xref: /freebsd/sys/vm/vm_map.c (revision 67388836)
1 /*-
2  * SPDX-License-Identifier: (BSD-3-Clause AND MIT-CMU)
3  *
4  * Copyright (c) 1991, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * This code is derived from software contributed to Berkeley by
8  * The Mach Operating System project at Carnegie-Mellon University.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *	from: @(#)vm_map.c	8.3 (Berkeley) 1/12/94
35  *
36  *
37  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
38  * All rights reserved.
39  *
40  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
41  *
42  * Permission to use, copy, modify and distribute this software and
43  * its documentation is hereby granted, provided that both the copyright
44  * notice and this permission notice appear in all copies of the
45  * software, derivative works or modified versions, and any portions
46  * thereof, and that both notices appear in supporting documentation.
47  *
48  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
49  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
50  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
51  *
52  * Carnegie Mellon requests users of this software to return to
53  *
54  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
55  *  School of Computer Science
56  *  Carnegie Mellon University
57  *  Pittsburgh PA 15213-3890
58  *
59  * any improvements or extensions that they make and grant Carnegie the
60  * rights to redistribute these changes.
61  */
62 
63 /*
64  *	Virtual memory mapping module.
65  */
66 
67 #include <sys/cdefs.h>
68 __FBSDID("$FreeBSD$");
69 
70 #include <sys/param.h>
71 #include <sys/systm.h>
72 #include <sys/elf.h>
73 #include <sys/kernel.h>
74 #include <sys/ktr.h>
75 #include <sys/lock.h>
76 #include <sys/mutex.h>
77 #include <sys/proc.h>
78 #include <sys/vmmeter.h>
79 #include <sys/mman.h>
80 #include <sys/vnode.h>
81 #include <sys/racct.h>
82 #include <sys/resourcevar.h>
83 #include <sys/rwlock.h>
84 #include <sys/file.h>
85 #include <sys/sysctl.h>
86 #include <sys/sysent.h>
87 #include <sys/shm.h>
88 
89 #include <vm/vm.h>
90 #include <vm/vm_param.h>
91 #include <vm/pmap.h>
92 #include <vm/vm_map.h>
93 #include <vm/vm_page.h>
94 #include <vm/vm_pageout.h>
95 #include <vm/vm_object.h>
96 #include <vm/vm_pager.h>
97 #include <vm/vm_kern.h>
98 #include <vm/vm_extern.h>
99 #include <vm/vnode_pager.h>
100 #include <vm/swap_pager.h>
101 #include <vm/uma.h>
102 
103 /*
104  *	Virtual memory maps provide for the mapping, protection,
105  *	and sharing of virtual memory objects.  In addition,
106  *	this module provides for an efficient virtual copy of
107  *	memory from one map to another.
108  *
109  *	Synchronization is required prior to most operations.
110  *
111  *	Maps consist of an ordered doubly-linked list of simple
112  *	entries; a self-adjusting binary search tree of these
113  *	entries is used to speed up lookups.
114  *
115  *	Since portions of maps are specified by start/end addresses,
116  *	which may not align with existing map entries, all
117  *	routines merely "clip" entries to these start/end values.
118  *	[That is, an entry is split into two, bordering at a
119  *	start or end value.]  Note that these clippings may not
120  *	always be necessary (as the two resulting entries are then
121  *	not changed); however, the clipping is done for convenience.
122  *
123  *	As mentioned above, virtual copy operations are performed
124  *	by copying VM object references from one map to
125  *	another, and then marking both regions as copy-on-write.
126  */
127 
128 static struct mtx map_sleep_mtx;
129 static uma_zone_t mapentzone;
130 static uma_zone_t kmapentzone;
131 static uma_zone_t mapzone;
132 static uma_zone_t vmspace_zone;
133 static int vmspace_zinit(void *mem, int size, int flags);
134 static int vm_map_zinit(void *mem, int ize, int flags);
135 static void _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min,
136     vm_offset_t max);
137 static void vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map);
138 static void vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry);
139 static void vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry);
140 static int vm_map_growstack(vm_map_t map, vm_offset_t addr,
141     vm_map_entry_t gap_entry);
142 static void vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot,
143     vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags);
144 #ifdef INVARIANTS
145 static void vm_map_zdtor(void *mem, int size, void *arg);
146 static void vmspace_zdtor(void *mem, int size, void *arg);
147 #endif
148 static int vm_map_stack_locked(vm_map_t map, vm_offset_t addrbos,
149     vm_size_t max_ssize, vm_size_t growsize, vm_prot_t prot, vm_prot_t max,
150     int cow);
151 static void vm_map_wire_entry_failure(vm_map_t map, vm_map_entry_t entry,
152     vm_offset_t failed_addr);
153 
154 #define	ENTRY_CHARGED(e) ((e)->cred != NULL || \
155     ((e)->object.vm_object != NULL && (e)->object.vm_object->cred != NULL && \
156      !((e)->eflags & MAP_ENTRY_NEEDS_COPY)))
157 
158 /*
159  * PROC_VMSPACE_{UN,}LOCK() can be a noop as long as vmspaces are type
160  * stable.
161  */
162 #define PROC_VMSPACE_LOCK(p) do { } while (0)
163 #define PROC_VMSPACE_UNLOCK(p) do { } while (0)
164 
165 /*
166  *	VM_MAP_RANGE_CHECK:	[ internal use only ]
167  *
168  *	Asserts that the starting and ending region
169  *	addresses fall within the valid range of the map.
170  */
171 #define	VM_MAP_RANGE_CHECK(map, start, end)		\
172 		{					\
173 		if (start < vm_map_min(map))		\
174 			start = vm_map_min(map);	\
175 		if (end > vm_map_max(map))		\
176 			end = vm_map_max(map);		\
177 		if (start > end)			\
178 			start = end;			\
179 		}
180 
181 /*
182  *	vm_map_startup:
183  *
184  *	Initialize the vm_map module.  Must be called before
185  *	any other vm_map routines.
186  *
187  *	Map and entry structures are allocated from the general
188  *	purpose memory pool with some exceptions:
189  *
190  *	- The kernel map and kmem submap are allocated statically.
191  *	- Kernel map entries are allocated out of a static pool.
192  *
193  *	These restrictions are necessary since malloc() uses the
194  *	maps and requires map entries.
195  */
196 
197 void
198 vm_map_startup(void)
199 {
200 	mtx_init(&map_sleep_mtx, "vm map sleep mutex", NULL, MTX_DEF);
201 	mapzone = uma_zcreate("MAP", sizeof(struct vm_map), NULL,
202 #ifdef INVARIANTS
203 	    vm_map_zdtor,
204 #else
205 	    NULL,
206 #endif
207 	    vm_map_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
208 	uma_prealloc(mapzone, MAX_KMAP);
209 	kmapentzone = uma_zcreate("KMAP ENTRY", sizeof(struct vm_map_entry),
210 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
211 	    UMA_ZONE_MTXCLASS | UMA_ZONE_VM);
212 	mapentzone = uma_zcreate("MAP ENTRY", sizeof(struct vm_map_entry),
213 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
214 	vmspace_zone = uma_zcreate("VMSPACE", sizeof(struct vmspace), NULL,
215 #ifdef INVARIANTS
216 	    vmspace_zdtor,
217 #else
218 	    NULL,
219 #endif
220 	    vmspace_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
221 }
222 
223 static int
224 vmspace_zinit(void *mem, int size, int flags)
225 {
226 	struct vmspace *vm;
227 
228 	vm = (struct vmspace *)mem;
229 
230 	vm->vm_map.pmap = NULL;
231 	(void)vm_map_zinit(&vm->vm_map, sizeof(vm->vm_map), flags);
232 	PMAP_LOCK_INIT(vmspace_pmap(vm));
233 	return (0);
234 }
235 
236 static int
237 vm_map_zinit(void *mem, int size, int flags)
238 {
239 	vm_map_t map;
240 
241 	map = (vm_map_t)mem;
242 	memset(map, 0, sizeof(*map));
243 	mtx_init(&map->system_mtx, "vm map (system)", NULL, MTX_DEF | MTX_DUPOK);
244 	sx_init(&map->lock, "vm map (user)");
245 	return (0);
246 }
247 
248 #ifdef INVARIANTS
249 static void
250 vmspace_zdtor(void *mem, int size, void *arg)
251 {
252 	struct vmspace *vm;
253 
254 	vm = (struct vmspace *)mem;
255 
256 	vm_map_zdtor(&vm->vm_map, sizeof(vm->vm_map), arg);
257 }
258 static void
259 vm_map_zdtor(void *mem, int size, void *arg)
260 {
261 	vm_map_t map;
262 
263 	map = (vm_map_t)mem;
264 	KASSERT(map->nentries == 0,
265 	    ("map %p nentries == %d on free.",
266 	    map, map->nentries));
267 	KASSERT(map->size == 0,
268 	    ("map %p size == %lu on free.",
269 	    map, (unsigned long)map->size));
270 }
271 #endif	/* INVARIANTS */
272 
273 /*
274  * Allocate a vmspace structure, including a vm_map and pmap,
275  * and initialize those structures.  The refcnt is set to 1.
276  *
277  * If 'pinit' is NULL then the embedded pmap is initialized via pmap_pinit().
278  */
279 struct vmspace *
280 vmspace_alloc(vm_offset_t min, vm_offset_t max, pmap_pinit_t pinit)
281 {
282 	struct vmspace *vm;
283 
284 	vm = uma_zalloc(vmspace_zone, M_WAITOK);
285 	KASSERT(vm->vm_map.pmap == NULL, ("vm_map.pmap must be NULL"));
286 	if (!pinit(vmspace_pmap(vm))) {
287 		uma_zfree(vmspace_zone, vm);
288 		return (NULL);
289 	}
290 	CTR1(KTR_VM, "vmspace_alloc: %p", vm);
291 	_vm_map_init(&vm->vm_map, vmspace_pmap(vm), min, max);
292 	vm->vm_refcnt = 1;
293 	vm->vm_shm = NULL;
294 	vm->vm_swrss = 0;
295 	vm->vm_tsize = 0;
296 	vm->vm_dsize = 0;
297 	vm->vm_ssize = 0;
298 	vm->vm_taddr = 0;
299 	vm->vm_daddr = 0;
300 	vm->vm_maxsaddr = 0;
301 	return (vm);
302 }
303 
304 #ifdef RACCT
305 static void
306 vmspace_container_reset(struct proc *p)
307 {
308 
309 	PROC_LOCK(p);
310 	racct_set(p, RACCT_DATA, 0);
311 	racct_set(p, RACCT_STACK, 0);
312 	racct_set(p, RACCT_RSS, 0);
313 	racct_set(p, RACCT_MEMLOCK, 0);
314 	racct_set(p, RACCT_VMEM, 0);
315 	PROC_UNLOCK(p);
316 }
317 #endif
318 
319 static inline void
320 vmspace_dofree(struct vmspace *vm)
321 {
322 
323 	CTR1(KTR_VM, "vmspace_free: %p", vm);
324 
325 	/*
326 	 * Make sure any SysV shm is freed, it might not have been in
327 	 * exit1().
328 	 */
329 	shmexit(vm);
330 
331 	/*
332 	 * Lock the map, to wait out all other references to it.
333 	 * Delete all of the mappings and pages they hold, then call
334 	 * the pmap module to reclaim anything left.
335 	 */
336 	(void)vm_map_remove(&vm->vm_map, vm_map_min(&vm->vm_map),
337 	    vm_map_max(&vm->vm_map));
338 
339 	pmap_release(vmspace_pmap(vm));
340 	vm->vm_map.pmap = NULL;
341 	uma_zfree(vmspace_zone, vm);
342 }
343 
344 void
345 vmspace_free(struct vmspace *vm)
346 {
347 
348 	WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
349 	    "vmspace_free() called");
350 
351 	if (vm->vm_refcnt == 0)
352 		panic("vmspace_free: attempt to free already freed vmspace");
353 
354 	if (atomic_fetchadd_int(&vm->vm_refcnt, -1) == 1)
355 		vmspace_dofree(vm);
356 }
357 
358 void
359 vmspace_exitfree(struct proc *p)
360 {
361 	struct vmspace *vm;
362 
363 	PROC_VMSPACE_LOCK(p);
364 	vm = p->p_vmspace;
365 	p->p_vmspace = NULL;
366 	PROC_VMSPACE_UNLOCK(p);
367 	KASSERT(vm == &vmspace0, ("vmspace_exitfree: wrong vmspace"));
368 	vmspace_free(vm);
369 }
370 
371 void
372 vmspace_exit(struct thread *td)
373 {
374 	int refcnt;
375 	struct vmspace *vm;
376 	struct proc *p;
377 
378 	/*
379 	 * Release user portion of address space.
380 	 * This releases references to vnodes,
381 	 * which could cause I/O if the file has been unlinked.
382 	 * Need to do this early enough that we can still sleep.
383 	 *
384 	 * The last exiting process to reach this point releases as
385 	 * much of the environment as it can. vmspace_dofree() is the
386 	 * slower fallback in case another process had a temporary
387 	 * reference to the vmspace.
388 	 */
389 
390 	p = td->td_proc;
391 	vm = p->p_vmspace;
392 	atomic_add_int(&vmspace0.vm_refcnt, 1);
393 	refcnt = vm->vm_refcnt;
394 	do {
395 		if (refcnt > 1 && p->p_vmspace != &vmspace0) {
396 			/* Switch now since other proc might free vmspace */
397 			PROC_VMSPACE_LOCK(p);
398 			p->p_vmspace = &vmspace0;
399 			PROC_VMSPACE_UNLOCK(p);
400 			pmap_activate(td);
401 		}
402 	} while (!atomic_fcmpset_int(&vm->vm_refcnt, &refcnt, refcnt - 1));
403 	if (refcnt == 1) {
404 		if (p->p_vmspace != vm) {
405 			/* vmspace not yet freed, switch back */
406 			PROC_VMSPACE_LOCK(p);
407 			p->p_vmspace = vm;
408 			PROC_VMSPACE_UNLOCK(p);
409 			pmap_activate(td);
410 		}
411 		pmap_remove_pages(vmspace_pmap(vm));
412 		/* Switch now since this proc will free vmspace */
413 		PROC_VMSPACE_LOCK(p);
414 		p->p_vmspace = &vmspace0;
415 		PROC_VMSPACE_UNLOCK(p);
416 		pmap_activate(td);
417 		vmspace_dofree(vm);
418 	}
419 #ifdef RACCT
420 	if (racct_enable)
421 		vmspace_container_reset(p);
422 #endif
423 }
424 
425 /* Acquire reference to vmspace owned by another process. */
426 
427 struct vmspace *
428 vmspace_acquire_ref(struct proc *p)
429 {
430 	struct vmspace *vm;
431 	int refcnt;
432 
433 	PROC_VMSPACE_LOCK(p);
434 	vm = p->p_vmspace;
435 	if (vm == NULL) {
436 		PROC_VMSPACE_UNLOCK(p);
437 		return (NULL);
438 	}
439 	refcnt = vm->vm_refcnt;
440 	do {
441 		if (refcnt <= 0) { 	/* Avoid 0->1 transition */
442 			PROC_VMSPACE_UNLOCK(p);
443 			return (NULL);
444 		}
445 	} while (!atomic_fcmpset_int(&vm->vm_refcnt, &refcnt, refcnt + 1));
446 	if (vm != p->p_vmspace) {
447 		PROC_VMSPACE_UNLOCK(p);
448 		vmspace_free(vm);
449 		return (NULL);
450 	}
451 	PROC_VMSPACE_UNLOCK(p);
452 	return (vm);
453 }
454 
455 /*
456  * Switch between vmspaces in an AIO kernel process.
457  *
458  * The new vmspace is either the vmspace of a user process obtained
459  * from an active AIO request or the initial vmspace of the AIO kernel
460  * process (when it is idling).  Because user processes will block to
461  * drain any active AIO requests before proceeding in exit() or
462  * execve(), the reference count for vmspaces from AIO requests can
463  * never be 0.  Similarly, AIO kernel processes hold an extra
464  * reference on their initial vmspace for the life of the process.  As
465  * a result, the 'newvm' vmspace always has a non-zero reference
466  * count.  This permits an additional reference on 'newvm' to be
467  * acquired via a simple atomic increment rather than the loop in
468  * vmspace_acquire_ref() above.
469  */
470 void
471 vmspace_switch_aio(struct vmspace *newvm)
472 {
473 	struct vmspace *oldvm;
474 
475 	/* XXX: Need some way to assert that this is an aio daemon. */
476 
477 	KASSERT(newvm->vm_refcnt > 0,
478 	    ("vmspace_switch_aio: newvm unreferenced"));
479 
480 	oldvm = curproc->p_vmspace;
481 	if (oldvm == newvm)
482 		return;
483 
484 	/*
485 	 * Point to the new address space and refer to it.
486 	 */
487 	curproc->p_vmspace = newvm;
488 	atomic_add_int(&newvm->vm_refcnt, 1);
489 
490 	/* Activate the new mapping. */
491 	pmap_activate(curthread);
492 
493 	vmspace_free(oldvm);
494 }
495 
496 void
497 _vm_map_lock(vm_map_t map, const char *file, int line)
498 {
499 
500 	if (map->system_map)
501 		mtx_lock_flags_(&map->system_mtx, 0, file, line);
502 	else
503 		sx_xlock_(&map->lock, file, line);
504 	map->timestamp++;
505 }
506 
507 void
508 vm_map_entry_set_vnode_text(vm_map_entry_t entry, bool add)
509 {
510 	vm_object_t object;
511 	struct vnode *vp;
512 	bool vp_held;
513 
514 	if ((entry->eflags & MAP_ENTRY_VN_EXEC) == 0)
515 		return;
516 	KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0,
517 	    ("Submap with execs"));
518 	object = entry->object.vm_object;
519 	KASSERT(object != NULL, ("No object for text, entry %p", entry));
520 	if ((object->flags & OBJ_ANON) != 0)
521 		object = object->handle;
522 	else
523 		KASSERT(object->backing_object == NULL,
524 		    ("non-anon object %p shadows", object));
525 	KASSERT(object != NULL, ("No content object for text, entry %p obj %p",
526 	    entry, entry->object.vm_object));
527 
528 	/*
529 	 * Mostly, we do not lock the backing object.  It is
530 	 * referenced by the entry we are processing, so it cannot go
531 	 * away.
532 	 */
533 	vp = NULL;
534 	vp_held = false;
535 	if (object->type == OBJT_DEAD) {
536 		/*
537 		 * For OBJT_DEAD objects, v_writecount was handled in
538 		 * vnode_pager_dealloc().
539 		 */
540 	} else if (object->type == OBJT_VNODE) {
541 		vp = object->handle;
542 	} else if (object->type == OBJT_SWAP) {
543 		KASSERT((object->flags & OBJ_TMPFS_NODE) != 0,
544 		    ("vm_map_entry_set_vnode_text: swap and !TMPFS "
545 		    "entry %p, object %p, add %d", entry, object, add));
546 		/*
547 		 * Tmpfs VREG node, which was reclaimed, has
548 		 * OBJ_TMPFS_NODE flag set, but not OBJ_TMPFS.  In
549 		 * this case there is no v_writecount to adjust.
550 		 */
551 		VM_OBJECT_RLOCK(object);
552 		if ((object->flags & OBJ_TMPFS) != 0) {
553 			vp = object->un_pager.swp.swp_tmpfs;
554 			if (vp != NULL) {
555 				vhold(vp);
556 				vp_held = true;
557 			}
558 		}
559 		VM_OBJECT_RUNLOCK(object);
560 	} else {
561 		KASSERT(0,
562 		    ("vm_map_entry_set_vnode_text: wrong object type, "
563 		    "entry %p, object %p, add %d", entry, object, add));
564 	}
565 	if (vp != NULL) {
566 		if (add) {
567 			VOP_SET_TEXT_CHECKED(vp);
568 		} else {
569 			vn_lock(vp, LK_SHARED | LK_RETRY);
570 			VOP_UNSET_TEXT_CHECKED(vp);
571 			VOP_UNLOCK(vp, 0);
572 		}
573 		if (vp_held)
574 			vdrop(vp);
575 	}
576 }
577 
578 /*
579  * Use a different name for this vm_map_entry field when it's use
580  * is not consistent with its use as part of an ordered search tree.
581  */
582 #define defer_next right
583 
584 static void
585 vm_map_process_deferred(void)
586 {
587 	struct thread *td;
588 	vm_map_entry_t entry, next;
589 	vm_object_t object;
590 
591 	td = curthread;
592 	entry = td->td_map_def_user;
593 	td->td_map_def_user = NULL;
594 	while (entry != NULL) {
595 		next = entry->defer_next;
596 		MPASS((entry->eflags & (MAP_ENTRY_WRITECNT |
597 		    MAP_ENTRY_VN_EXEC)) != (MAP_ENTRY_WRITECNT |
598 		    MAP_ENTRY_VN_EXEC));
599 		if ((entry->eflags & MAP_ENTRY_WRITECNT) != 0) {
600 			/*
601 			 * Decrement the object's writemappings and
602 			 * possibly the vnode's v_writecount.
603 			 */
604 			KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0,
605 			    ("Submap with writecount"));
606 			object = entry->object.vm_object;
607 			KASSERT(object != NULL, ("No object for writecount"));
608 			vm_pager_release_writecount(object, entry->start,
609 			    entry->end);
610 		}
611 		vm_map_entry_set_vnode_text(entry, false);
612 		vm_map_entry_deallocate(entry, FALSE);
613 		entry = next;
614 	}
615 }
616 
617 #ifdef INVARIANTS
618 static void
619 _vm_map_assert_locked(vm_map_t map, const char *file, int line)
620 {
621 
622 	if (map->system_map)
623 		mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
624 	else
625 		sx_assert_(&map->lock, SA_XLOCKED, file, line);
626 }
627 
628 #define	VM_MAP_ASSERT_LOCKED(map) \
629     _vm_map_assert_locked(map, LOCK_FILE, LOCK_LINE)
630 
631 enum { VMMAP_CHECK_NONE, VMMAP_CHECK_UNLOCK, VMMAP_CHECK_ALL };
632 #ifdef DIAGNOSTIC
633 static int enable_vmmap_check = VMMAP_CHECK_UNLOCK;
634 #else
635 static int enable_vmmap_check = VMMAP_CHECK_NONE;
636 #endif
637 SYSCTL_INT(_debug, OID_AUTO, vmmap_check, CTLFLAG_RWTUN,
638     &enable_vmmap_check, 0, "Enable vm map consistency checking");
639 
640 static void _vm_map_assert_consistent(vm_map_t map, int check);
641 
642 #define VM_MAP_ASSERT_CONSISTENT(map) \
643     _vm_map_assert_consistent(map, VMMAP_CHECK_ALL)
644 #ifdef DIAGNOSTIC
645 #define VM_MAP_UNLOCK_CONSISTENT(map) do {				\
646 	if (map->nupdates > map->nentries) {				\
647 		_vm_map_assert_consistent(map, VMMAP_CHECK_UNLOCK);	\
648 		map->nupdates = 0;					\
649 	}								\
650 } while (0)
651 #else
652 #define VM_MAP_UNLOCK_CONSISTENT(map)
653 #endif
654 #else
655 #define	VM_MAP_ASSERT_LOCKED(map)
656 #define VM_MAP_ASSERT_CONSISTENT(map)
657 #define VM_MAP_UNLOCK_CONSISTENT(map)
658 #endif /* INVARIANTS */
659 
660 void
661 _vm_map_unlock(vm_map_t map, const char *file, int line)
662 {
663 
664 	VM_MAP_UNLOCK_CONSISTENT(map);
665 	if (map->system_map)
666 		mtx_unlock_flags_(&map->system_mtx, 0, file, line);
667 	else {
668 		sx_xunlock_(&map->lock, file, line);
669 		vm_map_process_deferred();
670 	}
671 }
672 
673 void
674 _vm_map_lock_read(vm_map_t map, const char *file, int line)
675 {
676 
677 	if (map->system_map)
678 		mtx_lock_flags_(&map->system_mtx, 0, file, line);
679 	else
680 		sx_slock_(&map->lock, file, line);
681 }
682 
683 void
684 _vm_map_unlock_read(vm_map_t map, const char *file, int line)
685 {
686 
687 	if (map->system_map)
688 		mtx_unlock_flags_(&map->system_mtx, 0, file, line);
689 	else {
690 		sx_sunlock_(&map->lock, file, line);
691 		vm_map_process_deferred();
692 	}
693 }
694 
695 int
696 _vm_map_trylock(vm_map_t map, const char *file, int line)
697 {
698 	int error;
699 
700 	error = map->system_map ?
701 	    !mtx_trylock_flags_(&map->system_mtx, 0, file, line) :
702 	    !sx_try_xlock_(&map->lock, file, line);
703 	if (error == 0)
704 		map->timestamp++;
705 	return (error == 0);
706 }
707 
708 int
709 _vm_map_trylock_read(vm_map_t map, const char *file, int line)
710 {
711 	int error;
712 
713 	error = map->system_map ?
