xref: /freebsd/sys/vm/vm_map.c (revision 63967687)
1 /*-
2  * SPDX-License-Identifier: (BSD-3-Clause AND MIT-CMU)
3  *
4  * Copyright (c) 1991, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * This code is derived from software contributed to Berkeley by
8  * The Mach Operating System project at Carnegie-Mellon University.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *	from: @(#)vm_map.c	8.3 (Berkeley) 1/12/94
35  *
36  *
37  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
38  * All rights reserved.
39  *
40  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
41  *
42  * Permission to use, copy, modify and distribute this software and
43  * its documentation is hereby granted, provided that both the copyright
44  * notice and this permission notice appear in all copies of the
45  * software, derivative works or modified versions, and any portions
46  * thereof, and that both notices appear in supporting documentation.
47  *
48  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
49  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
50  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
51  *
52  * Carnegie Mellon requests users of this software to return to
53  *
54  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
55  *  School of Computer Science
56  *  Carnegie Mellon University
57  *  Pittsburgh PA 15213-3890
58  *
59  * any improvements or extensions that they make and grant Carnegie the
60  * rights to redistribute these changes.
61  */
62 
63 /*
64  *	Virtual memory mapping module.
65  */
66 
67 #include <sys/cdefs.h>
68 __FBSDID("$FreeBSD$");
69 
70 #include <sys/param.h>
71 #include <sys/systm.h>
72 #include <sys/elf.h>
73 #include <sys/kernel.h>
74 #include <sys/ktr.h>
75 #include <sys/lock.h>
76 #include <sys/mutex.h>
77 #include <sys/proc.h>
78 #include <sys/vmmeter.h>
79 #include <sys/mman.h>
80 #include <sys/vnode.h>
81 #include <sys/racct.h>
82 #include <sys/resourcevar.h>
83 #include <sys/rwlock.h>
84 #include <sys/file.h>
85 #include <sys/sysctl.h>
86 #include <sys/sysent.h>
87 #include <sys/shm.h>
88 
89 #include <vm/vm.h>
90 #include <vm/vm_param.h>
91 #include <vm/pmap.h>
92 #include <vm/vm_map.h>
93 #include <vm/vm_page.h>
94 #include <vm/vm_pageout.h>
95 #include <vm/vm_object.h>
96 #include <vm/vm_pager.h>
97 #include <vm/vm_kern.h>
98 #include <vm/vm_extern.h>
99 #include <vm/vnode_pager.h>
100 #include <vm/swap_pager.h>
101 #include <vm/uma.h>
102 
103 /*
104  *	Virtual memory maps provide for the mapping, protection,
105  *	and sharing of virtual memory objects.  In addition,
106  *	this module provides for an efficient virtual copy of
107  *	memory from one map to another.
108  *
109  *	Synchronization is required prior to most operations.
110  *
111  *	Maps consist of an ordered doubly-linked list of simple
112  *	entries; a self-adjusting binary search tree of these
113  *	entries is used to speed up lookups.
114  *
115  *	Since portions of maps are specified by start/end addresses,
116  *	which may not align with existing map entries, all
117  *	routines merely "clip" entries to these start/end values.
118  *	[That is, an entry is split into two, bordering at a
119  *	start or end value.]  Note that these clippings may not
120  *	always be necessary (as the two resulting entries are then
121  *	not changed); however, the clipping is done for convenience.
122  *
123  *	As mentioned above, virtual copy operations are performed
124  *	by copying VM object references from one map to
125  *	another, and then marking both regions as copy-on-write.
126  */
127 
128 static struct mtx map_sleep_mtx;
129 static uma_zone_t mapentzone;
130 static uma_zone_t kmapentzone;
131 static uma_zone_t mapzone;
132 static uma_zone_t vmspace_zone;
133 static int vmspace_zinit(void *mem, int size, int flags);
134 static int vm_map_zinit(void *mem, int ize, int flags);
135 static void _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min,
136     vm_offset_t max);
137 static void vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map);
138 static void vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry);
139 static void vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry);
140 static int vm_map_growstack(vm_map_t map, vm_offset_t addr,
141     vm_map_entry_t gap_entry);
142 static void vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot,
143     vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags);
144 #ifdef INVARIANTS
145 static void vm_map_zdtor(void *mem, int size, void *arg);
146 static void vmspace_zdtor(void *mem, int size, void *arg);
147 #endif
148 static int vm_map_stack_locked(vm_map_t map, vm_offset_t addrbos,
149     vm_size_t max_ssize, vm_size_t growsize, vm_prot_t prot, vm_prot_t max,
150     int cow);
151 static void vm_map_wire_entry_failure(vm_map_t map, vm_map_entry_t entry,
152     vm_offset_t failed_addr);
153 
154 #define	ENTRY_CHARGED(e) ((e)->cred != NULL || \
155     ((e)->object.vm_object != NULL && (e)->object.vm_object->cred != NULL && \
156      !((e)->eflags & MAP_ENTRY_NEEDS_COPY)))
157 
158 /*
159  * PROC_VMSPACE_{UN,}LOCK() can be a noop as long as vmspaces are type
160  * stable.
161  */
162 #define PROC_VMSPACE_LOCK(p) do { } while (0)
163 #define PROC_VMSPACE_UNLOCK(p) do { } while (0)
164 
165 /*
166  *	VM_MAP_RANGE_CHECK:	[ internal use only ]
167  *
168  *	Asserts that the starting and ending region
169  *	addresses fall within the valid range of the map.
170  */
171 #define	VM_MAP_RANGE_CHECK(map, start, end)		\
172 		{					\
173 		if (start < vm_map_min(map))		\
174 			start = vm_map_min(map);	\
175 		if (end > vm_map_max(map))		\
176 			end = vm_map_max(map);		\
177 		if (start > end)			\
178 			start = end;			\
179 		}
180 
181 /*
182  *	vm_map_startup:
183  *
184  *	Initialize the vm_map module.  Must be called before
185  *	any other vm_map routines.
186  *
187  *	Map and entry structures are allocated from the general
188  *	purpose memory pool with some exceptions:
189  *
190  *	- The kernel map and kmem submap are allocated statically.
191  *	- Kernel map entries are allocated out of a static pool.
192  *
193  *	These restrictions are necessary since malloc() uses the
194  *	maps and requires map entries.
195  */
196 
197 void
198 vm_map_startup(void)
199 {
200 	mtx_init(&map_sleep_mtx, "vm map sleep mutex", NULL, MTX_DEF);
201 	mapzone = uma_zcreate("MAP", sizeof(struct vm_map), NULL,
202 #ifdef INVARIANTS
203 	    vm_map_zdtor,
204 #else
205 	    NULL,
206 #endif
207 	    vm_map_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
208 	uma_prealloc(mapzone, MAX_KMAP);
209 	kmapentzone = uma_zcreate("KMAP ENTRY", sizeof(struct vm_map_entry),
210 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
211 	    UMA_ZONE_MTXCLASS | UMA_ZONE_VM);
212 	mapentzone = uma_zcreate("MAP ENTRY", sizeof(struct vm_map_entry),
213 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
214 	vmspace_zone = uma_zcreate("VMSPACE", sizeof(struct vmspace), NULL,
215 #ifdef INVARIANTS
216 	    vmspace_zdtor,
217 #else
218 	    NULL,
219 #endif
220 	    vmspace_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
221 }
222 
223 static int
224 vmspace_zinit(void *mem, int size, int flags)
225 {
226 	struct vmspace *vm;
227 
228 	vm = (struct vmspace *)mem;
229 
230 	vm->vm_map.pmap = NULL;
231 	(void)vm_map_zinit(&vm->vm_map, sizeof(vm->vm_map), flags);
232 	PMAP_LOCK_INIT(vmspace_pmap(vm));
233 	return (0);
234 }
235 
236 static int
237 vm_map_zinit(void *mem, int size, int flags)
238 {
239 	vm_map_t map;
240 
241 	map = (vm_map_t)mem;
242 	memset(map, 0, sizeof(*map));
243 	mtx_init(&map->system_mtx, "vm map (system)", NULL, MTX_DEF | MTX_DUPOK);
244 	sx_init(&map->lock, "vm map (user)");
245 	return (0);
246 }
247 
248 #ifdef INVARIANTS
249 static void
250 vmspace_zdtor(void *mem, int size, void *arg)
251 {
252 	struct vmspace *vm;
253 
254 	vm = (struct vmspace *)mem;
255 
256 	vm_map_zdtor(&vm->vm_map, sizeof(vm->vm_map), arg);
257 }
258 static void
259 vm_map_zdtor(void *mem, int size, void *arg)
260 {
261 	vm_map_t map;
262 
263 	map = (vm_map_t)mem;
264 	KASSERT(map->nentries == 0,
265 	    ("map %p nentries == %d on free.",
266 	    map, map->nentries));
267 	KASSERT(map->size == 0,
268 	    ("map %p size == %lu on free.",
269 	    map, (unsigned long)map->size));
270 }
271 #endif	/* INVARIANTS */
272 
273 /*
274  * Allocate a vmspace structure, including a vm_map and pmap,
275  * and initialize those structures.  The refcnt is set to 1.
276  *
277  * If 'pinit' is NULL then the embedded pmap is initialized via pmap_pinit().
278  */
279 struct vmspace *
280 vmspace_alloc(vm_offset_t min, vm_offset_t max, pmap_pinit_t pinit)
281 {
282 	struct vmspace *vm;
283 
284 	vm = uma_zalloc(vmspace_zone, M_WAITOK);
285 	KASSERT(vm->vm_map.pmap == NULL, ("vm_map.pmap must be NULL"));
286 	if (!pinit(vmspace_pmap(vm))) {
287 		uma_zfree(vmspace_zone, vm);
288 		return (NULL);
289 	}
290 	CTR1(KTR_VM, "vmspace_alloc: %p", vm);
291 	_vm_map_init(&vm->vm_map, vmspace_pmap(vm), min, max);
292 	vm->vm_refcnt = 1;
293 	vm->vm_shm = NULL;
294 	vm->vm_swrss = 0;
295 	vm->vm_tsize = 0;
296 	vm->vm_dsize = 0;
297 	vm->vm_ssize = 0;
298 	vm->vm_taddr = 0;
299 	vm->vm_daddr = 0;
300 	vm->vm_maxsaddr = 0;
301 	return (vm);
302 }
303 
304 #ifdef RACCT
305 static void
306 vmspace_container_reset(struct proc *p)
307 {
308 
309 	PROC_LOCK(p);
310 	racct_set(p, RACCT_DATA, 0);
311 	racct_set(p, RACCT_STACK, 0);
312 	racct_set(p, RACCT_RSS, 0);
313 	racct_set(p, RACCT_MEMLOCK, 0);
314 	racct_set(p, RACCT_VMEM, 0);
315 	PROC_UNLOCK(p);
316 }
317 #endif
318 
319 static inline void
320 vmspace_dofree(struct vmspace *vm)
321 {
322 
323 	CTR1(KTR_VM, "vmspace_free: %p", vm);
324 
325 	/*
326 	 * Make sure any SysV shm is freed, it might not have been in
327 	 * exit1().
328 	 */
329 	shmexit(vm);
330 
331 	/*
332 	 * Lock the map, to wait out all other references to it.
333 	 * Delete all of the mappings and pages they hold, then call
334 	 * the pmap module to reclaim anything left.
335 	 */
336 	(void)vm_map_remove(&vm->vm_map, vm_map_min(&vm->vm_map),
337 	    vm_map_max(&vm->vm_map));
338 
339 	pmap_release(vmspace_pmap(vm));
340 	vm->vm_map.pmap = NULL;
341 	uma_zfree(vmspace_zone, vm);
342 }
343 
344 void
345 vmspace_free(struct vmspace *vm)
346 {
347 
348 	WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
349 	    "vmspace_free() called");
350 
351 	if (vm->vm_refcnt == 0)
352 		panic("vmspace_free: attempt to free already freed vmspace");
353 
354 	if (atomic_fetchadd_int(&vm->vm_refcnt, -1) == 1)
355 		vmspace_dofree(vm);
356 }
357 
358 void
359 vmspace_exitfree(struct proc *p)
360 {
361 	struct vmspace *vm;
362 
363 	PROC_VMSPACE_LOCK(p);
364 	vm = p->p_vmspace;
365 	p->p_vmspace = NULL;
366 	PROC_VMSPACE_UNLOCK(p);
367 	KASSERT(vm == &vmspace0, ("vmspace_exitfree: wrong vmspace"));
368 	vmspace_free(vm);
369 }
370 
371 void
372 vmspace_exit(struct thread *td)
373 {
374 	int refcnt;
375 	struct vmspace *vm;
376 	struct proc *p;
377 
378 	/*
379 	 * Release user portion of address space.
380 	 * This releases references to vnodes,
381 	 * which could cause I/O if the file has been unlinked.
382 	 * Need to do this early enough that we can still sleep.
383 	 *
384 	 * The last exiting process to reach this point releases as
385 	 * much of the environment as it can. vmspace_dofree() is the
386 	 * slower fallback in case another process had a temporary
387 	 * reference to the vmspace.
388 	 */
389 
390 	p = td->td_proc;
391 	vm = p->p_vmspace;
392 	atomic_add_int(&vmspace0.vm_refcnt, 1);
393 	refcnt = vm->vm_refcnt;
394 	do {
395 		if (refcnt > 1 && p->p_vmspace != &vmspace0) {
396 			/* Switch now since other proc might free vmspace */
397 			PROC_VMSPACE_LOCK(p);
398 			p->p_vmspace = &vmspace0;
399 			PROC_VMSPACE_UNLOCK(p);
400 			pmap_activate(td);
401 		}
402 	} while (!atomic_fcmpset_int(&vm->vm_refcnt, &refcnt, refcnt - 1));
403 	if (refcnt == 1) {
404 		if (p->p_vmspace != vm) {
405 			/* vmspace not yet freed, switch back */
406 			PROC_VMSPACE_LOCK(p);
407 			p->p_vmspace = vm;
408 			PROC_VMSPACE_UNLOCK(p);
409 			pmap_activate(td);
410 		}
411 		pmap_remove_pages(vmspace_pmap(vm));
412 		/* Switch now since this proc will free vmspace */
413 		PROC_VMSPACE_LOCK(p);
414 		p->p_vmspace = &vmspace0;
415 		PROC_VMSPACE_UNLOCK(p);
416 		pmap_activate(td);
417 		vmspace_dofree(vm);
418 	}
419 #ifdef RACCT
420 	if (racct_enable)
421 		vmspace_container_reset(p);
422 #endif
423 }
424 
425 /* Acquire reference to vmspace owned by another process. */
426 
427 struct vmspace *
428 vmspace_acquire_ref(struct proc *p)
429 {
430 	struct vmspace *vm;
431 	int refcnt;
432 
433 	PROC_VMSPACE_LOCK(p);
434 	vm = p->p_vmspace;
435 	if (vm == NULL) {
436 		PROC_VMSPACE_UNLOCK(p);
437 		return (NULL);
438 	}
439 	refcnt = vm->vm_refcnt;
440 	do {
441 		if (refcnt <= 0) { 	/* Avoid 0->1 transition */
442 			PROC_VMSPACE_UNLOCK(p);
443 			return (NULL);
444 		}
445 	} while (!atomic_fcmpset_int(&vm->vm_refcnt, &refcnt, refcnt + 1));
446 	if (vm != p->p_vmspace) {
447 		PROC_VMSPACE_UNLOCK(p);
448 		vmspace_free(vm);
449 		return (NULL);
450 	}
451 	PROC_VMSPACE_UNLOCK(p);
452 	return (vm);
453 }
454 
455 /*
456  * Switch between vmspaces in an AIO kernel process.
457  *
458  * The new vmspace is either the vmspace of a user process obtained
459  * from an active AIO request or the initial vmspace of the AIO kernel
460  * process (when it is idling).  Because user processes will block to
461  * drain any active AIO requests before proceeding in exit() or
462  * execve(), the reference count for vmspaces from AIO requests can
463  * never be 0.  Similarly, AIO kernel processes hold an extra
464  * reference on their initial vmspace for the life of the process.  As
465  * a result, the 'newvm' vmspace always has a non-zero reference
466  * count.  This permits an additional reference on 'newvm' to be
467  * acquired via a simple atomic increment rather than the loop in
468  * vmspace_acquire_ref() above.
469  */
470 void
471 vmspace_switch_aio(struct vmspace *newvm)
472 {
473 	struct vmspace *oldvm;
474 
475 	/* XXX: Need some way to assert that this is an aio daemon. */
476 
477 	KASSERT(newvm->vm_refcnt > 0,
478 	    ("vmspace_switch_aio: newvm unreferenced"));
479 
480 	oldvm = curproc->p_vmspace;
481 	if (oldvm == newvm)
482 		return;
483 
484 	/*
485 	 * Point to the new address space and refer to it.
486 	 */
487 	curproc->p_vmspace = newvm;
488 	atomic_add_int(&newvm->vm_refcnt, 1);
489 
490 	/* Activate the new mapping. */
491 	pmap_activate(curthread);
492 
493 	vmspace_free(oldvm);
494 }
495 
496 void
497 _vm_map_lock(vm_map_t map, const char *file, int line)
498 {
499 
500 	if (map->system_map)
501 		mtx_lock_flags_(&map->system_mtx, 0, file, line);
502 	else
503 		sx_xlock_(&map->lock, file, line);
504 	map->timestamp++;
505 }
506 
507 void
508 vm_map_entry_set_vnode_text(vm_map_entry_t entry, bool add)
509 {
510 	vm_object_t object, object1;
511 	struct vnode *vp;
512 
513 	if ((entry->eflags & MAP_ENTRY_VN_EXEC) == 0)
514 		return;
515 	KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0,
516 	    ("Submap with execs"));
517 	object = entry->object.vm_object;
518 	KASSERT(object != NULL, ("No object for text, entry %p", entry));
519 	VM_OBJECT_RLOCK(object);
520 	while ((object1 = object->backing_object) != NULL) {
521 		VM_OBJECT_RLOCK(object1);
522 		VM_OBJECT_RUNLOCK(object);
523 		object = object1;
524 	}
525 
526 	vp = NULL;
527 	if (object->type == OBJT_DEAD) {
528 		/*
529 		 * For OBJT_DEAD objects, v_writecount was handled in
530 		 * vnode_pager_dealloc().
531 		 */
532 	} else if (object->type == OBJT_VNODE) {
533 		vp = object->handle;
534 	} else if (object->type == OBJT_SWAP) {
535 		KASSERT((object->flags & OBJ_TMPFS_NODE) != 0,
536 		    ("vm_map_entry_set_vnode_text: swap and !TMPFS "
537 		    "entry %p, object %p, add %d", entry, object, add));
538 		/*
539 		 * Tmpfs VREG node, which was reclaimed, has
540 		 * OBJ_TMPFS_NODE flag set, but not OBJ_TMPFS.  In
541 		 * this case there is no v_writecount to adjust.
542 		 */
543 		if ((object->flags & OBJ_TMPFS) != 0)
544 			vp = object->un_pager.swp.swp_tmpfs;
545 	} else {
546 		KASSERT(0,
547 		    ("vm_map_entry_set_vnode_text: wrong object type, "
548 		    "entry %p, object %p, add %d", entry, object, add));
549 	}
550 	if (vp != NULL) {
551 		if (add) {
552 			VOP_SET_TEXT_CHECKED(vp);
553 			VM_OBJECT_RUNLOCK(object);
554 		} else {
555 			vhold(vp);
556 			VM_OBJECT_RUNLOCK(object);
557 			vn_lock(vp, LK_SHARED | LK_RETRY);
558 			VOP_UNSET_TEXT_CHECKED(vp);
559 			VOP_UNLOCK(vp, 0);
560 			vdrop(vp);
561 		}
562 	} else {
563 		VM_OBJECT_RUNLOCK(object);
564 	}
565 }
566 
567 /*
568  * Use a different name for this vm_map_entry field when it's use
569  * is not consistent with its use as part of an ordered search tree.
570  */
571 #define defer_next right
572 
573 static void
574 vm_map_process_deferred(void)
575 {
576 	struct thread *td;
577 	vm_map_entry_t entry, next;
578 	vm_object_t object;
579 
580 	td = curthread;
581 	entry = td->td_map_def_user;
582 	td->td_map_def_user = NULL;
583 	while (entry != NULL) {
584 		next = entry->defer_next;
585 		MPASS((entry->eflags & (MAP_ENTRY_WRITECNT |
586 		    MAP_ENTRY_VN_EXEC)) != (MAP_ENTRY_WRITECNT |
587 		    MAP_ENTRY_VN_EXEC));
588 		if ((entry->eflags & MAP_ENTRY_WRITECNT) != 0) {
589 			/*
590 			 * Decrement the object's writemappings and
591 			 * possibly the vnode's v_writecount.
592 			 */
593 			KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0,
594 			    ("Submap with writecount"));
595 			object = entry->object.vm_object;
596 			KASSERT(object != NULL, ("No object for writecount"));
597 			vm_pager_release_writecount(object, entry->start,
598 			    entry->end);
599 		}
600 		vm_map_entry_set_vnode_text(entry, false);
601 		vm_map_entry_deallocate(entry, FALSE);
602 		entry = next;
603 	}
604 }
605 
606 #ifdef INVARIANTS
607 static void
608 _vm_map_assert_locked(vm_map_t map, const char *file, int line)
609 {
610 
611 	if (map->system_map)
612 		mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
613 	else
614 		sx_assert_(&map->lock, SA_XLOCKED, file, line);
615 }
616 
617 #define	VM_MAP_ASSERT_LOCKED(map) \
618     _vm_map_assert_locked(map, LOCK_FILE, LOCK_LINE)
619 
620 enum { VMMAP_CHECK_NONE, VMMAP_CHECK_UNLOCK, VMMAP_CHECK_ALL };
621 #ifdef DIAGNOSTIC
622 static int enable_vmmap_check = VMMAP_CHECK_UNLOCK;
623 #else
624 static int enable_vmmap_check = VMMAP_CHECK_NONE;
625 #endif
626 SYSCTL_INT(_debug, OID_AUTO, vmmap_check, CTLFLAG_RWTUN,
627     &enable_vmmap_check, 0, "Enable vm map consistency checking");
628 
629 static void _vm_map_assert_consistent(vm_map_t map, int check);
630 
631 #define VM_MAP_ASSERT_CONSISTENT(map) \
632     _vm_map_assert_consistent(map, VMMAP_CHECK_ALL)
633 #ifdef DIAGNOSTIC
634 #define VM_MAP_UNLOCK_CONSISTENT(map) do {				\
635 	if (map->nupdates > map->nentries) {				\
636 		_vm_map_assert_consistent(map, VMMAP_CHECK_UNLOCK);	\
637 		map->nupdates = 0;					\
638 	}								\
639 } while (0)
640 #else
641 #define VM_MAP_UNLOCK_CONSISTENT(map)
642 #endif
643 #else
644 #define	VM_MAP_ASSERT_LOCKED(map)
645 #define VM_MAP_ASSERT_CONSISTENT(map)
646 #define VM_MAP_UNLOCK_CONSISTENT(map)
647 #endif /* INVARIANTS */
648 
649 void
650 _vm_map_unlock(vm_map_t map, const char *file, int line)
651 {
652 
653 	VM_MAP_UNLOCK_CONSISTENT(map);
654 	if (map->system_map)
655 		mtx_unlock_flags_(&map->system_mtx, 0, file, line);
656 	else {
657 		sx_xunlock_(&map->lock, file, line);
658 		vm_map_process_deferred();
659 	}
660 }
661 
662 void
663 _vm_map_lock_read(vm_map_t map, const char *file, int line)
664 {
665 
666 	if (map->system_map)
667 		mtx_lock_flags_(&map->system_mtx, 0, file, line);
668 	else
669 		sx_slock_(&map->lock, file, line);
670 }
671 
672 void
673 _vm_map_unlock_read(vm_map_t map, const char *file, int line)
674 {
675 
676 	if (map->system_map)
677 		mtx_unlock_flags_(&map->system_mtx, 0, file, line);
678 	else {
679 		sx_sunlock_(&map->lock, file, line);
680 		vm_map_process_deferred();
681 	}
682 }
683 
684 int
685 _vm_map_trylock(vm_map_t map, const char *file, int line)
686 {
687 	int error;
688 
689 	error = map->system_map ?
