns
3414  *      KERN_FAILURE instead of blocking on map lock or memory allocation.
3415  */
3416 int
3417 vm_map_lookup_locked(vm_map_t *var_map,		/* IN/OUT */
3418 		     vm_offset_t vaddr,
3419 		     vm_prot_t fault_typea,
3420 		     vm_map_entry_t *out_entry,	/* OUT */
3421 		     vm_object_t *object,	/* OUT */
3422 		     vm_pindex_t *pindex,	/* OUT */
3423 		     vm_prot_t *out_prot,	/* OUT */
3424 		     boolean_t *wired)		/* OUT */
3425 {
3426 	vm_map_entry_t entry;
3427 	vm_map_t map = *var_map;
3428 	vm_prot_t prot;
3429 	vm_prot_t fault_type = fault_typea;
3430 
3431 	/*
3432 	 * Lookup the faulting address.
3433 	 */
3434 	if (!vm_map_lookup_entry(map, vaddr, out_entry))
3435 		return (KERN_INVALID_ADDRESS);
3436 
3437 	entry = *out_entry;
3438 
3439 	/*
3440 	 * Fail if the entry refers to a submap.
3441 	 */
3442 	if (entry->eflags & MAP_ENTRY_IS_SUB_MAP)
3443 		return (KERN_FAILURE);
3444 
3445 	/*
3446 	 * Check whether this task is allowed to have this page.
3447 	 * Note the special case for MAP_ENTRY_COW
3448 	 * pages with an override.  This is to implement a forced
3449 	 * COW for debuggers.
3450 	 */
3451 	if (fault_type & VM_PROT_OVERRIDE_WRITE)
3452 		prot = entry->max_protection;
3453 	else
3454 		prot = entry->protection;
3455 	fault_type &= VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE;
3456 	if ((fault_type & prot) != fault_type)
3457 		return (KERN_PROTECTION_FAILURE);
3458 	if ((entry->eflags & MAP_ENTRY_USER_WIRED) &&
3459 	    (entry->eflags & MAP_ENTRY_COW) &&
3460 	    (fault_type & VM_PROT_WRITE) &&
3461 	    (fault_typea & VM_PROT_OVERRIDE_WRITE) == 0)
3462 		return (KERN_PROTECTION_FAILURE);
3463 
3464 	/*
3465 	 * If this page is not pageable, we have to get it for all possible
3466 	 * accesses.
3467 	 */
3468 	*wired = (entry->wired_count != 0);
3469 	if (*wired)
3470 		prot = fault_type = entry->protection;
3471 
3472 	if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
3473 		/*
3474 		 * Fail if the entry was copy-on-write for a write fault.
3475 		 */
3476 		if (fault_type & VM_PROT_WRITE)
3477 			return (KERN_FAILURE);
3478 		/*
3479 		 * We're attempting to read a copy-on-write page --
3480 		 * don't allow writes.
3481 		 */
3482 		prot &= ~VM_PROT_WRITE;
3483 	}
3484 
3485 	/*
3486 	 * Fail if an object should be created.
3487 	 */
3488 	if (entry->object.vm_object == NULL && !map->system_map)
3489 		return (KERN_FAILURE);
3490 
3491 	/*
3492 	 * Return the object/offset from this entry.  If the entry was
3493 	 * copy-on-write or empty, it has been fixed up.
3494 	 */
3495 	*pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
3496 	*object = entry->object.vm_object;
3497 
3498 	*out_prot = prot;
3499 	return (KERN_SUCCESS);
3500 }
3501 
3502 /*
3503  *	vm_map_lookup_done:
3504  *
3505  *	Releases locks acquired by a vm_map_lookup
3506  *	(according to the handle returned by that lookup).
3507  */
3508 void
3509 vm_map_lookup_done(vm_map_t map, vm_map_entry_t entry)
3510 {
3511 	/*
3512 	 * Unlock the main-level map
3513 	 */
3514 	vm_map_unlock_read(map);
3515 }
3516 
3517 #include "opt_ddb.h"
3518 #ifdef DDB
3519 #include <sys/kernel.h>
3520 
3521 #include <ddb/ddb.h>
3522 
3523 /*
3524  *	vm_map_print:	[ debug ]
3525  */
3526 DB_SHOW_COMMAND(map, vm_map_print)
3527 {
3528 	static int nlines;
3529 	/* XXX convert args. */
3530 	vm_map_t map = (vm_map_t)addr;
3531 	boolean_t full = have_addr;
3532 
3533 	vm_map_entry_t entry;
3534 
3535 	db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n",
3536 	    (void *)map,
3537 	    (void *)map->pmap, map->nentries, map->timestamp);
3538 	nlines++;
3539 
3540 	if (!full && db_indent)
3541 		return;
3542 
3543 	db_indent += 2;
3544 	for (entry = map->header.next; entry != &map->header;
3545 	    entry = entry->next) {
3546 		db_iprintf("map entry %p: start=%p, end=%p\n",
3547 		    (void *)entry, (void *)entry->start, (void *)entry->end);
3548 		nlines++;
3549 		{
3550 			static char *inheritance_name[4] =
3551 			{"share", "copy", "none", "donate_copy"};
3552 
3553 			db_iprintf(" prot=%x/%x/%s",
3554 			    entry->protection,
3555 			    entry->max_protection,
3556 			    inheritance_name[(int)(unsigned char)entry->inheritance]);
3557 			if (entry->wired_count != 0)
3558 				db_printf(", wired");
3559 		}
3560 		if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
3561 			db_printf(", share=%p, offset=0x%jx\n",
3562 			    (void *)entry->object.sub_map,
3563 			    (uintmax_t)entry->offset);
3564 			nlines++;
3565 			if ((entry->prev == &map->header) ||
3566 			    (entry->prev->object.sub_map !=
3567 				entry->object.sub_map)) {
3568 				db_indent += 2;
3569 				vm_map_print((db_expr_t)(intptr_t)
3570 					     entry->object.sub_map,
3571 					     full, 0, (char *)0);
3572 				db_indent -= 2;
3573 			}
3574 		} else {
3575 			db_printf(", object=%p, offset=0x%jx",
3576 			    (void *)entry->object.vm_object,
3577 			    (uintmax_t)entry->offset);
3578 			if (entry->eflags & MAP_ENTRY_COW)
3579 				db_printf(", copy (%s)",
3580 				    (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done");
3581 			db_printf("\n");
3582 			nlines++;
3583 
3584 			if ((entry->prev == &map->header) ||
3585 			    (entry->prev->object.vm_object !=
3586 				entry->object.vm_object)) {
3587 				db_indent += 2;
3588 				vm_object_print((db_expr_t)(intptr_t)
3589 						entry->object.vm_object,
3590 						full, 0, (char *)0);
3591 				nlines += 4;
3592 				db_indent -= 2;
3593 			}
3594 		}
3595 	}
3596 	db_indent -= 2;
3597 	if (db_indent == 0)
3598 		nlines = 0;
3599 }
3600 
3601 
3602 DB_SHOW_COMMAND(procvm, procvm)
3603 {
3604 	struct proc *p;
3605 
3606 	if (have_addr) {
3607 		p = (struct proc *) addr;
3608 	} else {
3609 		p = curproc;
3610 	}
3611 
3612 	db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n",
3613 	    (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map,
3614 	    (void *)vmspace_pmap(p->p_vmspace));
3615 
3616 	vm_map_print((db_expr_t)(intptr_t)&p->p_vmspace->vm_map, 1, 0, NULL);
3617 }
3618 
3619 #endif /* DDB */
3620