714 	    !mtx_trylock_flags_(&map->system_mtx, 0, file, line) :
715 	    !sx_try_slock_(&map->lock, file, line);
716 	return (error == 0);
717 }
718 
719 /*
720  *	_vm_map_lock_upgrade:	[ internal use only ]
721  *
722  *	Tries to upgrade a read (shared) lock on the specified map to a write
723  *	(exclusive) lock.  Returns the value "0" if the upgrade succeeds and a
724  *	non-zero value if the upgrade fails.  If the upgrade fails, the map is
725  *	returned without a read or write lock held.
726  *
727  *	Requires that the map be read locked.
728  */
729 int
730 _vm_map_lock_upgrade(vm_map_t map, const char *file, int line)
731 {
732 	unsigned int last_timestamp;
733 
734 	if (map->system_map) {
735 		mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
736 	} else {
737 		if (!sx_try_upgrade_(&map->lock, file, line)) {
738 			last_timestamp = map->timestamp;
739 			sx_sunlock_(&map->lock, file, line);
740 			vm_map_process_deferred();
741 			/*
742 			 * If the map's timestamp does not change while the
743 			 * map is unlocked, then the upgrade succeeds.
744 			 */
745 			sx_xlock_(&map->lock, file, line);
746 			if (last_timestamp != map->timestamp) {
747 				sx_xunlock_(&map->lock, file, line);
748 				return (1);
749 			}
750 		}
751 	}
752 	map->timestamp++;
753 	return (0);
754 }
755 
756 void
757 _vm_map_lock_downgrade(vm_map_t map, const char *file, int line)
758 {
759 
760 	if (map->system_map) {
761 		mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
762 	} else {
763 		VM_MAP_UNLOCK_CONSISTENT(map);
764 		sx_downgrade_(&map->lock, file, line);
765 	}
766 }
767 
768 /*
769  *	vm_map_locked:
770  *
771  *	Returns a non-zero value if the caller holds a write (exclusive) lock
772  *	on the specified map and the value "0" otherwise.
773  */
774 int
775 vm_map_locked(vm_map_t map)
776 {
777 
778 	if (map->system_map)
779 		return (mtx_owned(&map->system_mtx));
780 	else
781 		return (sx_xlocked(&map->lock));
782 }
783 
784 /*
785  *	_vm_map_unlock_and_wait:
786  *
787  *	Atomically releases the lock on the specified map and puts the calling
788  *	thread to sleep.  The calling thread will remain asleep until either
789  *	vm_map_wakeup() is performed on the map or the specified timeout is
790  *	exceeded.
791  *
792  *	WARNING!  This function does not perform deferred deallocations of
793  *	objects and map	entries.  Therefore, the calling thread is expected to
794  *	reacquire the map lock after reawakening and later perform an ordinary
795  *	unlock operation, such as vm_map_unlock(), before completing its
796  *	operation on the map.
797  */
798 int
799 _vm_map_unlock_and_wait(vm_map_t map, int timo, const char *file, int line)
800 {
801 
802 	VM_MAP_UNLOCK_CONSISTENT(map);
803 	mtx_lock(&map_sleep_mtx);
804 	if (map->system_map)
805 		mtx_unlock_flags_(&map->system_mtx, 0, file, line);
806 	else
807 		sx_xunlock_(&map->lock, file, line);
808 	return (msleep(&map->root, &map_sleep_mtx, PDROP | PVM, "vmmaps",
809 	    timo));
810 }
811 
812 /*
813  *	vm_map_wakeup:
814  *
815  *	Awaken any threads that have slept on the map using
816  *	vm_map_unlock_and_wait().
817  */
818 void
819 vm_map_wakeup(vm_map_t map)
820 {
821 
822 	/*
823 	 * Acquire and release map_sleep_mtx to prevent a wakeup()
824 	 * from being performed (and lost) between the map unlock
825 	 * and the msleep() in _vm_map_unlock_and_wait().
826 	 */
827 	mtx_lock(&map_sleep_mtx);
828 	mtx_unlock(&map_sleep_mtx);
829 	wakeup(&map->root);
830 }
831 
832 void
833 vm_map_busy(vm_map_t map)
834 {
835 
836 	VM_MAP_ASSERT_LOCKED(map);
837 	map->busy++;
838 }
839 
840 void
841 vm_map_unbusy(vm_map_t map)
842 {
843 
844 	VM_MAP_ASSERT_LOCKED(map);
845 	KASSERT(map->busy, ("vm_map_unbusy: not busy"));
846 	if (--map->busy == 0 && (map->flags & MAP_BUSY_WAKEUP)) {
847 		vm_map_modflags(map, 0, MAP_BUSY_WAKEUP);
848 		wakeup(&map->busy);
849 	}
850 }
851 
852 void
853 vm_map_wait_busy(vm_map_t map)
854 {
855 
856 	VM_MAP_ASSERT_LOCKED(map);
857 	while (map->busy) {
858 		vm_map_modflags(map, MAP_BUSY_WAKEUP, 0);
859 		if (map->system_map)
860 			msleep(&map->busy, &map->system_mtx, 0, "mbusy", 0);
861 		else
862 			sx_sleep(&map->busy, &map->lock, 0, "mbusy", 0);
863 	}
864 	map->timestamp++;
865 }
866 
867 long
868 vmspace_resident_count(struct vmspace *vmspace)
869 {
870 	return pmap_resident_count(vmspace_pmap(vmspace));
871 }
872 
873 /*
874  *	vm_map_create:
875  *
876  *	Creates and returns a new empty VM map with
877  *	the given physical map structure, and having
878  *	the given lower and upper address bounds.
879  */
880 vm_map_t
881 vm_map_create(pmap_t pmap, vm_offset_t min, vm_offset_t max)
882 {
883 	vm_map_t result;
884 
885 	result = uma_zalloc(mapzone, M_WAITOK);
886 	CTR1(KTR_VM, "vm_map_create: %p", result);
887 	_vm_map_init(result, pmap, min, max);
888 	return (result);
889 }
890 
891 /*
892  * Initialize an existing vm_map structure
893  * such as that in the vmspace structure.
894  */
895 static void
896 _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max)
897 {
898 
899 	map->header.next = map->header.prev = &map->header;
900 	map->header.eflags = MAP_ENTRY_HEADER;
901 	map->needs_wakeup = FALSE;
902 	map->system_map = 0;
903 	map->pmap = pmap;
904 	map->header.end = min;
905 	map->header.start = max;
906 	map->flags = 0;
907 	map->root = NULL;
908 	map->timestamp = 0;
909 	map->busy = 0;
910 	map->anon_loc = 0;
911 #ifdef DIAGNOSTIC
912 	map->nupdates = 0;
913 #endif
914 }
915 
916 void
917 vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max)
918 {
919 
920 	_vm_map_init(map, pmap, min, max);
921 	mtx_init(&map->system_mtx, "system map", NULL, MTX_DEF | MTX_DUPOK);
922 	sx_init(&map->lock, "user map");
923 }
924 
925 /*
926  *	vm_map_entry_dispose:	[ internal use only ]
927  *
928  *	Inverse of vm_map_entry_create.
929  */
930 static void
931 vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry)
932 {
933 	uma_zfree(map->system_map ? kmapentzone : mapentzone, entry);
934 }
935 
936 /*
937  *	vm_map_entry_create:	[ internal use only ]
938  *
939  *	Allocates a VM map entry for insertion.
940  *	No entry fields are filled in.
941  */
942 static vm_map_entry_t
943 vm_map_entry_create(vm_map_t map)
944 {
945 	vm_map_entry_t new_entry;
946 
947 	if (map->system_map)
948 		new_entry = uma_zalloc(kmapentzone, M_NOWAIT);
949 	else
950 		new_entry = uma_zalloc(mapentzone, M_WAITOK);
951 	if (new_entry == NULL)
952 		panic("vm_map_entry_create: kernel resources exhausted");
953 	return (new_entry);
954 }
955 
956 /*
957  *	vm_map_entry_set_behavior:
958  *
959  *	Set the expected access behavior, either normal, random, or
960  *	sequential.
961  */
962 static inline void
963 vm_map_entry_set_behavior(vm_map_entry_t entry, u_char behavior)
964 {
965 	entry->eflags = (entry->eflags & ~MAP_ENTRY_BEHAV_MASK) |
966 	    (behavior & MAP_ENTRY_BEHAV_MASK);
967 }
968 
969 /*
970  *	vm_map_entry_max_free_{left,right}:
971  *
972  *	Compute the size of the largest free gap between two entries,
973  *	one the root of a tree and the other the ancestor of that root
974  *	that is the least or greatest ancestor found on the search path.
975  */
976 static inline vm_size_t
977 vm_map_entry_max_free_left(vm_map_entry_t root, vm_map_entry_t left_ancestor)
978 {
979 
980 	return (root->left != NULL ?
981 	    root->left->max_free : root->start - left_ancestor->end);
982 }
983 
984 static inline vm_size_t
985 vm_map_entry_max_free_right(vm_map_entry_t root, vm_map_entry_t right_ancestor)
986 {
987 
988 	return (root->right != NULL ?
989 	    root->right->max_free : right_ancestor->start - root->end);
990 }
991 
992 /*
993  *	vm_map_entry_{pred,succ}:
994  *
995  *	Find the {predecessor, successor} of the entry by taking one step
996  *	in the appropriate direction and backtracking as much as necessary.
997  */
998 static inline vm_map_entry_t
999 vm_map_entry_pred(vm_map_entry_t entry)
1000 {
1001 
1002 	return (entry->prev);
1003 }
1004 
1005 /* vm_map_entry_succ is defined in vm_map.h. */
1006 
1007 static inline vm_size_t
1008 vm_size_max(vm_size_t a, vm_size_t b)
1009 {
1010 
1011 	return (a > b ? a : b);
1012 }
1013 
1014 #define SPLAY_LEFT_STEP(root, y, rlist, test) do {			\
1015 	vm_size_t max_free;						\
1016 									\
1017 	/*								\
1018 	 * Infer root->right->max_free == root->max_free when		\
1019 	 * y->max_free < root->max_free || root->max_free == 0.		\
1020 	 * Otherwise, look right to find it.				\
1021 	 */								\
1022 	y = root->left;							\
1023 	max_free = root->max_free;					\
1024 	KASSERT(max_free >= vm_map_entry_max_free_right(root, rlist),	\
1025 	    ("%s: max_free invariant fails", __func__));		\
1026 	if (y == NULL ? max_free > 0 : max_free - 1 < y->max_free)	\
1027 		max_free = vm_map_entry_max_free_right(root, rlist);	\
1028 	if (y != NULL && (test)) {					\
1029 		/* Rotate right and make y root. */			\
1030 		root->left = y->right;					\
1031 		y->right = root;					\
1032 		if (max_free < y->max_free)				\
1033 			root->max_free = max_free =			\
1034 			    vm_size_max(max_free,			\
1035 			    vm_map_entry_max_free_left(root, y));	\
1036 		root = y;						\
1037 		y = root->left;						\
1038 	}								\
1039 	/* Copy right->max_free.  Put root on rlist. */			\
1040 	root->max_free = max_free;					\
1041 	KASSERT(max_free == vm_map_entry_max_free_right(root, rlist),	\
1042 	    ("%s: max_free not copied from right", __func__));		\
1043 	root->left = rlist;						\
1044 	rlist = root;							\
1045 	root = y;							\
1046 } while (0)
1047 
1048 #define SPLAY_RIGHT_STEP(root, y, llist, test) do {			\
1049 	vm_size_t max_free;						\
1050 									\
1051 	/*								\
1052 	 * Infer root->left->max_free == root->max_free when		\
1053 	 * y->max_free < root->max_free || root->max_free == 0.		\
1054 	 * Otherwise, look left to find it.				\
1055 	 */								\
1056 	y = root->right;						\
1057 	max_free = root->max_free;					\
1058 	KASSERT(max_free >= vm_map_entry_max_free_left(root, llist),	\
1059 	    ("%s: max_free invariant fails", __func__));		\
1060 	if (y == NULL ? max_free > 0 : max_free - 1 < y->max_free)	\
1061 		max_free = vm_map_entry_max_free_left(root, llist);	\
1062 	if (y != NULL && (test)) {					\
1063 		/* Rotate left and make y root. */			\
1064 		root->right = y->left;					\
1065 		y->left = root;						\
1066 		if (max_free < y->max_free)				\
1067 			root->max_free = max_free =			\
1068 			    vm_size_max(max_free,			\
1069 			    vm_map_entry_max_free_right(root, y));	\
1070 		root = y;						\
1071 		y = root->right;					\
1072 	}								\
1073 	/* Copy left->max_free.  Put root on llist. */			\
1074 	root->max_free = max_free;					\
1075 	KASSERT(max_free == vm_map_entry_max_free_left(root, llist),	\
1076 	    ("%s: max_free not copied from left", __func__));		\
1077 	root->right = llist;						\
1078 	llist = root;							\
1079 	root = y;							\
1080 } while (0)
1081 
1082 /*
1083  * Walk down the tree until we find addr or a NULL pointer where addr would go,
1084  * breaking off left and right subtrees of nodes less than, or greater than
1085  * addr.  Treat pointers to nodes with max_free < length as NULL pointers.
1086  * llist and rlist are the two sides in reverse order (bottom-up), with llist
1087  * linked by the right pointer and rlist linked by the left pointer in the
1088  * vm_map_entry, and both lists terminated by &map->header.  This function, and
1089  * the subsequent call to vm_map_splay_merge, rely on the start and end address
1090  * values in &map->header.
1091  */
1092 static __always_inline vm_map_entry_t
1093 vm_map_splay_split(vm_map_t map, vm_offset_t addr, vm_size_t length,
1094     vm_map_entry_t *llist, vm_map_entry_t *rlist)
1095 {
1096 	vm_map_entry_t root, y;
1097 
1098 	*llist = *rlist = &map->header;
1099 	root = map->root;
1100 	while (root != NULL && root->max_free >= length) {
1101 		KASSERT((*llist)->end <= root->start &&
1102 		    root->end <= (*rlist)->start,
1103 		    ("%s: root not within tree bounds", __func__));
1104 		if (addr < root->start) {
1105 			SPLAY_LEFT_STEP(root, y, *rlist,
1106 			    y->max_free >= length && addr < y->start);
1107 		} else if (addr >= root->end) {
1108 			SPLAY_RIGHT_STEP(root, y, *llist,
1109 			    y->max_free >= length && addr >= y->end);
1110 		} else
1111 			break;
1112 	}
1113 	return (root);
1114 }
1115 
1116 static __always_inline void
1117 vm_map_splay_findnext(vm_map_entry_t root, vm_map_entry_t *rlist)
1118 {
1119 	vm_map_entry_t hi, y;
1120 
1121 	hi = root->right;
1122 	while (hi != NULL)
1123 		SPLAY_LEFT_STEP(hi, y, *rlist, true);
1124 }
1125 
1126 static __always_inline void
1127 vm_map_splay_findprev(vm_map_entry_t root, vm_map_entry_t *llist)
1128 {
1129 	vm_map_entry_t lo, y;
1130 
1131 	lo = root->left;
1132 	while (lo != NULL)
1133 		SPLAY_RIGHT_STEP(lo, y, *llist, true);
1134 }
1135 
1136 static inline void
1137 vm_map_entry_swap(vm_map_entry_t *a, vm_map_entry_t *b)
1138 {
1139 	vm_map_entry_t tmp;
1140 
1141 	tmp = *b;
1142 	*b = *a;
1143 	*a = tmp;
1144 }
1145 
1146 /*
1147  * Walk back up the two spines, flip the pointers and set max_free.  The
1148  * subtrees of the root go at the bottom of llist and rlist.
1149  */
1150 static vm_size_t
1151 vm_map_splay_merge_left_walk(vm_map_entry_t header, vm_map_entry_t root,
1152     vm_map_entry_t tail, vm_size_t max_free, vm_map_entry_t llist)
1153 {
1154 	do {
1155 		/*
1156 		 * The max_free values of the children of llist are in
1157 		 * llist->max_free and max_free.  Update with the
1158 		 * max value.
1159 		 */
1160 		llist->max_free = max_free =
1161 		    vm_size_max(llist->max_free, max_free);
1162 		vm_map_entry_swap(&llist->right, &tail);
1163 		vm_map_entry_swap(&tail, &llist);
1164 	} while (llist != header);
1165 	root->left = tail;
1166 	return (max_free);
1167 }
1168 
1169 /*
1170  * When llist is known to be the predecessor of root.
1171  */
1172 static inline vm_size_t
1173 vm_map_splay_merge_pred(vm_map_entry_t header, vm_map_entry_t root,
1174     vm_map_entry_t llist)
1175 {
1176 	vm_size_t max_free;
1177 
1178 	max_free = root->start - llist->end;
1179 	if (llist != header) {
1180 		max_free = vm_map_splay_merge_left_walk(header, root,
1181 		    NULL, max_free, llist);
1182 	} else {
1183 		root->left = NULL;
1184 	}
1185 	return (max_free);
1186 }
1187 
1188 /*
1189  * When llist may or may not be the predecessor of root.
1190  */
1191 static inline vm_size_t
1192 vm_map_splay_merge_left(vm_map_entry_t header, vm_map_entry_t root,
1193     vm_map_entry_t llist)
1194 {
1195 	vm_size_t max_free;
1196 
1197 	max_free = vm_map_entry_max_free_left(root, llist);
1198 	if (llist != header) {
1199 		max_free = vm_map_splay_merge_left_walk(header, root,
1200 		    root->left, max_free, llist);
1201 	}
1202 	return (max_free);
1203 }
1204 
1205 static vm_size_t
1206 vm_map_splay_merge_right_walk(vm_map_entry_t header, vm_map_entry_t root,
1207     vm_map_entry_t tail, vm_size_t max_free, vm_map_entry_t rlist)
1208 {
1209 	do {
1210 		/*
1211 		 * The max_free values of the children of rlist are in
1212 		 * rlist->max_free and max_free.  Update with the
1213 		 * max value.
1214 		 */
1215 		rlist->max_free = max_free =
1216 		    vm_size_max(rlist->max_free, max_free);
1217 		vm_map_entry_swap(&rlist->left, &tail);
1218 		vm_map_entry_swap(&tail, &rlist);
1219 	} while (rlist != header);
1220 	root->right = tail;
1221 	return (max_free);
1222 }
1223 
1224 /*
1225  * When rlist is known to be the succecessor of root.
1226  */
1227 static inline vm_size_t
1228 vm_map_splay_merge_succ(vm_map_entry_t header, vm_map_entry_t root,
1229     vm_map_entry_t rlist)
1230 {
1231 	vm_size_t max_free;
1232 
1233 	max_free = rlist->start - root->end;
1234 	if (rlist != header) {
1235 		max_free = vm_map_splay_merge_right_walk(header, root,
1236 		    NULL, max_free, rlist);
1237 	} else {
1238 		root->right = NULL;
1239 	}
1240 	return (max_free);
1241 }
1242 
1243 /*
1244  * When rlist may or may not be the succecessor of root.
1245  */
1246 static inline vm_size_t
1247 vm_map_splay_merge_right(vm_map_entry_t header, vm_map_entry_t root,
1248     vm_map_entry_t rlist)
1249 {
1250 	vm_size_t max_free;
1251 
1252 	max_free = vm_map_entry_max_free_right(root, rlist);
1253 	if (rlist != header) {
1254 		max_free = vm_map_splay_merge_right_walk(header, root,
1255 		    root->right, max_free, rlist);
1256 	}
1257 	return (max_free);
1258 }
1259 
1260 /*
1261  *	vm_map_splay:
1262  *
1263  *	The Sleator and Tarjan top-down splay algorithm with the
1264  *	following variation.  Max_free must be computed bottom-up, so
1265  *	on the downward pass, maintain the left and right spines in
1266  *	reverse order.  Then, make a second pass up each side to fix
1267  *	the pointers and compute max_free.  The time bound is O(log n)
1268  *	amortized.
1269  *
1270  *	The new root is the vm_map_entry containing "addr", or else an
1271  *	adjacent entry (lower if possible) if addr is not in the tree.
1272  *
1273  *	The map must be locked, and leaves it so.
1274  *
1275  *	Returns: the new root.
1276  */
1277 static vm_map_entry_t
1278 vm_map_splay(vm_map_t map, vm_offset_t addr)
1279 {
1280 	vm_map_entry_t header, llist, rlist, root;
1281 	vm_size_t max_free_left, max_free_right;
1282 
1283 	header = &map->header;
1284 	root = vm_map_splay_split(map, addr, 0, &llist, &rlist);
1285 	if (root != NULL) {
1286 		max_free_left = vm_map_splay_merge_left(header, root, llist);
1287 		max_free_right = vm_map_splay_merge_right(header, root, rlist);
1288 	} else if (llist != header) {
1289 		/*
1290 		 * Recover the greatest node in the left
1291 		 * subtree and make it the root.
1292 		 */
1293 		root = llist;
1294 		llist = root->right;
1295 		max_free_left = vm_map_splay_merge_left(header, root, llist);
1296 		max_free_right = vm_map_splay_merge_succ(header, root, rlist);
1297 	} else if (rlist != header) {
1298 		/*
1299 		 * Recover the least node in the right
1300 		 * subtree and make it the root.
1301 		 */
1302 		root = rlist;
1303 		rlist = root->left;
1304 		max_free_left = vm_map_splay_merge_pred(header, root, llist);
1305 		max_free_right = vm_map_splay_merge_right(header, root, rlist);
1306 	} else {
1307 		/* There is no root. */
1308 		return (NULL);
1309 	}
1310 	root->max_free = vm_size_max(max_free_left, max_free_right);
1311 	map->root = root;
1312 	VM_MAP_ASSERT_CONSISTENT(map);
1313 	return (root);
1314 }
1315 
1316 /*
1317  *	vm_map_entry_{un,}link:
1318  *
1319  *	Insert/remove entries from maps.
1320  */
1321 static void
1322 vm_map_entry_link(vm_map_t map, vm_map_entry_t entry)
1323 {
1324 	vm_map_entry_t header, llist, rlist, root;
1325 
1326 	CTR3(KTR_VM,
1327 	    "vm_map_entry_link: map %p, nentries %d, entry %p", map,
1328 	    map->nentries, entry);
1329 	VM_MAP_ASSERT_LOCKED(map);
1330 	map->nentries++;
1331 	header = &map->header;
1332 	root = vm_map_splay_split(map, entry->start, 0, &llist, &rlist);
1333 	KASSERT(root == NULL,
1334 	    ("vm_map_entry_link: link object already mapped"));
1335 	entry->prev = llist;
1336 	entry->next = rlist;
1337 	llist->next = rlist->prev = entry;
1338 	root = entry;
1339 	root->max_free = vm_size_max(
1340 	    vm_map_splay_merge_pred(header, root, llist),
1341 	    vm_map_splay_merge_succ(header, root, rlist));
1342 	map->root = root;
1343 	VM_MAP_ASSERT_CONSISTENT(map);
1344 }
1345 
1346 enum unlink_merge_type {
1347 	UNLINK_MERGE_NONE,
1348 	UNLINK_MERGE_NEXT
1349 };
1350 
1351 static void
1352 vm_map_entry_unlink(vm_map_t map, vm_map_entry_t entry,
1353     enum unlink_merge_type op)
1354 {
1355 	vm_map_entry_t header, llist, rlist, root, y;
1356 	vm_size_t max_free_left, max_free_right;
1357 
1358 	VM_MAP_ASSERT_LOCKED(map);
1359 	header = &map->header;
1360 	root = vm_map_splay_split(map, entry->start, 0, &llist, &rlist);
1361 	KASSERT(root != NULL,
1362 	    ("vm_map_entry_unlink: unlink object not mapped"));
1363 
1364 	vm_map_splay_findprev(root, &llist);
1365 	vm_map_splay_findnext(root, &rlist);
1366 	if (op == UNLINK_MERGE_NEXT) {
1367 		rlist->start = root->start;
1368 		rlist->offset = root->offset;
1369 	}
1370 	if (llist != header) {
1371 		root = llist;
1372 		llist = root->right;
1373 		max_free_left = vm_map_splay_merge_left(header, root, llist);
1374 		max_free_right = vm_map_splay_merge_succ(header, root, rlist);
1375 	} else if (rlist != header) {
1376 		root = rlist;
1377 		rlist = root->left;
1378 		max_free_left = vm_map_splay_merge_pred(header, root, llist);
1379 		max_free_right = vm_map_splay_merge_right(header, root, rlist);
1380 	} else
1381 		root = NULL;
1382 	y = entry->next;
1383 	y->prev = entry->prev;
1384 	y->prev->next = y;
1385 	if (root != NULL)
1386 		root->max_free = vm_size_max(max_free_left, max_free_right);
1387 	map->root = root;
1388 	VM_MAP_ASSERT_CONSISTENT(map);
1389 	map->nentries--;
1390 	CTR3(KTR_VM, "vm_map_entry_unlink: map %p, nentries %d, entry %p", map,
1391 	    map->nentries, entry);
1392 }
1393 
1394 /*
1395  *	vm_map_entry_resize:
1396  *
1397  *	Resize a vm_map_entry, recompute the amount of free space that
1398  *	follows it and propagate that value up the tree.