690 	    !mtx_trylock_flags_(&map->system_mtx, 0, file, line) :
691 	    !sx_try_xlock_(&map->lock, file, line);
692 	if (error == 0)
693 		map->timestamp++;
694 	return (error == 0);
695 }
696 
697 int
698 _vm_map_trylock_read(vm_map_t map, const char *file, int line)
699 {
700 	int error;
701 
702 	error = map->system_map ?
703 	    !mtx_trylock_flags_(&map->system_mtx, 0, file, line) :
704 	    !sx_try_slock_(&map->lock, file, line);
705 	return (error == 0);
706 }
707 
708 /*
709  *	_vm_map_lock_upgrade:	[ internal use only ]
710  *
711  *	Tries to upgrade a read (shared) lock on the specified map to a write
712  *	(exclusive) lock.  Returns the value "0" if the upgrade succeeds and a
713  *	non-zero value if the upgrade fails.  If the upgrade fails, the map is
714  *	returned without a read or write lock held.
715  *
716  *	Requires that the map be read locked.
717  */
718 int
719 _vm_map_lock_upgrade(vm_map_t map, const char *file, int line)
720 {
721 	unsigned int last_timestamp;
722 
723 	if (map->system_map) {
724 		mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
725 	} else {
726 		if (!sx_try_upgrade_(&map->lock, file, line)) {
727 			last_timestamp = map->timestamp;
728 			sx_sunlock_(&map->lock, file, line);
729 			vm_map_process_deferred();
730 			/*
731 			 * If the map's timestamp does not change while the
732 			 * map is unlocked, then the upgrade succeeds.
733 			 */
734 			sx_xlock_(&map->lock, file, line);
735 			if (last_timestamp != map->timestamp) {
736 				sx_xunlock_(&map->lock, file, line);
737 				return (1);
738 			}
739 		}
740 	}
741 	map->timestamp++;
742 	return (0);
743 }
744 
745 void
746 _vm_map_lock_downgrade(vm_map_t map, const char *file, int line)
747 {
748 
749 	if (map->system_map) {
750 		mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
751 	} else {
752 		VM_MAP_UNLOCK_CONSISTENT(map);
753 		sx_downgrade_(&map->lock, file, line);
754 	}
755 }
756 
757 /*
758  *	vm_map_locked:
759  *
760  *	Returns a non-zero value if the caller holds a write (exclusive) lock
761  *	on the specified map and the value "0" otherwise.
762  */
763 int
764 vm_map_locked(vm_map_t map)
765 {
766 
767 	if (map->system_map)
768 		return (mtx_owned(&map->system_mtx));
769 	else
770 		return (sx_xlocked(&map->lock));
771 }
772 
773 /*
774  *	_vm_map_unlock_and_wait:
775  *
776  *	Atomically releases the lock on the specified map and puts the calling
777  *	thread to sleep.  The calling thread will remain asleep until either
778  *	vm_map_wakeup() is performed on the map or the specified timeout is
779  *	exceeded.
780  *
781  *	WARNING!  This function does not perform deferred deallocations of
782  *	objects and map	entries.  Therefore, the calling thread is expected to
783  *	reacquire the map lock after reawakening and later perform an ordinary
784  *	unlock operation, such as vm_map_unlock(), before completing its
785  *	operation on the map.
786  */
787 int
788 _vm_map_unlock_and_wait(vm_map_t map, int timo, const char *file, int line)
789 {
790 
791 	VM_MAP_UNLOCK_CONSISTENT(map);
792 	mtx_lock(&map_sleep_mtx);
793 	if (map->system_map)
794 		mtx_unlock_flags_(&map->system_mtx, 0, file, line);
795 	else
796 		sx_xunlock_(&map->lock, file, line);
797 	return (msleep(&map->root, &map_sleep_mtx, PDROP | PVM, "vmmaps",
798 	    timo));
799 }
800 
801 /*
802  *	vm_map_wakeup:
803  *
804  *	Awaken any threads that have slept on the map using
805  *	vm_map_unlock_and_wait().
806  */
807 void
808 vm_map_wakeup(vm_map_t map)
809 {
810 
811 	/*
812 	 * Acquire and release map_sleep_mtx to prevent a wakeup()
813 	 * from being performed (and lost) between the map unlock
814 	 * and the msleep() in _vm_map_unlock_and_wait().
815 	 */
816 	mtx_lock(&map_sleep_mtx);
817 	mtx_unlock(&map_sleep_mtx);
818 	wakeup(&map->root);
819 }
820 
821 void
822 vm_map_busy(vm_map_t map)
823 {
824 
825 	VM_MAP_ASSERT_LOCKED(map);
826 	map->busy++;
827 }
828 
829 void
830 vm_map_unbusy(vm_map_t map)
831 {
832 
833 	VM_MAP_ASSERT_LOCKED(map);
834 	KASSERT(map->busy, ("vm_map_unbusy: not busy"));
835 	if (--map->busy == 0 && (map->flags & MAP_BUSY_WAKEUP)) {
836 		vm_map_modflags(map, 0, MAP_BUSY_WAKEUP);
837 		wakeup(&map->busy);
838 	}
839 }
840 
841 void
842 vm_map_wait_busy(vm_map_t map)
843 {
844 
845 	VM_MAP_ASSERT_LOCKED(map);
846 	while (map->busy) {
847 		vm_map_modflags(map, MAP_BUSY_WAKEUP, 0);
848 		if (map->system_map)
849 			msleep(&map->busy, &map->system_mtx, 0, "mbusy", 0);
850 		else
851 			sx_sleep(&map->busy, &map->lock, 0, "mbusy", 0);
852 	}
853 	map->timestamp++;
854 }
855 
856 long
857 vmspace_resident_count(struct vmspace *vmspace)
858 {
859 	return pmap_resident_count(vmspace_pmap(vmspace));
860 }
861 
862 /*
863  *	vm_map_create:
864  *
865  *	Creates and returns a new empty VM map with
866  *	the given physical map structure, and having
867  *	the given lower and upper address bounds.
868  */
869 vm_map_t
870 vm_map_create(pmap_t pmap, vm_offset_t min, vm_offset_t max)
871 {
872 	vm_map_t result;
873 
874 	result = uma_zalloc(mapzone, M_WAITOK);
875 	CTR1(KTR_VM, "vm_map_create: %p", result);
876 	_vm_map_init(result, pmap, min, max);
877 	return (result);
878 }
879 
880 /*
881  * Initialize an existing vm_map structure
882  * such as that in the vmspace structure.
883  */
884 static void
885 _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max)
886 {
887 
888 	map->header.next = map->header.prev = &map->header;
889 	map->header.eflags = MAP_ENTRY_HEADER;
890 	map->needs_wakeup = FALSE;
891 	map->system_map = 0;
892 	map->pmap = pmap;
893 	map->header.end = min;
894 	map->header.start = max;
895 	map->flags = 0;
896 	map->root = NULL;
897 	map->timestamp = 0;
898 	map->busy = 0;
899 	map->anon_loc = 0;
900 #ifdef DIAGNOSTIC
901 	map->nupdates = 0;
902 #endif
903 }
904 
905 void
906 vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max)
907 {
908 
909 	_vm_map_init(map, pmap, min, max);
910 	mtx_init(&map->system_mtx, "system map", NULL, MTX_DEF | MTX_DUPOK);
911 	sx_init(&map->lock, "user map");
912 }
913 
914 /*
915  *	vm_map_entry_dispose:	[ internal use only ]
916  *
917  *	Inverse of vm_map_entry_create.
918  */
919 static void
920 vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry)
921 {
922 	uma_zfree(map->system_map ? kmapentzone : mapentzone, entry);
923 }
924 
925 /*
926  *	vm_map_entry_create:	[ internal use only ]
927  *
928  *	Allocates a VM map entry for insertion.
929  *	No entry fields are filled in.
930  */
931 static vm_map_entry_t
932 vm_map_entry_create(vm_map_t map)
933 {
934 	vm_map_entry_t new_entry;
935 
936 	if (map->system_map)
937 		new_entry = uma_zalloc(kmapentzone, M_NOWAIT);
938 	else
939 		new_entry = uma_zalloc(mapentzone, M_WAITOK);
940 	if (new_entry == NULL)
941 		panic("vm_map_entry_create: kernel resources exhausted");
942 	return (new_entry);
943 }
944 
945 /*
946  *	vm_map_entry_set_behavior:
947  *
948  *	Set the expected access behavior, either normal, random, or
949  *	sequential.
950  */
951 static inline void
952 vm_map_entry_set_behavior(vm_map_entry_t entry, u_char behavior)
953 {
954 	entry->eflags = (entry->eflags & ~MAP_ENTRY_BEHAV_MASK) |
955 	    (behavior & MAP_ENTRY_BEHAV_MASK);
956 }
957 
958 /*
959  *	vm_map_entry_max_free_{left,right}:
960  *
961  *	Compute the size of the largest free gap between two entries,
962  *	one the root of a tree and the other the ancestor of that root
963  *	that is the least or greatest ancestor found on the search path.
964  */
965 static inline vm_size_t
966 vm_map_entry_max_free_left(vm_map_entry_t root, vm_map_entry_t left_ancestor)
967 {
968 
969 	return (root->left != NULL ?
970 	    root->left->max_free : root->start - left_ancestor->end);
971 }
972 
973 static inline vm_size_t
974 vm_map_entry_max_free_right(vm_map_entry_t root, vm_map_entry_t right_ancestor)
975 {
976 
977 	return (root->right != NULL ?
978 	    root->right->max_free : right_ancestor->start - root->end);
979 }
980 
981 #define SPLAY_LEFT_STEP(root, y, rlist, test) do {			\
982 	vm_size_t max_free;						\
983 									\
984 	/*								\
985 	 * Infer root->right->max_free == root->max_free when		\
986 	 * y->max_free < root->max_free || root->max_free == 0.		\
987 	 * Otherwise, look right to find it.				\
988 	 */								\
989 	y = root->left;							\
990 	max_free = root->max_free;					\
991 	KASSERT(max_free >= vm_map_entry_max_free_right(root, rlist),	\
992 	    ("%s: max_free invariant fails", __func__));		\
993 	if (y == NULL ? max_free > 0 : max_free - 1 < y->max_free)	\
994 		max_free = vm_map_entry_max_free_right(root, rlist);	\
995 	if (y != NULL && (test)) {					\
996 		/* Rotate right and make y root. */			\
997 		root->left = y->right;					\
998 		y->right = root;					\
999 		if (max_free < y->max_free)				\
1000 			root->max_free = max_free = MAX(max_free,	\
1001 			    vm_map_entry_max_free_left(root, y));	\
1002 		root = y;						\
1003 		y = root->left;						\
1004 	}								\
1005 	/* Copy right->max_free.  Put root on rlist. */			\
1006 	root->max_free = max_free;					\
1007 	KASSERT(max_free == vm_map_entry_max_free_right(root, rlist),	\
1008 	    ("%s: max_free not copied from right", __func__));		\
1009 	root->left = rlist;						\
1010 	rlist = root;							\
1011 	root = y;							\
1012 } while (0)
1013 
1014 #define SPLAY_RIGHT_STEP(root, y, llist, test) do {			\
1015 	vm_size_t max_free;						\
1016 									\
1017 	/*								\
1018 	 * Infer root->left->max_free == root->max_free when		\
1019 	 * y->max_free < root->max_free || root->max_free == 0.		\
1020 	 * Otherwise, look left to find it.				\
1021 	 */								\
1022 	y = root->right;						\
1023 	max_free = root->max_free;					\
1024 	KASSERT(max_free >= vm_map_entry_max_free_left(root, llist),	\
1025 	    ("%s: max_free invariant fails", __func__));		\
1026 	if (y == NULL ? max_free > 0 : max_free - 1 < y->max_free)	\
1027 		max_free = vm_map_entry_max_free_left(root, llist);	\
1028 	if (y != NULL && (test)) {					\
1029 		/* Rotate left and make y root. */			\
1030 		root->right = y->left;					\
1031 		y->left = root;						\
1032 		if (max_free < y->max_free)				\
1033 			root->max_free = max_free = MAX(max_free,	\
1034 			    vm_map_entry_max_free_right(root, y));	\
1035 		root = y;						\
1036 		y = root->right;					\
1037 	}								\
1038 	/* Copy left->max_free.  Put root on llist. */			\
1039 	root->max_free = max_free;					\
1040 	KASSERT(max_free == vm_map_entry_max_free_left(root, llist),	\
1041 	    ("%s: max_free not copied from left", __func__));		\
1042 	root->right = llist;						\
1043 	llist = root;							\
1044 	root = y;							\
1045 } while (0)
1046 
1047 /*
1048  * Walk down the tree until we find addr or a NULL pointer where addr would go,
1049  * breaking off left and right subtrees of nodes less than, or greater than
1050  * addr.  Treat pointers to nodes with max_free < length as NULL pointers.
1051  * llist and rlist are the two sides in reverse order (bottom-up), with llist
1052  * linked by the right pointer and rlist linked by the left pointer in the
1053  * vm_map_entry, and both lists terminated by &map->header.  This function, and
1054  * the subsequent call to vm_map_splay_merge, rely on the start and end address
1055  * values in &map->header.
1056  */
1057 static vm_map_entry_t
1058 vm_map_splay_split(vm_map_t map, vm_offset_t addr, vm_size_t length,
1059     vm_map_entry_t *out_llist, vm_map_entry_t *out_rlist)
1060 {
1061 	vm_map_entry_t llist, rlist, root, y;
1062 
1063 	llist = rlist = &map->header;
1064 	root = map->root;
1065 	while (root != NULL && root->max_free >= length) {
1066 		KASSERT(llist->end <= root->start && root->end <= rlist->start,
1067 		    ("%s: root not within tree bounds", __func__));
1068 		if (addr < root->start) {
1069 			SPLAY_LEFT_STEP(root, y, rlist,
1070 			    y->max_free >= length && addr < y->start);
1071 		} else if (addr >= root->end) {
1072 			SPLAY_RIGHT_STEP(root, y, llist,
1073 			    y->max_free >= length && addr >= y->end);
1074 		} else
1075 			break;
1076 	}
1077 	*out_llist = llist;
1078 	*out_rlist = rlist;
1079 	return (root);
1080 }
1081 
1082 static void
1083 vm_map_splay_findnext(vm_map_entry_t root, vm_map_entry_t *iolist)
1084 {
1085 	vm_map_entry_t rlist, y;
1086 
1087 	root = root->right;
1088 	rlist = *iolist;
1089 	while (root != NULL)
1090 		SPLAY_LEFT_STEP(root, y, rlist, true);
1091 	*iolist = rlist;
1092 }
1093 
1094 static void
1095 vm_map_splay_findprev(vm_map_entry_t root, vm_map_entry_t *iolist)
1096 {
1097 	vm_map_entry_t llist, y;
1098 
1099 	root = root->left;
1100 	llist = *iolist;
1101 	while (root != NULL)
1102 		SPLAY_RIGHT_STEP(root, y, llist, true);
1103 	*iolist = llist;
1104 }
1105 
1106 static inline void
1107 vm_map_entry_swap(vm_map_entry_t *a, vm_map_entry_t *b)
1108 {
1109 	vm_map_entry_t tmp;
1110 
1111 	tmp = *b;
1112 	*b = *a;
1113 	*a = tmp;
1114 }
1115 
1116 /*
1117  * Walk back up the two spines, flip the pointers and set max_free.  The
1118  * subtrees of the root go at the bottom of llist and rlist.
1119  */
1120 static void
1121 vm_map_splay_merge(vm_map_t map, vm_map_entry_t root,
1122     vm_map_entry_t llist, vm_map_entry_t rlist)
1123 {
1124 	vm_map_entry_t prev;
1125 	vm_size_t max_free_left, max_free_right;
1126 
1127 	max_free_left = vm_map_entry_max_free_left(root, llist);
1128 	if (llist != &map->header) {
1129 		prev = root->left;
1130 		do {
1131 			/*
1132 			 * The max_free values of the children of llist are in
1133 			 * llist->max_free and max_free_left.  Update with the
1134 			 * max value.
1135 			 */
1136 			llist->max_free = max_free_left =
1137 			    MAX(llist->max_free, max_free_left);
1138 			vm_map_entry_swap(&llist->right, &prev);
1139 			vm_map_entry_swap(&prev, &llist);
1140 		} while (llist != &map->header);
1141 		root->left = prev;
1142 	}
1143 	max_free_right = vm_map_entry_max_free_right(root, rlist);
1144 	if (rlist != &map->header) {
1145 		prev = root->right;
1146 		do {
1147 			/*
1148 			 * The max_free values of the children of rlist are in
1149 			 * rlist->max_free and max_free_right.  Update with the
1150 			 * max value.
1151 			 */
1152 			rlist->max_free = max_free_right =
1153 			    MAX(rlist->max_free, max_free_right);
1154 			vm_map_entry_swap(&rlist->left, &prev);
1155 			vm_map_entry_swap(&prev, &rlist);
1156 		} while (rlist != &map->header);
1157 		root->right = prev;
1158 	}
1159 	root->max_free = MAX(max_free_left, max_free_right);
1160 	map->root = root;
1161 #ifdef DIAGNOSTIC
1162 	++map->nupdates;
1163 #endif
1164 }
1165 
1166 /*
1167  *	vm_map_splay:
1168  *
1169  *	The Sleator and Tarjan top-down splay algorithm with the
1170  *	following variation.  Max_free must be computed bottom-up, so
1171  *	on the downward pass, maintain the left and right spines in
1172  *	reverse order.  Then, make a second pass up each side to fix
1173  *	the pointers and compute max_free.  The time bound is O(log n)
1174  *	amortized.
1175  *
1176  *	The new root is the vm_map_entry containing "addr", or else an
1177  *	adjacent entry (lower if possible) if addr is not in the tree.
1178  *
1179  *	The map must be locked, and leaves it so.
1180  *
1181  *	Returns: the new root.
1182  */
1183 static vm_map_entry_t
1184 vm_map_splay(vm_map_t map, vm_offset_t addr)
1185 {
1186 	vm_map_entry_t llist, rlist, root;
1187 
1188 	root = vm_map_splay_split(map, addr, 0, &llist, &rlist);
1189 	if (root != NULL) {
1190 		/* do nothing */
1191 	} else if (llist != &map->header) {
1192 		/*
1193 		 * Recover the greatest node in the left
1194 		 * subtree and make it the root.
1195 		 */
1196 		root = llist;
1197 		llist = root->right;
1198 		root->right = NULL;
1199 	} else if (rlist != &map->header) {
1200 		/*
1201 		 * Recover the least node in the right
1202 		 * subtree and make it the root.
1203 		 */
1204 		root = rlist;
1205 		rlist = root->left;
1206 		root->left = NULL;
1207 	} else {
1208 		/* There is no root. */
1209 		return (NULL);
1210 	}
1211 	vm_map_splay_merge(map, root, llist, rlist);
1212 	VM_MAP_ASSERT_CONSISTENT(map);
1213 	return (root);
1214 }
1215 
1216 /*
1217  *	vm_map_entry_{un,}link:
1218  *
1219  *	Insert/remove entries from maps.
1220  */
1221 static void
1222 vm_map_entry_link(vm_map_t map, vm_map_entry_t entry)
1223 {
1224 	vm_map_entry_t llist, rlist, root;
1225 
1226 	CTR3(KTR_VM,
1227 	    "vm_map_entry_link: map %p, nentries %d, entry %p", map,
1228 	    map->nentries, entry);
1229 	VM_MAP_ASSERT_LOCKED(map);
1230 	map->nentries++;
1231 	root = vm_map_splay_split(map, entry->start, 0, &llist, &rlist);
1232 	KASSERT(root == NULL,
1233 	    ("vm_map_entry_link: link object already mapped"));
1234 	entry->prev = llist;
1235 	entry->next = rlist;
1236 	llist->next = rlist->prev = entry;
1237 	entry->left = entry->right = NULL;
1238 	vm_map_splay_merge(map, entry, llist, rlist);
1239 	VM_MAP_ASSERT_CONSISTENT(map);
1240 }
1241 
1242 enum unlink_merge_type {
1243 	UNLINK_MERGE_NONE,
1244 	UNLINK_MERGE_NEXT
1245 };
1246 
1247 static void
1248 vm_map_entry_unlink(vm_map_t map, vm_map_entry_t entry,
1249     enum unlink_merge_type op)
1250 {
1251 	vm_map_entry_t llist, rlist, root, y;
1252 
1253 	VM_MAP_ASSERT_LOCKED(map);
1254 	root = vm_map_splay_split(map, entry->start, 0, &llist, &rlist);
1255 	KASSERT(root != NULL,
1256 	    ("vm_map_entry_unlink: unlink object not mapped"));
1257 
1258 	vm_map_splay_findnext(root, &rlist);
1259 	switch (op) {
1260 	case UNLINK_MERGE_NEXT:
1261 		rlist->start = root->start;
1262 		rlist->offset = root->offset;
1263 		y = root->left;
1264 		root = rlist;
1265 		rlist = root->left;
1266 		root->left = y;
1267 		break;
1268 	case UNLINK_MERGE_NONE:
1269 		vm_map_splay_findprev(root, &llist);
1270 		if (llist != &map->header) {
1271 			root = llist;
1272 			llist = root->right;
1273 			root->right = NULL;
1274 		} else if (rlist != &map->header) {
1275 			root = rlist;
1276 			rlist = root->left;
1277 			root->left = NULL;
1278 		} else
1279 			root = NULL;
1280 		break;
1281 	}
1282 	y = entry->next;
1283 	y->prev = entry->prev;
1284 	y->prev->next = y;
1285 	if (root != NULL)
1286 		vm_map_splay_merge(map, root, llist, rlist);
1287 	else
1288 		map->root = NULL;
1289 	VM_MAP_ASSERT_CONSISTENT(map);
1290 	map->nentries--;
1291 	CTR3(KTR_VM, "vm_map_entry_unlink: map %p, nentries %d, entry %p", map,
1292 	    map->nentries, entry);
1293 }
1294 
1295 /*
1296  *	vm_map_entry_resize:
1297  *
1298  *	Resize a vm_map_entry, recompute the amount of free space that
1299  *	follows it and propagate that value up the tree.
1300  *
1301  *	The map must be locked, and leaves it so.
1302  */
1303 static void
1304 vm_map_entry_resize(vm_map_t map, vm_map_entry_t entry, vm_size_t grow_amount)
1305 {
1306 	vm_map_entry_t llist, rlist, root;
1307 
1308 	VM_MAP_ASSERT_LOCKED(map);
1309 	root = vm_map_splay_split(map, entry->start, 0, &llist, &rlist);
1310 	KASSERT(root != NULL,
1311 	    ("%s: resize object not mapped", __func__));
1312 	vm_map_splay_findnext(root, &rlist);
1313 	root->right = NULL;
1314 	entry->end += grow_amount;
1315 	vm_map_splay_merge(map, root, llist, rlist);
1316 	VM_MAP_ASSERT_CONSISTENT(map);
1317 	CTR4(KTR_VM, "%s: map %p, nentries %d, entry %p",
1318 	    __func__, map, map->nentries, entry);
1319 }
1320 
1321 /*
1322  *	vm_map_lookup_entry:	[ internal use only ]
1323  *
1324  *	Finds the map entry containing (or
1325  *	immediately preceding) the specified address
1326  *	in the given map; the entry is returned
1327  *	in the "entry" parameter.  The boolean
1328  *	result indicates whether the address is
1329  *	actually contained in the map.
1330  */
1331 boolean_t
1332 vm_map_lookup_entry(
1333 	vm_map_t map,
1334 	vm_offset_t address,
1335 	vm_map_entry_t *entry)	/* OUT */
1336 {
1337 	vm_map_entry_t cur, lbound;
1338 	boolean_t locked;
1339 
1340 	/*
1341 	 * If the map is empty, then the map entry immediately preceding
1342 	 * "address" is the map's header.
1343 	 */
1344 	cur = map->root;
1345 	if (cur == NULL) {
1346 		*entry = &map->header;
1347 		return (FALSE);
1348 	}
1349 	if (address >= cur->start && cur->end > address) {
1350 		*entry = cur;
1351 		return (TRUE);
1352 	}
1353 	if ((locked = vm_map_locked(map)) ||
1354 	    sx_try_upgrade(&map->lock)) {
1355 		/*
1356 		 * Splay requires a write lock on the map.  However, it only
1357 		 * restructures the binary search tree; it does not otherwise
1358 		 * change the map.  Thus, the map's timestamp need not change
1359 		 * on a temporary upgrade.