1399  *
1400  *	The map must be locked, and leaves it so.
1401  */
1402 static void
1403 vm_map_entry_resize(vm_map_t map, vm_map_entry_t entry, vm_size_t grow_amount)
1404 {
1405 	vm_map_entry_t header, llist, rlist, root;
1406 
1407 	VM_MAP_ASSERT_LOCKED(map);
1408 	header = &map->header;
1409 	root = vm_map_splay_split(map, entry->start, 0, &llist, &rlist);
1410 	KASSERT(root != NULL, ("%s: resize object not mapped", __func__));
1411 	vm_map_splay_findnext(root, &rlist);
1412 	entry->end += grow_amount;
1413 	root->max_free = vm_size_max(
1414 	    vm_map_splay_merge_left(header, root, llist),
1415 	    vm_map_splay_merge_succ(header, root, rlist));
1416 	map->root = root;
1417 	VM_MAP_ASSERT_CONSISTENT(map);
1418 	CTR4(KTR_VM, "%s: map %p, nentries %d, entry %p",
1419 	    __func__, map, map->nentries, entry);
1420 }
1421 
1422 /*
1423  *	vm_map_lookup_entry:	[ internal use only ]
1424  *
1425  *	Finds the map entry containing (or
1426  *	immediately preceding) the specified address
1427  *	in the given map; the entry is returned
1428  *	in the "entry" parameter.  The boolean
1429  *	result indicates whether the address is
1430  *	actually contained in the map.
1431  */
1432 boolean_t
1433 vm_map_lookup_entry(
1434 	vm_map_t map,
1435 	vm_offset_t address,
1436 	vm_map_entry_t *entry)	/* OUT */
1437 {
1438 	vm_map_entry_t cur, header, lbound;
1439 	boolean_t locked;
1440 
1441 	/*
1442 	 * If the map is empty, then the map entry immediately preceding
1443 	 * "address" is the map's header.
1444 	 */
1445 	header = &map->header;
1446 	cur = map->root;
1447 	if (cur == NULL) {
1448 		*entry = header;
1449 		return (FALSE);
1450 	}
1451 	if (address >= cur->start && cur->end > address) {
1452 		*entry = cur;
1453 		return (TRUE);
1454 	}
1455 	if ((locked = vm_map_locked(map)) ||
1456 	    sx_try_upgrade(&map->lock)) {
1457 		/*
1458 		 * Splay requires a write lock on the map.  However, it only
1459 		 * restructures the binary search tree; it does not otherwise
1460 		 * change the map.  Thus, the map's timestamp need not change
1461 		 * on a temporary upgrade.
1462 		 */
1463 		cur = vm_map_splay(map, address);
1464 		if (!locked) {
1465 			VM_MAP_UNLOCK_CONSISTENT(map);
1466 			sx_downgrade(&map->lock);
1467 		}
1468 
1469 		/*
1470 		 * If "address" is contained within a map entry, the new root
1471 		 * is that map entry.  Otherwise, the new root is a map entry
1472 		 * immediately before or after "address".
1473 		 */
1474 		if (address < cur->start) {
1475 			*entry = header;
1476 			return (FALSE);
1477 		}
1478 		*entry = cur;
1479 		return (address < cur->end);
1480 	}
1481 	/*
1482 	 * Since the map is only locked for read access, perform a
1483 	 * standard binary search tree lookup for "address".
1484 	 */
1485 	lbound = header;
1486 	do {
1487 		if (address < cur->start) {
1488 			cur = cur->left;
1489 		} else if (cur->end <= address) {
1490 			lbound = cur;
1491 			cur = cur->right;
1492 		} else {
1493 			*entry = cur;
1494 			return (TRUE);
1495 		}
1496 	} while (cur != NULL);
1497 	*entry = lbound;
1498 	return (FALSE);
1499 }
1500 
1501 /*
1502  *	vm_map_insert:
1503  *
1504  *	Inserts the given whole VM object into the target
1505  *	map at the specified address range.  The object's
1506  *	size should match that of the address range.
1507  *
1508  *	Requires that the map be locked, and leaves it so.
1509  *
1510  *	If object is non-NULL, ref count must be bumped by caller
1511  *	prior to making call to account for the new entry.
1512  */
1513 int
1514 vm_map_insert(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1515     vm_offset_t start, vm_offset_t end, vm_prot_t prot, vm_prot_t max, int cow)
1516 {
1517 	vm_map_entry_t new_entry, next_entry, prev_entry;
1518 	struct ucred *cred;
1519 	vm_eflags_t protoeflags;
1520 	vm_inherit_t inheritance;
1521 
1522 	VM_MAP_ASSERT_LOCKED(map);
1523 	KASSERT(object != kernel_object ||
1524 	    (cow & MAP_COPY_ON_WRITE) == 0,
1525 	    ("vm_map_insert: kernel object and COW"));
1526 	KASSERT(object == NULL || (cow & MAP_NOFAULT) == 0,
1527 	    ("vm_map_insert: paradoxical MAP_NOFAULT request"));
1528 	KASSERT((prot & ~max) == 0,
1529 	    ("prot %#x is not subset of max_prot %#x", prot, max));
1530 
1531 	/*
1532 	 * Check that the start and end points are not bogus.
1533 	 */
1534 	if (start < vm_map_min(map) || end > vm_map_max(map) ||
1535 	    start >= end)
1536 		return (KERN_INVALID_ADDRESS);
1537 
1538 	/*
1539 	 * Find the entry prior to the proposed starting address; if it's part
1540 	 * of an existing entry, this range is bogus.
1541 	 */
1542 	if (vm_map_lookup_entry(map, start, &prev_entry))
1543 		return (KERN_NO_SPACE);
1544 
1545 	/*
1546 	 * Assert that the next entry doesn't overlap the end point.
1547 	 */
1548 	next_entry = vm_map_entry_succ(prev_entry);
1549 	if (next_entry->start < end)
1550 		return (KERN_NO_SPACE);
1551 
1552 	if ((cow & MAP_CREATE_GUARD) != 0 && (object != NULL ||
1553 	    max != VM_PROT_NONE))
1554 		return (KERN_INVALID_ARGUMENT);
1555 
1556 	protoeflags = 0;
1557 	if (cow & MAP_COPY_ON_WRITE)
1558 		protoeflags |= MAP_ENTRY_COW | MAP_ENTRY_NEEDS_COPY;
1559 	if (cow & MAP_NOFAULT)
1560 		protoeflags |= MAP_ENTRY_NOFAULT;
1561 	if (cow & MAP_DISABLE_SYNCER)
1562 		protoeflags |= MAP_ENTRY_NOSYNC;
1563 	if (cow & MAP_DISABLE_COREDUMP)
1564 		protoeflags |= MAP_ENTRY_NOCOREDUMP;
1565 	if (cow & MAP_STACK_GROWS_DOWN)
1566 		protoeflags |= MAP_ENTRY_GROWS_DOWN;
1567 	if (cow & MAP_STACK_GROWS_UP)
1568 		protoeflags |= MAP_ENTRY_GROWS_UP;
1569 	if (cow & MAP_WRITECOUNT)
1570 		protoeflags |= MAP_ENTRY_WRITECNT;
1571 	if (cow & MAP_VN_EXEC)
1572 		protoeflags |= MAP_ENTRY_VN_EXEC;
1573 	if ((cow & MAP_CREATE_GUARD) != 0)
1574 		protoeflags |= MAP_ENTRY_GUARD;
1575 	if ((cow & MAP_CREATE_STACK_GAP_DN) != 0)
1576 		protoeflags |= MAP_ENTRY_STACK_GAP_DN;
1577 	if ((cow & MAP_CREATE_STACK_GAP_UP) != 0)
1578 		protoeflags |= MAP_ENTRY_STACK_GAP_UP;
1579 	if (cow & MAP_INHERIT_SHARE)
1580 		inheritance = VM_INHERIT_SHARE;
1581 	else
1582 		inheritance = VM_INHERIT_DEFAULT;
1583 
1584 	cred = NULL;
1585 	if ((cow & (MAP_ACC_NO_CHARGE | MAP_NOFAULT | MAP_CREATE_GUARD)) != 0)
1586 		goto charged;
1587 	if ((cow & MAP_ACC_CHARGED) || ((prot & VM_PROT_WRITE) &&
1588 	    ((protoeflags & MAP_ENTRY_NEEDS_COPY) || object == NULL))) {
1589 		if (!(cow & MAP_ACC_CHARGED) && !swap_reserve(end - start))
1590 			return (KERN_RESOURCE_SHORTAGE);
1591 		KASSERT(object == NULL ||
1592 		    (protoeflags & MAP_ENTRY_NEEDS_COPY) != 0 ||
1593 		    object->cred == NULL,
1594 		    ("overcommit: vm_map_insert o %p", object));
1595 		cred = curthread->td_ucred;
1596 	}
1597 
1598 charged:
1599 	/* Expand the kernel pmap, if necessary. */
1600 	if (map == kernel_map && end > kernel_vm_end)
1601 		pmap_growkernel(end);
1602 	if (object != NULL) {
1603 		/*
1604 		 * OBJ_ONEMAPPING must be cleared unless this mapping
1605 		 * is trivially proven to be the only mapping for any
1606 		 * of the object's pages.  (Object granularity
1607 		 * reference counting is insufficient to recognize
1608 		 * aliases with precision.)
1609 		 */
1610 		if ((object->flags & OBJ_ANON) != 0) {
1611 			VM_OBJECT_WLOCK(object);
1612 			if (object->ref_count > 1 || object->shadow_count != 0)
1613 				vm_object_clear_flag(object, OBJ_ONEMAPPING);
1614 			VM_OBJECT_WUNLOCK(object);
1615 		}
1616 	} else if ((prev_entry->eflags & ~MAP_ENTRY_USER_WIRED) ==
1617 	    protoeflags &&
1618 	    (cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP |
1619 	    MAP_VN_EXEC)) == 0 &&
1620 	    prev_entry->end == start && (prev_entry->cred == cred ||
1621 	    (prev_entry->object.vm_object != NULL &&
1622 	    prev_entry->object.vm_object->cred == cred)) &&
1623 	    vm_object_coalesce(prev_entry->object.vm_object,
1624 	    prev_entry->offset,
1625 	    (vm_size_t)(prev_entry->end - prev_entry->start),
1626 	    (vm_size_t)(end - prev_entry->end), cred != NULL &&
1627 	    (protoeflags & MAP_ENTRY_NEEDS_COPY) == 0)) {
1628 		/*
1629 		 * We were able to extend the object.  Determine if we
1630 		 * can extend the previous map entry to include the
1631 		 * new range as well.
1632 		 */
1633 		if (prev_entry->inheritance == inheritance &&
1634 		    prev_entry->protection == prot &&
1635 		    prev_entry->max_protection == max &&
1636 		    prev_entry->wired_count == 0) {
1637 			KASSERT((prev_entry->eflags & MAP_ENTRY_USER_WIRED) ==
1638 			    0, ("prev_entry %p has incoherent wiring",
1639 			    prev_entry));
1640 			if ((prev_entry->eflags & MAP_ENTRY_GUARD) == 0)
1641 				map->size += end - prev_entry->end;
1642 			vm_map_entry_resize(map, prev_entry,
1643 			    end - prev_entry->end);
1644 			vm_map_try_merge_entries(map, prev_entry, next_entry);
1645 			return (KERN_SUCCESS);
1646 		}
1647 
1648 		/*
1649 		 * If we can extend the object but cannot extend the
1650 		 * map entry, we have to create a new map entry.  We
1651 		 * must bump the ref count on the extended object to
1652 		 * account for it.  object may be NULL.
1653 		 */
1654 		object = prev_entry->object.vm_object;
1655 		offset = prev_entry->offset +
1656 		    (prev_entry->end - prev_entry->start);
1657 		vm_object_reference(object);
1658 		if (cred != NULL && object != NULL && object->cred != NULL &&
1659 		    !(prev_entry->eflags & MAP_ENTRY_NEEDS_COPY)) {
1660 			/* Object already accounts for this uid. */
1661 			cred = NULL;
1662 		}
1663 	}
1664 	if (cred != NULL)
1665 		crhold(cred);
1666 
1667 	/*
1668 	 * Create a new entry
1669 	 */
1670 	new_entry = vm_map_entry_create(map);
1671 	new_entry->start = start;
1672 	new_entry->end = end;
1673 	new_entry->cred = NULL;
1674 
1675 	new_entry->eflags = protoeflags;
1676 	new_entry->object.vm_object = object;
1677 	new_entry->offset = offset;
1678 
1679 	new_entry->inheritance = inheritance;
1680 	new_entry->protection = prot;
1681 	new_entry->max_protection = max;
1682 	new_entry->wired_count = 0;
1683 	new_entry->wiring_thread = NULL;
1684 	new_entry->read_ahead = VM_FAULT_READ_AHEAD_INIT;
1685 	new_entry->next_read = start;
1686 
1687 	KASSERT(cred == NULL || !ENTRY_CHARGED(new_entry),
1688 	    ("overcommit: vm_map_insert leaks vm_map %p", new_entry));
1689 	new_entry->cred = cred;
1690 
1691 	/*
1692 	 * Insert the new entry into the list
1693 	 */
1694 	vm_map_entry_link(map, new_entry);
1695 	if ((new_entry->eflags & MAP_ENTRY_GUARD) == 0)
1696 		map->size += new_entry->end - new_entry->start;
1697 
1698 	/*
1699 	 * Try to coalesce the new entry with both the previous and next
1700 	 * entries in the list.  Previously, we only attempted to coalesce
1701 	 * with the previous entry when object is NULL.  Here, we handle the
1702 	 * other cases, which are less common.
1703 	 */
1704 	vm_map_try_merge_entries(map, prev_entry, new_entry);
1705 	vm_map_try_merge_entries(map, new_entry, next_entry);
1706 
1707 	if ((cow & (MAP_PREFAULT | MAP_PREFAULT_PARTIAL)) != 0) {
1708 		vm_map_pmap_enter(map, start, prot, object, OFF_TO_IDX(offset),
1709 		    end - start, cow & MAP_PREFAULT_PARTIAL);
1710 	}
1711 
1712 	return (KERN_SUCCESS);
1713 }
1714 
1715 /*
1716  *	vm_map_findspace:
1717  *
1718  *	Find the first fit (lowest VM address) for "length" free bytes
1719  *	beginning at address >= start in the given map.
1720  *
1721  *	In a vm_map_entry, "max_free" is the maximum amount of
1722  *	contiguous free space between an entry in its subtree and a
1723  *	neighbor of that entry.  This allows finding a free region in
1724  *	one path down the tree, so O(log n) amortized with splay
1725  *	trees.
1726  *
1727  *	The map must be locked, and leaves it so.
1728  *
1729  *	Returns: starting address if sufficient space,
1730  *		 vm_map_max(map)-length+1 if insufficient space.
1731  */
1732 vm_offset_t
1733 vm_map_findspace(vm_map_t map, vm_offset_t start, vm_size_t length)
1734 {
1735 	vm_map_entry_t header, llist, rlist, root, y;
1736 	vm_size_t left_length, max_free_left, max_free_right;
1737 	vm_offset_t gap_end;
1738 
1739 	/*
1740 	 * Request must fit within min/max VM address and must avoid
1741 	 * address wrap.
1742 	 */
1743 	start = MAX(start, vm_map_min(map));
1744 	if (start >= vm_map_max(map) || length > vm_map_max(map) - start)
1745 		return (vm_map_max(map) - length + 1);
1746 
1747 	/* Empty tree means wide open address space. */
1748 	if (map->root == NULL)
1749 		return (start);
1750 
1751 	/*
1752 	 * After splay_split, if start is within an entry, push it to the start
1753 	 * of the following gap.  If rlist is at the end of the gap containing
1754 	 * start, save the end of that gap in gap_end to see if the gap is big
1755 	 * enough; otherwise set gap_end to start skip gap-checking and move
1756 	 * directly to a search of the right subtree.
1757 	 */
1758 	header = &map->header;
1759 	root = vm_map_splay_split(map, start, length, &llist, &rlist);
1760 	gap_end = rlist->start;
1761 	if (root != NULL) {
1762 		start = root->end;
1763 		if (root->right != NULL)
1764 			gap_end = start;
1765 		max_free_left = vm_map_splay_merge_left(header, root, llist);
1766 		max_free_right = vm_map_splay_merge_right(header, root, rlist);
1767 	} else if (rlist != header) {
1768 		root = rlist;
1769 		rlist = root->left;
1770 		max_free_left = vm_map_splay_merge_pred(header, root, llist);
1771 		max_free_right = vm_map_splay_merge_right(header, root, rlist);
1772 	} else {
1773 		root = llist;
1774 		llist = root->right;
1775 		max_free_left = vm_map_splay_merge_left(header, root, llist);
1776 		max_free_right = vm_map_splay_merge_succ(header, root, rlist);
1777 	}
1778 	root->max_free = vm_size_max(max_free_left, max_free_right);
1779 	map->root = root;
1780 	VM_MAP_ASSERT_CONSISTENT(map);
1781 	if (length <= gap_end - start)
1782 		return (start);
1783 
1784 	/* With max_free, can immediately tell if no solution. */
1785 	if (root->right == NULL || length > root->right->max_free)
1786 		return (vm_map_max(map) - length + 1);
1787 
1788 	/*
1789 	 * Splay for the least large-enough gap in the right subtree.
1790 	 */
1791 	llist = rlist = header;
1792 	for (left_length = 0;;
1793 	    left_length = vm_map_entry_max_free_left(root, llist)) {
1794 		if (length <= left_length)
1795 			SPLAY_LEFT_STEP(root, y, rlist,
1796 			    length <= vm_map_entry_max_free_left(y, llist));
1797 		else
1798 			SPLAY_RIGHT_STEP(root, y, llist,
1799 			    length > vm_map_entry_max_free_left(y, root));
1800 		if (root == NULL)
1801 			break;
1802 	}
1803 	root = llist;
1804 	llist = root->right;
1805 	max_free_left = vm_map_splay_merge_left(header, root, llist);
1806 	if (rlist == header) {
1807 		root->max_free = vm_size_max(max_free_left,
1808 		    vm_map_splay_merge_succ(header, root, rlist));
1809 	} else {
1810 		y = rlist;
1811 		rlist = y->left;
1812 		y->max_free = vm_size_max(
1813 		    vm_map_splay_merge_pred(root, y, root),
1814 		    vm_map_splay_merge_right(header, y, rlist));
1815 		root->right = y;
1816 		root->max_free = vm_size_max(max_free_left, y->max_free);
1817 	}
1818 	map->root = root;
1819 	VM_MAP_ASSERT_CONSISTENT(map);
1820 	return (root->end);
1821 }
1822 
1823 int
1824 vm_map_fixed(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1825     vm_offset_t start, vm_size_t length, vm_prot_t prot,
1826     vm_prot_t max, int cow)
1827 {
1828 	vm_offset_t end;
1829 	int result;
1830 
1831 	end = start + length;
1832 	KASSERT((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 ||
1833 	    object == NULL,
1834 	    ("vm_map_fixed: non-NULL backing object for stack"));
1835 	vm_map_lock(map);
1836 	VM_MAP_RANGE_CHECK(map, start, end);
1837 	if ((cow & MAP_CHECK_EXCL) == 0)
1838 		vm_map_delete(map, start, end);
1839 	if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) != 0) {
1840 		result = vm_map_stack_locked(map, start, length, sgrowsiz,
1841 		    prot, max, cow);
1842 	} else {
1843 		result = vm_map_insert(map, object, offset, start, end,
1844 		    prot, max, cow);
1845 	}
1846 	vm_map_unlock(map);
1847 	return (result);
1848 }
1849 
1850 static const int aslr_pages_rnd_64[2] = {0x1000, 0x10};
1851 static const int aslr_pages_rnd_32[2] = {0x100, 0x4};
1852 
1853 static int cluster_anon = 1;
1854 SYSCTL_INT(_vm, OID_AUTO, cluster_anon, CTLFLAG_RW,
1855     &cluster_anon, 0,
1856     "Cluster anonymous mappings: 0 = no, 1 = yes if no hint, 2 = always");
1857 
1858 static bool
1859 clustering_anon_allowed(vm_offset_t addr)
1860 {
1861 
1862 	switch (cluster_anon) {
1863 	case 0:
1864 		return (false);
1865 	case 1:
1866 		return (addr == 0);
1867 	case 2:
1868 	default:
1869 		return (true);
1870 	}
1871 }
1872 
1873 static long aslr_restarts;
1874 SYSCTL_LONG(_vm, OID_AUTO, aslr_restarts, CTLFLAG_RD,
1875     &aslr_restarts, 0,
1876     "Number of aslr failures");
1877 
1878 #define	MAP_32BIT_MAX_ADDR	((vm_offset_t)1 << 31)
1879 
1880 /*
1881  * Searches for the specified amount of free space in the given map with the
1882  * specified alignment.  Performs an address-ordered, first-fit search from
1883  * the given address "*addr", with an optional upper bound "max_addr".  If the
1884  * parameter "alignment" is zero, then the alignment is computed from the
1885  * given (object, offset) pair so as to enable the greatest possible use of
1886  * superpage mappings.  Returns KERN_SUCCESS and the address of the free space
1887  * in "*addr" if successful.  Otherwise, returns KERN_NO_SPACE.
1888  *
1889  * The map must be locked.  Initially, there must be at least "length" bytes
1890  * of free space at the given address.
1891  */
1892 static int
1893 vm_map_alignspace(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1894     vm_offset_t *addr, vm_size_t length, vm_offset_t max_addr,
1895     vm_offset_t alignment)
1896 {
1897 	vm_offset_t aligned_addr, free_addr;
1898 
1899 	VM_MAP_ASSERT_LOCKED(map);
1900 	free_addr = *addr;
1901 	KASSERT(free_addr == vm_map_findspace(map, free_addr, length),
1902 	    ("caller failed to provide space %#jx at address %p",
1903 	     (uintmax_t)length, (void *)free_addr));
1904 	for (;;) {
1905 		/*
1906 		 * At the start of every iteration, the free space at address
1907 		 * "*addr" is at least "length" bytes.
1908 		 */
1909 		if (alignment == 0)
1910 			pmap_align_superpage(object, offset, addr, length);
1911 		else if ((*addr & (alignment - 1)) != 0) {
1912 			*addr &= ~(alignment - 1);
1913 			*addr += alignment;
1914 		}
1915 		aligned_addr = *addr;
1916 		if (aligned_addr == free_addr) {
1917 			/*
1918 			 * Alignment did not change "*addr", so "*addr" must
1919 			 * still provide sufficient free space.
1920 			 */
1921 			return (KERN_SUCCESS);
1922 		}
1923 
1924 		/*
1925 		 * Test for address wrap on "*addr".  A wrapped "*addr" could
1926 		 * be a valid address, in which case vm_map_findspace() cannot
1927 		 * be relied upon to fail.
1928 		 */
1929 		if (aligned_addr < free_addr)
1930 			return (KERN_NO_SPACE);
1931 		*addr = vm_map_findspace(map, aligned_addr, length);
1932 		if (*addr + length > vm_map_max(map) ||
1933 		    (max_addr != 0 && *addr + length > max_addr))
1934 			return (KERN_NO_SPACE);
1935 		free_addr = *addr;
1936 		if (free_addr == aligned_addr) {
1937 			/*
1938 			 * If a successful call to vm_map_findspace() did not
1939 			 * change "*addr", then "*addr" must still be aligned
1940 			 * and provide sufficient free space.
1941 			 */
1942 			return (KERN_SUCCESS);
1943 		}
1944 	}
1945 }
1946 
1947 /*
1948  *	vm_map_find finds an unallocated region in the target address
1949  *	map with the given length.  The search is defined to be
1950  *	first-fit from the specified address; the region found is
1951  *	returned in the same parameter.
1952  *
1953  *	If object is non-NULL, ref count must be bumped by caller
1954  *	prior to making call to account for the new entry.