1360 		 */
1361 		cur = vm_map_splay(map, address);
1362 		if (!locked) {
1363 			VM_MAP_UNLOCK_CONSISTENT(map);
1364 			sx_downgrade(&map->lock);
1365 		}
1366 
1367 		/*
1368 		 * If "address" is contained within a map entry, the new root
1369 		 * is that map entry.  Otherwise, the new root is a map entry
1370 		 * immediately before or after "address".
1371 		 */
1372 		if (address < cur->start) {
1373 			*entry = &map->header;
1374 			return (FALSE);
1375 		}
1376 		*entry = cur;
1377 		return (address < cur->end);
1378 	}
1379 	/*
1380 	 * Since the map is only locked for read access, perform a
1381 	 * standard binary search tree lookup for "address".
1382 	 */
1383 	lbound = &map->header;
1384 	do {
1385 		if (address < cur->start) {
1386 			cur = cur->left;
1387 		} else if (cur->end <= address) {
1388 			lbound = cur;
1389 			cur = cur->right;
1390 		} else {
1391 			*entry = cur;
1392 			return (TRUE);
1393 		}
1394 	} while (cur != NULL);
1395 	*entry = lbound;
1396 	return (FALSE);
1397 }
1398 
1399 /*
1400  *	vm_map_insert:
1401  *
1402  *	Inserts the given whole VM object into the target
1403  *	map at the specified address range.  The object's
1404  *	size should match that of the address range.
1405  *
1406  *	Requires that the map be locked, and leaves it so.
1407  *
1408  *	If object is non-NULL, ref count must be bumped by caller
1409  *	prior to making call to account for the new entry.
1410  */
1411 int
1412 vm_map_insert(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1413     vm_offset_t start, vm_offset_t end, vm_prot_t prot, vm_prot_t max, int cow)
1414 {
1415 	vm_map_entry_t new_entry, prev_entry;
1416 	struct ucred *cred;
1417 	vm_eflags_t protoeflags;
1418 	vm_inherit_t inheritance;
1419 
1420 	VM_MAP_ASSERT_LOCKED(map);
1421 	KASSERT(object != kernel_object ||
1422 	    (cow & MAP_COPY_ON_WRITE) == 0,
1423 	    ("vm_map_insert: kernel object and COW"));
1424 	KASSERT(object == NULL || (cow & MAP_NOFAULT) == 0,
1425 	    ("vm_map_insert: paradoxical MAP_NOFAULT request"));
1426 	KASSERT((prot & ~max) == 0,
1427 	    ("prot %#x is not subset of max_prot %#x", prot, max));
1428 
1429 	/*
1430 	 * Check that the start and end points are not bogus.
1431 	 */
1432 	if (start < vm_map_min(map) || end > vm_map_max(map) ||
1433 	    start >= end)
1434 		return (KERN_INVALID_ADDRESS);
1435 
1436 	/*
1437 	 * Find the entry prior to the proposed starting address; if it's part
1438 	 * of an existing entry, this range is bogus.
1439 	 */
1440 	if (vm_map_lookup_entry(map, start, &prev_entry))
1441 		return (KERN_NO_SPACE);
1442 
1443 	/*
1444 	 * Assert that the next entry doesn't overlap the end point.
1445 	 */
1446 	if (vm_map_entry_succ(prev_entry)->start < end)
1447 		return (KERN_NO_SPACE);
1448 
1449 	if ((cow & MAP_CREATE_GUARD) != 0 && (object != NULL ||
1450 	    max != VM_PROT_NONE))
1451 		return (KERN_INVALID_ARGUMENT);
1452 
1453 	protoeflags = 0;
1454 	if (cow & MAP_COPY_ON_WRITE)
1455 		protoeflags |= MAP_ENTRY_COW | MAP_ENTRY_NEEDS_COPY;
1456 	if (cow & MAP_NOFAULT)
1457 		protoeflags |= MAP_ENTRY_NOFAULT;
1458 	if (cow & MAP_DISABLE_SYNCER)
1459 		protoeflags |= MAP_ENTRY_NOSYNC;
1460 	if (cow & MAP_DISABLE_COREDUMP)
1461 		protoeflags |= MAP_ENTRY_NOCOREDUMP;
1462 	if (cow & MAP_STACK_GROWS_DOWN)
1463 		protoeflags |= MAP_ENTRY_GROWS_DOWN;
1464 	if (cow & MAP_STACK_GROWS_UP)
1465 		protoeflags |= MAP_ENTRY_GROWS_UP;
1466 	if (cow & MAP_WRITECOUNT)
1467 		protoeflags |= MAP_ENTRY_WRITECNT;
1468 	if (cow & MAP_VN_EXEC)
1469 		protoeflags |= MAP_ENTRY_VN_EXEC;
1470 	if ((cow & MAP_CREATE_GUARD) != 0)
1471 		protoeflags |= MAP_ENTRY_GUARD;
1472 	if ((cow & MAP_CREATE_STACK_GAP_DN) != 0)
1473 		protoeflags |= MAP_ENTRY_STACK_GAP_DN;
1474 	if ((cow & MAP_CREATE_STACK_GAP_UP) != 0)
1475 		protoeflags |= MAP_ENTRY_STACK_GAP_UP;
1476 	if (cow & MAP_INHERIT_SHARE)
1477 		inheritance = VM_INHERIT_SHARE;
1478 	else
1479 		inheritance = VM_INHERIT_DEFAULT;
1480 
1481 	cred = NULL;
1482 	if ((cow & (MAP_ACC_NO_CHARGE | MAP_NOFAULT | MAP_CREATE_GUARD)) != 0)
1483 		goto charged;
1484 	if ((cow & MAP_ACC_CHARGED) || ((prot & VM_PROT_WRITE) &&
1485 	    ((protoeflags & MAP_ENTRY_NEEDS_COPY) || object == NULL))) {
1486 		if (!(cow & MAP_ACC_CHARGED) && !swap_reserve(end - start))
1487 			return (KERN_RESOURCE_SHORTAGE);
1488 		KASSERT(object == NULL ||
1489 		    (protoeflags & MAP_ENTRY_NEEDS_COPY) != 0 ||
1490 		    object->cred == NULL,
1491 		    ("overcommit: vm_map_insert o %p", object));
1492 		cred = curthread->td_ucred;
1493 	}
1494 
1495 charged:
1496 	/* Expand the kernel pmap, if necessary. */
1497 	if (map == kernel_map && end > kernel_vm_end)
1498 		pmap_growkernel(end);
1499 	if (object != NULL) {
1500 		/*
1501 		 * OBJ_ONEMAPPING must be cleared unless this mapping
1502 		 * is trivially proven to be the only mapping for any
1503 		 * of the object's pages.  (Object granularity
1504 		 * reference counting is insufficient to recognize
1505 		 * aliases with precision.)
1506 		 */
1507 		if ((object->flags & OBJ_ANON) != 0) {
1508 			VM_OBJECT_WLOCK(object);
1509 			if (object->ref_count > 1 || object->shadow_count != 0)
1510 				vm_object_clear_flag(object, OBJ_ONEMAPPING);
1511 			VM_OBJECT_WUNLOCK(object);
1512 		}
1513 	} else if ((prev_entry->eflags & ~MAP_ENTRY_USER_WIRED) ==
1514 	    protoeflags &&
1515 	    (cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP |
1516 	    MAP_VN_EXEC)) == 0 &&
1517 	    prev_entry->end == start && (prev_entry->cred == cred ||
1518 	    (prev_entry->object.vm_object != NULL &&
1519 	    prev_entry->object.vm_object->cred == cred)) &&
1520 	    vm_object_coalesce(prev_entry->object.vm_object,
1521 	    prev_entry->offset,
1522 	    (vm_size_t)(prev_entry->end - prev_entry->start),
1523 	    (vm_size_t)(end - prev_entry->end), cred != NULL &&
1524 	    (protoeflags & MAP_ENTRY_NEEDS_COPY) == 0)) {
1525 		/*
1526 		 * We were able to extend the object.  Determine if we
1527 		 * can extend the previous map entry to include the
1528 		 * new range as well.
1529 		 */
1530 		if (prev_entry->inheritance == inheritance &&
1531 		    prev_entry->protection == prot &&
1532 		    prev_entry->max_protection == max &&
1533 		    prev_entry->wired_count == 0) {
1534 			KASSERT((prev_entry->eflags & MAP_ENTRY_USER_WIRED) ==
1535 			    0, ("prev_entry %p has incoherent wiring",
1536 			    prev_entry));
1537 			if ((prev_entry->eflags & MAP_ENTRY_GUARD) == 0)
1538 				map->size += end - prev_entry->end;
1539 			vm_map_entry_resize(map, prev_entry,
1540 			    end - prev_entry->end);
1541 			vm_map_try_merge_entries(map, prev_entry,
1542 			    vm_map_entry_succ(prev_entry));
1543 			return (KERN_SUCCESS);
1544 		}
1545 
1546 		/*
1547 		 * If we can extend the object but cannot extend the
1548 		 * map entry, we have to create a new map entry.  We
1549 		 * must bump the ref count on the extended object to
1550 		 * account for it.  object may be NULL.
1551 		 */
1552 		object = prev_entry->object.vm_object;
1553 		offset = prev_entry->offset +
1554 		    (prev_entry->end - prev_entry->start);
1555 		vm_object_reference(object);
1556 		if (cred != NULL && object != NULL && object->cred != NULL &&
1557 		    !(prev_entry->eflags & MAP_ENTRY_NEEDS_COPY)) {
1558 			/* Object already accounts for this uid. */
1559 			cred = NULL;
1560 		}
1561 	}
1562 	if (cred != NULL)
1563 		crhold(cred);
1564 
1565 	/*
1566 	 * Create a new entry
1567 	 */
1568 	new_entry = vm_map_entry_create(map);
1569 	new_entry->start = start;
1570 	new_entry->end = end;
1571 	new_entry->cred = NULL;
1572 
1573 	new_entry->eflags = protoeflags;
1574 	new_entry->object.vm_object = object;
1575 	new_entry->offset = offset;
1576 
1577 	new_entry->inheritance = inheritance;
1578 	new_entry->protection = prot;
1579 	new_entry->max_protection = max;
1580 	new_entry->wired_count = 0;
1581 	new_entry->wiring_thread = NULL;
1582 	new_entry->read_ahead = VM_FAULT_READ_AHEAD_INIT;
1583 	new_entry->next_read = start;
1584 
1585 	KASSERT(cred == NULL || !ENTRY_CHARGED(new_entry),
1586 	    ("overcommit: vm_map_insert leaks vm_map %p", new_entry));
1587 	new_entry->cred = cred;
1588 
1589 	/*
1590 	 * Insert the new entry into the list
1591 	 */
1592 	vm_map_entry_link(map, new_entry);
1593 	if ((new_entry->eflags & MAP_ENTRY_GUARD) == 0)
1594 		map->size += new_entry->end - new_entry->start;
1595 
1596 	/*
1597 	 * Try to coalesce the new entry with both the previous and next
1598 	 * entries in the list.  Previously, we only attempted to coalesce
1599 	 * with the previous entry when object is NULL.  Here, we handle the
1600 	 * other cases, which are less common.
1601 	 */
1602 	vm_map_try_merge_entries(map, prev_entry, new_entry);
1603 	vm_map_try_merge_entries(map, new_entry, vm_map_entry_succ(new_entry));
1604 
1605 	if ((cow & (MAP_PREFAULT | MAP_PREFAULT_PARTIAL)) != 0) {
1606 		vm_map_pmap_enter(map, start, prot, object, OFF_TO_IDX(offset),
1607 		    end - start, cow & MAP_PREFAULT_PARTIAL);
1608 	}
1609 
1610 	return (KERN_SUCCESS);
1611 }
1612 
1613 /*
1614  *	vm_map_findspace:
1615  *
1616  *	Find the first fit (lowest VM address) for "length" free bytes
1617  *	beginning at address >= start in the given map.
1618  *
1619  *	In a vm_map_entry, "max_free" is the maximum amount of
1620  *	contiguous free space between an entry in its subtree and a
1621  *	neighbor of that entry.  This allows finding a free region in
1622  *	one path down the tree, so O(log n) amortized with splay
1623  *	trees.
1624  *
1625  *	The map must be locked, and leaves it so.
1626  *
1627  *	Returns: starting address if sufficient space,
1628  *		 vm_map_max(map)-length+1 if insufficient space.
1629  */
1630 vm_offset_t
1631 vm_map_findspace(vm_map_t map, vm_offset_t start, vm_size_t length)
1632 {
1633 	vm_map_entry_t llist, rlist, root, y;
1634 	vm_size_t left_length;
1635 	vm_offset_t gap_end;
1636 
1637 	/*
1638 	 * Request must fit within min/max VM address and must avoid
1639 	 * address wrap.
1640 	 */
1641 	start = MAX(start, vm_map_min(map));
1642 	if (start >= vm_map_max(map) || length > vm_map_max(map) - start)
1643 		return (vm_map_max(map) - length + 1);
1644 
1645 	/* Empty tree means wide open address space. */
1646 	if (map->root == NULL)
1647 		return (start);
1648 
1649 	/*
1650 	 * After splay_split, if start is within an entry, push it to the start
1651 	 * of the following gap.  If rlist is at the end of the gap containing
1652 	 * start, save the end of that gap in gap_end to see if the gap is big
1653 	 * enough; otherwise set gap_end to start skip gap-checking and move
1654 	 * directly to a search of the right subtree.
1655 	 */
1656 	root = vm_map_splay_split(map, start, length, &llist, &rlist);
1657 	gap_end = rlist->start;
1658 	if (root != NULL) {
1659 		start = root->end;
1660 		if (root->right != NULL)
1661 			gap_end = start;
1662 	} else if (rlist != &map->header) {
1663 		root = rlist;
1664 		rlist = root->left;
1665 		root->left = NULL;
1666 	} else {
1667 		root = llist;
1668 		llist = root->right;
1669 		root->right = NULL;
1670 	}
1671 	vm_map_splay_merge(map, root, llist, rlist);
1672 	VM_MAP_ASSERT_CONSISTENT(map);
1673 	if (length <= gap_end - start)
1674 		return (start);
1675 
1676 	/* With max_free, can immediately tell if no solution. */
1677 	if (root->right == NULL || length > root->right->max_free)
1678 		return (vm_map_max(map) - length + 1);
1679 
1680 	/*
1681 	 * Splay for the least large-enough gap in the right subtree.
1682 	 */
1683 	llist = rlist = &map->header;
1684 	for (left_length = 0;;
1685 	    left_length = vm_map_entry_max_free_left(root, llist)) {
1686 		if (length <= left_length)
1687 			SPLAY_LEFT_STEP(root, y, rlist,
1688 			    length <= vm_map_entry_max_free_left(y, llist));
1689 		else
1690 			SPLAY_RIGHT_STEP(root, y, llist,
1691 			    length > vm_map_entry_max_free_left(y, root));
1692 		if (root == NULL)
1693 			break;
1694 	}
1695 	root = llist;
1696 	llist = root->right;
1697 	root->right = NULL;
1698 	if (rlist != &map->header) {
1699 		y = rlist;
1700 		rlist = y->left;
1701 		y->left = NULL;
1702 		vm_map_splay_merge(map, y, &map->header, rlist);
1703 		y->max_free = MAX(
1704 		    vm_map_entry_max_free_left(y, root),
1705 		    vm_map_entry_max_free_right(y, &map->header));
1706 		root->right = y;
1707 	}
1708 	vm_map_splay_merge(map, root, llist, &map->header);
1709 	VM_MAP_ASSERT_CONSISTENT(map);
1710 	return (root->end);
1711 }
1712 
1713 int
1714 vm_map_fixed(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1715     vm_offset_t start, vm_size_t length, vm_prot_t prot,
1716     vm_prot_t max, int cow)
1717 {
1718 	vm_offset_t end;
1719 	int result;
1720 
1721 	end = start + length;
1722 	KASSERT((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 ||
1723 	    object == NULL,
1724 	    ("vm_map_fixed: non-NULL backing object for stack"));
1725 	vm_map_lock(map);
1726 	VM_MAP_RANGE_CHECK(map, start, end);
1727 	if ((cow & MAP_CHECK_EXCL) == 0)
1728 		vm_map_delete(map, start, end);
1729 	if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) != 0) {
1730 		result = vm_map_stack_locked(map, start, length, sgrowsiz,
1731 		    prot, max, cow);
1732 	} else {
1733 		result = vm_map_insert(map, object, offset, start, end,
1734 		    prot, max, cow);
1735 	}
1736 	vm_map_unlock(map);
1737 	return (result);
1738 }
1739 
1740 static const int aslr_pages_rnd_64[2] = {0x1000, 0x10};
1741 static const int aslr_pages_rnd_32[2] = {0x100, 0x4};
1742 
1743 static int cluster_anon = 1;
1744 SYSCTL_INT(_vm, OID_AUTO, cluster_anon, CTLFLAG_RW,
1745     &cluster_anon, 0,
1746     "Cluster anonymous mappings: 0 = no, 1 = yes if no hint, 2 = always");
1747 
1748 static bool
1749 clustering_anon_allowed(vm_offset_t addr)
1750 {
1751 
1752 	switch (cluster_anon) {
1753 	case 0:
1754 		return (false);
1755 	case 1:
1756 		return (addr == 0);
1757 	case 2:
1758 	default:
1759 		return (true);
1760 	}
1761 }
1762 
1763 static long aslr_restarts;
1764 SYSCTL_LONG(_vm, OID_AUTO, aslr_restarts, CTLFLAG_RD,
1765     &aslr_restarts, 0,
1766     "Number of aslr failures");
1767 
1768 #define	MAP_32BIT_MAX_ADDR	((vm_offset_t)1 << 31)
1769 
1770 /*
1771  * Searches for the specified amount of free space in the given map with the
1772  * specified alignment.  Performs an address-ordered, first-fit search from
1773  * the given address "*addr", with an optional upper bound "max_addr".  If the
1774  * parameter "alignment" is zero, then the alignment is computed from the
1775  * given (object, offset) pair so as to enable the greatest possible use of
1776  * superpage mappings.  Returns KERN_SUCCESS and the address of the free space
1777  * in "*addr" if successful.  Otherwise, returns KERN_NO_SPACE.
1778  *
1779  * The map must be locked.  Initially, there must be at least "length" bytes
1780  * of free space at the given address.
1781  */
1782 static int
1783 vm_map_alignspace(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1784     vm_offset_t *addr, vm_size_t length, vm_offset_t max_addr,
1785     vm_offset_t alignment)
1786 {
1787 	vm_offset_t aligned_addr, free_addr;
1788 
1789 	VM_MAP_ASSERT_LOCKED(map);
1790 	free_addr = *addr;
1791 	KASSERT(free_addr == vm_map_findspace(map, free_addr, length),
1792 	    ("caller failed to provide space %#jx at address %p",
1793 	     (uintmax_t)length, (void *)free_addr));
1794 	for (;;) {
1795 		/*
1796 		 * At the start of every iteration, the free space at address
1797 		 * "*addr" is at least "length" bytes.
1798 		 */
1799 		if (alignment == 0)
1800 			pmap_align_superpage(object, offset, addr, length);
1801 		else if ((*addr & (alignment - 1)) != 0) {
1802 			*addr &= ~(alignment - 1);
1803 			*addr += alignment;
1804 		}
1805 		aligned_addr = *addr;
1806 		if (aligned_addr == free_addr) {
1807 			/*
1808 			 * Alignment did not change "*addr", so "*addr" must
1809 			 * still provide sufficient free space.
1810 			 */
1811 			return (KERN_SUCCESS);
1812 		}
1813 
1814 		/*
1815 		 * Test for address wrap on "*addr".  A wrapped "*addr" could
1816 		 * be a valid address, in which case vm_map_findspace() cannot
1817 		 * be relied upon to fail.
1818 		 */
1819 		if (aligned_addr < free_addr)
1820 			return (KERN_NO_SPACE);
1821 		*addr = vm_map_findspace(map, aligned_addr, length);
1822 		if (*addr + length > vm_map_max(map) ||
1823 		    (max_addr != 0 && *addr + length > max_addr))
1824 			return (KERN_NO_SPACE);
1825 		free_addr = *addr;
1826 		if (free_addr == aligned_addr) {
1827 			/*
1828 			 * If a successful call to vm_map_findspace() did not
1829 			 * change "*addr", then "*addr" must still be aligned
1830 			 * and provide sufficient free space.
1831 			 */
1832 			return (KERN_SUCCESS);
1833 		}
1834 	}
1835 }
1836 
1837 /*
1838  *	vm_map_find finds an unallocated region in the target address
1839  *	map with the given length.  The search is defined to be
1840  *	first-fit from the specified address; the region found is
1841  *	returned in the same parameter.
1842  *
1843  *	If object is non-NULL, ref count must be bumped by caller
1844  *	prior to making call to account for the new entry.
1845  */
1846 int
1847 vm_map_find(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1848 	    vm_offset_t *addr,	/* IN/OUT */
1849 	    vm_size_t length, vm_offset_t max_addr, int find_space,
1850 	    vm_prot_t prot, vm_prot_t max, int cow)
1851 {
1852 	vm_offset_t alignment, curr_min_addr, min_addr;
1853 	int gap, pidx, rv, try;
1854 	bool cluster, en_aslr, update_anon;
1855 
1856 	KASSERT((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 ||
1857 	    object == NULL,
1858 	    ("vm_map_find: non-NULL backing object for stack"));
1859 	MPASS((cow & MAP_REMAP) == 0 || (find_space == VMFS_NO_SPACE &&
1860 	    (cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0));
1861 	if (find_space == VMFS_OPTIMAL_SPACE && (object == NULL ||
1862 	    (object->flags & OBJ_COLORED) == 0))
1863 		find_space = VMFS_ANY_SPACE;
1864 	if (find_space >> 8 != 0) {
1865 		KASSERT((find_space & 0xff) == 0, ("bad VMFS flags"));
1866 		alignment = (vm_offset_t)1 << (find_space >> 8);
1867 	} else
1868 		alignment = 0;
1869 	en_aslr = (map->flags & MAP_ASLR) != 0;
1870 	update_anon = cluster = clustering_anon_allowed(*addr) &&
1871 	    (map->flags & MAP_IS_SUB_MAP) == 0 && max_addr == 0 &&
1872 	    find_space != VMFS_NO_SPACE && object == NULL &&
1873 	    (cow & (MAP_INHERIT_SHARE | MAP_STACK_GROWS_UP |
1874 	    MAP_STACK_GROWS_DOWN)) == 0 && prot != PROT_NONE;
1875 	curr_min_addr = min_addr = *addr;
1876 	if (en_aslr && min_addr == 0 && !cluster &&
1877 	    find_space != VMFS_NO_SPACE &&
1878 	    (map->flags & MAP_ASLR_IGNSTART) != 0)
1879 		curr_min_addr = min_addr = vm_map_min(map);
1880 	try = 0;
1881 	vm_map_lock(map);
1882 	if (cluster) {
1883 		curr_min_addr = map->anon_loc;
1884 		if (curr_min_addr == 0)
1885 			cluster = false;
1886 	}
1887 	if (find_space != VMFS_NO_SPACE) {
1888 		KASSERT(find_space == VMFS_ANY_SPACE ||
1889 		    find_space == VMFS_OPTIMAL_SPACE ||
1890 		    find_space == VMFS_SUPER_SPACE ||
1891 		    alignment != 0, ("unexpected VMFS flag"));
1892 again:
1893 		/*
1894 		 * When creating an anonymous mapping, try clustering
1895 		 * with an existing anonymous mapping first.
1896 		 *
1897 		 * We make up to two attempts to find address space
1898 		 * for a given find_space value. The first attempt may
1899 		 * apply randomization or may cluster with an existing
1900 		 * anonymous mapping. If this first attempt fails,
1901 		 * perform a first-fit search of the available address
1902 		 * space.
1903 		 *
1904 		 * If all tries failed, and find_space is
1905 		 * VMFS_OPTIMAL_SPACE, fallback to VMFS_ANY_SPACE.