1955  */
1956 int
1957 vm_map_find(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1958 	    vm_offset_t *addr,	/* IN/OUT */
1959 	    vm_size_t length, vm_offset_t max_addr, int find_space,
1960 	    vm_prot_t prot, vm_prot_t max, int cow)
1961 {
1962 	vm_offset_t alignment, curr_min_addr, min_addr;
1963 	int gap, pidx, rv, try;
1964 	bool cluster, en_aslr, update_anon;
1965 
1966 	KASSERT((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 ||
1967 	    object == NULL,
1968 	    ("vm_map_find: non-NULL backing object for stack"));
1969 	MPASS((cow & MAP_REMAP) == 0 || (find_space == VMFS_NO_SPACE &&
1970 	    (cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0));
1971 	if (find_space == VMFS_OPTIMAL_SPACE && (object == NULL ||
1972 	    (object->flags & OBJ_COLORED) == 0))
1973 		find_space = VMFS_ANY_SPACE;
1974 	if (find_space >> 8 != 0) {
1975 		KASSERT((find_space & 0xff) == 0, ("bad VMFS flags"));
1976 		alignment = (vm_offset_t)1 << (find_space >> 8);
1977 	} else
1978 		alignment = 0;
1979 	en_aslr = (map->flags & MAP_ASLR) != 0;
1980 	update_anon = cluster = clustering_anon_allowed(*addr) &&
1981 	    (map->flags & MAP_IS_SUB_MAP) == 0 && max_addr == 0 &&
1982 	    find_space != VMFS_NO_SPACE && object == NULL &&
1983 	    (cow & (MAP_INHERIT_SHARE | MAP_STACK_GROWS_UP |
1984 	    MAP_STACK_GROWS_DOWN)) == 0 && prot != PROT_NONE;
1985 	curr_min_addr = min_addr = *addr;
1986 	if (en_aslr && min_addr == 0 && !cluster &&
1987 	    find_space != VMFS_NO_SPACE &&
1988 	    (map->flags & MAP_ASLR_IGNSTART) != 0)
1989 		curr_min_addr = min_addr = vm_map_min(map);
1990 	try = 0;
1991 	vm_map_lock(map);
1992 	if (cluster) {
1993 		curr_min_addr = map->anon_loc;
1994 		if (curr_min_addr == 0)
1995 			cluster = false;
1996 	}
1997 	if (find_space != VMFS_NO_SPACE) {
1998 		KASSERT(find_space == VMFS_ANY_SPACE ||
1999 		    find_space == VMFS_OPTIMAL_SPACE ||
2000 		    find_space == VMFS_SUPER_SPACE ||
2001 		    alignment != 0, ("unexpected VMFS flag"));
2002 again:
2003 		/*
2004 		 * When creating an anonymous mapping, try clustering
2005 		 * with an existing anonymous mapping first.
2006 		 *
2007 		 * We make up to two attempts to find address space
2008 		 * for a given find_space value. The first attempt may
2009 		 * apply randomization or may cluster with an existing
2010 		 * anonymous mapping. If this first attempt fails,
2011 		 * perform a first-fit search of the available address
2012 		 * space.
2013 		 *
2014 		 * If all tries failed, and find_space is
2015 		 * VMFS_OPTIMAL_SPACE, fallback to VMFS_ANY_SPACE.
2016 		 * Again enable clustering and randomization.
2017 		 */
2018 		try++;
2019 		MPASS(try <= 2);
2020 
2021 		if (try == 2) {
2022 			/*
2023 			 * Second try: we failed either to find a
2024 			 * suitable region for randomizing the
2025 			 * allocation, or to cluster with an existing
2026 			 * mapping.  Retry with free run.
2027 			 */
2028 			curr_min_addr = (map->flags & MAP_ASLR_IGNSTART) != 0 ?
2029 			    vm_map_min(map) : min_addr;
2030 			atomic_add_long(&aslr_restarts, 1);
2031 		}
2032 
2033 		if (try == 1 && en_aslr && !cluster) {
2034 			/*
2035 			 * Find space for allocation, including
2036 			 * gap needed for later randomization.
2037 			 */
2038 			pidx = MAXPAGESIZES > 1 && pagesizes[1] != 0 &&
2039 			    (find_space == VMFS_SUPER_SPACE || find_space ==
2040 			    VMFS_OPTIMAL_SPACE) ? 1 : 0;
2041 			gap = vm_map_max(map) > MAP_32BIT_MAX_ADDR &&
2042 			    (max_addr == 0 || max_addr > MAP_32BIT_MAX_ADDR) ?
2043 			    aslr_pages_rnd_64[pidx] : aslr_pages_rnd_32[pidx];
2044 			*addr = vm_map_findspace(map, curr_min_addr,
2045 			    length + gap * pagesizes[pidx]);
2046 			if (*addr + length + gap * pagesizes[pidx] >
2047 			    vm_map_max(map))
2048 				goto again;
2049 			/* And randomize the start address. */
2050 			*addr += (arc4random() % gap) * pagesizes[pidx];
2051 			if (max_addr != 0 && *addr + length > max_addr)
2052 				goto again;
2053 		} else {
2054 			*addr = vm_map_findspace(map, curr_min_addr, length);
2055 			if (*addr + length > vm_map_max(map) ||
2056 			    (max_addr != 0 && *addr + length > max_addr)) {
2057 				if (cluster) {
2058 					cluster = false;
2059 					MPASS(try == 1);
2060 					goto again;
2061 				}
2062 				rv = KERN_NO_SPACE;
2063 				goto done;
2064 			}
2065 		}
2066 
2067 		if (find_space != VMFS_ANY_SPACE &&
2068 		    (rv = vm_map_alignspace(map, object, offset, addr, length,
2069 		    max_addr, alignment)) != KERN_SUCCESS) {
2070 			if (find_space == VMFS_OPTIMAL_SPACE) {
2071 				find_space = VMFS_ANY_SPACE;
2072 				curr_min_addr = min_addr;
2073 				cluster = update_anon;
2074 				try = 0;
2075 				goto again;
2076 			}
2077 			goto done;
2078 		}
2079 	} else if ((cow & MAP_REMAP) != 0) {
2080 		if (*addr < vm_map_min(map) ||
2081 		    *addr + length > vm_map_max(map) ||
2082 		    *addr + length <= length) {
2083 			rv = KERN_INVALID_ADDRESS;
2084 			goto done;
2085 		}
2086 		vm_map_delete(map, *addr, *addr + length);
2087 	}
2088 	if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) != 0) {
2089 		rv = vm_map_stack_locked(map, *addr, length, sgrowsiz, prot,
2090 		    max, cow);
2091 	} else {
2092 		rv = vm_map_insert(map, object, offset, *addr, *addr + length,
2093 		    prot, max, cow);
2094 	}
2095 	if (rv == KERN_SUCCESS && update_anon)
2096 		map->anon_loc = *addr + length;
2097 done:
2098 	vm_map_unlock(map);
2099 	return (rv);
2100 }
2101 
2102 /*
2103  *	vm_map_find_min() is a variant of vm_map_find() that takes an
2104  *	additional parameter (min_addr) and treats the given address
2105  *	(*addr) differently.  Specifically, it treats *addr as a hint
2106  *	and not as the minimum address where the mapping is created.
2107  *
2108  *	This function works in two phases.  First, it tries to
2109  *	allocate above the hint.  If that fails and the hint is
2110  *	greater than min_addr, it performs a second pass, replacing
2111  *	the hint with min_addr as the minimum address for the
2112  *	allocation.
2113  */
2114 int
2115 vm_map_find_min(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
2116     vm_offset_t *addr, vm_size_t length, vm_offset_t min_addr,
2117     vm_offset_t max_addr, int find_space, vm_prot_t prot, vm_prot_t max,
2118     int cow)
2119 {
2120 	vm_offset_t hint;
2121 	int rv;
2122 
2123 	hint = *addr;
2124 	for (;;) {
2125 		rv = vm_map_find(map, object, offset, addr, length, max_addr,
2126 		    find_space, prot, max, cow);
2127 		if (rv == KERN_SUCCESS || min_addr >= hint)
2128 			return (rv);
2129 		*addr = hint = min_addr;
2130 	}
2131 }
2132 
2133 /*
2134  * A map entry with any of the following flags set must not be merged with
2135  * another entry.
2136  */
2137 #define	MAP_ENTRY_NOMERGE_MASK	(MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP | \
2138 	    MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_IS_SUB_MAP | MAP_ENTRY_VN_EXEC)
2139 
2140 static bool
2141 vm_map_mergeable_neighbors(vm_map_entry_t prev, vm_map_entry_t entry)
2142 {
2143 
2144 	KASSERT((prev->eflags & MAP_ENTRY_NOMERGE_MASK) == 0 ||
2145 	    (entry->eflags & MAP_ENTRY_NOMERGE_MASK) == 0,
2146 	    ("vm_map_mergeable_neighbors: neither %p nor %p are mergeable",
2147 	    prev, entry));
2148 	return (prev->end == entry->start &&
2149 	    prev->object.vm_object == entry->object.vm_object &&
2150 	    (prev->object.vm_object == NULL ||
2151 	    prev->offset + (prev->end - prev->start) == entry->offset) &&
2152 	    prev->eflags == entry->eflags &&
2153 	    prev->protection == entry->protection &&
2154 	    prev->max_protection == entry->max_protection &&
2155 	    prev->inheritance == entry->inheritance &&
2156 	    prev->wired_count == entry->wired_count &&
2157 	    prev->cred == entry->cred);
2158 }
2159 
2160 static void
2161 vm_map_merged_neighbor_dispose(vm_map_t map, vm_map_entry_t entry)
2162 {
2163 
2164 	/*
2165 	 * If the backing object is a vnode object, vm_object_deallocate()
2166 	 * calls vrele().  However, vrele() does not lock the vnode because
2167 	 * the vnode has additional references.  Thus, the map lock can be
2168 	 * kept without causing a lock-order reversal with the vnode lock.
2169 	 *
2170 	 * Since we count the number of virtual page mappings in
2171 	 * object->un_pager.vnp.writemappings, the writemappings value
2172 	 * should not be adjusted when the entry is disposed of.
2173 	 */
2174 	if (entry->object.vm_object != NULL)
2175 		vm_object_deallocate(entry->object.vm_object);
2176 	if (entry->cred != NULL)
2177 		crfree(entry->cred);
2178 	vm_map_entry_dispose(map, entry);
2179 }
2180 
2181 /*
2182  *	vm_map_try_merge_entries:
2183  *
2184  *	Compare the given map entry to its predecessor, and merge its precessor
2185  *	into it if possible.  The entry remains valid, and may be extended.
2186  *	The predecessor may be deleted.
2187  *
2188  *	The map must be locked.
2189  */
2190 void
2191 vm_map_try_merge_entries(vm_map_t map, vm_map_entry_t prev_entry,
2192     vm_map_entry_t entry)
2193 {
2194 
2195 	VM_MAP_ASSERT_LOCKED(map);
2196 	if ((entry->eflags & MAP_ENTRY_NOMERGE_MASK) == 0 &&
2197 	    vm_map_mergeable_neighbors(prev_entry, entry)) {
2198 		vm_map_entry_unlink(map, prev_entry, UNLINK_MERGE_NEXT);
2199 		vm_map_merged_neighbor_dispose(map, prev_entry);
2200 	}
2201 }
2202 
2203 /*
2204  *	vm_map_entry_back:
2205  *
2206  *	Allocate an object to back a map entry.
2207  */
2208 static inline void
2209 vm_map_entry_back(vm_map_entry_t entry)
2210 {
2211 	vm_object_t object;
2212 
2213 	KASSERT(entry->object.vm_object == NULL,
2214 	    ("map entry %p has backing object", entry));
2215 	KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0,
2216 	    ("map entry %p is a submap", entry));
2217 	object = vm_object_allocate_anon(atop(entry->end - entry->start), NULL,
2218 	    entry->cred, entry->end - entry->start);
2219 	entry->object.vm_object = object;
2220 	entry->offset = 0;
2221 	entry->cred = NULL;
2222 }
2223 
2224 /*
2225  *	vm_map_entry_charge_object
2226  *
2227  *	If there is no object backing this entry, create one.  Otherwise, if
2228  *	the entry has cred, give it to the backing object.
2229  */
2230 static inline void
2231 vm_map_entry_charge_object(vm_map_t map, vm_map_entry_t entry)
2232 {
2233 
2234 	VM_MAP_ASSERT_LOCKED(map);
2235 	KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0,
2236 	    ("map entry %p is a submap", entry));
2237 	if (entry->object.vm_object == NULL && !map->system_map &&
2238 	    (entry->eflags & MAP_ENTRY_GUARD) == 0)
2239 		vm_map_entry_back(entry);
2240 	else if (entry->object.vm_object != NULL &&
2241 	    ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) &&
2242 	    entry->cred != NULL) {
2243 		VM_OBJECT_WLOCK(entry->object.vm_object);
2244 		KASSERT(entry->object.vm_object->cred == NULL,
2245 		    ("OVERCOMMIT: %s: both cred e %p", __func__, entry));
2246 		entry->object.vm_object->cred = entry->cred;
2247 		entry->object.vm_object->charge = entry->end - entry->start;
2248 		VM_OBJECT_WUNLOCK(entry->object.vm_object);
2249 		entry->cred = NULL;
2250 	}
2251 }
2252 
2253 /*
2254  *	vm_map_clip_start:	[ internal use only ]
2255  *
2256  *	Asserts that the given entry begins at or after
2257  *	the specified address; if necessary,
2258  *	it splits the entry into two.
2259  */
2260 #define vm_map_clip_start(map, entry, startaddr) \
2261 { \
2262 	if (startaddr > entry->start) \
2263 		_vm_map_clip_start(map, entry, startaddr); \
2264 }
2265 
2266 /*
2267  *	This routine is called only when it is known that
2268  *	the entry must be split.
2269  */
2270 static void
2271 _vm_map_clip_start(vm_map_t map, vm_map_entry_t entry, vm_offset_t start)
2272 {
2273 	vm_map_entry_t new_entry;
2274 
2275 	VM_MAP_ASSERT_LOCKED(map);
2276 	KASSERT(entry->end > start && entry->start < start,
2277 	    ("_vm_map_clip_start: invalid clip of entry %p", entry));
2278 
2279 	/*
2280 	 * Create a backing object now, if none exists, so that more individual
2281 	 * objects won't be created after the map entry is split.
2282 	 */
2283 	vm_map_entry_charge_object(map, entry);
2284 
2285 	/* Clone the entry. */
2286 	new_entry = vm_map_entry_create(map);
2287 	*new_entry = *entry;
2288 
2289 	/*
2290 	 * Split off the front portion.  Insert the new entry BEFORE this one,
2291 	 * so that this entry has the specified starting address.
2292 	 */
2293 	new_entry->end = start;
2294 	entry->offset += (start - entry->start);
2295 	entry->start = start;
2296 	if (new_entry->cred != NULL)
2297 		crhold(entry->cred);
2298 
2299 	vm_map_entry_link(map, new_entry);
2300 
2301 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
2302 		vm_object_reference(new_entry->object.vm_object);
2303 		vm_map_entry_set_vnode_text(new_entry, true);
2304 		/*
2305 		 * The object->un_pager.vnp.writemappings for the
2306 		 * object of MAP_ENTRY_WRITECNT type entry shall be
2307 		 * kept as is here.  The virtual pages are
2308 		 * re-distributed among the clipped entries, so the sum is
2309 		 * left the same.
2310 		 */
2311 	}
2312 }
2313 
2314 /*
2315  *	vm_map_clip_end:	[ internal use only ]
2316  *
2317  *	Asserts that the given entry ends at or before
2318  *	the specified address; if necessary,
2319  *	it splits the entry into two.
2320  */
2321 #define vm_map_clip_end(map, entry, endaddr) \
2322 { \
2323 	if ((endaddr) < (entry->end)) \
2324 		_vm_map_clip_end((map), (entry), (endaddr)); \
2325 }
2326 
2327 /*
2328  *	This routine is called only when it is known that
2329  *	the entry must be split.
2330  */
2331 static void
2332 _vm_map_clip_end(vm_map_t map, vm_map_entry_t entry, vm_offset_t end)
2333 {
2334 	vm_map_entry_t new_entry;
2335 
2336 	VM_MAP_ASSERT_LOCKED(map);
2337 	KASSERT(entry->start < end && entry->end > end,
2338 	    ("_vm_map_clip_end: invalid clip of entry %p", entry));
2339 
2340 	/*
2341 	 * Create a backing object now, if none exists, so that more individual
2342 	 * objects won't be created after the map entry is split.
2343 	 */
2344 	vm_map_entry_charge_object(map, entry);
2345 
2346 	/* Clone the entry. */
2347 	new_entry = vm_map_entry_create(map);
2348 	*new_entry = *entry;
2349 
2350 	/*
2351 	 * Split off the back portion.  Insert the new entry AFTER this one,
2352 	 * so that this entry has the specified ending address.
2353 	 */
2354 	new_entry->start = entry->end = end;
2355 	new_entry->offset += (end - entry->start);
2356 	if (new_entry->cred != NULL)
2357 		crhold(entry->cred);
2358 
2359 	vm_map_entry_link(map, new_entry);
2360 
2361 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
2362 		vm_object_reference(new_entry->object.vm_object);
2363 		vm_map_entry_set_vnode_text(new_entry, true);
2364 	}
2365 }
2366 
2367 /*
2368  *	vm_map_submap:		[ kernel use only ]
2369  *
2370  *	Mark the given range as handled by a subordinate map.
2371  *
2372  *	This range must have been created with vm_map_find,
2373  *	and no other operations may have been performed on this
2374  *	range prior to calling vm_map_submap.
2375  *
2376  *	Only a limited number of operations can be performed
2377  *	within this rage after calling vm_map_submap:
2378  *		vm_fault
2379  *	[Don't try vm_map_copy!]
2380  *
2381  *	To remove a submapping, one must first remove the
2382  *	range from the superior map, and then destroy the
2383  *	submap (if desired).  [Better yet, don't try it.]
2384  */
2385 int
2386 vm_map_submap(
2387 	vm_map_t map,
2388 	vm_offset_t start,
2389 	vm_offset_t end,
2390 	vm_map_t submap)
2391 {
2392 	vm_map_entry_t entry;
2393 	int result;
2394 
2395 	result = KERN_INVALID_ARGUMENT;
2396 
2397 	vm_map_lock(submap);
2398 	submap->flags |= MAP_IS_SUB_MAP;
2399 	vm_map_unlock(submap);
2400 
2401 	vm_map_lock(map);
2402 
2403 	VM_MAP_RANGE_CHECK(map, start, end);
2404 
2405 	if (vm_map_lookup_entry(map, start, &entry)) {
2406 		vm_map_clip_start(map, entry, start);
2407 	} else
2408 		entry = vm_map_entry_succ(entry);
2409 
2410 	vm_map_clip_end(map, entry, end);
2411 
2412 	if ((entry->start == start) && (entry->end == end) &&
2413 	    ((entry->eflags & MAP_ENTRY_COW) == 0) &&
2414 	    (entry->object.vm_object == NULL)) {
2415 		entry->object.sub_map = submap;
2416 		entry->eflags |= MAP_ENTRY_IS_SUB_MAP;
2417 		result = KERN_SUCCESS;
2418 	}
2419 	vm_map_unlock(map);
2420 
2421 	if (result != KERN_SUCCESS) {
2422 		vm_map_lock(submap);
2423 		submap->flags &= ~MAP_IS_SUB_MAP;
2424 		vm_map_unlock(submap);
2425 	}
2426 	return (result);
2427 }
2428 
2429 /*
2430  * The maximum number of pages to map if MAP_PREFAULT_PARTIAL is specified
2431  */
2432 #define	MAX_INIT_PT	96
2433 
2434 /*
2435  *	vm_map_pmap_enter:
2436  *
2437  *	Preload the specified map's pmap with mappings to the specified
2438  *	object's memory-resident pages.  No further physical pages are
2439  *	allocated, and no further virtual pages are retrieved from secondary
2440  *	storage.  If the specified flags include MAP_PREFAULT_PARTIAL, then a
2441  *	limited number of page mappings are created at the low-end of the
2442  *	specified address range.  (For this purpose, a superpage mapping
2443  *	counts as one page mapping.)  Otherwise, all resident pages within
2444  *	the specified address range are mapped.
2445  */
2446 static void
2447 vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot,
2448     vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags)
2449 {
2450 	vm_offset_t start;
2451 	vm_page_t p, p_start;
2452 	vm_pindex_t mask, psize, threshold, tmpidx;
2453 
2454 	if ((prot & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0 || object == NULL)
2455 		return;
2456 	if (object->type == OBJT_DEVICE || object->type == OBJT_SG) {
2457 		VM_OBJECT_WLOCK(object);
2458 		if (object->type == OBJT_DEVICE || object->type == OBJT_SG) {
2459 			pmap_object_init_pt(map->pmap, addr, object, pindex,
2460 			    size);
2461 			VM_OBJECT_WUNLOCK(object);
2462 			return;
2463 		}
2464 		VM_OBJECT_LOCK_DOWNGRADE(object);
2465 	} else
2466 		VM_OBJECT_RLOCK(object);
2467 
2468 	psize = atop(size);
2469 	if (psize + pindex > object->size) {
2470 		if (object->size < pindex) {
2471 			VM_OBJECT_RUNLOCK(object);
2472 			return;
2473 		}
2474 		psize = object->size - pindex;
2475 	}
2476 
2477 	start = 0;
2478 	p_start = NULL;
2479 	threshold = MAX_INIT_PT;
2480 
2481 	p = vm_page_find_least(object, pindex);
2482 	/*
2483 	 * Assert: the variable p is either (1) the page with the
2484 	 * least pindex greater than or equal to the parameter pindex
2485 	 * or (2) NULL.
2486 	 */
2487 	for (;
2488 	     p != NULL && (tmpidx = p->pindex - pindex) < psize;
2489 	     p = TAILQ_NEXT(p, listq)) {
2490 		/*
2491 		 * don't allow an madvise to blow away our really
2492 		 * free pages allocating pv entries.
2493 		 */
2494 		if (((flags & MAP_PREFAULT_MADVISE) != 0 &&
2495 		    vm_page_count_severe()) ||
2496 		    ((flags & MAP_PREFAULT_PARTIAL) != 0 &&
2497 		    tmpidx >= threshold)) {
2498 			psize = tmpidx;
2499 			break;
2500 		}
2501 		if (vm_page_all_valid(p)) {
2502 			if (p_start == NULL) {
2503 				start = addr + ptoa(tmpidx);
2504 				p_start = p;
2505 			}
2506 			/* Jump ahead if a superpage mapping is possible. */
2507 			if (p->psind > 0 && ((addr + ptoa(tmpidx)) &
2508 			    (pagesizes[p->psind] - 1)) == 0) {
2509 				mask = atop(pagesizes[p->psind]) - 1;
2510 				if (tmpidx + mask < psize &&
2511 				    vm_page_ps_test(p, PS_ALL_VALID, NULL)) {
2512 					p += mask;
2513 					threshold += mask;
2514 				}
2515 			}
2516 		} else if (p_start != NULL) {
2517 			pmap_enter_object(map->pmap, start, addr +
2518 			    ptoa(tmpidx), p_start, prot);
2519 			p_start = NULL;
2520 		}
2521 	}
2522 	if (p_start != NULL)
2523 		pmap_enter_object(map->pmap, start, addr + ptoa(psize),
2524 		    p_start, prot);
2525 	VM_OBJECT_RUNLOCK(object);
2526 }
2527 
2528 /*
2529  *	vm_map_protect:
2530  *
2531  *	Sets the protection of the specified address
2532  *	region in the target map.  If "set_max" is
2533  *	specified, the maximum protection is to be set;
2534  *	otherwise, only the current protection is affected.
2535  */
2536 int
2537 vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end,
2538 	       vm_prot_t new_prot, boolean_t set_max)
2539 {
2540 	vm_map_entry_t entry, first_entry, in_tran, prev_entry;
2541 	vm_object_t obj;
2542 	struct ucred *cred;
2543 	vm_prot_t old_prot;
2544 	int rv;
2545 
2546 	if (start == end)
2547 		return (KERN_SUCCESS);
2548 
2549 again:
2550 	in_tran = NULL;
2551 	vm_map_lock(map);
2552 
2553 	/*
2554 	 * Ensure that we are not concurrently wiring pages.  vm_map_wire() may
2555 	 * need to fault pages into the map and will drop the map lock while
2556 	 * doing so, and the VM object may end up in an inconsistent state if we
2557 	 * update the protection on the map entry in between faults.
2558 	 */
2559 	vm_map_wait_busy(map);
2560 
2561 	VM_MAP_RANGE_CHECK(map, start, end);
2562 
2563 	if (!vm_map_lookup_entry(map, start, &first_entry))
2564 		first_entry = vm_map_entry_succ(first_entry);
2565 
2566 	/*
2567 	 * Make a first pass to check for protection violations.
2568 	 */
2569 	for (entry = first_entry; entry->start < end;
2570 	    entry = vm_map_entry_succ(entry)) {
2571 		if ((entry->eflags & MAP_ENTRY_GUARD) != 0)
2572 			continue;
2573 		if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0) {
2574 			vm_map_unlock(map);
2575 			return (KERN_INVALID_ARGUMENT);
2576 		}
2577 		if ((new_prot & entry->max_protection) != new_prot) {
2578 			vm_map_unlock(map);
2579 			return (KERN_PROTECTION_FAILURE);
2580 		}
2581 		if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0)
2582 			in_tran = entry;
2583 	}
2584 
2585 	/*
2586 	 * Postpone the operation until all in-transition map entries have
2587 	 * stabilized.  An in-transition entry might already have its pages
2588 	 * wired and wired_count incremented, but not yet have its
2589 	 * MAP_ENTRY_USER_WIRED flag set.  In which case, we would fail to call
2590 	 * vm_fault_copy_entry() in the final loop below.
2591 	 */
2592 	if (in_tran != NULL) {
2593 		in_tran->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2594 		vm_map_unlock_and_wait(map, 0);
2595 		goto again;
2596 	}
2597 
2598 	/*
2599 	 * Before changing the protections, try to reserve swap space for any
2600 	 * private (i.e., copy-on-write) mappings that are transitioning from
2601 	 * read-only to read/write access.  If a reservation fails, break out
2602 	 * of this loop early and let the next loop simplify the entries, since
2603 	 * some may now be mergeable.
2604 	 */
2605 	rv = KERN_SUCCESS;
2606 	vm_map_clip_start(map, first_entry, start);
2607 	for (entry = first_entry; entry->start < end;
2608 	    entry = vm_map_entry_succ(entry)) {
2609 		vm_map_clip_end(map, entry, end);
2610 
2611 		if (set_max ||
2612 		    ((new_prot & ~entry->protection) & VM_PROT_WRITE) == 0 ||
2613 		    ENTRY_CHARGED(entry) ||
2614 		    (entry->eflags & MAP_ENTRY_GUARD) != 0) {
2615 			continue;
2616 		}
2617 
2618 		cred = curthread->td_ucred;
2619 		obj = entry->object.vm_object;
2620 
2621 		if (obj == NULL ||
2622 		    (entry->eflags & MAP_ENTRY_NEEDS_COPY) != 0) {
2623 			if (!swap_reserve(entry->end - entry->start)) {
2624 				rv = KERN_RESOURCE_SHORTAGE;
2625 				end = entry->end;
2626 				break;
2627 			}
2628 			crhold(cred);
2629 			entry->cred = cred;
2630 			continue;
2631 		}
2632 
2633 		if (obj->type != OBJT_DEFAULT && obj->type != OBJT_SWAP)
2634 			continue;
2635 		VM_OBJECT_WLOCK(obj);
2636 		if (obj->type != OBJT_DEFAULT && obj->type != OBJT_SWAP) {
2637 			VM_OBJECT_WUNLOCK(obj);
2638 			continue;
2639 		}
2640 
2641 		/*
2642 		 * Charge for the whole object allocation now, since
2643 		 * we cannot distinguish between non-charged and
2644 		 * charged clipped mapping of the same object later.
2645 		 */
2646 		KASSERT(obj->charge == 0,
2647 		    ("vm_map_protect: object %p overcharged (entry %p)",
2648 		    obj, entry));
2649 		if (!swap_reserve(ptoa(obj->size))) {
2650 			VM_OBJECT_WUNLOCK(obj);
2651 			rv = KERN_RESOURCE_SHORTAGE;
2652 			end = entry->end;
2653 			break;
2654 		}
2655 
2656 		crhold(cred);
2657 		obj->cred = cred;
2658 		obj->charge = ptoa(obj->size);
2659 		VM_OBJECT_WUNLOCK(obj);
2660 	}
2661 
2662 	/*
2663 	 * If enough swap space was available, go back and fix up protections.
2664 	 * Otherwise, just simplify entries, since some may have been modified.
2665 	 * [Note that clipping is not necessary the second time.]
2666 	 */
2667 	for (prev_entry = vm_map_entry_pred(first_entry), entry = first_entry;
2668 	    entry->start < end;
2669 	    vm_map_try_merge_entries(map, prev_entry, entry),
2670 	    prev_entry = entry, entry = vm_map_entry_succ(entry)) {
2671 		if (rv != KERN_SUCCESS ||
2672 		    (entry->eflags & MAP_ENTRY_GUARD) != 0)
2673 			continue;
2674 
2675 		old_prot = entry->protection;
2676 
2677 		if (set_max)
2678 			entry->protection =
2679 			    (entry->max_protection = new_prot) &
2680 			    old_prot;
2681 		else
2682 			entry->protection = new_prot;
2683 
2684 		/*
2685 		 * For user wired map entries, the normal lazy evaluation of
2686 		 * write access upgrades through soft page faults is
2687 		 * undesirable.  Instead, immediately copy any pages that are
2688 		 * copy-on-write and enable write access in the physical map.
2689 		 */
2690 		if ((entry->eflags & MAP_ENTRY_USER_WIRED) != 0 &&
2691 		    (entry->protection & VM_PROT_WRITE) != 0 &&
2692 		    (old_prot & VM_PROT_WRITE) == 0)
2693 			vm_fault_copy_entry(map, map, entry, entry, NULL);
2694 
2695 		/*
2696 		 * When restricting access, update the physical map.  Worry
2697 		 * about copy-on-write here.
2698 		 */
2699 		if ((old_prot & ~entry->protection) != 0) {
2700 #define MASK(entry)	(((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \
2701 							VM_PROT_ALL)
2702 			pmap_protect(map->pmap, entry->start,
2703 			    entry->end,
2704 			    entry->protection & MASK(entry));
2705 #undef	MASK
2706 		}
2707 	}
2708 	vm_map_try_merge_entries(map, prev_entry, entry);
2709 	vm_map_unlock(map);
2710 	return (rv);
2711 }
2712 
2713 /*
2714  *	vm_map_madvise:
2715  *
2716  *	This routine traverses a processes map handling the madvise
2717  *	system call.  Advisories are classified as either those effecting
2718  *	the vm_map_entry structure, or those effecting the underlying
2719  *	objects.
2720  */
2721 int
2722 vm_map_madvise(
2723 	vm_map_t map,
2724 	vm_offset_t start,
2725 	vm_offset_t end,
2726 	int behav)
2727 {
2728 	vm_map_entry_t entry, prev_entry;
2729 	bool modify_map;
2730 
2731 	/*
2732 	 * Some madvise calls directly modify the vm_map_entry, in which case
2733 	 * we need to use an exclusive lock on the map and we need to perform
2734 	 * various clipping operations.  Otherwise we only need a read-lock
2735 	 * on the map.
2736 	 */
2737 	switch(behav) {
2738 	case MADV_NORMAL:
2739 	case MADV_SEQUENTIAL:
2740 	case MADV_RANDOM:
2741 	case MADV_NOSYNC:
2742 	case MADV_AUTOSYNC:
2743 	case MADV_NOCORE:
2744 	case MADV_CORE:
2745 		if (start == end)
2746 			return (0);
2747 		modify_map = true;
2748 		vm_map_lock(map);
2749 		break;
2750 	case MADV_WILLNEED:
2751 	case MADV_DONTNEED:
2752 	case MADV_FREE:
2753 		if (start == end)
2754 			return (0);
2755 		modify_map = false;
2756 		vm_map_lock_read(map);
2757 		break;
2758 	default:
2759 		return (EINVAL);
2760 	}
2761 
2762 	/*
2763 	 * Locate starting entry and clip if necessary.
2764 	 */
2765 	VM_MAP_RANGE_CHECK(map, start, end);
2766 
2767 	if (vm_map_lookup_entry(map, start, &entry)) {
2768 		if (modify_map)
2769 			vm_map_clip_start(map, entry, start);
2770 		prev_entry = vm_map_entry_pred(entry);
2771 	} else {
2772 		prev_entry = entry;
2773 		entry = vm_map_entry_succ(entry);
2774 	}
2775 
2776 	if (modify_map) {
2777 		/*
2778 		 * madvise behaviors that are implemented in the vm_map_entry.
2779 		 *
2780 		 * We clip the vm_map_entry so that behavioral changes are
2781 		 * limited to the specified address range.
2782 		 */
2783 		for (; entry->start < end;
2784 		     prev_entry = entry, entry = vm_map_entry_succ(entry)) {
2785 			if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0)
2786 				continue;
2787 
2788 			vm_map_clip_end(map, entry, end);
2789 
2790 			switch (behav) {
2791 			case MADV_NORMAL:
2792 				vm_map_entry_set_behavior(entry,
2793 				    MAP_ENTRY_BEHAV_NORMAL);
2794 				break;
2795 			case MADV_SEQUENTIAL:
2796 				vm_map_entry_set_behavior(entry,
2797 				    MAP_ENTRY_BEHAV_SEQUENTIAL);
2798 				break;
2799 			case MADV_RANDOM:
2800 				vm_map_entry_set_behavior(entry,
2801 				    MAP_ENTRY_BEHAV_RANDOM);
2802 				break;
2803 			case MADV_NOSYNC:
2804 				entry->eflags |= MAP_ENTRY_NOSYNC;
2805 				break;
2806 			case MADV_AUTOSYNC:
2807 				entry->eflags &= ~MAP_ENTRY_NOSYNC;
2808 				break;
2809 			case MADV_NOCORE:
2810 				entry->eflags |= MAP_ENTRY_NOCOREDUMP;
2811 				break;
2812 			case MADV_CORE:
2813 				entry->eflags &= ~MAP_ENTRY_NOCOREDUMP;
2814 				break;
2815 			default:
2816 				break;
2817 			}
2818 			vm_map_try_merge_entries(map, prev_entry, entry);
2819 		}
2820 		vm_map_try_merge_entries(map, prev_entry, entry);
2821 		vm_map_unlock(map);
2822 	} else {
2823 		vm_pindex_t pstart, pend;
2824 
2825 		/*
2826 		 * madvise behaviors that are implemented in the underlying
2827 		 * vm_object.
2828 		 *
2829 		 * Since we don't clip the vm_map_entry, we have to clip
2830 		 * the vm_object pindex and count.
2831 		 */
2832 		for (; entry->start < end;
2833 		    entry = vm_map_entry_succ(entry)) {
2834 			vm_offset_t useEnd, useStart;
2835 
2836 			if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0)
2837 				continue;
2838 
2839 			/*
2840 			 * MADV_FREE would otherwise rewind time to
2841 			 * the creation of the shadow object.  Because
2842 			 * we hold the VM map read-locked, neither the
2843 			 * entry's object nor the presence of a
2844 			 * backing object can change.
2845 			 */
2846 			if (behav == MADV_FREE &&
2847 			    entry->object.vm_object != NULL &&
2848 			    entry->object.vm_object->backing_object != NULL)
2849 				continue;
2850 
2851 			pstart = OFF_TO_IDX(entry->offset);
2852 			pend = pstart + atop(entry->end - entry->start);
2853 			useStart = entry->start;
2854 			useEnd = entry->end;
2855 
2856 			if (entry->start < start) {
2857 				pstart += atop(start - entry->start);
2858 				useStart = start;
2859 			}
2860 			if (entry->end > end) {
2861 				pend -= atop(entry->end - end);
2862 				useEnd = end;
2863 			}
2864 
2865 			if (pstart >= pend)
2866 				continue;
2867 
2868 			/*
2869 			 * Perform the pmap_advise() before clearing
2870 			 * PGA_REFERENCED in vm_page_advise().  Otherwise, a
2871 			 * concurrent pmap operation, such as pmap_remove(),
2872 			 * could clear a reference in the pmap and set
2873 			 * PGA_REFERENCED on the page before the pmap_advise()
2874 			 * had completed.  Consequently, the page would appear
2875 			 * referenced based upon an old reference that
2876 			 * occurred before this pmap_advise() ran.
2877 			 */
2878 			if (behav == MADV_DONTNEED || behav == MADV_FREE)
2879 				pmap_advise(map->pmap, useStart, useEnd,
2880 				    behav);
2881 
2882 			vm_object_madvise(entry->object.vm_object, pstart,
2883 			    pend, behav);
2884 
2885 			/*
2886 			 * Pre-populate paging structures in the
2887 			 * WILLNEED case.  For wired entries, the
2888 			 * paging structures are already populated.
2889 			 */
2890 			if (behav == MADV_WILLNEED &&
2891 			    entry->wired_count == 0) {
2892 				vm_map_pmap_enter(map,
2893 				    useStart,
2894 				    entry->protection,
2895 				    entry->object.vm_object,
2896 				    pstart,
2897 				    ptoa(pend - pstart),
2898 				    MAP_PREFAULT_MADVISE
2899 				);
2900 			}
2901 		}
2902 		vm_map_unlock_read(map);
2903 	}
2904 	return (0);
2905 }
2906 
2907 
2908 /*
2909  *	vm_map_inherit:
2910  *
2911  *	Sets the inheritance of the specified address
2912  *	range in the target map.  Inheritance
2913  *	affects how the map will be shared with
2914  *	child maps at the time of vmspace_fork.
2915  */
2916 int
2917 vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end,
2918 	       vm_inherit_t new_inheritance)
2919 {
2920 	vm_map_entry_t entry, prev_entry;
2921 
2922 	switch (new_inheritance) {
2923 	case VM_INHERIT_NONE:
2924 	case VM_INHERIT_COPY:
2925 	case VM_INHERIT_SHARE:
2926 	case VM_INHERIT_ZERO:
2927 		break;
2928 	default:
2929 		return (KERN_INVALID_ARGUMENT);
2930 	}
2931 	if (start == end)
2932 		return (KERN_SUCCESS);
2933 	vm_map_lock(map);
2934 	VM_MAP_RANGE_CHECK(map, start, end);
2935 	if (vm_map_lookup_entry(map, start, &prev_entry)) {
2936 		entry = prev_entry;
2937 		vm_map_clip_start(map, entry, start);
2938 		prev_entry = vm_map_entry_pred(entry);
2939 	} else
2940 		entry = vm_map_entry_succ(prev_entry);
2941 	for (; entry->start < end;
2942 	    prev_entry = entry, entry = vm_map_entry_succ(entry)) {
2943 		vm_map_clip_end(map, entry, end);
2944 		if ((entry->eflags & MAP_ENTRY_GUARD) == 0 ||
2945 		    new_inheritance != VM_INHERIT_ZERO)
2946 			entry->inheritance = new_inheritance;
2947 		vm_map_try_merge_entries(map, prev_entry, entry);
2948 	}
2949 	vm_map_try_merge_entries(map, prev_entry, entry);
2950 	vm_map_unlock(map);
2951 	return (KERN_SUCCESS);
2952 }
2953 
2954 /*
2955  *	vm_map_entry_in_transition:
2956  *
2957  *	Release the map lock, and sleep until the entry is no longer in
2958  *	transition.  Awake and acquire the map lock.  If the map changed while
2959  *	another held the lock, lookup a possibly-changed entry at or after the
2960  *	'start' position of the old entry.
2961  */
2962 static vm_map_entry_t
2963 vm_map_entry_in_transition(vm_map_t map, vm_offset_t in_start,
2964     vm_offset_t *io_end, bool holes_ok, vm_map_entry_t in_entry)
2965 {
2966 	vm_map_entry_t entry;
2967 	vm_offset_t start;
2968 	u_int last_timestamp;
2969 
2970 	VM_MAP_ASSERT_LOCKED(map);
2971 	KASSERT((in_entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0,
2972 	    ("not in-tranition map entry %p", in_entry));
2973 	/*
2974 	 * We have not yet clipped the entry.
2975 	 */
2976 	start = MAX(in_start, in_entry->start);
2977 	in_entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2978 	last_timestamp = map->timestamp;
2979 	if (vm_map_unlock_and_wait(map, 0)) {
2980 		/*
2981 		 * Allow interruption of user wiring/unwiring?
2982 		 */
2983 	}
2984 	vm_map_lock(map);
2985 	if (last_timestamp + 1 == map->timestamp)
2986 		return (in_entry);
2987 
2988 	/*
2989 	 * Look again for the entry because the map was modified while it was
2990 	 * unlocked.  Specifically, the entry may have been clipped, merged, or
2991 	 * deleted.
2992 	 */
2993 	if (!vm_map_lookup_entry(map, start, &entry)) {
2994 		if (!holes_ok) {
2995 			*io_end = start;
2996 			return (NULL);
2997 		}
2998 		entry = vm_map_entry_succ(entry);
2999 	}
3000 	return (entry);
3001 }
3002 
3003 /*
3004  *	vm_map_unwire:
3005  *
3006  *	Implements both kernel and user unwiring.
3007  */
3008 int
3009 vm_map_unwire(vm_map_t map, vm_offset_t start, vm_offset_t end,
3010     int flags)
3011 {
3012 	vm_map_entry_t entry, first_entry, next_entry, prev_entry;
3013 	int rv;
3014 	bool holes_ok, need_wakeup, user_unwire;
3015 
3016 	if (start == end)
3017 		return (KERN_SUCCESS);
3018 	holes_ok = (flags & VM_MAP_WIRE_HOLESOK) != 0;
3019 	user_unwire = (flags & VM_MAP_WIRE_USER) != 0;
3020 	vm_map_lock(map);
3021 	VM_MAP_RANGE_CHECK(map, start, end);
3022 	if (!vm_map_lookup_entry(map, start, &first_entry)) {
3023 		if (holes_ok)
3024 			first_entry = vm_map_entry_succ(first_entry);
3025 		else {
3026 			vm_map_unlock(map);
3027 			return (KERN_INVALID_ADDRESS);
3028 		}
3029 	}
3030 	rv = KERN_SUCCESS;
3031 	for (entry = first_entry; entry->start < end; entry = next_entry) {
3032 		if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
3033 			/*
3034 			 * We have not yet clipped the entry.
3035 			 */
3036 			next_entry = vm_map_entry_in_transition(map, start,
3037 			    &end, holes_ok, entry);
3038 			if (next_entry == NULL) {
3039 				if (entry == first_entry) {
3040 					vm_map_unlock(map);
3041 					return (KERN_INVALID_ADDRESS);
3042 				}
3043 				rv = KERN_INVALID_ADDRESS;
3044 				break;
3045 			}
3046 			first_entry = (entry == first_entry) ?
3047 			    next_entry : NULL;
3048 			continue;
3049 		}
3050 		vm_map_clip_start(map, entry, start);
3051 		vm_map_clip_end(map, entry, end);
3052 		/*
3053 		 * Mark the entry in case the map lock is released.  (See
3054 		 * above.)
3055 		 */
3056 		KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 &&
3057 		    entry->wiring_thread == NULL,
3058 		    ("owned map entry %p", entry));
3059 		entry->eflags |= MAP_ENTRY_IN_TRANSITION;
3060 		entry->wiring_thread = curthread;
3061 		next_entry = vm_map_entry_succ(entry);
3062 		/*
3063 		 * Check the map for holes in the specified region.
3064 		 * If holes_ok, skip this check.
3065 		 */
3066 		if (!holes_ok &&
3067 		    entry->end < end && next_entry->start > entry->end) {
3068 			end = entry->end;
3069 			rv = KERN_INVALID_ADDRESS;
3070 			break;
3071 		}
3072 		/*
3073 		 * If system unwiring, require that the entry is system wired.
3074 		 */
3075 		if (!user_unwire &&
3076 		    vm_map_entry_system_wired_count(entry) == 0) {
3077 			end = entry->end;
3078 			rv = KERN_INVALID_ARGUMENT;
3079 			break;
3080 		}
3081 	}
3082 	need_wakeup = false;
3083 	if (first_entry == NULL &&
3084 	    !vm_map_lookup_entry(map, start, &first_entry)) {
3085 		KASSERT(holes_ok, ("vm_map_unwire: lookup failed"));
3086 		prev_entry = first_entry;
3087 		entry = vm_map_entry_succ(first_entry);
3088 	} else {
3089 		prev_entry = vm_map_entry_pred(first_entry);
3090 		entry = first_entry;
3091 	}
3092 	for (; entry->start < end;
3093 	    prev_entry = entry, entry = vm_map_entry_succ(entry)) {
3094 		/*
3095 		 * If holes_ok was specified, an empty
3096 		 * space in the unwired region could have been mapped
3097 		 * while the map lock was dropped for draining
3098 		 * MAP_ENTRY_IN_TRANSITION.  Moreover, another thread
3099 		 * could be simultaneously wiring this new mapping
3100 		 * entry.  Detect these cases and skip any entries
3101 		 * marked as in transition by us.
3102 		 */
3103 		if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 ||
3104 		    entry->wiring_thread != curthread) {
3105 			KASSERT(holes_ok,
3106 			    ("vm_map_unwire: !HOLESOK and new/changed entry"));
3107 			continue;
3108 		}
3109 
3110 		if (rv == KERN_SUCCESS && (!user_unwire ||
3111 		    (entry->eflags & MAP_ENTRY_USER_WIRED))) {
3112 			if (entry->wired_count == 1)
3113 				vm_map_entry_unwire(map, entry);
3114 			else
3115 				entry->wired_count--;
3116 			if (user_unwire)
3117 				entry->eflags &= ~MAP_ENTRY_USER_WIRED;
3118 		}
3119 		KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0,
3120 		    ("vm_map_unwire: in-transition flag missing %p", entry));
3121 		KASSERT(entry->wiring_thread == curthread,
3122 		    ("vm_map_unwire: alien wire %p", entry));
3123 		entry->eflags &= ~MAP_ENTRY_IN_TRANSITION;
3124 		entry->wiring_thread = NULL;
3125 		if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
3126 			entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
3127 			need_wakeup = true;
3128 		}
3129 		vm_map_try_merge_entries(map, prev_entry, entry);
3130 	}
3131 	vm_map_try_merge_entries(map, prev_entry, entry);
3132 	vm_map_unlock(map);
3133 	if (need_wakeup)
3134 		vm_map_wakeup(map);
3135 	return (rv);
3136 }
3137 
3138 static void
3139 vm_map_wire_user_count_sub(u_long npages)
3140 {
3141 
3142 	atomic_subtract_long(&vm_user_wire_count, npages);
3143 }
3144 
3145 static bool
3146 vm_map_wire_user_count_add(u_long npages)
3147 {
3148 	u_long wired;
3149 
3150 	wired = vm_user_wire_count;
3151 	do {
3152 		if (npages + wired > vm_page_max_user_wired)
3153 			return (false);
3154 	} while (!atomic_fcmpset_long(&vm_user_wire_count, &wired,
3155 	    npages + wired));
3156 
3157 	return (true);
3158 }
3159 
3160 /*
3161  *	vm_map_wire_entry_failure:
3162  *
3163  *	Handle a wiring failure on the given entry.
3164  *
3165  *	The map should be locked.
3166  */
3167 static void
3168 vm_map_wire_entry_failure(vm_map_t map, vm_map_entry_t entry,
3169     vm_offset_t failed_addr)
3170 {
3171 
3172 	VM_MAP_ASSERT_LOCKED(map);
3173 	KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 &&
3174 	    entry->wired_count == 1,
3175 	    ("vm_map_wire_entry_failure: entry %p isn't being wired", entry));
3176 	KASSERT(failed_addr < entry->end,
3177 	    ("vm_map_wire_entry_failure: entry %p was fully wired", entry));
3178 
3179 	/*
3180 	 * If any pages at the start of this entry were successfully wired,
3181 	 * then unwire them.
3182 	 */
3183 	if (failed_addr > entry->start) {
3184 		pmap_unwire(map->pmap, entry->start, failed_addr);
3185 		vm_object_unwire(entry->object.vm_object, entry->offset,
3186 		    failed_addr - entry->start, PQ_ACTIVE);
3187 	}
3188 
3189 	/*
3190 	 * Assign an out-of-range value to represent the failure to wire this
3191 	 * entry.
3192 	 */
3193 	entry->wired_count = -1;
3194 }
3195 
3196 int
3197 vm_map_wire(vm_map_t map, vm_offset_t start, vm_offset_t end, int flags)
3198 {
3199 	int rv;
3200 
3201 	vm_map_lock(map);
3202 	rv = vm_map_wire_locked(map, start, end, flags);
3203 	vm_map_unlock(map);
3204 	return (rv);
3205 }
3206 
3207 
3208 /*
3209  *	vm_map_wire_locked:
3210  *
3211  *	Implements both kernel and user wiring.  Returns with the map locked,
3212  *	the map lock may be dropped.
3213  */
3214 int
3215 vm_map_wire_locked(vm_map_t map, vm_offset_t start, vm_offset_t end, int flags)
3216 {
3217 	vm_map_entry_t entry, first_entry, next_entry, prev_entry;
3218 	vm_offset_t faddr, saved_end, saved_start;
3219 	u_long npages;
3220 	u_int last_timestamp;
3221 	int rv;
3222 	bool holes_ok, need_wakeup, user_wire;
3223 	vm_prot_t prot;
3224 
3225 	VM_MAP_ASSERT_LOCKED(map);
3226 
3227 	if (start == end)
3228 		return (KERN_SUCCESS);
3229 	prot = 0;
3230 	if (flags & VM_MAP_WIRE_WRITE)
3231 		prot |= VM_PROT_WRITE;
3232 	holes_ok = (flags & VM_MAP_WIRE_HOLESOK) != 0;
3233 	user_wire = (flags & VM_MAP_WIRE_USER) != 0;
3234 	VM_MAP_RANGE_CHECK(map, start, end);
3235 	if (!vm_map_lookup_entry(map, start, &first_entry)) {
3236 		if (holes_ok)
3237 			first_entry = vm_map_entry_succ(first_entry);
3238 		else
3239 			return (KERN_INVALID_ADDRESS);
3240 	}
3241 	for (entry = first_entry; entry->start < end; entry = next_entry) {
3242 		if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
3243 			/*
3244 			 * We have not yet clipped the entry.