1906 		 * Again enable clustering and randomization.
1907 		 */
1908 		try++;
1909 		MPASS(try <= 2);
1910 
1911 		if (try == 2) {
1912 			/*
1913 			 * Second try: we failed either to find a
1914 			 * suitable region for randomizing the
1915 			 * allocation, or to cluster with an existing
1916 			 * mapping.  Retry with free run.
1917 			 */
1918 			curr_min_addr = (map->flags & MAP_ASLR_IGNSTART) != 0 ?
1919 			    vm_map_min(map) : min_addr;
1920 			atomic_add_long(&aslr_restarts, 1);
1921 		}
1922 
1923 		if (try == 1 && en_aslr && !cluster) {
1924 			/*
1925 			 * Find space for allocation, including
1926 			 * gap needed for later randomization.
1927 			 */
1928 			pidx = MAXPAGESIZES > 1 && pagesizes[1] != 0 &&
1929 			    (find_space == VMFS_SUPER_SPACE || find_space ==
1930 			    VMFS_OPTIMAL_SPACE) ? 1 : 0;
1931 			gap = vm_map_max(map) > MAP_32BIT_MAX_ADDR &&
1932 			    (max_addr == 0 || max_addr > MAP_32BIT_MAX_ADDR) ?
1933 			    aslr_pages_rnd_64[pidx] : aslr_pages_rnd_32[pidx];
1934 			*addr = vm_map_findspace(map, curr_min_addr,
1935 			    length + gap * pagesizes[pidx]);
1936 			if (*addr + length + gap * pagesizes[pidx] >
1937 			    vm_map_max(map))
1938 				goto again;
1939 			/* And randomize the start address. */
1940 			*addr += (arc4random() % gap) * pagesizes[pidx];
1941 			if (max_addr != 0 && *addr + length > max_addr)
1942 				goto again;
1943 		} else {
1944 			*addr = vm_map_findspace(map, curr_min_addr, length);
1945 			if (*addr + length > vm_map_max(map) ||
1946 			    (max_addr != 0 && *addr + length > max_addr)) {
1947 				if (cluster) {
1948 					cluster = false;
1949 					MPASS(try == 1);
1950 					goto again;
1951 				}
1952 				rv = KERN_NO_SPACE;
1953 				goto done;
1954 			}
1955 		}
1956 
1957 		if (find_space != VMFS_ANY_SPACE &&
1958 		    (rv = vm_map_alignspace(map, object, offset, addr, length,
1959 		    max_addr, alignment)) != KERN_SUCCESS) {
1960 			if (find_space == VMFS_OPTIMAL_SPACE) {
1961 				find_space = VMFS_ANY_SPACE;
1962 				curr_min_addr = min_addr;
1963 				cluster = update_anon;
1964 				try = 0;
1965 				goto again;
1966 			}
1967 			goto done;
1968 		}
1969 	} else if ((cow & MAP_REMAP) != 0) {
1970 		if (*addr < vm_map_min(map) ||
1971 		    *addr + length > vm_map_max(map) ||
1972 		    *addr + length <= length) {
1973 			rv = KERN_INVALID_ADDRESS;
1974 			goto done;
1975 		}
1976 		vm_map_delete(map, *addr, *addr + length);
1977 	}
1978 	if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) != 0) {
1979 		rv = vm_map_stack_locked(map, *addr, length, sgrowsiz, prot,
1980 		    max, cow);
1981 	} else {
1982 		rv = vm_map_insert(map, object, offset, *addr, *addr + length,
1983 		    prot, max, cow);
1984 	}
1985 	if (rv == KERN_SUCCESS && update_anon)
1986 		map->anon_loc = *addr + length;
1987 done:
1988 	vm_map_unlock(map);
1989 	return (rv);
1990 }
1991 
1992 /*
1993  *	vm_map_find_min() is a variant of vm_map_find() that takes an
1994  *	additional parameter (min_addr) and treats the given address
1995  *	(*addr) differently.  Specifically, it treats *addr as a hint
1996  *	and not as the minimum address where the mapping is created.
1997  *
1998  *	This function works in two phases.  First, it tries to
1999  *	allocate above the hint.  If that fails and the hint is
2000  *	greater than min_addr, it performs a second pass, replacing
2001  *	the hint with min_addr as the minimum address for the
2002  *	allocation.
2003  */
2004 int
2005 vm_map_find_min(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
2006     vm_offset_t *addr, vm_size_t length, vm_offset_t min_addr,
2007     vm_offset_t max_addr, int find_space, vm_prot_t prot, vm_prot_t max,
2008     int cow)
2009 {
2010 	vm_offset_t hint;
2011 	int rv;
2012 
2013 	hint = *addr;
2014 	for (;;) {
2015 		rv = vm_map_find(map, object, offset, addr, length, max_addr,
2016 		    find_space, prot, max, cow);
2017 		if (rv == KERN_SUCCESS || min_addr >= hint)
2018 			return (rv);
2019 		*addr = hint = min_addr;
2020 	}
2021 }
2022 
2023 /*
2024  * A map entry with any of the following flags set must not be merged with
2025  * another entry.
2026  */
2027 #define	MAP_ENTRY_NOMERGE_MASK	(MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP | \
2028 	    MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_IS_SUB_MAP | MAP_ENTRY_VN_EXEC)
2029 
2030 static bool
2031 vm_map_mergeable_neighbors(vm_map_entry_t prev, vm_map_entry_t entry)
2032 {
2033 
2034 	KASSERT((prev->eflags & MAP_ENTRY_NOMERGE_MASK) == 0 ||
2035 	    (entry->eflags & MAP_ENTRY_NOMERGE_MASK) == 0,
2036 	    ("vm_map_mergeable_neighbors: neither %p nor %p are mergeable",
2037 	    prev, entry));
2038 	return (prev->end == entry->start &&
2039 	    prev->object.vm_object == entry->object.vm_object &&
2040 	    (prev->object.vm_object == NULL ||
2041 	    prev->offset + (prev->end - prev->start) == entry->offset) &&
2042 	    prev->eflags == entry->eflags &&
2043 	    prev->protection == entry->protection &&
2044 	    prev->max_protection == entry->max_protection &&
2045 	    prev->inheritance == entry->inheritance &&
2046 	    prev->wired_count == entry->wired_count &&
2047 	    prev->cred == entry->cred);
2048 }
2049 
2050 static void
2051 vm_map_merged_neighbor_dispose(vm_map_t map, vm_map_entry_t entry)
2052 {
2053 
2054 	/*
2055 	 * If the backing object is a vnode object, vm_object_deallocate()
2056 	 * calls vrele().  However, vrele() does not lock the vnode because
2057 	 * the vnode has additional references.  Thus, the map lock can be
2058 	 * kept without causing a lock-order reversal with the vnode lock.
2059 	 *
2060 	 * Since we count the number of virtual page mappings in
2061 	 * object->un_pager.vnp.writemappings, the writemappings value
2062 	 * should not be adjusted when the entry is disposed of.
2063 	 */
2064 	if (entry->object.vm_object != NULL)
2065 		vm_object_deallocate(entry->object.vm_object);
2066 	if (entry->cred != NULL)
2067 		crfree(entry->cred);
2068 	vm_map_entry_dispose(map, entry);
2069 }
2070 
2071 /*
2072  *	vm_map_try_merge_entries:
2073  *
2074  *	Compare the given map entry to its predecessor, and merge its precessor
2075  *	into it if possible.  The entry remains valid, and may be extended.
2076  *	The predecessor may be deleted.
2077  *
2078  *	The map must be locked.
2079  */
2080 void
2081 vm_map_try_merge_entries(vm_map_t map, vm_map_entry_t prev, vm_map_entry_t entry)
2082 {
2083 
2084 	VM_MAP_ASSERT_LOCKED(map);
2085 	if ((entry->eflags & MAP_ENTRY_NOMERGE_MASK) == 0 &&
2086 	    vm_map_mergeable_neighbors(prev, entry)) {
2087 		vm_map_entry_unlink(map, prev, UNLINK_MERGE_NEXT);
2088 		vm_map_merged_neighbor_dispose(map, prev);
2089 	}
2090 }
2091 
2092 /*
2093  *	vm_map_entry_back:
2094  *
2095  *	Allocate an object to back a map entry.
2096  */
2097 static inline void
2098 vm_map_entry_back(vm_map_entry_t entry)
2099 {
2100 	vm_object_t object;
2101 
2102 	KASSERT(entry->object.vm_object == NULL,
2103 	    ("map entry %p has backing object", entry));
2104 	KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0,
2105 	    ("map entry %p is a submap", entry));
2106 	object = vm_object_allocate_anon(atop(entry->end - entry->start));
2107 	entry->object.vm_object = object;
2108 	entry->offset = 0;
2109 	if (entry->cred != NULL) {
2110 		object->cred = entry->cred;
2111 		object->charge = entry->end - entry->start;
2112 		entry->cred = NULL;
2113 	}
2114 }
2115 
2116 /*
2117  *	vm_map_entry_charge_object
2118  *
2119  *	If there is no object backing this entry, create one.  Otherwise, if
2120  *	the entry has cred, give it to the backing object.
2121  */
2122 static inline void
2123 vm_map_entry_charge_object(vm_map_t map, vm_map_entry_t entry)
2124 {
2125 
2126 	VM_MAP_ASSERT_LOCKED(map);
2127 	KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0,
2128 	    ("map entry %p is a submap", entry));
2129 	if (entry->object.vm_object == NULL && !map->system_map &&
2130 	    (entry->eflags & MAP_ENTRY_GUARD) == 0)
2131 		vm_map_entry_back(entry);
2132 	else if (entry->object.vm_object != NULL &&
2133 	    ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) &&
2134 	    entry->cred != NULL) {
2135 		VM_OBJECT_WLOCK(entry->object.vm_object);
2136 		KASSERT(entry->object.vm_object->cred == NULL,
2137 		    ("OVERCOMMIT: %s: both cred e %p", __func__, entry));
2138 		entry->object.vm_object->cred = entry->cred;
2139 		entry->object.vm_object->charge = entry->end - entry->start;
2140 		VM_OBJECT_WUNLOCK(entry->object.vm_object);
2141 		entry->cred = NULL;
2142 	}
2143 }
2144 
2145 /*
2146  *	vm_map_clip_start:	[ internal use only ]
2147  *
2148  *	Asserts that the given entry begins at or after
2149  *	the specified address; if necessary,
2150  *	it splits the entry into two.
2151  */
2152 #define vm_map_clip_start(map, entry, startaddr) \
2153 { \
2154 	if (startaddr > entry->start) \
2155 		_vm_map_clip_start(map, entry, startaddr); \
2156 }
2157 
2158 /*
2159  *	This routine is called only when it is known that
2160  *	the entry must be split.
2161  */
2162 static void
2163 _vm_map_clip_start(vm_map_t map, vm_map_entry_t entry, vm_offset_t start)
2164 {
2165 	vm_map_entry_t new_entry;
2166 
2167 	VM_MAP_ASSERT_LOCKED(map);
2168 	KASSERT(entry->end > start && entry->start < start,
2169 	    ("_vm_map_clip_start: invalid clip of entry %p", entry));
2170 
2171 	/*
2172 	 * Create a backing object now, if none exists, so that more individual
2173 	 * objects won't be created after the map entry is split.
2174 	 */
2175 	vm_map_entry_charge_object(map, entry);
2176 
2177 	/* Clone the entry. */
2178 	new_entry = vm_map_entry_create(map);
2179 	*new_entry = *entry;
2180 
2181 	/*
2182 	 * Split off the front portion.  Insert the new entry BEFORE this one,
2183 	 * so that this entry has the specified starting address.
2184 	 */
2185 	new_entry->end = start;
2186 	entry->offset += (start - entry->start);
2187 	entry->start = start;
2188 	if (new_entry->cred != NULL)
2189 		crhold(entry->cred);
2190 
2191 	vm_map_entry_link(map, new_entry);
2192 
2193 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
2194 		vm_object_reference(new_entry->object.vm_object);
2195 		vm_map_entry_set_vnode_text(new_entry, true);
2196 		/*
2197 		 * The object->un_pager.vnp.writemappings for the
2198 		 * object of MAP_ENTRY_WRITECNT type entry shall be
2199 		 * kept as is here.  The virtual pages are
2200 		 * re-distributed among the clipped entries, so the sum is
2201 		 * left the same.
2202 		 */
2203 	}
2204 }
2205 
2206 /*
2207  *	vm_map_clip_end:	[ internal use only ]
2208  *
2209  *	Asserts that the given entry ends at or before
2210  *	the specified address; if necessary,
2211  *	it splits the entry into two.
2212  */
2213 #define vm_map_clip_end(map, entry, endaddr) \
2214 { \
2215 	if ((endaddr) < (entry->end)) \
2216 		_vm_map_clip_end((map), (entry), (endaddr)); \
2217 }
2218 
2219 /*
2220  *	This routine is called only when it is known that
2221  *	the entry must be split.
2222  */
2223 static void
2224 _vm_map_clip_end(vm_map_t map, vm_map_entry_t entry, vm_offset_t end)
2225 {
2226 	vm_map_entry_t new_entry;
2227 
2228 	VM_MAP_ASSERT_LOCKED(map);
2229 	KASSERT(entry->start < end && entry->end > end,
2230 	    ("_vm_map_clip_end: invalid clip of entry %p", entry));
2231 
2232 	/*
2233 	 * Create a backing object now, if none exists, so that more individual
2234 	 * objects won't be created after the map entry is split.
2235 	 */
2236 	vm_map_entry_charge_object(map, entry);
2237 
2238 	/* Clone the entry. */
2239 	new_entry = vm_map_entry_create(map);
2240 	*new_entry = *entry;
2241 
2242 	/*
2243 	 * Split off the back portion.  Insert the new entry AFTER this one,
2244 	 * so that this entry has the specified ending address.
2245 	 */
2246 	new_entry->start = entry->end = end;
2247 	new_entry->offset += (end - entry->start);
2248 	if (new_entry->cred != NULL)
2249 		crhold(entry->cred);
2250 
2251 	vm_map_entry_link(map, new_entry);
2252 
2253 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
2254 		vm_object_reference(new_entry->object.vm_object);
2255 		vm_map_entry_set_vnode_text(new_entry, true);
2256 	}
2257 }
2258 
2259 /*
2260  *	vm_map_submap:		[ kernel use only ]
2261  *
2262  *	Mark the given range as handled by a subordinate map.
2263  *
2264  *	This range must have been created with vm_map_find,
2265  *	and no other operations may have been performed on this
2266  *	range prior to calling vm_map_submap.
2267  *
2268  *	Only a limited number of operations can be performed
2269  *	within this rage after calling vm_map_submap:
2270  *		vm_fault
2271  *	[Don't try vm_map_copy!]
2272  *
2273  *	To remove a submapping, one must first remove the
2274  *	range from the superior map, and then destroy the
2275  *	submap (if desired).  [Better yet, don't try it.]
2276  */
2277 int
2278 vm_map_submap(
2279 	vm_map_t map,
2280 	vm_offset_t start,
2281 	vm_offset_t end,
2282 	vm_map_t submap)
2283 {
2284 	vm_map_entry_t entry;
2285 	int result;
2286 
2287 	result = KERN_INVALID_ARGUMENT;
2288 
2289 	vm_map_lock(submap);
2290 	submap->flags |= MAP_IS_SUB_MAP;
2291 	vm_map_unlock(submap);
2292 
2293 	vm_map_lock(map);
2294 
2295 	VM_MAP_RANGE_CHECK(map, start, end);
2296 
2297 	if (vm_map_lookup_entry(map, start, &entry)) {
2298 		vm_map_clip_start(map, entry, start);
2299 	} else
2300 		entry = vm_map_entry_succ(entry);
2301 
2302 	vm_map_clip_end(map, entry, end);
2303 
2304 	if ((entry->start == start) && (entry->end == end) &&
2305 	    ((entry->eflags & MAP_ENTRY_COW) == 0) &&
2306 	    (entry->object.vm_object == NULL)) {
2307 		entry->object.sub_map = submap;
2308 		entry->eflags |= MAP_ENTRY_IS_SUB_MAP;
2309 		result = KERN_SUCCESS;
2310 	}
2311 	vm_map_unlock(map);
2312 
2313 	if (result != KERN_SUCCESS) {
2314 		vm_map_lock(submap);
2315 		submap->flags &= ~MAP_IS_SUB_MAP;
2316 		vm_map_unlock(submap);
2317 	}
2318 	return (result);
2319 }
2320 
2321 /*
2322  * The maximum number of pages to map if MAP_PREFAULT_PARTIAL is specified
2323  */
2324 #define	MAX_INIT_PT	96
2325 
2326 /*
2327  *	vm_map_pmap_enter:
2328  *
2329  *	Preload the specified map's pmap with mappings to the specified
2330  *	object's memory-resident pages.  No further physical pages are
2331  *	allocated, and no further virtual pages are retrieved from secondary
2332  *	storage.  If the specified flags include MAP_PREFAULT_PARTIAL, then a
2333  *	limited number of page mappings are created at the low-end of the
2334  *	specified address range.  (For this purpose, a superpage mapping
2335  *	counts as one page mapping.)  Otherwise, all resident pages within
2336  *	the specified address range are mapped.
2337  */
2338 static void
2339 vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot,
2340     vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags)
2341 {
2342 	vm_offset_t start;
2343 	vm_page_t p, p_start;
2344 	vm_pindex_t mask, psize, threshold, tmpidx;
2345 
2346 	if ((prot & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0 || object == NULL)
2347 		return;
2348 	VM_OBJECT_RLOCK(object);
2349 	if (object->type == OBJT_DEVICE || object->type == OBJT_SG) {
2350 		VM_OBJECT_RUNLOCK(object);
2351 		VM_OBJECT_WLOCK(object);
2352 		if (object->type == OBJT_DEVICE || object->type == OBJT_SG) {
2353 			pmap_object_init_pt(map->pmap, addr, object, pindex,
2354 			    size);
2355 			VM_OBJECT_WUNLOCK(object);
2356 			return;
2357 		}
2358 		VM_OBJECT_LOCK_DOWNGRADE(object);
2359 	}
2360 
2361 	psize = atop(size);
2362 	if (psize + pindex > object->size) {
2363 		if (object->size < pindex) {
2364 			VM_OBJECT_RUNLOCK(object);
2365 			return;
2366 		}
2367 		psize = object->size - pindex;
2368 	}
2369 
2370 	start = 0;
2371 	p_start = NULL;
2372 	threshold = MAX_INIT_PT;
2373 
2374 	p = vm_page_find_least(object, pindex);
2375 	/*
2376 	 * Assert: the variable p is either (1) the page with the
2377 	 * least pindex greater than or equal to the parameter pindex
2378 	 * or (2) NULL.
2379 	 */
2380 	for (;
2381 	     p != NULL && (tmpidx = p->pindex - pindex) < psize;
2382 	     p = TAILQ_NEXT(p, listq)) {
2383 		/*
2384 		 * don't allow an madvise to blow away our really
2385 		 * free pages allocating pv entries.
2386 		 */
2387 		if (((flags & MAP_PREFAULT_MADVISE) != 0 &&
2388 		    vm_page_count_severe()) ||
2389 		    ((flags & MAP_PREFAULT_PARTIAL) != 0 &&
2390 		    tmpidx >= threshold)) {
2391 			psize = tmpidx;
2392 			break;
2393 		}
2394 		if (vm_page_all_valid(p)) {
2395 			if (p_start == NULL) {
2396 				start = addr + ptoa(tmpidx);
2397 				p_start = p;
2398 			}
2399 			/* Jump ahead if a superpage mapping is possible. */
2400 			if (p->psind > 0 && ((addr + ptoa(tmpidx)) &
2401 			    (pagesizes[p->psind] - 1)) == 0) {
2402 				mask = atop(pagesizes[p->psind]) - 1;
2403 				if (tmpidx + mask < psize &&
2404 				    vm_page_ps_test(p, PS_ALL_VALID, NULL)) {
2405 					p += mask;
2406 					threshold += mask;
2407 				}
2408 			}
2409 		} else if (p_start != NULL) {
2410 			pmap_enter_object(map->pmap, start, addr +
2411 			    ptoa(tmpidx), p_start, prot);
2412 			p_start = NULL;
2413 		}
2414 	}
2415 	if (p_start != NULL)
2416 		pmap_enter_object(map->pmap, start, addr + ptoa(psize),
2417 		    p_start, prot);
2418 	VM_OBJECT_RUNLOCK(object);
2419 }
2420 
2421 /*
2422  *	vm_map_protect:
2423  *
2424  *	Sets the protection of the specified address
2425  *	region in the target map.  If "set_max" is
2426  *	specified, the maximum protection is to be set;
2427  *	otherwise, only the current protection is affected.
2428  */
2429 int
2430 vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end,
2431 	       vm_prot_t new_prot, boolean_t set_max)
2432 {
2433 	vm_map_entry_t current, entry, in_tran;
2434 	vm_object_t obj;
2435 	struct ucred *cred;
2436 	vm_prot_t old_prot;
2437 	int rv;
2438 
2439 	if (start == end)
2440 		return (KERN_SUCCESS);
2441 
2442 again:
2443 	in_tran = NULL;
2444 	vm_map_lock(map);
2445 
2446 	/*
2447 	 * Ensure that we are not concurrently wiring pages.  vm_map_wire() may
2448 	 * need to fault pages into the map and will drop the map lock while
2449 	 * doing so, and the VM object may end up in an inconsistent state if we
2450 	 * update the protection on the map entry in between faults.
2451 	 */
2452 	vm_map_wait_busy(map);
2453 
2454 	VM_MAP_RANGE_CHECK(map, start, end);
2455 
2456 	if (!vm_map_lookup_entry(map, start, &entry))
2457 		entry = vm_map_entry_succ(entry);
2458 
2459 	/*
2460 	 * Make a first pass to check for protection violations.
2461 	 */
2462 	for (current = entry; current->start < end;
2463 	    current = vm_map_entry_succ(current)) {
2464 		if ((current->eflags & MAP_ENTRY_GUARD) != 0)
2465 			continue;
2466 		if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
2467 			vm_map_unlock(map);
2468 			return (KERN_INVALID_ARGUMENT);
2469 		}
2470 		if ((new_prot & current->max_protection) != new_prot) {
2471 			vm_map_unlock(map);
2472 			return (KERN_PROTECTION_FAILURE);
2473 		}
2474 		if ((current->eflags & MAP_ENTRY_IN_TRANSITION) != 0)
2475 			in_tran = current;
2476 	}
2477 
2478 	/*
2479 	 * Postpone the operation until all in-transition map entries have
2480 	 * stabilized.  An in-transition entry might already have its pages
2481 	 * wired and wired_count incremented, but not yet have its
2482 	 * MAP_ENTRY_USER_WIRED flag set.  In which case, we would fail to call
2483 	 * vm_fault_copy_entry() in the final loop below.
2484 	 */
2485 	if (in_tran != NULL) {
2486 		in_tran->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2487 		vm_map_unlock_and_wait(map, 0);
2488 		goto again;
2489 	}
2490 
2491 	/*
2492 	 * Before changing the protections, try to reserve swap space for any
2493 	 * private (i.e., copy-on-write) mappings that are transitioning from
2494 	 * read-only to read/write access.  If a reservation fails, break out
2495 	 * of this loop early and let the next loop simplify the entries, since
2496 	 * some may now be mergeable.
2497 	 */
2498 	rv = KERN_SUCCESS;
2499 	vm_map_clip_start(map, entry, start);
2500 	for (current = entry; current->start < end;
2501 	    current = vm_map_entry_succ(current)) {
2502 
2503 		vm_map_clip_end(map, current, end);
2504 
2505 		if (set_max ||
2506 		    ((new_prot & ~(current->protection)) & VM_PROT_WRITE) == 0 ||
2507 		    ENTRY_CHARGED(current) ||
2508 		    (current->eflags & MAP_ENTRY_GUARD) != 0) {
2509 			continue;
2510 		}
2511 
2512 		cred = curthread->td_ucred;
2513 		obj = current->object.vm_object;
2514 
2515 		if (obj == NULL || (current->eflags & MAP_ENTRY_NEEDS_COPY)) {
2516 			if (!swap_reserve(current->end - current->start)) {
2517 				rv = KERN_RESOURCE_SHORTAGE;
2518 				end = current->end;
2519 				break;
2520 			}
2521 			crhold(cred);
2522 			current->cred = cred;
2523 			continue;
2524 		}
2525 
2526 		VM_OBJECT_WLOCK(obj);
2527 		if (obj->type != OBJT_DEFAULT && obj->type != OBJT_SWAP) {
2528 			VM_OBJECT_WUNLOCK(obj);
2529 			continue;
2530 		}
2531 
2532 		/*
2533 		 * Charge for the whole object allocation now, since
2534 		 * we cannot distinguish between non-charged and
2535 		 * charged clipped mapping of the same object later.