3245 			 */
3246 			next_entry = vm_map_entry_in_transition(map, start,
3247 			    &end, holes_ok, entry);
3248 			if (next_entry == NULL) {
3249 				if (entry == first_entry)
3250 					return (KERN_INVALID_ADDRESS);
3251 				rv = KERN_INVALID_ADDRESS;
3252 				goto done;
3253 			}
3254 			first_entry = (entry == first_entry) ?
3255 			    next_entry : NULL;
3256 			continue;
3257 		}
3258 		vm_map_clip_start(map, entry, start);
3259 		vm_map_clip_end(map, entry, end);
3260 		/*
3261 		 * Mark the entry in case the map lock is released.  (See
3262 		 * above.)
3263 		 */
3264 		KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 &&
3265 		    entry->wiring_thread == NULL,
3266 		    ("owned map entry %p", entry));
3267 		entry->eflags |= MAP_ENTRY_IN_TRANSITION;
3268 		entry->wiring_thread = curthread;
3269 		if ((entry->protection & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0
3270 		    || (entry->protection & prot) != prot) {
3271 			entry->eflags |= MAP_ENTRY_WIRE_SKIPPED;
3272 			if (!holes_ok) {
3273 				end = entry->end;
3274 				rv = KERN_INVALID_ADDRESS;
3275 				goto done;
3276 			}
3277 		} else if (entry->wired_count == 0) {
3278 			entry->wired_count++;
3279 
3280 			npages = atop(entry->end - entry->start);
3281 			if (user_wire && !vm_map_wire_user_count_add(npages)) {
3282 				vm_map_wire_entry_failure(map, entry,
3283 				    entry->start);
3284 				end = entry->end;
3285 				rv = KERN_RESOURCE_SHORTAGE;
3286 				goto done;
3287 			}
3288 
3289 			/*
3290 			 * Release the map lock, relying on the in-transition
3291 			 * mark.  Mark the map busy for fork.
3292 			 */
3293 			saved_start = entry->start;
3294 			saved_end = entry->end;
3295 			last_timestamp = map->timestamp;
3296 			vm_map_busy(map);
3297 			vm_map_unlock(map);
3298 
3299 			faddr = saved_start;
3300 			do {
3301 				/*
3302 				 * Simulate a fault to get the page and enter
3303 				 * it into the physical map.
3304 				 */
3305 				if ((rv = vm_fault(map, faddr,
3306 				    VM_PROT_NONE, VM_FAULT_WIRE, NULL)) !=
3307 				    KERN_SUCCESS)
3308 					break;
3309 			} while ((faddr += PAGE_SIZE) < saved_end);
3310 			vm_map_lock(map);
3311 			vm_map_unbusy(map);
3312 			if (last_timestamp + 1 != map->timestamp) {
3313 				/*
3314 				 * Look again for the entry because the map was
3315 				 * modified while it was unlocked.  The entry
3316 				 * may have been clipped, but NOT merged or
3317 				 * deleted.
3318 				 */
3319 				if (!vm_map_lookup_entry(map, saved_start,
3320 				    &next_entry))
3321 					KASSERT(false,
3322 					    ("vm_map_wire: lookup failed"));
3323 				first_entry = (entry == first_entry) ?
3324 				    next_entry : NULL;
3325 				for (entry = next_entry; entry->end < saved_end;
3326 				    entry = vm_map_entry_succ(entry)) {
3327 					/*
3328 					 * In case of failure, handle entries
3329 					 * that were not fully wired here;
3330 					 * fully wired entries are handled
3331 					 * later.
3332 					 */
3333 					if (rv != KERN_SUCCESS &&
3334 					    faddr < entry->end)
3335 						vm_map_wire_entry_failure(map,
3336 						    entry, faddr);
3337 				}
3338 			}
3339 			if (rv != KERN_SUCCESS) {
3340 				vm_map_wire_entry_failure(map, entry, faddr);
3341 				if (user_wire)
3342 					vm_map_wire_user_count_sub(npages);
3343 				end = entry->end;
3344 				goto done;
3345 			}
3346 		} else if (!user_wire ||
3347 			   (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) {
3348 			entry->wired_count++;
3349 		}
3350 		/*
3351 		 * Check the map for holes in the specified region.
3352 		 * If holes_ok was specified, skip this check.
3353 		 */
3354 		next_entry = vm_map_entry_succ(entry);
3355 		if (!holes_ok &&
3356 		    entry->end < end && next_entry->start > entry->end) {
3357 			end = entry->end;
3358 			rv = KERN_INVALID_ADDRESS;
3359 			goto done;
3360 		}
3361 	}
3362 	rv = KERN_SUCCESS;
3363 done:
3364 	need_wakeup = false;
3365 	if (first_entry == NULL &&
3366 	    !vm_map_lookup_entry(map, start, &first_entry)) {
3367 		KASSERT(holes_ok, ("vm_map_wire: lookup failed"));
3368 		prev_entry = first_entry;
3369 		entry = vm_map_entry_succ(first_entry);
3370 	} else {
3371 		prev_entry = vm_map_entry_pred(first_entry);
3372 		entry = first_entry;
3373 	}
3374 	for (; entry->start < end;
3375 	    prev_entry = entry, entry = vm_map_entry_succ(entry)) {
3376 		/*
3377 		 * If holes_ok was specified, an empty
3378 		 * space in the unwired region could have been mapped
3379 		 * while the map lock was dropped for faulting in the
3380 		 * pages or draining MAP_ENTRY_IN_TRANSITION.
3381 		 * Moreover, another thread could be simultaneously
3382 		 * wiring this new mapping entry.  Detect these cases
3383 		 * and skip any entries marked as in transition not by us.
3384 		 */
3385 		if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 ||
3386 		    entry->wiring_thread != curthread) {
3387 			KASSERT(holes_ok,
3388 			    ("vm_map_wire: !HOLESOK and new/changed entry"));
3389 			continue;
3390 		}
3391 
3392 		if ((entry->eflags & MAP_ENTRY_WIRE_SKIPPED) != 0) {
3393 			/* do nothing */
3394 		} else if (rv == KERN_SUCCESS) {
3395 			if (user_wire)
3396 				entry->eflags |= MAP_ENTRY_USER_WIRED;
3397 		} else if (entry->wired_count == -1) {
3398 			/*
3399 			 * Wiring failed on this entry.  Thus, unwiring is
3400 			 * unnecessary.
3401 			 */
3402 			entry->wired_count = 0;
3403 		} else if (!user_wire ||
3404 		    (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) {
3405 			/*
3406 			 * Undo the wiring.  Wiring succeeded on this entry
3407 			 * but failed on a later entry.
3408 			 */
3409 			if (entry->wired_count == 1) {
3410 				vm_map_entry_unwire(map, entry);
3411 				if (user_wire)
3412 					vm_map_wire_user_count_sub(
3413 					    atop(entry->end - entry->start));
3414 			} else
3415 				entry->wired_count--;
3416 		}
3417 		KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0,
3418 		    ("vm_map_wire: in-transition flag missing %p", entry));
3419 		KASSERT(entry->wiring_thread == curthread,
3420 		    ("vm_map_wire: alien wire %p", entry));
3421 		entry->eflags &= ~(MAP_ENTRY_IN_TRANSITION |
3422 		    MAP_ENTRY_WIRE_SKIPPED);
3423 		entry->wiring_thread = NULL;
3424 		if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
3425 			entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
3426 			need_wakeup = true;
3427 		}
3428 		vm_map_try_merge_entries(map, prev_entry, entry);
3429 	}
3430 	vm_map_try_merge_entries(map, prev_entry, entry);
3431 	if (need_wakeup)
3432 		vm_map_wakeup(map);
3433 	return (rv);
3434 }
3435 
3436 /*
3437  * vm_map_sync
3438  *
3439  * Push any dirty cached pages in the address range to their pager.
3440  * If syncio is TRUE, dirty pages are written synchronously.
3441  * If invalidate is TRUE, any cached pages are freed as well.
3442  *
3443  * If the size of the region from start to end is zero, we are
3444  * supposed to flush all modified pages within the region containing
3445  * start.  Unfortunately, a region can be split or coalesced with
3446  * neighboring regions, making it difficult to determine what the
3447  * original region was.  Therefore, we approximate this requirement by
3448  * flushing the current region containing start.
3449  *
3450  * Returns an error if any part of the specified range is not mapped.
3451  */
3452 int
3453 vm_map_sync(
3454 	vm_map_t map,
3455 	vm_offset_t start,
3456 	vm_offset_t end,
3457 	boolean_t syncio,
3458 	boolean_t invalidate)
3459 {
3460 	vm_map_entry_t entry, first_entry, next_entry;
3461 	vm_size_t size;
3462 	vm_object_t object;
3463 	vm_ooffset_t offset;
3464 	unsigned int last_timestamp;
3465 	boolean_t failed;
3466 
3467 	vm_map_lock_read(map);
3468 	VM_MAP_RANGE_CHECK(map, start, end);
3469 	if (!vm_map_lookup_entry(map, start, &first_entry)) {
3470 		vm_map_unlock_read(map);
3471 		return (KERN_INVALID_ADDRESS);
3472 	} else if (start == end) {
3473 		start = first_entry->start;
3474 		end = first_entry->end;
3475 	}
3476 	/*
3477 	 * Make a first pass to check for user-wired memory and holes.
3478 	 */
3479 	for (entry = first_entry; entry->start < end; entry = next_entry) {
3480 		if (invalidate &&
3481 		    (entry->eflags & MAP_ENTRY_USER_WIRED) != 0) {
3482 			vm_map_unlock_read(map);
3483 			return (KERN_INVALID_ARGUMENT);
3484 		}
3485 		next_entry = vm_map_entry_succ(entry);
3486 		if (end > entry->end &&
3487 		    entry->end != next_entry->start) {
3488 			vm_map_unlock_read(map);
3489 			return (KERN_INVALID_ADDRESS);
3490 		}
3491 	}
3492 
3493 	if (invalidate)
3494 		pmap_remove(map->pmap, start, end);
3495 	failed = FALSE;
3496 
3497 	/*
3498 	 * Make a second pass, cleaning/uncaching pages from the indicated
3499 	 * objects as we go.
3500 	 */
3501 	for (entry = first_entry; entry->start < end;) {
3502 		offset = entry->offset + (start - entry->start);
3503 		size = (end <= entry->end ? end : entry->end) - start;
3504 		if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0) {
3505 			vm_map_t smap;
3506 			vm_map_entry_t tentry;
3507 			vm_size_t tsize;
3508 
3509 			smap = entry->object.sub_map;
3510 			vm_map_lock_read(smap);
3511 			(void) vm_map_lookup_entry(smap, offset, &tentry);
3512 			tsize = tentry->end - offset;
3513 			if (tsize < size)
3514 				size = tsize;
3515 			object = tentry->object.vm_object;
3516 			offset = tentry->offset + (offset - tentry->start);
3517 			vm_map_unlock_read(smap);
3518 		} else {
3519 			object = entry->object.vm_object;
3520 		}
3521 		vm_object_reference(object);
3522 		last_timestamp = map->timestamp;
3523 		vm_map_unlock_read(map);
3524 		if (!vm_object_sync(object, offset, size, syncio, invalidate))
3525 			failed = TRUE;
3526 		start += size;
3527 		vm_object_deallocate(object);
3528 		vm_map_lock_read(map);
3529 		if (last_timestamp == map->timestamp ||
3530 		    !vm_map_lookup_entry(map, start, &entry))
3531 			entry = vm_map_entry_succ(entry);
3532 	}
3533 
3534 	vm_map_unlock_read(map);
3535 	return (failed ? KERN_FAILURE : KERN_SUCCESS);
3536 }
3537 
3538 /*
3539  *	vm_map_entry_unwire:	[ internal use only ]
3540  *
3541  *	Make the region specified by this entry pageable.
3542  *
3543  *	The map in question should be locked.
3544  *	[This is the reason for this routine's existence.]
3545  */
3546 static void
3547 vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry)
3548 {
3549 	vm_size_t size;
3550 
3551 	VM_MAP_ASSERT_LOCKED(map);
3552 	KASSERT(entry->wired_count > 0,
3553 	    ("vm_map_entry_unwire: entry %p isn't wired", entry));
3554 
3555 	size = entry->end - entry->start;
3556 	if ((entry->eflags & MAP_ENTRY_USER_WIRED) != 0)
3557 		vm_map_wire_user_count_sub(atop(size));
3558 	pmap_unwire(map->pmap, entry->start, entry->end);
3559 	vm_object_unwire(entry->object.vm_object, entry->offset, size,
3560 	    PQ_ACTIVE);
3561 	entry->wired_count = 0;
3562 }
3563 
3564 static void
3565 vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map)
3566 {
3567 
3568 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0)
3569 		vm_object_deallocate(entry->object.vm_object);
3570 	uma_zfree(system_map ? kmapentzone : mapentzone, entry);
3571 }
3572 
3573 /*
3574  *	vm_map_entry_delete:	[ internal use only ]
3575  *
3576  *	Deallocate the given entry from the target map.
3577  */
3578 static void
3579 vm_map_entry_delete(vm_map_t map, vm_map_entry_t entry)
3580 {
3581 	vm_object_t object;
3582 	vm_pindex_t offidxstart, offidxend, count, size1;
3583 	vm_size_t size;
3584 
3585 	vm_map_entry_unlink(map, entry, UNLINK_MERGE_NONE);
3586 	object = entry->object.vm_object;
3587 
3588 	if ((entry->eflags & MAP_ENTRY_GUARD) != 0) {
3589 		MPASS(entry->cred == NULL);
3590 		MPASS((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0);
3591 		MPASS(object == NULL);
3592 		vm_map_entry_deallocate(entry, map->system_map);
3593 		return;
3594 	}
3595 
3596 	size = entry->end - entry->start;
3597 	map->size -= size;
3598 
3599 	if (entry->cred != NULL) {
3600 		swap_release_by_cred(size, entry->cred);
3601 		crfree(entry->cred);
3602 	}
3603 
3604 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0 || object == NULL) {
3605 		entry->object.vm_object = NULL;
3606 	} else if ((object->flags & OBJ_ANON) != 0 ||
3607 	    object == kernel_object) {
3608 		KASSERT(entry->cred == NULL || object->cred == NULL ||
3609 		    (entry->eflags & MAP_ENTRY_NEEDS_COPY),
3610 		    ("OVERCOMMIT vm_map_entry_delete: both cred %p", entry));
3611 		count = atop(size);
3612 		offidxstart = OFF_TO_IDX(entry->offset);
3613 		offidxend = offidxstart + count;
3614 		VM_OBJECT_WLOCK(object);
3615 		if (object->ref_count != 1 &&
3616 		    ((object->flags & OBJ_ONEMAPPING) != 0 ||
3617 		    object == kernel_object)) {
3618 			vm_object_collapse(object);
3619 
3620 			/*
3621 			 * The option OBJPR_NOTMAPPED can be passed here
3622 			 * because vm_map_delete() already performed
3623 			 * pmap_remove() on the only mapping to this range
3624 			 * of pages.
3625 			 */
3626 			vm_object_page_remove(object, offidxstart, offidxend,
3627 			    OBJPR_NOTMAPPED);
3628 			if (object->type == OBJT_SWAP)
3629 				swap_pager_freespace(object, offidxstart,
3630 				    count);
3631 			if (offidxend >= object->size &&
3632 			    offidxstart < object->size) {
3633 				size1 = object->size;
3634 				object->size = offidxstart;
3635 				if (object->cred != NULL) {
3636 					size1 -= object->size;
3637 					KASSERT(object->charge >= ptoa(size1),
3638 					    ("object %p charge < 0", object));
3639 					swap_release_by_cred(ptoa(size1),
3640 					    object->cred);
3641 					object->charge -= ptoa(size1);
3642 				}
3643 			}
3644 		}
3645 		VM_OBJECT_WUNLOCK(object);
3646 	}
3647 	if (map->system_map)
3648 		vm_map_entry_deallocate(entry, TRUE);
3649 	else {
3650 		entry->defer_next = curthread->td_map_def_user;
3651 		curthread->td_map_def_user = entry;
3652 	}
3653 }
3654 
3655 /*
3656  *	vm_map_delete:	[ internal use only ]
3657  *
3658  *	Deallocates the given address range from the target
3659  *	map.
3660  */
3661 int
3662 vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end)
3663 {
3664 	vm_map_entry_t entry;
3665 	vm_map_entry_t first_entry;
3666 
3667 	VM_MAP_ASSERT_LOCKED(map);
3668 	if (start == end)
3669 		return (KERN_SUCCESS);
3670 
3671 	/*
3672 	 * Find the start of the region, and clip it
3673 	 */
3674 	if (!vm_map_lookup_entry(map, start, &first_entry))
3675 		entry = vm_map_entry_succ(first_entry);
3676 	else {
3677 		entry = first_entry;
3678 		vm_map_clip_start(map, entry, start);
3679 	}
3680 
3681 	/*
3682 	 * Step through all entries in this region
3683 	 */
3684 	while (entry->start < end) {
3685 		vm_map_entry_t next;
3686 
3687 		/*
3688 		 * Wait for wiring or unwiring of an entry to complete.
3689 		 * Also wait for any system wirings to disappear on
3690 		 * user maps.
3691 		 */
3692 		if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 ||
3693 		    (vm_map_pmap(map) != kernel_pmap &&
3694 		    vm_map_entry_system_wired_count(entry) != 0)) {
3695 			unsigned int last_timestamp;
3696 			vm_offset_t saved_start;
3697 			vm_map_entry_t tmp_entry;
3698 
3699 			saved_start = entry->start;
3700 			entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
3701 			last_timestamp = map->timestamp;
3702 			(void) vm_map_unlock_and_wait(map, 0);
3703 			vm_map_lock(map);
3704 			if (last_timestamp + 1 != map->timestamp) {
3705 				/*
3706 				 * Look again for the entry because the map was
3707 				 * modified while it was unlocked.
3708 				 * Specifically, the entry may have been
3709 				 * clipped, merged, or deleted.
3710 				 */
3711 				if (!vm_map_lookup_entry(map, saved_start,
3712 							 &tmp_entry))
3713 					entry = vm_map_entry_succ(tmp_entry);
3714 				else {
3715 					entry = tmp_entry;
3716 					vm_map_clip_start(map, entry,
3717 							  saved_start);
3718 				}
3719 			}
3720 			continue;
3721 		}
3722 		vm_map_clip_end(map, entry, end);
3723 
3724 		next = vm_map_entry_succ(entry);
3725 
3726 		/*
3727 		 * Unwire before removing addresses from the pmap; otherwise,
3728 		 * unwiring will put the entries back in the pmap.
3729 		 */
3730 		if (entry->wired_count != 0)
3731 			vm_map_entry_unwire(map, entry);
3732 
3733 		/*
3734 		 * Remove mappings for the pages, but only if the
3735 		 * mappings could exist.  For instance, it does not
3736 		 * make sense to call pmap_remove() for guard entries.
3737 		 */
3738 		if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0 ||
3739 		    entry->object.vm_object != NULL)
3740 			pmap_remove(map->pmap, entry->start, entry->end);
3741 
3742 		if (entry->end == map->anon_loc)
3743 			map->anon_loc = entry->start;
3744 
3745 		/*
3746 		 * Delete the entry only after removing all pmap
3747 		 * entries pointing to its pages.  (Otherwise, its
3748 		 * page frames may be reallocated, and any modify bits
3749 		 * will be set in the wrong object!)
3750 		 */
3751 		vm_map_entry_delete(map, entry);
3752 		entry = next;
3753 	}
3754 	return (KERN_SUCCESS);
3755 }
3756 
3757 /*
3758  *	vm_map_remove:
3759  *
3760  *	Remove the given address range from the target map.
3761  *	This is the exported form of vm_map_delete.
3762  */
3763 int
3764 vm_map_remove(vm_map_t map, vm_offset_t start, vm_offset_t end)
3765 {
3766 	int result;
3767 
3768 	vm_map_lock(map);
3769 	VM_MAP_RANGE_CHECK(map, start, end);
3770 	result = vm_map_delete(map, start, end);
3771 	vm_map_unlock(map);
3772 	return (result);
3773 }
3774 
3775 /*
3776  *	vm_map_check_protection:
3777  *
3778  *	Assert that the target map allows the specified privilege on the
3779  *	entire address region given.  The entire region must be allocated.
3780  *
3781  *	WARNING!  This code does not and should not check whether the
3782  *	contents of the region is accessible.  For example a smaller file
3783  *	might be mapped into a larger address space.
3784  *
3785  *	NOTE!  This code is also called by munmap().
3786  *
3787  *	The map must be locked.  A read lock is sufficient.
3788  */
3789 boolean_t
3790 vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end,
3791 			vm_prot_t protection)
3792 {
3793 	vm_map_entry_t entry;
3794 	vm_map_entry_t tmp_entry;
3795 
3796 	if (!vm_map_lookup_entry(map, start, &tmp_entry))
3797 		return (FALSE);
3798 	entry = tmp_entry;
3799 
3800 	while (start < end) {
3801 		/*
3802 		 * No holes allowed!
3803 		 */
3804 		if (start < entry->start)
3805 			return (FALSE);
3806 		/*
3807 		 * Check protection associated with entry.
3808 		 */
3809 		if ((entry->protection & protection) != protection)
3810 			return (FALSE);
3811 		/* go to next entry */
3812 		start = entry->end;
3813 		entry = vm_map_entry_succ(entry);
3814 	}
3815 	return (TRUE);
3816 }
3817 
3818 
3819 /*
3820  *
3821  *	vm_map_copy_swap_object:
3822  *
3823  *	Copies a swap-backed object from an existing map entry to a
3824  *	new one.  Carries forward the swap charge.  May change the
3825  *	src object on return.
3826  */
3827 static void
3828 vm_map_copy_swap_object(vm_map_entry_t src_entry, vm_map_entry_t dst_entry,
3829     vm_offset_t size, vm_ooffset_t *fork_charge)
3830 {
3831 	vm_object_t src_object;
3832 	struct ucred *cred;
3833 	int charged;
3834 
3835 	src_object = src_entry->object.vm_object;
3836 	VM_OBJECT_WLOCK(src_object);
3837 	charged = ENTRY_CHARGED(src_entry);
3838 	vm_object_collapse(src_object);
3839 	if ((src_object->flags & OBJ_ONEMAPPING) != 0) {
3840 		vm_object_split(src_entry);
3841 		src_object = src_entry->object.vm_object;
3842 	}
3843 	vm_object_reference_locked(src_object);
3844 	vm_object_clear_flag(src_object, OBJ_ONEMAPPING);
3845 	if (src_entry->cred != NULL &&
3846 	    !(src_entry->eflags & MAP_ENTRY_NEEDS_COPY)) {
3847 		KASSERT(src_object->cred == NULL,
3848 		    ("OVERCOMMIT: vm_map_copy_anon_entry: cred %p",
3849 		     src_object));
3850 		src_object->cred = src_entry->cred;
3851 		src_object->charge = size;
3852 	}
3853 	VM_OBJECT_WUNLOCK(src_object);
3854 	dst_entry->object.vm_object = src_object;
3855 	if (charged) {
3856 		cred = curthread->td_ucred;
3857 		crhold(cred);
3858 		dst_entry->cred = cred;
3859 		*fork_charge += size;
3860 		if (!(src_entry->eflags & MAP_ENTRY_NEEDS_COPY)) {
3861 			crhold(cred);
3862 			src_entry->cred = cred;
3863 			*fork_charge += size;
3864 		}
3865 	}
3866 }
3867 
3868 /*
3869  *	vm_map_copy_entry:
3870  *
3871  *	Copies the contents of the source entry to the destination
3872  *	entry.  The entries *must* be aligned properly.
3873  */
3874 static void
3875 vm_map_copy_entry(
3876 	vm_map_t src_map,
3877 	vm_map_t dst_map,
3878 	vm_map_entry_t src_entry,
3879 	vm_map_entry_t dst_entry,
3880 	vm_ooffset_t *fork_charge)
3881 {
3882 	vm_object_t src_object;
3883 	vm_map_entry_t fake_entry;
3884 	vm_offset_t size;
3885 
3886 	VM_MAP_ASSERT_LOCKED(dst_map);
3887 
3888 	if ((dst_entry->eflags|src_entry->eflags) & MAP_ENTRY_IS_SUB_MAP)
3889 		return;
3890 
3891 	if (src_entry->wired_count == 0 ||
3892 	    (src_entry->protection & VM_PROT_WRITE) == 0) {
3893 		/*
3894 		 * If the source entry is marked needs_copy, it is already
3895 		 * write-protected.
3896 		 */
3897 		if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0 &&
3898 		    (src_entry->protection & VM_PROT_WRITE) != 0) {
3899 			pmap_protect(src_map->pmap,
3900 			    src_entry->start,
3901 			    src_entry->end,
3902 			    src_entry->protection & ~VM_PROT_WRITE);
3903 		}
3904 
3905 		/*
3906 		 * Make a copy of the object.
3907 		 */
3908 		size = src_entry->end - src_entry->start;
3909 		if ((src_object = src_entry->object.vm_object) != NULL) {
3910 			if (src_object->type == OBJT_DEFAULT ||
3911 			    src_object->type == OBJT_SWAP) {
3912 				vm_map_copy_swap_object(src_entry, dst_entry,
3913 				    size, fork_charge);
3914 				/* May have split/collapsed, reload obj. */
3915 				src_object = src_entry->object.vm_object;
3916 			} else {
3917 				vm_object_reference(src_object);
3918 				dst_entry->object.vm_object = src_object;
3919 			}
3920 			src_entry->eflags |= MAP_ENTRY_COW |
3921 			    MAP_ENTRY_NEEDS_COPY;
3922 			dst_entry->eflags |= MAP_ENTRY_COW |
3923 			    MAP_ENTRY_NEEDS_COPY;
3924 			dst_entry->offset = src_entry->offset;
3925 			if (src_entry->eflags & MAP_ENTRY_WRITECNT) {
3926 				/*
3927 				 * MAP_ENTRY_WRITECNT cannot
3928 				 * indicate write reference from
3929 				 * src_entry, since the entry is
3930 				 * marked as needs copy.  Allocate a
3931 				 * fake entry that is used to
3932 				 * decrement object->un_pager writecount
3933 				 * at the appropriate time.  Attach
3934 				 * fake_entry to the deferred list.
3935 				 */
3936 				fake_entry = vm_map_entry_create(dst_map);
3937 				fake_entry->eflags = MAP_ENTRY_WRITECNT;
3938 				src_entry->eflags &= ~MAP_ENTRY_WRITECNT;
3939 				vm_object_reference(src_object);
3940 				fake_entry->object.vm_object = src_object;
3941 				fake_entry->start = src_entry->start;
3942 				fake_entry->end = src_entry->end;
3943 				fake_entry->defer_next =
3944 				    curthread->td_map_def_user;
3945 				curthread->td_map_def_user = fake_entry;
3946 			}
3947 
3948 			pmap_copy(dst_map->pmap, src_map->pmap,
3949 			    dst_entry->start, dst_entry->end - dst_entry->start,
3950 			    src_entry->start);
3951 		} else {
3952 			dst_entry->object.vm_object = NULL;
3953 			dst_entry->offset = 0;
3954 			if (src_entry->cred != NULL) {
3955 				dst_entry->cred = curthread->td_ucred;
3956 				crhold(dst_entry->cred);
3957 				*fork_charge += size;
3958 			}
3959 		}
3960 	} else {
3961 		/*
3962 		 * We don't want to make writeable wired pages copy-on-write.
3963 		 * Immediately copy these pages into the new map by simulating
3964 		 * page faults.  The new pages are pageable.
3965 		 */
3966 		vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry,
3967 		    fork_charge);
3968 	}
3969 }
3970 
3971 /*
3972  * vmspace_map_entry_forked:
3973  * Update the newly-forked vmspace each time a map entry is inherited
3974  * or copied.  The values for vm_dsize and vm_tsize are approximate
3975  * (and mostly-obsolete ideas in the face of mmap(2) et al.)
3976  */
3977 static void
3978 vmspace_map_entry_forked(const struct vmspace *vm1, struct vmspace *vm2,
3979     vm_map_entry_t entry)
3980 {
3981 	vm_size_t entrysize;
3982 	vm_offset_t newend;
3983 
3984 	if ((entry->eflags & MAP_ENTRY_GUARD) != 0)
3985 		return;
3986 	entrysize = entry->end - entry->start;
3987 	vm2->vm_map.size += entrysize;
3988 	if (entry->eflags & (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP)) {
3989 		vm2->vm_ssize += btoc(entrysize);
3990 	} else if (entry->start >= (vm_offset_t)vm1->vm_daddr &&
3991 	    entry->start < (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize)) {
3992 		newend = MIN(entry->end,
3993 		    (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize));
3994 		vm2->vm_dsize += btoc(newend - entry->start);
3995 	} else if (entry->start >= (vm_offset_t)vm1->vm_taddr &&
3996 	    entry->start < (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize)) {
3997 		newend = MIN(entry->end,
3998 		    (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize));
3999 		vm2->vm_tsize += btoc(newend - entry->start);
4000 	}
4001 }
4002 
4003 /*
4004  * vmspace_fork:
4005  * Create a new process vmspace structure and vm_map
4006  * based on those of an existing process.  The new map
4007  * is based on the old map, according to the inheritance
4008  * values on the regions in that map.
4009  *
4010  * XXX It might be worth coalescing the entries added to the new vmspace.
4011  *
4012  * The source map must not be locked.
4013  */
4014 struct vmspace *
4015 vmspace_fork(struct vmspace *vm1, vm_ooffset_t *fork_charge)
4016 {
4017 	struct vmspace *vm2;
4018 	vm_map_t new_map, old_map;
4019 	vm_map_entry_t new_entry, old_entry;
4020 	vm_object_t object;
4021 	int error, locked;
4022 	vm_inherit_t inh;
4023 
4024 	old_map = &vm1->vm_map;
4025 	/* Copy immutable fields of vm1 to vm2. */
4026 	vm2 = vmspace_alloc(vm_map_min(old_map), vm_map_max(old_map),
4027 	    pmap_pinit);
4028 	if (vm2 == NULL)
4029 		return (NULL);
4030 
4031 	vm2->vm_taddr = vm1->vm_taddr;
4032 	vm2->vm_daddr = vm1->vm_daddr;
4033 	vm2->vm_maxsaddr = vm1->vm_maxsaddr;
4034 	vm_map_lock(old_map);
4035 	if (old_map->busy)
4036 		vm_map_wait_busy(old_map);
4037 	new_map = &vm2->vm_map;
4038 	locked = vm_map_trylock(new_map); /* trylock to silence WITNESS */
4039 	KASSERT(locked, ("vmspace_fork: lock failed"));
4040 
4041 	error = pmap_vmspace_copy(new_map->pmap, old_map->pmap);
4042 	if (error != 0) {
4043 		sx_xunlock(&old_map->lock);
4044 		sx_xunlock(&new_map->lock);
4045 		vm_map_process_deferred();
4046 		vmspace_free(vm2);
4047 		return (NULL);
4048 	}
4049 
4050 	new_map->anon_loc = old_map->anon_loc;
4051 
4052 	VM_MAP_ENTRY_FOREACH(old_entry, old_map) {
4053 		if ((old_entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0)
4054 			panic("vm_map_fork: encountered a submap");
4055 
4056 		inh = old_entry->inheritance;
4057 		if ((old_entry->eflags & MAP_ENTRY_GUARD) != 0 &&
4058 		    inh != VM_INHERIT_NONE)
4059 			inh = VM_INHERIT_COPY;
4060 
4061 		switch (inh) {
4062 		case VM_INHERIT_NONE:
4063 			break;
4064 
4065 		case VM_INHERIT_SHARE:
4066 			/*
4067 			 * Clone the entry, creating the shared object if
4068 			 * necessary.
4069 			 */
4070 			object = old_entry->object.vm_object;
4071 			if (object == NULL) {
4072 				vm_map_entry_back(old_entry);
4073 				object = old_entry->object.vm_object;
4074 			}
4075 
4076 			/*
4077 			 * Add the reference before calling vm_object_shadow
4078 			 * to insure that a shadow object is created.
4079 			 */
4080 			vm_object_reference(object);
4081 			if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) {
4082 				vm_object_shadow(&old_entry->object.vm_object,
4083 				    &old_entry->offset,
4084 				    old_entry->end - old_entry->start,
4085 				    old_entry->cred,
4086 				    /* Transfer the second reference too. */
4087 				    true);
4088 				old_entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
4089 				old_entry->cred = NULL;
4090 				vm_object_reference(
4091 				    old_entry->object.vm_object);
4092 
4093 				/*
4094 				 * As in vm_map_merged_neighbor_dispose(),
4095 				 * the vnode lock will not be acquired in
4096 				 * this call to vm_object_deallocate().
4097 				 */
4098 				vm_object_deallocate(object);
4099 				object = old_entry->object.vm_object;
4100 			} else {
4101 				VM_OBJECT_WLOCK(object);
4102 				vm_object_clear_flag(object, OBJ_ONEMAPPING);
4103 				if (old_entry->cred != NULL) {
4104 					KASSERT(object->cred == NULL,
4105 					    ("vmspace_fork both cred"));
4106 					object->cred = old_entry->cred;
4107 					object->charge = old_entry->end -
4108 					    old_entry->start;
4109 					old_entry->cred = NULL;
4110 				}
4111 
4112 				/*
4113 				 * Assert the correct state of the vnode
4114 				 * v_writecount while the object is locked, to
4115 				 * not relock it later for the assertion
4116 				 * correctness.
4117 				 */
4118 				if (old_entry->eflags & MAP_ENTRY_WRITECNT &&
4119 				    object->type == OBJT_VNODE) {
4120 					KASSERT(((struct vnode *)object->
4121 					    handle)->v_writecount > 0,
4122 					    ("vmspace_fork: v_writecount %p",
4123 					    object));
4124 					KASSERT(object->un_pager.vnp.
4125 					    writemappings > 0,
4126 					    ("vmspace_fork: vnp.writecount %p",
4127 					    object));
4128 				}
4129 				VM_OBJECT_WUNLOCK(object);
4130 			}
4131 
4132 			/*
4133 			 * Clone the entry, referencing the shared object.
4134 			 */
4135 			new_entry = vm_map_entry_create(new_map);
4136 			*new_entry = *old_entry;
4137 			new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED |
4138 			    MAP_ENTRY_IN_TRANSITION);
4139 			new_entry->wiring_thread = NULL;
4140 			new_entry->wired_count = 0;
4141 			if (new_entry->eflags & MAP_ENTRY_WRITECNT) {
4142 				vm_pager_update_writecount(object,
4143 				    new_entry->start, new_entry->end);
4144 			}
4145 			vm_map_entry_set_vnode_text(new_entry, true);
4146 
4147 			/*
4148 			 * Insert the entry into the new map -- we know we're
4149 			 * inserting at the end of the new map.
4150 			 */
4151 			vm_map_entry_link(new_map, new_entry);
4152 			vmspace_map_entry_forked(vm1, vm2, new_entry);
4153 
4154 			/*
4155 			 * Update the physical map
4156 			 */
4157 			pmap_copy(new_map->pmap, old_map->pmap,
4158 			    new_entry->start,
4159 			    (old_entry->end - old_entry->start),
4160 			    old_entry->start);
4161 			break;
4162 
4163 		case VM_INHERIT_COPY:
4164 			/*
4165 			 * Clone the entry and link into the map.
4166 			 */
4167 			new_entry = vm_map_entry_create(new_map);
4168 			*new_entry = *old_entry;
4169 			/*
4170 			 * Copied entry is COW over the old object.
4171 			 */
4172 			new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED |
4173 			    MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_WRITECNT);
4174 			new_entry->wiring_thread = NULL;
4175 			new_entry->wired_count = 0;
4176 			new_entry->object.vm_object = NULL;
4177 			new_entry->cred = NULL;
4178 			vm_map_entry_link(new_map, new_entry);
4179 			vmspace_map_entry_forked(vm1, vm2, new_entry);
4180 			vm_map_copy_entry(old_map, new_map, old_entry,
4181 			    new_entry, fork_charge);
4182 			vm_map_entry_set_vnode_text(new_entry, true);
4183 			break;
4184 
4185 		case VM_INHERIT_ZERO:
4186 			/*
4187 			 * Create a new anonymous mapping entry modelled from
4188 			 * the old one.
4189 			 */
4190 			new_entry = vm_map_entry_create(new_map);
4191 			memset(new_entry, 0, sizeof(*new_entry));
4192 
4193 			new_entry->start = old_entry->start;
4194 			new_entry->end = old_entry->end;
4195 			new_entry->eflags = old_entry->eflags &
4196 			    ~(MAP_ENTRY_USER_WIRED | MAP_ENTRY_IN_TRANSITION |
4197 			    MAP_ENTRY_WRITECNT | MAP_ENTRY_VN_EXEC);
4198 			new_entry->protection = old_entry->protection;
4199 			new_entry->max_protection = old_entry->max_protection;
4200 			new_entry->inheritance = VM_INHERIT_ZERO;
4201 
4202 			vm_map_entry_link(new_map, new_entry);
4203 			vmspace_map_entry_forked(vm1, vm2, new_entry);
4204 
4205 			new_entry->cred = curthread->td_ucred;
4206 			crhold(new_entry->cred);
4207 			*fork_charge += (new_entry->end - new_entry->start);
4208 
4209 			break;
4210 		}
4211 	}
4212 	/*
4213 	 * Use inlined vm_map_unlock() to postpone handling the deferred
4214 	 * map entries, which cannot be done until both old_map and
4215 	 * new_map locks are released.
4216 	 */
4217 	sx_xunlock(&old_map->lock);
4218 	sx_xunlock(&new_map->lock);
4219 	vm_map_process_deferred();
4220 
4221 	return (vm2);
4222 }
4223 
4224 /*
4225  * Create a process's stack for exec_new_vmspace().  This function is never
4226  * asked to wire the newly created stack.
4227  */
4228 int
4229 vm_map_stack(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
4230     vm_prot_t prot, vm_prot_t max, int cow)
4231 {
4232 	vm_size_t growsize, init_ssize;
4233 	rlim_t vmemlim;
4234 	int rv;
4235 
4236 	MPASS((map->flags & MAP_WIREFUTURE) == 0);
4237 	growsize = sgrowsiz;
4238 	init_ssize = (max_ssize < growsize) ? max_ssize : growsize;
4239 	vm_map_lock(map);
4240 	vmemlim = lim_cur(curthread, RLIMIT_VMEM);
4241 	/* If we would blow our VMEM resource limit, no go */
4242 	if (map->size + init_ssize > vmemlim) {
4243 		rv = KERN_NO_SPACE;
4244 		goto out;
4245 	}
4246 	rv = vm_map_stack_locked(map, addrbos, max_ssize, growsize, prot,
4247 	    max, cow);
4248 out:
4249 	vm_map_unlock(map);
4250 	return (rv);
4251 }
4252 
4253 static int stack_guard_page = 1;
4254 SYSCTL_INT(_security_bsd, OID_AUTO, stack_guard_page, CTLFLAG_RWTUN,
4255     &stack_guard_page, 0,
4256     "Specifies the number of guard pages for a stack that grows");
4257 
4258 static int
4259 vm_map_stack_locked(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
4260     vm_size_t growsize, vm_prot_t prot, vm_prot_t max, int cow)
4261 {
4262 	vm_map_entry_t new_entry, prev_entry;
4263 	vm_offset_t bot, gap_bot, gap_top, top;
4264 	vm_size_t init_ssize, sgp;
4265 	int orient, rv;
4266 
4267 	/*
4268 	 * The stack orientation is piggybacked with the cow argument.
4269 	 * Extract it into orient and mask the cow argument so that we
4270 	 * don't pass it around further.
4271 	 */
4272 	orient = cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP);
4273 	KASSERT(orient != 0, ("No stack grow direction"));
4274 	KASSERT(orient != (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP),
4275 	    ("bi-dir stack"));
4276 
4277 	if (addrbos < vm_map_min(map) ||
4278 	    addrbos + max_ssize > vm_map_max(map) ||
4279 	    addrbos + max_ssize <= addrbos)
4280 		return (KERN_INVALID_ADDRESS);
4281 	sgp = ((curproc->p_flag2 & P2_STKGAP_DISABLE) != 0 ||
4282 	    (curproc->p_fctl0 & NT_FREEBSD_FCTL_STKGAP_DISABLE) != 0) ? 0 :
4283 	    (vm_size_t)stack_guard_page * PAGE_SIZE;
4284 	if (sgp >= max_ssize)
4285 		return (KERN_INVALID_ARGUMENT);
4286 
4287 	init_ssize = growsize;
4288 	if (max_ssize < init_ssize + sgp)
4289 		init_ssize = max_ssize - sgp;
4290 
4291 	/* If addr is already mapped, no go */
4292 	if (vm_map_lookup_entry(map, addrbos, &prev_entry))
4293 		return (KERN_NO_SPACE);
4294 
4295 	/*
4296 	 * If we can't accommodate max_ssize in the current mapping, no go.
4297 	 */
4298 	if (vm_map_entry_succ(prev_entry)->start < addrbos + max_ssize)
4299 		return (KERN_NO_SPACE);
4300 
4301 	/*
4302 	 * We initially map a stack of only init_ssize.  We will grow as
4303 	 * needed later.  Depending on the orientation of the stack (i.e.
4304 	 * the grow direction) we either map at the top of the range, the
4305 	 * bottom of the range or in the middle.
4306 	 *
4307 	 * Note: we would normally expect prot and max to be VM_PROT_ALL,
4308 	 * and cow to be 0.  Possibly we should eliminate these as input
4309 	 * parameters, and just pass these values here in the insert call.
4310 	 */
4311 	if (orient == MAP_STACK_GROWS_DOWN) {
4312 		bot = addrbos + max_ssize - init_ssize;
4313 		top = bot + init_ssize;
4314 		gap_bot = addrbos;
4315 		gap_top = bot;
4316 	} else /* if (orient == MAP_STACK_GROWS_UP) */ {
4317 		bot = addrbos;
4318 		top = bot + init_ssize;
4319 		gap_bot = top;
4320 		gap_top = addrbos + max_ssize;
4321 	}
4322 	rv = vm_map_insert(map, NULL, 0, bot, top, prot, max, cow);
4323 	if (rv != KERN_SUCCESS)
4324 		return (rv);
4325 	new_entry = vm_map_entry_succ(prev_entry);
4326 	KASSERT(new_entry->end == top || new_entry->start == bot,
4327 	    ("Bad entry start/end for new stack entry"));
4328 	KASSERT((orient & MAP_STACK_GROWS_DOWN) == 0 ||
4329 	    (new_entry->eflags & MAP_ENTRY_GROWS_DOWN) != 0,
4330 	    ("new entry lacks MAP_ENTRY_GROWS_DOWN"));
4331 	KASSERT((orient & MAP_STACK_GROWS_UP) == 0 ||
4332 	    (new_entry->eflags & MAP_ENTRY_GROWS_UP) != 0,
4333 	    ("new entry lacks MAP_ENTRY_GROWS_UP"));
4334 	if (gap_bot == gap_top)
4335 		return (KERN_SUCCESS);
4336 	rv = vm_map_insert(map, NULL, 0, gap_bot, gap_top, VM_PROT_NONE,
4337 	    VM_PROT_NONE, MAP_CREATE_GUARD | (orient == MAP_STACK_GROWS_DOWN ?
4338 	    MAP_CREATE_STACK_GAP_DN : MAP_CREATE_STACK_GAP_UP));
4339 	if (rv == KERN_SUCCESS) {
4340 		/*
4341 		 * Gap can never successfully handle a fault, so
4342 		 * read-ahead logic is never used for it.  Re-use
4343 		 * next_read of the gap entry to store
4344 		 * stack_guard_page for vm_map_growstack().
4345 		 */
4346 		if (orient == MAP_STACK_GROWS_DOWN)
4347 			vm_map_entry_pred(new_entry)->next_read = sgp;
4348 		else
4349 			vm_map_entry_succ(new_entry)->next_read = sgp;
4350 	} else {
4351 		(void)vm_map_delete(map, bot, top);
4352 	}
4353 	return (rv);
4354 }
4355 
4356 /*
4357  * Attempts to grow a vm stack entry.  Returns KERN_SUCCESS if we
4358  * successfully grow the stack.
4359  */
4360 static int
4361 vm_map_growstack(vm_map_t map, vm_offset_t addr, vm_map_entry_t gap_entry)
4362 {
4363 	vm_map_entry_t stack_entry;
4364 	struct proc *p;
4365 	struct vmspace *vm;
4366 	struct ucred *cred;
4367 	vm_offset_t gap_end, gap_start, grow_start;
4368 	vm_size_t grow_amount, guard, max_grow;
4369 	rlim_t lmemlim, stacklim, vmemlim;
4370 	int rv, rv1;
4371 	bool gap_deleted, grow_down, is_procstack;
4372 #ifdef notyet
4373 	uint64_t limit;
4374 #endif
4375 #ifdef RACCT
4376 	int error;
4377 #endif
4378 
4379 	p = curproc;
4380 	vm = p->p_vmspace;
4381 
4382 	/*
4383 	 * Disallow stack growth when the access is performed by a
4384 	 * debugger or AIO daemon.  The reason is that the wrong
4385 	 * resource limits are applied.
4386 	 */
4387 	if (p != initproc && (map != &p->p_vmspace->vm_map ||
4388 	    p->p_textvp == NULL))
4389 		return (KERN_FAILURE);
4390 
4391 	MPASS(!map->system_map);
4392 
4393 	lmemlim = lim_cur(curthread, RLIMIT_MEMLOCK);
4394 	stacklim = lim_cur(curthread, RLIMIT_STACK);
4395 	vmemlim = lim_cur(curthread, RLIMIT_VMEM);
4396 retry:
4397 	/* If addr is not in a hole for a stack grow area, no need to grow. */
4398 	if (gap_entry == NULL && !vm_map_lookup_entry(map, addr, &gap_entry))
4399 		return (KERN_FAILURE);
4400 	if ((gap_entry->eflags & MAP_ENTRY_GUARD) == 0)
4401 		return (KERN_SUCCESS);
4402 	if ((gap_entry->eflags & MAP_ENTRY_STACK_GAP_DN) != 0) {
4403 		stack_entry = vm_map_entry_succ(gap_entry);
4404 		if ((stack_entry->eflags & MAP_ENTRY_GROWS_DOWN) == 0 ||
4405 		    stack_entry->start != gap_entry->end)
4406 			return (KERN_FAILURE);
4407 		grow_amount = round_page(stack_entry->start - addr);
4408 		grow_down = true;
4409 	} else if ((gap_entry->eflags & MAP_ENTRY_STACK_GAP_UP) != 0) {
4410 		stack_entry = vm_map_entry_pred(gap_entry);
4411 		if ((stack_entry->eflags & MAP_ENTRY_GROWS_UP) == 0 ||
4412 		    stack_entry->end != gap_entry->start)
4413 			return (KERN_FAILURE);
4414 		grow_amount = round_page(addr + 1 - stack_entry->end);
4415 		grow_down = false;
4416 	} else {
4417 		return (KERN_FAILURE);
4418 	}
4419 	guard = ((curproc->p_flag2 & P2_STKGAP_DISABLE) != 0 ||
4420 	    (curproc->p_fctl0 & NT_FREEBSD_FCTL_STKGAP_DISABLE) != 0) ? 0 :
4421 	    gap_entry->next_read;
4422 	max_grow = gap_entry->end - gap_entry->start;
4423 	if (guard > max_grow)
4424 		return (KERN_NO_SPACE);
4425 	max_grow -= guard;
4426 	if (grow_amount > max_grow)
4427 		return (KERN_NO_SPACE);
4428 
4429 	/*
4430 	 * If this is the main process stack, see if we're over the stack
4431 	 * limit.