2536 		 */
2537 		KASSERT(obj->charge == 0,
2538 		    ("vm_map_protect: object %p overcharged (entry %p)",
2539 		    obj, current));
2540 		if (!swap_reserve(ptoa(obj->size))) {
2541 			VM_OBJECT_WUNLOCK(obj);
2542 			rv = KERN_RESOURCE_SHORTAGE;
2543 			end = current->end;
2544 			break;
2545 		}
2546 
2547 		crhold(cred);
2548 		obj->cred = cred;
2549 		obj->charge = ptoa(obj->size);
2550 		VM_OBJECT_WUNLOCK(obj);
2551 	}
2552 
2553 	/*
2554 	 * If enough swap space was available, go back and fix up protections.
2555 	 * Otherwise, just simplify entries, since some may have been modified.
2556 	 * [Note that clipping is not necessary the second time.]
2557 	 */
2558 	for (current = entry; current->start < end;
2559 	     vm_map_try_merge_entries(map, vm_map_entry_pred(current), current),
2560 	    current = vm_map_entry_succ(current)) {
2561 		if (rv != KERN_SUCCESS ||
2562 		    (current->eflags & MAP_ENTRY_GUARD) != 0)
2563 			continue;
2564 
2565 		old_prot = current->protection;
2566 
2567 		if (set_max)
2568 			current->protection =
2569 			    (current->max_protection = new_prot) &
2570 			    old_prot;
2571 		else
2572 			current->protection = new_prot;
2573 
2574 		/*
2575 		 * For user wired map entries, the normal lazy evaluation of
2576 		 * write access upgrades through soft page faults is
2577 		 * undesirable.  Instead, immediately copy any pages that are
2578 		 * copy-on-write and enable write access in the physical map.
2579 		 */
2580 		if ((current->eflags & MAP_ENTRY_USER_WIRED) != 0 &&
2581 		    (current->protection & VM_PROT_WRITE) != 0 &&
2582 		    (old_prot & VM_PROT_WRITE) == 0)
2583 			vm_fault_copy_entry(map, map, current, current, NULL);
2584 
2585 		/*
2586 		 * When restricting access, update the physical map.  Worry
2587 		 * about copy-on-write here.
2588 		 */
2589 		if ((old_prot & ~current->protection) != 0) {
2590 #define MASK(entry)	(((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \
2591 							VM_PROT_ALL)
2592 			pmap_protect(map->pmap, current->start,
2593 			    current->end,
2594 			    current->protection & MASK(current));
2595 #undef	MASK
2596 		}
2597 	}
2598 	vm_map_try_merge_entries(map, vm_map_entry_pred(current), current);
2599 	vm_map_unlock(map);
2600 	return (rv);
2601 }
2602 
2603 /*
2604  *	vm_map_madvise:
2605  *
2606  *	This routine traverses a processes map handling the madvise
2607  *	system call.  Advisories are classified as either those effecting
2608  *	the vm_map_entry structure, or those effecting the underlying
2609  *	objects.
2610  */
2611 int
2612 vm_map_madvise(
2613 	vm_map_t map,
2614 	vm_offset_t start,
2615 	vm_offset_t end,
2616 	int behav)
2617 {
2618 	vm_map_entry_t current, entry;
2619 	bool modify_map;
2620 
2621 	/*
2622 	 * Some madvise calls directly modify the vm_map_entry, in which case
2623 	 * we need to use an exclusive lock on the map and we need to perform
2624 	 * various clipping operations.  Otherwise we only need a read-lock
2625 	 * on the map.
2626 	 */
2627 	switch(behav) {
2628 	case MADV_NORMAL:
2629 	case MADV_SEQUENTIAL:
2630 	case MADV_RANDOM:
2631 	case MADV_NOSYNC:
2632 	case MADV_AUTOSYNC:
2633 	case MADV_NOCORE:
2634 	case MADV_CORE:
2635 		if (start == end)
2636 			return (0);
2637 		modify_map = true;
2638 		vm_map_lock(map);
2639 		break;
2640 	case MADV_WILLNEED:
2641 	case MADV_DONTNEED:
2642 	case MADV_FREE:
2643 		if (start == end)
2644 			return (0);
2645 		modify_map = false;
2646 		vm_map_lock_read(map);
2647 		break;
2648 	default:
2649 		return (EINVAL);
2650 	}
2651 
2652 	/*
2653 	 * Locate starting entry and clip if necessary.
2654 	 */
2655 	VM_MAP_RANGE_CHECK(map, start, end);
2656 
2657 	if (vm_map_lookup_entry(map, start, &entry)) {
2658 		if (modify_map)
2659 			vm_map_clip_start(map, entry, start);
2660 	} else {
2661 		entry = vm_map_entry_succ(entry);
2662 	}
2663 
2664 	if (modify_map) {
2665 		/*
2666 		 * madvise behaviors that are implemented in the vm_map_entry.
2667 		 *
2668 		 * We clip the vm_map_entry so that behavioral changes are
2669 		 * limited to the specified address range.
2670 		 */
2671 		for (current = entry; current->start < end;
2672 		    current = vm_map_entry_succ(current)) {
2673 			if (current->eflags & MAP_ENTRY_IS_SUB_MAP)
2674 				continue;
2675 
2676 			vm_map_clip_end(map, current, end);
2677 
2678 			switch (behav) {
2679 			case MADV_NORMAL:
2680 				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_NORMAL);
2681 				break;
2682 			case MADV_SEQUENTIAL:
2683 				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_SEQUENTIAL);
2684 				break;
2685 			case MADV_RANDOM:
2686 				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_RANDOM);
2687 				break;
2688 			case MADV_NOSYNC:
2689 				current->eflags |= MAP_ENTRY_NOSYNC;
2690 				break;
2691 			case MADV_AUTOSYNC:
2692 				current->eflags &= ~MAP_ENTRY_NOSYNC;
2693 				break;
2694 			case MADV_NOCORE:
2695 				current->eflags |= MAP_ENTRY_NOCOREDUMP;
2696 				break;
2697 			case MADV_CORE:
2698 				current->eflags &= ~MAP_ENTRY_NOCOREDUMP;
2699 				break;
2700 			default:
2701 				break;
2702 			}
2703 			vm_map_try_merge_entries(map,
2704 			    vm_map_entry_pred(current), current);
2705 		}
2706 		vm_map_try_merge_entries(map, vm_map_entry_pred(current),
2707 		    current);
2708 		vm_map_unlock(map);
2709 	} else {
2710 		vm_pindex_t pstart, pend;
2711 
2712 		/*
2713 		 * madvise behaviors that are implemented in the underlying
2714 		 * vm_object.
2715 		 *
2716 		 * Since we don't clip the vm_map_entry, we have to clip
2717 		 * the vm_object pindex and count.
2718 		 */
2719 		for (current = entry; current->start < end;
2720 		    current = vm_map_entry_succ(current)) {
2721 			vm_offset_t useEnd, useStart;
2722 
2723 			if (current->eflags & MAP_ENTRY_IS_SUB_MAP)
2724 				continue;
2725 
2726 			/*
2727 			 * MADV_FREE would otherwise rewind time to
2728 			 * the creation of the shadow object.  Because
2729 			 * we hold the VM map read-locked, neither the
2730 			 * entry's object nor the presence of a
2731 			 * backing object can change.
2732 			 */
2733 			if (behav == MADV_FREE &&
2734 			    current->object.vm_object != NULL &&
2735 			    current->object.vm_object->backing_object != NULL)
2736 				continue;
2737 
2738 			pstart = OFF_TO_IDX(current->offset);
2739 			pend = pstart + atop(current->end - current->start);
2740 			useStart = current->start;
2741 			useEnd = current->end;
2742 
2743 			if (current->start < start) {
2744 				pstart += atop(start - current->start);
2745 				useStart = start;
2746 			}
2747 			if (current->end > end) {
2748 				pend -= atop(current->end - end);
2749 				useEnd = end;
2750 			}
2751 
2752 			if (pstart >= pend)
2753 				continue;
2754 
2755 			/*
2756 			 * Perform the pmap_advise() before clearing
2757 			 * PGA_REFERENCED in vm_page_advise().  Otherwise, a
2758 			 * concurrent pmap operation, such as pmap_remove(),
2759 			 * could clear a reference in the pmap and set
2760 			 * PGA_REFERENCED on the page before the pmap_advise()
2761 			 * had completed.  Consequently, the page would appear
2762 			 * referenced based upon an old reference that
2763 			 * occurred before this pmap_advise() ran.
2764 			 */
2765 			if (behav == MADV_DONTNEED || behav == MADV_FREE)
2766 				pmap_advise(map->pmap, useStart, useEnd,
2767 				    behav);
2768 
2769 			vm_object_madvise(current->object.vm_object, pstart,
2770 			    pend, behav);
2771 
2772 			/*
2773 			 * Pre-populate paging structures in the
2774 			 * WILLNEED case.  For wired entries, the
2775 			 * paging structures are already populated.
2776 			 */
2777 			if (behav == MADV_WILLNEED &&
2778 			    current->wired_count == 0) {
2779 				vm_map_pmap_enter(map,
2780 				    useStart,
2781 				    current->protection,
2782 				    current->object.vm_object,
2783 				    pstart,
2784 				    ptoa(pend - pstart),
2785 				    MAP_PREFAULT_MADVISE
2786 				);
2787 			}
2788 		}
2789 		vm_map_unlock_read(map);
2790 	}
2791 	return (0);
2792 }
2793 
2794 
2795 /*
2796  *	vm_map_inherit:
2797  *
2798  *	Sets the inheritance of the specified address
2799  *	range in the target map.  Inheritance
2800  *	affects how the map will be shared with
2801  *	child maps at the time of vmspace_fork.
2802  */
2803 int
2804 vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end,
2805 	       vm_inherit_t new_inheritance)
2806 {
2807 	vm_map_entry_t entry;
2808 	vm_map_entry_t temp_entry;
2809 
2810 	switch (new_inheritance) {
2811 	case VM_INHERIT_NONE:
2812 	case VM_INHERIT_COPY:
2813 	case VM_INHERIT_SHARE:
2814 	case VM_INHERIT_ZERO:
2815 		break;
2816 	default:
2817 		return (KERN_INVALID_ARGUMENT);
2818 	}
2819 	if (start == end)
2820 		return (KERN_SUCCESS);
2821 	vm_map_lock(map);
2822 	VM_MAP_RANGE_CHECK(map, start, end);
2823 	if (vm_map_lookup_entry(map, start, &temp_entry)) {
2824 		entry = temp_entry;
2825 		vm_map_clip_start(map, entry, start);
2826 	} else
2827 		entry = vm_map_entry_succ(temp_entry);
2828 	while (entry->start < end) {
2829 		vm_map_clip_end(map, entry, end);
2830 		if ((entry->eflags & MAP_ENTRY_GUARD) == 0 ||
2831 		    new_inheritance != VM_INHERIT_ZERO)
2832 			entry->inheritance = new_inheritance;
2833 		vm_map_try_merge_entries(map, vm_map_entry_pred(entry), entry);
2834 		entry = vm_map_entry_succ(entry);
2835 	}
2836 	vm_map_try_merge_entries(map, vm_map_entry_pred(entry), entry);
2837 	vm_map_unlock(map);
2838 	return (KERN_SUCCESS);
2839 }
2840 
2841 /*
2842  *	vm_map_entry_in_transition:
2843  *
2844  *	Release the map lock, and sleep until the entry is no longer in
2845  *	transition.  Awake and acquire the map lock.  If the map changed while
2846  *	another held the lock, lookup a possibly-changed entry at or after the
2847  *	'start' position of the old entry.
2848  */
2849 static vm_map_entry_t
2850 vm_map_entry_in_transition(vm_map_t map, vm_offset_t in_start,
2851     vm_offset_t *io_end, bool holes_ok, vm_map_entry_t in_entry)
2852 {
2853 	vm_map_entry_t entry;
2854 	vm_offset_t start;
2855 	u_int last_timestamp;
2856 
2857 	VM_MAP_ASSERT_LOCKED(map);
2858 	KASSERT((in_entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0,
2859 	    ("not in-tranition map entry %p", in_entry));
2860 	/*
2861 	 * We have not yet clipped the entry.
2862 	 */
2863 	start = MAX(in_start, in_entry->start);
2864 	in_entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2865 	last_timestamp = map->timestamp;
2866 	if (vm_map_unlock_and_wait(map, 0)) {
2867 		/*
2868 		 * Allow interruption of user wiring/unwiring?
2869 		 */
2870 	}
2871 	vm_map_lock(map);
2872 	if (last_timestamp + 1 == map->timestamp)
2873 		return (in_entry);
2874 
2875 	/*
2876 	 * Look again for the entry because the map was modified while it was
2877 	 * unlocked.  Specifically, the entry may have been clipped, merged, or
2878 	 * deleted.
2879 	 */
2880 	if (!vm_map_lookup_entry(map, start, &entry)) {
2881 		if (!holes_ok) {
2882 			*io_end = start;
2883 			return (NULL);
2884 		}
2885 		entry = vm_map_entry_succ(entry);
2886 	}
2887 	return (entry);
2888 }
2889 
2890 /*
2891  *	vm_map_unwire:
2892  *
2893  *	Implements both kernel and user unwiring.
2894  */
2895 int
2896 vm_map_unwire(vm_map_t map, vm_offset_t start, vm_offset_t end,
2897     int flags)
2898 {
2899 	vm_map_entry_t entry, first_entry;
2900 	int rv;
2901 	bool first_iteration, holes_ok, need_wakeup, user_unwire;
2902 
2903 	if (start == end)
2904 		return (KERN_SUCCESS);
2905 	holes_ok = (flags & VM_MAP_WIRE_HOLESOK) != 0;
2906 	user_unwire = (flags & VM_MAP_WIRE_USER) != 0;
2907 	vm_map_lock(map);
2908 	VM_MAP_RANGE_CHECK(map, start, end);
2909 	if (!vm_map_lookup_entry(map, start, &first_entry)) {
2910 		if (holes_ok)
2911 			first_entry = vm_map_entry_succ(first_entry);
2912 		else {
2913 			vm_map_unlock(map);
2914 			return (KERN_INVALID_ADDRESS);
2915 		}
2916 	}
2917 	first_iteration = true;
2918 	entry = first_entry;
2919 	rv = KERN_SUCCESS;
2920 	while (entry->start < end) {
2921 		if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
2922 			/*
2923 			 * We have not yet clipped the entry.
2924 			 */
2925 			entry = vm_map_entry_in_transition(map, start, &end,
2926 			    holes_ok, entry);
2927 			if (entry == NULL) {
2928 				if (first_iteration) {
2929 					vm_map_unlock(map);
2930 					return (KERN_INVALID_ADDRESS);
2931 				}
2932 				rv = KERN_INVALID_ADDRESS;
2933 				break;
2934 			}
2935 			first_entry = first_iteration ? entry : NULL;
2936 			continue;
2937 		}
2938 		first_iteration = false;
2939 		vm_map_clip_start(map, entry, start);
2940 		vm_map_clip_end(map, entry, end);
2941 		/*
2942 		 * Mark the entry in case the map lock is released.  (See
2943 		 * above.)
2944 		 */
2945 		KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 &&
2946 		    entry->wiring_thread == NULL,
2947 		    ("owned map entry %p", entry));
2948 		entry->eflags |= MAP_ENTRY_IN_TRANSITION;
2949 		entry->wiring_thread = curthread;
2950 		/*
2951 		 * Check the map for holes in the specified region.
2952 		 * If holes_ok, skip this check.
2953 		 */
2954 		if (!holes_ok &&
2955 		    (entry->end < end &&
2956 		    vm_map_entry_succ(entry)->start > entry->end)) {
2957 			end = entry->end;
2958 			rv = KERN_INVALID_ADDRESS;
2959 			break;
2960 		}
2961 		/*
2962 		 * If system unwiring, require that the entry is system wired.
2963 		 */
2964 		if (!user_unwire &&
2965 		    vm_map_entry_system_wired_count(entry) == 0) {
2966 			end = entry->end;
2967 			rv = KERN_INVALID_ARGUMENT;
2968 			break;
2969 		}
2970 		entry = vm_map_entry_succ(entry);
2971 	}
2972 	need_wakeup = false;
2973 	if (first_entry == NULL &&
2974 	    !vm_map_lookup_entry(map, start, &first_entry)) {
2975 		KASSERT(holes_ok, ("vm_map_unwire: lookup failed"));
2976 		first_entry = vm_map_entry_succ(first_entry);
2977 	}
2978 	for (entry = first_entry; entry->start < end;
2979 	    entry = vm_map_entry_succ(entry)) {
2980 		/*
2981 		 * If holes_ok was specified, an empty
2982 		 * space in the unwired region could have been mapped
2983 		 * while the map lock was dropped for draining
2984 		 * MAP_ENTRY_IN_TRANSITION.  Moreover, another thread
2985 		 * could be simultaneously wiring this new mapping
2986 		 * entry.  Detect these cases and skip any entries
2987 		 * marked as in transition by us.
2988 		 */
2989 		if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 ||
2990 		    entry->wiring_thread != curthread) {
2991 			KASSERT(holes_ok,
2992 			    ("vm_map_unwire: !HOLESOK and new/changed entry"));
2993 			continue;
2994 		}
2995 
2996 		if (rv == KERN_SUCCESS && (!user_unwire ||
2997 		    (entry->eflags & MAP_ENTRY_USER_WIRED))) {
2998 			if (entry->wired_count == 1)
2999 				vm_map_entry_unwire(map, entry);
3000 			else
3001 				entry->wired_count--;
3002 			if (user_unwire)
3003 				entry->eflags &= ~MAP_ENTRY_USER_WIRED;
3004 		}
3005 		KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0,
3006 		    ("vm_map_unwire: in-transition flag missing %p", entry));
3007 		KASSERT(entry->wiring_thread == curthread,
3008 		    ("vm_map_unwire: alien wire %p", entry));
3009 		entry->eflags &= ~MAP_ENTRY_IN_TRANSITION;
3010 		entry->wiring_thread = NULL;
3011 		if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
3012 			entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
3013 			need_wakeup = true;
3014 		}
3015 		vm_map_try_merge_entries(map, vm_map_entry_pred(entry), entry);
3016 	}
3017 	vm_map_try_merge_entries(map, vm_map_entry_pred(entry), entry);
3018 	vm_map_unlock(map);
3019 	if (need_wakeup)
3020 		vm_map_wakeup(map);
3021 	return (rv);
3022 }
3023 
3024 static void
3025 vm_map_wire_user_count_sub(u_long npages)
3026 {
3027 
3028 	atomic_subtract_long(&vm_user_wire_count, npages);
3029 }
3030 
3031 static bool
3032 vm_map_wire_user_count_add(u_long npages)
3033 {
3034 	u_long wired;
3035 
3036 	wired = vm_user_wire_count;
3037 	do {
3038 		if (npages + wired > vm_page_max_user_wired)
3039 			return (false);
3040 	} while (!atomic_fcmpset_long(&vm_user_wire_count, &wired,
3041 	    npages + wired));
3042 
3043 	return (true);
3044 }
3045 
3046 /*
3047  *	vm_map_wire_entry_failure:
3048  *
3049  *	Handle a wiring failure on the given entry.
3050  *
3051  *	The map should be locked.
3052  */
3053 static void
3054 vm_map_wire_entry_failure(vm_map_t map, vm_map_entry_t entry,
3055     vm_offset_t failed_addr)
3056 {
3057 
3058 	VM_MAP_ASSERT_LOCKED(map);
3059 	KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 &&
3060 	    entry->wired_count == 1,
3061 	    ("vm_map_wire_entry_failure: entry %p isn't being wired", entry));
3062 	KASSERT(failed_addr < entry->end,
3063 	    ("vm_map_wire_entry_failure: entry %p was fully wired", entry));
3064 
3065 	/*
3066 	 * If any pages at the start of this entry were successfully wired,
3067 	 * then unwire them.
3068 	 */
3069 	if (failed_addr > entry->start) {
3070 		pmap_unwire(map->pmap, entry->start, failed_addr);
3071 		vm_object_unwire(entry->object.vm_object, entry->offset,
3072 		    failed_addr - entry->start, PQ_ACTIVE);
3073 	}
3074 
3075 	/*
3076 	 * Assign an out-of-range value to represent the failure to wire this
3077 	 * entry.
3078 	 */
3079 	entry->wired_count = -1;
3080 }
3081 
3082 int
3083 vm_map_wire(vm_map_t map, vm_offset_t start, vm_offset_t end, int flags)
3084 {
3085 	int rv;
3086 
3087 	vm_map_lock(map);
3088 	rv = vm_map_wire_locked(map, start, end, flags);
3089 	vm_map_unlock(map);
3090 	return (rv);
3091 }
3092 
3093 
3094 /*
3095  *	vm_map_wire_locked:
3096  *
3097  *	Implements both kernel and user wiring.  Returns with the map locked,
3098  *	the map lock may be dropped.
3099  */
3100 int
3101 vm_map_wire_locked(vm_map_t map, vm_offset_t start, vm_offset_t end, int flags)
3102 {
3103 	vm_map_entry_t entry, first_entry, tmp_entry;
3104 	vm_offset_t faddr, saved_end, saved_start;
3105 	u_long npages;
3106 	u_int last_timestamp;
3107 	int rv;
3108 	bool first_iteration, holes_ok, need_wakeup, user_wire;
3109 	vm_prot_t prot;
3110 
3111 	VM_MAP_ASSERT_LOCKED(map);
3112 
3113 	if (start == end)
3114 		return (KERN_SUCCESS);
3115 	prot = 0;
3116 	if (flags & VM_MAP_WIRE_WRITE)
3117 		prot |= VM_PROT_WRITE;
3118 	holes_ok = (flags & VM_MAP_WIRE_HOLESOK) != 0;
3119 	user_wire = (flags & VM_MAP_WIRE_USER) != 0;
3120 	VM_MAP_RANGE_CHECK(map, start, end);
3121 	if (!vm_map_lookup_entry(map, start, &first_entry)) {
3122 		if (holes_ok)
3123 			first_entry = vm_map_entry_succ(first_entry);
3124 		else
3125 			return (KERN_INVALID_ADDRESS);
3126 	}
3127 	first_iteration = true;
3128 	entry = first_entry;
3129 	while (entry->start < end) {
3130 		if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
3131 			/*
3132 			 * We have not yet clipped the entry.
3133 			 */
3134 			entry = vm_map_entry_in_transition(map, start, &end,
3135 			    holes_ok, entry);
3136 			if (entry == NULL) {
3137 				if (first_iteration)
3138 					return (KERN_INVALID_ADDRESS);
3139 				rv = KERN_INVALID_ADDRESS;
3140 				goto done;
3141 			}
3142 			first_entry = first_iteration ? entry : NULL;
3143 			continue;
3144 		}
3145 		first_iteration = false;
3146 		vm_map_clip_start(map, entry, start);
3147 		vm_map_clip_end(map, entry, end);
3148 		/*
3149 		 * Mark the entry in case the map lock is released.  (See
3150 		 * above.)
3151 		 */
3152 		KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 &&
3153 		    entry->wiring_thread == NULL,
3154 		    ("owned map entry %p", entry));
3155 		entry->eflags |= MAP_ENTRY_IN_TRANSITION;
3156 		entry->wiring_thread = curthread;
3157 		if ((entry->protection & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0
3158 		    || (entry->protection & prot) != prot) {
3159 			entry->eflags |= MAP_ENTRY_WIRE_SKIPPED;
3160 			if (!holes_ok) {
3161 				end = entry->end;
3162 				rv = KERN_INVALID_ADDRESS;
3163 				goto done;
3164 			}
3165 		} else if (entry->wired_count == 0) {
3166 			entry->wired_count++;
3167 
3168 			npages = atop(entry->end - entry->start);
3169 			if (user_wire && !vm_map_wire_user_count_add(npages)) {
3170 				vm_map_wire_entry_failure(map, entry,
3171 				    entry->start);
3172 				end = entry->end;
3173 				rv = KERN_RESOURCE_SHORTAGE;
3174 				goto done;
3175 			}
3176 
3177 			/*
3178 			 * Release the map lock, relying on the in-transition
3179 			 * mark.  Mark the map busy for fork.