4432 	 */
4433 	is_procstack = addr >= (vm_offset_t)vm->vm_maxsaddr &&
4434 	    addr < (vm_offset_t)p->p_sysent->sv_usrstack;
4435 	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim))
4436 		return (KERN_NO_SPACE);
4437 
4438 #ifdef RACCT
4439 	if (racct_enable) {
4440 		PROC_LOCK(p);
4441 		if (is_procstack && racct_set(p, RACCT_STACK,
4442 		    ctob(vm->vm_ssize) + grow_amount)) {
4443 			PROC_UNLOCK(p);
4444 			return (KERN_NO_SPACE);
4445 		}
4446 		PROC_UNLOCK(p);
4447 	}
4448 #endif
4449 
4450 	grow_amount = roundup(grow_amount, sgrowsiz);
4451 	if (grow_amount > max_grow)
4452 		grow_amount = max_grow;
4453 	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) {
4454 		grow_amount = trunc_page((vm_size_t)stacklim) -
4455 		    ctob(vm->vm_ssize);
4456 	}
4457 
4458 #ifdef notyet
4459 	PROC_LOCK(p);
4460 	limit = racct_get_available(p, RACCT_STACK);
4461 	PROC_UNLOCK(p);
4462 	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > limit))
4463 		grow_amount = limit - ctob(vm->vm_ssize);
4464 #endif
4465 
4466 	if (!old_mlock && (map->flags & MAP_WIREFUTURE) != 0) {
4467 		if (ptoa(pmap_wired_count(map->pmap)) + grow_amount > lmemlim) {
4468 			rv = KERN_NO_SPACE;
4469 			goto out;
4470 		}
4471 #ifdef RACCT
4472 		if (racct_enable) {
4473 			PROC_LOCK(p);
4474 			if (racct_set(p, RACCT_MEMLOCK,
4475 			    ptoa(pmap_wired_count(map->pmap)) + grow_amount)) {
4476 				PROC_UNLOCK(p);
4477 				rv = KERN_NO_SPACE;
4478 				goto out;
4479 			}
4480 			PROC_UNLOCK(p);
4481 		}
4482 #endif
4483 	}
4484 
4485 	/* If we would blow our VMEM resource limit, no go */
4486 	if (map->size + grow_amount > vmemlim) {
4487 		rv = KERN_NO_SPACE;
4488 		goto out;
4489 	}
4490 #ifdef RACCT
4491 	if (racct_enable) {
4492 		PROC_LOCK(p);
4493 		if (racct_set(p, RACCT_VMEM, map->size + grow_amount)) {
4494 			PROC_UNLOCK(p);
4495 			rv = KERN_NO_SPACE;
4496 			goto out;
4497 		}
4498 		PROC_UNLOCK(p);
4499 	}
4500 #endif
4501 
4502 	if (vm_map_lock_upgrade(map)) {
4503 		gap_entry = NULL;
4504 		vm_map_lock_read(map);
4505 		goto retry;
4506 	}
4507 
4508 	if (grow_down) {
4509 		grow_start = gap_entry->end - grow_amount;
4510 		if (gap_entry->start + grow_amount == gap_entry->end) {
4511 			gap_start = gap_entry->start;
4512 			gap_end = gap_entry->end;
4513 			vm_map_entry_delete(map, gap_entry);
4514 			gap_deleted = true;
4515 		} else {
4516 			MPASS(gap_entry->start < gap_entry->end - grow_amount);
4517 			vm_map_entry_resize(map, gap_entry, -grow_amount);
4518 			gap_deleted = false;
4519 		}
4520 		rv = vm_map_insert(map, NULL, 0, grow_start,
4521 		    grow_start + grow_amount,
4522 		    stack_entry->protection, stack_entry->max_protection,
4523 		    MAP_STACK_GROWS_DOWN);
4524 		if (rv != KERN_SUCCESS) {
4525 			if (gap_deleted) {
4526 				rv1 = vm_map_insert(map, NULL, 0, gap_start,
4527 				    gap_end, VM_PROT_NONE, VM_PROT_NONE,
4528 				    MAP_CREATE_GUARD | MAP_CREATE_STACK_GAP_DN);
4529 				MPASS(rv1 == KERN_SUCCESS);
4530 			} else
4531 				vm_map_entry_resize(map, gap_entry,
4532 				    grow_amount);
4533 		}
4534 	} else {
4535 		grow_start = stack_entry->end;
4536 		cred = stack_entry->cred;
4537 		if (cred == NULL && stack_entry->object.vm_object != NULL)
4538 			cred = stack_entry->object.vm_object->cred;
4539 		if (cred != NULL && !swap_reserve_by_cred(grow_amount, cred))
4540 			rv = KERN_NO_SPACE;
4541 		/* Grow the underlying object if applicable. */
4542 		else if (stack_entry->object.vm_object == NULL ||
4543 		    vm_object_coalesce(stack_entry->object.vm_object,
4544 		    stack_entry->offset,
4545 		    (vm_size_t)(stack_entry->end - stack_entry->start),
4546 		    grow_amount, cred != NULL)) {
4547 			if (gap_entry->start + grow_amount == gap_entry->end) {
4548 				vm_map_entry_delete(map, gap_entry);
4549 				vm_map_entry_resize(map, stack_entry,
4550 				    grow_amount);
4551 			} else {
4552 				gap_entry->start += grow_amount;
4553 				stack_entry->end += grow_amount;
4554 			}
4555 			map->size += grow_amount;
4556 			rv = KERN_SUCCESS;
4557 		} else
4558 			rv = KERN_FAILURE;
4559 	}
4560 	if (rv == KERN_SUCCESS && is_procstack)
4561 		vm->vm_ssize += btoc(grow_amount);
4562 
4563 	/*
4564 	 * Heed the MAP_WIREFUTURE flag if it was set for this process.
4565 	 */
4566 	if (rv == KERN_SUCCESS && (map->flags & MAP_WIREFUTURE) != 0) {
4567 		rv = vm_map_wire_locked(map, grow_start,
4568 		    grow_start + grow_amount,
4569 		    VM_MAP_WIRE_USER | VM_MAP_WIRE_NOHOLES);
4570 	}
4571 	vm_map_lock_downgrade(map);
4572 
4573 out:
4574 #ifdef RACCT
4575 	if (racct_enable && rv != KERN_SUCCESS) {
4576 		PROC_LOCK(p);
4577 		error = racct_set(p, RACCT_VMEM, map->size);
4578 		KASSERT(error == 0, ("decreasing RACCT_VMEM failed"));
4579 		if (!old_mlock) {
4580 			error = racct_set(p, RACCT_MEMLOCK,
4581 			    ptoa(pmap_wired_count(map->pmap)));
4582 			KASSERT(error == 0, ("decreasing RACCT_MEMLOCK failed"));
4583 		}
4584 	    	error = racct_set(p, RACCT_STACK, ctob(vm->vm_ssize));
4585 		KASSERT(error == 0, ("decreasing RACCT_STACK failed"));
4586 		PROC_UNLOCK(p);
4587 	}
4588 #endif
4589 
4590 	return (rv);
4591 }
4592 
4593 /*
4594  * Unshare the specified VM space for exec.  If other processes are
4595  * mapped to it, then create a new one.  The new vmspace is null.
4596  */
4597 int
4598 vmspace_exec(struct proc *p, vm_offset_t minuser, vm_offset_t maxuser)
4599 {
4600 	struct vmspace *oldvmspace = p->p_vmspace;
4601 	struct vmspace *newvmspace;
4602 
4603 	KASSERT((curthread->td_pflags & TDP_EXECVMSPC) == 0,
4604 	    ("vmspace_exec recursed"));
4605 	newvmspace = vmspace_alloc(minuser, maxuser, pmap_pinit);
4606 	if (newvmspace == NULL)
4607 		return (ENOMEM);
4608 	newvmspace->vm_swrss = oldvmspace->vm_swrss;
4609 	/*
4610 	 * This code is written like this for prototype purposes.  The
4611 	 * goal is to avoid running down the vmspace here, but let the
4612 	 * other process's that are still using the vmspace to finally
4613 	 * run it down.  Even though there is little or no chance of blocking
4614 	 * here, it is a good idea to keep this form for future mods.
4615 	 */
4616 	PROC_VMSPACE_LOCK(p);
4617 	p->p_vmspace = newvmspace;
4618 	PROC_VMSPACE_UNLOCK(p);
4619 	if (p == curthread->td_proc)
4620 		pmap_activate(curthread);
4621 	curthread->td_pflags |= TDP_EXECVMSPC;
4622 	return (0);
4623 }
4624 
4625 /*
4626  * Unshare the specified VM space for forcing COW.  This
4627  * is called by rfork, for the (RFMEM|RFPROC) == 0 case.
4628  */
4629 int
4630 vmspace_unshare(struct proc *p)
4631 {
4632 	struct vmspace *oldvmspace = p->p_vmspace;
4633 	struct vmspace *newvmspace;
4634 	vm_ooffset_t fork_charge;
4635 
4636 	if (oldvmspace->vm_refcnt == 1)
4637 		return (0);
4638 	fork_charge = 0;
4639 	newvmspace = vmspace_fork(oldvmspace, &fork_charge);
4640 	if (newvmspace == NULL)
4641 		return (ENOMEM);
4642 	if (!swap_reserve_by_cred(fork_charge, p->p_ucred)) {
4643 		vmspace_free(newvmspace);
4644 		return (ENOMEM);
4645 	}
4646 	PROC_VMSPACE_LOCK(p);
4647 	p->p_vmspace = newvmspace;
4648 	PROC_VMSPACE_UNLOCK(p);
4649 	if (p == curthread->td_proc)
4650 		pmap_activate(curthread);
4651 	vmspace_free(oldvmspace);
4652 	return (0);
4653 }
4654 
4655 /*
4656  *	vm_map_lookup:
4657  *
4658  *	Finds the VM object, offset, and
4659  *	protection for a given virtual address in the
4660  *	specified map, assuming a page fault of the
4661  *	type specified.
4662  *
4663  *	Leaves the map in question locked for read; return
4664  *	values are guaranteed until a vm_map_lookup_done
4665  *	call is performed.  Note that the map argument
4666  *	is in/out; the returned map must be used in
4667  *	the call to vm_map_lookup_done.
4668  *
4669  *	A handle (out_entry) is returned for use in
4670  *	vm_map_lookup_done, to make that fast.
4671  *
4672  *	If a lookup is requested with "write protection"
4673  *	specified, the map may be changed to perform virtual
4674  *	copying operations, although the data referenced will
4675  *	remain the same.
4676  */
4677 int
4678 vm_map_lookup(vm_map_t *var_map,		/* IN/OUT */
4679 	      vm_offset_t vaddr,
4680 	      vm_prot_t fault_typea,
4681 	      vm_map_entry_t *out_entry,	/* OUT */
4682 	      vm_object_t *object,		/* OUT */
4683 	      vm_pindex_t *pindex,		/* OUT */
4684 	      vm_prot_t *out_prot,		/* OUT */
4685 	      boolean_t *wired)			/* OUT */
4686 {
4687 	vm_map_entry_t entry;
4688 	vm_map_t map = *var_map;
4689 	vm_prot_t prot;
4690 	vm_prot_t fault_type = fault_typea;
4691 	vm_object_t eobject;
4692 	vm_size_t size;
4693 	struct ucred *cred;
4694 
4695 RetryLookup:
4696 
4697 	vm_map_lock_read(map);
4698 
4699 RetryLookupLocked:
4700 	/*
4701 	 * Lookup the faulting address.
4702 	 */
4703 	if (!vm_map_lookup_entry(map, vaddr, out_entry)) {
4704 		vm_map_unlock_read(map);
4705 		return (KERN_INVALID_ADDRESS);
4706 	}
4707 
4708 	entry = *out_entry;
4709 
4710 	/*
4711 	 * Handle submaps.
4712 	 */
4713 	if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
4714 		vm_map_t old_map = map;
4715 
4716 		*var_map = map = entry->object.sub_map;
4717 		vm_map_unlock_read(old_map);
4718 		goto RetryLookup;
4719 	}
4720 
4721 	/*
4722 	 * Check whether this task is allowed to have this page.
4723 	 */
4724 	prot = entry->protection;
4725 	if ((fault_typea & VM_PROT_FAULT_LOOKUP) != 0) {
4726 		fault_typea &= ~VM_PROT_FAULT_LOOKUP;
4727 		if (prot == VM_PROT_NONE && map != kernel_map &&
4728 		    (entry->eflags & MAP_ENTRY_GUARD) != 0 &&
4729 		    (entry->eflags & (MAP_ENTRY_STACK_GAP_DN |
4730 		    MAP_ENTRY_STACK_GAP_UP)) != 0 &&
4731 		    vm_map_growstack(map, vaddr, entry) == KERN_SUCCESS)
4732 			goto RetryLookupLocked;
4733 	}
4734 	fault_type &= VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE;
4735 	if ((fault_type & prot) != fault_type || prot == VM_PROT_NONE) {
4736 		vm_map_unlock_read(map);
4737 		return (KERN_PROTECTION_FAILURE);
4738 	}
4739 	KASSERT((prot & VM_PROT_WRITE) == 0 || (entry->eflags &
4740 	    (MAP_ENTRY_USER_WIRED | MAP_ENTRY_NEEDS_COPY)) !=
4741 	    (MAP_ENTRY_USER_WIRED | MAP_ENTRY_NEEDS_COPY),
4742 	    ("entry %p flags %x", entry, entry->eflags));
4743 	if ((fault_typea & VM_PROT_COPY) != 0 &&
4744 	    (entry->max_protection & VM_PROT_WRITE) == 0 &&
4745 	    (entry->eflags & MAP_ENTRY_COW) == 0) {
4746 		vm_map_unlock_read(map);
4747 		return (KERN_PROTECTION_FAILURE);
4748 	}
4749 
4750 	/*
4751 	 * If this page is not pageable, we have to get it for all possible
4752 	 * accesses.
4753 	 */
4754 	*wired = (entry->wired_count != 0);
4755 	if (*wired)
4756 		fault_type = entry->protection;
4757 	size = entry->end - entry->start;
4758 
4759 	/*
4760 	 * If the entry was copy-on-write, we either ...
4761 	 */
4762 	if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
4763 		/*
4764 		 * If we want to write the page, we may as well handle that
4765 		 * now since we've got the map locked.
4766 		 *
4767 		 * If we don't need to write the page, we just demote the
4768 		 * permissions allowed.
4769 		 */
4770 		if ((fault_type & VM_PROT_WRITE) != 0 ||
4771 		    (fault_typea & VM_PROT_COPY) != 0) {
4772 			/*
4773 			 * Make a new object, and place it in the object
4774 			 * chain.  Note that no new references have appeared
4775 			 * -- one just moved from the map to the new
4776 			 * object.
4777 			 */
4778 			if (vm_map_lock_upgrade(map))
4779 				goto RetryLookup;
4780 
4781 			if (entry->cred == NULL) {
4782 				/*
4783 				 * The debugger owner is charged for
4784 				 * the memory.
4785 				 */
4786 				cred = curthread->td_ucred;
4787 				crhold(cred);
4788 				if (!swap_reserve_by_cred(size, cred)) {
4789 					crfree(cred);
4790 					vm_map_unlock(map);
4791 					return (KERN_RESOURCE_SHORTAGE);
4792 				}
4793 				entry->cred = cred;
4794 			}
4795 			eobject = entry->object.vm_object;
4796 			vm_object_shadow(&entry->object.vm_object,
4797 			    &entry->offset, size, entry->cred, false);
4798 			if (eobject == entry->object.vm_object) {
4799 				/*
4800 				 * The object was not shadowed.
4801 				 */
4802 				swap_release_by_cred(size, entry->cred);
4803 				crfree(entry->cred);
4804 			}
4805 			entry->cred = NULL;
4806 			entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
4807 
4808 			vm_map_lock_downgrade(map);
4809 		} else {
4810 			/*
4811 			 * We're attempting to read a copy-on-write page --
4812 			 * don't allow writes.
4813 			 */
4814 			prot &= ~VM_PROT_WRITE;
4815 		}
4816 	}
4817 
4818 	/*
4819 	 * Create an object if necessary.
4820 	 */
4821 	if (entry->object.vm_object == NULL && !map->system_map) {
4822 		if (vm_map_lock_upgrade(map))
4823 			goto RetryLookup;
4824 		entry->object.vm_object = vm_object_allocate_anon(atop(size),
4825 		    NULL, entry->cred, entry->cred != NULL ? size : 0);
4826 		entry->offset = 0;
4827 		entry->cred = NULL;
4828 		vm_map_lock_downgrade(map);
4829 	}
4830 
4831 	/*
4832 	 * Return the object/offset from this entry.  If the entry was
4833 	 * copy-on-write or empty, it has been fixed up.
4834 	 */
4835 	*pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
4836 	*object = entry->object.vm_object;
4837 
4838 	*out_prot = prot;
4839 	return (KERN_SUCCESS);
4840 }
4841 
4842 /*
4843  *	vm_map_lookup_locked:
4844  *
4845  *	Lookup the faulting address.  A version of vm_map_lookup that returns
4846  *      KERN_FAILURE instead of blocking on map lock or memory allocation.
4847  */
4848 int
4849 vm_map_lookup_locked(vm_map_t *var_map,		/* IN/OUT */
4850 		     vm_offset_t vaddr,
4851 		     vm_prot_t fault_typea,
4852 		     vm_map_entry_t *out_entry,	/* OUT */
4853 		     vm_object_t *object,	/* OUT */
4854 		     vm_pindex_t *pindex,	/* OUT */
4855 		     vm_prot_t *out_prot,	/* OUT */
4856 		     boolean_t *wired)		/* OUT */
4857 {
4858 	vm_map_entry_t entry;
4859 	vm_map_t map = *var_map;
4860 	vm_prot_t prot;
4861 	vm_prot_t fault_type = fault_typea;
4862 
4863 	/*
4864 	 * Lookup the faulting address.
4865 	 */
4866 	if (!vm_map_lookup_entry(map, vaddr, out_entry))
4867 		return (KERN_INVALID_ADDRESS);
4868 
4869 	entry = *out_entry;
4870 
4871 	/*
4872 	 * Fail if the entry refers to a submap.
4873 	 */
4874 	if (entry->eflags & MAP_ENTRY_IS_SUB_MAP)
4875 		return (KERN_FAILURE);
4876 
4877 	/*
4878 	 * Check whether this task is allowed to have this page.
4879 	 */
4880 	prot = entry->protection;
4881 	fault_type &= VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE;
4882 	if ((fault_type & prot) != fault_type)
4883 		return (KERN_PROTECTION_FAILURE);
4884 
4885 	/*
4886 	 * If this page is not pageable, we have to get it for all possible
4887 	 * accesses.
4888 	 */
4889 	*wired = (entry->wired_count != 0);
4890 	if (*wired)
4891 		fault_type = entry->protection;
4892 
4893 	if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
4894 		/*
4895 		 * Fail if the entry was copy-on-write for a write fault.
4896 		 */
4897 		if (fault_type & VM_PROT_WRITE)
4898 			return (KERN_FAILURE);
4899 		/*
4900 		 * We're attempting to read a copy-on-write page --
4901 		 * don't allow writes.
4902 		 */
4903 		prot &= ~VM_PROT_WRITE;
4904 	}
4905 
4906 	/*
4907 	 * Fail if an object should be created.
4908 	 */
4909 	if (entry->object.vm_object == NULL && !map->system_map)
4910 		return (KERN_FAILURE);
4911 
4912 	/*
4913 	 * Return the object/offset from this entry.  If the entry was
4914 	 * copy-on-write or empty, it has been fixed up.
4915 	 */
4916 	*pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
4917 	*object = entry->object.vm_object;
4918 
4919 	*out_prot = prot;
4920 	return (KERN_SUCCESS);
4921 }
4922 
4923 /*
4924  *	vm_map_lookup_done:
4925  *
4926  *	Releases locks acquired by a vm_map_lookup
4927  *	(according to the handle returned by that lookup).
4928  */
4929 void
4930 vm_map_lookup_done(vm_map_t map, vm_map_entry_t entry)
4931 {
4932 	/*
4933 	 * Unlock the main-level map
4934 	 */
4935 	vm_map_unlock_read(map);
4936 }
4937 
4938 vm_offset_t
4939 vm_map_max_KBI(const struct vm_map *map)
4940 {
4941 
4942 	return (vm_map_max(map));
4943 }
4944 
4945 vm_offset_t
4946 vm_map_min_KBI(const struct vm_map *map)
4947 {
4948 
4949 	return (vm_map_min(map));
4950 }
4951 
4952 pmap_t
4953 vm_map_pmap_KBI(vm_map_t map)
4954 {
4955 
4956 	return (map->pmap);
4957 }
4958 
4959 #ifdef INVARIANTS
4960 static void
4961 _vm_map_assert_consistent(vm_map_t map, int check)
4962 {
4963 	vm_map_entry_t entry, prev;
4964 	vm_size_t max_left, max_right;
4965 
4966 #ifdef DIAGNOSTIC
4967 	++map->nupdates;
4968 #endif
4969 	if (enable_vmmap_check != check)
4970 		return;
4971 
4972 	prev = &map->header;
4973 	VM_MAP_ENTRY_FOREACH(entry, map) {
4974 		KASSERT(prev->end <= entry->start,
4975 		    ("map %p prev->end = %jx, start = %jx", map,
4976 		    (uintmax_t)prev->end, (uintmax_t)entry->start));
4977 		KASSERT(entry->start < entry->end,
4978 		    ("map %p start = %jx, end = %jx", map,
4979 		    (uintmax_t)entry->start, (uintmax_t)entry->end));
4980 		KASSERT(entry->end <= vm_map_entry_succ(entry)->start,
4981 		    ("map %p end = %jx, next->start = %jx", map,
4982 		     (uintmax_t)entry->end,
4983 		     (uintmax_t)vm_map_entry_succ(entry)->start));
4984 		KASSERT(entry->left == NULL ||
4985 		    entry->left->start < entry->start,
4986 		    ("map %p left->start = %jx, start = %jx", map,
4987 		    (uintmax_t)entry->left->start, (uintmax_t)entry->start));
4988 		KASSERT(entry->right == NULL ||
4989 		    entry->start < entry->right->start,
4990 		    ("map %p start = %jx, right->start = %jx", map,
4991 		    (uintmax_t)entry->start, (uintmax_t)entry->right->start));
4992 		max_left = vm_map_entry_max_free_left(entry,
4993 		    vm_map_entry_pred(entry));
4994 		max_right = vm_map_entry_max_free_right(entry,
4995 		    vm_map_entry_succ(entry));
4996 		KASSERT(entry->max_free == MAX(max_left, max_right),
4997 		    ("map %p max = %jx, max_left = %jx, max_right = %jx", map,
4998 		    (uintmax_t)entry->max_free,
4999 		    (uintmax_t)max_left, (uintmax_t)max_right));
5000 		prev = entry;
5001 	}
5002 	KASSERT(prev->end <= entry->start,
5003 	    ("map %p prev->end = %jx, start = %jx", map,
5004 	    (uintmax_t)prev->end, (uintmax_t)entry->start));
5005 }
5006 #endif
5007 
5008 #include "opt_ddb.h"
5009 #ifdef DDB
5010 #include <sys/kernel.h>
5011 
5012 #include <ddb/ddb.h>
5013 
5014 static void
5015 vm_map_print(vm_map_t map)
5016 {
5017 	vm_map_entry_t entry, prev;
5018 
5019 	db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n",
5020 	    (void *)map,
5021 	    (void *)map->pmap, map->nentries, map->timestamp);
5022 
5023 	db_indent += 2;
5024 	prev = &map->header;
5025 	VM_MAP_ENTRY_FOREACH(entry, map) {
5026 		db_iprintf("map entry %p: start=%p, end=%p, eflags=%#x, \n",
5027 		    (void *)entry, (void *)entry->start, (void *)entry->end,
5028 		    entry->eflags);
5029 		{
5030 			static char *inheritance_name[4] =
5031 			{"share", "copy", "none", "donate_copy"};
5032 
5033 			db_iprintf(" prot=%x/%x/%s",
5034 			    entry->protection,
5035 			    entry->max_protection,
5036 			    inheritance_name[(int)(unsigned char)
5037 			    entry->inheritance]);
5038 			if (entry->wired_count != 0)
5039 				db_printf(", wired");
5040 		}
5041 		if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
5042 			db_printf(", share=%p, offset=0x%jx\n",
5043 			    (void *)entry->object.sub_map,
5044 			    (uintmax_t)entry->offset);
5045 			if (prev == &map->header ||
5046 			    prev->object.sub_map !=
5047 				entry->object.sub_map) {
5048 				db_indent += 2;
5049 				vm_map_print((vm_map_t)entry->object.sub_map);
5050 				db_indent -= 2;
5051 			}
5052 		} else {
5053 			if (entry->cred != NULL)
5054 				db_printf(", ruid %d", entry->cred->cr_ruid);
5055 			db_printf(", object=%p, offset=0x%jx",
5056 			    (void *)entry->object.vm_object,
5057 			    (uintmax_t)entry->offset);
5058 			if (entry->object.vm_object && entry->object.vm_object->cred)
5059 				db_printf(", obj ruid %d charge %jx",
5060 				    entry->object.vm_object->cred->cr_ruid,
5061 				    (uintmax_t)entry->object.vm_object->charge);
5062 			if (entry->eflags & MAP_ENTRY_COW)
5063 				db_printf(", copy (%s)",
5064 				    (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done");
5065 			db_printf("\n");
5066 
5067 			if (prev == &map->header ||
5068 			    prev->object.vm_object !=
5069 				entry->object.vm_object) {
5070 				db_indent += 2;
5071 				vm_object_print((db_expr_t)(intptr_t)
5072 						entry->object.vm_object,
5073 						0, 0, (char *)0);
5074 				db_indent -= 2;
5075 			}
5076 		}
5077 		prev = entry;
5078 	}
5079 	db_indent -= 2;
5080 }
5081 
5082 DB_SHOW_COMMAND(map, map)
5083 {
5084 
5085 	if (!have_addr) {
5086 		db_printf("usage: show map <addr>\n");
5087 		return;
5088 	}
5089 	vm_map_print((vm_map_t)addr);
5090 }
5091 
5092 DB_SHOW_COMMAND(procvm, procvm)
5093 {
5094 	struct proc *p;
5095 
5096 	if (have_addr) {
5097 		p = db_lookup_proc(addr);
5098 	} else {
5099 		p = curproc;
5100 	}
5101 
5102 	db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n",
5103 	    (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map,
5104 	    (void *)vmspace_pmap(p->p_vmspace));
5105 
5106 	vm_map_print((vm_map_t)&p->p_vmspace->vm_map);
5107 }
5108 
5109 #endif /* DDB */
5110