3180 			 */
3181 			saved_start = entry->start;
3182 			saved_end = entry->end;
3183 			last_timestamp = map->timestamp;
3184 			vm_map_busy(map);
3185 			vm_map_unlock(map);
3186 
3187 			faddr = saved_start;
3188 			do {
3189 				/*
3190 				 * Simulate a fault to get the page and enter
3191 				 * it into the physical map.
3192 				 */
3193 				if ((rv = vm_fault(map, faddr,
3194 				    VM_PROT_NONE, VM_FAULT_WIRE, NULL)) !=
3195 				    KERN_SUCCESS)
3196 					break;
3197 			} while ((faddr += PAGE_SIZE) < saved_end);
3198 			vm_map_lock(map);
3199 			vm_map_unbusy(map);
3200 			if (last_timestamp + 1 != map->timestamp) {
3201 				/*
3202 				 * Look again for the entry because the map was
3203 				 * modified while it was unlocked.  The entry
3204 				 * may have been clipped, but NOT merged or
3205 				 * deleted.
3206 				 */
3207 				if (!vm_map_lookup_entry(map, saved_start,
3208 				    &tmp_entry))
3209 					KASSERT(false,
3210 					    ("vm_map_wire: lookup failed"));
3211 				if (entry == first_entry)
3212 					first_entry = tmp_entry;
3213 				else
3214 					first_entry = NULL;
3215 				entry = tmp_entry;
3216 				while (entry->end < saved_end) {
3217 					/*
3218 					 * In case of failure, handle entries
3219 					 * that were not fully wired here;
3220 					 * fully wired entries are handled
3221 					 * later.
3222 					 */
3223 					if (rv != KERN_SUCCESS &&
3224 					    faddr < entry->end)
3225 						vm_map_wire_entry_failure(map,
3226 						    entry, faddr);
3227 					entry = vm_map_entry_succ(entry);
3228 				}
3229 			}
3230 			if (rv != KERN_SUCCESS) {
3231 				vm_map_wire_entry_failure(map, entry, faddr);
3232 				if (user_wire)
3233 					vm_map_wire_user_count_sub(npages);
3234 				end = entry->end;
3235 				goto done;
3236 			}
3237 		} else if (!user_wire ||
3238 			   (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) {
3239 			entry->wired_count++;
3240 		}
3241 		/*
3242 		 * Check the map for holes in the specified region.
3243 		 * If holes_ok was specified, skip this check.
3244 		 */
3245 		if (!holes_ok &&
3246 		    entry->end < end &&
3247 		    vm_map_entry_succ(entry)->start > entry->end) {
3248 			end = entry->end;
3249 			rv = KERN_INVALID_ADDRESS;
3250 			goto done;
3251 		}
3252 		entry = vm_map_entry_succ(entry);
3253 	}
3254 	rv = KERN_SUCCESS;
3255 done:
3256 	need_wakeup = false;
3257 	if (first_entry == NULL &&
3258 	    !vm_map_lookup_entry(map, start, &first_entry)) {
3259 		KASSERT(holes_ok, ("vm_map_wire: lookup failed"));
3260 		first_entry = vm_map_entry_succ(first_entry);
3261 	}
3262 	for (entry = first_entry; entry->start < end;
3263 	    entry = vm_map_entry_succ(entry)) {
3264 		/*
3265 		 * If holes_ok was specified, an empty
3266 		 * space in the unwired region could have been mapped
3267 		 * while the map lock was dropped for faulting in the
3268 		 * pages or draining MAP_ENTRY_IN_TRANSITION.
3269 		 * Moreover, another thread could be simultaneously
3270 		 * wiring this new mapping entry.  Detect these cases
3271 		 * and skip any entries marked as in transition not by us.
3272 		 */
3273 		if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 ||
3274 		    entry->wiring_thread != curthread) {
3275 			KASSERT(holes_ok,
3276 			    ("vm_map_wire: !HOLESOK and new/changed entry"));
3277 			continue;
3278 		}
3279 
3280 		if ((entry->eflags & MAP_ENTRY_WIRE_SKIPPED) != 0) {
3281 			/* do nothing */
3282 		} else if (rv == KERN_SUCCESS) {
3283 			if (user_wire)
3284 				entry->eflags |= MAP_ENTRY_USER_WIRED;
3285 		} else if (entry->wired_count == -1) {
3286 			/*
3287 			 * Wiring failed on this entry.  Thus, unwiring is
3288 			 * unnecessary.
3289 			 */
3290 			entry->wired_count = 0;
3291 		} else if (!user_wire ||
3292 		    (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) {
3293 			/*
3294 			 * Undo the wiring.  Wiring succeeded on this entry
3295 			 * but failed on a later entry.
3296 			 */
3297 			if (entry->wired_count == 1) {
3298 				vm_map_entry_unwire(map, entry);
3299 				if (user_wire)
3300 					vm_map_wire_user_count_sub(
3301 					    atop(entry->end - entry->start));
3302 			} else
3303 				entry->wired_count--;
3304 		}
3305 		KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0,
3306 		    ("vm_map_wire: in-transition flag missing %p", entry));
3307 		KASSERT(entry->wiring_thread == curthread,
3308 		    ("vm_map_wire: alien wire %p", entry));
3309 		entry->eflags &= ~(MAP_ENTRY_IN_TRANSITION |
3310 		    MAP_ENTRY_WIRE_SKIPPED);
3311 		entry->wiring_thread = NULL;
3312 		if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
3313 			entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
3314 			need_wakeup = true;
3315 		}
3316 		vm_map_try_merge_entries(map, vm_map_entry_pred(entry), entry);
3317 	}
3318 	vm_map_try_merge_entries(map, vm_map_entry_pred(entry), entry);
3319 	if (need_wakeup)
3320 		vm_map_wakeup(map);
3321 	return (rv);
3322 }
3323 
3324 /*
3325  * vm_map_sync
3326  *
3327  * Push any dirty cached pages in the address range to their pager.
3328  * If syncio is TRUE, dirty pages are written synchronously.
3329  * If invalidate is TRUE, any cached pages are freed as well.
3330  *
3331  * If the size of the region from start to end is zero, we are
3332  * supposed to flush all modified pages within the region containing
3333  * start.  Unfortunately, a region can be split or coalesced with
3334  * neighboring regions, making it difficult to determine what the
3335  * original region was.  Therefore, we approximate this requirement by
3336  * flushing the current region containing start.
3337  *
3338  * Returns an error if any part of the specified range is not mapped.
3339  */
3340 int
3341 vm_map_sync(
3342 	vm_map_t map,
3343 	vm_offset_t start,
3344 	vm_offset_t end,
3345 	boolean_t syncio,
3346 	boolean_t invalidate)
3347 {
3348 	vm_map_entry_t current;
3349 	vm_map_entry_t entry;
3350 	vm_size_t size;
3351 	vm_object_t object;
3352 	vm_ooffset_t offset;
3353 	unsigned int last_timestamp;
3354 	boolean_t failed;
3355 
3356 	vm_map_lock_read(map);
3357 	VM_MAP_RANGE_CHECK(map, start, end);
3358 	if (!vm_map_lookup_entry(map, start, &entry)) {
3359 		vm_map_unlock_read(map);
3360 		return (KERN_INVALID_ADDRESS);
3361 	} else if (start == end) {
3362 		start = entry->start;
3363 		end = entry->end;
3364 	}
3365 	/*
3366 	 * Make a first pass to check for user-wired memory and holes.
3367 	 */
3368 	for (current = entry; current->start < end;
3369 	    current = vm_map_entry_succ(current)) {
3370 		if (invalidate && (current->eflags & MAP_ENTRY_USER_WIRED)) {
3371 			vm_map_unlock_read(map);
3372 			return (KERN_INVALID_ARGUMENT);
3373 		}
3374 		if (end > current->end &&
3375 		    current->end != vm_map_entry_succ(current)->start) {
3376 			vm_map_unlock_read(map);
3377 			return (KERN_INVALID_ADDRESS);
3378 		}
3379 	}
3380 
3381 	if (invalidate)
3382 		pmap_remove(map->pmap, start, end);
3383 	failed = FALSE;
3384 
3385 	/*
3386 	 * Make a second pass, cleaning/uncaching pages from the indicated
3387 	 * objects as we go.
3388 	 */
3389 	for (current = entry; current->start < end;) {
3390 		offset = current->offset + (start - current->start);
3391 		size = (end <= current->end ? end : current->end) - start;
3392 		if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
3393 			vm_map_t smap;
3394 			vm_map_entry_t tentry;
3395 			vm_size_t tsize;
3396 
3397 			smap = current->object.sub_map;
3398 			vm_map_lock_read(smap);
3399 			(void) vm_map_lookup_entry(smap, offset, &tentry);
3400 			tsize = tentry->end - offset;
3401 			if (tsize < size)
3402 				size = tsize;
3403 			object = tentry->object.vm_object;
3404 			offset = tentry->offset + (offset - tentry->start);
3405 			vm_map_unlock_read(smap);
3406 		} else {
3407 			object = current->object.vm_object;
3408 		}
3409 		vm_object_reference(object);
3410 		last_timestamp = map->timestamp;
3411 		vm_map_unlock_read(map);
3412 		if (!vm_object_sync(object, offset, size, syncio, invalidate))
3413 			failed = TRUE;
3414 		start += size;
3415 		vm_object_deallocate(object);
3416 		vm_map_lock_read(map);
3417 		if (last_timestamp == map->timestamp ||
3418 		    !vm_map_lookup_entry(map, start, &current))
3419 			current = vm_map_entry_succ(current);
3420 	}
3421 
3422 	vm_map_unlock_read(map);
3423 	return (failed ? KERN_FAILURE : KERN_SUCCESS);
3424 }
3425 
3426 /*
3427  *	vm_map_entry_unwire:	[ internal use only ]
3428  *
3429  *	Make the region specified by this entry pageable.
3430  *
3431  *	The map in question should be locked.
3432  *	[This is the reason for this routine's existence.]
3433  */
3434 static void
3435 vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry)
3436 {
3437 	vm_size_t size;
3438 
3439 	VM_MAP_ASSERT_LOCKED(map);
3440 	KASSERT(entry->wired_count > 0,
3441 	    ("vm_map_entry_unwire: entry %p isn't wired", entry));
3442 
3443 	size = entry->end - entry->start;
3444 	if ((entry->eflags & MAP_ENTRY_USER_WIRED) != 0)
3445 		vm_map_wire_user_count_sub(atop(size));
3446 	pmap_unwire(map->pmap, entry->start, entry->end);
3447 	vm_object_unwire(entry->object.vm_object, entry->offset, size,
3448 	    PQ_ACTIVE);
3449 	entry->wired_count = 0;
3450 }
3451 
3452 static void
3453 vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map)
3454 {
3455 
3456 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0)
3457 		vm_object_deallocate(entry->object.vm_object);
3458 	uma_zfree(system_map ? kmapentzone : mapentzone, entry);
3459 }
3460 
3461 /*
3462  *	vm_map_entry_delete:	[ internal use only ]
3463  *
3464  *	Deallocate the given entry from the target map.
3465  */
3466 static void
3467 vm_map_entry_delete(vm_map_t map, vm_map_entry_t entry)
3468 {
3469 	vm_object_t object;
3470 	vm_pindex_t offidxstart, offidxend, count, size1;
3471 	vm_size_t size;
3472 
3473 	vm_map_entry_unlink(map, entry, UNLINK_MERGE_NONE);
3474 	object = entry->object.vm_object;
3475 
3476 	if ((entry->eflags & MAP_ENTRY_GUARD) != 0) {
3477 		MPASS(entry->cred == NULL);
3478 		MPASS((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0);
3479 		MPASS(object == NULL);
3480 		vm_map_entry_deallocate(entry, map->system_map);
3481 		return;
3482 	}
3483 
3484 	size = entry->end - entry->start;
3485 	map->size -= size;
3486 
3487 	if (entry->cred != NULL) {
3488 		swap_release_by_cred(size, entry->cred);
3489 		crfree(entry->cred);
3490 	}
3491 
3492 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0 || object == NULL) {
3493 		entry->object.vm_object = NULL;
3494 	} else if ((object->flags & OBJ_ANON) != 0 ||
3495 	    object == kernel_object) {
3496 		KASSERT(entry->cred == NULL || object->cred == NULL ||
3497 		    (entry->eflags & MAP_ENTRY_NEEDS_COPY),
3498 		    ("OVERCOMMIT vm_map_entry_delete: both cred %p", entry));
3499 		count = atop(size);
3500 		offidxstart = OFF_TO_IDX(entry->offset);
3501 		offidxend = offidxstart + count;
3502 		VM_OBJECT_WLOCK(object);
3503 		if (object->ref_count != 1 &&
3504 		    ((object->flags & OBJ_ONEMAPPING) != 0 ||
3505 		    object == kernel_object)) {
3506 			vm_object_collapse(object);
3507 
3508 			/*
3509 			 * The option OBJPR_NOTMAPPED can be passed here
3510 			 * because vm_map_delete() already performed
3511 			 * pmap_remove() on the only mapping to this range
3512 			 * of pages.
3513 			 */
3514 			vm_object_page_remove(object, offidxstart, offidxend,
3515 			    OBJPR_NOTMAPPED);
3516 			if (object->type == OBJT_SWAP)
3517 				swap_pager_freespace(object, offidxstart,
3518 				    count);
3519 			if (offidxend >= object->size &&
3520 			    offidxstart < object->size) {
3521 				size1 = object->size;
3522 				object->size = offidxstart;
3523 				if (object->cred != NULL) {
3524 					size1 -= object->size;
3525 					KASSERT(object->charge >= ptoa(size1),
3526 					    ("object %p charge < 0", object));
3527 					swap_release_by_cred(ptoa(size1),
3528 					    object->cred);
3529 					object->charge -= ptoa(size1);
3530 				}
3531 			}
3532 		}
3533 		VM_OBJECT_WUNLOCK(object);
3534 	}
3535 	if (map->system_map)
3536 		vm_map_entry_deallocate(entry, TRUE);
3537 	else {
3538 		entry->defer_next = curthread->td_map_def_user;
3539 		curthread->td_map_def_user = entry;
3540 	}
3541 }
3542 
3543 /*
3544  *	vm_map_delete:	[ internal use only ]
3545  *
3546  *	Deallocates the given address range from the target
3547  *	map.
3548  */
3549 int
3550 vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end)
3551 {
3552 	vm_map_entry_t entry;
3553 	vm_map_entry_t first_entry;
3554 
3555 	VM_MAP_ASSERT_LOCKED(map);
3556 	if (start == end)
3557 		return (KERN_SUCCESS);
3558 
3559 	/*
3560 	 * Find the start of the region, and clip it
3561 	 */
3562 	if (!vm_map_lookup_entry(map, start, &first_entry))
3563 		entry = vm_map_entry_succ(first_entry);
3564 	else {
3565 		entry = first_entry;
3566 		vm_map_clip_start(map, entry, start);
3567 	}
3568 
3569 	/*
3570 	 * Step through all entries in this region
3571 	 */
3572 	while (entry->start < end) {
3573 		vm_map_entry_t next;
3574 
3575 		/*
3576 		 * Wait for wiring or unwiring of an entry to complete.
3577 		 * Also wait for any system wirings to disappear on
3578 		 * user maps.
3579 		 */
3580 		if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 ||
3581 		    (vm_map_pmap(map) != kernel_pmap &&
3582 		    vm_map_entry_system_wired_count(entry) != 0)) {
3583 			unsigned int last_timestamp;
3584 			vm_offset_t saved_start;
3585 			vm_map_entry_t tmp_entry;
3586 
3587 			saved_start = entry->start;
3588 			entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
3589 			last_timestamp = map->timestamp;
3590 			(void) vm_map_unlock_and_wait(map, 0);
3591 			vm_map_lock(map);
3592 			if (last_timestamp + 1 != map->timestamp) {
3593 				/*
3594 				 * Look again for the entry because the map was
3595 				 * modified while it was unlocked.
3596 				 * Specifically, the entry may have been
3597 				 * clipped, merged, or deleted.
3598 				 */
3599 				if (!vm_map_lookup_entry(map, saved_start,
3600 							 &tmp_entry))
3601 					entry = vm_map_entry_succ(tmp_entry);
3602 				else {
3603 					entry = tmp_entry;
3604 					vm_map_clip_start(map, entry,
3605 							  saved_start);
3606 				}
3607 			}
3608 			continue;
3609 		}
3610 		vm_map_clip_end(map, entry, end);
3611 
3612 		next = vm_map_entry_succ(entry);
3613 
3614 		/*
3615 		 * Unwire before removing addresses from the pmap; otherwise,
3616 		 * unwiring will put the entries back in the pmap.
3617 		 */
3618 		if (entry->wired_count != 0)
3619 			vm_map_entry_unwire(map, entry);
3620 
3621 		/*
3622 		 * Remove mappings for the pages, but only if the
3623 		 * mappings could exist.  For instance, it does not
3624 		 * make sense to call pmap_remove() for guard entries.
3625 		 */
3626 		if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0 ||
3627 		    entry->object.vm_object != NULL)
3628 			pmap_remove(map->pmap, entry->start, entry->end);
3629 
3630 		if (entry->end == map->anon_loc)
3631 			map->anon_loc = entry->start;
3632 
3633 		/*
3634 		 * Delete the entry only after removing all pmap
3635 		 * entries pointing to its pages.  (Otherwise, its
3636 		 * page frames may be reallocated, and any modify bits
3637 		 * will be set in the wrong object!)
3638 		 */
3639 		vm_map_entry_delete(map, entry);
3640 		entry = next;
3641 	}
3642 	return (KERN_SUCCESS);
3643 }
3644 
3645 /*
3646  *	vm_map_remove:
3647  *
3648  *	Remove the given address range from the target map.
3649  *	This is the exported form of vm_map_delete.
3650  */
3651 int
3652 vm_map_remove(vm_map_t map, vm_offset_t start, vm_offset_t end)
3653 {
3654 	int result;
3655 
3656 	vm_map_lock(map);
3657 	VM_MAP_RANGE_CHECK(map, start, end);
3658 	result = vm_map_delete(map, start, end);
3659 	vm_map_unlock(map);
3660 	return (result);
3661 }
3662 
3663 /*
3664  *	vm_map_check_protection:
3665  *
3666  *	Assert that the target map allows the specified privilege on the
3667  *	entire address region given.  The entire region must be allocated.
3668  *
3669  *	WARNING!  This code does not and should not check whether the
3670  *	contents of the region is accessible.  For example a smaller file
3671  *	might be mapped into a larger address space.
3672  *
3673  *	NOTE!  This code is also called by munmap().
3674  *
3675  *	The map must be locked.  A read lock is sufficient.
3676  */
3677 boolean_t
3678 vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end,
3679 			vm_prot_t protection)
3680 {
3681 	vm_map_entry_t entry;
3682 	vm_map_entry_t tmp_entry;
3683 
3684 	if (!vm_map_lookup_entry(map, start, &tmp_entry))
3685 		return (FALSE);
3686 	entry = tmp_entry;
3687 
3688 	while (start < end) {
3689 		/*
3690 		 * No holes allowed!
3691 		 */
3692 		if (start < entry->start)
3693 			return (FALSE);
3694 		/*
3695 		 * Check protection associated with entry.
3696 		 */
3697 		if ((entry->protection & protection) != protection)
3698 			return (FALSE);
3699 		/* go to next entry */
3700 		start = entry->end;
3701 		entry = vm_map_entry_succ(entry);
3702 	}
3703 	return (TRUE);
3704 }
3705 
3706 /*
3707  *	vm_map_copy_entry:
3708  *
3709  *	Copies the contents of the source entry to the destination
3710  *	entry.  The entries *must* be aligned properly.
3711  */
3712 static void
3713 vm_map_copy_entry(
3714 	vm_map_t src_map,
3715 	vm_map_t dst_map,
3716 	vm_map_entry_t src_entry,
3717 	vm_map_entry_t dst_entry,
3718 	vm_ooffset_t *fork_charge)
3719 {
3720 	vm_object_t src_object;
3721 	vm_map_entry_t fake_entry;
3722 	vm_offset_t size;
3723 	struct ucred *cred;
3724 	int charged;
3725 
3726 	VM_MAP_ASSERT_LOCKED(dst_map);
3727 
3728 	if ((dst_entry->eflags|src_entry->eflags) & MAP_ENTRY_IS_SUB_MAP)
3729 		return;
3730 
3731 	if (src_entry->wired_count == 0 ||
3732 	    (src_entry->protection & VM_PROT_WRITE) == 0) {
3733 		/*
3734 		 * If the source entry is marked needs_copy, it is already
3735 		 * write-protected.
3736 		 */
3737 		if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0 &&
3738 		    (src_entry->protection & VM_PROT_WRITE) != 0) {
3739 			pmap_protect(src_map->pmap,
3740 			    src_entry->start,
3741 			    src_entry->end,
3742 			    src_entry->protection & ~VM_PROT_WRITE);
3743 		}
3744 
3745 		/*
3746 		 * Make a copy of the object.
3747 		 */
3748 		size = src_entry->end - src_entry->start;
3749 		if ((src_object = src_entry->object.vm_object) != NULL) {
3750 			VM_OBJECT_WLOCK(src_object);
3751 			charged = ENTRY_CHARGED(src_entry);
3752 			if (src_object->handle == NULL &&
3753 			    (src_object->flags & OBJ_ANON) != 0) {
3754 				vm_object_collapse(src_object);
3755 				if ((src_object->flags & OBJ_ONEMAPPING) != 0) {
3756 					vm_object_split(src_entry);
3757 					src_object =
3758 					    src_entry->object.vm_object;
3759 				}
3760 			}
3761 			vm_object_reference_locked(src_object);
3762 			vm_object_clear_flag(src_object, OBJ_ONEMAPPING);
3763 			if (src_entry->cred != NULL &&
3764 			    !(src_entry->eflags & MAP_ENTRY_NEEDS_COPY)) {
3765 				KASSERT(src_object->cred == NULL,
3766 				    ("OVERCOMMIT: vm_map_copy_entry: cred %p",
3767 				     src_object));
3768 				src_object->cred = src_entry->cred;
3769 				src_object->charge = size;
3770 			}
3771 			VM_OBJECT_WUNLOCK(src_object);
3772 			dst_entry->object.vm_object = src_object;
3773 			if (charged) {
3774 				cred = curthread->td_ucred;
3775 				crhold(cred);
3776 				dst_entry->cred = cred;
3777 				*fork_charge += size;
3778 				if (!(src_entry->eflags &
3779 				      MAP_ENTRY_NEEDS_COPY)) {
3780 					crhold(cred);
3781 					src_entry->cred = cred;
3782 					*fork_charge += size;
3783 				}
3784 			}
3785 			src_entry->eflags |= MAP_ENTRY_COW |
3786 			    MAP_ENTRY_NEEDS_COPY;
3787 			dst_entry->eflags |= MAP_ENTRY_COW |
3788 			    MAP_ENTRY_NEEDS_COPY;
3789 			dst_entry->offset = src_entry->offset;
3790 			if (src_entry->eflags & MAP_ENTRY_WRITECNT) {
3791 				/*
3792 				 * MAP_ENTRY_WRITECNT cannot
3793 				 * indicate write reference from
3794 				 * src_entry, since the entry is
3795 				 * marked as needs copy.  Allocate a
3796 				 * fake entry that is used to
3797 				 * decrement object->un_pager writecount
3798 				 * at the appropriate time.  Attach
3799 				 * fake_entry to the deferred list.
3800 				 */
3801 				fake_entry = vm_map_entry_create(dst_map);
3802 				fake_entry->eflags = MAP_ENTRY_WRITECNT;
3803 				src_entry->eflags &= ~MAP_ENTRY_WRITECNT;
3804 				vm_object_reference(src_object);
3805 				fake_entry->object.vm_object = src_object;
3806 				fake_entry->start = src_entry->start;
3807 				fake_entry->end = src_entry->end;
3808 				fake_entry->defer_next =
3809 				    curthread->td_map_def_user;
3810 				curthread->td_map_def_user = fake_entry;
3811 			}
3812 
3813 			pmap_copy(dst_map->pmap, src_map->pmap,
3814 			    dst_entry->start, dst_entry->end - dst_entry->start,
3815 			    src_entry->start);
3816 		} else {
3817 			dst_entry->object.vm_object = NULL;
3818 			dst_entry->offset = 0;
3819 			if (src_entry->cred != NULL) {
3820 				dst_entry->cred = curthread->td_ucred;
3821 				crhold(dst_entry->cred);
3822 				*fork_charge += size;
3823 			}
3824 		}
3825 	} else {
3826 		/*
3827 		 * We don't want to make writeable wired pages copy-on-write.
3828 		 * Immediately copy these pages into the new map by simulating
3829 		 * page faults.  The new pages are pageable.
3830 		 */
3831 		vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry,
3832 		    fork_charge);
3833 	}
3834 }
3835 
3836 /*
3837  * vmspace_map_entry_forked:
3838  * Update the newly-forked vmspace each time a map entry is inherited
3839  * or copied.  The values for vm_dsize and vm_tsize are approximate
3840  * (and mostly-obsolete ideas in the face of mmap(2) et al.)
3841  */
3842 static void
3843 vmspace_map_entry_forked(const struct vmspace *vm1, struct vmspace *vm2,
3844     vm_map_entry_t entry)
3845 {
3846 	vm_size_t entrysize;
3847 	vm_offset_t newend;
3848 
3849 	if ((entry->eflags & MAP_ENTRY_GUARD) != 0)
3850 		return;
3851 	entrysize = entry->end - entry->start;
3852 	vm2->vm_map.size += entrysize;
3853 	if (entry->eflags & (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP)) {
3854 		vm2->vm_ssize += btoc(entrysize);
3855 	} else if (entry->start >= (vm_offset_t)vm1->vm_daddr &&
3856 	    entry->start < (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize)) {
3857 		newend = MIN(entry->end,
3858 		    (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize));
3859 		vm2->vm_dsize += btoc(newend - entry->start);
3860 	} else if (entry->start >= (vm_offset_t)vm1->vm_taddr &&
3861 	    entry->start < (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize)) {
3862 		newend = MIN(entry->end,
3863 		    (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize));
3864 		vm2->vm_tsize += btoc(newend - entry->start);
3865 	}
3866 }
3867 
3868 /*
3869  * vmspace_fork:
3870  * Create a new process vmspace structure and vm_map
3871  * based on those of an existing process.  The new map
3872  * is based on the old map, according to the inheritance
3873  * values on the regions in that map.
3874  *
3875  * XXX It might be worth coalescing the entries added to the new vmspace.
3876  *
3877  * The source map must not be locked.
3878  */
3879 struct vmspace *
3880 vmspace_fork(struct vmspace *vm1, vm_ooffset_t *fork_charge)
3881 {
3882 	struct vmspace *vm2;
3883 	vm_map_t new_map, old_map;
3884 	vm_map_entry_t new_entry, old_entry;
3885 	vm_object_t object;
3886 	int error, locked;
3887 	vm_inherit_t inh;
3888 
3889 	old_map = &vm1->vm_map;
3890 	/* Copy immutable fields of vm1 to vm2. */
3891 	vm2 = vmspace_alloc(vm_map_min(old_map), vm_map_max(old_map),
3892 	    pmap_pinit);
3893 	if (vm2 == NULL)
3894 		return (NULL);
3895 
3896 	vm2->vm_taddr = vm1->vm_taddr;
3897 	vm2->vm_daddr = vm1->vm_daddr;
3898 	vm2->vm_maxsaddr = vm1->vm_maxsaddr;
3899 	vm_map_lock(old_map);
3900 	if (old_map->busy)
3901 		vm_map_wait_busy(old_map);
3902 	new_map = &vm2->vm_map;
3903 	locked = vm_map_trylock(new_map); /* trylock to silence WITNESS */
3904 	KASSERT(locked, ("vmspace_fork: lock failed"));
3905 
3906 	error = pmap_vmspace_copy(new_map->pmap, old_map->pmap);
3907 	if (error != 0) {
3908 		sx_xunlock(&old_map->lock);
3909 		sx_xunlock(&new_map->lock);
3910 		vm_map_process_deferred();
3911 		vmspace_free(vm2);
3912 		return (NULL);
3913 	}
3914 
3915 	new_map->anon_loc = old_map->anon_loc;
3916 
3917 	old_entry = old_map->header.next;
3918 
3919 	while (old_entry != &old_map->header) {
3920 		if (old_entry->eflags & MAP_ENTRY_IS_SUB_MAP)
3921 			panic("vm_map_fork: encountered a submap");
3922 
3923 		inh = old_entry->inheritance;
3924 		if ((old_entry->eflags & MAP_ENTRY_GUARD) != 0 &&
3925 		    inh != VM_INHERIT_NONE)
3926 			inh = VM_INHERIT_COPY;
3927 
3928 		switch (inh) {
3929 		case VM_INHERIT_NONE:
3930 			break;
3931 
3932 		case VM_INHERIT_SHARE:
3933 			/*
3934 			 * Clone the entry, creating the shared object if necessary.
3935 			 */
3936 			object = old_entry->object.vm_object;
3937 			if (object == NULL) {
3938 				vm_map_entry_back(old_entry);
3939 				object = old_entry->object.vm_object;
3940 			}
3941 
3942 			/*
3943 			 * Add the reference before calling vm_object_shadow
3944 			 * to insure that a shadow object is created.
3945 			 */
3946 			vm_object_reference(object);
3947 			if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) {
3948 				vm_object_shadow(&old_entry->object.vm_object,
3949 				    &old_entry->offset,
3950 				    old_entry->end - old_entry->start);
3951 				old_entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
3952 				/* Transfer the second reference too. */
3953 				vm_object_reference(
3954 				    old_entry->object.vm_object);
3955 
3956 				/*
3957 				 * As in vm_map_merged_neighbor_dispose(),
3958 				 * the vnode lock will not be acquired in
3959 				 * this call to vm_object_deallocate().
3960 				 */
3961 				vm_object_deallocate(object);
3962 				object = old_entry->object.vm_object;
3963 			}
3964 			VM_OBJECT_WLOCK(object);
3965 			vm_object_clear_flag(object, OBJ_ONEMAPPING);
3966 			if (old_entry->cred != NULL) {
3967 				KASSERT(object->cred == NULL, ("vmspace_fork both cred"));
3968 				object->cred = old_entry->cred;
3969 				object->charge = old_entry->end - old_entry->start;
3970 				old_entry->cred = NULL;
3971 			}
3972 
3973 			/*
3974 			 * Assert the correct state of the vnode
3975 			 * v_writecount while the object is locked, to
3976 			 * not relock it later for the assertion
3977 			 * correctness.
3978 			 */
3979 			if (old_entry->eflags & MAP_ENTRY_WRITECNT &&
3980 			    object->type == OBJT_VNODE) {
3981 				KASSERT(((struct vnode *)object->handle)->
3982 				    v_writecount > 0,
3983 				    ("vmspace_fork: v_writecount %p", object));
3984 				KASSERT(object->un_pager.vnp.writemappings > 0,
3985 				    ("vmspace_fork: vnp.writecount %p",
3986 				    object));
3987 			}
3988 			VM_OBJECT_WUNLOCK(object);
3989 
3990 			/*
3991 			 * Clone the entry, referencing the shared object.
3992 			 */
3993 			new_entry = vm_map_entry_create(new_map);
3994 			*new_entry = *old_entry;
3995 			new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED |
3996 			    MAP_ENTRY_IN_TRANSITION);
3997 			new_entry->wiring_thread = NULL;
3998 			new_entry->wired_count = 0;
3999 			if (new_entry->eflags & MAP_ENTRY_WRITECNT) {
4000 				vm_pager_update_writecount(object,
4001 				    new_entry->start, new_entry->end);
4002 			}
4003 			vm_map_entry_set_vnode_text(new_entry, true);
4004 
4005 			/*
4006 			 * Insert the entry into the new map -- we know we're
4007 			 * inserting at the end of the new map.
4008 			 */
4009 			vm_map_entry_link(new_map, new_entry);
4010 			vmspace_map_entry_forked(vm1, vm2, new_entry);
4011 
4012 			/*
4013 			 * Update the physical map
4014 			 */
4015 			pmap_copy(new_map->pmap, old_map->pmap,
4016 			    new_entry->start,
4017 			    (old_entry->end - old_entry->start),
4018 			    old_entry->start);
4019 			break;
4020 
4021 		case VM_INHERIT_COPY:
4022 			/*
4023 			 * Clone the entry and link into the map.
4024 			 */
4025 			new_entry = vm_map_entry_create(new_map);
4026 			*new_entry = *old_entry;
4027 			/*
4028 			 * Copied entry is COW over the old object.
4029 			 */
4030 			new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED |
4031 			    MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_WRITECNT);
4032 			new_entry->wiring_thread = NULL;
4033 			new_entry->wired_count = 0;
4034 			new_entry->object.vm_object = NULL;
4035 			new_entry->cred = NULL;
4036 			vm_map_entry_link(new_map, new_entry);
4037 			vmspace_map_entry_forked(vm1, vm2, new_entry);
4038 			vm_map_copy_entry(old_map, new_map, old_entry,
4039 			    new_entry, fork_charge);
4040 			vm_map_entry_set_vnode_text(new_entry, true);
4041 			break;
4042 
4043 		case VM_INHERIT_ZERO:
4044 			/*
4045 			 * Create a new anonymous mapping entry modelled from
4046 			 * the old one.
4047 			 */
4048 			new_entry = vm_map_entry_create(new_map);
4049 			memset(new_entry, 0, sizeof(*new_entry));
4050 
4051 			new_entry->start = old_entry->start;
4052 			new_entry->end = old_entry->end;
4053 			new_entry->eflags = old_entry->eflags &
4054 			    ~(MAP_ENTRY_USER_WIRED | MAP_ENTRY_IN_TRANSITION |
4055 			    MAP_ENTRY_WRITECNT | MAP_ENTRY_VN_EXEC);
4056 			new_entry->protection = old_entry->protection;
4057 			new_entry->max_protection = old_entry->max_protection;
4058 			new_entry->inheritance = VM_INHERIT_ZERO;
4059 
4060 			vm_map_entry_link(new_map, new_entry);
4061 			vmspace_map_entry_forked(vm1, vm2, new_entry);
4062 
4063 			new_entry->cred = curthread->td_ucred;
4064 			crhold(new_entry->cred);
4065 			*fork_charge += (new_entry->end - new_entry->start);
4066 
4067 			break;
4068 		}
4069 		old_entry = vm_map_entry_succ(old_entry);
4070 	}
4071 	/*
4072 	 * Use inlined vm_map_unlock() to postpone handling the deferred
4073 	 * map entries, which cannot be done until both old_map and
4074 	 * new_map locks are released.
4075 	 */
4076 	sx_xunlock(&old_map->lock);
4077 	sx_xunlock(&new_map->lock);
4078 	vm_map_process_deferred();
4079 
4080 	return (vm2);
4081 }
4082 
4083 /*
4084  * Create a process's stack for exec_new_vmspace().  This function is never
4085  * asked to wire the newly created stack.
4086  */
4087 int
4088 vm_map_stack(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
4089     vm_prot_t prot, vm_prot_t max, int cow)
4090 {
4091 	vm_size_t growsize, init_ssize;
4092 	rlim_t vmemlim;
4093 	int rv;
4094 
4095 	MPASS((map->flags & MAP_WIREFUTURE) == 0);
4096 	growsize = sgrowsiz;
4097 	init_ssize = (max_ssize < growsize) ? max_ssize : growsize;
4098 	vm_map_lock(map);
4099 	vmemlim = lim_cur(curthread, RLIMIT_VMEM);
4100 	/* If we would blow our VMEM resource limit, no go */
4101 	if (map->size + init_ssize > vmemlim) {
4102 		rv = KERN_NO_SPACE;
4103 		goto out;
4104 	}
4105 	rv = vm_map_stack_locked(map, addrbos, max_ssize, growsize, prot,
4106 	    max, cow);
4107 out:
4108 	vm_map_unlock(map);
4109 	return (rv);
4110 }
4111 
4112 static int stack_guard_page = 1;
4113 SYSCTL_INT(_security_bsd, OID_AUTO, stack_guard_page, CTLFLAG_RWTUN,
4114     &stack_guard_page, 0,
4115     "Specifies the number of guard pages for a stack that grows");
4116 
4117 static int
4118 vm_map_stack_locked(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
4119     vm_size_t growsize, vm_prot_t prot, vm_prot_t max, int cow)
4120 {
4121 	vm_map_entry_t new_entry, prev_entry;
4122 	vm_offset_t bot, gap_bot, gap_top, top;
4123 	vm_size_t init_ssize, sgp;
4124 	int orient, rv;
4125 
4126 	/*
4127 	 * The stack orientation is piggybacked with the cow argument.
4128 	 * Extract it into orient and mask the cow argument so that we
4129 	 * don't pass it around further.
4130 	 */
4131 	orient = cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP);
4132 	KASSERT(orient != 0, ("No stack grow direction"));
4133 	KASSERT(orient != (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP),
4134 	    ("bi-dir stack"));
4135 
4136 	if (addrbos < vm_map_min(map) ||
4137 	    addrbos + max_ssize > vm_map_max(map) ||
4138 	    addrbos + max_ssize <= addrbos)
4139 		return (KERN_INVALID_ADDRESS);
4140 	sgp = ((curproc->p_flag2 & P2_STKGAP_DISABLE) != 0 ||
4141 	    (curproc->p_fctl0 & NT_FREEBSD_FCTL_STKGAP_DISABLE) != 0) ? 0 :
4142 	    (vm_size_t)stack_guard_page * PAGE_SIZE;
4143 	if (sgp >= max_ssize)
4144 		return (KERN_INVALID_ARGUMENT);
4145 
4146 	init_ssize = growsize;
4147 	if (max_ssize < init_ssize + sgp)
4148 		init_ssize = max_ssize - sgp;
4149 
4150 	/* If addr is already mapped, no go */
4151 	if (vm_map_lookup_entry(map, addrbos, &prev_entry))
4152 		return (KERN_NO_SPACE);
4153 
4154 	/*
4155 	 * If we can't accommodate max_ssize in the current mapping, no go.
4156 	 */
4157 	if (vm_map_entry_succ(prev_entry)->start < addrbos + max_ssize)
4158 		return (KERN_NO_SPACE);
4159 
4160 	/*
4161 	 * We initially map a stack of only init_ssize.  We will grow as
4162 	 * needed later.  Depending on the orientation of the stack (i.e.
4163 	 * the grow direction) we either map at the top of the range, the
4164 	 * bottom of the range or in the middle.
4165 	 *
4166 	 * Note: we would normally expect prot and max to be VM_PROT_ALL,
4167 	 * and cow to be 0.  Possibly we should eliminate these as input
4168 	 * parameters, and just pass these values here in the insert call.
4169 	 */
4170 	if (orient == MAP_STACK_GROWS_DOWN) {
4171 		bot = addrbos + max_ssize - init_ssize;
4172 		top = bot + init_ssize;
4173 		gap_bot = addrbos;
4174 		gap_top = bot;
4175 	} else /* if (orient == MAP_STACK_GROWS_UP) */ {
4176 		bot = addrbos;
4177 		top = bot + init_ssize;
4178 		gap_bot = top;
4179 		gap_top = addrbos + max_ssize;
4180 	}
4181 	rv = vm_map_insert(map, NULL, 0, bot, top, prot, max, cow);
4182 	if (rv != KERN_SUCCESS)
4183 		return (rv);
4184 	new_entry = vm_map_entry_succ(prev_entry);
4185 	KASSERT(new_entry->end == top || new_entry->start == bot,
4186 	    ("Bad entry start/end for new stack entry"));
4187 	KASSERT((orient & MAP_STACK_GROWS_DOWN) == 0 ||
4188 	    (new_entry->eflags & MAP_ENTRY_GROWS_DOWN) != 0,
4189 	    ("new entry lacks MAP_ENTRY_GROWS_DOWN"));
4190 	KASSERT((orient & MAP_STACK_GROWS_UP) == 0 ||
4191 	    (new_entry->eflags & MAP_ENTRY_GROWS_UP) != 0,
4192 	    ("new entry lacks MAP_ENTRY_GROWS_UP"));
4193 	if (gap_bot == gap_top)
4194 		return (KERN_SUCCESS);
4195 	rv = vm_map_insert(map, NULL, 0, gap_bot, gap_top, VM_PROT_NONE,
4196 	    VM_PROT_NONE, MAP_CREATE_GUARD | (orient == MAP_STACK_GROWS_DOWN ?
4197 	    MAP_CREATE_STACK_GAP_DN : MAP_CREATE_STACK_GAP_UP));
4198 	if (rv == KERN_SUCCESS) {
4199 		/*
4200 		 * Gap can never successfully handle a fault, so
4201 		 * read-ahead logic is never used for it.  Re-use
4202 		 * next_read of the gap entry to store
4203 		 * stack_guard_page for vm_map_growstack().
4204 		 */
4205 		if (orient == MAP_STACK_GROWS_DOWN)
4206 			vm_map_entry_pred(new_entry)->next_read = sgp;
4207 		else
4208 			vm_map_entry_succ(new_entry)->next_read = sgp;
4209 	} else {
4210 		(void)vm_map_delete(map, bot, top);
4211 	}
4212 	return (rv);
4213 }
4214 
4215 /*
4216  * Attempts to grow a vm stack entry.  Returns KERN_SUCCESS if we
4217  * successfully grow the stack.
4218  */
4219 static int
4220 vm_map_growstack(vm_map_t map, vm_offset_t addr, vm_map_entry_t gap_entry)
4221 {
4222 	vm_map_entry_t stack_entry;
4223 	struct proc *p;
4224 	struct vmspace *vm;
4225 	struct ucred *cred;
4226 	vm_offset_t gap_end, gap_start, grow_start;
4227 	vm_size_t grow_amount, guard, max_grow;
4228 	rlim_t lmemlim, stacklim, vmemlim;
4229 	int rv, rv1;
4230 	bool gap_deleted, grow_down, is_procstack;
4231 #ifdef notyet
4232 	uint64_t limit;
4233 #endif
4234 #ifdef RACCT
4235 	int error;
4236 #endif
4237 
4238 	p = curproc;
4239 	vm = p->p_vmspace;
4240 
4241 	/*
4242 	 * Disallow stack growth when the access is performed by a
4243 	 * debugger or AIO daemon.  The reason is that the wrong
4244 	 * resource limits are applied.
4245 	 */
4246 	if (p != initproc && (map != &p->p_vmspace->vm_map ||
4247 	    p->p_textvp == NULL))
4248 		return (KERN_FAILURE);
4249 
4250 	MPASS(!map->system_map);
4251 
4252 	lmemlim = lim_cur(curthread, RLIMIT_MEMLOCK);
4253 	stacklim = lim_cur(curthread, RLIMIT_STACK);
4254 	vmemlim = lim_cur(curthread, RLIMIT_VMEM);
4255 retry:
4256 	/* If addr is not in a hole for a stack grow area, no need to grow. */
4257 	if (gap_entry == NULL && !vm_map_lookup_entry(map, addr, &gap_entry))
4258 		return (KERN_FAILURE);
4259 	if ((gap_entry->eflags & MAP_ENTRY_GUARD) == 0)
4260 		return (KERN_SUCCESS);
4261 	if ((gap_entry->eflags & MAP_ENTRY_STACK_GAP_DN) != 0) {
4262 		stack_entry = vm_map_entry_succ(gap_entry);
4263 		if ((stack_entry->eflags & MAP_ENTRY_GROWS_DOWN) == 0 ||
4264 		    stack_entry->start != gap_entry->end)
4265 			return (KERN_FAILURE);
4266 		grow_amount = round_page(stack_entry->start - addr);
4267 		grow_down = true;
4268 	} else if ((gap_entry->eflags & MAP_ENTRY_STACK_GAP_UP) != 0) {
4269 		stack_entry = vm_map_entry_pred(gap_entry);
4270 		if ((stack_entry->eflags & MAP_ENTRY_GROWS_UP) == 0 ||
4271 		    stack_entry->end != gap_entry->start)
4272 			return (KERN_FAILURE);
4273 		grow_amount = round_page(addr + 1 - stack_entry->end);
4274 		grow_down = false;
4275 	} else {
4276 		return (KERN_FAILURE);
4277 	}
4278 	guard = ((curproc->p_flag2 & P2_STKGAP_DISABLE) != 0 ||
4279 	    (curproc->p_fctl0 & NT_FREEBSD_FCTL_STKGAP_DISABLE) != 0) ? 0 :
4280 	    gap_entry->next_read;
4281 	max_grow = gap_entry->end - gap_entry->start;
4282 	if (guard > max_grow)
4283 		return (KERN_NO_SPACE);
4284 	max_grow -= guard;
4285 	if (grow_amount > max_grow)
4286 		return (KERN_NO_SPACE);
4287 
4288 	/*
4289 	 * If this is the main process stack, see if we're over the stack
4290 	 * limit.
4291 	 */
4292 	is_procstack = addr >= (vm_offset_t)vm->vm_maxsaddr &&
4293 	    addr < (vm_offset_t)p->p_sysent->sv_usrstack;
4294 	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim))
4295 		return (KERN_NO_SPACE);
4296 
4297 #ifdef RACCT
4298 	if (racct_enable) {
4299 		PROC_LOCK(p);
4300 		if (is_procstack && racct_set(p, RACCT_STACK,
4301 		    ctob(vm->vm_ssize) + grow_amount)) {
4302 			PROC_UNLOCK(p);
4303 			return (KERN_NO_SPACE);
4304 		}
4305 		PROC_UNLOCK(p);
4306 	}
4307 #endif
4308 
4309 	grow_amount = roundup(grow_amount, sgrowsiz);
4310 	if (grow_amount > max_grow)
4311 		grow_amount = max_grow;
4312 	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) {
4313 		grow_amount = trunc_page((vm_size_t)stacklim) -
4314 		    ctob(vm->vm_ssize);
4315 	}
4316 
4317 #ifdef notyet
4318 	PROC_LOCK(p);
4319 	limit = racct_get_available(p, RACCT_STACK);
4320 	PROC_UNLOCK(p);
4321 	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > limit))
4322 		grow_amount = limit - ctob(vm->vm_ssize);
4323 #endif
4324 
4325 	if (!old_mlock && (map->flags & MAP_WIREFUTURE) != 0) {
4326 		if (ptoa(pmap_wired_count(map->pmap)) + grow_amount > lmemlim) {
4327 			rv = KERN_NO_SPACE;
4328 			goto out;
4329 		}
4330 #ifdef RACCT
4331 		if (racct_enable) {
4332 			PROC_LOCK(p);
4333 			if (racct_set(p, RACCT_MEMLOCK,
4334 			    ptoa(pmap_wired_count(map->pmap)) + grow_amount)) {
4335 				PROC_UNLOCK(p);
4336 				rv = KERN_NO_SPACE;
4337 				goto out;
4338 			}
4339 			PROC_UNLOCK(p);
4340 		}
4341 #endif
4342 	}
4343 
4344 	/* If we would blow our VMEM resource limit, no go */
4345 	if (map->size + grow_amount > vmemlim) {
4346 		rv = KERN_NO_SPACE;
4347 		goto out;
4348 	}
4349 #ifdef RACCT
4350 	if (racct_enable) {
4351 		PROC_LOCK(p);
4352 		if (racct_set(p, RACCT_VMEM, map->size + grow_amount)) {
4353 			PROC_UNLOCK(p);
4354 			rv = KERN_NO_SPACE;
4355 			goto out;
4356 		}
4357 		PROC_UNLOCK(p);
4358 	}
4359 #endif
4360 
4361 	if (vm_map_lock_upgrade(map)) {
4362 		gap_entry = NULL;
4363 		vm_map_lock_read(map);
4364 		goto retry;
4365 	}
4366 
4367 	if (grow_down) {
4368 		grow_start = gap_entry->end - grow_amount;
4369 		if (gap_entry->start + grow_amount == gap_entry->end) {
4370 			gap_start = gap_entry->start;
4371 			gap_end = gap_entry->end;
4372 			vm_map_entry_delete(map, gap_entry);
4373 			gap_deleted = true;
4374 		} else {
4375 			MPASS(gap_entry->start < gap_entry->end - grow_amount);
4376 			vm_map_entry_resize(map, gap_entry, -grow_amount);
4377 			gap_deleted = false;
4378 		}
4379 		rv = vm_map_insert(map, NULL, 0, grow_start,
4380 		    grow_start + grow_amount,
4381 		    stack_entry->protection, stack_entry->max_protection,
4382 		    MAP_STACK_GROWS_DOWN);
4383 		if (rv != KERN_SUCCESS) {
4384 			if (gap_deleted) {
4385 				rv1 = vm_map_insert(map, NULL, 0, gap_start,
4386 				    gap_end, VM_PROT_NONE, VM_PROT_NONE,
4387 				    MAP_CREATE_GUARD | MAP_CREATE_STACK_GAP_DN);
4388 				MPASS(rv1 == KERN_SUCCESS);
4389 			} else
4390 				vm_map_entry_resize(map, gap_entry,
4391 				    grow_amount);
4392 		}
4393 	} else {
4394 		grow_start = stack_entry->end;
4395 		cred = stack_entry->cred;
4396 		if (cred == NULL && stack_entry->object.vm_object != NULL)
4397 			cred = stack_entry->object.vm_object->cred;
4398 		if (cred != NULL && !swap_reserve_by_cred(grow_amount, cred))
4399 			rv = KERN_NO_SPACE;
4400 		/* Grow the underlying object if applicable. */
4401 		else if (stack_entry->object.vm_object == NULL ||
4402 		    vm_object_coalesce(stack_entry->object.vm_object,
4403 		    stack_entry->offset,
4404 		    (vm_size_t)(stack_entry->end - stack_entry->start),
4405 		    grow_amount, cred != NULL)) {
4406 			if (gap_entry->start + grow_amount == gap_entry->end) {
4407 				vm_map_entry_delete(map, gap_entry);
4408 				vm_map_entry_resize(map, stack_entry,
4409 				    grow_amount);
4410 			} else {
4411 				gap_entry->start += grow_amount;
4412 				stack_entry->end += grow_amount;
4413 			}
4414 			map->size += grow_amount;
4415 			rv = KERN_SUCCESS;
4416 		} else
4417 			rv = KERN_FAILURE;
4418 	}
4419 	if (rv == KERN_SUCCESS && is_procstack)
4420 		vm->vm_ssize += btoc(grow_amount);
4421 
4422 	/*
4423 	 * Heed the MAP_WIREFUTURE flag if it was set for this process.
4424 	 */
4425 	if (rv == KERN_SUCCESS && (map->flags & MAP_WIREFUTURE) != 0) {
4426 		rv = vm_map_wire_locked(map, grow_start,
4427 		    grow_start + grow_amount,
4428 		    VM_MAP_WIRE_USER | VM_MAP_WIRE_NOHOLES);
4429 	}
4430 	vm_map_lock_downgrade(map);
4431 
4432 out:
4433 #ifdef RACCT
4434 	if (racct_enable && rv != KERN_SUCCESS) {
4435 		PROC_LOCK(p);
4436 		error = racct_set(p, RACCT_VMEM, map->size);
4437 		KASSERT(error == 0, ("decreasing RACCT_VMEM failed"));
4438 		if (!old_mlock) {
4439 			error = racct_set(p, RACCT_MEMLOCK,
4440 			    ptoa(pmap_wired_count(map->pmap)));
4441 			KASSERT(error == 0, ("decreasing RACCT_MEMLOCK failed"));
4442 		}
4443 	    	error = racct_set(p, RACCT_STACK, ctob(vm->vm_ssize));
4444 		KASSERT(error == 0, ("decreasing RACCT_STACK failed"));
4445 		PROC_UNLOCK(p);
4446 	}
4447 #endif
4448 
4449 	return (rv);
4450 }
4451 
4452 /*
4453  * Unshare the specified VM space for exec.  If other processes are
4454  * mapped to it, then create a new one.  The new vmspace is null.
4455  */
4456 int
4457 vmspace_exec(struct proc *p, vm_offset_t minuser, vm_offset_t maxuser)
4458 {
4459 	struct vmspace *oldvmspace = p->p_vmspace;
4460 	struct vmspace *newvmspace;
4461 
4462 	KASSERT((curthread->td_pflags & TDP_EXECVMSPC) == 0,
4463 	    ("vmspace_exec recursed"));
4464 	newvmspace = vmspace_alloc(minuser, maxuser, pmap_pinit);
4465 	if (newvmspace == NULL)
4466 		return (ENOMEM);
4467 	newvmspace->vm_swrss = oldvmspace->vm_swrss;
4468 	/*
4469 	 * This code is written like this for prototype purposes.  The
4470 	 * goal is to avoid running down the vmspace here, but let the
4471 	 * other process's that are still using the vmspace to finally
4472 	 * run it down.  Even though there is little or no chance of blocking
4473 	 * here, it is a good idea to keep this form for future mods.
4474 	 */
4475 	PROC_VMSPACE_LOCK(p);
4476 	p->p_vmspace = newvmspace;
4477 	PROC_VMSPACE_UNLOCK(p);
4478 	if (p == curthread->td_proc)
4479 		pmap_activate(curthread);
4480 	curthread->td_pflags |= TDP_EXECVMSPC;
4481 	return (0);
4482 }
4483 
4484 /*
4485  * Unshare the specified VM space for forcing COW.  This
4486  * is called by rfork, for the (RFMEM|RFPROC) == 0 case.
4487  */
4488 int
4489 vmspace_unshare(struct proc *p)
4490 {
4491 	struct vmspace *oldvmspace = p->p_vmspace;
4492 	struct vmspace *newvmspace;
4493 	vm_ooffset_t fork_charge;
4494 
4495 	if (oldvmspace->vm_refcnt == 1)
4496 		return (0);
4497 	fork_charge = 0;
4498 	newvmspace = vmspace_fork(oldvmspace, &fork_charge);
4499 	if (newvmspace == NULL)
4500 		return (ENOMEM);
4501 	if (!swap_reserve_by_cred(fork_charge, p->p_ucred)) {
4502 		vmspace_free(newvmspace);
4503 		return (ENOMEM);
4504 	}
4505 	PROC_VMSPACE_LOCK(p);
4506 	p->p_vmspace = newvmspace;
4507 	PROC_VMSPACE_UNLOCK(p);
4508 	if (p == curthread->td_proc)
4509 		pmap_activate(curthread);
4510 	vmspace_free(oldvmspace);
4511 	return (0);
4512 }
4513 
4514 /*
4515  *	vm_map_lookup:
4516  *
4517  *	Finds the VM object, offset, and
4518  *	protection for a given virtual address in the
4519  *	specified map, assuming a page fault of the
4520  *	type specified.
4521  *
4522  *	Leaves the map in question locked for read; return
4523  *	values are guaranteed until a vm_map_lookup_done
4524  *	call is performed.  Note that the map argument
4525  *	is in/out; the returned map must be used in
4526  *	the call to vm_map_lookup_done.
4527  *
4528  *	A handle (out_entry) is returned for use in
4529  *	vm_map_lookup_done, to make that fast.
4530  *
4531  *	If a lookup is requested with "write protection"
4532  *	specified, the map may be changed to perform virtual
4533  *	copying operations, although the data referenced will
4534  *	remain the same.
4535  */
4536 int
4537 vm_map_lookup(vm_map_t *var_map,		/* IN/OUT */
4538 	      vm_offset_t vaddr,
4539 	      vm_prot_t fault_typea,
4540 	      vm_map_entry_t *out_entry,	/* OUT */
4541 	      vm_object_t *object,		/* OUT */
4542 	      vm_pindex_t *pindex,		/* OUT */
4543 	      vm_prot_t *out_prot,		/* OUT */
4544 	      boolean_t *wired)			/* OUT */
4545 {
4546 	vm_map_entry_t entry;
4547 	vm_map_t map = *var_map;
4548 	vm_prot_t prot;
4549 	vm_prot_t fault_type = fault_typea;
4550 	vm_object_t eobject;
4551 	vm_size_t size;
4552 	struct ucred *cred;
4553 
4554 RetryLookup:
4555 
4556 	vm_map_lock_read(map);
4557 
4558 RetryLookupLocked:
4559 	/*
4560 	 * Lookup the faulting address.
4561 	 */
4562 	if (!vm_map_lookup_entry(map, vaddr, out_entry)) {
4563 		vm_map_unlock_read(map);
4564 		return (KERN_INVALID_ADDRESS);
4565 	}
4566 
4567 	entry = *out_entry;
4568 
4569 	/*
4570 	 * Handle submaps.
4571 	 */
4572 	if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
4573 		vm_map_t old_map = map;
4574 
4575 		*var_map = map = entry->object.sub_map;
4576 		vm_map_unlock_read(old_map);
4577 		goto RetryLookup;
4578 	}
4579 
4580 	/*
4581 	 * Check whether this task is allowed to have this page.
4582 	 */
4583 	prot = entry->protection;
4584 	if ((fault_typea & VM_PROT_FAULT_LOOKUP) != 0) {
4585 		fault_typea &= ~VM_PROT_FAULT_LOOKUP;
4586 		if (prot == VM_PROT_NONE && map != kernel_map &&
4587 		    (entry->eflags & MAP_ENTRY_GUARD) != 0 &&
4588 		    (entry->eflags & (MAP_ENTRY_STACK_GAP_DN |
4589 		    MAP_ENTRY_STACK_GAP_UP)) != 0 &&
4590 		    vm_map_growstack(map, vaddr, entry) == KERN_SUCCESS)
4591 			goto RetryLookupLocked;
4592 	}
4593 	fault_type &= VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE;
4594 	if ((fault_type & prot) != fault_type || prot == VM_PROT_NONE) {
4595 		vm_map_unlock_read(map);
4596 		return (KERN_PROTECTION_FAILURE);
4597 	}
4598 	KASSERT((prot & VM_PROT_WRITE) == 0 || (entry->eflags &
4599 	    (MAP_ENTRY_USER_WIRED | MAP_ENTRY_NEEDS_COPY)) !=
4600 	    (MAP_ENTRY_USER_WIRED | MAP_ENTRY_NEEDS_COPY),
4601 	    ("entry %p flags %x", entry, entry->eflags));
4602 	if ((fault_typea & VM_PROT_COPY) != 0 &&
4603 	    (entry->max_protection & VM_PROT_WRITE) == 0 &&
4604 	    (entry->eflags & MAP_ENTRY_COW) == 0) {
4605 		vm_map_unlock_read(map);
4606 		return (KERN_PROTECTION_FAILURE);
4607 	}
4608 
4609 	/*
4610 	 * If this page is not pageable, we have to get it for all possible
4611 	 * accesses.
4612 	 */
4613 	*wired = (entry->wired_count != 0);
4614 	if (*wired)
4615 		fault_type = entry->protection;
4616 	size = entry->end - entry->start;
4617 	/*
4618 	 * If the entry was copy-on-write, we either ...
4619 	 */
4620 	if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
4621 		/*
4622 		 * If we want to write the page, we may as well handle that
4623 		 * now since we've got the map locked.
4624 		 *
4625 		 * If we don't need to write the page, we just demote the
4626 		 * permissions allowed.
4627 		 */
4628 		if ((fault_type & VM_PROT_WRITE) != 0 ||
4629 		    (fault_typea & VM_PROT_COPY) != 0) {
4630 			/*
4631 			 * Make a new object, and place it in the object
4632 			 * chain.  Note that no new references have appeared
4633 			 * -- one just moved from the map to the new
4634 			 * object.
4635 			 */
4636 			if (vm_map_lock_upgrade(map))
4637 				goto RetryLookup;
4638 
4639 			if (entry->cred == NULL) {
4640 				/*
4641 				 * The debugger owner is charged for
4642 				 * the memory.
4643 				 */
4644 				cred = curthread->td_ucred;
4645 				crhold(cred);
4646 				if (!swap_reserve_by_cred(size, cred)) {
4647 					crfree(cred);
4648 					vm_map_unlock(map);
4649 					return (KERN_RESOURCE_SHORTAGE);
4650 				}
4651 				entry->cred = cred;
4652 			}
4653 			vm_object_shadow(&entry->object.vm_object,
4654 			    &entry->offset, size);
4655 			entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
4656 			eobject = entry->object.vm_object;
4657 			if (eobject->cred != NULL) {
4658 				/*
4659 				 * The object was not shadowed.
4660 				 */
4661 				swap_release_by_cred(size, entry->cred);
4662 				crfree(entry->cred);
4663 				entry->cred = NULL;
4664 			} else if (entry->cred != NULL) {
4665 				VM_OBJECT_WLOCK(eobject);
4666 				eobject->cred = entry->cred;
4667 				eobject->charge = size;
4668 				VM_OBJECT_WUNLOCK(eobject);
4669 				entry->cred = NULL;
4670 			}
4671 
4672 			vm_map_lock_downgrade(map);
4673 		} else {
4674 			/*
4675 			 * We're attempting to read a copy-on-write page --
4676 			 * don't allow writes.
4677 			 */
4678 			prot &= ~VM_PROT_WRITE;
4679 		}
4680 	}
4681 
4682 	/*
4683 	 * Create an object if necessary.
4684 	 */
4685 	if (entry->object.vm_object == NULL &&
4686 	    !map->system_map) {
4687 		if (vm_map_lock_upgrade(map))
4688 			goto RetryLookup;
4689 		entry->object.vm_object = vm_object_allocate_anon(atop(size));
4690 		entry->offset = 0;
4691 		if (entry->cred != NULL) {
4692 			VM_OBJECT_WLOCK(entry->object.vm_object);
4693 			entry->object.vm_object->cred = entry->cred;
4694 			entry->object.vm_object->charge = size;
4695 			VM_OBJECT_WUNLOCK(entry->object.vm_object);
4696 			entry->cred = NULL;
4697 		}
4698 		vm_map_lock_downgrade(map);
4699 	}
4700 
4701 	/*
4702 	 * Return the object/offset from this entry.  If the entry was
4703 	 * copy-on-write or empty, it has been fixed up.
4704 	 */
4705 	*pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
4706 	*object = entry->object.vm_object;
4707 
4708 	*out_prot = prot;
4709 	return (KERN_SUCCESS);
4710 }
4711 
4712 /*
4713  *	vm_map_lookup_locked:
4714  *
4715  *	Lookup the faulting address.  A version of vm_map_lookup that returns
4716  *      KERN_FAILURE instead of blocking on map lock or memory allocation.
4717  */
4718 int
4719 vm_map_lookup_locked(vm_map_t *var_map,		/* IN/OUT */
4720 		     vm_offset_t vaddr,
4721 		     vm_prot_t fault_typea,
4722 		     vm_map_entry_t *out_entry,	/* OUT */
4723 		     vm_object_t *object,	/* OUT */
4724 		     vm_pindex_t *pindex,	/* OUT */
4725 		     vm_prot_t *out_prot,	/* OUT */
4726 		     boolean_t *wired)		/* OUT */
4727 {
4728 	vm_map_entry_t entry;
4729 	vm_map_t map = *var_map;
4730 	vm_prot_t prot;
4731 	vm_prot_t fault_type = fault_typea;
4732 
4733 	/*
4734 	 * Lookup the faulting address.
4735 	 */
4736 	if (!vm_map_lookup_entry(map, vaddr, out_entry))
4737 		return (KERN_INVALID_ADDRESS);
4738 
4739 	entry = *out_entry;
4740 
4741 	/*
4742 	 * Fail if the entry refers to a submap.
4743 	 */
4744 	if (entry->eflags & MAP_ENTRY_IS_SUB_MAP)
4745 		return (KERN_FAILURE);
4746 
4747 	/*
4748 	 * Check whether this task is allowed to have this page.
4749 	 */
4750 	prot = entry->protection;
4751 	fault_type &= VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE;
4752 	if ((fault_type & prot) != fault_type)
4753 		return (KERN_PROTECTION_FAILURE);
4754 
4755 	/*
4756 	 * If this page is not pageable, we have to get it for all possible
4757 	 * accesses.
4758 	 */
4759 	*wired = (entry->wired_count != 0);
4760 	if (*wired)
4761 		fault_type = entry->protection;
4762 
4763 	if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
4764 		/*
4765 		 * Fail if the entry was copy-on-write for a write fault.
4766 		 */
4767 		if (fault_type & VM_PROT_WRITE)
4768 			return (KERN_FAILURE);
4769 		/*
4770 		 * We're attempting to read a copy-on-write page --
4771 		 * don't allow writes.
4772 		 */
4773 		prot &= ~VM_PROT_WRITE;
4774 	}
4775 
4776 	/*
4777 	 * Fail if an object should be created.
4778 	 */
4779 	if (entry->object.vm_object == NULL && !map->system_map)
4780 		return (KERN_FAILURE);
4781 
4782 	/*
4783 	 * Return the object/offset from this entry.  If the entry was
4784 	 * copy-on-write or empty, it has been fixed up.
4785 	 */
4786 	*pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
4787 	*object = entry->object.vm_object;
4788 
4789 	*out_prot = prot;
4790 	return (KERN_SUCCESS);
4791 }
4792 
4793 /*
4794  *	vm_map_lookup_done:
4795  *
4796  *	Releases locks acquired by a vm_map_lookup
4797  *	(according to the handle returned by that lookup).
4798  */
4799 void
4800 vm_map_lookup_done(vm_map_t map, vm_map_entry_t entry)
4801 {
4802 	/*
4803 	 * Unlock the main-level map
4804 	 */
4805 	vm_map_unlock_read(map);
4806 }
4807 
4808 vm_offset_t
4809 vm_map_max_KBI(const struct vm_map *map)
4810 {
4811 
4812 	return (vm_map_max(map));
4813 }
4814 
4815 vm_offset_t
4816 vm_map_min_KBI(const struct vm_map *map)
4817 {
4818 
4819 	return (vm_map_min(map));
4820 }
4821 
4822 pmap_t
4823 vm_map_pmap_KBI(vm_map_t map)
4824 {
4825 
4826 	return (map->pmap);
4827 }
4828 
4829 #ifdef INVARIANTS
4830 static void
4831 _vm_map_assert_consistent(vm_map_t map, int check)
4832 {
4833 	vm_map_entry_t entry, prev;
4834 	vm_size_t max_left, max_right;
4835 
4836 	if (enable_vmmap_check != check)
4837 		return;
4838 
4839 	prev = &map->header;
4840 	VM_MAP_ENTRY_FOREACH(entry, map) {
4841 		KASSERT(prev->end <= entry->start,
4842 		    ("map %p prev->end = %jx, start = %jx", map,
4843 		    (uintmax_t)prev->end, (uintmax_t)entry->start));
4844 		KASSERT(entry->start < entry->end,
4845 		    ("map %p start = %jx, end = %jx", map,
4846 		    (uintmax_t)entry->start, (uintmax_t)entry->end));
4847 		KASSERT(entry->end <= vm_map_entry_succ(entry)->start,
4848 		    ("map %p end = %jx, next->start = %jx", map,
4849 		     (uintmax_t)entry->end,
4850 		     (uintmax_t)vm_map_entry_succ(entry)->start));
4851 		KASSERT(entry->left == NULL ||
4852 		    entry->left->start < entry->start,
4853 		    ("map %p left->start = %jx, start = %jx", map,
4854 		    (uintmax_t)entry->left->start, (uintmax_t)entry->start));
4855 		KASSERT(entry->right == NULL ||
4856 		    entry->start < entry->right->start,
4857 		    ("map %p start = %jx, right->start = %jx", map,
4858 		    (uintmax_t)entry->start, (uintmax_t)entry->right->start));
4859 		max_left = vm_map_entry_max_free_left(entry,
4860 		    vm_map_entry_pred(entry));
4861 		max_right = vm_map_entry_max_free_right(entry,
4862 		    vm_map_entry_succ(entry));
4863 		KASSERT(entry->max_free == MAX(max_left, max_right),
4864 		    ("map %p max = %jx, max_left = %jx, max_right = %jx", map,
4865 		    (uintmax_t)entry->max_free,
4866 		    (uintmax_t)max_left, (uintmax_t)max_right));
4867 		prev = entry;
4868 	}
4869 	KASSERT(prev->end <= entry->start,
4870 	    ("map %p prev->end = %jx, start = %jx", map,
4871 	    (uintmax_t)prev->end, (uintmax_t)entry->start));
4872 }
4873 #endif
4874 
4875 #include "opt_ddb.h"
4876 #ifdef DDB
4877 #include <sys/kernel.h>
4878 
4879 #include <ddb/ddb.h>
4880 
4881 static void
4882 vm_map_print(vm_map_t map)
4883 {
4884 	vm_map_entry_t entry, prev;
4885 
4886 	db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n",
4887 	    (void *)map,
4888 	    (void *)map->pmap, map->nentries, map->timestamp);
4889 
4890 	db_indent += 2;
4891 	prev = &map->header;
4892 	VM_MAP_ENTRY_FOREACH(entry, map) {
4893 		db_iprintf("map entry %p: start=%p, end=%p, eflags=%#x, \n",
4894 		    (void *)entry, (void *)entry->start, (void *)entry->end,
4895 		    entry->eflags);
4896 		{
4897 			static char *inheritance_name[4] =
4898 			{"share", "copy", "none", "donate_copy"};
4899 
4900 			db_iprintf(" prot=%x/%x/%s",
4901 			    entry->protection,
4902 			    entry->max_protection,
4903 			    inheritance_name[(int)(unsigned char)
4904 			    entry->inheritance]);
4905 			if (entry->wired_count != 0)
4906 				db_printf(", wired");
4907 		}
4908 		if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
4909 			db_printf(", share=%p, offset=0x%jx\n",
4910 			    (void *)entry->object.sub_map,
4911 			    (uintmax_t)entry->offset);
4912 			if (prev == &map->header ||
4913 			    prev->object.sub_map !=
4914 				entry->object.sub_map) {
4915 				db_indent += 2;
4916 				vm_map_print((vm_map_t)entry->object.sub_map);
4917 				db_indent -= 2;
4918 			}
4919 		} else {
4920 			if (entry->cred != NULL)
4921 				db_printf(", ruid %d", entry->cred->cr_ruid);
4922 			db_printf(", object=%p, offset=0x%jx",
4923 			    (void *)entry->object.vm_object,
4924 			    (uintmax_t)entry->offset);
4925 			if (entry->object.vm_object && entry->object.vm_object->cred)
4926 				db_printf(", obj ruid %d charge %jx",
4927 				    entry->object.vm_object->cred->cr_ruid,
4928 				    (uintmax_t)entry->object.vm_object->charge);
4929 			if (entry->eflags & MAP_ENTRY_COW)
4930 				db_printf(", copy (%s)",
4931 				    (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done");
4932 			db_printf("\n");
4933 
4934 			if (prev == &map->header ||
4935 			    prev->object.vm_object !=
4936 				entry->object.vm_object) {
4937 				db_indent += 2;
4938 				vm_object_print((db_expr_t)(intptr_t)
4939 						entry->object.vm_object,
4940 						0, 0, (char *)0);
4941 				db_indent -= 2;
4942 			}
4943 		}
4944 		prev = entry;
4945 	}
4946 	db_indent -= 2;
4947 }
4948 
4949 DB_SHOW_COMMAND(map, map)
4950 {
4951 
4952 	if (!have_addr) {
4953 		db_printf("usage: show map <addr>\n");
4954 		return;
4955 	}
4956 	vm_map_print((vm_map_t)addr);
4957 }
4958 
4959 DB_SHOW_COMMAND(procvm, procvm)
4960 {
4961 	struct proc *p;
4962 
4963 	if (have_addr) {
4964 		p = db_lookup_proc(addr);
4965 	} else {
4966 		p = curproc;
4967 	}
4968 
4969 	db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n",
4970 	    (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map,
4971 	    (void *)vmspace_pmap(p->p_vmspace));
4972 
4973 	vm_map_print((vm_map_t)&p->p_vmspace->vm_map);
4974 }
4975 
4976 #endif /* DDB */
4977